How Guidance Affects Student Engagement with an Interactive Simulation
ERIC Educational Resources Information Center
Chamberlain, Julia M.; Lancaster, Kelly; Parson, Robert; Perkins, Katherine K.
2014-01-01
We studied how students engaged with an interactive simulation in a classroom setting and how that engagement was affected by the design of a guiding activity. Students (n = 210) completed a written activity using an interactive simulation in second semester undergraduate general chemistry recitations. The same simulation--PhET Interactive…
Using Technology to Enhance Teaching of Patient-Centered Interviewing for Early Medical Students.
Kaltman, Stacey; Talisman, Nicholas; Pennestri, Susan; Syverson, Eleri; Arthur, Paige; Vovides, Yianna
2018-06-01
Effective strategies for teaching communication skills to health professions students are needed. This article describes the design and evaluation of immersive and interactive video simulations for medical students to practice basic communication skills. Three simulations were developed, focusing on patient-centered interviewing techniques such as using open-ended questions, reflections, and empathic responses while assessing a patient's history of present illness. First-year medical students were randomized to simulation or education-as-usual arms. Students in the simulation arm were given access to three interactive video simulations developed using Articulate Storyline, an e-learning authoring tool, to practice and receive feedback on patient-centered interviewing techniques to prepare for their Observed Structured Clinical Examination (OSCE). Trained raters evaluated videos of two OSCE cases for each participant to assess specific communication skills used during the history of present illness component of the interview. Eighty-seven percent of the students in the simulation arm interacted with at least one simulation during the history of present illness. For both OSCE cases, students in the simulation arm asked significantly more open-ended questions. Students in the simulation arm asked significantly fewer closed-ended questions and offered significantly more empathic responses in one OSCE case. No differences were found for reflections. Students reported that the simulations helped improve their communication skills. The use of interactive video simulations was found to be feasible to incorporate into the curriculum and was appealing to students. In addition, students in the simulation arm displayed more behaviors consistent with the patient-centered interviewing model practiced in the simulations. Continued development and research are warranted.
A meta-analysis of outcomes from the use of computer-simulated experiments in science education
NASA Astrophysics Data System (ADS)
Lejeune, John Van
The purpose of this study was to synthesize the findings from existing research on the effects of computer simulated experiments on students in science education. Results from 40 reports were integrated by the process of meta-analysis to examine the effect of computer-simulated experiments and interactive videodisc simulations on student achievement and attitudes. Findings indicated significant positive differences in both low-level and high-level achievement of students who use computer-simulated experiments and interactive videodisc simulations as compared to students who used more traditional learning activities. No significant differences in retention, student attitudes toward the subject, or toward the educational method were found. Based on the findings of this study, computer-simulated experiments and interactive videodisc simulations should be used to enhance students' learning in science, especially in cases where the use of traditional laboratory activities are expensive, dangerous, or impractical.
Allen, Edwin B; Walls, Richard T; Reilly, Frank D
2008-02-01
This study investigated the effects of interactive instructional techniques in a web-based peripheral nervous system (PNS) component of a first year medical school human anatomy course. Existing data from 9 years of instruction involving 856 students were used to determine (1) the effect of web-based interactive instructional techniques on written exam item performance and (2) differences between student opinions of the benefit level of five different types of interactive learning objects used. The interactive learning objects included Patient Case studies, review Games, Simulated Interactive Patients (SIP), Flashcards, and unit Quizzes. Exam item analysis scores were found to be significantly higher (p < 0.05) for students receiving the instructional treatment incorporating the web-based interactive learning objects than for students not receiving this treatment. Questionnaires using a five-point Likert scale were analysed to determine student opinion ratings of the interactive learning objects. Students reported favorably on the benefit level of all learning objects. Students rated the benefit level of the Simulated Interactive Patients (SIP) highest, and this rating was significantly higher (p < 0.05) than all other learning objects. This study suggests that web-based interactive instructional techniques improve student exam performance. Students indicated a strong acceptance of Simulated Interactive Patient learning objects.
Interactive Simulated Patient: Experiences with Collaborative E-Learning in Medicine
ERIC Educational Resources Information Center
Bergin, Rolf; Youngblood, Patricia; Ayers, Mary K.; Boberg, Jonas; Bolander, Klara; Courteille, Olivier; Dev, Parvati; Hindbeck, Hans; Edward, Leonard E., II; Stringer, Jennifer R.; Thalme, Anders; Fors, Uno G. H.
2003-01-01
Interactive Simulated Patient (ISP) is a computer-based simulation tool designed to provide medical students with the opportunity to practice their clinical problem solving skills. The ISP system allows students to perform most clinical decision-making procedures in a simulated environment, including history taking in natural language, many…
Interactive Physics: the role of interactive learning objects in teaching Physics in Engineering
NASA Astrophysics Data System (ADS)
Benito, R. M.; Cámara, M. E.; Arranz, F. J.
2009-04-01
In this work we present the results of a Project in educational innovation entitled "Interactive Physics". We have developed resources for teaching Physics for students of Engineering, with an emphasis in conceptual reinforcement and addressing the shortcomings of students entering the University. The resources developed include hypertext, graphics, equations, quizzes and more elaborated problems that cover the customary syllabus in first-year Physics: kinematics and dynamics, Newton laws, electricity and magnetism, elementary circuits… The role of vector quantities is stressed and we also provide help for the most usual mathematical tools (calculus and trigonometric formulas). The structure and level of detail of the resources are fitted to the conceptual difficulties that most of the students find. Some of the most advanced resources we have developed are interactive simulations. These are real simulations of key physical situations, not only animations. They serve as learning objects, in the well known sense of small reusable digital objects that are self-contained and tagged with metadata. In this sense, we use them to link concepts and content through interaction with active engagement of the student. The development of an interactive simulation involves several steps. First, we identify common pitfalls in the conceptual framework of the students and the points in which they stumble frequently. Then we think of a way to make clear the physical concepts using a simulation. After that, we program the simulation (using Flash or Java) and finally the simulation is tested with the students, and we reelaborate some parts of it in terms of usability. In our communication, we discuss the usefulness of these interactive simulations in teaching Physics for engineers, and their integration in a more comprehensive b-learning system.
Howard, Valerie Michele; Ross, Carl; Mitchell, Ann M; Nelson, Glenn M
2010-01-01
Although human patient simulators provide an innovative teaching method for nursing students, they are quite expensive. To investigate the value of this expenditure, a quantitative, quasi-experimental, two-group pretest and posttest design was used to compare two educational interventions: human patient simulators and interactive case studies. The sample (N = 49) consisted of students from baccalaureate, accelerated baccalaureate, and diploma nursing programs. Custom-designed Health Education Systems, Inc examinations were used to measure knowledge before and after the implementation of the two educational interventions. Students in the human patient simulation group scored significantly higher than did those in the interactive case study group on the posttest Health Education Systems, Inc examination, and no significant difference was found in student scores among the three types of nursing programs that participated in the study. Data obtained from a questionnaire administered to participants indicated that students responded favorably to the use of human patient simulators as a teaching method.
ERIC Educational Resources Information Center
Ballera, Melvin; Elssaedi, Mosbah Mohamed
2012-01-01
There is an unrealized potential in the use of socially-oriented pedagogical agent and interactive simulation in e-learning system. In this paper, we investigate the impact of having a socially oriented tutor agent and the incorporation of interactive simulation in e-learning into student performances, perceptions and experiences for non-native…
Pugh, Carla M; Obadina, Eniola T; Aidoo, Kofi A
2009-01-01
There is a paucity of research assessing the potential benefits of mannequin trainers when preparing students to interact with teaching associates. The goal of this study was to better understand the effects of mannequin-based simulators on student comfort toward learning specific aspects of the clinical female pelvic exam. First-year medical students (N = 344) were surveyed before and after a mannequin-based simulation curriculum to assess their comfort levels toward learning the female pelvic exam. Causing harm was the top cause of student anxiety toward learning the pelvic exam. Although the mannequin-based simulation curriculum was effective in significantly increasing (p < .001) student comfort levels toward learning the pelvic exam, the majority of students progressed from being "very uncomfortable" with the exam to being "somewhat comfortable." We suggest that mannequin-based simulators be used prior to students' learning experience with pelvic exam teaching associates.
Effective Student Learning of Fractions with an Interactive Simulation
ERIC Educational Resources Information Center
Hensberry, Karina K. R.; Moore, Emily B.; Perkins, Katherine K.
2015-01-01
Computer technology, when coupled with reform-based teaching practices, has been shown to be an effective way to support student learning of mathematics. The quality of the technology itself, as well as how it is used, impacts how much students learn. Interactive simulations are dynamic virtual environments similar to virtual manipulatives that…
Interacting with the World--Moving History beyond the Classroom.
ERIC Educational Resources Information Center
Bebensee, Larry; Evans, Mark
1990-01-01
Describes a project in which students from 11 countries took part in an Arab-Israeli Conflict simulation-- an interactive communication simulation that immersed students in the complex dynamics of international reality. The project is a pilot program from the Region of Peel School Board, Ontario. Example of simulation is appended. (SLM)
Battista, Alexis
2017-01-01
The dominant frameworks for describing how simulations support learning emphasize increasing access to structured practice and the provision of feedback which are commonly associated with skills-based simulations. By contrast, studies examining student participants' experiences during scenario-based simulations suggest that learning may also occur through participation. However, studies directly examining student participation during scenario-based simulations are limited. This study examined the types of activities student participants engaged in during scenario-based simulations and then analyzed their patterns of activity to consider how participation may support learning. Drawing from Engeström's first-, second-, and third-generation activity systems analysis, an in-depth descriptive analysis was conducted. The study drew from multiple qualitative methods, namely narrative, video, and activity systems analysis, to examine student participants' activities and interaction patterns across four video-recorded simulations depicting common motivations for using scenario-based simulations (e.g., communication, critical patient management). The activity systems analysis revealed that student participants' activities encompassed three clinically relevant categories, including (a) use of physical clinical tools and artifacts, (b) social interactions, and (c) performance of structured interventions. Role assignment influenced participants' activities and the complexity of their engagement. Importantly, participants made sense of the clinical situation presented in the scenario by reflexively linking these three activities together. Specifically, student participants performed structured interventions, relying upon the use of physical tools, clinical artifacts, and social interactions together with interactions between students, standardized patients, and other simulated participants to achieve their goals. When multiple student participants were present, such as in a team-based scenario, they distributed the workload to achieve their goals. The findings suggest that student participants learned as they engaged in these scenario-based simulations when they worked to make sense of the patient's clinical presentation. The findings may provide insight into how student participants' meaning-making efforts are mediated by the cultural artifacts (e.g., physical clinical tools) they access, the social interactions they engage in, the structured interventions they perform, and the roles they are assigned. The findings also highlight the complex and emergent properties of scenario-based simulations as well as how activities are nested. Implications for learning, instructional design, and assessment are discussed.
Interactive Simulations as Implicit Support for Guided-Inquiry
ERIC Educational Resources Information Center
Moore, Emily B.; Herzog, Timothy A.; Perkins, Katherine K.
2013-01-01
We present the results of a study designed to provide insight into interactive simulation use during guided-inquiry activities in chemistry classes. The PhET Interactive Simulations project at the University of Colorado develops interactive simulations that utilize implicit--rather than explicit--scaffolding to support student learning through…
ERIC Educational Resources Information Center
Fong, Soon Fook; Por, Fei Ping; Tang, Ai Ling
2012-01-01
The purpose of this study was to investigate the effects of multiple simulation presentation in interactive multimedia are on the achievement of students with different levels of anxiety in the learning of Probability. The interactive multimedia courseware was developed in two different modes, which were Multiple Simulation Presentation (MSP) and…
Hands on + hands free: simulated on-call interaction.
Fisher, James; Martin, Richard; Tate, David
2014-10-01
In hospital, doctors and nurses frequently discuss acutely unwell patients via the telephone. Telephone communication can be challenging, yet medical students receive little training in how to conduct such interactions. We aimed to provide a simple, innovative, simulation session to address this learning need for third-year medical students at Newcastle University. Groups of students were given a pager and a supervising tutor. Students responded to a 'bleep' from a nurse practitioner in a different room, who role-played a ward nurse concerned about a patient. Speakerphones were used, allowing the entire conversation to be audible. After the call, a student-led debriefing session took place. After the debriefing another student 'held' the bleep and a different scenario ensued. Following a resuscitation scenario, students made telephone contact with the medical registrar to hand over information pertaining to the case. Before and after the session, students rated their confidence in telephone interaction and handover using a 10-point Likert scale. Students also completed a feedback questionnaire. Fifty-four students attended the session. A statistically significant improvement in student confidence in telephone communication and handover was seen after the session. Free-text feedback highlighted that students had not received teaching on this previously, and that they welcomed opportunities to practise such skills within a controlled, safe environment. Simulation training can be costly, but speakerphones are cheap and readily available. Given the frequency of telephone interaction in hospital, we believe all medical students should receive telephone communication training. Locally, our department has now incorporated these teaching methods into simulation sessions elsewhere in the curriculum. Medical students receive little training in how to conduct [telephone] interactions. © 2014 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Neumann, David L.
2010-01-01
Interactive computer-based simulations have been applied in several contexts to teach statistical concepts in university level courses. In this report, the use of interactive simulations as part of summative assessment in a statistics course is described. Students accessed the simulations via the web and completed questions relating to the…
ERIC Educational Resources Information Center
Chang, Hsin-Yi
2017-01-01
Two investigations were conducted in this study. In the first experiment, the effects of two types of interactivity with a computer simulation were compared: experimentation versus observation interactivity. Experimentation interactivity allows students to use simulations to conduct virtual experiments, whereas observation interactivity allows…
2014-01-01
Technological developments are impacting on many aspects of life, including education. One particular area of technology where there is growing interest within higher education institutions (HEIs) offering healthcare training is the use of simulators. The literature shows diverging views on the role of simulated learning in healthcare and further evaluation is needed to explore the quality of learning opportunities that are offered, and their effectiveness in the preparation of students for clinical practice. A qualitative study was undertaken, using interviews to explore the experiences of a group of sonography students after interacting with an ultrasound simulator. Simulation was positively evaluated by students in this study. The findings confirm that simulated learning enables students to be interactive learners rather than being passive recipients of knowledge. Simulated learning provides learning opportunities in a risk free environment, which reduces stress for the student and potential harm to patients. Confidence levels were increased, thereby improving future clinical scanning experiences for both the student and their patients. Suggestions were made for the more effective integration of simulated learning into the curriculum. Continued research into simulation, teaching and learning practices needs to occur if we are to ensure maximum advantage of the simulation experience. PMID:27433215
ERIC Educational Resources Information Center
Fan, Xinxin; Geelan, David; Gillies, Robyn
2018-01-01
This study investigated the effectiveness of a novel inquiry-based instructional sequence using interactive simulations for supporting students' development of conceptual understanding, inquiry process skills and confidence in learning. The study, conducted in Beijing, involved two teachers and 117 students in four classes. The teachers…
Towards an Operational Definition of Clinical Competency in Pharmacy
2015-01-01
Objective. To estimate the inter-rater reliability and accuracy of ratings of competence in student pharmacist/patient clinical interactions as depicted in videotaped simulations and to compare expert panelist and typical preceptor ratings of those interactions. Methods. This study used a multifactorial experimental design to estimate inter-rater reliability and accuracy of preceptors’ assessment of student performance in clinical simulations. The study protocol used nine 5-10 minute video vignettes portraying different levels of competency in student performance in simulated clinical interactions. Intra-Class Correlation (ICC) was used to calculate inter-rater reliability and Fisher exact test was used to compare differences in distribution of scores between expert and nonexpert assessments. Results. Preceptors (n=42) across 5 states assessed the simulated performances. Intra-Class Correlation estimates were higher for 3 nonrandomized video simulations compared to the 6 randomized simulations. Preceptors more readily identified high and low student performances compared to satisfactory performances. In nearly two-thirds of the rating opportunities, a higher proportion of expert panelists than preceptors rated the student performance correctly (18 of 27 scenarios). Conclusion. Valid and reliable assessments are critically important because they affect student grades and formative student feedback. Study results indicate the need for pharmacy preceptor training in performance assessment. The process demonstrated in this study can be used to establish minimum preceptor benchmarks for future national training programs. PMID:26089563
STEPS: A Simulated, Tutorable Physics Student.
ERIC Educational Resources Information Center
Ur, Sigalit; VanLehn, Kurt
1995-01-01
Describes a simulated student that learns by interacting with a human tutor. Tests suggest that simulated students, when developed past the prototype stage, could be valuable for training human tutors. Provides a computational cognitive task analysis of the skill of learning from a tutor that is useful for designing intelligent tutoring systems.…
Johnson, Teresa R; Lyons, Rebecca; Chuah, Joon Hao; Kopper, Regis; Lok, Benjamin C; Cendan, Juan C
2013-01-01
Simulation in medical education provides students with opportunities to practice interviews, examinations, and diagnosis formulation related to complex conditions without risks to patients. To examine differences between individual and team participation on learning outcomes and student perspectives through use of virtual patients (VPs) for teaching cranial nerve (CN) evaluation. Fifty-seven medical students were randomly assigned to complete simulation exercises either as individuals or as members of three-person teams. Students interviewed, examined, and diagnosed VPs with possible CN damage in the neurological exam rehearsal virtual environment (NERVE). Knowledge of CN abnormalities was assessed pre- and post-simulation. Student perspectives of system usability were evaluated post-simulation. An aptitude-treatment interaction (ATI) effect was detected; at pre-test scores ≤ 50%, students in teams scored higher (83%) at post-test than did students as individuals (62%, p = 0.02). Post-simulation, students in teams reported greater confidence in their ability to diagnose CN abnormalities than did students as individuals (p = 0.02; mean rating = 4.0/5.0 and 3.4/5.0, respectively). The ATI effect allows us to begin defining best practices for the integration of VP simulators into the medical curriculum. We are persuaded to implement future NERVE exercises with small teams of medical students.
JOHNSON, TERESA R.; LYONS, REBECCA; CHUAH, JOON HAO; KOPPER, REGIS; LOK, BENJAMIN C.; CENDAN, JUAN C.
2013-01-01
Background Simulation in medical education provides students with opportunities to practice interviews, examinations, and diagnosis formulation related to complex conditions without risks to patients. Aim To examine differences between individual and team participation on learning outcomes and student perspectives through use of virtual patients (VPs) for teaching cranial nerve (CN) evaluation. Methods Fifty-seven medical students were randomly assigned to complete simulation exercises either as individuals or as members of three-person teams. Students interviewed, examined, and diagnosed VPs with possible CN damage in the Neurological Exam Rehearsal Virtual Environment (NERVE). Knowledge of CN abnormalities was assessed pre- and post-simulation. Student perspectives of system usability were evaluated post-simulation. Results An aptitude-treatment interaction (ATI) effect was detected; at pre-test scores ≤50%, students in teams scored higher (83%) at post-test than did students as individuals (62%, p = 0.02). Post-simulation, students in teams reported greater confidence in their ability to diagnose CN abnormalities than did students as individuals (p = 0.02; mean rating = 4.0/5.0 and 3.4/5.0, respectively). Conclusion The ATI effect allows us to begin defining best practices for the integration of VP simulators into the medical curriculum. We are persuaded to implement future NERVE exercises with small teams of medical students. PMID:22938679
The Impact of Human Patient Simulation on the Attainment of Learning Outcomes
ERIC Educational Resources Information Center
Re, Antonio
2011-01-01
Human patient simulation, and more specifically, high fidelity patient simulation is a growing teaching technique that enables students in medical and health related professions to learn through interacting with a simulator. This study examined the uses of high fidelity simulation with 106 students enrolled in nursing and respiratory therapist…
ERIC Educational Resources Information Center
Stephens, A. Lynn
2012-01-01
The purpose of this study is to investigate student interactions with simulations, and teacher support of those interactions, within naturalistic high school physics classroom settings. This study focuses on data from two lesson sequences that were conducted in several physics classrooms. The lesson sequences were conducted in a whole class…
Interactive Computer Simulation and Animation for Improving Student Learning of Particle Kinetics
ERIC Educational Resources Information Center
Fang, N.; Guo, Y.
2016-01-01
Computer simulation and animation (CSA) has been receiving growing attention and wide application in engineering education in recent years. A new interactive CSA module was developed in the present study to improve student learning of particle kinetics in an undergraduate engineering dynamics course. The unique feature of this CSA module is that…
ERIC Educational Resources Information Center
Chang, Hsin-Yi; Hsu, Ying-Shao; Wu, Hsin-Kai
2016-01-01
We investigated the impact of an augmented reality (AR) versus interactive simulation (IS) activity incorporated in a computer learning environment to facilitate students' learning of a socio-scientific issue (SSI) on nuclear power plants and radiation pollution. We employed a quasi-experimental research design. Two classes (a total of 45…
The Unique Challenges Posed by Mock Trial: Evaluation and Assessment of a Simulation Course
ERIC Educational Resources Information Center
Bengtson, Teri J.; Sifferd, Katrina L.
2010-01-01
Simulations in political science and pre-law courses are used as a tool for student engagement and classroom interaction and to get students interested in politics and law by engaging them in either the political or legal process. Much of the literature addresses how to conduct various simulations for particular classes, what the students learned…
QuVis interactive simulations: tools to support quantum mechanics instruction
NASA Astrophysics Data System (ADS)
Kohnle, Antje
2015-04-01
Quantum mechanics holds a fascination for many students, but its mathematical complexity and counterintuitive results can present major barriers. The QuVis Quantum Mechanics Visualization Project (www.st-andrews.ac.uk/physics/quvis) aims to overcome these issues through the development and evaluation of interactive simulations with accompanying activities for the learning and teaching of quantum mechanics. Over 90 simulations are now available on the QuVis website. One collection of simulations is embedded in the Institute of Physics Quantum Physics website (quantumphysics.iop.org), which consists of freely available resources for an introductory course in quantum mechanics starting from two-level systems. Simulations support model-building by reducing complexity, focusing on fundamental ideas and making the invisible visible. They promote engaged exploration, sense-making and linking of multiple representations, and include high levels of interactivity and direct feedback. Simulations are research-based and evaluation with students informs all stages of the development process. Simulations are iteratively refined using student feedback in individual observation sessions and in-class trials. Evaluation has shown that the simulations can help students learn quantum mechanics concepts at both the introductory and advanced undergraduate level and that students perceive simulations to be beneficial to their learning. Recent activity includes the launch of a new collection of HTML5 simulations that run on both desktop and tablet-based devices and the introduction of a goal and reward structure in simulations through the inclusion of challenges. This presentation will give an overview of the QuVis resources, highlight recent work and outline future plans. QuVis is supported by the UK Institute of Physics, the UK Higher Education Academy and the University of St Andrews.
A Classroom Simulation of Water-Rock Interaction for Upper-Level Geochemistry Courses.
ERIC Educational Resources Information Center
Cercone, Karen Rose
1988-01-01
Describes a simple hands-on model of water-rock interaction that can be constructed in the classroom using styrofoam bowls and foil-wrapped candies. This interactive simulation allows students to vary the factors which control water-rock interaction and to obtain immediate results. (Author/CW)
Promoting Interactive Learning: A Classroom Exercise to Explore Foraging Strategies
ERIC Educational Resources Information Center
Beaumont, Ellen S.; Rowe, Graham; Mikhaylov, Natalie S.
2012-01-01
We describe a classroom exercise to allow students to explore foraging strategies in higher vertebrates. The exercise includes an initial interactive session in which students act as predators and are guided through foraging simulations, and a subsequent student-led session where classmates are employed as experimental subjects. Students rated the…
Woodman-Pieterse, Emily C; De Souza, Neilsen J; Vincent, Stephen J
2016-07-01
Optometry students are taught the process of subjective refraction through lectures and laboratory-based practicals before progressing to supervised clinical practice. Simulated leaning environments (SLEs) form part of an emerging technology used in a range of health disciplines; however, there is limited evidence regarding the effectiveness of clinical simulators as educational tools. Forty optometry students (20 fourth year and 20 fifth year) were assessed twice by a qualified optometrist (two examinations separated by four to eight weeks), while completing a monocular non-cycloplegic subjective refraction on the same patient with an unknown refractive error, simulated using contact lenses. Half of the students were granted access to an online simulated learning environment, The Brien Holden Vision Institute (BHVI) Virtual Refractor, and the remaining students formed a control group. The primary outcome measures at each visit were; accuracy of the clinical refraction compared to a qualified optometrist and relative to the Optometry Council of Australia and New Zealand (OCANZ) subjective refraction examination criteria. Secondary measures of interest included descriptors of student SLE engagement, student self-reported confidence levels and correlations between performance in the simulated and real-world clinical environment. Eighty per cent of students in the intervention group interacted with the simulated learning environment (for an average of 100 minutes); however, there was no correlation between measures of student engagement with the BHVI Virtual Refractor and speed or accuracy of clinical subjective refractions. Fifth year students were typically more confident and refracted more accurately and more quickly than fourth year students. A year group by experimental group interaction (p = 0.03) was observed for accuracy of the spherical component of refraction and post hoc analysis revealed that less experienced students exhibited greater gains in clinical accuracy following exposure to the SLE intervention. Short-term exposure to a SLE can positively influence clinical subjective refraction outcomes for less experienced optometry students and may be of benefit in increasing the skills of novice refractionists to levels appropriate for commencing supervised clinical interactions. © 2016 Optometry Australia.
PhET: Interactive Simulations for Teaching and Learning Physics
NASA Astrophysics Data System (ADS)
Perkins, Katherine; Adams, Wendy; Dubson, Michael; Finkelstein, Noah; Reid, Sam; Wieman, Carl; LeMaster, Ron
2006-01-01
The Physics Education Technology (PhET) project creates useful simulations for teaching and learning physics and makes them freely available from the PhET website (http://phet.colorado.edu). The simulations (sims) are animated, interactive, and game-like environments in which students learn through exploration. In these sims, we emphasize the connections between real-life phenomena and the underlying science, and seek to make the visual and conceptual models of expert physicists accessible to students. We use a research-based approach in our design—incorporating findings from prior research and our own testing to create sims that support student engagement with and understanding of physics concepts.
Shrader, Sarah; Dunn, Brianne; Blake, Elizabeth; Phillips, Cynthia
2015-05-25
To determine the impact of incorporating standardized colleague simulations on pharmacy students' confidence and interprofessional communication skills. Four simulations using standardized colleagues portraying attending physicians in inpatient and outpatient settings were integrated into a required course. Pharmacy students interacted with the standardized colleagues using the Situation, Background, Assessment, Request/Recommendation (SBAR) communication technique and were evaluated on providing recommendations while on simulated inpatient rounds and in an outpatient clinic. Additionally, changes in student attitudes and confidence toward interprofessional communication were assessed with a survey before and after the standardized colleague simulations. One hundred seventy-one pharmacy students participated in the simulations. Student interprofessional communication skills improved after each simulation. Student confidence with interprofessional communication in both inpatient and outpatient settings significantly improved. Incorporation of simulations using standardized colleagues improves interprofessional communication skills and self-confidence of pharmacy students.
ERIC Educational Resources Information Center
Yoder, Lisa
2006-01-01
Students learn best when they interact with new information on a personal level. It is a challenge for teachers to tightly align student experiences with the standards assessed on high-stakes tests. To achieve this goal in social studies, the author has turned increasingly to simulations where students find such activities engaging, and their…
ERIC Educational Resources Information Center
Sweet, Chelsea; Akinfenwa, Oyewumi; Foley, Jonathan J., IV
2018-01-01
We present an interactive discovery-based approach to studying the properties of real gases using simple, yet realistic, molecular dynamics software. Use of this approach opens up a variety of opportunities for students to interact with the behaviors and underlying theories of real gases. Students can visualize gas behavior under a variety of…
A trial of e-simulation of sudden patient deterioration (FIRST2ACT WEB) on student learning.
Bogossian, Fiona E; Cooper, Simon J; Cant, Robyn; Porter, Joanne; Forbes, Helen
2015-10-01
High-fidelity simulation pedagogy is of increasing importance in health professional education; however, face-to-face simulation programs are resource intensive and impractical to implement across large numbers of students. To investigate undergraduate nursing students' theoretical and applied learning in response to the e-simulation program-FIRST2ACT WEBTM, and explore predictors of virtual clinical performance. Multi-center trial of FIRST2ACT WEBTM accessible to students in five Australian universities and colleges, across 8 campuses. A population of 489 final-year nursing students in programs of study leading to license to practice. Participants proceeded through three phases: (i) pre-simulation-briefing and assessment of clinical knowledge and experience; (ii) e-simulation-three interactive e-simulation clinical scenarios which included video recordings of patients with deteriorating conditions, interactive clinical tasks, pop up responses to tasks, and timed performance; and (iii) post-simulation feedback and evaluation. Descriptive statistics were followed by bivariate analysis to detect any associations, which were further tested using standard regression analysis. Of 409 students who commenced the program (83% response rate), 367 undergraduate nursing students completed the web-based program in its entirety, yielding a completion rate of 89.7%; 38.1% of students achieved passing clinical performance across three scenarios, and the proportion achieving passing clinical knowledge increased from 78.15% pre-simulation to 91.6% post-simulation. Knowledge was the main independent predictor of clinical performance in responding to a virtual deteriorating patient R(2)=0.090, F(7, 352)=4.962, p<0.001. The use of web-based technology allows simulation activities to be accessible to a large number of participants and completion rates indicate that 'Net Generation' nursing students were highly engaged with this mode of learning. The web-based e-simulation program FIRST2ACTTM effectively enhanced knowledge, virtual clinical performance, and self-assessed knowledge, skills, confidence, and competence in final-year nursing students. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inquiry style interactive virtual experiments: a case on circular motion
NASA Astrophysics Data System (ADS)
Zhou, Shaona; Han, Jing; Pelz, Nathaniel; Wang, Xiaojun; Peng, Liangyu; Xiao, Hua; Bao, Lei
2011-11-01
Interest in computer-based learning, especially in the use of virtual reality simulations is increasing rapidly. While there are good reasons to believe that technologies have the potential to improve teaching and learning, how to utilize the technology effectively in teaching specific content difficulties is challenging. To help students develop robust understandings of correct physics concepts, we have developed interactive virtual experiment simulations that have the unique feature of enabling students to experience force and motion via an analogue joystick, allowing them to feel the applied force and simultaneously see its effects. The simulations provide students learning experiences that integrate both scientific representations and low-level sensory cues such as haptic cues under a single setting. In this paper, we introduce a virtual experiment module on circular motion. A controlled study has been conducted to evaluate the impact of using this virtual experiment on students' learning of force and motion in the context of circular motion. The results show that the interactive virtual experiment method is preferred by students and is more effective in helping students grasp the physics concepts than the traditional education method such as problem-solving practices. Our research suggests that well-developed interactive virtual experiments can be useful tools in teaching difficult concepts in science.
ERIC Educational Resources Information Center
Rieber, Lloyd P.; Tzeng, Shyh-Chii; Tribble, Kelly
2004-01-01
The purpose of this research was to explore how adult users interact and learn during an interactive computer-based simulation supplemented with brief multimedia explanations of the content. A total of 52 college students interacted with a computer-based simulation of Newton's laws of motion in which they had control over the motion of a simple…
The Use of Computer-Based Simulation to Aid Comprehension and Incidental Vocabulary Learning
ERIC Educational Resources Information Center
Mohsen, Mohammed Ali
2016-01-01
One of the main issues in language learning is to find ways to enable learners to interact with the language input in an involved task. Given that computer-based simulation allows learners to interact with visual modes, this article examines how the interaction of students with an online video simulation affects their second language video…
NASA Astrophysics Data System (ADS)
Akpan, Joseph Paul; Andre, Thomas
1999-06-01
Science teachers, school administrators, educators, and the scientific community are faced with ethical controversies over animal dissection in classrooms. Simulation has been proposed as a way of dealing with this issue. One intriguing previous finding was that use of an interactive videodisc dissection facilitated performance on a subsequent actual dissection. This study examined the prior use of simulation of frog dissection in improving students' actual dissection performance and learning of frog anatomy and morphology. There were three experimental conditions: simulation before dissection (SBD); dissection before simulation (DBS); or dissection-only (DO). Results of the study indicated that students receiving SBD performed significantly better than students receiving DBS or DO on both actual dissection and knowledge of the anatomy and morphology. Students' attitudes toward the use of animals for dissection did not change significantly from pretest to posttest and did not interact with treatment. The genders did not differ in achievement, but males were more favorable towards dissection and computers than were females.
Stahnke, Amanda M.; Behnen, Erin M.
2015-01-01
Objective. To assess the impact of a 6-week patient/provider interaction simulation on empathy and self-efficacy levels of diabetes management skills in third-year pharmacy students. Design. Pharmacy students enrolled in a diabetes elective course were paired to act as a patient with diabetes or as a provider assisting in the management of that patient during a 6-week simulation activity. After 3 weeks, students switched roles. The simulation was designed with activities to build empathy. Assessment. The Jefferson Scale of Empathy (JSE) and a self-efficacy survey were administered to assess change in empathy and confidence levels from baseline to the end of the activity. Completion of the activity resulted in significant improvement in total JSE scores. Additionally, significant improvements in overall self-efficacy scores regarding diabetes management were noted. Conclusion. The 6-week patient/provider interaction simulation improved empathy and self-efficacy levels in third-year pharmacy students. PMID:25995517
Bernhardt, Johannes; Hye, Florian; Thallinger, Sigrid; Bauer, Pamela; Ginter, Gabriele; Smolle, Josef
2009-07-01
Mycological KOH preparation is one of the most popular practical laboratory skills in dermatology. The study addresses the question whether an interactive simulation program enhances knowledge of students about this procedure. 166 students, 107 female and 59 male, participated. We separated our study in three phases: pretest, completing the simulation three times and post-test. In the pre- and post-test we recorded the number of correct steps of the mycological KOH preparation listed by the students. The full text feedback was explored by content analysis. In the pre-test the students listed an average of 3.1 +/- 2.2 correct steps, compared to 8.8 +/- 1.2 correct steps after completing the simulation (p < 0.001). Furthermore, the improvement was significant for each individual step. There were no significant differences between male and female students. In content analysis of the feedback, positive statements prevailed with 78.3%, compared to only 1.8% critical items. Our study shows that an interactive computer simulation program of mycological KOH preparation results in a significant learning effectiveness as far as recall of the correct procedural steps is concerned. Furthermore, subjective acceptance by students is high.
Interactive molecular dynamics
NASA Astrophysics Data System (ADS)
Schroeder, Daniel V.
2015-03-01
Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.
How Science Students Can Learn about Unobservable Phenomena Using Computer-Based Analogies
ERIC Educational Resources Information Center
Trey, L.; Khan, S.
2008-01-01
A novel instructional computer simulation that incorporates a dynamic analogy to represent Le Chatelier's Principle was designed to investigate the contribution of this feature to students' understanding. Two groups of 12th grade Chemistry students (n=15) interacted with the computer simulation during the study. Both groups did the same…
Leiva R, Isabel; Bitran C, Marcela; Saldías P, Fernando
2012-05-01
As the focus of healthcare provision shifts towards ambulatory care, increasing attention must now be given to develop opportunities for clinical teaching in this setting. To assess teacher and students' views about the strengths and weaknesses of real and simulated patient interactions for teaching undergraduate students clinical skills in the ambulatory setting. Fourth-year medical students were exposed in a systematic way, during two weeks, to real and simulated patients in an outpatient clinic, who presented common respiratory problems, such as asthma, chronic obstructive pulmonary disease, smoking and sleep apnea syndrome. After the clinical interview, students received feedback from the tutor and their peers. The module was assessed interviewing the teachers and evaluating the results qualitatively. Students evaluated the contents and quality of teaching at the end of the rotation. Tutors identified the factors that facilitate ambulatory teaching. These depended on the module design, resources and patient care, of characteristics of students and their participation, leadership and interaction with professors. They also identified factors that hamper teaching activities such as availability of resources, student motivation and academic recognition. Most students evaluated favorably the interaction with real and simulated patients in the ambulatory setting. Teaching in the ambulatory setting was well evaluated by students and teachers. The use of qualitative methodology allowed contrasting the opinions of teachers and students.
NASA Astrophysics Data System (ADS)
Luo, W.; Pelletier, J. D.; Smith, T.; Whalley, K.; Shelhamer, A.; Darling, A.; Ormand, C. J.; Duffin, K.; Hung, W. C.; Iverson, E. A. R.; Shernoff, D.; Zhai, X.; Chiang, J. L.; Lotter, N.
2016-12-01
The Web-based Interactive Landform Simulation Model - Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is a simplified version of a physically-based model that simulates bedrock channel erosion, cliff retreat, and base level change. Students can observe the landform evolution in animation under different scenarios by changing parameter values. In addition, cross-sections and profiles at different time intervals can be displayed and saved for further quantitative analysis. Students were randomly assigned to a treatment group (using WILSIM-GC simulation) or a control group (using traditional paper-based material). Pre- and post-tests were administered to measure students' understanding of the concepts and processes related to Grand Canyon formation and evolution. Results from the ANOVA showed that for both groups there were statistically significant growth in scores from pre-test to post-test [F(1, 47) = 25.82, p < .001], but the growth in scores between the two groups was not statistically significant [F(1, 47) = 0.08, p =.774]. In semester 1, the WILSIM-GC group showed greater growth, while in semester 2, the paper-based group showed greater growth. Additionally, a significant time × group × gender × semester interaction effect was observed [F(1, 47) = 4.76, p =.034]. Here, in semester 1 female students were more strongly advantaged by the WILSIM-GC intervention than male students, while in semester 2, female students were less strongly advantaged than male students. The new results are consistent with our initial findings (Luo et al., 2016) and others reported in the literature, i.e., simulation approach is at least equally effective as traditional paper-based method in teaching students about landform evolution. Survey data indicate that students favor the simulation approach. Further study is needed to investigate the reasons for the difference by gender.
NASA Astrophysics Data System (ADS)
Demir, I.
2014-12-01
Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.
Chung, Christopher A; Alfred, Michael
2009-06-01
Societal pressures, accreditation organizations, and licensing agencies are emphasizing the importance of ethics in the engineering curriculum. Traditionally, this subject has been taught using dogma, heuristics, and case study approaches. Most recently a number of organizations have sought to increase the utility of these approaches by utilizing the Internet. Resources from these organizations include on-line courses and tests, videos, and DVDs. While these individual approaches provide a foundation on which to base engineering ethics, they may be limited in developing a student's ability to identify, analyze, and respond to engineering ethics situations outside of the classroom environment. More effective approaches utilize a combination of these types of approaches. This paper describes the design and development of an internet based interactive Simulator for Engineering Ethics Education. The simulator places students in first person perspective scenarios involving different types of ethical situations. Students must gather data, assess the situation, and make decisions. This requires students to develop their own ability to identify and respond to ethical engineering situations. A limited comparison between the internet based interactive simulator and conventional internet web based instruction indicates a statistically significant improvement of 32% in instructional effectiveness. The simulator is currently being used at the University of Houston to help fulfill ABET requirements.
Embedding a Virtual Patient Simulator in an Interactive Surgical lecture.
Kleinert, Robert; Plum, Patrick; Heiermann, Nadine; Wahba, Roger; Chang, De-Huan; Hölscher, Arnulf H; Stippel, Dirk L
2016-01-01
Lectures are traditionally used for teaching declarative knowledge. One established tool for clinical education is the demonstration of a real patient. The use of real patients in the daily clinical environment is increasingly difficult. The use of a virtual patient simulator (VPS) can potentially circumvent these problems. Unlimited availability and the opportunity of an electronic feedback system could possibly enrich traditional lectures by enabling more interactivity that meets the expectations of the current student generation. As students face the consequences of their own decisions they take a more active role in the lecture. VPS links declarative knowledge with visual perception that is known to influence students' motivation. Until now, there have been no reports covering the usage and validation of interactive VPS for supporting traditional lectures. In this study, we (1) described the development of a custom-made three-dimensional (3D) VPS for supporting the traditional lecture and (2) performed a feasibility study including an initial assessment of this novel educational concept. Conceptualization included definition of curricular content, technical realization and validation. A custom-made simulator was validated with 68 students. The degree of student acceptance was evaluated. Furthermore, the effect on knowledge gain was determined by testing prelecture and postlecture performance. A custom-made simulator prototype that displays a 3D virtual clinic environment was developed and linked to a PowerPoint presentation. Students were able to connect to the simulator via electronic devices (smartphones and tablets) and to control the simulator via majority vote. The simulator was used in 6 lectures and validated in 2 lectures with 68 students each. Student acceptance and their opinion about effectiveness and applicability were determined. Students showed a high level of motivation when using the simulator as most of them had fun using it. Effect on knowledge gain was proven by comparison of chosen therapeutic workflow before and after the lecture. Students showed significantly (p < 0.05) more correct answers in determination of the therapeutic workflow after the lecture. We successfully developed and evaluated a custom-made 3D VPS for supporting the traditional lecture. VPS is probably an effective instrument that might replace real patients in selected lectures and prepare students for bedside teaching. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wold, Kari
Successfully interacting with those from different cultures is essential to excel in any field, particularly when global, transnational collaborations in the workplace are increasingly common. However, many higher education students in engineering are not explicitly taught how to display the global competency skills desired by future employers. To display global competency skills means students must be able to visibly respect and recognize differences among those from different cultures. Global competency also means students must be able to show they can adjust their behaviors and integrate others' ideas when working with those with cultural backgrounds other than their own. While these skills are now deemed essential for future engineers, many institutions are struggling with determining which strategies and activities are universally effective to allow students to practice the global competency skills now crucial for success. Immersing engineering students in interactive role-playing simulations in transnational environments is one way institutions are encouraging students to illustrate and develop global competency skills. Role-playing simulations in transnational education provide environments where students adopt roles, interact with other students, and together explore and address realistic global problems. However, no studies have addressed whether or how role-playing simulations can help develop global competency in transnational engineering courses, students' perceptions regarding whether they change their abilities to display global competency in those environments, and their perspectives the effectiveness of using role-playing simulations for this purpose. To address this gap, this study assesses the impact of two subsequent role-playing simulations involving nuclear energy policy in a transnational course involving engineering students from the University of Virginia in Charlottesville, Virginia, and from Technische Universitat Dortmund in Dortmund, Germany. The differences in students' self-reports regarding whether their behaviors showing global competency skills changed were insignificant from pretests and posttests. However, data obtained from observations, surveys, and interviews showed students did increase their abilities to display global competency, and they believed role-playing simulations were useful in helping them do so. Findings from this study inform program designers and instructors on how to help students display, and improve their abilities to display, the global competency skills that will help them succeed in the world that awaits them.
The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning
ERIC Educational Resources Information Center
Liou, Hsin-Hun; Yang, Stephen J. H.; Chen, Sherry Y.; Tarng, Wernhuar
2017-01-01
Virtual reality (VR) learning environments can provide students with concepts of the simulated phenomena, but users are not allowed to interact with real elements. Conversely, augmented reality (AR) learning environments blend real-world environments so AR could enhance the effects of computer simulation and promote students' realistic experience.…
ERIC Educational Resources Information Center
Sargeant, Sally; McLean, Michelle; Green, Patricia; Johnson, Patricia
2017-01-01
In their journey to becoming doctors, students engage with a range of teachers and trainers. Among these are simulated patients (SPs), who, through role-playing, assist students to develop their communication and physical examination skills, in contexts of formative and summative assessments. This paper explores the teaching and learning…
Interactive Simulations to Support Quantum Mechanics Instruction for Chemistry Students
ERIC Educational Resources Information Center
Kohnle, Antje; Benfield, Cory; Hahner, Georg; Paetkau, Mark
2017-01-01
The QuVis Quantum Mechanics Visualization Project provides freely available research-based interactive simulations with accompanying activities for the teaching and learning of quantum mechanics across a wide range of topics and levels. This article gives an overview of some of the simulations and describes their use in an introductory physical…
First Steps towards an Interactive Real-Time Hazard Management Simulation
ERIC Educational Resources Information Center
Gemmell, Alastair M. D.; Finlayson, Ian G.; Marston, Philip G.
2010-01-01
This paper reports on the construction and initial testing of a computer-based interactive flood hazard management simulation, designed for undergraduates taking an applied geomorphology course. Details of the authoring interface utilized to create the simulation are presented. Students act as the managers of civil defence utilities in a fictional…
ERIC Educational Resources Information Center
Yuza, Steve C.
2010-01-01
The purpose of this study was to determine the effects of interactive multimedia simulations and virtual dissection software on depth of learning among students participating in biology and chemistry laboratory courses. By understanding more about how simulation and virtual dissection software changes depth of learning, educators will have the…
ERIC Educational Resources Information Center
Lau, Kung Wong; Lee, Pui Yuen
2015-01-01
This paper discusses the roles of simulation in creativity education and how to apply immersive virtual environments to enhance students' learning experiences in university, through the provision of interactive simulations. An empirical study of a simulated virtual reality was carried out in order to investigate the effectiveness of providing…
ERIC Educational Resources Information Center
Chung, Gregory K. W. K.
This study examined a civil engineering capstone course that embedded a sophisticated simulation-based task within instruction. Students (n=28) were required to conduct a hazardous waste site investigation using simulation software designed specifically for the course (Interactive Site Investigation Software) (ISIS). The software simulated…
The Impact of Learner's Prior Knowledge on Their Use of Chemistry Computer Simulations: A Case Study
ERIC Educational Resources Information Center
Liu, Han-Chin; Andre, Thomas; Greenbowe, Thomas
2008-01-01
It is complicated to design a computer simulation that adapts to students with different characteristics. This study documented cases that show how college students' prior chemistry knowledge level affected their interaction with peers and their approach to solving problems with the use of computer simulations that were designed to learn…
An Interactive Simulation Program for Exploring Computational Models of Auto-Associative Memory.
Fink, Christian G
2017-01-01
While neuroscience students typically learn about activity-dependent plasticity early in their education, they often struggle to conceptually connect modification at the synaptic scale with network-level neuronal dynamics, not to mention with their own everyday experience of recalling a memory. We have developed an interactive simulation program (based on the Hopfield model of auto-associative memory) that enables the user to visualize the connections generated by any pattern of neural activity, as well as to simulate the network dynamics resulting from such connectivity. An accompanying set of student exercises introduces the concepts of pattern completion, pattern separation, and sparse versus distributed neural representations. Results from a conceptual assessment administered before and after students worked through these exercises indicate that the simulation program is a useful pedagogical tool for illustrating fundamental concepts of computational models of memory.
ERIC Educational Resources Information Center
Evagorou, Maria; Korfiatis, Kostas; Nicolaou, Christiana; Constantinou, Costas
2009-01-01
The purpose of this study was to investigate the impact of a simulation-based learning environment on elementary school students' (11-12 years old) development of system thinking skills. The learning environment included interactive simulations using the Stagecast Creator software to simulate the ecosystem of a marsh. Simulations are an important…
ERIC Educational Resources Information Center
Hockicko, Peter; Krišták, Luboš; Nemec, Miroslav
2015-01-01
Video analysis, using the program Tracker (Open Source Physics), in the educational process introduces a new creative method of teaching physics and makes natural sciences more interesting for students. This way of exploring the laws of nature can amaze students because this illustrative and interactive educational software inspires them to think…
Fostering Learning Through Interprofessional Virtual Reality Simulation Development.
Nicely, Stephanie; Farra, Sharon
2015-01-01
This article presents a unique strategy for improving didactic learning and clinical skill while simultaneously fostering interprofessional collaboration and communication. Senior-level nursing students collaborated with students enrolled in the Department of Interactive Media Studies to design a virtual reality simulation based upon disaster management and triage techniques. Collaborative creation of the simulation proved to be a strategy for enhancing students' knowledge of and skill in disaster management and triage while impacting attitudes about interprofessional communication and teamwork.
NASA Astrophysics Data System (ADS)
Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel
2016-08-01
In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.
De Grasset, Jehanne; Audetat, Marie-Claude; Bajwa, Nadia; Jastrow, Nicole; Richard-Lepouriel, Hélène; Nendaz, Mathieu; Junod Perron, Noelle
2018-04-22
Medical students develop professional identity through structured activities and impromptu interactions in various settings. We explored if contributing to an Objective Structured Teaching Exercise (OSTE) influenced students' professional identity development. University clinical faculty members participated in a faculty development program on clinical supervision. Medical students who participated in OSTEs as simulated residents were interviewed in focus groups about what they learnt from the experience and how the experience influenced their vision of learning and teaching. Transcripts were analyzed using the Goldie's personality and social structure perspective model. Twenty-five medical students out of 32 students involved in OSTEs participated. On an institutional level, students developed a feeling of belonging to the institution. At an interactional level, students realized they could influence the teaching interaction by actively seeking or giving feedback. On the personal level, students realized that errors could become sources of learning and felt better prepared to receive faculty feedback. Taking part in OSTEs as a simulated resident has a positive impact on students' vision regarding the institution as a learning environment and their own role by actively seeking or giving feedback. OSTEs support their professional identity development regarding learning and teaching while sustaining faculty development.
ERIC Educational Resources Information Center
Hakerem, Gita; And Others
The Water and Molecular Networks (WAMNet) Project uses graduate student written Reduced Instruction Set Computing (RISC) computer simulations of the molecular structure of water to assist high school students learn about the nature of water. This study examined: (1) preconceptions concerning the molecular structure of water common among high…
Simulator: A Pilot Interactive Simulation Program for Use in Teaching Public Relations.
ERIC Educational Resources Information Center
Pavlik, John V.
An interactive simulation program was developed for use in teaching students how to handle public relations problems. The program user is placed in the role of assistant newsletter editor, facing a series of decision-making situations. Each choice the user makes affects the subsequent reality created by the program, which is designed to provide…
ERIC Educational Resources Information Center
Xu, Q.; Lai, L. L.; Tse, N. C. F.; Ichiyanagi, K.
2011-01-01
An interactive computer-based learning tool with multiple sessions is proposed in this paper, which teaches students to think and helps them recognize the merits and limitations of simulation tools so as to improve their practical abilities in electrical circuit simulation based on the case of a power converter with progressive problems. The…
ERIC Educational Resources Information Center
Dunlop, David L.
This document is the outcome of a study designed to investigate the energy-related attitudes of several different groups of science students and science teachers both before and after working with an energy-environment simulator for approximately an hour. During the interaction with the simulator, the participants decided upon the variables they…
Computer Simulation for Pain Management Education: A Pilot Study.
Allred, Kelly; Gerardi, Nicole
2017-10-01
Effective pain management is an elusive concept in acute care. Inadequate knowledge has been identified as a barrier to providing optimal pain management. This study aimed to determine student perceptions of an interactive computer simulation as a potential method for learning pain management, as a motivator to read and learn more about pain management, preference over traditional lecture, and its potential to change nursing practice. A post-computer simulation survey with a mixed-methods descriptive design was used in this study. A college of nursing in a large metropolitan university in the Southeast United States. A convenience sample of 30 nursing students in a Bachelor of Science nursing program. An interactive computer simulation was developed as a potential alternative method of teaching pain management to nursing students. Increases in educational gain as well as its potential to change practice were explored. Each participant was asked to complete a survey consisting of 10 standard 5-point Likert scale items and 5 open-ended questions. The survey was used to evaluate the students' perception of the simulation, specifically related to educational benefit, preference compared with traditional teaching methods, and perceived potential to change nursing practice. Data provided descriptive statistics for initial evaluation of the computer simulation. The responses on the survey suggest nursing students perceive the computer simulation to be entertaining, fun, educational, occasionally preferred over regular lecture, and with potential to change practice. Preliminary data support the use of computer simulation in educating nursing students about pain management. Copyright © 2017 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.
Prasad, Soni; Bansal, Naveen
2017-04-01
The aims of this study were to assess 1) differences in perceptions of dental implant training between dental students who received didactic training alone (control group) and those who received didactic plus simulation training (test group); 2) differences in response between students with and without clinical experience in implant dentistry; and 3) the interaction effect of simulation training and clinical experience on students' satisfaction. A survey was distributed to the control group in 2014 and to the test group in 2015; both groups were at the same U.S. dental school. Data were collected on confidence levels with various implant restorative procedures along with overall satisfaction and number of implant restorations performed by each student. The response rate was 78.7% in the control group and 81.3% in the test group. In the control group, 85.7% of students reported being satisfied with implant training compared to 90.8% of students in the test group. The interaction effect of simulation training and clinical experience on overall student satisfaction was OR=1.5 at 95% CI: 0.8, 3.0. The students who had clinical experience with implant restorative procedures had significantly greater satisfaction than those who did not (OR=4.8, 95% CI: 2.1, 11.1, p<0.01). This study found that both the simulation and clinical experience affected these students' confidence and satisfaction levels with implant education: they were almost five times more satisfied with implant training when clinical experience in implant restorative procedures was a part of their implant education.
Guiding without feeling guided: Implicit scaffolding through interactive simulation design
NASA Astrophysics Data System (ADS)
Paul, Ariel; Podolefsky, Noah; Perkins, Katherine
2013-01-01
While PhET interactive simulations (sims) were historically designed for college students, they are used at lower grade levels, and we are currently developing sims targeted at middle school (MS). In studying how MS students interact with and learn from these sims, we have been extracting insights about design for the middle-grade-levels and across K-16. This collection of work has highlighted the importance of implicit scaffolding, a design framework that reduces the amount of explicit instruction needed to facilitate learning. We present a case study of redesigning a sim - Energy Skate Park (ESP) - for effective use in MS. We conducted think-aloud interviews with MS students to identify successful features, sources of confusion or unproductive distraction, as well as features inconsistent with gradeappropriate learning goals. Drawing on these data and the principle of implicit scaffolding, we developed Energy Skate Park Basics (ESPB). Interviews on ESPB demonstrate increased usability and learning for MS students.
ERIC Educational Resources Information Center
Wakeley, Deidra
2005-01-01
This role-playing simulation is designed to help teach middle level students about the typical lifecycle of a fungus. In this interactive simulation, students assume the roles of fungi, spores, living and dead organisms, bacteria, and rain. As they move around a playing field collecting food and water chips, they discover how the organisms…
Decision Making in Computer-Simulated Experiments.
ERIC Educational Resources Information Center
Suits, J. P.; Lagowski, J. J.
A set of interactive, computer-simulated experiments was designed to respond to the large range of individual differences in aptitude and reasoning ability generally exhibited by students enrolled in first-semester general chemistry. These experiments give students direct experience in the type of decision making needed in an experimental setting.…
Enhancing Lean Manufacturing Learning Experience through Hands-On Simulation
ERIC Educational Resources Information Center
Elbadawi, Isam; McWilliams, Douglas L.; Tetteh, Edem G.
2010-01-01
Finding appropriate interactive exercises to increase students' learning in technical topic courses is always challenging to educators. In this study, several paper plane hands-on simulation exercises were developed, used, and tested in a lean manufacturing course for beginning college students. A pretest and posttest was used to assess the…
Factors Promoting Engaged Exploration with Computer Simulations
ERIC Educational Resources Information Center
Podolefsky, Noah S.; Perkins, Katherine K.; Adams, Wendy K.
2010-01-01
This paper extends prior research on student use of computer simulations (sims) to engage with and explore science topics, in this case wave interference. We describe engaged exploration; a process that involves students actively interacting with educational materials, sense making, and exploring primarily via their own questioning. We analyze…
Making Enzyme Kinetics Dynamic via Simulation Software
ERIC Educational Resources Information Center
Potratz, Jeffrey P.
2017-01-01
An interactive classroom demonstration that enhances students' knowledge of steady-state and Michaelis-Menten enzyme kinetics is described. The instructor uses a free version of professional-quality KinTek Explorer simulation software and student input to construct dynamic versions of three static hallmark images commonly used to introduce enzyme…
Learning by Doing: Using an Online Simulation Game in an International Relations Course
ERIC Educational Resources Information Center
Epley, Jennifer
2016-01-01
Integrating interactive learning activities into undergraduate courses is one method for increasing student interest, engagement, and skills development. Online simulation games in particular offer students the unique applied opportunity to "learn by doing" in a virtual space to further their overall knowledge base and critical thinking…
Assessing Pedagogical Balance in a Simulated Classroom Environment
ERIC Educational Resources Information Center
Knezek, Gerald; Hopper, Susan B.; Christensen, Rhonda; Tyler-Wood, Tandra; Gibson, David C.
2015-01-01
simSchool, an online simulator that has been used to enhance teacher preparation since 2003, models different types of students and provides virtual practice sessions for teachers to assign tasks and interact with students. In this article the authors (a) examine changes in preservice teacher perceptions of teaching confidence and teaching…
ERIC Educational Resources Information Center
Shultz, Gary
This chapter describes the development of a set of programs called "History Comes Alive," a series of historical simulations and interactive experiences for students at heritage sites in Ontario. The programs allow students from Ontario and New York to relive the past by spending 3 days and 2 nights in a simulated historical setting. In…
Designing Online Scaffolds for Interactive Computer Simulation
ERIC Educational Resources Information Center
Chen, Ching-Huei; Wu, I-Chia; Jen, Fen-Lan
2013-01-01
The purpose of this study was to examine the effectiveness of online scaffolds in computer simulation to facilitate students' science learning. We first introduced online scaffolds to assist and model students' science learning and to demonstrate how a system embedded with online scaffolds can be designed and implemented to help high school…
ERIC Educational Resources Information Center
Winberg, T. Mikael; Hedman, Leif
2008-01-01
Attitudes toward learning (ATL) have been shown to influence students' learning outcomes. However, there is a lack of knowledge about the ways in which the interaction between ATL, the learning situation, and the level of students' prior knowledge influence affective reactions and conceptual change. In this study, a simulation of acid-base…
Feedback and Elaboration within a Computer-Based Simulation: A Dual Coding Perspective.
ERIC Educational Resources Information Center
Rieber, Lloyd P.; And Others
The purpose of this study was to explore how adult users interact and learn during a computer-based simulation given visual and verbal forms of feedback coupled with embedded elaborations of the content. A total of 52 college students interacted with a computer-based simulation of Newton's laws of motion in which they had control over the motion…
The Teaching Decisions Simulation: An Interactive Vehicle for Mapping Teaching Decisions.
ERIC Educational Resources Information Center
Strang, Harold R.
1996-01-01
Describes the Teaching Decisions Simulation, a program that allows participants to make decisions regarding lesson plan activities and student and teacher spatial arrangement or interactions. Postlesson feedback includes variables such as completion time and performance measures. Experienced teachers exhibited more deliberation in completing the…
ERIC Educational Resources Information Center
Pearce, Thomas H.
1983-01-01
Describes interactive computer program (listing available from author) which simulates olivine fractionation from basaltic/ultrabasic liquid. The menu-driven nature of the program (for Apple II microcomputer) allows students to select ideal Rayleigh fractionation or equilibrium crystallization. (JN)
Interactive Learning During Solar Maximum
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, Maha; Curtis, Steven (Technical Monitor)
2001-01-01
The goal of this project is to develop and distribute e-educational material for space science during times of solar activity that emphasizes underlying basic science principles of solar disturbances and their effects on Earth. This includes materials such as simulations, animations, group projects and other on-line materials to be used by students either in high school or at the introductory college level. The on-line delivery tool originally intended to be used is known as Interactive Multimedia Education at a Distance (IMED), which is a web-based software system used at UCLA for interactive distance learning. IMED is a password controlled system that allows students to access text, images, bulletin boards, chat rooms, animation, simulations and individual student web sites to study science and to collaborate on group projects.
Teaching Employment Interview Skills through Interactive Video Instruction.
ERIC Educational Resources Information Center
Shulman, Gary M.; And Others
An interactive video program, "The Screening Interview," has been developed at Miami University (Ohio) to help prepare college and university students for on-campus employment interviews with corporate recruiters. Within the context of the simulated interview situation provided by the program, students function as the alter ego of either…
The Electron Transport Chain: An Interactive Simulation
ERIC Educational Resources Information Center
Romero, Chris; Choun, James
2014-01-01
This activity provides students an interactive demonstration of the electron transport chain and chemiosmosis during aerobic respiration. Students use simple, everyday objects as hydrogen ions and electrons and play the roles of the various proteins embedded in the inner mitochondrial membrane to show how this specific process in cellular…
Simulated patients in audiology education: student reports.
Naeve-Velguth, Susan; Christensen, Sara A; Woods, Suzanne
2013-09-01
Despite increased attention in recent years to audiology counseling education, students remain concerned about their abilities to interact with patients in challenging situations, such as when breaking difficult news. Simulated patients, or actors trained to portray patients in clinical scenarios, have been used for many years in medical schools to teach and assess students' interpersonal skills, and are just beginning to be used in audiology programs. Although research suggests that medical students value simulated patient experiences, little is known about whether the same is true for audiology students. The purpose of this study was to survey audiology students who had completed a simulated patient counseling experience as part of their graduate coursework at Central Michigan University, to learn about their experiences and views of this instructional format. This study used descriptive and comparative statistics to report student observations and to determine if student responses to evaluative questions differed from chance. Study participants included 29 audiology students who had completed a "breaking difficult news" simulated patient experience as part of their required graduate coursework in patient counseling. Participants completed an online survey that included seven evaluative five-point Likert-scale questions about their simulated patient counseling experience. Participants also completed one multiple-choice question on suggestions for future simulated-patient sessions. For each of the seven evaluative questions, a majority of participants (76-100%) responded positively, agreeing or strongly agreeing that the experience was helpful to their learning. For each of these evaluative questions, a χ² analysis revealed that the distribution of positive (i.e., strongly agree and agree) to nonpositive (i.e., neutral, disagree, and strongly disagree) responses differed significantly from chance (p < .0001, df = 1). The results also indicated that when asked which of several suggested clinical scenarios would be helpful for future sessions, simulations of challenging patient types (i.e., hostile, rambling, and noncommunicative patients) were supported by most (62-90%) respondents. The results of the present study are consistent with findings of medical students' positive perceptions of simulated patient experiences as well as those previously reported for audiology students. Together, these data support the continued use of simulated patients as a method of instruction for audiology counseling education for breaking difficult news, and suggest a potential value of using simulated patient interactions for training counseling skills in other clinical situations and scenarios. American Academy of Audiology.
Carman, Margaret; Xu, Shu; Rushton, Sharron; Smallheer, Benjamin A; Williams, Denise; Amarasekara, Sathya; Oermann, Marilyn H
Acute care nurse practitioner (ACNP) programs that use high-fidelity simulation as a teaching tool need to consider innovative strategies to provide distance-based students with learning experiences that are comparable to those in a simulation laboratory. The purpose of this article is to describe the use of virtual simulations in a distance-based ACNP program and student performance in the simulations. Virtual simulations using iSimulate were integrated into the ACNP course to promote the translation of content into a clinical context and enable students to develop their knowledge and decision-making skills. With these simulations, students worked as a team, even though they were at different sites from each other and from the faculty, to manage care of an acutely ill patient. The students were assigned to simulation groups of 4 students each. One week before the simulation, they reviewed past medical records. The virtual simulation sessions were recorded and then evaluated. The evaluation tools assessed 8 areas of performance and included key behaviors in each of these areas to be performed by students in the simulation. More than 80% of the student groups performed the key behaviors. Virtual simulations provide a learning platform that allows live interaction between students and faculty, at a distance, and application of content to clinical situations. With simulation, learners have an opportunity to practice assessment and decision-making in emergency and high-risk situations. Simulations not only are valuable for student learning but also provide a nonthreatening environment for staff to practice, receive feedback on their skills, and improve their confidence.
Liebert, Cara A; Mazer, Laura; Bereknyei Merrell, Sylvia; Lin, Dana T; Lau, James N
2016-09-01
The flipped classroom, a blended learning paradigm that uses pre-session online videos reinforced with interactive sessions, has been proposed as an alternative to traditional lectures. This article investigates medical students' perceptions of a simulation-based, flipped classroom for the surgery clerkship and suggests best practices for implementation in this setting. A prospective cohort of students (n = 89), who were enrolled in the surgery clerkship during a 1-year period, was taught via a simulation-based, flipped classroom approach. Students completed an anonymous, end-of-clerkship survey regarding their perceptions of the curriculum. Quantitative analysis of Likert responses and qualitative analysis of narrative responses were performed. Students' perceptions of the curriculum were positive, with 90% rating it excellent or outstanding. The majority reported the curriculum should be continued (95%) and applied to other clerkships (84%). The component received most favorably by the students was the simulation-based skill sessions. Students rated the effectiveness of the Khan Academy-style videos the highest compared with other video formats (P < .001). Qualitative analysis identified 21 subthemes in 4 domains: general positive feedback, educational content, learning environment, and specific benefits to medical students. The students reported that the learning environment fostered accountability and self-directed learning. Specific perceived benefits included preparation for the clinical rotation and the National Board of Medical Examiners shelf exam, decreased class time, socialization with peers, and faculty interaction. Medical students' perceptions of a simulation-based, flipped classroom in the surgery clerkship were overwhelmingly positive. The flipped classroom approach can be applied successfully in a surgery clerkship setting and may offer additional benefits compared with traditional lecture-based curricula. Copyright © 2016 Elsevier Inc. All rights reserved.
Retention of drug administration skills after intensive teaching.
Wheeler, D W; Degnan, B A; Murray, L J; Dunling, C P; Whittlestone, K D; Wood, D F; Smith, H L; Gupta, A K
2008-04-01
We have identified deficiencies in medical students' drug administration skills, and we attempted to address them with interactive online teaching modules and simulated critical incident scenarios. Short-term improvements have been evident with this intensive effort, but medium-term retention of skills has not been measured. A drug administration lecture, an online module and a simulated emergency scenario were offered to final year clinical students. None of the teaching was compulsory but participation was recorded, along with students' simulator performances and marks in an objective structured practical examination 9 months later. A poor simulator score predicted a poor performance in the later examination. Participation in the simulated scenario only significantly improved examination scores when supplemented by online teaching (p = 0.002). Intensive drug administration teaching using an online module and high fidelity simulation improves drug administration skills in the medium term. Students found simulation much more engaging than online teaching.
Two Applications of Simulation in the Educational Environment. Tech Memo.
ERIC Educational Resources Information Center
Thomas, David B.
Two educational computer simulations are described in this paper. One of the simulations is STATSIM, a series of exercises applicable to statistical instruction. The content of the other simulation is comprised of mathematical learning models. Student involvement, the interactive nature of the simulations, and terminal display of materials are…
NASA Astrophysics Data System (ADS)
Straub, K. H.; Kesgin, B.
2012-12-01
During the fall 2012 semester, students in two introductory courses at Susquehanna University - EENV:101 Environmental Science and POLI:131 World Affairs - will participate together in an online international relations simulation called Statecraft (www.statecraftsim.com). In this strategy game, students are divided into teams representing independent countries, and choose their government type (democracy, constitutional monarchy, communist totalitarian, or military dictatorship) and two country attributes (industrial, green, militaristic, pacifist, or scientific), which determine a set of rules by which that country must abide. Countries interact over issues such as resource distribution, war, pollution, immigration, and global climate change, and must also keep domestic political unrest to a minimum in order to succeed in the game. This simulation has typically been run in political science courses, as the goal is to allow students to experience the balancing act necessary to maintain control of global and domestic issues in a dynamic, diverse world. This semester, environmental science students will be integrated into the simulation, both as environmental advisers to each country and as independent actors representing groups such as Greenpeace, ExxonMobil, and UNEP. The goal in integrating the two courses in the simulation is for the students in each course to gain both 1) content knowledge of certain fundamental material in the other course, and 2) a more thorough, applied understanding of the integrated nature of the two subjects. Students will gain an appreciation for the multiple tradeoffs that decision-makers must face in the real world (economy, resources, pollution, health, defense, etc.). Environmental science students will link these concepts to the traditional course material through a "systems thinking" approach to sustainability. Political science students will face the challenges of global climate change and gain an understanding of the nature of scientific research and uncertainty on this topic. One of the global issues that students must face in the simulation is the melting of "Ice Mountain," which threatens to flood coastal cities before the end of the game; only through cooperative action can the "Globe of Frost" be built to potentially stop the melting. In addition, the game fundamentally integrates tradeoffs between resources, pollution, immigration, education, health, defense, and other sustainability-related subjects throughout. Pre- and post-course surveys will include both environmental science/sustainability and political science concepts that may not be explicitly taught in both courses, but that students should have a greater awareness of through their interaction in the Statecraft simulation. Student attitudes toward integration of the course material will also be assessed.
Simulating Phase Variation: A Practical Approach to Teaching Mutation and Diversity
ERIC Educational Resources Information Center
Wanford, Joe; Aidley, Jack; Bayliss, Chris; Ketley, Julian; Goodwin, Mark
2018-01-01
Mutation, diversity, natural selection and the biology of human pathogens (including antibiotic resistance) are key features of the biosciences curriculum at A Level and undergraduate study. Few resources exist to allow students to engage with these topics in an interactive manner. This paper describes an interactive, online simulation of mutation…
Facilitating Interactivity in an Online Business Writing Course.
ERIC Educational Resources Information Center
Mabrito, Mark
2001-01-01
Suggests ways of developing an online business writing course that uses technology to simulate features of the face-to-face classroom and that achieves an interactive learning experience for students. Uses the author's online business writing class as an example of one which manages to simulate, through the judicious use of software, the…
Engaging students in astronomy and spectroscopy through Project SPECTRA!
NASA Astrophysics Data System (ADS)
Wood, E. L.
2011-12-01
Computer simulations for minds-on learning with "Project Spectra!" How do we gain information about the Sun? How do we know Mars has CO2 or that Enceladus has H2O geysers? How do we use light in astronomy? These concepts are something students and educators struggle with because they are abstract. Using simulations and computer interactives (games) where students experience and manipulate the information makes concepts accessible. Visualizing lessons with multi-media solidifies understanding and retention of knowledge and is completely unlike its paper-and-pencil counterpart. Visualizations also enable teachers to forgo purchasing expensive laboratory equipment. "Project Spectra!" is a science and engineering program that uses computer-based Flash interactives to expose students to astronomical spectroscopy and actual data in a way that is not possible with traditional in-class activities. To engage students in "Project Spectra!", students are given a mission, which connects them with the research at hand. Missions range from exploring remote planetary atmospheres and surfaces, experimenting with the Sun using different filters, or analyzing the soil of a remote planet. Additionally, students have an opportunity to learn about NASA missions, view movies, and see images connected with their mission, which is something that is not practical to do during a typical paper-and-pencil activity. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. These interactives complement in-class Project SPECTRA! activities exploring applications of the electromagnetic spectrum.
ERIC Educational Resources Information Center
Luo, Wei; Pelletier, Jon; Duffin, Kirk; Ormand, Carol; Hung, Wei-chen; Shernoff, David J.; Zhai, Xiaoming; Iverson, Ellen; Whalley, Kyle; Gallaher, Courtney; Furness, Walter
2016-01-01
The long geological time needed for landform development and evolution poses a challenge for understanding and appreciating the processes involved. The Web-based Interactive Landform Simulation Model--Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is an educational tool designed to help students better understand such processes,…
ERIC Educational Resources Information Center
Blikstein, Paulo; Wilensky, Uri
2009-01-01
This article reports on "MaterialSim", an undergraduate-level computational materials science set of constructionist activities which we have developed and tested in classrooms. We investigate: (a) the cognition of students engaging in scientific inquiry through interacting with simulations; (b) the effects of students programming simulations as…
Augmenting Your Own Reality: Student Authoring of Science-Based Augmented Reality Games
ERIC Educational Resources Information Center
Klopfer, Eric; Sheldon, Josh
2010-01-01
Augmented Reality (AR) simulations superimpose a virtual overlay of data and interactions onto a real-world context. The simulation engine at the heart of this technology is built to afford elements of game play that support explorations and learning in students' natural context--their own community and surroundings. In one of the more recent…
ERIC Educational Resources Information Center
Dega, Bekele Gashe; Kriek, Jeanne; Mogese, Temesgen Fereja
2013-01-01
The purpose of this study was to investigate Ethiopian physics undergraduate students' conceptual change in the concepts of electric potential and energy (EPE) and electromagnetic induction (EMI). A quasi-experimental design was used to study the effect of cognitive perturbation using physics interactive simulations (CPS) in relation to cognitive…
Probabilities and Predictions: Modeling the Development of Scientific Problem-Solving Skills
ERIC Educational Resources Information Center
Stevens, Ron; Johnson, David F.; Soller, Amy
2005-01-01
The IMMEX (Interactive Multi-Media Exercises) Web-based problem set platform enables the online delivery of complex, multimedia simulations, the rapid collection of student performance data, and has already been used in several genetic simulations. The next step is the use of these data to understand and improve student learning in a formative…
A Tutoring System That Simulates the Highly Interactive Nature of Human Tutoring
ERIC Educational Resources Information Center
Katz, Sandra; Albacete, Patricia L.
2013-01-01
For some time, it has been clear that students who are tutored generally learn more than students who experience classroom instruction (e.g., Bloom, 1984). Much research has been devoted to identifying features of tutorial dialogue that can explain its effectiveness, so that these features can be simulated in natural-language tutoring systems. One…
Chuah, Joon Hao; Lok, Benjamin; Black, Erik
2013-04-01
Health sciences students often practice and are evaluated on interview and exam skills by working with standardized patients (people that role play having a disease or condition). However, standardized patients do not exist for certain vulnerable populations such as children and the intellectually disabled. As a result, students receive little to no exposure to vulnerable populations before becoming working professionals. To address this problem and thereby increase exposure to vulnerable populations, we propose using virtual humans to simulate members of vulnerable populations. We created a mixed reality pediatric patient that allowed students to practice pediatric developmental exams. Practicing several exams is necessary for students to understand how to properly interact with and correctly assess a variety of children. Practice also increases a student's confidence in performing the exam. Effective practice requires students to treat the virtual child realistically. Treating the child realistically might be affected by how the student and virtual child physically interact, so we created two object interaction interfaces - a natural interface and a mouse-based interface. We tested the complete mixed reality exam and also compared the two object interaction interfaces in a within-subjects user study with 22 participants. Our results showed that the participants accepted the virtual child as a child and treated it realistically. Participants also preferred the natural interface, but the interface did not affect how realistically participants treated the virtual child.
Simulation: a new approach to teaching ethics.
Buxton, Margaret; Phillippi, Julia C; Collins, Michelle R
2015-01-01
The importance of ethical conduct in health care was acknowledged as early as the fifth century in the Hippocratic Oath and continues to be an essential element of clinical practice. Providers face ethical dilemmas that are complex and unfold over time, testing both practitioners' knowledge and communication skills. Students learning to be health care providers need to develop the knowledge and skills necessary to negotiate complex situations involving ethical conflict. Simulation has been shown to be an effective learning environment for students to learn and practice complex and overlapping skills sets. However, there is little guidance in the literature on constructing effective simulation environments to assist students in applying ethical concepts. This article describes realistic simulations with trained, standardized patients that present ethical problems to graduate-level nurse-midwifery students. Student interactions with the standardized patients were monitored by faculty and peers, and group debriefing was used to help explore students' emotions and reactions. Student feedback postsimulation was exceedingly positive. This simulation could be easily adapted for use by health care education programs to assist students in developing competency with ethics. © 2014 by the American College of Nurse-Midwives.
NASA Astrophysics Data System (ADS)
May, Dominik; Wold, Kari; Moore, Stephanie
2015-09-01
The world is changing significantly, and it is becoming increasingly globalised. This means that countries, businesses, and professionals must think and act globally to be successful. Many individuals, however, are not prepared with the global competency skills needed to communicate and perform effectively in a globalised system. To address this need, higher education institutions are looking for ways to instil these skills in their students. This paper explains one promising approach using current learning principles: transnational interactive online environments in engineering education. In 2011, the TU Dortmund and the University of Virginia initiated a collaboration in which engineering students from both universities took part in one online synchronous course and worked together on global topics. This paper describes how the course was designed and discusses specific research results regarding how interactive online role-playing simulations support students in gaining the global competency skills required to actively participate in today's international workforce.
A Comparison of Four Simulation and Instructional Methods for Endodontic Review.
ERIC Educational Resources Information Center
Sandoval, Victor A.; And Others
1987-01-01
The effects of four different endodontic self-instructional review formats (slide-tape, latent-image simulation, computer text simulation, and computer-assisted video interactive simulation) on senior clinical endodontic performance are compared. Student evaluations, as well as comparative developmental expenditures, are discussed. (Author/MLW)
Stanley, Mary Jo; Rojas, Deb
2014-01-01
Schools of nursing are challenged to find clinical placements in public health settings. Use of simulation can address situations unique to public health, with attention to specific concerns, such as environmental health. Environmental health is an integral part of public health nursing and is a standard of professional practice. Current simulations focus on acute care situations, offering limited scenarios with a public health perspective and excluding environmental health. This study's simulation scenario was created to enhance nursing students' understanding of public health concepts within an environmental health context. Outcomes from the simulation include the need for integration of environmental issues in public health teaching. Students stated that this scenario provided a broader understanding of the environmental influences that can affect the client's and family's health. This scenario fills a void in simulation content, while providing an interactive teaching and learning strategy to help students to apply knowledge to practice. Copyright 2014, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Costello, Gabriel J.
2017-11-01
The purpose of this work is to contribute to the debate on the best pedagogical approach to developing undergraduate mechanical engineering skills to meet the requirements of contemporary complex working environments. The paper provides an example of using student-entrepreneur collaboration in the teaching of modules to Mechanical Engineering final-year students. Problem-based learning (PBL) is one of the most significant recent innovations in the area of education for the professions. This work proposes to make an original contribution by simulating a real-life entrepreneur interaction for the students. The current literature largely confines simulation-based learning to computer applications such as games. However, this paper argues that role playing by students interfacing with technology start-ups can also be regarded as 'simulation' in a wider sense. Consequently, the paper proposes the concept of simulation-action learning as an enhancement of PBL and to distinguish it from computer simulation.
A course-based cross-cultural interaction among pharmacy students in Qatar and Canada.
Wilby, Kyle John; Taylor, Jeff; Khalifa, Sherief I; Jorgenson, Derek
2015-03-25
To develop, implement, and evaluate a course-based, cross-cultural student interaction using real-time videoconferencing between universities in Canada and Qatar. A professional skills simulation practice session on smoking cessation was run for students in Qatar (n=22) and Canada (n=22). Students role played cases in small group situations and then interacted with colleagues from the other country regarding culturally challenging situations and communication strategies. Students were assessed on analytical content and communication skills through faculty member and peer evaluation. Cultural competency outcomes were assessed using a postsession survey. Overall, 92.3% of respondents agreed that learning was enhanced through the cross-cultural exchange, and 94.9% agreed that insight was gained into the health-related issues and needs of people from another culture. A course-based, cross-cultural interaction was an effective method to incorporate cultural competency principles into student learning. Future initiatives should increase direct student interaction and focus on culturally sensitive topics.
A Course-based Cross-Cultural Interaction among Pharmacy Students in Qatar and Canada
Taylor, Jeff; Khalifa, Sherief I.; Jorgenson, Derek
2015-01-01
Objective. To develop, implement, and evaluate a course-based, cross-cultural student interaction using real-time videoconferencing between universities in Canada and Qatar. Design. A professional skills simulation practice session on smoking cessation was run for students in Qatar (n=22) and Canada (n=22). Students role played cases in small group situations and then interacted with colleagues from the other country regarding culturally challenging situations and communication strategies. Assessment. Students were assessed on analytical content and communication skills through faculty member and peer evaluation. Cultural competency outcomes were assessed using a postsession survey. Overall, 92.3% of respondents agreed that learning was enhanced through the cross-cultural exchange, and 94.9% agreed that insight was gained into the health-related issues and needs of people from another culture. Conclusion. A course-based, cross-cultural interaction was an effective method to incorporate cultural competency principles into student learning. Future initiatives should increase direct student interaction and focus on culturally sensitive topics. PMID:25861107
Using Simulation in a Psychiatric Mental Health Nurse Practitioner Doctoral Program.
Calohan, Jess; Pauli, Eric; Combs, Teresa; Creel, Andrea; Convoy, Sean; Owen, Regina
The use and effectiveness of simulation with standardized patients in undergraduate and graduate nursing education programs is well documented. Simulation has been primarily used to develop health assessment skills. Evidence supports using simulation and standardized patients in psychiatric-mental health nurse practitioner (PMHNP) programs is useful in developing psychosocial assessment skills. These interactions provide individualized and instantaneous clinical feedback to the student from faculty, peers, and standardized patients. Incorporating simulation into advanced practice psychiatric-mental health nursing curriculum allows students to develop the necessary requisite skills and principles needed to safely and effectively provide care to patients. There are no documented standardized processes for using simulation throughout a doctor of nursing practice PMHNP curriculum. The purpose of this article is to describe a framework for using simulation with standardized patients in a PMHNP curriculum. Students report high levels of satisfaction with the simulation experience and believe that they are more prepared for clinical rotations. Faculty feedback indicates that simulated clinical scenarios are a method to ensure that each student experiences demonstrate a minimum standard of competency ahead of clinical rotations with live patients. Initial preceptor feedback indicates that students are more prepared for clinical practice and function more independently than students that did not experience this standardized clinical simulation framework. Published by Elsevier Inc.
Molecular Dynamics Simulations of Chemical Reactions for Use in Education
ERIC Educational Resources Information Center
Qian Xie; Tinker, Robert
2006-01-01
One of the simulation engines of an open-source program called the Molecular Workbench, which can simulate thermodynamics of chemical reactions, is described. This type of real-time, interactive simulation and visualization of chemical reactions at the atomic scale could help students understand the connections between chemical reaction equations…
NASA Astrophysics Data System (ADS)
Hockicko, Peter; Krišt‧ák, L.‧uboš; Němec, Miroslav
2015-03-01
Video analysis, using the program Tracker (Open Source Physics), in the educational process introduces a new creative method of teaching physics and makes natural sciences more interesting for students. This way of exploring the laws of nature can amaze students because this illustrative and interactive educational software inspires them to think creatively, improves their performance and helps them in studying physics. This paper deals with increasing the key competencies in engineering by analysing real-life situation videos - physical problems - by means of video analysis and the modelling tools using the program Tracker and simulations of physical phenomena from The Physics Education Technology (PhET™) Project (VAS method of problem tasks). The statistical testing using the t-test confirmed the significance of the differences in the knowledge of the experimental and control groups, which were the result of interactive method application.
Psychosocial vital signs: using simulation to introduce a new concept.
Spade, Charlotte M
2008-01-01
Psychosocial vital signs (PVS) is a tool used for defining and measuring essential psychosocial variables of health. Because nurse-patient interaction is basic to PVS, simulation is the methodology used for introducing this new concept to students. When learning PVS as a fundamental nursing skill, students' thinking is informed and guided toward a holistic view of their patients. The author discusses components of PVS and the curriculum used for teaching students how to use PVS.
Sims for Science: Powerful Tools to Support Inquiry-Based Teaching
ERIC Educational Resources Information Center
Perkins, Katherine K.; Loeblein, Patricia J.; Dessau, Kathryn L.
2010-01-01
Since 2002, the PhET Interactive Simulations project at the University of Colorado has been working to provide learning tools for students and teachers. The project has developed over 85 interactive simulations--or sims--for teaching and learning science. Although these sims can be used in a variety of ways, they are specifically designed to make…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naqvi, S
2014-06-15
Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physicalmore » principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as virtual experiments that give deeper and long lasting understanding of core principles. The student can then make sound judgements in novel situations encountered beyond routine clinical activities.« less
Build Engagement and Knowledge One Block at a Time with Minecraft
ERIC Educational Resources Information Center
Tromba, Peter
2013-01-01
The core of instruction is the interaction between the student, the content, and the teacher. Good instructional design accounts for the students' needs and interests by personalizing the core to each student. Video games and simulations are one way to meet student needs and leverage their interests for increased student learning. In the 2011-12…
Designing EvoRoom: An Immersive Simulation Environment for Collective Inquiry in Secondary Science
NASA Astrophysics Data System (ADS)
Lui, Michelle Mei Yee
This dissertation investigates the design of complex inquiry for co-located students to work as a knowledge community within a mixed-reality learning environment. It presents the design of an immersive simulation called EvoRoom and corresponding collective inquiry activities that allow students to explore concepts around topics of evolution and biodiversity in a Grade 11 Biology course. EvoRoom is a room-sized simulation of a rainforest, modeled after Borneo in Southeast Asia, where several projected displays are stitched together to form a large, animated simulation on each opposing wall of the room. This serves to create an immersive environment in which students work collaboratively as individuals, in small groups and a collective community to investigate science topics using the simulations as an evidentiary base. Researchers and a secondary science teacher co-designed a multi-week curriculum that prepared students with preliminary ideas and expertise, then provided them with guided activities within EvoRoom, supported by tablet-based software as well as larger visualizations of their collective progress. Designs encompassed the broader curriculum, as well as all EvoRoom materials (e.g., projected displays, student tablet interfaces, collective visualizations) and activity sequences. This thesis describes a series of three designs that were developed and enacted iteratively over two and a half years, presenting key features that enhanced students' experiences within the immersive environment, their interactions with peers, and their inquiry outcomes. Primary research questions are concerned with the nature of effective design for such activities and environments, and the kinds of interactions that are seen at the individual, collaborative and whole-class levels. The findings fall under one of three themes: 1) the physicality of the room, 2) the pedagogical script for student observation and reflection and collaboration, and 3) ways of including collective visualizations in the activity. Discrete findings demonstrate how the above variables, through their design as inquiry components (i.e., activity, room, scripts and scaffolds on devices, collective visualizations), can mediate the students' interactions with one another, with their teacher, and impact the outcomes of their inquiry. A set of design recommendations is drawn from the results of this research to guide future design or research efforts.
Modeling and simulation in biomedicine.
Aarts, J.; Möller, D.; van Wijk van Brievingh, R.
1991-01-01
A group of researchers and educators in The Netherlands, Germany and Czechoslovakia have developed and adapted mathematical computer models of phenomena in the field of physiology and biomedicine for use in higher education. The models are graphical and highly interactive, and are all written in TurboPascal or the mathematical simulation language PSI. An educational shell has been developed to launch the models. The shell allows students to interact with the models and teachers to edit the models, to add new models and to monitor the achievements of the students. The models and the shell have been implemented on a MS-DOS personal computer. This paper describes the features of the modeling package and presents the modeling and simulation of the heart muscle as an example. PMID:1807745
Minding the gap between communication skills simulation and authentic experience.
Yardley, Sarah; Irvine, Alison W; Lefroy, Janet
2013-05-01
Concurrent exposure to simulated and authentic experiences during undergraduate medical education is increasing. The impact of gaps or differences between contemporaneous experiences has not been adequately considered. We address two questions. How do new undergraduate medical students understand contemporaneous interactions with simulated and authentic patients? How and why do student perceptions of differences between simulated and authentic patient interactions shape their learning? We conducted an interpretative thematic secondary analysis of research data comprising individual interviews (n = 23), focus groups (three groups, n = 16), and discussion groups (four groups, n = 26) with participants drawn from two different year cohorts of Year 1 medical students. These methods generated data from 48 different participants, of whom 17 provided longitudinal data. In addition, data from routinely collected written evaluations of three whole Year 1 cohorts (response rates ≥ 88%, n = 378) were incorporated into our secondary analysis dataset. The primary studies and our secondary analysis were conducted in a single UK medical school with an integrated curriculum. Our analysis identified that students generate knowledge and meaning from their simulated and authentic experiences relative to each other and that the resultant learning differs in quality according to meaning created by comparing and contrasting contemporaneous experiences. Three themes were identified that clarify how and why the contrasting of differences is an important process for learning outcomes. These are preparedness, responsibility for safety, and perceptions of a gap between theory and practice. We propose a conceptual framework generated by reframing common metaphors that refer to the concept of the gap to develop educational strategies that might maximise useful learning from perceived differences. Educators need to 'mind' gaps in collaboration with students if synergistic learning is to be constructed from contemporaneous exposure to simulated and authentic patient interactions. The strategies need to be tested in practice by teachers and learners for utility. Further research is needed to understand gaps in other contexts. © Blackwell Publishing Ltd 2013.
Wahlgren, Carl-Fredrik; Edelbring, Samuel; Fors, Uno; Hindbeck, Hans; Ståhle, Mona
2006-01-01
Background Most of the many computer resources used in clinical teaching of dermatology and venereology for medical undergraduates are information-oriented and focus mostly on finding a "correct" multiple-choice alternative or free-text answer. We wanted to create an interactive computer program, which facilitates not only factual recall but also clinical reasoning. Methods Through continuous interaction with students, a new computerised interactive case simulation system, NUDOV, was developed. It is based on authentic cases and contains images of real patients, actors and healthcare providers. The student selects a patient and proposes questions for medical history, examines the skin, and suggests investigations, diagnosis, differential diagnoses and further management. Feedback is given by comparing the user's own suggestions with those of a specialist. In addition, a log file of the student's actions is recorded. The program includes a large number of images, video clips and Internet links. It was evaluated with a student questionnaire and by randomising medical students to conventional teaching (n = 85) or conventional teaching plus NUDOV (n = 31) and comparing the results of the two groups in a final written examination. Results The questionnaire showed that 90% of the NUDOV students stated that the program facilitated their learning to a large/very large extent, and 71% reported that extensive working with authentic computerised cases made it easier to understand and learn about diseases and their management. The layout, user-friendliness and feedback concept were judged as good/very good by 87%, 97%, and 100%, respectively. Log files revealed that the students, in general, worked with each case for 60–90 min. However, the intervention group did not score significantly better than the control group in the written examination. Conclusion We created a computerised case simulation program allowing students to manage patients in a non-linear format supporting the clinical reasoning process. The student gets feedback through comparison with a specialist, eliminating the need for external scoring or correction. The model also permits discussion of case processing, since all transactions are stored in a log file. The program was highly appreciated by the students, but did not significantly improve their performance in the written final examination. PMID:16907972
ERIC Educational Resources Information Center
Hontvedt, Magnus; Arnseth, Hans Christian
2013-01-01
Research on simulator training has rarely focused on the way simulated contexts are constructed collaboratively. This study sheds light on how structuring role-play and fostering social interactions may prove fruitful for designing simulator training. The article reports on a qualitative study of nautical students training in a ship simulator. The…
VLP Simulation: An Interactive Simple Virtual Model to Encourage Geoscience Skill about Volcano
NASA Astrophysics Data System (ADS)
Hariyono, E.; Liliasari; Tjasyono, B.; Rosdiana, D.
2017-09-01
The purpose of this study was to describe physics students predicting skills after following the geoscience learning using VLP (Volcano Learning Project) simulation. This research was conducted to 24 physics students at one of the state university in East Java-Indonesia. The method used is the descriptive analysis based on students’ answers related to predicting skills about volcanic activity. The results showed that the learning by using VLP simulation was very potential to develop physics students predicting skills. Students were able to explain logically about volcanic activity and they have been able to predict the potential eruption that will occur based on the real data visualization. It can be concluded that the VLP simulation is very suitable for physics student requirements in developing geosciences skill and recommended as an alternative media to educate the society in an understanding of volcanic phenomena.
The Potentiality of Gaming-Simulation in Architecture.
ERIC Educational Resources Information Center
May, Hayden Barkley
1979-01-01
Gaming-simulation in professional practice, education, and research is discussed. Simulation assists in exploring and resolving incongruent values and interests of clients, users, and architects; conveys complex interactive systems students are trying to understand; and elicits responses to alternative actions and contributes to theory development…
Interactive computer simulations of knee-replacement surgery.
Gunther, Stephen B; Soto, Gabriel E; Colman, William W
2002-07-01
Current surgical training programs in the United States are based on an apprenticeship model. This model is outdated because it does not provide conceptual scaffolding, promote collaborative learning, or offer constructive reinforcement. Our objective was to create a more useful approach by preparing students and residents for operative cases using interactive computer simulations of surgery. Total-knee-replacement surgery (TKR) is an ideal procedure to model on the computer because there is a systematic protocol for the procedure. Also, this protocol is difficult to learn by the apprenticeship model because of the multiple instruments that must be used in a specific order. We designed an interactive computer tutorial to teach medical students and residents how to perform knee-replacement surgery. We also aimed to reinforce the specific protocol of the operative procedure. Our final goal was to provide immediate, constructive feedback. We created a computer tutorial by generating three-dimensional wire-frame models of the surgical instruments. Next, we applied a surface to the wire-frame models using three-dimensional modeling. Finally, the three-dimensional models were animated to simulate the motions of an actual TKR. The tutorial is a step-by-step tutorial that teaches and tests the correct sequence of steps in a TKR. The student or resident must select the correct instruments in the correct order. The learner is encouraged to learn the stepwise surgical protocol through repetitive use of the computer simulation. Constructive feedback is acquired through a grading system, which rates the student's or resident's ability to perform the task in the correct order. The grading system also accounts for the time required to perform the simulated procedure. We evaluated the efficacy of this teaching technique by testing medical students who learned by the computer simulation and those who learned by reading the surgical protocol manual. Both groups then performed TKR on manufactured bone models using real instruments. Their technique was graded with the standard protocol. The students who learned on the computer simulation performed the task in a shorter time and with fewer errors than the control group. They were also more engaged in the learning process. Surgical training programs generally lack a consistent approach to preoperative education related to surgical procedures. This interactive computer tutorial has allowed us to make a quantum leap in medical student and resident teaching in our orthopedic department because the students actually participate in the entire process. Our technique provides a linear, sequential method of skill acquisition and direct feedback, which is ideally suited for learning stepwise surgical protocols. Since our initial evaluation has shown the efficacy of this program, we have implemented this teaching tool into our orthopedic curriculum. Our plans for future work with this simulator include modeling procedures involving other anatomic areas of interest, such as the hip and shoulder.
NASA Astrophysics Data System (ADS)
Dotger, Benjamin; Dotger, Sharon; Masingila, Joanna; Rozelle, Jeffrey; Bearkland, Mary; Binnert, Ashley
2018-06-01
Teachers and students struggle with the complexities surrounding the evolution of species and the process of natural selection. This article examines how science teacher candidates (STCs) engage in a clinical simulation that foregrounds two common challenges associated with natural selection—students' understanding of "survival of the fittest" and the variation of species over time. We outline the medical education pedagogy of clinical simulations and its recent diffusion to teacher education. Then, we outline the study that situates each STC in a one-to-one interaction with a standardized student who is struggling to accurately interpret natural selection concepts. In simulation with the standardized student, each STC is challenged to recognize content misconceptions and respond with appropriate instructional strategies and accurate explanations. Findings and implications center on the STCs' instructional practices in the simulation and the use of clinical learning environments to foster science teacher learning.
NASA Astrophysics Data System (ADS)
Dotger, Benjamin; Dotger, Sharon; Masingila, Joanna; Rozelle, Jeffrey; Bearkland, Mary; Binnert, Ashley
2017-04-01
Teachers and students struggle with the complexities surrounding the evolution of species and the process of natural selection. This article examines how science teacher candidates (STCs) engage in a clinical simulation that foregrounds two common challenges associated with natural selection—students' understanding of "survival of the fittest" and the variation of species over time. We outline the medical education pedagogy of clinical simulations and its recent diffusion to teacher education. Then, we outline the study that situates each STC in a one-to-one interaction with a standardized student who is struggling to accurately interpret natural selection concepts. In simulation with the standardized student, each STC is challenged to recognize content misconceptions and respond with appropriate instructional strategies and accurate explanations. Findings and implications center on the STCs' instructional practices in the simulation and the use of clinical learning environments to foster science teacher learning.
ERIC Educational Resources Information Center
Byington, Scott
1997-01-01
Presents a strategy to help students grasp the important implications of population growth. Involves an interactive demonstration that allows students to experience exponential and logistic population growth followed by a discussion of the implications of population-growth principles. (JRH)
ERIC Educational Resources Information Center
Reiner, Miriam; And Others
1995-01-01
Observations of high school physics students in an instructional experiment with an interactive learning environment in geometrical optics indicated that students in the Optics Dynagrams Project went through major conceptual developments as reflected in the diagrams they constructed. (Author/MKR)
Orr, Fiona; Kellehear, Kevin; Armari, Elizabeth; Pearson, Arana; Holmes, Douglas
2013-11-01
Role-play scenarios are frequently used with undergraduate nursing students enrolled in mental health nursing subjects to simulate the experience of voice-hearing. However, role-play has limitations and typically does not involve those who hear voices. This collaborative project between mental health consumers who hear voices and nursing academics aimed to develop and assess simulated voice-hearing as an alternative learning tool that could provide a deeper understanding of the impact of voice-hearing, whilst enabling students to consider the communication skills required when interacting with voice-hearers. Simulated sounds and voices recorded by consumers on mp3 players were given to eighty final year nursing students undertaking a mental health elective. Students participated in various activities whilst listening to the simulations. Seventy-six (95%) students completed a written evaluation following the simulation, which assessed the benefits of the simulation and its implications for clinical practice. An analysis of the students' responses by an external evaluator indicated that there were three major learning outcomes: developing an understanding of voice-hearing, increasing students' awareness of its impact on functioning, and consideration of the communication skills necessary to engage with consumers who hear voices. Copyright © 2013 Elsevier Ltd. All rights reserved.
Teaching Microbial Growth by Simulation.
ERIC Educational Resources Information Center
Ruiz, A. Fernandez; And Others
1989-01-01
Presented is a simulation program for Apple II computer which assays the effects of a series of variables on bacterial growth and interactions between microbial populations. Results of evaluation of the program with students are summarized. (CW)
Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom
ERIC Educational Resources Information Center
Clark, Ted M.; Chamberlain, Julia M.
2014-01-01
An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…
McLean, Michelle; Johnson, Patricia; Sargeant, Sally; Green, Patricia
2015-04-01
Much has been written about medical students' professional identity formation, the process of "becoming" a doctor. During their training, medical students interact with a range of teachers and trainers. Among these are simulated patients (SPs) who role-play patients, assisting students with their communication, procedural, and physical examination skills. With SPs regularly interacting with students, this qualitative study explored their views of students' emerging professional identities at one Australian medical school. SPs' contributions to developing professional identities were also explored. Fourteen SPs were interviewed individually or in pairs. After template analysis of the transcripts using a priori themes, a follow-up focus group (n = 7) was arranged. Although being older (implying maturity and more life experience) and exposure to real patients and previous health care experience were identified as contributing to developing an identity as a doctor, SPs recognized that for some, an existing professional identity might impede the development of a new identity. Simulated patients were of the opinion that they contributed to students' professional identities by creating a supportive environment for honing skills, which they did by realistically role-playing patient scripts, by making their bodies available, and by providing feedback as "patients." Through their authentic portrayal of patients and through their feedback, we are of the opinion that our SPs can contribute to students' developing identities as doctors. As lay individuals who often encounter students longitudinally, we believe that SPs offer a particular lens through which to view students' emerging identities as future doctors.
Computer-aided Instructional System for Transmission Line Simulation.
ERIC Educational Resources Information Center
Reinhard, Erwin A.; Roth, Charles H., Jr.
A computer-aided instructional system has been developed which utilizes dynamic computer-controlled graphic displays and which requires student interaction with a computer simulation in an instructional mode. A numerical scheme has been developed for digital simulation of a uniform, distortionless transmission line with resistive terminations and…
Simulations in a Science and Society Course.
ERIC Educational Resources Information Center
Maier, Mark H.; Venanzi, Thomas
1984-01-01
Provides a course outline which includes simulation exercises designed as in-class activities related to science and society interactions. Simulations focus on the IQ debate, sociobiology, nuclear weapons and nulcear strategy, nuclear power and radiation, computer explosion, and cosmology. Indicates that learning improves when students take active…
The Monash University Interactive Simple Climate Model
NASA Astrophysics Data System (ADS)
Dommenget, D.
2013-12-01
The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.
Sánchez Expósito, Judit; Leal Costa, César; Díaz Agea, José Luis; Carrillo Izquierdo, María Dolores; Jiménez Rodríguez, Diana
2018-02-01
The aim of this study was to analyse the communication skills of students in interactions with simulated critically-ill patients using a new assessment tool to study the relationships between communication skills, teamwork and clinical skills and to analyse the psychometric properties of the tool. A cross-sectional study was conducted to assess the communications skills of 52 students with critically-ill patients through the use of a new measurement tool to score video recordings of simulated clinical scenarios. The 52 students obtained low scores on their skills in communicating with patients. The reliability of the measuring instrument showed good inter-observer agreement (ICC between 0.71 and 0.90) and the validity yielded a positive correlation (p<0.01). The results provide evidence that nursing students lack skills when communicating with critically ill patients in simulated scenarios. The measuring instrument used is therefore deemed valid and reliable for assessing nursing students through a clinical simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Using Technology Effectively to Teach about Fractions
ERIC Educational Resources Information Center
Hensberry, Karina K. R.; Moore, Emily B.; Perkins, Katherine
2015-01-01
In this article, the authors describe classroom use of technology that successfully engaged fourth grade students (typically aged 9-10) in the United States in learning about fractions. The activities involved the use of an interactive simulation designed to support student learning of fractions, and whole-class discussion where students were…
Student Teacher Thinking: A Comparative Study of Elementary and Secondary Student Teachers.
ERIC Educational Resources Information Center
Galluzzo, Gary L.; Minix, Nancy A.
1992-01-01
Using videotaped simulated recall interviews, researchers assessed elementary and secondary student teachers' thoughts and concerns. Both groups considered pupil learning the greatest concern. There were consistent differences in how the groups perceived classroom interactions. Both groups addressed a narrower range of concerns regarding teaching…
Modeling Student Learning Behavior Patterns in an Online Science Inquiry Environment
ERIC Educational Resources Information Center
Brenner, Daniel G.; Matlen, Bryan J.; Timms, Michael J.; Gochyyev, Perman; Grillo-Hill, Andrew; Luttgen, Kim; Varfolomeeva, Marina
2017-01-01
This study investigated how the frequency and level of assistance provided to students interacted with prior knowledge to affect learning in the "Voyage to Galapagos" ("VTG") science inquiry-learning environment. "VTG" provides students with the opportunity to do simulated science field work in Galapagos as they…
Software for Secondary-School Learning About Robotics
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Smith, Stephanie L.; Truong, Dat; Hodgson, Terry R.
2005-01-01
The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science. The tasks involve building simulated robots and then observing how they behave. The program furnishes (1) programming tools that a student can use to assemble and program a simulated robot and (2) a virtual three-dimensional mission simulator for testing the robot. First, the ROVer Ranch presents fundamental information about robotics, mission goals, and facts about the mission environment. On the basis of this information, and using the aforementioned tools, the student assembles a robot by selecting parts from such subsystems as propulsion, navigation, and scientific tools, the student builds a simulated robot to accomplish its mission. Once the robot is built, it is programmed and then placed in a three-dimensional simulated environment. Success or failure in the simulation depends on the planning and design of the robot. Data and results of the mission are available in a summary log once the mission is concluded.
Nevin, M; Neill, F; Mulkerrins, J
2014-03-01
This paper aims to explore the development and evaluation results of a simulated skills package designed using a problem based learning approach with general nursing students. Internationally, the use of high fidelity simulated learning environments has escalated. This has occurred as a result of growing concerns relating to patient safety, patient litigation, lack of clinical opportunities for student nurses to gain experience and integration of new teaching methods into nursing curricula. There are however both proponents and opponents to the value of simulation and high fidelity simulation within nursing education. This study was conducted in an Irish school of nursing. A simulated learning support package was developed by nurse educators and piloted with 134 third year nursing students. This was evaluated using a questionnaire in which 87 students responded. Students generally found the simulation sessions realistic and useful in developing clinical skills, knowledge and confidence for clinical practice. However student issues regarding support with preparation for the session were highlighted. Also, the need for a more formalised structure for debriefing following the simulation sessions were identified. It is hoped that this paper will provide nurse educators with some guidance to aid future development of innovative and interactive teaching and learning strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Augmented Reality Simulations on Handheld Computers
ERIC Educational Resources Information Center
Squire, Kurt; Klopfer, Eric
2007-01-01
Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…
ERIC Educational Resources Information Center
Roll, Ido; Butler, Deborah; Yee, Nikki; Welsh, Ashley; Perez, Sarah; Briseno, Adriana; Perkins, Katherine; Bonn, Doug
2018-01-01
Guiding inquiry learning has been shown to increase knowledge gains. Yet, little is known about the effect of guidance on attitudes and behaviours, its interaction with student attributes, and transfer of impact once guidance is removed. We address these gaps in the context of an interactive Physics simulation on electric circuits…
Providing Interactive Access to Cave Geology for All Students, Regardless of Physical Ability
NASA Astrophysics Data System (ADS)
Atchison, C. `; Stredney, D.; Hittle, B.; Irving, K.; Toomey, R. S., III; Lemon, N. N.; Price, A.; Kerwin, T.
2013-12-01
Based on an identified need to accommodate students with mobility impairments in field-based instructional experiences, this presentation will discuss current efforts to promote participation, broaden diversity, and impart a historical perspective in the geosciences through the use of an interactive virtual environment. Developed through the integration of emerging simulation technologies, this prototypical virtual environment is created from LIDAR data of the Historic Tour route of Mammoth Cave National Park. The educational objectives of the simulation focus on four primary locations within the tour route that provide evidence of the hydrologic impact on the cave and karst formation. The overall objective is to provide a rich experience of a geological field-based learning for all students, regardless of their physical abilities. Employing a virtual environment that interchangeably uses two and three-dimensional representation of geoscience content, this synthetic field-based cave and karst module will provide an opportunity to assess the effectiveness in engaging the student community, and its efficacy in the curriculum when used as an alternative representation of a traditional field experience. The expected outcome is that based on the level of interactivity, the simulated environment will provide adequate pedagogical representation for content transfer without the need for physical experience in the uncontrolled field environment. Additionally, creating such an environment will impact all able-bodied students by providing supplemental resources that can both precede a traditional field experience and allow for students to re-examine a field site long after a the field experience, in both current formal and informal educational settings.
Creating Simulations for Political Science Education
ERIC Educational Resources Information Center
Asal, Victor; Blake, Elizabeth L.
2006-01-01
Simulations, particularly human-to-human interactions, offer social science students the opportunity to learn from firsthand experience, and can be an important and useful addition to an educator's teaching repertoire. However, it can be difficult for an instructor to know how to structure a simulation environment to meet specific educational…
NASA Astrophysics Data System (ADS)
Griesse-Nascimento, Sarah; Bridger, Joshua; Brown, Keith; Westervelt, Robert
2011-03-01
Interactive computer simulations increase students' understanding of difficult concepts and their ability to explain complex ideas. We created a module of eight interactive programs and accompanying lesson plans for teaching the fundamental concepts of Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) that we call interactive NMR (iNMR). We begin with an analogy between nuclear spins and metronomes to start to build intuition about the dynamics of spins in a magnetic field. We continue to explain T1, T2, and pulse sequences with the metronome analogy. The final three programs are used to introduce and explain the Magnetic Resonance Switch, a recent diagnostic technique based on NMR. A modern relevant application is useful to generate interest in the topic and confidence in the students' ability to apply their knowledge. The iNMR module was incorporated into a high school AP physics class. In a preliminary evaluation of implementation, students expressed enthusiasm and demonstrated enhanced understanding of the material relative to the previous year. Funded by NSF PHY-0646094 grant.
Learning with STEM Simulations in the Classroom: Findings and Trends from a Meta-Analysis
ERIC Educational Resources Information Center
D'Angelo, Cynthia M.; Rutstein, Daisy; Harris, Christopher J.
2016-01-01
This article presents a summary of the findings of a systematic review and meta-analysis of the literature on computer-based interactive simulations for K-12 science, technology, engineering, and mathematics (STEM) learning topics. For achievement outcomes, simulations had a moderate to strong effect on student learning. Overall, simulations have…
Kubota, Yoshie; Yano, Yoshitaka; Seki, Susumu; Takada, Kaori; Sakuma, Mio; Morimoto, Takeshi; Akaike, Akinori; Hiraide, Atsushi
2011-04-11
To determine the value of using the Roter Interaction Analysis System during objective structured clinical examinations (OSCEs) to assess pharmacy students' communication competence. As pharmacy students completed a clinical OSCE involving an interview with a simulated patient, 3 experts used a global rating scale to assess students' overall performance in the interview, and both the student's and patient's languages were coded using the Roter Interaction Analysis System (RIAS). The coders recorded the number of utterances (ie, units of spoken language) in each RIAS category. Correlations between the raters' scores and the number and types of utterances were examined. There was a significant correlation between students' global rating scores on the OSCE and the number of utterances in the RIAS socio-emotional category but not the RIAS business category. The RIAS proved to be a useful tool for assessing the socio-emotional aspect of students' interview skills.
ERIC Educational Resources Information Center
Sack, Jeff
2005-01-01
OsmoBeaker is a CD-ROM designed to enhance the learning of diffusion and osmosis by presenting interactive experimentation to the student. The software provides several computer simulations that take the student through different scenarios with cells, having different concentrations of solutes in them.
The Use of Online Modules and the Effect on Student Outcomes in a High School Chemistry Class
NASA Astrophysics Data System (ADS)
Lamb, Richard L.; Annetta, Len
2013-10-01
The purpose of the study was to review the efficacy of online chemistry simulations in a high school chemistry class and provide discussion of the factors that may affect student learning. The sample consisted of 351 high school students exposed to online simulations. Researchers administered a pretest, intermediate test and posttest to measure chemistry content knowledge acquired during the use of online chemistry laboratory simulations. The authors also analyzed student journal entries as an attitudinal measure of chemistry during the simulation experience. The four analyses conducted were Repeated Time Measures Analysis of Variance, a three-way Analysis of Variance, Logistic Regression and Multiple Analysis of Variance. Each of these analyses provides for a slightly different aspect of factors regarding student attitudes and outcomes. Results indicate that there is a statistically significant main effect across grouping type (experimental versus control, p = 0.042, α = 0.05). Analysis of student journal entries suggests that attitudinal factors may affect student outcomes concerning the use of online supplemental instruction. Implications for this study show that the use of online simulations promotes increased understanding of chemistry content through open-ended and interactive questioning.
A Computer Model for Red Blood Cell Chemistry
1996-10-01
5012. 13. ABSTRACT (Maximum 200 There is a growing need for interactive computational tools for medical education and research. The most exciting...paradigm for interactive education is simulation. Fluid Mod is a simulation based computational tool developed in the late sixties and early seventies at...to a modern Windows, object oriented interface. This development will provide students with a useful computational tool for learning . More important
McKenzie, Carly T; Tilashalski, Ken R; Peterson, Dawn Taylor; White, Marjorie Lee
2017-10-01
The aim of this study was to investigate dental students' long-term retention of clinical communication skills learned in a second-year standardized patient simulation at one U.S. dental school. Retention was measured by students' performance with an actual patient during their fourth year. The high-fidelity simulation exercise focused on clinical communication skills took place during the spring term of the students' second year. The effect of the simulation was measured by comparing the fourth-year clinical performance of two groups: those who had participated in the simulation (intervention group; Class of 2016) and those who had not (no intervention/control group; Class of 2015). In the no intervention group, all 47 students participated; in the intervention group, 58 of 59 students participated. Both instructor assessments and students' self-assessments were used to evaluate the effectiveness of key patient interaction principles as well as comprehensive presentation of multiple treatment options. The results showed that students in the intervention group more frequently included cost during their treatment option presentation than did students in the no intervention group. The instructor ratings showed that the intervention group included all key treatment option components except duration more frequently than did the no intervention group. However, the simulation experience did not result in significantly more effective student-patient clinical communication on any of the items measured. This study presents limited evidence of the effectiveness of a standardized patient simulation to improve dental students' long-term clinical communication skills with respect to thorough presentation of treatment options to a patient.
Efficient and Effective Use of Peer Teaching for Medical Student Simulation.
House, Joseph B; Choe, Carol H; Wourman, Heather L; Berg, Kristin M; Fischer, Jonathan P; Santen, Sally A
2017-01-01
Simulation is increasingly used in medical education, promoting active learning and retention; however, increasing use also requires considerable instructor resources. Simulation may provide a safe environment for students to teach each other, which many will need to do when they enter residency. Along with reinforcing learning and increasing retention, peer teaching could decrease instructor demands. Our objective was to determine the effectiveness of peer-taught simulation compared to physician-led simulation. We hypothesized that peer-taught simulation would lead to equivalent knowledge acquisition when compared to physician-taught sessions and would be viewed positively by participants. This was a quasi-experimental study in an emergency medicine clerkship. The control group was faculty taught. In the peer-taught intervention group, students were assigned to teach one of the three simulation-based medical emergency cases. Each student was instructed to master their topic and teach it to their peers using the provided objectives and resource materials. The students were assigned to groups of three, with all three cases represented; students took turns leading their case. Three groups ran simultaneously. During the intervention sessions, one physician was present to monitor the accuracy of learning and to answer questions, while three physicians were required for the control groups. Outcomes compared pre-test and post-test knowledge and student reaction between control and intervention groups. Both methods led to equally improved knowledge; mean score for the post-test was 75% for both groups (p=0.6) and were viewed positively. Students in the intervention group agreed that peer-directed learning was an effective way to learn. However, students in the control group scored their simulation experience more favorably. In general, students' response to peer teaching was positive, students learned equally well, and found peer-taught sessions to be interactive and beneficial.
NASA Astrophysics Data System (ADS)
Al-Balushi, Sulaiman M.; Al-Musawi, Ali S.; Ambusaidi, Abdullah K.; Al-Hajri, Fatemah H.
2017-02-01
The purpose of the current study was to investigate the effectiveness of interacting with animations using mobile devices on grade 12 students' spatial and reasoning abilities. The study took place in a grade 12 context in Oman. A quasi-experimental design was used with an experimental group of 32 students and a control group of 28 students. The experimental group studied chemistry using mobile tablets that had a digital instructional package with different animation and simulations. There was one tablet per student. A spatial ability test and a scientific reasoning test were administered to both groups prior and after the study, which lasted for 9 weeks. The findings showed that there were significant statistical differences between the two groups in terms of spatial ability in favour of the experimental group. However, there were no differences between the two groups in terms of reasoning ability. The authors reasoned that the types of animations and simulations used in the current study featured a wide range of three-dimensional animated illustrations at the particulate level of matter. Most probably, this decreased the level of abstractness that usually accompanies chemical entities and phenomena and helped the students to visualize the interactions between submicroscopic entities spatially. Further research is needed to decide on types of scientific animations that could help students improve their scientific reasoning.
BridgeUP: STEM and Learning Astrophysics Interactively
NASA Astrophysics Data System (ADS)
Hernandez, Betsy; Geogdzhayeva, Maria; Beltre, Chasity; Ocasio, Adrienne; Skarbinski, Maya; Zbib, Daniela; Swar, Prachi; Mac Low, Mordecai
2018-01-01
BridgeUP: STEM is an initiative responding to the gender and opportunity gaps that exist in the STEM pipeline for women, girls, and under-resourced youth. The program engages high school girls in experiences at the intersection of computer science, scientific research, and visualization that will position them to succeed and lead in these fields. Students work on projects closely aligned with research taking place at the American Museum of Natural History. One of the current astronomy research projects at the museum simulates migration of black holes in active galactic nucleus disks using the Pencil Code. The work presented here focuses on interactive tools used to teach dynamical concepts pertaining to this project. These include Logger Pro, along with Vernier equipment, PhET Interactive Simulations, and Python. Throughout the internship, students also learn qualitative astrophysics via presentations, animations and videos. We discuss the success of utilizing the aforementioned tools in teaching, as well as showing work conducted by the six current students participating in this Astronomy research project.
Brydges, Ryan; Carnahan, Heather; Rose, Don; Dubrowski, Adam
2010-08-01
In this paper, we tested the over-arching hypothesis that progressive self-guided learning offers equivalent learning benefit vs. proficiency-based training while limiting the need to set proficiency standards. We have shown that self-guided learning is enhanced when students learn on simulators that progressively increase in fidelity during practice. Proficiency-based training, a current gold-standard training approach, requires achievement of a criterion score before students advance to the next learning level. Baccalaureate nursing students (n = 15/group) practised intravenous catheterization using simulators that differed in fidelity (i.e. students' perceived realism). Data were collected in 2008. Proficiency-based students advanced from low- to mid- to high-fidelity after achieving a proficiency criterion at each level. Progressive students self-guided their progression from low- to mid- to high-fidelity. Yoked control students followed an experimenter-defined progressive practice schedule. Open-ended students moved freely between the simulators. One week after practice, blinded experts evaluated students' skill transfer on a standardized patient simulation. Group differences were examined using analyses of variance. Proficiency-based students scored highest on the high-fidelity post-test (effect size = 1.22). An interaction effect showed that the Progressive and Open-ended groups maintained their performance from post-test to transfer test, whereas the Proficiency-based and Yoked control groups experienced a significant decrease (P < 0.05). Surprisingly, most Open-ended students (73%) chose the progressive practice schedule. Progressive training and proficiency-based training resulted in equivalent transfer test performance, suggesting that progressive students effectively self-guided when to transition between simulators. Students' preference for the progressive practice schedule indicates that educators should consider this sequence for simulation-based training.
Saaranen, Terhi; Vaajoki, Anne; Kellomäki, Marjaana; Hyvärinen, Marja-Leena
2015-02-01
This article describes the experiences of master students of nursing science in learning interpersonal communication competence through the simulation method. The exercises reflected challenging interactive situations in the field of health care. Few studies have been published on using the simulation method in the communication education of teachers, managers, and experts in this field. The aim of this study is to produce information which can be utilised in developing the simulation method to promote the interpersonal communication competence of master-level students of health sciences. This study used the qualitative, descriptive research method. At the Department of Nursing Science, the University of Eastern Finland, students major in nursing science specialise in nursing leadership and management, preventive nursing science, or nurse teacher education. Students from all three specialties taking the Challenging Situations in Speech Communication course participated (n=47). Essays on meaningful learning experiences collected using the critical incident technique, underwent content analysis. Planning of teaching, carrying out different stages of the simulation exercise, participant roles, and students' personal factors were central to learning interpersonal communication competence. Simulation is a valuable method in developing the interpersonal communication competence of students of health sciences at the masters' level. The methods used in the simulation teaching of emergency care are not necessarily applicable as such to communication education. The role of teacher is essential to supervising students' learning in simulation exercises. In the future, it is important to construct questions that help students to reflect specifically on communication. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lyons, Rebecca; Johnson, Teresa R.; Khalil, Mohammed K.
2014-01-01
Interactive virtual human (IVH) simulations offer a novel method for training skills involving person-to-person interactions. This article examines the effectiveness of an IVH simulation for teaching medical students to assess rare cranial nerve abnormalities in both individual and small-group learning contexts. Individual (n = 26) and small-group (n = 30) interaction with the IVH system was manipulated to examine the influence on learning, learner engagement, perceived cognitive demands of the learning task, and instructional efficiency. Results suggested the IVH activity was an equally effective and engaging instructional tool in both learning structures, despite learners in the group learning contexts having to share hands-on access to the simulation interface. Participants in both conditions demonstrated a significant increase in declarative knowledge post-training. Operation of the IVH simulation technology imposed moderate cognitive demand but did not exceed the demands of the task content or appear to impede learning. PMID:24883241
Interactive Virtual Suturing Simulations: Enhancement of Student Learning in Veterinary Medicine
ERIC Educational Resources Information Center
Staton, Amy J.; Boyd, Christine B.
2013-01-01
This capstone addresses an instructional gap in the Morehead State University Veterinary Technology Program and in other similar programs around the globe. Students do not retain the knowledge needed to proficiently complete suture patterns nor do students receive sufficient instructional time during the year to master each suture pattern that is…
KETCindy--Collaboration of Cinderella and KETpic Reports on CADGME 2014 Conference Working Group
ERIC Educational Resources Information Center
Kaneko, Masataka; Yamashita, Satoshi; Kitahara, Kiyoshi; Maeda, Yoshifumi; Nakamura, Yasuyuki; Kortenkamp, Ulrich; Takato, Setsuo
2015-01-01
Dynamic Geometry Software (DGS) is a powerful tool which enables students to move geometric objects interactively. Through experimental simulations with DGS, mathematical facts and background mechanisms are accessible to students. However, especially when those facts and mechanisms are complicated, it is not so easy for some students to record and…
ERIC Educational Resources Information Center
Fratamico, Lauren; Conati, Cristina; Kardan, Samad; Roll, Ido
2017-01-01
Interactive simulations can facilitate inquiry learning. However, similarly to other Exploratory Learning Environments, students may not always learn effectively in these unstructured environments. Thus, providing adaptive support has great potential to help improve student learning with these rich activities. Providing adaptive support requires a…
Simulation of Soil-Plant Nitrogen Interactions for Educational Purposes.
ERIC Educational Resources Information Center
Huck, M. G.; Hoeft, R. G.
1994-01-01
Describes a computer model characterizing the balance of soil-plant Nitrogen that allows students to see the likely consequences of different biological and weather-related parameters. Proposes three uses for the model: (1) orienting beginning students to understand the soil Nitrogen cycle; (2) providing information for advanced students; and (3)…
Miranda, Renata Pinto Ribeiro; de Cássia Lopes Chaves, Érika; Silva Lima, Rogério; Braga, Cristiane Giffoni; Simões, Ivandira Anselmo Ribeiro; Fava, Silvana Maria Coelho Leite; Iunes, Denise Hollanda
2017-10-01
Simulation allows students to develop several skills during a bed bath that are difficult to teach only in traditional classroom lectures, such as problem-solving, student interactions with the simulator (patient), reasoning in clinical evaluations, evaluation of responses to interventions, teamwork, communication, security and privacy. This study aimed to evaluate the effectiveness of a simulated bed bath scenario on improving cognitive knowledge, practical performance and satisfaction among nursing students. Randomized controlled clinical trial. Nursing students that were in the fifth period from two educational institutions in Brazil. Nursing students (n=58). The data were collected using the assessments of cognitive knowledge, practical performance and satisfaction were made through a written test about bed baths, an Objective Structured Clinical Examination (OSCE) and a satisfaction questionnaire. We identified that the acquisition and assimilation of cognitive knowledge was significantly higher in the simulation group (p=0.001). The performance was similar in both groups regardless of the teaching strategy (p=0.435). At follow-up, the simulation group had significantly more satisfaction with the teaching method than the control group (p=0.007). The teaching strategy based on a simulated scenario of a bed bath proved to be effective for the acquisition of cognitive knowledge regarding bed baths in clinical practice and improved student satisfaction with the teaching process. Copyright © 2017 Elsevier Ltd. All rights reserved.
The experiences of undergraduate nursing students with bots in Second LifeRTM
NASA Astrophysics Data System (ADS)
Rose, Lesele H.
As technology continues to transform education from the status quo of traditional lecture-style instruction to an interactive engaging learning experience, students' experiences within the learning environment continues to change as well. This dissertation addressed the need for continuing research in advancing implementation of technology in higher education. The purpose of this phenomenological study was to discover more about the experiences of undergraduate nursing students using standardized geriatric evaluation tools when interacting with scripted geriatric patient bots tools in a simulated instructional intake setting. Data was collected through a Demographics questionnaire, an Experiential questionnaire, and a Reflection questionnaire. Triangulation of data collection occurred through an automatically created log of the interactions with the two bots, and by an automatically recorded log of the participants' movements while in the simulated geriatric intake interview. The data analysis consisted of an iterative review of the questionnaires and the participants' logs in an effort to identify common themes, recurring comments, and issues which would benefit from further exploration. Findings revealed that the interactions with the bots were perceived as a valuable experience for the participants from the perspective of interacting with the Geriatric Evaluation Tools in the role of an intake nurse. Further research is indicated to explore instructional interactions with bots in effectively mastering the use of established Geriatric Evaluation Tools.
Brewer, Zachary E; Ogden, William David; Fann, James I; Burdon, Thomas A; Sheikh, Ahmad Y
Several modern learning frameworks (eg, cognitive apprenticeship, anchored instruction, and situated cognition) posit the utility of nontraditional methods for effective experiential learning. Thus, development of novel educational tools emphasizing the cognitive framework of operative sequences may be of benefit to surgical trainees. We propose the development and global deployment of an effective, mobile cognitive cardiac surgical simulator. In methods, 16 preclinical medical students were assessed. Overall, 4 separate surgical modules (sternotomy, cannulation, decannulation, and sternal closure) were created utilizing the Touch Surgery (London, UK) platform. Modules were made available to download free of charge for use on mobile devices. Usage data were collected over a 6-month period. Educational efficacy of the modules was evaluated by randomizing a cohort of medical students to either module usage or traditional, reading-based self-study, followed by a multiple-choice learning assessment tool. In results, downloads of the simulator achieved global penetrance, with highest usage in the USA, Brazil, Italy, UK, and India. Overall, 5368 unique users conducted a total of 1971 hours of simulation. Evaluation of the medical student cohort revealed significantly higher assessment scores in those randomized to module use versus traditional reading (75% ± 9% vs 61% ± 7%, respectively; P < 0.05). In conclusion, this study represents the first effort to create a mobile, interactive cognitive simulator for cardiac surgery. Simulators of this type may be effective for the training and assessment of surgical students. We investigated whether an interactive, mobile-computing-based cognitive task simulator for cardiac surgery could be developed, deployed, and validated. Our findings suggest that such simulators may be a useful learning tool. Copyright © 2016. Published by Elsevier Inc.
Clever, Sarah L; Dudas, Robert A; Solomon, Barry S; Yeh, Hsin Chieh; Levine, David; Bertram, Amanda; Goldstein, Mitchell; Shilkofski, Nicole; Cofrancesco, Joseph
2011-11-01
To determine whether medical students and faculty perceive differences in the effectiveness of interactions with real patients versus simulated patients (SPs) in communication skills training. In 2008, the authors recruited volunteer outpatients (VOs) from the Johns Hopkins University School of Medicine internal medicine practice to participate in communication skills training for all first-year medical students. VOs and SPs were assigned to clinic rooms in the simulation center. Each group of five students and its preceptor rotated through randomly assigned rooms on two of four session days; on both days, each student interviewed one patient for 15 minutes, focusing on past medical and family history or social history. Patients used their own histories, not scripts; students were not blinded to patient type. Students and faculty then rated aspects of the interview experience. Generalized linear latent and mixed-models analysis was used to compare ratings of communication skills training with VOs versus SPs. All 121 first-year students participated in 242 interviews, resulting in 237 usable questionnaires (98%). They rated their experiences with VOs significantly higher than those with SPs on comfort, friendliness, amount of learning, opportunity to build relationships, and overall meeting of communication skills training needs. The 24 faculty preceptors' ratings of the 242 interactions did not differ significantly between VOs and SPs. Use of VOs was well received by students and faculty for teaching communication skills. Expanding and further studying VOs' participation will allow greater understanding of their potential role in communication skills training of preclinical medical students.
AMI: Augmented Michelson Interferometer
NASA Astrophysics Data System (ADS)
Furió, David; Hachet, Martin; Guillet, Jean-Paul; Bousquet, Bruno; Fleck, Stéphanie; Reuter, Patrick; Canioni, Lionel
2015-10-01
Experiments in optics are essential for learning and understanding physical phenomena. The problem with these experiments is that they are generally time consuming for both their construction and their maintenance, potentially dangerous through the use of laser sources, and often expensive due to high technology optical components. We propose to simulate such experiments by way of hybrid systems that exploit both spatial augmented reality and tangible interaction. In particular, we focus on one of the most popular optical experiments: the Michelson interferometer. In our approach, we target a highly interactive system where students are able to interact in real time with the Augmented Michelson Interferometer (AMI) to observe, test hypotheses and then to enhance their comprehension. Compared to a fully digital simulation, we are investigating an approach that benefits from both physical and virtual elements, and where the students experiment by manipulating 3D-printed physical replicas of optical components (e.g. lenses and mirrors). Our objective is twofold. First, we want to ensure that the students will learn with our simulator the same concepts and skills that they learn with traditional methods. Second, we hypothesis that such a system opens new opportunities to teach optics in a way that was not possible before, by manipulating concepts beyond the limits of observable physical phenomena. To reach this goal, we have built a complementary team composed of experts in the field of optics, human-computer interaction, computer graphics, sensors and actuators, and education science.
NASA Astrophysics Data System (ADS)
Chien, Cheng-Chih
In the past thirty years, the effectiveness of computer assisted learning was found varied by individual studies. Today, with drastic technical improvement, computers have been widely spread in schools and used in a variety of ways. In this study, a design model involving educational technology, pedagogy, and content domain is proposed for effective use of computers in learning. Computer simulation, constructivist and Vygotskian perspectives, and circular motion are the three elements of the specific Chain Model for instructional design. The goal of the physics course is to help students remove the ideas which are not consistent with the physics community and rebuild new knowledge. To achieve the learning goal, the strategies of using conceptual conflicts and using language to internalize specific tasks into mental functions were included. Computer simulations and accompanying worksheets were used to help students explore their own ideas and to generate questions for discussions. Using animated images to describe the dynamic processes involved in the circular motion may reduce the complexity and possible miscommunications resulting from verbal explanations. The effectiveness of the instructional material on student learning is evaluated. The results of problem solving activities show that students using computer simulations had significantly higher scores than students not using computer simulations. For conceptual understanding, on the pretest students in the non-simulation group had significantly higher score than students in the simulation group. There was no significant difference observed between the two groups in the posttest. The relations of gender, prior physics experience, and frequency of computer uses outside the course to student achievement were also studied. There were fewer female students than male students and fewer students using computer simulations than students not using computer simulations. These characteristics affect the statistical power for detecting differences. For the future research, more intervention of simulations may be introduced to explore the potential of computer simulation in helping students learning. A test for conceptual understanding with more problems and appropriate difficulty level may be needed.
Effect of simulation on the ability of first year nursing students to learn vital signs.
Eyikara, Evrim; Baykara, Zehra Göçmen
2018-01-01
The acquisition of cognitive, affective and psychomotor knowledge and skills are required in nursing, made possible via an interactive teaching method, such as simulation. This study conducted to identify the impact of simulation on first-year nursing students' ability to learn vital signs. A convenience sample of 90 first-year nursing students enrolled at a University, Ankara, in 2014-2015. Ninety students enrolled for lessons on the "Fundamentals of Nursing" were identified using a simple random sampling method. The students were taught vital signs theory via traditional methods. They were grouped into experimental 1, experimental 2 and control group, of 30 students each. Students in the experimental 1 group attended sessions on simulation and those in the experimental 2 group sessions on laboratory work, followed by simulation. The control group were taught via traditional methods and only attended the laboratory work sessions. The students' cognitive knowledge acquisition was evaluated using a knowledge test before and after the lessons. The ability to measure vital signs in adults (healthy ones and patients) was evaluated using a skill control list. A statistically significant difference was not observed between the groups in terms of the average pre-test scores on knowledge (p>0.050). Groups exposed to simulation obtained statistically significantly higher scores than the control group in post-test knowledge (p<0.050). The ability of the groups exposed to simulation to measure vital signs in healthy adults and patients was more successful than that the control group (p<0.050). This was statistically significant. Simulation had a positive effect on the ability of nursing students to measure vital signs. Thus, simulation should be included in the mainstream curriculum in order to effectively impart nursing knowledge and skills. Copyright © 2017 Elsevier Ltd. All rights reserved.
Henneman, Elizabeth A; Roche, Joan P; Fisher, Donald L; Cunningham, Helene; Reilly, Cheryl A; Nathanson, Brian H; Henneman, Philip L
2010-02-01
This study examined types of errors that occurred or were recovered in a simulated environment by student nurses. Errors occurred in all four rule-based error categories, and all students committed at least one error. The most frequent errors occurred in the verification category. Another common error was related to physician interactions. The least common errors were related to coordinating information with the patient and family. Our finding that 100% of student subjects committed rule-based errors is cause for concern. To decrease errors and improve safe clinical practice, nurse educators must identify effective strategies that students can use to improve patient surveillance. Copyright 2010 Elsevier Inc. All rights reserved.
Teaching Harmonic Motion in Trigonometry: Inductive Inquiry Supported by Physics Simulations
ERIC Educational Resources Information Center
Sokolowski, Andrzej; Rackley, Robin
2011-01-01
In this article, the authors present a lesson whose goal is to utilise a scientific environment to immerse a trigonometry student in the process of mathematical modelling. The scientific environment utilised during this activity is a physics simulation called "Wave on a String" created by the PhET Interactive Simulations Project at…
ERIC Educational Resources Information Center
Johansson, Elin; Lindwall, Oskar; Rystedt, Hans
2017-01-01
Through close analyses of the interaction that takes place between students and facilitators, this study investigates the instructional use of video in post-simulation debriefings. The empirical material consists of recordings of 40 debriefings that took place after simulation-based training scenarios in health care education. During the…
ERIC Educational Resources Information Center
Kapralos, Bill; Hogan, Michelle; Pribetic, Antonin I.; Dubrowski, Adam
2011-01-01
Purpose: Gaming and interactive virtual simulation environments support a learner-centered educational model allowing learners to work through problems acquiring knowledge through an active, experiential learning approach. To develop effective virtual simulations and serious games, the views and perceptions of learners and educators must be…
Foster, Adriana; Chaudhary, Neelam; Kim, Thomas; Waller, Jennifer L; Wong, Joyce; Borish, Michael; Cordar, Andrew; Lok, Benjamin; Buckley, Peter F
2016-06-01
Physician empathy is a complex phenomenon known to improve illness outcomes; however, few tools are available for deliberate practice of empathy. We used a virtual patient (VP) to teach empathic communication to first-year medical students. We then evaluated students' verbal empathy in a standardized patient (SP) interaction. Seventy medical students, randomly assigned to 3 separate study groups, interacted with (1) a control VP portraying depression, (2) a VP with a backstory simulating patient shadowing, or (3) a VP able to give immediate feedback about empathic communication (empathy-feedback VP). Subsequently, the students interviewed an SP portraying a scenario that included opportunities to express empathy. All SP interviews were recorded and transcribed. The study outcomes were (1) the students' verbal response to the empathic opportunities presented by the SP, as coded by reliable assessors using the Empathic Communication Coding System, and (2) the students' responses as coded by the SPs, using a communication checklist. There were no significant differences in student demographics between groups. The students who interacted with the empathy-feedback VP showed higher empathy in the SP interview than did the students in the backstory VP and the control VP groups [mean (SD) empathy scores coded on a 0-6 scale were 2.91 (0.16) vs. 2.20 (0.22) and 2.27 (0.21), respectively). The difference in scores was significant only for the empathy-feedback VP versus the backstory VP group (P = 0.027). The SPs rated the empathy-feedback and the backstory VP groups significantly higher than the control VP group on offering empathic statements (P < 0.0001), appearing warm and caring (P = 0.015), and forming rapport (P = 0.004). Feedback on empathy in a VP interaction increased students' empathy in encounters with SPs, as rated by trained assessors, whereas a simulation of patient shadowing did not. Both VP interventions increased students' empathy as rated by SPs, compared with the control VP group.
A new approach in the design of an interactive environment for teaching Hamiltonian digraphs
NASA Astrophysics Data System (ADS)
Iordan, A. E.; Panoiu, M.
2014-03-01
In this article the authors present the necessary steps in object orientated design of an interactive environment that is dedicated to the process of acquaintances assimilation in Hamiltonian graphs theory domain, especially for the simulation of algorithms which determine the Hamiltonian trails and circuits. The modelling of the interactive environment is achieved through specific UML diagrams representing the steps of analysis, design and implementation. This interactive environment is very useful for both students and professors, because computer programming domain, especially digraphs theory domain is comprehended and assimilated with difficulty by students.
ISS Robotic Student Programming
NASA Technical Reports Server (NTRS)
Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.
2016-01-01
The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.
First experiences of high-fidelity simulation training in junior nursing students in Korea.
Lee, Suk Jeong; Kim, Sang Suk; Park, Young-Mi
2015-07-01
This study was conducted to explore first experiences of high-fidelity simulation training in Korean nursing students, in order to develop and establish more effective guidelines for future simulation training in Korea. Thirty-three junior nursing students participated in high-fidelity simulation training for the first time. Using both qualitative and quantitative methods, data were collected from reflective journals and questionnaires of simulation effectiveness after simulation training. Descriptive statistics were used to analyze simulation effectiveness and content analysis was performed with the reflective journal data. Five dimensions and 31 domains, both positive and negative experiences, emerged from qualitative analysis: (i) machine-human interaction in a safe environment; (ii) perceived learning capability; (iii) observational learning; (iv) reconciling practice with theory; and (v) follow-up debriefing effect. More than 70% of students scored high on increased ability to identify changes in the patient's condition, critical thinking, decision-making, effectiveness of peer observation, and debriefing in effectiveness of simulation. This study reported both positive and negative experiences of simulation. The results of this study could be used to set the level of task difficulty in simulation. Future simulation programs can be designed by reinforcing the positive experiences and modifying the negative results. © 2014 The Authors. Japan Journal of Nursing Science © 2014 Japan Academy of Nursing Science.
Menzel, Nancy; Willson, Laura Helen; Doolen, Jessica
2014-03-11
Social justice is a fundamental value of the nursing profession, challenging educators to instill this professional value when caring for the poor. This randomized controlled trial examined whether an interactive virtual poverty simulation created in Second Life® would improve nursing students' empathy with and attributions for people living in poverty, compared to a self-study module. We created a multi-user virtual environment populated with families and individual avatars that represented the demographics contributing to poverty and vulnerability. Participants (N = 51 baccalaureate nursing students) were randomly assigned to either Intervention or Control groups and completed the modified Attitudes toward Poverty Scale pre- and post-intervention. The 2.5-hour simulation was delivered three times over a 1-year period to students in successive community health nursing classes. The investigators conducted post-simulation debriefings following a script. While participants in the virtual poverty simulation developed significantly more favorable attitudes on five questions than the Control group, the total scores did not differ significantly. Whereas students readily learned how to navigate inside Second Life®, faculty facilitators required periodic coaching and guidance to be competent. While poverty simulations, whether virtual or face-to-face, have some ability to transform nursing student attitudes, faculty must incorporate social justice concepts throughout the curriculum to produce lasting change.
Alfred, Michael; Chung, Christopher A
2012-12-01
This paper describes a second generation Simulator for Engineering Ethics Education. Details describing the first generation activities of this overall effort are published in Chung and Alfred (Sci Eng Ethics 15:189-199, 2009). The second generation research effort represents a major development in the interactive simulator educational approach. As with the first generation effort, the simulator places students in first person perspective scenarios involving different types of ethical situations. Students must still gather data, assess the situation, and make decisions. The approach still requires students to develop their own ability to identify and respond to ethical engineering situations. However, were as, the generation one effort involved the use of a dogmatic model based on National Society of Professional Engineers' Code of Ethics, the new generation two model is based on a mathematical model of the actual experiences of engineers involved in ethical situations. This approach also allows the use of feedback in the form of decision effectiveness and professional career impact. Statistical comparisons indicate a 59 percent increase in overall knowledge and a 19 percent improvement in teaching effectiveness over an Internet Engineering Ethics resource based approach.
De Lazzari, Claudio; Genuini, Igino; Pisanelli, Domenico M; D'Ambrosi, Alessandra; Fedele, Francesco
2014-12-18
There is an established tradition of cardiovascular simulation tools, but the application of this kind of technology in the e-Learning arena is a novel approach. This paper presents an e-Learning environment aimed at teaching the interaction of cardiovascular and lung systems to health-care professionals. Heart-lung interaction must be analyzed while assisting patients with severe respiratory problems or with heart failure in intensive care unit. Such patients can be assisted by mechanical ventilatory assistance or by thoracic artificial lung."In silico" cardiovascular simulator was experimented during a training course given to graduate students of the School of Specialization in Cardiology at 'Sapienza' University in Rome.The training course employed CARDIOSIM©: a numerical simulator of the cardiovascular system. Such simulator is able to reproduce pathophysiological conditions of patients affected by cardiovascular and/or lung disease. In order to study the interactions among the cardiovascular system, the natural lung and the thoracic artificial lung (TAL), the numerical model of this device has been implemented. After having reproduced a patient's pathological condition, TAL model was applied in parallel and hybrid model during the training course.Results obtained during the training course show that TAL parallel assistance reduces right ventricular end systolic (diastolic) volume, but increases left ventricular end systolic (diastolic) volume. The percentage changes induced by hybrid TAL assistance on haemodynamic variables are lower than those produced by parallel assistance. Only in the case of the mean pulmonary arterial pressure, there is a percentage reduction which, in case of hybrid assistance, is greater (about 40%) than in case of parallel assistance (20-30%).At the end of the course, a short questionnaire was submitted to students in order to assess the quality of the course. The feedback obtained was positive, showing good results with respect to the degree of students' learning and the ease of use of the software simulator.
Using Prototyping and Simulation as Decision Tools in a Purchased-Software Implementation.
ERIC Educational Resources Information Center
Haugen, Elliott J.; Nedwek, Brian P.
1988-01-01
The use of prototyping and simulation at St. Louis University to evaluate the implementation decisions and design of a student information system are described with regard to their impact on, and interaction with, institutional policies and procedures. (Author/MLW)
Communicating Wave Energy: An Active Learning Experience for Students
ERIC Educational Resources Information Center
Huynh, Trongnghia; Hou, Gene; Wang, Jin
2016-01-01
We have conducted an education project to communicate the wave energy concept to high school students. A virtual reality system that combines both hardware and software is developed in this project to simulate the buoy-wave interaction. This first-of-its-kind wave energy unit is portable and physics-based, allowing students to conduct a number of…
ERIC Educational Resources Information Center
Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides
2011-01-01
Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample: Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and…
Community as client: environmental issues in the real world. A SimCity computer simulation.
Bareford, C G
2001-01-01
The ability to think critically has become a crucial part of professional practice and education. SimCity, a popular computer simulation game, provides an opportunity to practice community assessment and interventions using a systems approach. SimCity is an interactive computer simulation game in which the player takes an active part in community planning. SimCity is supported on either a Windows 95/98 or a Macintosh platform and is available on CD-ROM at retail stores or at www.simcity.com. Students complete a tutorial and then apply a selected scenario in SimCity. Scenarios consist of hypothetical communities that have varying types and degrees of environmental problems, e.g., traffic, crime, nuclear meltdown, flooding, fire, and earthquakes. In problem solving with the simulated scenarios, students (a) identify systems and subsystems within the community that are critical factors impacting the environmental health of the community, (b) create changes in the systems and subsystems in an effort to solve the environmental health problem, and (c) evaluate the effectiveness of interventions based on the game score, demographic and fiscal data, and amount of community support. Because the consequences of planned intervention are part of the simulation, nursing students are able to develop critical-thinking skills. The simulation provides essential content in community planning in an interesting and interactive format.
Economical graphics display system for flight simulation avionics
NASA Technical Reports Server (NTRS)
1990-01-01
During the past academic year the focal point of this project has been to enhance the economical flight simulator system by incorporating it into the aero engineering educational environment. To accomplish this goal it was necessary to develop appropriate software modules that provide a foundation for student interaction with the system. In addition experiments had to be developed and tested to determine if they were appropriate for incorporation into the beginning flight simulation course, AERO-41B. For the most part these goals were accomplished. Experiments were developed and evaluated by graduate students. More work needs to be done in this area. The complexity and length of the experiments must be refined to match the programming experience of the target students. It was determined that few undergraduate students are ready to absorb the full extent and complexity of a real-time flight simulation. For this reason the experiments developed are designed to introduce basic computer architectures suitable for simulation, the programming environment and languages, the concept of math modules, evaluation of acquired data, and an introduction to the meaning of real-time. An overview is included of the system environment as it pertains to the students, an example of a flight simulation experiment performed by the students, and a summary of the executive programming modules created by the students to achieve a user-friendly multi-processor system suitable to an aero engineering educational program.
Clinical simulation practise framework.
Khalili, Hossein
2015-02-01
Historically, simulation has mainly been used to teach students hands-on skills in a relatively safe environment. With changes in the patient population, professional regulations and clinical environments, clinical simulation practise (CSP) must assist students to integrate and apply their theoretical knowledge and skills with their critical thinking, clinical judgement, prioritisation, problem solving, decision making, and teamwork skills to provide holistic care and treatment to their patients. CSP holds great potential to derive a positive transformation in students' transition into the workplace, by associating and consolidating learning from classrooms to clinical settings, and creating bridges between theory and practice. For CSP to be successful in filling the gap, the design and management of the simulation is crucial. In this article a new framework called 'Clinical simulation practise framework: A knowledge to action strategy in health professional education' is being introduced that aims to assist educators and curriculum developers in designing and managing their simulations. This CSP framework theorises that simulation as an experiential educational tool could improve students' competence, confidence and collaboration in performing professional practice in real settings if the CSP provides the following three dimensions: (1) a safe, positive, reflective and fun simulated learning environment; (2) challenging, but realistic, and integrated simulated scenarios; and (3) interactive, inclusive, interprofessional patient-centred simulated practise. © 2015 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Spain, James D.; Soldan, Theodore
1983-01-01
Describes two computer simulations of the predator-prey interaction in which students explore theories and mathematical equations involved in this biological process. The programs (for Apple II), designed for college level ecology, may be used in lecture/demonstrations or as a basis for laboratory assignments. A list of student objectives is…
von Sass, Peter Freiherr; Scheckenbach, Kathrin; Wagenmann, Martin; Klenzner, Thomas; Schipper, Joerg; Chaker, Adam
2015-02-01
The increasing amount of medical knowledge and necessity for time-effective teaching and learning have given rise to emerging online, or e-learning, applications. The base of the skull is a challenging anatomic area in the otorhinolaryngology (ORL) department-for both students and lecturers. Technology-enhanced learning might be an expedient approach to benefit both learners and lecturers. To investigate and create for advanced medical students a self-assessed adaptive e-learning application for the skull base within our curriculum of otolaryngology at the University Medical Center of Heinrich Heine University, Düsseldorf, Germany. Pilot approach with prospective evaluation of a newly implemented web-based e-learning simulation. The e-learning application (Student's Interactive Skull-Base Trainer) was made accessible as an elective course to a total of 269 enrolled medical students during the first 2 semesters after web launch. Spatiotemporal independent e-learning application for the skull base. Self-assessed evaluation with focus on general acceptance and personal value as well as usage data analysis. The application was well accepted by the learners. More than 80% of the participating students found the application to be a beneficial tool for enhancing their analytical and clinical problem-solving skills. Although the general matter of the skull base seemed to be of lesser interest, the concept of anchored instructions with the use of high-end, interactive, multimedia-based content was considered to be particularly suitable for this challenging topic. Most of the students would have appreciated an extension of optional e-learning modules. With this pilot approach we were able to implement a useful and now well-accepted tool for blended learning. We showed that it is possible to raise interest even in this very specialized subspecialty of ORL with overall individual learning benefit for the students. There is a demand for more e-learning and web-based simulation to support the existing curricula in a hybrid, blended way.
Learning from avatars: Learning assistants practice physics pedagogy in a classroom simulator
NASA Astrophysics Data System (ADS)
Chini, Jacquelyn J.; Straub, Carrie L.; Thomas, Kevin H.
2016-06-01
[This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] Undergraduate students are increasingly being used to support course transformations that incorporate research-based instructional strategies. While such students are typically selected based on strong content knowledge and possible interest in teaching, they often do not have previous pedagogical training. The current training models make use of real students or classmates role playing as students as the test subjects. We present a new environment for facilitating the practice of physics pedagogy skills, a highly immersive mixed-reality classroom simulator, and assess its effectiveness for undergraduate physics learning assistants (LAs). LAs prepared, taught, and reflected on a lesson about motion graphs for five highly interactive computer generated student avatars in the mixed-reality classroom simulator. To assess the effectiveness of the simulator for this population, we analyzed the pedagogical skills LAs intended to practice and exhibited during their lessons and explored LAs' descriptions of their experiences with the simulator. Our results indicate that the classroom simulator created a safe, effective environment for LAs to practice a variety of skills, such as questioning styles and wait time. Additionally, our analysis revealed areas for improvement in our preparation of LAs and use of the simulator. We conclude with a summary of research questions this environment could facilitate.
2nd Annual Invited Experts Meeting on Simulation-Based Medical Training
2005-12-01
medicine, government, and regulatory officials with medical simulation and patient safety experts. In 2005, TATRC continued its support of this effort...standardized patients allow students to interact with “actors” specifically trained to present their medical histories, simulate physical symptoms, and...simulation-based medical training benefits all of us, as follows: • Patients benefit from improved health outcomes and reduced errors and deaths
NASA Astrophysics Data System (ADS)
Gama Goicochea, A.; Balderas Altamirano, M. A.; Lopez-Esparza, R.; Waldo-Mendoza, Miguel A.; Perez, E.
2015-09-01
The connection between fundamental interactions acting in molecules in a fluid and macroscopically measured properties, such as the viscosity between colloidal particles coated with polymers, is studied here. The role that hydrodynamic and Brownian forces play in colloidal dispersions is also discussed. It is argued that many-body systems in which all these interactions take place can be accurately solved using computational simulation tools. One of those modern tools is the technique known as dissipative particle dynamics, which incorporates Brownian and hydrodynamic forces, as well as basic conservative interactions. A case study is reported, as an example of the applications of this technique, which consists of the prediction of the viscosity and friction between two opposing parallel surfaces covered with polymer chains, under the influence of a steady flow. This work is intended to serve as an introduction to the subject of colloidal dispersions and computer simulations, for final-year undergraduate students and beginning graduate students who are interested in beginning research in soft matter systems. To that end, a computational code is included that students can use right away to study complex fluids in equilibrium.
The Technologies of EXPER SIM.
ERIC Educational Resources Information Center
Hedberg, John G.
EXPER SIM has been translated into two basic software systems: the Michigan Experimental Simulation Supervisor (MESS) and Louisville Experiment Simulation Supervisor (LESS). MESS and LESS have been programed to facilitate student interaction with the computer for research purposes. The programs contain models for several statistical analyses, and…
NASA Astrophysics Data System (ADS)
Demir, I.
2013-12-01
Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.
Kubota, Yoshie; Seki, Susumu; Takada, Kaori; Sakuma, Mio; Morimoto, Takeshi; Akaike, Akinori; Hiraide, Atsushi
2011-01-01
Objective To determine the value of using the Roter Interaction Analysis System during objective structured clinical examinations (OSCEs) to assess pharmacy students' communication competence. Methods As pharmacy students completed a clinical OSCE involving an interview with a simulated patient, 3 experts used a global rating scale to assess students' overall performance in the interview, and both the student's and patient's languages were coded using the Roter Interaction Analysis System (RIAS). The coders recorded the number of utterances (ie, units of spoken language) in each RIAS category. Correlations between the raters' scores and the number and types of utterances were examined. Results There was a significant correlation between students' global rating scores on the OSCE and the number of utterances in the RIAS socio-emotional category but not the RIAS business category. Conclusions The RIAS proved to be a useful tool for assessing the socio-emotional aspect of students' interview skills. PMID:21655397
NASA Astrophysics Data System (ADS)
Fetsco, Sara Elizabeth
There are several topics that introductory physics students typically have difficulty understanding. The purpose of this thesis is to investigate if multiple instructional techniques will help students to better understand and retain the material. The three units analyzed in this study are graphing motion, projectile motion, and conservation of momentum. For each unit students were taught using new or altered instructional methods including online laboratory simulations, inquiry labs, and interactive demonstrations. Additionally, traditional instructional methods such as lecture and problem sets were retained. Effectiveness was measured through pre- and post-tests and student opinion surveys. Results suggest that incorporating multiple instructional techniques into teaching will improve student understanding and retention. Students stated that they learned well from all of the instructional methods used except the online simulations.
Arif, Sally; Cryder, Brian; Mazan, Jennifer; Quiñones-Boex, Ana; Cyganska, Angelika
2017-04-01
Objective. To develop, implement, and assess whether simulated patient case videos improve students' understanding of and attitudes toward cross-cultural communication in health care. Design. Third-year pharmacy students (N=159) in a health care communications course participated in a one-hour lecture and two-hour workshop on the topic of cross-cultural communication. Three simulated pharmacist-patient case vignettes highlighting cross-cultural communication barriers, the role of active listening, appropriate use of medical interpreters, and useful models to overcome communication barriers were viewed and discussed in groups of 20 students during the workshop. Assessment. A pre-lecture and post-workshop assessed the effect on students' understanding of and attitudes toward cross-cultural communication. Understanding of cross-cultural communication concepts increased significantly, as did comfort level with providing cross-cultural care. Conclusion. Use of simulated patient case videos in conjunction with an interactive workshop improved pharmacy students' understanding of and comfort level with cross-cultural communication skills and can be useful tools for cultural competency training in the curriculum.
Interactive Methods Used in Graduate Programs
ERIC Educational Resources Information Center
Chichernea, Virgil
2007-01-01
Any professional act will lead to a significant change. How can one make students understand "managing change" as a consequence or as an intended objective? "DECISION IN CASCADE" -- is a Management Computational Game for the Education of University Master Students and Junior Executive -- simulates five economic functions: research and…
NASA Astrophysics Data System (ADS)
Wozniak, Peter; Vauderwange, Oliver; Mandal, Avikarsha; Javahiraly, Nicolas; Curticapean, Dan
2016-09-01
Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user's hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation's virtual elements by the user's very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios.
ERIC Educational Resources Information Center
Navarro, Aaron B.
1981-01-01
Presents a program in Level II BASIC for a TRS-80 computer that simulates a Turing machine and discusses the nature of the device. The program is run interactively and is designed to be used as an educational tool by computer science or mathematics students studying computational or automata theory. (MP)
ERIC Educational Resources Information Center
Mitchell, Eugene E., Ed.
A Microcomputer-Implemented Design Aid and Simulator (MIDAS) has been developed and used as an interactive learning system by electrical engineering students at the freshman and sophomore level. Evaluation of the system indicates that a great potential exists in the area of dedicated, inexpensive, interactive learning systems. User acceptance has…
Zimmerman, Christine; Kennedy, Christopher; Schremmer, Robert; Smith, Katharine V.
2010-01-01
Objective To design and implement a demonstration project to teach interprofessional teams how to recognize and engage in difficult conversations with patients. Design Interdisciplinary teams consisting of pharmacy students and residents, student nurses, and medical residents responded to preliminary questions regarding difficult conversations, listened to a brief discussion on difficult conversations; formed ad hoc teams and interacted with a standardized patient (mother) and a human simulator (child), discussing the infant's health issues, intimate partner violence, and suicidal thinking; and underwent debriefing. Assessment Participants evaluated the learning methods positively and a majority demonstrated knowledge gains. The project team also learned lessons that will help better design future programs, including an emphasis on simulations over lecture and the importance of debriefing on student learning. Drawbacks included the major time commitment for design and implementation, sustainability, and the lack of resources to replicate the program for all students. Conclusion Simulation is an effective technique to teach interprofessional teams how to engage in difficult conversations with patients. PMID:21088725
Interactive simulations as teaching tools for engineering mechanics courses
NASA Astrophysics Data System (ADS)
Carbonell, Victoria; Romero, Carlos; Martínez, Elvira; Flórez, Mercedes
2013-07-01
This study aimed to gauge the effect of interactive simulations in class as an active teaching strategy for a mechanics course. Engineering analysis and design often use the properties of planar sections in calculations. In the stress analysis of a beam under bending and torsional loads, cross-sectional properties are used to determine stress and displacement distributions in the beam cross section. The centroid, moments and products of inertia of an area made up of several common shapes (rectangles usually) may thus be obtained by adding the moments of inertia of the component areas (U-shape, L-shape, C-shape, etc). This procedure is used to calculate the second moments of structural shapes in engineering practice because the determination of their moments of inertia is necessary for the design of structural components. This paper presents examples of interactive simulations developed for teaching the ‘Mechanics and mechanisms’ course at the Universidad Politecnica de Madrid, Spain. The simulations focus on fundamental topics such as centroids, the properties of the moment of inertia, second moments of inertia with respect to two axes, principal moments of inertia and Mohr's Circle for plane stress, and were composed using Geogebra software. These learning tools feature animations, graphics and interactivity and were designed to encourage student participation and engagement in active learning activities, to effectively explain and illustrate course topics, and to build student problem-solving skills.
An interactive learning environment for health care professionals.
Cobbs, E.; Pincetl, P.; Silverman, B.; Liao, R. L.; Motta, C.
1994-01-01
This article summarizes experiences to date with building and deploying a clinical simulator that medical students use as part of a 3rd year primary care rotation. The simulated microworld helps students and health care professionals gain experience with and learn meta-cognitive skills for the care of complex patient populations that require treatment in the biopsychosocial-value dimensions. We explain lessons learned and next steps resulting from use of the program by over 300 users to date. PMID:7949975
Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics
ERIC Educational Resources Information Center
Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.
2016-01-01
A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment "StudentResearcher," which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum…
Sample Strategies Used To Serve Rural Students in the Least Restrictive Environment.
ERIC Educational Resources Information Center
Helge, Doris
This booklet provides sample strategies to ameliorate service delivery problems commonly encountered by rural special educators. Strategies to increase acceptance of disabled students by nondisabled peers include buddy systems and class activities that promote personal interaction, simulation activities, and social and personal skills development.…
Interactive Multimedia Module with Pedagogical Agents: Formative Evaluation
ERIC Educational Resources Information Center
Lee, Tien Tien; Osman, Kamisah
2012-01-01
Electrochemistry is found to be a difficult topic to learn due to its abstract concepts that involve three representation levels. Research showed that animation and simulation using Information and Communication Technology can help students to visualize and thus enhance students' understanding in learning abstract chemistry topics. As a result, an…
Students As Environmental Consultants Simulating Life Science Problems
ERIC Educational Resources Information Center
Roberts, Megan; Zydney, Janet Mannheimer
2004-01-01
This article describes a project in which eighth graders at East Side Middle School in New York City used an interactive multimedia program called "Pollution Solution" in a science unit on environmental pollution. Students assumed the role of environmental consultants working at fictional corporations which were being investigated for…
ERIC Educational Resources Information Center
Chandramouli, Magesh; Chittamuru, Siva-Teja
2016-01-01
This paper explains the design of a graphics-based virtual environment for instructing computer hardware concepts to students, especially those at the beginner level. Photorealistic visualizations and simulations are designed and programmed with interactive features allowing students to practice, explore, and test themselves on computer hardware…
ERIC Educational Resources Information Center
Basu, Satabdi; Sengupta, Pratim; Biswas, Gautam
2015-01-01
Students from middle school to college have difficulties in interpreting and understanding complex systems such as ecological phenomena. Researchers have suggested that students experience difficulties in reconciling the relationships between individuals, populations, and species, as well as the interactions between organisms and their environment…
Exploring Contemporary Issues in Genetics & Society: Karyotyping, Biological Sex, & Gender
ERIC Educational Resources Information Center
Brown, Julie C.
2013-01-01
In this two-part activity, high school biology students examine human karyotyping, sex-chromosome-linked disorders, and the relationship between biological sex and gender. Through interactive simulations and a structured discussion lab, students create a human karyotype and diagnose chromosomal disorders in hypothetical patients, as well as…
In-World Behaviors and Learning in a Virtual World
ERIC Educational Resources Information Center
Nadolny, Larysa; Childs, Mark
2014-01-01
Educational virtual worlds can give students opportunities that would not otherwise be possible in face-to-face settings. The SciEthics Interactive simulations allow learners to conduct scientific research and practice ethical decision-making within a virtual world. This study examined the in-world behaviors that identify students who perceive…
ERIC Educational Resources Information Center
Jones, Brett D.; Setareh, Mehdi; Polys, Nicholas F.; Bacim, Felipe
2014-01-01
Simulations can be powerful learning tools that allow students to explore and understand concepts in ways that are not possible in typical classroom settings. However, research is lacking as to how to use simulations most effectively in different types of learning environments. To address this need, we designed a study to examine the impact of…
ERIC Educational Resources Information Center
Frezzo, Dennis C.; Behrens, John T.; Mislevy, Robert J.
2010-01-01
Simulation environments make it possible for science and engineering students to learn to interact with complex systems. Putting these capabilities to effective use for learning, and assessing learning, requires more than a simulation environment alone. It requires a conceptual framework for the knowledge, skills, and ways of thinking that are…
Kron, Frederick W; Fetters, Michael D; Scerbo, Mark W; White, Casey B; Lypson, Monica L; Padilla, Miguel A; Gliva-McConvey, Gayle A; Belfore, Lee A; West, Temple; Wallace, Amelia M; Guetterman, Timothy C; Schleicher, Lauren S; Kennedy, Rebecca A; Mangrulkar, Rajesh S; Cleary, James F; Marsella, Stacy C; Becker, Daniel M
2017-04-01
To assess advanced communication skills among second-year medical students exposed either to a computer simulation (MPathic-VR) featuring virtual humans, or to a multimedia computer-based learning module, and to understand each group's experiences and learning preferences. A single-blinded, mixed methods, randomized, multisite trial compared MPathic-VR (N=210) to computer-based learning (N=211). Primary outcomes: communication scores during repeat interactions with MPathic-VR's intercultural and interprofessional communication scenarios and scores on a subsequent advanced communication skills objective structured clinical examination (OSCE). Multivariate analysis of variance was used to compare outcomes. student attitude surveys and qualitative assessments of their experiences with MPathic-VR or computer-based learning. MPathic-VR-trained students improved their intercultural and interprofessional communication performance between their first and second interactions with each scenario. They also achieved significantly higher composite scores on the OSCE than computer-based learning-trained students. Attitudes and experiences were more positive among students trained with MPathic-VR, who valued its providing immediate feedback, teaching nonverbal communication skills, and preparing them for emotion-charged patient encounters. MPathic-VR was effective in training advanced communication skills and in enabling knowledge transfer into a more realistic clinical situation. MPathic-VR's virtual human simulation offers an effective and engaging means of advanced communication training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kron, Frederick W.; Fetters, Michael D.; Scerbo, Mark W.; White, Casey B.; Lypson, Monica L.; Padilla, Miguel A.; Gliva-McConvey, Gayle A.; Belfore, Lee A.; West, Temple; Wallace, Amelia M.; Guetterman, Timothy C.; Schleicher, Lauren S.; Kennedy, Rebecca A.; Mangrulkar, Rajesh S.; Cleary, James F.; Marsella, Stacy C.; Becker, Daniel M.
2016-01-01
Objectives To assess advanced communication skills among second-year medical students exposed either to a computer simulation (MPathic-VR) featuring virtual humans, or to a multimedia computer-based learning module, and to understand each group’s experiences and learning preferences. Methods A single-blinded, mixed methods, randomized, multisite trial compared MPathic-VR (N=210) to computer-based learning (N=211). Primary outcomes: communication scores during repeat interactions with MPathic-VR’s intercultural and interprofessional communication scenarios and scores on a subsequent advanced communication skills objective structured clinical examination (OSCE). Multivariate analysis of variance was used to compare outcomes. Secondary outcomes: student attitude surveys and qualitative assessments of their experiences with MPathic-VR or computer-based learning. Results MPathic-VR-trained students improved their intercultural and interprofessional communication performance between their first and second interactions with each scenario. They also achieved significantly higher composite scores on the OSCE than computer-based learning-trained students. Attitudes and experiences were more positive among students trained with MPathic-VR, who valued its providing immediate feedback, teaching nonverbal communication skills, and preparing them for emotion-charged patient encounters. Conclusions MPathic-VR was effective in training advanced communication skills and in enabling knowledge transfer into a more realistic clinical situation. Practice Implications MPathic-VR’s virtual human simulation offers an effective and engaging means of advanced communication training. PMID:27939846
Bland, Andrew J; Tobbell, Jane
2016-09-01
Simulation has become an established feature of nurse education yet little is understood about the mechanisms that lead to learning. To explore the attributes of simulation-based education that enable student learning in undergraduate nurse education. Final year students drawn from one UK University (n=46) participated in a grounded theory study. First, nonparticipant observation and video recording of student activity was undertaken. Following initial analysis, recordings and observations were deconstructed during focus group interviews that enabled both the researcher and participants to unpack meaning. Lastly emergent findings were verified with final year students drawn from a second UK University (n=6). A staged approach to learning emerged from engagement in simulation. This began with initial hesitation as students moved through nonlinear stages to making connections and thinking like a nurse. Core findings suggest that simulation enables curiosity and intellect (main concern) through doing (core category) and interaction with others identified as social collaboration (category). This study offers a theoretical basis for understanding simulation-based education and integration of strategies that maximise the potential for learning. Additionally it offers direction for further research, particularly with regards to how the application of theory to practice is accelerated through learning by doing and working collaboratively. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Willden, Jeff
2001-01-01
"Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…
A Novel Use of Computer Simulation in an Applied Pharmacokinetics Course.
ERIC Educational Resources Information Center
Sullivan, Timothy J.
1982-01-01
The use of a package of interactive computer programs designed to simulate pharmacokinetic monitoring of drug therapy in a required undergraduate applied pharmacokinetics course is described. Students were assigned the problem of maintaining therapeutic drug concentrations in a computer generated "patient" as an adjunct to classroom instruction.…
Investigating the Impact of Using a CAD Simulation Tool on Students' Learning of Design Thinking
NASA Astrophysics Data System (ADS)
Taleyarkhan, Manaz; Dasgupta, Chandan; Garcia, John Mendoza; Magana, Alejandra J.
2018-02-01
Engineering design thinking is hard to teach and still harder to learn by novices primarily due to the undetermined nature of engineering problems that often results in multiple solutions. In this paper, we investigate the effect of teaching engineering design thinking to freshmen students by using a computer-aided Design (CAD) simulation software. We present a framework for characterizing different levels of engineering design thinking displayed by students who interacted with the CAD simulation software in the context of a collaborative assignment. This framework describes the presence of four levels of engineering design thinking—beginning designer, adept beginning designer, informed designer, adept informed designer. We present the characteristics associated with each of these four levels as they pertain to four engineering design strategies that students pursued in this study—understanding the design challenge, building knowledge, weighing options and making tradeoffs, and reflecting on the process. Students demonstrated significant improvements in two strategies—understanding the design challenge and building knowledge. We discuss the affordances of the CAD simulation tool along with the learning environment that potentially helped students move towards Adept informed designers while pursuing these design strategies.
Intravenous catheter training system: computer-based education versus traditional learning methods.
Engum, Scott A; Jeffries, Pamela; Fisher, Lisa
2003-07-01
Virtual reality simulators allow trainees to practice techniques without consequences, reduce potential risk associated with training, minimize animal use, and help to develop standards and optimize procedures. Current intravenous (IV) catheter placement training methods utilize plastic arms, however, the lack of variability can diminish the educational stimulus for the student. This study compares the effectiveness of an interactive, multimedia, virtual reality computer IV catheter simulator with a traditional laboratory experience of teaching IV venipuncture skills to both nursing and medical students. A randomized, pretest-posttest experimental design was employed. A total of 163 participants, 70 baccalaureate nursing students and 93 third-year medical students beginning their fundamental skills training were recruited. The students ranged in age from 20 to 55 years (mean 25). Fifty-eight percent were female and 68% percent perceived themselves as having average computer skills (25% declaring excellence). The methods of IV catheter education compared included a traditional method of instruction involving a scripted self-study module which involved a 10-minute videotape, instructor demonstration, and hands-on-experience using plastic mannequin arms. The second method involved an interactive multimedia, commercially made computer catheter simulator program utilizing virtual reality (CathSim). The pretest scores were similar between the computer and the traditional laboratory group. There was a significant improvement in cognitive gains, student satisfaction, and documentation of the procedure with the traditional laboratory group compared with the computer catheter simulator group. Both groups were similar in their ability to demonstrate the skill correctly. CONCLUSIONS; This evaluation and assessment was an initial effort to assess new teaching methodologies related to intravenous catheter placement and their effects on student learning outcomes and behaviors. Technology alone is not a solution for stand alone IV catheter placement education. A traditional learning method was preferred by students. The combination of these two methods of education may further enhance the trainee's satisfaction and skill acquisition level.
High fidelity simulation effectiveness in nursing students' transfer of learning.
Kirkman, Tera R
2013-07-13
Members of nursing faculty are utilizing interactive teaching tools to improve nursing student's clinical judgment; one method that has been found to be potentially effective is high fidelity simulation (HFS). The purpose of this time series design study was to determine whether undergraduate nursing students were able to transfer knowledge and skills learned from classroom lecture and a HFS clinical to the traditional clinical setting. Students (n=42) were observed and rated on their ability to perform a respiratory assessment. The observations and ratings took place at the bedside, prior to a respiratory lecture, following the respiratory lecture, and following simulation clinical. The findings indicated that there was a significant difference (p=0.000) in transfer of learning demonstrated over time. Transfer of learning was demonstrated and the use of HFS was found to be an effective learning and teaching method. Implications of results are discussed.
NASA Astrophysics Data System (ADS)
Dunleavy, Matt; Dede, Chris; Mitchell, Rebecca
2009-02-01
The purpose of this study was to document how teachers and students describe and comprehend the ways in which participating in an augmented reality (AR) simulation aids or hinders teaching and learning. Like the multi-user virtual environment (MUVE) interface that underlies Internet games, AR is a good medium for immersive collaborative simulation, but has different strengths and limitations than MUVEs. Within a design-based research project, the researchers conducted multiple qualitative case studies across two middle schools (6th and 7th grade) and one high school (10th grade) in the northeastern United States to document the affordances and limitations of AR simulations from the student and teacher perspective. The researchers collected data through formal and informal interviews, direct observations, web site posts, and site documents. Teachers and students reported that the technology-mediated narrative and the interactive, situated, collaborative problem solving affordances of the AR simulation were highly engaging, especially among students who had previously presented behavioral and academic challenges for the teachers. However, while the AR simulation provided potentially transformative added value, it simultaneously presented unique technological, managerial, and cognitive challenges to teaching and learning.
Simulations and Social Empathy: Domestic Violence Education in the New Millennium.
Adelman, Madelaine; Rosenberg, Karen E; Hobart, Margaret
2016-10-01
When teaching about domestic violence, we hope that our students will be moved to act and organize against it within a social justice framework. We argue that instructional simulations can be used to inspire students to do so. Instructional simulations and gaming tools have been part of higher education pedagogical tool kits since at least the 1960s. Yet it is only recently that a domestic violence resource exists that reflects the interdisciplinary, interactive, and empathy-building orientation of feminist pedagogy. Drawing on the concept of "social empathy," we analyze the potential of the instructional simulation "In Her Shoes," developed by the Washington State Coalition Against Domestic Violence, to help students gain knowledge of and empathy for the constrained choices facing battered women, understand the frequent disjuncture between leaving and safety, and close the gap between cultural perceptions and lived realities. © The Author(s) 2016.
Teaching Hyporheic and Groundwater Flow Concepts Using an Interactive Computer Simulation
NASA Astrophysics Data System (ADS)
Stonedahl, S. H.; Stonedahl, F.
2016-12-01
We built an educational flow simulator with an interactive web-based interface that allows students to investigate the effects of arbitrary head functions on water flowing through various configurations of permeable/impermeable sediments. The domain consists of a 24 by 48 rectangular grid of sediments with no-flow bottom and side boundaries and a constant head surface water-groundwater (SWGW) interface boundary. The SWGW interface head function can be drawn freehand with the mouse or specified to be a step function, a sine curve, or a zig-zag function, where the amplitude and wavenumber parameters of the head functions are chosen by the user. The subsurface domain may be modified by drawing no-flow (impermeable) barriers in the sediment, changing any number of the 1152 grid cells into no flow cells. The program iteratively solves the Laplace equation to calculate head values at each grid cell within the sediment. Users can then start water particles along the SWGW interface and track their paths through the system to visualize the head-induced flow. Sediment cells can be color coded by head values or water speed. Exploring these systems with the simulator allows users to improve their understanding of the relationship between head and velocity as well as how the position of no-flow barriers impacts water flow in saturated sediments. These learning objectives are amenable to our target audience of undergraduate students, but younger (middle/high school) students may also be able to absorb key concepts by playing with the simulation. The structure of the simulation itself highlights the broader idea of simulation of natural processes through the discretization of continuous environments. The simulation was developed using the NetLogo platform and runs embedded in a webpage: http://susa.stonedahl.com/swgwsimulator. The simulation source code is available and can readily be modified by other educators (or students) to create additional features and options.
Learning by Communicating in Natural Language with Conversational Agents
ERIC Educational Resources Information Center
Graesser, Arthur; Li, Haiying; Forsyth, Carol
2014-01-01
Learning is facilitated by conversational interactions both with human tutors and with computer agents that simulate human tutoring and ideal pedagogical strategies. In this article, we describe some intelligent tutoring systems (e.g., AutoTutor) in which agents interact with students in natural language while being sensitive to their cognitive…
GETIT--Geoscience Education through Interactive Technology[TM]. [CD-ROM].
ERIC Educational Resources Information Center
2000
This CD-ROM uses catastrophic events to teach the fundamentals of the earth's dynamism. Topics discussed include earthquakes, volcanoes, hurricanes, plate tectonics, and many subjects that have to do with energy transfer. It contains 63 interactive, inquiry-based activities that closely simulate real life scientific practice. Students work with…
3D liver volume reconstructed for palpation training.
Tibamoso, Gerardo; Perez-Gutierrez, Byron; Uribe-Quevedo, Alvaro
2013-01-01
Virtual Reality systems for medical procedures such as the palpation of different organs, requires fast, robust, accurate and reliable computational methods for providing realism during interaction with the 3D biological models. This paper presents the segmentation, reconstruction and palpation simulation of a healthy liver volume as a tool for training. The chosen method considers the mechanical characteristics and liver properties for correctly simulating palpation interactions, which results appropriate as a complementary tool for training medical students in familiarizing with the liver anatomy.
Probabilities and predictions: modeling the development of scientific problem-solving skills.
Stevens, Ron; Johnson, David F; Soller, Amy
2005-01-01
The IMMEX (Interactive Multi-Media Exercises) Web-based problem set platform enables the online delivery of complex, multimedia simulations, the rapid collection of student performance data, and has already been used in several genetic simulations. The next step is the use of these data to understand and improve student learning in a formative manner. This article describes the development of probabilistic models of undergraduate student problem solving in molecular genetics that detailed the spectrum of strategies students used when problem solving, and how the strategic approaches evolved with experience. The actions of 776 university sophomore biology majors from three molecular biology lecture courses were recorded and analyzed. Each of six simulations were first grouped by artificial neural network clustering to provide individual performance measures, and then sequences of these performances were probabilistically modeled by hidden Markov modeling to provide measures of progress. The models showed that students with different initial problem-solving abilities choose different strategies. Initial and final strategies varied across different sections of the same course and were not strongly correlated with other achievement measures. In contrast to previous studies, we observed no significant gender differences. We suggest that instructor interventions based on early student performances with these simulations may assist students to recognize effective and efficient problem-solving strategies and enhance learning.
Use of actors as standardized psychiatric patients.
Keltner, Norman L; Grant, Joan S; McLernon, Dennis
2011-05-01
Using actors in simulation provides opportunities for immersive, interactive, and reflective experiences to improve health care professionals' clinical expertise and practice. These experiences facilitate the development of enhanced critical thinking, problem-solving, and communication skills without risks to patients. This article discusses how to integrate actors and students into simulated experiences. Examples are provided using mental health simulations with actors as standardized psychiatric patients. Copyright 2011, SLACK Incorporated.
Sperling, Jeremy D.; Clark, Sunday; Kang, Yoon
2013-01-01
Introduction Simulation-based medical education (SBME) is increasingly being utilized for teaching clinical skills in undergraduate medical education. Studies have evaluated the impact of adding SBME to third- and fourth-year curriculum; however, very little research has assessed its efficacy for teaching clinical skills in pre-clerkship coursework. To measure the impact of a simulation exercise during a pre-clinical curriculum, a simulation session was added to a pre-clerkship course at our medical school where the clinical approach to altered mental status (AMS) is traditionally taught using a lecture and an interactive case-based session in a small group format. The objective was to measure simulation's impact on students’ knowledge acquisition, comfort, and perceived competence with regards to the AMS patient. Methods AMS simulation exercises were added to the lecture and small group case sessions in June 2010 and 2011. Simulation sessions consisted of two clinical cases using a high-fidelity full-body simulator followed by a faculty debriefing after each case. Student participation in a simulation session was voluntary. Students who did and did not participate in a simulation session completed a post-test to assess knowledge and a survey to understand comfort and perceived competence in their approach to AMS. Results A total of 154 students completed the post-test and survey and 65 (42%) attended a simulation session. Post-test scores were higher in students who attended a simulation session compared to those who did not (p<0.001). Students who participated in a simulation session were more comfortable in their overall approach to treating AMS patients (p=0.05). They were also more likely to state that they could articulate a differential diagnosis (p=0.03), know what initial diagnostic tests are needed (p=0.01), and understand what interventions are useful in the first few minutes (p=0.003). Students who participated in a simulation session were more likely to find the overall AMS curriculum useful (p<0.001). Conclusion Students who participated in a simulation exercise performed better on a knowledge-based test and reported increased comfort and perceived competence in their clinical approach to AMS. SBME shows significant promise for teaching clinical skills to medical students during pre-clinical curriculum. PMID:23561054
Jorm, Christine; Roberts, Chris; Lim, Renee; Roper, Josephine; Skinner, Clare; Robertson, Jeremy; Gentilcore, Stacey; Osomanski, Adam
2016-03-08
There is little research on large-scale complex health care simulations designed to facilitate student learning of non-technical skills in a team-working environment. We evaluated the acceptability and effectiveness of a novel natural disaster simulation that enabled medical students to demonstrate their achievement of the non-technical skills of collaboration, negotiation and communication. In a mixed methods approach, survey data were available from 117 students and a thematic analysis undertaken of both student qualitative comments and tutor observer participation data. Ninety three per cent of students found the activity engaging for their learning. Three themes emerged from the qualitative data: the impact of fidelity on student learning, reflexivity on the importance of non-technical skills in clinical care, and opportunities for collaborative teamwork. Physical fidelity was sufficient for good levels of student engagement, as was sociological fidelity. We demonstrated the effectiveness of the simulation in allowing students to reflect upon and evidence their acquisition of skills in collaboration, negotiation and communication, as well as situational awareness and attending to their emotions. Students readily identified emerging learning opportunities though critical reflection. The scenarios challenged students to work together collaboratively to solve clinical problems, using a range of resources including interacting with clinical experts. A large class teaching activity, framed as a simulation of a natural disaster is an acceptable and effective activity for medical students to develop the non-technical skills of collaboration, negotiation and communication, which are essential to team working. The design could be of value in medical schools in disaster prone areas, including within low resource countries, and as a feasible intervention for learning the non-technical skills that are needed for patient safety.
ERIC Educational Resources Information Center
Barry, Peter H.
1990-01-01
A graphic, interactive software program that is suitable for teaching students about the measurement and ion dependence of cell membrane potentials is described. The hardware requirements, the aim of the program, how to use the program, other related programs, and its advantages over traditional methods are included. (KR)
ERIC Educational Resources Information Center
Kiegaldie, Debra; White, Geoff
2006-01-01
The Virtual Patient, an interactive multimedia learning resource using a critical care clinical scenario for postgraduate nursing students, was developed to enhance flexible access to learning experiences and improve learning outcomes in the management of critically ill patients. Using real-time physiological animations, authentic content design…
A Plug and Play Pathway Approach for Operations Management Games Development
ERIC Educational Resources Information Center
Tan, Kim Hua; Tse, Ying Kei; Chung, Pui Ling
2010-01-01
Many researchers have advocated the use of games (and simulations) to enhance students' learning. Research has shown that in order to promote a deeper understanding of material, students ought to be engaged with what they are doing. However, there are limited interactive games for classroom teaching, especially within the operations management…
ERIC Educational Resources Information Center
Donnelly, Dermot; O'Reilly, John; McGarr, Oliver
2013-01-01
Practical work is often noted as a core reason many students take on science in secondary schools (high schools). However, there are inherent difficulties associated with classroom practical work that militate against scientific inquiry, an approach espoused by many science educators. The use of interactive simulations to facilitate student…
Health Information System Simulation. Curriculum Improvement Project. Region II.
ERIC Educational Resources Information Center
Anderson, Beth H.; Lacobie, Kevin
This volume is one of three in a self-paced computer literacy course that gives allied health students a firm base of knowledge concerning computer usage in the hospital environment. It also develops skill in several applications software packages. This volume contains five self-paced modules that allow students to interact with a health…
ERIC Educational Resources Information Center
Nichols, Kim; Hanan, Jim; Ranasinghe, Muditha
2013-01-01
This study used an interactive dynamic simulation of action potential to explore social practices of learning among first year undergraduate biology students. It aimed to create a learning environment that fosters knowledge building discourse through working with multiple concept-specific representations. Three hundred and eighty-nine students and…
Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play
ERIC Educational Resources Information Center
Barab, Sasha A.; Sadler, Troy D.; Heiselt, Conan; Hickey, Daniel; Zuiker, Steven
2007-01-01
In this paper we describe our research using a multi-user virtual environment, "Quest Atlantis," to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment…
Beyond Polls: Using Science and Student Data to Stimulate Learning
ERIC Educational Resources Information Center
Loepp, Eric D.
2018-01-01
In an effort to promote learning in classrooms, political science instructors are increasingly turning to interactive teaching strategies--experiments, simulations, etc.--that supplement traditional lecture formats. In this article, I advocate the use of student-generated data as a powerful teaching tool that can be used in a variety of ways to…
MO-E-18C-02: Hands-On Monte Carlo Project Assignment as a Method to Teach Radiation Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pater, P; Vallieres, M; Seuntjens, J
2014-06-15
Purpose: To present a hands-on project on Monte Carlo methods (MC) recently added to the curriculum and to discuss the students' appreciation. Methods: Since 2012, a 1.5 hour lecture dedicated to MC fundamentals follows the detailed presentation of photon and electron interactions. Students also program all sampling steps (interaction length and type, scattering angle, energy deposit) of a MC photon transport code. A handout structured in a step-by-step fashion guides student in conducting consistency checks. For extra points, students can code a fully working MC simulation, that simulates a dose distribution for 50 keV photons. A kerma approximation to dosemore » deposition is assumed. A survey was conducted to which 10 out of the 14 attending students responded. It compared MC knowledge prior to and after the project, questioned the usefulness of radiation physics teaching through MC and surveyed possible project improvements. Results: According to the survey, 76% of students had no or a basic knowledge of MC methods before the class and 65% estimate to have a good to very good understanding of MC methods after attending the class. 80% of students feel that the MC project helped them significantly to understand simulations of dose distributions. On average, students dedicated 12.5 hours to the project and appreciated the balance between hand-holding and questions/implications. Conclusion: A lecture on MC methods with a hands-on MC programming project requiring about 14 hours was added to the graduate study curriculum since 2012. MC methods produce “gold standard” dose distributions and slowly enter routine clinical work and a fundamental understanding of MC methods should be a requirement for future students. Overall, the lecture and project helped students relate crosssections to dose depositions and presented numerical sampling methods behind the simulation of these dose distributions. Research funding from governments of Canada and Quebec. PP acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)« less
ERIC Educational Resources Information Center
Mitchell, Claudia
2010-01-01
Competency standards require baccalaureate nursing graduates to demonstrate knowledge, understanding, and the ability to solve complex problems. In an effort to achieve these program outcomes, educators seek empirical evidence related to the learning process and the effect of innovative teaching strategies, such as simulation, on the learner.…
Interaction: A Role Playing Simulation Activity.
ERIC Educational Resources Information Center
Henderhan, Robert C.
As part of a program to prepare public librarians to serve the urban disadvantaged, the faculty at Wayne State University experimented with simulation as an instructional technique. They developed and tested a library game, LIB SIM, aimed at introducing students to the relationships between main library and various branches in a large urban public…
Exploring Focal and Aberration Properties of Electrostatic Lenses through Computer Simulation
ERIC Educational Resources Information Center
Sise, Omer; Manura, David J.; Dogan, Mevlut
2008-01-01
The interactive nature of computer simulation allows students to develop a deeper understanding of the laws of charged particle optics. Here, the use of commercially available optical design programs is described as a tool to aid in solving charged particle optics problems. We describe simple and practical demonstrations of basic electrostatic…
Get Real: Augmented Reality for the Classroom
ERIC Educational Resources Information Center
Mitchell, Rebecca; DeBay, Dennis
2012-01-01
Kids love augmented reality (AR) simulations because they are like real-life video games. AR simulations allow students to learn content while collaborating face to face and interacting with a multimedia-enhanced version of the world around them. Although the technology may seem advanced, AR software makes it easy to develop content-based…
Discussing Virtual Tools that Simulate Probabilities: What Are the Middle School Teachers' Concerns?
ERIC Educational Resources Information Center
Savard, Annie; Freiman, Viktor; Theis, Laurent; Larose, Fançois
2013-01-01
Mathematics teachers, researchers and specialists in educational technology from Quebec, Canada developed virtual tools that make interactive simulations of games of chance. These tools were presented to a group of teachers from New Brunswick through workshops and they then got to test and validate them with their students. Semi-structured…
NASA Astrophysics Data System (ADS)
Christofferson, R.; Wood, E. L.; Euler, G.
2012-12-01
"Project Spectra!" is a standards-based light science and engineering program on solar system exploration that includes both hands-on paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games where students experience and manipulate the information makes abstract concepts accessible. Visualizing lessons with multi-media tools solidifies understanding and retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As a part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new "Project Spectra!" interactives that go hand-in-hand with a paper and pencil activity. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature and how they contribute. Students are asked to create a scenario in which a planet they build and design is able to maintain liquid water on the surface. In the second interactive, students are asked to consider Mars and the conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives are currently being pilot tested at Arvada High School in Colorado.
NASA Astrophysics Data System (ADS)
Wood, E. L.
2013-12-01
'Project Spectra!' is a standards-based light science and engineering program on solar system exploration that includes both hands-on paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games where students experience and manipulate the information makes abstract concepts accessible. Visualizing lessons with multi-media tools solidifies understanding and retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As a part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new 'Project Spectra!' interactives that go hand-in-hand with a paper and pencil activity. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature and how they contribute. Students are asked to create a scenario in which a planet they build and design is able to maintain liquid water on the surface. In the second interactive, students are asked to consider Mars and the conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives were pilot tested at Arvada High School in Colorado.
A serious gaming/immersion environment to teach clinical cancer genetics.
Nosek, Thomas M; Cohen, Mark; Matthews, Anne; Papp, Klara; Wolf, Nancy; Wrenn, Gregg; Sher, Andrew; Coulter, Kenneth; Martin, Jessica; Wiesner, Georgia L
2007-01-01
We are creating an interactive, simulated "Cancer Genetics Tower" for the self-paced learning of Clinical Cancer Genetics by medical students (go to: http://casemed.case.edu/cancergenetics). The environment uses gaming theory to engage the students into achieving specific learning objectives. The first few levels contain virtual laboratories where students achieve the basic underpinnings of Cancer Genetics. The next levels apply these principles to clinical practice. A virtual attending physician and four virtual patients, available for questioning through virtual video conferencing, enrich each floor. The pinnacle clinical simulation challenges the learner to integrate all information and demonstrate mastery, thus "winning" the game. A pilot test of the program by 17 medical students yielded very favorable feedback; the students found the Tower a "great way to teach", it held their attention, and it made learning fun. A majority of the students preferred the Tower over other resources to learn Cancer Genetics.
NASA Astrophysics Data System (ADS)
da Silva, A. M. R.; de Macêdo, J. A.
2016-06-01
On the basis of the technological advancement in the middle and the difficulty of learning by the students in the discipline of physics, this article describes the process of elaboration and implementation of a hypermedia system for high school teachers involving computer simulations for teaching basic concepts of electromagnetism, using free tool. With the completion and publication of the project there will be a new possibility of interaction of students and teachers with the technology in the classroom and in labs.
A workstation based simulator for teaching compressible aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
A workstation-based interactive flow simulator has been developed to aid in the teaching of undergraduate compressible aerodynamics. By solving the equations found in NACA 1135, the simulator models three basic fluids problems encountered in supersonic flow: flow past a compression corner, flow past two wedges in series, and flow past two opposed wedges. The study can vary the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the results of the flow calculations to the student. The simulator includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use.
Motions of Celestial Bodies; Computer simulations
NASA Astrophysics Data System (ADS)
Butikov, Eugene
2014-10-01
This book is written for a wide range of graduate and undergraduate students studying various courses in physics and astronomy. It is accompanied by the award winning educational software package 'Planets and Satellites' developed by the author. This text, together with the interactive software, is intended to help students learn and understand the fundamental concepts and the laws of physics as they apply to the fascinating world of the motions of natural and artificial celestial bodies. The primary aim of the book is the understanding of the foundations of classical and modern physics, while their application to celestial mechanics is used to illustrate these concepts. The simulation programs create vivid and lasting impressions of the investigated phenomena, and provide students and their instructors with a powerful tool which enables them to explore basic concepts that are difficult to study and teach in an abstract conventional manner. Students can work with the text and software at a pace they can enjoy, varying parameters of the simulated systems. Each section of the textbook is supplied with questions, exercises, and problems. Using some of the suggested simulation programs, students have an opportunity to perform interesting mini-research projects in physics and astronomy.
ERIC Educational Resources Information Center
Nichols, Kim; Ranasinghe, Muditha; Hanan, Jim
2013-01-01
Interacting with and translating across multiple representations is an essential characteristic of expertise and representational fluency. In this study, we explored the effect of interacting with and translating between representations in a computer simulation or in a paper-based assignment on scientific accuracy of undergraduate science…
The Impact of Multimedia Effect on Science Learning: Evidence from Eye Movements
ERIC Educational Resources Information Center
She, Hsiao-Ching; Chen, Yi-Zen
2009-01-01
This study examined how middle school students constructed their understanding of the mitosis and meiosis processes at a molecular level through multimedia learning materials presented in different interaction and sensory modality modes. A two (interaction modes: animation/simulation) by two (sensory modality modes: narration/on-screen text)…
The usability of WeChat as a mobile and interactive medium in student-centered medical teaching.
Wang, Juan; Gao, Furong; Li, Jiao; Zhang, Jieping; Li, Siguang; Xu, Guo-Tong; Xu, Lei; Chen, Jianjun; Lu, Lixia
2017-09-01
Biochemistry and cellular biology courses for medical students at Tongji University include the assessment that provides students with feedback to enhance their learning, which is a type of formative assessment. However, frequent instant feedback and guidance for students is often absent or inconsistently included in the teaching process. WeChat, the most popular Chinese social media, was introduced in biochemistry and cellular biology course. A WeChat official account (OA) was set up as an instant interactive platform. Over a period of two semesters, OA sent 73 push notifications. The components included course notices, preclass thought questions, after-class study materials, answer questions and feedback, simulation exercises, teacher-student interaction, and research progress relevant to the course. WeChat OA served as an active-learning teaching tool, provided more frequent feedback and guidance to students, and facilitated better student-centered communication in the teaching process. Using the WeChat OA in medical teaching emphasized interactive, interoperable, effective, engaging, adaptable, and more participatory teaching styles. As a new platform, WeChat OA was free, Internet-reliant, and easily managed. Using this new medium as a communication tool accelerated further advancement of instant feedback and improvement in teaching activities. Notifications and interactive feedback via the mobile social medium WeChat OA anytime and anywhere facilitated a student-centered teaching mode. Use of WeChat OA significantly increased the proportion of students interactively participating and resulted in a high degree of student satisfaction. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):421-425, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Bland, Andrew J; Tobbell, Jane
2015-11-01
Simulation has become an established feature of undergraduate nurse education and as such requires extensive investigation. Research limited to pre-constructed categories imposed by some questionnaire and interview methods may only provide partial understanding. This is problematic in understanding the mechanisms of learning in simulation-based education as contemporary distributed theories of learning posit that learning can be understood as the interaction of individual identity with context. This paper details a method of data collection and analysis that captures interaction of individuals within the simulation experience which can be analysed through multiple lenses, including context and through the lens of both researcher and learner. The study utilised a grounded theory approach involving 31 under-graduate third year student nurses. Data was collected and analysed through non-participant observation, digital recordings of simulation activity and focus group deconstruction of their recorded simulation by the participants and researcher. Focus group interviews enabled further clarification. The method revealed multiple levels of dynamic data, concluding that in order to better understand how students learn in social and active learning strategies, dynamic data is required enabling researchers and participants to unpack what is happening as it unfolds in action. Copyright © 2015 Elsevier Ltd. All rights reserved.
Interpreting the NLN Jeffries Framework in the context of Nurse Educator preparation.
Young, Patricia K; Shellenbarger, Teresa
2012-08-01
The NLN Jeffries Framework describing simulation in nursing education has been used widely to guide construction of human patient simulation scenarios and serve as a theoretical framework for research on the use of simulation. This framework was developed with a focus on prelicensure nursing education. However, use of human patient simulation scenarios is also a way of providing practice experiences for graduate students learning the educator role. High-fidelity human patient simulation offers nurse educator faculty a unique opportunity to cultivate the practical knowledge of teaching in an interactive and dynamic environment. This article describes how the components of The NLN Jeffries Framework can help to guide simulation design for nurse educator preparation. Adapting the components of the framework-which include teacher, student, educational practices, design characteristics, and outcomes-helps to ensure that future faculty gain hands-on experience with nurse educator core competencies. Copyright 2012, SLACK Incorporated.
ERIC Educational Resources Information Center
Osman, Kamisah; Lee, Tien Tien
2014-01-01
The Electrochemistry topic is found to be difficult to learn due to its abstract concepts involving macroscopic, microscopic, and symbolic representation levels. Studies have shown that animation and simulation using information and communication technology (ICT) can help students to visualize and hence enhance their understanding in learning…
ERIC Educational Resources Information Center
Lee, Tien Tien; Osman, Kamisah
2011-01-01
Electrochemistry is found to be a difficult topic to learn due to its abstract concepts that involve the macroscopic, microscopic and symbolic representation levels. Research showed that animation and simulation using Information and Communication Technology (ICT) can help students to visualize and hence enhance students' understanding in learning…
ERIC Educational Resources Information Center
Dyrberg, Nadia Rahbek; Treusch, Alexander H.; Wiegand, Claudia
2017-01-01
Potential benefits of simulations and virtual laboratory exercises in natural sciences have been both theorised and studied recently. This study reports findings from a pilot study on student attitude, motivation and self-efficacy when using the virtual laboratory programme Labster. The programme allows interactive learning about the workflows and…
Corbitt-Hall, Darcy J; Gauthier, Jami M; Davis, Margaret T; Witte, Tracy K
2016-10-01
Although Facebook has a peer-initiated suicide prevention protocol, little is known about users' abilities to notice, recognize, and appropriately interpret suicidal content or about their willingness to intervene. In this study, 468 college students were randomly assigned to interact with a simulated Facebook newsfeed containing content reflecting various suicide risk levels. A larger proportion of those exposed to content reflecting moderate and severe suicide risk noticed, recognized, appropriately interpreted, and endorsed taking action to intervene, as compared to those exposed to content representing no or low risk. Overall, results indicate that college students are responsive to suicidal content on Facebook. © 2016 The American Association of Suicidology.
Cendan, Juan C; Johnson, Teresa R
2011-12-01
The Association of American Medical Colleges has encouraged educators to investigate proper linkage of simulation experiences with medical curricula. The authors aimed to determine if student knowledge and satisfaction differ between participation in web-based and manikin simulations for learning shock physiology and treatment and to determine if a specific training sequencing had a differential effect on learning. All 40 second-year medical students participated in a randomized, counterbalanced study with two interventions: group 1 (n = 20) participated in a web-based simulation followed by a manikin simulation and group 2 (n = 20) participated in reverse order. Knowledge and attitudes were documented. Mixed-model ANOVA indicated a significant main effect of time (F(1,38) = 18.6, P < 0.001, η(p)(2) = 0.33). Group 1 scored significantly higher on quiz 2 (81.5%) than on quiz 1 (74.3%, t(19) = 3.9, P = 0.001), for an observed difference of 7.2% (95% confidence interval: 3.3, 11.0). Mean quiz scores of group 2 did not differ significantly (quiz 1: 77.0% and quiz 2: 79.7%). There was no significant main effect of group or a group by time interaction effect. Students rated the simulations as equally effective in teaching shock physiology (P = 0.88); however, the manikin simulation was regarded as more effective in teaching shock treatment (P < 0.001). Most students (73.7%) preferred the manikin simulation. The two simulations may be of similar efficacy for educating students on the physiology of shock; however, the data suggest improved learning when web-based simulation precedes manikin use. This finding warrants further study.
Simulated learning environment experience in nursing students for paediatric practice.
Mendoza-Maldonado, Yessy; Barría-Pailaquilén, René Mauricio
The training of health professionals requires the acquisition of clinical skills in a safe and efficient manner, which is facilitated by a simulated learning environment (SLE). It is also an efficient alternative when there are limitations for clinical practice in certain areas. This paper shows the work undertaken in a Chilean university in implementing paediatric practice using SLE. Over eight days, the care experience of a hospitalized infant was studied applying the nursing process. The participation of a paediatrician, resident physician, nursing technician, and simulated user was included in addition to the use of a simulation mannequin and equipment. Simulation of care was integral and covered interaction with the child and family and was developed in groups of six students by a teacher. The different phases of the simulation methodology were developed from a pedagogical point of view. The possibility of implementing paediatric clinical practice in an efficient and safe way was confirmed. The experience in SLE was highly valued by the students, allowing them to develop different skills and abilities required for paediatric nursing through simulation. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.
Design Heuristics for Authentic Simulation-Based Learning Games
ERIC Educational Resources Information Center
Ney, Muriel; Gonçalves, Celso; Balacheff, Nicolas
2014-01-01
Simulation games are games for learning based on a reference in the real world. We propose a model for authenticity in this context as a result of a compromise among learning, playing and realism. In the health game used to apply this model, students interact with characters in the game through phone messages, mail messages, SMS and video.…
SHERLOCK: A Coached Practice Environment for an Electronics Troubleshooting Job
1988-03-01
context. At the most abstract level, it Is the cognitive version of earlier approaches to errorless learning (Terrace, 1964). With support from a...not yet learned and Is the basis for Interactions with the student . Sherlock does not use simulation techniques to model student pedormnce. Its...annotation of how well the student is expected to do at each point of the abstracted problem space. The object (microprogram) corresponding to each node
Integrating interactive computational modeling in biology curricula.
Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A
2015-03-01
While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.
NASA Astrophysics Data System (ADS)
Tomshaw, Stephen G.
Physics education research has shown that students bring alternate conceptions to the classroom which can be quite resistant to traditional instruction methods (Clement, 1982; Halloun & Hestenes, 1985; McDermott, 1991). Microcomputer-based laboratory (MBL) experiments that employ an active-engagement strategy have been shown to improve student conceptual understanding in high school and introductory university physics courses (Thornton & Sokoloff, 1998). These (MBL) experiments require a specialized computer interface, type-specific sensors (e.g. motion detectors, force probes, accelerometers), and specialized software in addition to the standard physics experimental apparatus. Tao and Gunstone (1997) have shown that computer simulations used in an active engagement environment can also lead to conceptual change. This study investigated 69 secondary physics students' use of computer simulations of MBL activities in place of the hands-on MBL laboratory activities. The average normalized gain
East, Leah; Hutchinson, Marie
2015-12-01
Simulation is frequently being used as a learning and teaching resource for both undergraduate and postgraduate students, however reporting of the effectiveness of simulation particularly within the pharmacology context is scant. The aim of this pilot study was to evaluate a filmed simulated pharmacological clinical scenario as a teaching resource in an undergraduate pharmacological unit. Pilot cross-sectional quantitative survey. An Australian university. 32 undergraduate students completing a healthcare degree including nursing, midwifery, clinical science, health science, naturopathy, and osteopathy. As a part of an undergraduate online pharmacology unit, students were required to watch a filmed simulated pharmacological clinical scenario. To evaluate student learning, a measurement instrument developed from Bloom's cognitive domains (knowledge, comprehension, application, analysis, synthesis and evaluation) was employed to assess pharmacological knowledge conceptualisation and knowledge application within the following fields: medication errors; medication adverse effects; medication interactions; and, general pharmacology. The majority of participants were enrolled in an undergraduate nursing or midwifery programme (72%). Results demonstrated that the majority of nursing and midwifery students (56.52%) found the teaching resource complementary or more useful compared to a lecture although less so compared to a tutorial. Students' self-assessment of learning according to Bloom's cognitive domains indicated that the filmed scenario was a valuable learning tool. Analysis of variance indicated that health science students reported higher levels of learning compared to midwifery and nursing. Students' self-report of the learning benefits of a filmed simulated clinical scenario as a teaching resource suggest enhanced critical thinking skills and knowledge conceptualisation regarding pharmacology, in addition to being useful and complementary to other teaching and learning methods. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Web simulation of medical image reconstruction and processing as an educational tool.
Papamichail, Dimitrios; Pantelis, Evaggelos; Papagiannis, Panagiotis; Karaiskos, Pantelis; Georgiou, Evangelos
2015-02-01
Web educational resources integrating interactive simulation tools provide students with an in-depth understanding of the medical imaging process. The aim of this work was the development of a purely Web-based, open access, interactive application, as an ancillary learning tool in graduate and postgraduate medical imaging education, including a systematic evaluation of learning effectiveness. The pedagogic content of the educational Web portal was designed to cover the basic concepts of medical imaging reconstruction and processing, through the use of active learning and motivation, including learning simulations that closely resemble actual tomographic imaging systems. The user can implement image reconstruction and processing algorithms under a single user interface and manipulate various factors to understand the impact on image appearance. A questionnaire for pre- and post-training self-assessment was developed and integrated in the online application. The developed Web-based educational application introduces the trainee in the basic concepts of imaging through textual and graphical information and proceeds with a learning-by-doing approach. Trainees are encouraged to participate in a pre- and post-training questionnaire to assess their knowledge gain. An initial feedback from a group of graduate medical students showed that the developed course was considered as effective and well structured. An e-learning application on medical imaging integrating interactive simulation tools was developed and assessed in our institution.
Using Technology to Teach Content in a Student Teaching Experience (and as a First Year Teacher)
ERIC Educational Resources Information Center
Lemon, Cheryl
2005-01-01
This article describes how Cheryl Lemon, a biology teacher at Gateway Regional High School, integrated technology into appropriate curricular contexts during her field experiences as a preservice teacher. She used Web-based simulations, a projection screen, an interactive white board, and Flash-based interactivity in conjunction with direct…
Use of Simulated Psychosocial Role-Playing to Enhance Nursing Students' Development of Soft Skills.
Liebrecht, Christina; Montenery, Susan
2016-08-01
Effective communication and interaction enable nurses to develop caring, empathetic, and respectful relationships with patients and families. However, most nurses feel a lack of preparation in the "soft" skills of communication, professionalism, and leadership. Nurse managers are seeking graduates with strong emotional quotient characteristics such as self-awareness, motivation, self-regulation, empathy, and social skills. Assisting nursing students to develop these intangible, high-level skills presents an ongoing challenge to nurse educators. This creative teaching learning strategy examines the use of psychosocial role-playing skits to enhance nursing student development of the soft skills of nursing. In this strategy, senior level nursing students work in small groups to develop and present realistic 3- to 5-minute skits based on common nurse-patient, nurse-family, or nurse-health care team interactions that incorporate the concepts of therapeutic communication, interpersonal interaction, empathy, active listening, teamwork, delegation, and/or professionalism, followed by a debriefing session. Student feedback suggests that confidence and competence related to the skills of therapeutic communication, interpersonal interaction, empathy, active listening, teamwork, delegation, and professionalism may improve by incorporating soft skill psychosocial role-playing into a nursing education course of study.
Scientific Assistant Virtual Laboratory (SAVL)
NASA Astrophysics Data System (ADS)
Alaghband, Gita; Fardi, Hamid; Gnabasik, David
2007-03-01
The Scientific Assistant Virtual Laboratory (SAVL) is a scientific discovery environment, an interactive simulated virtual laboratory, for learning physics and mathematics. The purpose of this computer-assisted intervention is to improve middle and high school student interest, insight and scores in physics and mathematics. SAVL develops scientific and mathematical imagination in a visual, symbolic, and experimental simulation environment. It directly addresses the issues of scientific and technological competency by providing critical thinking training through integrated modules. This on-going research provides a virtual laboratory environment in which the student directs the building of the experiment rather than observing a packaged simulation. SAVL: * Engages the persistent interest of young minds in physics and math by visually linking simulation objects and events with mathematical relations. * Teaches integrated concepts by the hands-on exploration and focused visualization of classic physics experiments within software. * Systematically and uniformly assesses and scores students by their ability to answer their own questions within the context of a Master Question Network. We will demonstrate how the Master Question Network uses polymorphic interfaces and C# lambda expressions to manage simulation objects.
NASA Astrophysics Data System (ADS)
De Ambrosis, Anna; Malgieri, Massimiliano; Mascheretti, Paolo; Onorato, Pasquale
2015-05-01
We designed a teaching-learning sequence on rolling motion, rooted in previous research about student conceptions, and proposing an educational reconstruction strongly centred on the role of friction in different cases of rolling. A series of experiments based on video analysis is used to highlight selected key concepts and to motivate students in their exploration of the topic; and interactive simulations, which can be modified on the fly by students to model different physical situations, are used to stimulate autonomous investigation in enquiry activities. The activity sequence was designed for students on introductory physics courses and was tested with a group of student teachers. Comparisons between pre- and post-tests, and between our results and those reported in the literature, indicate that students’ understanding of rolling motion improved markedly and some typical difficulties were overcome.
Rossler, Kelly L; Kimble, Laura P
2016-01-01
Didactic lecture does not lend itself to teaching interprofessional collaboration. High-fidelity human patient simulation with a focus on clinical situations/scenarios is highly conducive to interprofessional education. Consequently, a need for research supporting the incorporation of interprofessional education with high-fidelity patient simulation based technology exists. The purpose of this study was to explore readiness for interprofessional learning and collaboration among pre-licensure health professions students participating in an interprofessional education human patient simulation experience. Using a mixed methods convergent parallel design, a sample of 53 pre-licensure health professions students enrolled in nursing, respiratory therapy, health administration, and physical therapy programs within a college of health professions participated in high-fidelity human patient simulation experiences. Perceptions of interprofessional learning and collaboration were measured with the revised Readiness for Interprofessional Learning Scale (RIPLS) and the Health Professional Collaboration Scale (HPCS). Focus groups were conducted during the simulation post-briefing to obtain qualitative data. Statistical analysis included non-parametric, inferential statistics. Qualitative data were analyzed using a phenomenological approach. Pre- and post-RIPLS demonstrated pre-licensure health professions students reported significantly more positive attitudes about readiness for interprofessional learning post-simulation in the areas of team work and collaboration, negative professional identity, and positive professional identity. Post-simulation HPCS revealed pre-licensure nursing and health administration groups reported greater health collaboration during simulation than physical therapy students. Qualitative analysis yielded three themes: "exposure to experiential learning," "acquisition of interactional relationships," and "presence of chronology in role preparation." Quantitative and qualitative data converged around the finding that physical therapy students had less positive perceptions of the experience because they viewed physical therapy practice as occurring one-on-one rather than in groups. Findings support that pre-licensure students are ready to engage in interprofessional education through exposure to an experiential format such as high-fidelity human patient simulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
The use of computer simulations in whole-class versus small-group settings
NASA Astrophysics Data System (ADS)
Smetana, Lara Kathleen
This study explored the use of computer simulations in a whole-class as compared to small-group setting. Specific consideration was given to the nature and impact of classroom conversations and interactions when computer simulations were incorporated into a high school chemistry course. This investigation fills a need for qualitative research that focuses on the social dimensions of actual classrooms. Participants included a novice chemistry teacher experienced in the use of educational technologies and two honors chemistry classes. The study was conducted in a rural school in the south-Atlantic United States at the end of the fall 2007 semester. The study took place during one instructional unit on atomic structure. Data collection allowed for triangulation of evidence from a variety of sources approximately 24 hours of video- and audio-taped classroom observations, supplemented with the researcher's field notes and analytic journal; miscellaneous classroom artifacts such as class notes, worksheets, and assignments; open-ended pre- and post-assessments; student exit interviews; teacher entrance, exit and informal interviews. Four web-based simulations were used, three of which were from the ExploreLearning collection. Assessments were analyzed using descriptive statistics and classroom observations, artifacts and interviews were analyzed using Erickson's (1986) guidelines for analytic induction. Conversational analysis was guided by methods outlined by Erickson (1982). Findings indicated (a) the teacher effectively incorporated simulations in both settings (b) students in both groups significantly improved their understanding of the chemistry concepts (c) there was no statistically significant difference between groups' achievement (d) there was more frequent exploratory talk in the whole-class group (e) there were more frequent and meaningful teacher-student interactions in the whole-class group (f) additional learning experiences not measured on the assessment resulted from conversations and interactions in the whole-class setting (g) the potential benefits of exploratory talk in the whole-class setting were not fully realized. These findings suggest that both whole-class and small-group settings are appropriate for using computer simulations in science. The effective incorporation of simulations into whole-class instruction may provide a solution to the dilemma of technology penetration versus integration in today's classrooms.
Utah Virtual Lab: JAVA interactivity for teaching science and statistics on line.
Malloy, T E; Jensen, G C
2001-05-01
The Utah on-line Virtual Lab is a JAVA program run dynamically off a database. It is embedded in StatCenter (www.psych.utah.edu/learn/statsampler.html), an on-line collection of tools and text for teaching and learning statistics. Instructors author a statistical virtual reality that simulates theories and data in a specific research focus area by defining independent, predictor, and dependent variables and the relations among them. Students work in an on-line virtual environment to discover the principles of this simulated reality: They go to a library, read theoretical overviews and scientific puzzles, and then go to a lab, design a study, collect and analyze data, and write a report. Each student's design and data analysis decisions are computer-graded and recorded in a database; the written research report can be read by the instructor or by other students in peer groups simulating scientific conventions.
ERIC Educational Resources Information Center
Hitchcock, A. Allen
The problem that this practicum attempted to solve was that students in a vocational-technical college tended to underachieve in courses that were mainly cognitive in nature, as evidenced by low overall grade-point course averages and other measures. The researcher designed computer-based simulation/gaming instruction that aimed to increase…
Defense Acquisition Review Journal. Volume 16, Number 3, Issue 52
2009-10-01
This is also theorized to lead to increased ability for a student to transfer that learning experience into their everyday workplace experiences. In...hands-on, apprenticeship -type learning environment, increased motivation, and increased relevance for students through interactivity and...vation to learn and increasing perceived relevance of the instruction . This article covers the use of games and simulations in three different
Interactive Computation for Undergraduates: The Next Generation
NASA Astrophysics Data System (ADS)
Kolan, Amy J.
2017-05-01
A generation ago (29 years ago), Leo Kadanoff and Michael Vinson created the Computers, Chaos, and Physics course. A major pedagogical thrust of this course was to help students form and test hypotheses via computer simulation of small problems in physics. Recently, this aspect of the 1987 course has been revived for use with first year physics undergraduate students at St. Olaf College.
Sink or Swim: Learning by Doing in a Supply Chain Integration Activity*
ERIC Educational Resources Information Center
Harnowo, Akhadian S.; Calhoun, Mikelle A.; Monteiro, Heather
2016-01-01
Studies show that supply chain integration (SCI) is important to organizations. This article describes an activity that places students in the middle of an SCI scenario. The highly interactive hands-on simulation requires only 50 to 60 minutes of classroom time, may be used with 18 to about 36 students, and involves minimal instructor preparation.…
NASA Technical Reports Server (NTRS)
Choquet, Claude
2011-01-01
123 Certification Inc., a Montreal based company, has developed an innovative hands-on welding simulator solution to help build the welding workforce in the most simple way. The solution lies in virtual reality technology, which has been fully tested since the early 90's. President and founder of 123 Certification Inc., Mr. Claude Choquet Ing. Msc. IWE. acts as a bridge between the welding and the programming world. Working in these fields for more than 20 years. he has filed 12 patents world-wide for a gesture control platform with leading edge hardware related to simulation. In the summer of 2006. Mr Choquet was proud to be invited to the annual IIW International Weld ing Congress in Quebec City to launch the ARC+ welding simulator. A 100% virtual reality system and web based training center was developed to simulate multi process. multi-materiaL multi-position and multi pass welding. The simulator is intended to train welding students and apprentices in schools or industries. The welding simulator is composed of a real welding e[eetrode holder (SMAW-GTAW) and gun (GMAW-FCAW). a head mounted display (HMD), a 6 degrees of freedom tracking system for interaction between the user's hands and head. as well as external audio speakers. Both guns and HMD are interacting online and simultaneously. The welding simulation is based on the law of physics and empirical results from detailed analysis of a series of welding tests based on industrial applications tested over the last 20 years. The simulation runs in real-time, using a local logic network to determine the quality and shape of the created weld. These results are based on the orientation distance. and speed of the welding torch and depth of penetration. The welding process and resulting weld bc.1d are displayed in a virtual environment with screenplay interactive training modules. For review. weld quality and recorded process values can be displayed and diagnosed after welding. To help in the le.tming process, a learning curve for each student and each Virtual Welding Class'" can be plotted, for an instructor's review or a required third party evaluation.
Real simulation tools in introductory courses: packaging and repurposing our research code.
NASA Astrophysics Data System (ADS)
Heagy, L. J.; Cockett, R.; Kang, S.; Oldenburg, D.
2015-12-01
Numerical simulations are an important tool for scientific research and applications in industry. They provide a means to experiment with physics in a tangible, visual way, often providing insights into the problem. Over the last two years, we have been developing course and laboratory materials for an undergraduate geophysics course primarily taken by non-geophysics majors, including engineers and geologists. Our aim is to provide the students with resources to build intuition about geophysical techniques, promote curiosity driven exploration, and help them develop the skills necessary to communicate across disciplines. Using open-source resources and our existing research code, we have built modules around simulations, with supporting content to give student interactive tools for exploration into the impacts of input parameters and visualization of the resulting fields, fluxes and data for a variety of problems in applied geophysics, including magnetics, seismic, electromagnetics, and direct current resistivity. The content provides context for the problems, along with exercises that are aimed at getting students to experiment and ask 'what if...?' questions. In this presentation, we will discuss our approach for designing the structure of the simulation-based modules, the resources we have used, challenges we have encountered, general feedback from students and instructors, as well as our goals and roadmap for future improvement. We hope that our experiences and approach will be beneficial to other instructors who aim to put simulation tools in the hands of students.
Smackdown: Adventures in Simulation Standards and Interoperability
NASA Technical Reports Server (NTRS)
Elfrey, Priscilla R.; Zacharewicz, Gregory; Ni, marcus
2011-01-01
The paucity of existing employer-driven simulation education and the need for workers broadly trained in Modeling & Simulation (M&S) poses a critical need that the simulation community as a whole must address. This paper will describe how this need became an impetus for a new inter-university activity that allows students to learn about simulation by doing it. The event, called Smackdown, was demonstrated for the first time in April at the Spring Simulation Multi-conference. Smackdown is an adventure in international cooperation. Students and faculty took part from the US and Europe supported by IEEE/SISO standards, industry software and National Aeronautics and Space Administration (NASA) content of are supply mission to the Moon. The developers see Smackdown providing all participants with a memorable, interactive, problem-solving experience, which can contribute, importantly to the workforce of the future. This is part of the larger need to increase undergraduate education in simulation and could be a prime candidate for senior design projects.
Developing, deploying and reflecting on a web-based geologic simulation tool
NASA Astrophysics Data System (ADS)
Cockett, R.
2015-12-01
Geoscience is visual. It requires geoscientists to think and communicate about processes and events in three spatial dimensions and variations through time. This is hard(!), and students often have difficulty when learning and visualizing the three dimensional and temporal concepts. Visible Geology is an online geologic block modelling tool that is targeted at students in introductory and structural geology. With Visible Geology, students are able to combine geologic events in any order to create their own geologic models and ask 'what-if' questions, as well as interrogate their models using cross sections, boreholes and depth slices. Instructors use it as a simulation and communication tool in demonstrations, and students use it to explore concepts of relative geologic time, structural relationships, as well as visualize abstract geologic representations such as stereonets. The level of interactivity and creativity inherent in Visible Geology often results in a sense of ownership and encourages engagement, leading learners to practice visualization and interpretation skills and discover geologic relationships. Through its development over the last five years, Visible Geology has been used by over 300K students worldwide as well as in multiple targeted studies at the University of Calgary and at the University of British Columbia. The ease of use of the software has made this tool practical for deployment in classrooms of any size as well as for individual use. In this presentation, I will discuss the thoughts behind the implementation and layout of the tool, including a framework used for the development and design of new educational simulations. I will also share some of the surprising and unexpected observations on student interaction with the 3D visualizations, and other insights that are enabled by web-based development and deployment.
Enhancing Tele-robotics with Immersive Virtual Reality
2017-11-03
graduate and undergraduate students within the Digital Gaming and Simulation, Computer Science, and psychology programs have actively collaborated...investigates the use of artificial intelligence and visual computing. Numerous fields across the human-computer interaction and gaming research areas...invested in digital gaming and simulation to cognitively stimulate humans by computers, forming a $10.5B industry [1]. On the other hand, cognitive
ERIC Educational Resources Information Center
Neumann, David L.; Neumann, Michelle M.; Hood, Michelle
2011-01-01
The discipline of statistics seems well suited to the integration of technology in a lecture as a means to enhance student learning and engagement. Technology can be used to simulate statistical concepts, create interactive learning exercises, and illustrate real world applications of statistics. The present study aimed to better understand the…
Roberts, Fiona E; Goodhand, Kate
2018-03-01
The most memorable learning occurs during placement. Simulated interprofessional learning is a logical learning opportunity to help healthcare professionals work beyond their professional silos. In this qualitative study, we investigated the perceived learning of students from six health professions (adult nursing, diagnostic radiography, occupational therapy, physiotherapy, dietetics, and pharmacy) from their participation in a 45 min interprofessional ward simulation. Semistructured focus groups were undertaken, and data were analyzed using framework analysis. Two overarching themes were evident, each of which had subthemes: (i) the ward simulation as an interprofessional education opportunity (subthemes: reality of situations and interactions); and (ii) the perceived learning achieved (subthemes: professional roles, priorities, respect, communication, teamwork, and quality of care). The results indicated that a short interprofessional ward simulation, unsupported by additional learning opportunities or directed study, is a useful and engaging interprofessional learning opportunity. Students appear to have learnt important key messages central to the interprofessional education curricula to help develop practitioners who can effectively work together as an interprofessional team, and that this learning is partly due to simulation allowing things to go wrong. © 2017 John Wiley & Sons Australia, Ltd.
NASA Astrophysics Data System (ADS)
Frezzo, Dennis C.; Behrens, John T.; Mislevy, Robert J.
2010-04-01
Simulation environments make it possible for science and engineering students to learn to interact with complex systems. Putting these capabilities to effective use for learning, and assessing learning, requires more than a simulation environment alone. It requires a conceptual framework for the knowledge, skills, and ways of thinking that are meant to be developed, in order to design activities that target these capabilities. The challenges of using simulation environments effectively are especially daunting in dispersed social systems. This article describes how these challenges were addressed in the context of the Cisco Networking Academies with a simulation tool for computer networks called Packet Tracer. The focus is on a conceptual support framework for instructors in over 9,000 institutions around the world for using Packet Tracer in instruction and assessment, by learning to create problem-solving scenarios that are at once tuned to the local needs of their students and consistent with the epistemic frame of "thinking like a network engineer." We describe a layered framework of tools and interfaces above the network simulator that supports the use of Packet Tracer in the distributed community of instructors and students.
An interactive drilling simulator for teaching and research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, G.A.; Cooper, A.G.; Bihn, G.
1995-12-31
An interactive program has been constructed that allows a student or engineer to simulate the drilling of an oil well, and to optimize the drilling process by comparing different drilling plans. The program operates in a very user-friendly way, with emphasis on menu and button-driven commands. The simulator may be run either as a training program, with exercises that illustrate various features of the drilling process, as a game, in which a student is set a challenge to drill a well with minimum cost or time under constraints set by an instructor, or as a simulator of a real situationmore » to investigate the merit of different drilling strategies. It has three main parts, a Lithology Editor, a Settings Editor and the simulation program itself. The Lithology Editor allows the student, instructor or engineer to build a real or imaginary sequence of rock layers, each characterized by its mineralogy, drilling and log responses. The Settings Editor allows the definition of all the operational parameters, ranging from the drilling and wear rates of particular bits in specified rocks to the costs of different procedures. The simulator itself contains an algorithm that determines rate of penetration and rate of wear of the bit as drilling continues. It also determines whether the well kicks or fractures, and assigns various other {open_quotes}accident{close_quotes} conditions. During operation, a depth vs. time curve is displayed, together with a {open_quotes}mud log{close_quotes} showing the rock layers penetrated. If desired, the well may be {open_quotes}logged{close_quotes} casings may be set and pore and fracture pressure gradients may be displayed. During drilling, the total time and cost are shown, together with cost per foot in total and for the current bit run.« less
Sampsel, Debi; Vermeersch, Patricia; Doarn, Charles R
2014-11-01
There is a growing shortage of nursing graduates and faculty to prepare students for careers in nursing. One way to ameliorate this paradigm is to integrate technology such as a remote presence robot (RPR) in both clinical and educational settings. The InTouch Health (Santa Barbara, CA) RP-7, an RPR, was deployed in a simulated, multigenerational home where nursing students and faculty interact in a variety of activities. Seventy students and five faculty members were instructed by a remotely located instructor who controlled the RP-7 from a distant site. Students and faculty, using questionnaires, provided feedback on the didactic interaction. Of the 70 student participants, 56 (80%) responded, and faculty and clinical staff were 100% compliant, resulting in 69 total respondents. Using Krippendorf's themes of (1) usefulness, (2) acceptability, and (3) impact, the data indicated the following. The majority of the students (89%) had no previous experience with the RPR, but the majority (75%) felt that the RPR was a good faculty extender. The students were initially evenly split on first exposure in (a) a positive experience, (b) a negative experience, or (c) a mixed experience. Although there were some technical challenges in operations, these were not deemed significant; nevertheless, they must be addressed. The results of this study support the use of RPRs as faculty extenders to facilitate course quality assurance when the lead faculty is not on site. Both faculty and students perceive this type of technology as a potential faculty extender, but both faculty and students need preparation for the experience.
Suksudaj, N; Lekkas, D; Kaidonis, J; Townsend, G C; Winning, T A
2015-02-01
Students' perceptions of their learning environment influence the quality of outcomes they achieve. Learning dental operative techniques in a simulated clinic environment is characterised by reciprocal interactions between skills training, staff- and student-related factors. However, few studies have examined how students perceive their operative learning environments and whether there is a relationship between their perceptions and subsequent performance. Therefore, this study aimed to clarify which learning activities and interactions students perceived as supporting their operative skills learning and to examine relationships with their outcomes. Longitudinal data about examples of operative laboratory sessions that were perceived as effective or ineffective for learning were collected twice a semester, using written critical incidents and interviews. Emergent themes from these data were identified using thematic analysis. Associations between perceptions of learning effectiveness and performance were analysed using chi-square tests. Students indicated that an effective learning environment involved interactions with tutors and peers. This included tutors arranging group discussions to clarify processes and outcomes, providing demonstrations and constructive feedback. Feedback focused on mistakes, and not improvement, was reported as being ineffective for learning. However, there was no significant association between students' perceptions of the effectiveness of their learning experiences and subsequent performance. It was clear that learning in an operative technique setting involved various factors related not only to social interactions and observational aspects of learning but also to cognitive, motivational and affective processes. Consistent with studies that have demonstrated complex interactions between students, their learning environment and outcomes, other factors need investigation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
How do clinical clerkship students experience simulator-based teaching? A qualitative analysis.
Takayesu, James K; Farrell, Susan E; Evans, Adelaide J; Sullivan, John E; Pawlowski, John B; Gordon, James A
2006-01-01
To critically analyze the experience of clinical clerkship students exposed to simulator-based teaching, in order to better understand student perspectives on its utility. A convenience sample of clinical students (n = 95) rotating through an emergency medicine, surgery, or longitudinal patient-doctor clerkship voluntarily participated in a 2-hour simulator-based teaching session. Groups of 3-5 students managed acute scenarios including respiratory failure, myocardial infarction, or multisystem trauma. After the session, students completed a brief written evaluation asking for free text commentary on the strengths and weaknesses of the experience; they also provided simple satisfaction ratings. Using a qualitative research approach, the textual commentary was transcribed and parsed into fragments, coded for emergent themes, and tested for inter-rater agreement. Six major thematic categories emerged from the qualitative analysis: The "Knowledge & Curriculum" domain was described by 35% of respondents, who commented on the opportunity for self-assessment, recall and memory, basic and clinical science learning, and motivation. "Applied Cognition and Critical Thought" was highlighted by 53% of respondents, who commented on the value of decision-making, active thought, clinical integration, and the uniqueness of learning-by-doing. "Teamwork and Communication" and "Procedural/Hands-On Skills" were each mentioned by 12% of subjects. Observations on the "Teaching/Learning Environment" were offered by 80% of students, who commented on the realism, interactivity, safety, and emotionality of the experience; here they also offered feedback on format, logistics, and instructors. Finally, "Suggestions for Use/Place in Undergraduate Medical Education" were provided by 22% of subjects, who primarily recommended more exposure. On a simple rating scale, 94% of students rated the quality of the simulator session as "excellent," whereas 91% felt the exercises should be "mandatory." Full-body simulation promises to address a wide range of pedagogical objectives using a unified educational platform. Students value experiential "practice without risk" and want more exposure to simulation. In this study, students thought that that an integrated simulation exercise could help solidify knowledge across domains, foster critical thought and action, enhance technical-procedural skills, and promote effective teamwork and communication.
Interactive simulations for quantum key distribution
NASA Astrophysics Data System (ADS)
Kohnle, Antje; Rizzoli, Aluna
2017-05-01
Secure communication protocols are becoming increasingly important, e.g. for internet-based communication. Quantum key distribution (QKD) allows two parties, commonly called Alice and Bob, to generate a secret sequence of 0s and 1s called a key that is only known to themselves. Classically, Alice and Bob could never be certain that their communication was not compromised by a malicious eavesdropper. Quantum mechanics however makes secure communication possible. The fundamental principle of quantum mechanics that taking a measurement perturbs the system (unless the measurement is compatible with the quantum state) also applies to an eavesdropper. Using appropriate protocols to create the key, Alice and Bob can detect the presence of an eavesdropper by errors in their measurements. As part of the QuVis Quantum Mechanics Visualisation Project, we have developed a suite of four interactive simulations that demonstrate the basic principles of three different QKD protocols. The simulations use either polarised photons or spin 1/2 particles as physical realisations. The simulations and accompanying activities are freely available for use online or download, and run on a wide range of devices including tablets and PCs. Evaluation with students over three years was used to refine the simulations and activities. Preliminary studies show that the refined simulations and activities help students learn the basic principles of QKD at both the introductory and advanced undergraduate levels.
The use of a virtual patient case in an OSCE-based exam--a pilot study.
Courteille, O; Bergin, R; Stockeld, D; Ponzer, S; Fors, U
2008-01-01
This study focuses on a skills test based clinical assessment where 118 fourth-year medical students at the four teaching hospitals of Karolinska Institutet participated in the same 12-module OSCE. The goal of one of the twelve examination modules was to assess the students' skills and ability to solve a virtual patient (VP) case (the ISP system), which included medical history taking, lab tests, physical examinations and suggestion of a preliminary diagnosis. The primary aim of this study was to evaluate the potential of a VP as a possible tool for assessment of clinical reasoning and problem solving ability among medical students. The feeling of realism of the VP and its possible affective impact on the student's confidence were also investigated. We observed and analysed students' reactions, engagement and performance (activity log files) during their interactive sessions with the simulation. An individual human assistant was provided along with the computer simulation and the videotaped interaction student/assistant was then analysed in detail and related to the students' outcomes. The results indicate possible advantages of using ISP-like systems for assessment. The VP was for instance able to reliably differentiate between students' performances but some weaknesses were also identified, like a confounding influence on students' outcomes by the assistants used. Significant differences, affecting the results, were found between the students in their degree of affective response towards the system as well as the perceived usefulness of assistance. Students need to be trained beforehand in mastering the assessment tool. Rating compliance needs to be targeted before VP-based systems like ISP can be used in exams and if such systems would be used in high-stake exams, the use of human assistants should be limited and scoring rubrics validated (and preferably automated).
Harding, S R; D'Eon, M F
2001-01-01
Teaching patient-centered interviewing skills to medical students can be challenging. We have observed that 1st-year medical students, in particular, do not feel free to concentrate on the interviewing skills because they are preoccupied with complicated technical medical knowledge. The Lego simulation we use with our 1st-year students as part of a professional-skills course overcomes that difficulty. The Lego activity is a role play analogous to a doctor-patient interview that uses identical sets of Legos for the "doctor" and for the "patients" and a small construction that represents a patient history. With a simple questionnaire, data were collected from students at different points during instruction. Results indicate that the Lego activity was very effective in helping students learn the importance of open-ended questioning. It also was rated as highly as the very dynamic interactive part of the instructional session. The effectiveness of the Lego activity may be due to the properties of analogies.
Students' Development of Representational Competence Through the Sense of Touch
NASA Astrophysics Data System (ADS)
Magana, Alejandra J.; Balachandran, Sadhana
2017-06-01
Electromagnetism is an umbrella encapsulating several different concepts like electric current, electric fields and forces, and magnetic fields and forces, among other topics. However, a number of studies in the past have highlighted the poor conceptual understanding of electromagnetism concepts by students even after instruction. This study aims to identify novel forms of "hands-on" instruction that can result in representational competence and conceptual gain. Specifically, this study aimed to identify if the use of visuohaptic simulations can have an effect on student representations of electromagnetic-related concepts. The guiding questions is How do visuohaptic simulations influence undergraduate students' representations of electric forces? Participants included nine undergraduate students from science, technology, or engineering backgrounds who participated in a think-aloud procedure while interacting with a visuohaptic simulation. The think-aloud procedure was divided in three stages, a prediction stage, a minimally visual haptic stage, and a visually enhanced haptic stage. The results of this study suggest that students' accurately characterized and represented the forces felt around a particle, line, and ring charges either in the prediction stage, a minimally visual haptic stage or the visually enhanced haptic stage. Also, some students accurately depicted the three-dimensional nature of the field for each configuration in the two stages that included a tactile mode, where the point charge was the most challenging one.
iCBLS: An interactive case-based learning system for medical education.
Ali, Maqbool; Han, Soyeon Caren; Bilal, Hafiz Syed Muhammad; Lee, Sungyoung; Kang, Matthew Jee Yun; Kang, Byeong Ho; Razzaq, Muhammad Asif; Amin, Muhammad Bilal
2018-01-01
Medical students should be able to actively apply clinical reasoning skills to further their interpretative, diagnostic, and treatment skills in a non-obtrusive and scalable way. Case-Based Learning (CBL) approach has been receiving attention in medical education as it is a student-centered teaching methodology that exposes students to real-world scenarios that need to be solved using their reasoning skills and existing theoretical knowledge. In this paper, we propose an interactive CBL System, called iCBLS, which supports the development of collaborative clinical reasoning skills for medical students in an online environment. The iCBLS consists of three modules: (i) system administration (SA), (ii) clinical case creation (CCC) with an innovative semi-automatic approach, and (iii) case formulation (CF) through intervention of medical students' and teachers' knowledge. Two evaluations under the umbrella of the context/input/process/product (CIPP) model have been performed with a Glycemia study. The first focused on the system satisfaction, evaluated by 54 students. The latter aimed to evaluate the system effectiveness, simulated by 155 students. The results show a high success rate of 70% for students' interaction, 76.4% for group learning, 72.8% for solo learning, and 74.6% for improved clinical skills. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Matott, L. S.; Hymiak, B.; Reslink, C. F.; Baxter, C.; Aziz, S.
2012-12-01
As part of the NSF-sponsored 'URGE (Undergraduate Research Group Experiences) to Compute' program, Dr. Matott has been collaborating with talented Math majors to explore the design of cost-effective systems to safeguard groundwater supplies from contaminated sites. Such activity is aided by a combination of groundwater modeling, simulation-based optimization, and high-performance computing - disciplines largely unfamiliar to the students at the outset of the program. To help train and engage the students, a number of interactive and graphical software packages were utilized. Examples include: (1) a tutorial for exploring the behavior of evolutionary algorithms and other heuristic optimizers commonly used in simulation-based optimization; (2) an interactive groundwater modeling package for exploring alternative pump-and-treat containment scenarios at a contaminated site in Billings, Montana; (3) the R software package for visualizing various concepts related to subsurface hydrology; and (4) a job visualization tool for exploring the behavior of numerical experiments run on a large distributed computing cluster. Further engagement and excitement in the program was fostered by entering (and winning) a computer art competition run by the Coalition for Academic Scientific Computation (CASC). The winning submission visualizes an exhaustively mapped optimization cost surface and dramatically illustrates the phenomena of artificial minima - valley locations that correspond to designs whose costs are only partially optimal.
An Interactive Educational Tool for Compressible Aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
A workstation-based interactive educational tool was developed to aid in the teaching of undergraduate compressible aerodynamics. The tool solves for the supersonic flow past a wedge using the equations found in NACA 1135. The student varies the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the variation of flow results to the student. One such format leads the student to the generation of some of the graphs found in NACA-1135. The tool includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use. This paper will detail the numerical methods used in the tool and describe how it can be used and modified.
NASA Astrophysics Data System (ADS)
Price, Norman T.
The availability and sophistication of visual display images, such as simulations, for use in science classrooms has increased exponentially however, it can be difficult for teachers to use these images to encourage and engage active student thinking. There is a need to describe flexible discussion strategies that use visual media to engage active thinking. This mixed methods study analyzes teacher behavior in lessons using visual media about the particulate model of matter that were taught by three experienced middle school teachers. Each teacher taught one half of their students with lessons using static overheads and taught the other half with lessons using a projected dynamic simulation. The quantitative analysis of pre-post data found significant gain differences between the two image mode conditions, suggesting that the students who were assigned to the simulation condition learned more than students who were assigned to the overhead condition. Open coding was used to identify a set of eight image-based teaching strategies that teachers were using with visual displays. Fixed codes for this set of image-based discussion strategies were then developed and used to analyze video and transcripts of whole class discussions from 12 lessons. The image-based discussion strategies were refined over time in a set of three in-depth 2x2 comparative case studies of two teachers teaching one lesson topic with two image display modes. The comparative case study data suggest that the simulation mode may have offered greater affordances than the overhead mode for planning and enacting discussions. The 12 discussions were also coded for overall teacher student interaction patterns, such as presentation, IRE, and IRF. When teachers moved during a lesson from using no image to using either image mode, some teachers were observed asking more questions when the image was displayed while others asked many fewer questions. The changes in teacher student interaction patterns suggest that teachers vary on whether they consider the displayed image as a "tool-for-telling" and a "tool-for-asking." The study attempts to provide new descriptions of strategies teachers use to orchestrate image-based discussions designed to promote student engagement and reasoning in lessons with conceptual goals.
Empathic Communication in Virtual Education for Nursing Students: I'm Sorry to Hear That.
Strekalova, Yulia A; Krieger, Janice L; Kleinheksel, A J; Kotranza, Aaron
The current study examined the communication strategies used by undergraduate nursing students (N = 343) to express empathy during simulated health history interviews. Interacting with a virtual patient, students encountered up to 9 information disclosures that warranted the expression of empathy but recognized few (33.54%). Sophistication of language to express empathy varied depending on the disclosure topic. These findings suggest that empathy as a learned skill can be incorporated into a variety of nursing contexts.
Development of Educational Materials to Enhance Students‧ Motivation using the ODE Physics Engine
NASA Astrophysics Data System (ADS)
Demura, Kosei
This paper presents educational materials, a simulator and a textbook, using the Open Dynamics Engine (ODE) . ODE is an open source, fast, robust and industrial quality library for a real-time and interactive simulation of rigid body dynamics. ODE is suitable for developing educational materials. However, there had been no book which introduced how to use ODE to make simulators written in Japanese. Thus I wrote a textbook which gave basic robotics and how to make simulators based on ODE. Students are able to tackle the subject with interest using the textbook and the simulators.
Web-based multimedia courseware for emergency cardiac patient management simulations.
Ambrosiadou, V; Compton, T; Panchal, T; Polovina, S
2000-01-01
This is a multidisciplinary inter-departmental/faculty project between the departments of computer science, electronic, communications and electrical engineering and nursing and paramedic sciences. The objective is to develop a web based multimedia front end to existing simulations of cardiac emergency scenaria. It will be used firstly in the teaching of nurses. The University of Hertfordshire is the only University in Britain using simulations of cardiac emergency scenaria for nurse and paramedic science education and therefore this project will add the multimedia dimension in distributed courses over the web and will assess the improvement in the educational process. The use of network and multimedia technologies, provide interactive learning, immediate feedback to students' responses, individually tailored instructions, objective testing and entertaining delivery. The end product of this project will serve as interactive material to enhance experiential learning for nursing students using the simulations of cardiac emergency scenaria. The emergency treatment simulations have been developed using VisSim and may be compiled as C code. The objective of the project is to provide a web based user friendly multimedia interface in order to demonstrate the way in which patients may be managed in critical situations by applying advanced technological equipment and drug administration. Then the user will be able to better appreciate the concepts involved by running the VisSim simulations. The evaluation group for the proposed software will be the Department of Nursing and Paramedic Sciences About 200 nurses use simulations every year for training purposes as part of their course requirements.
Web-based Interactive Landform Simulation Model - Grand Canyon
NASA Astrophysics Data System (ADS)
Luo, W.; Pelletier, J. D.; Duffin, K.; Ormand, C. J.; Hung, W.; Iverson, E. A.; Shernoff, D.; Zhai, X.; Chowdary, A.
2013-12-01
Earth science educators need interactive tools to engage and enable students to better understand how Earth systems work over geologic time scales. The evolution of landforms is ripe for interactive, inquiry-based learning exercises because landforms exist all around us. The Web-based Interactive Landform Simulation Model - Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is a continuation and upgrade of the simple cellular automata (CA) rule-based model (WILSIM-CA, http://www.niu.edu/landform/) that can be accessed from anywhere with an Internet connection. Major improvements in WILSIM-GC include adopting a physically based model and the latest Java technology. The physically based model is incorporated to illustrate the fluvial processes involved in land-sculpting pertaining to the development and evolution of one of the most famous landforms on Earth: the Grand Canyon. It is hoped that this focus on a famous and specific landscape will attract greater student interest and provide opportunities for students to learn not only how different processes interact to form the landform we observe today, but also how models and data are used together to enhance our understanding of the processes involved. The latest development in Java technology (such as Java OpenGL for access to ubiquitous fast graphics hardware, Trusted Applet for file input and output, and multithreaded ability to take advantage of modern multi-core CPUs) are incorporated into building WILSIM-GC and active, standards-aligned curricula materials guided by educational psychology theory on science learning will be developed to accompany the model. This project is funded NSF-TUES program.
Makransky, Guido; Bonde, Mads T; Wulff, Julie S G; Wandall, Jakob; Hood, Michelle; Creed, Peter A; Bache, Iben; Silahtaroglu, Asli; Nørremølle, Anne
2016-03-25
Simulation based learning environments are designed to improve the quality of medical education by allowing students to interact with patients, diagnostic laboratory procedures, and patient data in a virtual environment. However, few studies have evaluated whether simulation based learning environments increase students' knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making. An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major in medicine, received a 2-h training session in a simulation based learning environment. The main outcomes were pre- to post- changes in knowledge, intrinsic motivation, and self-efficacy, together with post-intervention evaluation of the effect of the simulation on student understanding of everyday clinical practice were demonstrated. Knowledge (Cohen's d = 0.73), intrinsic motivation (d = 0.24), and self-efficacy (d = 0.46) significantly increased from the pre- to post-test. Low knowledge students showed the greatest increases in knowledge (d = 3.35) and self-efficacy (d = 0.61), but a non-significant increase in intrinsic motivation (d = 0.22). The medium and high knowledge students showed significant increases in knowledge (d = 1.45 and 0.36, respectively), motivation (d = 0.22 and 0.31), and self-efficacy (d = 0.36 and 0.52, respectively). Additionally, 90 % of students reported a greater understanding of medical genetics, 82 % thought that medical genetics was more interesting, 93 % indicated that they were more interested and motivated, and had gained confidence by having experienced working on a case story that resembled the real working situation of a doctor, and 78 % indicated that they would feel more confident counseling a patient after the simulation. The simulation based learning environment increased students' learning, intrinsic motivation, and self-efficacy (although the strength of these effects differed depending on their pre-test knowledge), and increased the perceived relevance of medical educational activities. The results suggest that simulations can help future generations of doctors transfer new understanding of disease mechanisms gained in virtual laboratory settings into everyday clinical practice.
NASA Astrophysics Data System (ADS)
Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha
2017-06-01
Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a "wave" in part of the experiment and as a "particle" in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT) which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.
NASA Astrophysics Data System (ADS)
Hopkins, Kathryn Susan
The value of dissection as an instructional strategy has been debated, but not evidenced in research literature. The purpose of this study was to examine the efficacy of using computer simulated frog dissection as a substitute for traditional hands-on frog dissection and to examine the possible enhancement of achievement by combining the two strategies in a specific sequence. In this study, 134 biology students at two Central Texas schools were divided into the five following treatment groups: computer simulation of frog dissection, computer simulation before dissection, traditional hands-on frog dissection, dissection before computer simulation, and textual worksheet materials. The effects on achievement were evaluated by labeling 10 structures on three diagrams, identifying 11 pinned structures on a prosected frog, and answering 9 multiple-choice questions over the dissection process. Attitude was evaluated using a thirty item survey with a five-point Likert scale. The quasi-experimental design was pretest/post-test/post-test nonequivalent group for both control and experimental groups, a 2 x 2 x 5 completely randomized factorial design (gender, school, five treatments). The pretest/post-test design was incorporated to control for prior knowledge using analysis of covariance. The dissection only group evidenced a significantly higher performance than all other treatments except dissection-then-computer on the post-test segment requiring students to label pinned anatomical parts on a prosected frog. Interactions between treatment and school in addition to interaction between treatment and gender were found to be significant. The diagram and attitude post-tests evidenced no significant difference. Results on the nine multiple-choice questions about dissection procedures indicated a significant difference between schools. The interaction between treatment and school was also found to be significant. On a delayed post-test, a significant difference in gender was found on the diagram labeling segment of the post-test. Males were reported to have the higher score. Since existing research conflicts with this study's results, additional research using authentic assessment is recommended. Instruction should be aligned with dissection content and process objectives for each treatment group, and the teacher variable should be controlled.
CHEMFLO: ONE-DIMENSIONAL WATER AND CHEMICAL MOVEMENT IN UNSATURATED SOILS
An interactive software system was developed to enable decision-makers, regulators, policy-makers, scientists, consultants, and students to simulate the movement of waterand chemicals in unsaturated soils. Water movement is modeled using Richards (1931) - equation. Chemical trans...
Ammentorp, Jette; Thomsen, Janus Laust; Jarbøl, Dorte Ejg; Holst, René; Øvrehus, Anne Lindebo Holm; Kofoed, Poul-Erik
2013-04-08
The accuracy of self-assessment has been questioned in studies comparing physicians' self-assessments to observed assessments; however, none of these studies used self-efficacy as a method for self-assessment. The aim of the study was to investigate how medical students' perceived self-efficacy of specific communication skills corresponds to the evaluation of simulated patients and observers. All of the medical students who signed up for an Objective Structured Clinical Examination (OSCE) were included. As a part of the OSCE, the student performance in the "parent-physician interaction" was evaluated by a simulated patient and an observer at one of the stations. After the examination the students were asked to assess their self-efficacy according to the same specific communication skills. The Calgary Cambridge Observation Guide formed the basis for the outcome measures used in the questionnaires. A total of 12 items was rated on a Likert scale from 1-5 (strongly disagree to strongly agree). We used extended Rasch models for comparisons between the groups of responses of the questionnaires. Comparisons of groups were conducted on dichotomized responses. Eighty-four students participated in the examination, 87% (73/84) of whom responded to the questionnaire. The response rate for the simulated patients and the observers was 100%. Significantly more items were scored in the highest categories (4 and 5) by the observers and simulated patients compared to the students (observers versus students: -0.23; SE:0.112; p=0.002 and patients versus students:0.177; SE:0.109; p=0.037). When analysing the items individually, a statistically significant difference only existed for two items. This study showed that students scored their communication skills lower compared to observers or simulated patients. The differences were driven by only 2 of 12 items. The results in this study indicate that self-efficacy based on the Calgary Cambridge Observation guide seems to be a reliable tool.
NASA Astrophysics Data System (ADS)
Carmona, José Alberto; Espínola, Moisés; Cangas, Adolfo J.; Iribarne, Luis
Mii School is a 3D school simulator developed with Blender and used by psychology researchers for the detection of drugs abuses, bullying and mental disorders in adolescents. The school simulator created is an interactive video game where the players, in this case the students, have to choose, along 17 scenes simulated, the options that better define their personalities. In this paper we present a technical characteristics description and the first results obtained in a real school.
Alverson, Dale C; Saiki, Stanley M; Jacobs, Joshua; Saland, Linda; Keep, Marcus F; Norenberg, Jeffrey; Baker, Rex; Nakatsu, Curtis; Kalishman, Summers; Lindberg, Marlene; Wax, Diane; Mowafi, Moad; Summers, Kenneth L; Holten, James R; Greenfield, John A; Aalseth, Edward; Nickles, David; Sherstyuk, Andrei; Haines, Karen; Caudell, Thomas P
2004-01-01
Medical knowledge and skills essential for tomorrow's healthcare professionals continue to change faster than ever before creating new demands in medical education. Project TOUCH (Telehealth Outreach for Unified Community Health) has been developing methods to enhance learning by coupling innovations in medical education with advanced technology in high performance computing and next generation Internet2 embedded in virtual reality environments (VRE), artificial intelligence and experiential active learning. Simulations have been used in education and training to allow learners to make mistakes safely in lieu of real-life situations, learn from those mistakes and ultimately improve performance by subsequent avoidance of those mistakes. Distributed virtual interactive environments are used over distance to enable learning and participation in dynamic, problem-based, clinical, artificial intelligence rules-based, virtual simulations. The virtual reality patient is programmed to dynamically change over time and respond to the manipulations by the learner. Participants are fully immersed within the VRE platform using a head-mounted display and tracker system. Navigation, locomotion and handling of objects are accomplished using a joy-wand. Distribution is managed via the Internet2 Access Grid using point-to-point or multi-casting connectivity through which the participants can interact. Medical students in Hawaii and New Mexico (NM) participated collaboratively in problem solving and managing of a simulated patient with a closed head injury in VRE; dividing tasks, handing off objects, and functioning as a team. Students stated that opportunities to make mistakes and repeat actions in the VRE were extremely helpful in learning specific principles. VRE created higher performance expectations and some anxiety among VRE users. VRE orientation was adequate but students needed time to adapt and practice in order to improve efficiency. This was also demonstrated successfully between Western Australia and UNM. We successfully demonstrated the ability to fully immerse participants in a distributed virtual environment independent of distance for collaborative team interaction in medical simulation designed for education and training. The ability to make mistakes in a safe environment is well received by students and has a positive impact on their understanding, as well as memory of the principles involved in correcting those mistakes. Bringing people together as virtual teams for interactive experiential learning and collaborative training, independent of distance, provides a platform for distributed "just-in-time" training, performance assessment and credentialing. Further validation is necessary to determine the potential value of the distributed VRE in knowledge transfer, improved future performance and should entail training participants to competence in using these tools.
Quail, Michelle; Brundage, Shelley B; Spitalnick, Josh; Allen, Peter J; Beilby, Janet
2016-02-27
Advanced communication skills are vital for allied health professionals, yet students often have limited opportunities in which to develop them. The option of increasing clinical placement hours is unsustainable in a climate of constrained budgets, limited placement availability and increasing student numbers. Consequently, many educators are considering the potentials of alternative training methods, such as simulation. Simulations provide safe, repeatable and standardised learning environments in which students can practice a variety of clinical skills. This study investigated students' self-rated communication skill, knowledge, confidence and empathy across simulated and traditional learning environments. Undergraduate speech pathology students were randomly allocated to one of three communication partners with whom they engaged conversationally for up to 30 min: a patient in a nursing home (n = 21); an elderly trained patient actor (n = 22); or a virtual patient (n = 19). One week prior to, and again following the conversational interaction, participants completed measures of self-reported communication skill, knowledge and confidence (developed by the authors based on the Four Habit Coding Scheme), as well as the Jefferson Scale of Empathy - Health Professionals (student version). All three groups reported significantly higher communication knowledge, skills and confidence post-placement (Median d = .58), while the degree of change did not vary as a function of group membership (Median η (2) < .01). In addition, only students interacting with a nursing home resident reported higher empathy after the placement. Students reported that conversing with the virtual patient was more challenging than conversing with a nursing home patient or actor, and students appeared to derive the same benefit from the experience. Participants self-reported higher communication skill, knowledge and confidence, though not empathy, following a brief placement in a virtual, standardised or traditional learning environment. The self-reported increases were consistent across the three placement types. It is proposed that the findings from this study provide support for the integration of more sustainable, standardised, virtual patient-based placement models into allied health training programs for the training of communication skills.
NASA Astrophysics Data System (ADS)
Steiner, S. M.; Wood, J. H.
2015-12-01
As decomposition rates are affected by climate change, understanding crucial soil interactions that affect plant growth and decomposition becomes a vital part of contributing to the students' knowledge base. The Global Decomposition Project (GDP) is designed to introduce and educate students about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. The Interactive Model of Leaf Decomposition (IMOLD) utilizes animations and modeling to learn about the carbon cycle, leaf anatomy, and the role of microbes in decomposition. Paired together, IMOLD teaches the background information and allows simulation of numerous scenarios, and the GDP is a data collection protocol that allows students to gather usable measurements of decomposition in the field. Our presentation will detail how the GDP protocol works, how to obtain or make the materials needed, and how results will be shared. We will also highlight learning objectives from the three animations of IMOLD, and demonstrate how students can experiment with different climates and litter types using the interactive model to explore a variety of decomposition scenarios. The GDP demonstrates how scientific methods can be extended to educate broader audiences, and data collected by students can provide new insight into global patterns of soil decomposition. Using IMOLD, students will gain a better understanding of carbon cycling in the context of litter decomposition, as well as learn to pose questions they can answer with an authentic computer model. Using the GDP protocols and IMOLD provide a pathway for scientists and educators to interact and reach meaningful education and research goals.
Attracting Students to Space Science Fields: Mission to Mars
NASA Astrophysics Data System (ADS)
Congdon, Donald R.; Lovegrove, William P.; Samec, Ronald G.
Attracting high school students to space science is one of the main goals of Bob Jones University's annual Mission to Mars (MTM). MTM develops interest in space exploration through a highly realistic simulated trip to Mars. Students study and learn to appreciate the challenges of space travel including propulsion life support medicine planetary astronomy psychology robotics and communication. Broken into teams (Management Spacecraft Design Communications Life Support Navigation Robotics and Science) they address the problems specific to each aspect of the mission. Teams also learn to interact and recognize that a successful mission requires cooperation. Coordinated by the Management Team the students build a spacecraft and associated apparatus connect computers and communications equipment train astronauts on the mission simulator and program a Pathfinder-type robot. On the big day the astronauts enter the spacecraft as Mission Control gets ready to support them through the expected and unexpected of their mission. Aided by teamwork the astronauts must land on Mars perform their scientific mission on a simulated surface of mars and return home. We see the success of MTM not only in successful missions but in the students who come back year after year for another MTM.
[Surgical laboratory in pregraduate medicine.
Tapia-Jurado, Jesús
2011-01-01
Surgical laboratory in pregraduate students in medicine is beneficial and improves learning processes in cognitive aspects and skills acquisition. It is also an early initiation into scientific research. The laboratory is the introductory pathway into basic concepts of medical science (meaningful learning). It is also where students gain knowledge in procedures and abilities to obtain professional skills, an interactive teacher-student process. Medicine works rapidly to change from an art to a science. This fact compromises all schools and medical faculties to analyze their actual lesson plans. Simulators give students confidence and ability and save time, money and resources, eliminating at the same time the ethical factor of using live animals and the fear of patient safety. Multimedia programs may give a cognitive context evolving logically with an explanation based on written and visual animation followed by a clinical problem and its demonstration in a simulator, all before applying knowledge to the patient.
Learning to deal with crisis in the home: Part 2 - preparing preregistration students.
Gibson, Caroline E; Dickson, Caroline; Lawson, Bill; McMillan, Ailsa; Kelly, Helena
2015-12-01
The global shift of health care is from acute services to community and primary care. Therefore, registrants must be prepared to work effectively within diverse settings. This article is the second in a series discussing the preparation of nurses for contemporary health-care challenges in the community. In it, we outline the design, implementation, and evaluation of simulated emergency scenarios within an honours degree-level, pre-registration nursing curriculum in Scotland. Over 3 years, 99 final-year students participated in interactive sessions focusing on recognition and management of the deteriorating patient and emergency care. Clinical scenarios were designed and delivered collaboratively with community practitioners. Debriefing challenged the students to reflect on learning and transferability of skills of clinical reasoning and care management to the community context. Students considered the scenarios to be realistic and perceived that their confidence had increased. Development of such simulation exercises is worthy of further debate in education and practice.
Do Interactive Globes and Games Help Students Learn Planetary Science?
NASA Astrophysics Data System (ADS)
Coba, Filis; Burgin, Stephen; De Paor, Declan; Georgen, Jennifer
2016-01-01
The popularity of animations and interactive visualizations in undergraduate science education might lead one to assume that these teaching aids enhance student learning. We tested this assumption for the case of the Google Earth virtual globe with a comparison of control and treatment student groups in a general education class of over 370 students at a large public university. Earth and Planetary Science course content was developed in two formats: using Keyhole Markup Language (KML) to create interactive tours in Google Earth (the treatment group) and Portable Document Format (PDF) for on-screen reading (the control group). The PDF documents contained identical text and images to the placemark balloons or "tour stops" in the Google Earth version. Some significant differences were noted between the two groups based on the immediate post-questionnaire with the KML students out-performing the PDF students, but not on the delayed measure. In a separate but related project, we undertake preliminary investigations into methods of teaching basic concepts in planetary mantle convection using numerical simulations. The goal of this project is to develop an interface with a two-dimensional finite element model that will allow students to vary parameters such as the temperatures assigned to the boundaries of the model domain, to help them actively explore important variables that control convection.
Innovative Educational Aerospace Research at the Northeast High School Space Research Center
NASA Technical Reports Server (NTRS)
Luyet, Audra; Matarazzo, Anthony; Folta, David
1997-01-01
Northeast High Magnet School of Philadelphia, Pennsylvania is a proud sponsor of the Space Research Center (SPARC). SPARC, a model program of the Medical, Engineering, and Aerospace Magnet school, provides talented students the capability to successfully exercise full simulations of NASA manned missions. These simulations included low-Earth Shuttle missions and Apollo lunar missions in the past, and will focus on a planetary mission to Mars this year. At the end of each scholastic year, a simulated mission, lasting between one and eight days, is performed involving 75 students as specialists in seven teams The groups are comprised of Flight Management, Spacecraft Communications (SatCom), Computer Networking, Spacecraft Design and Engineering, Electronics, Rocketry, Robotics, and Medical teams in either the mission operations center or onboard the spacecraft. Software development activities are also required in support of these simulations The objective of this paper is to present the accomplishments, technology innovations, interactions, and an overview of SPARC with an emphasis on how the program's educational activities parallel NASA mission support and how this education is preparing student for the space frontier.
Virtual reality welder training
NASA Astrophysics Data System (ADS)
White, Steven A.; Reiners, Dirk; Prachyabrued, Mores; Borst, Christoph W.; Chambers, Terrence L.
2010-01-01
This document describes the Virtual Reality Simulated MIG Lab (sMIG), a system for Virtual Reality welder training. It is designed to reproduce the experience of metal inert gas (MIG) welding faithfully enough to be used as a teaching tool for beginning welding students. To make the experience as realistic as possible it employs physically accurate and tracked input devices, a real-time welding simulation, real-time sound generation and a 3D display for output. Thanks to being a fully digital system it can go beyond providing just a realistic welding experience by giving interactive and immediate feedback to the student to avoid learning wrong movements from day 1.
FoilSim: Basic Aerodynamics Software Created
NASA Technical Reports Server (NTRS)
Peterson, Ruth A.
1999-01-01
FoilSim is interactive software that simulates the airflow around various shapes of airfoils. The graphical user interface, which looks more like a video game than a learning tool, captures and holds the students interest. The software is a product of NASA Lewis Research Center s Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program (HPCCP).This airfoil view panel is a simulated view of a wing being tested in a wind tunnel. As students create new wing shapes by moving slider controls that change parameters, the software calculates their lift. FoilSim also displays plots of pressure or airspeed above and below the airfoil surface.
NASA Astrophysics Data System (ADS)
Sultan, A. Z.; Hamzah, N.; Rusdi, M.
2018-01-01
The implementation of concept attainment method based on simulation was used to increase student’s interest in the subjects Engineering of Mechanics in second semester of academic year 2016/2017 in Manufacturing Engineering Program, Department of Mechanical PNUP. The result of the implementation of this learning method shows that there is an increase in the students’ learning interest towards the lecture material which is summarized in the form of interactive simulation CDs and teaching materials in the form of printed books and electronic books. From the implementation of achievement method of this simulation based concept, it is noted that the increase of student participation in the presentation and discussion as well as the deposit of individual assignment of significant student. With the implementation of this method of learning the average student participation reached 89%, which before the application of this learning method only reaches an average of 76%. And also with previous learning method, for exam achievement of A-grade under 5% and D-grade above 8%. After the implementation of the new learning method (simulation based-concept attainment method) the achievement of Agrade has reached more than 30% and D-grade below 1%.
Social interactions of eating behaviour among high school students: a cellular automata approach
2012-01-01
Background Overweight and obesity in children and adolescents is a global epidemic posing problems for both developed and developing nations. The prevalence is particularly alarming in developed nations, such as the United States, where approximately one in three school-aged adolescents (ages 12-19) are overweight or obese. Evidence suggests that weight gain in school-aged adolescents is related to energy imbalance exacerbated by the negative aspects of the school food environment, such as presence of unhealthy food choices. While a well-established connection exists between the food environment, presently there is a lack of studies investigating the impact of the social environment and associated interactions of school-age adolescents. This paper uses a mathematical modelling approach to explore how social interactions among high school adolescents can affect their eating behaviour and food choice. Methods In this paper we use a Cellular Automata (CA) modelling approach to explore how social interactions among school-age adolescents can affect eating behaviour, and food choice. Our CA model integrates social influences and transition rules to simulate the way individuals would interact in a social community (e.g., school cafeteria). To replicate these social interactions, we chose the Moore neighbourhood which allows all neighbours (eights cells in a two-dimensional square lattice) to influence the central cell. Our assumption is that individuals belong to any of four states; Bring Healthy, Bring Unhealthy, Purchase Healthy, and Purchase Unhealthy, and will influence each other according to parameter settings and transition rules. Simulations were run to explore how the different states interact under varying parameter settings. Results This study, through simulations, illustrates that students will change their eating behaviour from unhealthy to healthy as a result of positive social and environmental influences. In general, there is one common characteristic of changes across time; students with similar eating behaviours tend to form groups, represented by distinct clusters. Transition of healthy and unhealthy eating behaviour is non-linear and a sharp change is observed around a critical point where positive and negative influences are equal. Conclusions Conceptualizing the social environment of individuals is a crucial step to increasing our understanding of obesogenic environments of high-school students, and moreover, the general population. Incorporating both contextual, and individual determinants found in real datasets, in our model will greatly enhance calibration of future models. Complex mathematical modelling has a potential to contribute to the way public health data is collected and analyzed. PMID:23046793
Crip for a day: The unintended negative consequences of disability simulations.
Nario-Redmond, Michelle R; Gospodinov, Dobromir; Cobb, Angela
2017-08-01
To investigate the impact of disability simulations on mood, self-ascribed disability stereotypes, attitudes about interacting with disabled individuals, and behavioral intentions for improving campus accessibility. Experiment 1 evaluated disability-awareness simulations by randomly assigning undergraduates (N = 60) with and without disabilities to stations simulating either dyslexia, hearing or mobility impairments. Experiment 2 extended the field study into the lab where undergraduates (N = 50) with and without disabilities each completed low vision, hearing impairment, and dyslexia simulations. Both studies incorporated pretest-posttest measures of mood, self-ascribed disability stereotypes, and attitudinal measures. In both experiments, disability simulations made participants feel more confused, embarrassed, helpless, and more vulnerable to becoming disabled themselves compared to baseline. Following the simulations, empathetic concern (warmth) toward disabled people increased in both studies, but attitudes about interacting did not improve. In Experiment 1, postsimulation anxiety, embarrassment, and helplessness were highest for those who used wheelchairs or simulated dyslexia. In Experiment 2, participants judged themselves less competent, expressed more pity, expressed more interaction discomfort, and were not more willing to interview disabled students for an accessibility project following the simulations compared to baseline. In addition, Experiment 2 found frustration, guilt, anxiety, and depression were most pronounced among those who interacted with disabled people less than once per month. Simulating disabilities promotes distress and fails to improve attitudes toward disabled people, undermining efforts to improve integration even while participants report more empathetic concern and "understanding of what the disability experience is like." (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Training students with patient actors improves communication: a pilot study.
Anderson, Heather A; Young, Jack; Marrelli, Danica; Black, Rudolph; Lambreghts, Kimberly; Twa, Michael D
2014-01-01
Effective patient communication is correlated with better health outcomes and patient satisfaction, but is challenging to train, particularly with difficult clinical scenarios such as loss of sight. In this pilot study, we evaluated the use of simulated patient encounters with actors to train optometric students. Students were recorded during encounters with actors and assigned to an enrichment group performing five interactions with instructor feedback (n = 6) or a no-enrichment group performing two interactions without feedback (n = 4). Student performance on first and last encounters was scored with (1) subjective rating of performance change using a visual analog scale (anchors: much worse/much better), (2) yes/no response: Would you recommend this doctor to a friend/relative?, and (3) average score on questions from the American Board of Internal Medicine (ABIM) assessment of doctor communication skills. Three clinical instructors, masked to student group assignments and the order of patient encounters they viewed, provided scores in addition to self-evaluation by students and patient-actors. Using the visual analog scale, students who received enrichment were rated more improved than the no-enrichment group by masked examiners (+18 vs. -11% p = 0.04) and self-evaluation (+79 vs. +27% p = 0.009), but not by actors (+31 vs. +43%). The proportion of students recommended significantly increased following enrichment for masked examiners (61% vs. 94%; p < 0.001), but not actors (100 vs. 83%). Average ABIM assessment scores were not significantly different by any rating group: masked instructors, actors, or self-ratings. The findings of this study suggest five simulated patient encounters with feedback result in measurable improvement in student-patient communication skills as rated by masked examiners.
Energy Systems Integration News | Energy Systems Integration Facility |
NREL group of children in front of a 3D visualization screen. Students from the OpenWorld Learning group interact with a wind turbine wind velocity simulation at the 3D visualization lab at the
Brown, Ross; Rasmussen, Rune; Baldwin, Ian; Wyeth, Peta
2012-08-01
Nursing training for an Intensive Care Unit (ICU) is a resource intensive process. High demands are made on staff, students and physical resources. Interactive, 3D computer simulations, known as virtual worlds, are increasingly being used to supplement training regimes in the health sciences; especially in areas such as complex hospital ward processes. Such worlds have been found to be very useful in maximising the utilisation of training resources. Our aim is to design and develop a novel virtual world application for teaching and training Intensive Care nurses in the approach and method for shift handover, to provide an independent, but rigorous approach to teaching these important skills. In this paper we present a virtual world simulator for students to practice key steps in handing over the 24/7 care requirements of intensive care patients during the commencing first hour of a shift. We describe the modelling process to provide a convincing interactive simulation of the handover steps involved. The virtual world provides a practice tool for students to test their analytical skills with scenarios previously provided by simple physical simulations, and live on the job training. Additional educational benefits include facilitation of remote learning, high flexibility in study hours and the automatic recording of a reviewable log from the session. To the best of our knowledge, we believe this is a novel and original application of virtual worlds to an ICU handover process. The major outcome of the work was a virtual world environment for training nurses in the shift handover process, designed and developed for use by postgraduate nurses in training. Copyright © 2012 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.
Ostomate-for-a-Day: A Novel Pedagogy for Teaching Ostomy Care to Baccalaureate Nursing Students.
Kerr, Noël
2015-08-01
The literature describing successful pedagogies for teaching ostomy care to baccalaureate nursing students is limited. This qualitative study investigated the potential benefits of participating in an immersive simulation that allowed baccalaureate nursing students to explore the physical and psychosocial impact of ostomy surgery. Junior-level nursing students attended a 2-hour interactive session during which they learned about preoperative stoma site marking and practiced the maneuvers on a peer. Students then wore an ostomy appliance for the next 24 hours, completed tasks simulating ostomy self-care, and submitted a three- to four-page reflection on the experience. These data were coded using the iterative process of constant comparison described by Glaser. Six major themes were identified: Accommodation for Activities of Daily Living, Coping with Annoyances, Body Image and Feelings, Disclosure, Insights for Teaching, and Empathy. Each participant affirmed the value of the experience. Suggestions for future research studies are discussed. Copyright 2015, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Myneni, Lakshman Sundeep
Students in middle school science classes have difficulty mastering physics concepts such as energy and work, taught in the context of simple machines. Moreover, students' naive conceptions of physics often remain unchanged after completing a science class. To address this problem, I developed an intelligent tutoring system, called the Virtual Physics System (ViPS), which coaches students through problem solving with one class of simple machines, pulley systems. The tutor uses a unique cognitive based approach to teaching simple machines, and includes innovations in three areas. (1) It employs a teaching strategy that focuses on highlighting links among concepts of the domain that are essential for conceptual understanding yet are seldom learned by students. (2) Concepts are taught through a combination of effective human tutoring techniques (e.g., hinting) and simulations. (3) For each student, the system identifies which misconceptions he or she has, from a common set of student misconceptions gathered from domain experts, and tailors tutoring to match the correct line of scientific reasoning regarding the misconceptions. ViPS was implemented as a platform on which students can design and simulate pulley system experiments, integrated with a constraint-based tutor that intervenes when students make errors during problem solving to teach them and to help them. ViPS has a web-based client-server architecture, and has been implemented using Java technologies. ViPS is different from existing physics simulations and tutoring systems due to several original features. (1). It is the first system to integrate a simulation based virtual experimentation platform with an intelligent tutoring component. (2) It uses a novel approach, based on Bayesian networks, to help students construct correct pulley systems for experimental simulation. (3) It identifies student misconceptions based on a novel decision tree applied to student pretest scores, and tailors tutoring to individual students based on detected misconceptions. ViPS has been evaluated through usability and usefulness experiments with undergraduate engineering students taking their first college-level engineering physics course and undergraduate pre-service teachers taking their first college-level physics course. These experiments demonstrated that ViPS is highly usable and effective. Students using ViPS reduced their misconceptions, and students conducting virtual experiments in ViPS learned more than students who conducted experiments with physical pulley systems. Interestingly, it was also found that college students exhibited many of the same misconceptions that have been identified in middle school students.
Virtual hydrology observatory: an immersive visualization of hydrology modeling
NASA Astrophysics Data System (ADS)
Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas
2009-02-01
The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.
A multimedia patient simulation for teaching and assessing endodontic diagnosis.
Littlefield, John H; Demps, Elaine L; Keiser, Karl; Chatterjee, Lipika; Yuan, Cheng H; Hargreaves, Kenneth M
2003-06-01
Teaching and assessing diagnostic skills are difficult due to relatively small numbers of total clinical experiences and a shortage of clinical faculty. Patient simulations could help teach and assess diagnosis by displaying a well-defined diagnostic task, then providing informative feedback and opportunities for repetition and correction of errors. This report describes the development and initial evaluation of SimEndo I, a multimedia patient simulation program that could be used for teaching or assessing endodontic diagnosis. Students interact with a graphical interface that has four pull-down menus and related submenus. In response to student requests, the program presents patient information. Scoring is based on diagnosis of each case by endodontists. Pilot testing with seventy-four junior dental students identified numerous needed improvements to the user interface program. A multi-school field test of the interface program using three patient cases addressed three research questions: 1) How did the field test students evaluate SimEndo I? Overall mean evaluation was 8.1 on a 0 to 10 scale; 2) How many cases are needed to generate a reproducible diagnostic proficiency score for an individual student using the Rimoldi scoring procedure? Mean diagnostic proficiency scores by case ranged from .27 to .40 on a 0 to 1 scale; five cases would produce a score with a 0.80 reliability coefficient; and 3) Did students accurately diagnose each case? Mean correct diagnosis scores by case ranged from .54 to .78 on a 0 to 1 scale. We conclude that multimedia patient simulations offer a promising alternative for teaching and assessing student diagnostic skills.
Simulation of General Physics laboratory exercise
NASA Astrophysics Data System (ADS)
Aceituno, P.; Hernández-Aceituno, J.; Hernández-Cabrera, A.
2015-01-01
Laboratory exercises are an important part of general Physics teaching, both during the last years of high school and the first year of college education. Due to the need to acquire enough laboratory equipment for all the students, and the widespread access to computers rooms in teaching, we propose the development of computer simulated laboratory exercises. A representative exercise in general Physics is the calculation of the gravity acceleration value, through the free fall motion of a metal ball. Using a model of the real exercise, we have developed an interactive system which allows students to alter the starting height of the ball to obtain different fall times. The simulation was programmed in ActionScript 3, so that it can be freely executed in any operative system; to ensure the accuracy of the calculations, all the input parameters of the simulations were modelled using digital measurement units, and to allow a statistical management of the resulting data, measurement errors are simulated through limited randomization.
Assessment of a simulated contraceptive prescribing activity for pharmacy students.
Lynch, Sarah E; Griffin, Brooke L; Vest, Kathleen M
2018-02-01
The role of the pharmacist has been shifting rapidly. One example of change is the passage of legislation allowing pharmacists to independently initiate self-administered hormonal contraceptives in several states. There is no evidence of this specific topic being covered in pharmacy school curricula, and many states are requiring additional post-graduate training. This activity was designed to determine the utility of a contraceptive prescribing simulation activity for pharmacy students. Pharmacy students enrolled in a women's health elective learned about relevant state legislation and attended a clinical skills center simulation activity where they utilized an available prescribing algorithm. Students completed two scenarios and received grades based on their clinical decision-making and patient interaction skills. An electronic survey was distributed post-activity to assess student satisfaction and confidence when prescribing contraceptives. Responses and grades on the assignment were analyzed to determine the activity's utility. Students finished with median scores of 15, 14.8, and 14.5 out of 15 possible points for the three scenarios. Students reported overall satisfaction with the activity, with general agreement that the activity was realistic and made them feel like they were prepared to prescribe contraceptives. Independently initiating contraceptives is a novel practice area for pharmacists. This activity introduced students to the process of prescribing using realistic forms and scenarios. The utility of the activity was twofold - it introduced students to the changing environment of pharmacy practice and allowed students to apply their knowledge of contraceptives and women's health. Students performed well on the activity and reported high levels of satisfaction. Copyright © 2017 Elsevier Inc. All rights reserved.
Course Design for Critical Thinking.
ERIC Educational Resources Information Center
Furedy, John J.; Furedy, Christine
1979-01-01
A fourth year honors thesis research course in psychology at the University of Toronto uses the device of adversarial interaction to improve critical thinking. Course components, including thesis submission, research seminar, student relations, and supervision, are designed to simulate the constraints, criticism, and relationships of actual…
ERIC Educational Resources Information Center
Abt, Clark C.
Educational games present the complex realities of simultaneous interactive processes more accurately and effectively than serial processes such as lecturing and reading. Objectives of educational gaming are to motivate students by presenting relevant and realistic problems and to induce more efficient and active understanding of information.…
Mock Climate Summit: Teaching and Assessing Learning
NASA Astrophysics Data System (ADS)
Schweizer, D.; Gautier, C.; Bazerman, C.
2003-04-01
This paper will demonstrate the effectiveness of a Mock Climate Summit as a pedagogical for teaching the science and policy aspects of global climate change. The Mock Climate Summit is a student-centered course simulating the Conference of the Parties (COP) where international environmental protocols are negotiated. Compared to traditional lecture-based methods common in the geoscience classroom, the Mock Climate Summit uses negotiations and arguments to teach the interactions between these two "spheres" and demonstrate the depth and breadth of these interactions. Through a detailed assessment of students' dialogue transcribed from video and audio tapes, we found that the nature of the student dialogue matures rapidly as they are given multiple opportunities to present, negotiate and argue a specific topic. Students' dialogue progress from hypothetical (what-if) scenarios to action-oriented scenarios and implementation plans. The progression of the students' dialogue shows increased comfort with the communities' discourse as they take ownership of the point-of-view associated with their assumed roles.
Using computer simulations to facilitate conceptual understanding of electromagnetic induction
NASA Astrophysics Data System (ADS)
Lee, Yu-Fen
This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit their revised answers electronically. Students in the TRAD group were not granted access to the CLCS material and followed their normal classroom routine. At the end of the study, both the CLCS and TRAD students took a post-test. Questions on the post-test were divided into "what" questions, "how" questions, and an open response question. Analysis of students' post-test performance showed mixed results. While the TRAD students scored higher on the "what" questions, the CLCS students scored higher on the "how" questions and the one open response questions. This result suggested that more TRAD students knew what kinds of conditions may or may not cause electromagnetic induction without understanding how electromagnetic induction works. Analysis of the CLCS students' learning also suggested that frequent disruption and technical trouble might pose threats to the effectiveness of the CLCS learning framework. Despite the mixed results of students' post-test performance, the CLCS learning framework revealed some limitations to promote conceptual understanding in physics. Improvement can be made by providing students with background knowledge necessary to understand model reasoning and incorporating the CLCS learning framework with other learning frameworks to promote integration of various physics concepts. In addition, the reflective questions in the CLCS learning framework may be refined to better address students' difficulties. Limitations of the study, as well as suggestions for future research, are also presented in this study.
An ICAI architecture for troubleshooting in complex, dynamic systems
NASA Technical Reports Server (NTRS)
Fath, Janet L.; Mitchell, Christine M.; Govindaraj, T.
1990-01-01
Ahab, an intelligent computer-aided instruction (ICAI) program, illustrates an architecture for simulator-based ICAI programs to teach troubleshooting in complex, dynamic environments. The architecture posits three elements of a computerized instructor: the task model, the student model, and the instructional module. The task model is a prescriptive model of expert performance that uses symptomatic and topographic search strategies to provide students with directed problem-solving aids. The student model is a descriptive model of student performance in the context of the task model. This student model compares the student and task models, critiques student performance, and provides interactive performance feedback. The instructional module coordinates information presented by the instructional media, the task model, and the student model so that each student receives individualized instruction. Concept and metaconcept knowledge that supports these elements is contained in frames and production rules, respectively. The results of an experimental evaluation are discussed. They support the hypothesis that training with an adaptive online system built using the Ahab architecture produces better performance than training using simulator practice alone, at least with unfamiliar problems. It is not sufficient to develop an expert strategy and present it to students using offline materials. The training is most effective if it adapts to individual student needs.
Jessee, Mary Ann; Tanner, Christine A
2016-09-01
Clinical coaching has been identified as a signature pedagogy in nursing education. Recent findings indicate that clinical coaching interactions in the clinical learning environment fail to engage students in the higher order thinking skills believed to promote clinical reasoning. The Clinical Coaching Interactions Inventory (CCII) was based on evidence of supervisor questioning techniques, the Tanner clinical judgment model, Bloom's Taxonomy, and simulation evaluation tools. Content validity was established with expert assessment, student testing for clarity, and calculation of scale-content validity index/average (S-CVI/Ave). Reliability was established with Kuder-Richardson Formula 20 (KR-20). CVI (S-CVI/Ave) was .91, and KR-20 was .70. The CCII identified differences in clinical coaching behaviors in university faculty supervisors and staff nurse preceptor supervisors. The CCII advances the measurement of clinical coaching interactions from qualitative to quantitative. Ultimately, results from use of this inventory may facilitate the design of prelicensure clinical coaching strategies that promote the improvement of students' clinical reasoning skill. [J Nurs Educ. 2016;55(9):495-504.]. Copyright 2016, SLACK Incorporated.
Seif, Gretchen A; Brown, Debora
2013-01-01
It is difficult to provide real-world learning experiences for students to master clinical and communication skills. The purpose of this paper is to describe a novel instructional method using self- and peer-assessment, reflection, and technology to help students develop effective interpersonal and clinical skills. The teaching method is described by the constructivist learning theory and incorporates the use of educational technology. The learning activities were incorporated into the pre-clinical didactic curriculum. The students participated in two video-recording assignments and performed self-assessments on each and had a peer-assessment on the second video-recording. The learning activity was evaluated through the self- and peer-assessments and an instructor-designed survey. This evaluation identified several themes related to the assignment, student performance, clinical behaviors and establishing rapport. Overall the students perceived that the learning activities assisted in the development of clinical and communication skills prior to direct patient care. The use of video recordings of a simulated history and examination is a unique learning activity for preclinical PT students in the development of clinical and communication skills.
NASA Astrophysics Data System (ADS)
Schulman, Kathleen M.
This study fills a gap in the research literature regarding the types of instructional support provided by instructors in online introductory chemistry laboratory courses that employ chemistry simulations as laboratory exercises. It also provides information regarding students' perceptions of the effectiveness of that instructional support. A multiple case study methodology was used to carry out the research. Two online introductory chemistry courses were studied at two community colleges. Data for this study was collected using phone interviews with faculty and student participants, surveys completed by students, and direct observation of the instructional designs of instructional support in the online Blackboard web sites and the chemistry simulations used by the participating institutions. The results indicated that the instructors provided multiple types of instructional support that correlated with forms of effective instructional support identified in the research literature, such as timely detailed feedback, detailed instructions for the laboratory experiments, and consistency in the instructional design of lecture and laboratory course materials, including the chemistry lab simulation environment. The students in one of these courses identified the following as the most effective types of instructional support provided: the instructor's feedback, opportunities to apply chemistry knowledge in the chemistry lab exercises, detailed procedures for the simulated laboratory exercises, the organization of the course Blackboard sites and the chemistry lab simulation web sites, and the textbook homework web sites. Students also identified components of instructional support they felt were missing. These included a desire for more interaction with the instructor, more support for the simulated laboratory exercises from the instructor and the developer of the chemistry simulations, and faster help with questions about the laboratory exercises or experimental calculations. Students believed that having this additional instructional support would lead to increased understanding of the laboratory exercises, allowing them to complete them with less difficulty, and giving them increased access to the instructor. Recommendations for the instructors of these two courses include: increased participation in the online course environment, increased emphasis on laboratory safety, and increased emphasis on the differences between simulated and real life chemistry laboratory experiments.
Ignacio, Jeanette; Dolmans, Diana; Scherpbier, Albert; Rethans, Jan-Joost; Chan, Sally; Liaw, Sok Ying
2015-12-01
The use of standardized patients in deteriorating patient simulations adds realism that can be valuable for preparing nurse trainees for stress and enhancing their performance during actual patient deterioration. Emotional engagement resulting from increased fidelity can provide additional stress for student nurses with limited exposure to real patients. To determine the presence of increased stress with the standardized patient modality, this study compared the use of standardized patients (SP) with the use of high-fidelity simulators (HFS) during deteriorating patient simulations. Performance in managing deteriorating patients was also compared. It also explored student nurses' insights on the use of standardized patients and patient simulators in deteriorating patient simulations as preparation for clinical placement. Fifty-seven student nurses participated in a randomized controlled design study with pre- and post-tests to evaluate stress and performance in deteriorating patient simulations. Performance was assessed using the Rescuing A Patient in Deteriorating Situations (RAPIDS) rating tool. Stress was measured using salivary alpha-amylase levels. Fourteen participants who joined the randomized controlled component then participated in focus group discussions that elicited their insights on SP use in patient deterioration simulations. Analysis of covariance (ANCOVA) results showed no significant difference (p=0.744) between the performance scores of the SP and HFS groups in managing deteriorating patients. Amylase levels were also not significantly different (p=0.317) between the two groups. Stress in simulation, awareness of patient interactions, and realism were the main themes that resulted from the thematic analysis. Performance and stress in deteriorating patient simulations with standardized patients did not vary from similar simulations using high-fidelity patient simulators. Data from focus group interviews, however, suggested that the use of standardized patients was perceived to be valuable in preparing students for actual patient deterioration management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Web-Based Testing Tools for Electrical Engineering Courses
2001-09-01
ideas of distance learning are based on forming “ virtual teams” [2]. Each team is equipped with the same software packages and share information via...using virtual laboratories where they can simulate a laboratory experience in a web-based environment. They can also control laboratory devices over...possible to create a set of virtual laboratories that allow students to interact with the learning material at the same time that the student is
NASA Astrophysics Data System (ADS)
Demir, I.
2015-12-01
Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.
Envisioning the Educational Possibilities of User-Created Virtual Worlds
ERIC Educational Resources Information Center
Antonacci, David M.; Modaress, Nellie
2008-01-01
Educational games and simulations can engage students in higher-level cognitive thinking, such as interpreting, analyzing, discovering, evaluating, acting, and problem solving. Recent technical advances in multiplayer, user-created virtual worlds have significantly expanded the capabilities of user interaction and development within these…
NASA Astrophysics Data System (ADS)
Hall, Rachael S.
Despite the many studies on the benefits of cooperative learning, there is surprising little research into how the classroom as a whole changes when these cooperative groups are reassigned. In one section of CHEM 3011 in Fall 2013, students were allowed to pick their partner and kept the same partner all semester. In another section during the same semester, students were assigned a different partner for every wet lab and were allowed to pick their partners during the computer simulation labs. The students in both sections were given the "preferred" version of the Science Laboratory Environment Inventory (SLEI) at the beginning of the semester to elicit student preferences for the class environment, and the "actual" version of the SLEI and the Class Life Instrument at the end of the semester to determine what actually occurred during the semester. The students' interactions were recorded using an observational instrument developed specifically for this project. The students' responses to surveys, interactions, grades, and time in lab were analyzed for differences between the two sections. The results of this study will be discussed.
NASA Astrophysics Data System (ADS)
Liu, Lei
The dissertation aims to achieve two goals. First, it attempts to establish a new theoretical framework---the collaborative scientific conceptual change model, which explicitly attends to social factor and epistemic practices of science, to understand conceptual change. Second, it report the findings of a classroom study to investigate how to apply this theoretical framework to examine the trajectories of collaborative scientific conceptual change in a CSCL environment and provide pedagogical implications. Two simulations were designed to help students make connections between the macroscopic substances and the aperceptual microscopic entities and underlying processes. The reported study was focused on analyzing the aggregated data from all participants and the video and audio data from twenty focal groups' collaborative activities and the process of their conceptual development in two classroom settings. Mixed quantitative and qualitative analyses were applied to analyze the video/audio data. The results found that, overall participants showed significant improvements from pretest to posttest on system understanding. Group and teacher effect as well as group variability were detected in both students' posttest performance and their collaborative activities, and variability emerged in group interaction. Multiple data analyses found that attributes of collaborative discourse and epistemic practices made a difference in student learning. Generating warranted claims in discourse as well as the predicting, coordinating theory-evidence, and modifying knowledge in epistemic practices had an impact on student's conceptual understanding. However, modifying knowledge was found negatively related to students' learning effect. The case studies show how groups differed in using the computer tools as a medium to conduct collaborative discourse and epistemic practices. Only with certain combination of discourse features and epistemic practices can the group interaction lead to successful convergent understanding. The results of the study imply that the collaborative scientific conceptual change model is an effective framework to study conceptual change and the simulation environment may mediate the development of successful collaborative interactions (including collaborative discourse and epistemic practices) that lead to collaborative scientific conceptual change.
Shachak, Aviv; Domb, Sharon; Borycki, Elizabeth; Fong, Nancy; Skyrme, Alison; Kushniruk, Andre; Reis, Shmuel; Ziv, Amitai
2015-01-01
We previously developed a prototype computer-based simulation to teach residents how to integrate better EMR use in the patient-physician interaction. To evaluate the prototype, we conducted usability tests with three non-clinician students, followed by a pilot study with 16 family medicine residents. The pilot study included pre- and post-test surveys of competencies and attitudes related to using the EMR in the consultation and the acceptability of the simulation, as well as 'think aloud' observations. After using the simulation prototypes, the mean scores for competencies and attitudes improved from 14.88/20 to 15.63/20 and from 22.25/30 to 23.13/30, respectively; however, only the difference for competencies was significant (paired t-test; t=-2.535, p=0.023). Mean scores for perceived usefulness and ease of use of the simulation were good (3.81 and 4.10 on a 5-point scale, respectively). Issues identified in usability testing include confusing interaction with some features, preferences for a more interactive representation of the EMR, and more options for shared decision making. In conclusion, computer-based simulation may be an effective and acceptable tool for teaching residents how to better use EMRs in clinical encounters.
Discovery & Interaction in Astro 101 Laboratory Experiments
NASA Astrophysics Data System (ADS)
Maloney, Frank Patrick; Maurone, Philip; DeWarf, Laurence E.
2016-01-01
The availability of low-cost, high-performance computing hardware and software has transformed the manner by which astronomical concepts can be re-discovered and explored in a laboratory that accompanies an astronomy course for arts students. We report on a strategy, begun in 1992, for allowing each student to understand fundamental scientific principles by interactively confronting astronomical and physical phenomena, through direct observation and by computer simulation. These experiments have evolved as :a) the quality and speed of the hardware has greatly increasedb) the corresponding hardware costs have decreasedc) the students have become computer and Internet literated) the importance of computationally and scientifically literate arts graduates in the workplace has increased.We present the current suite of laboratory experiments, and describe the nature, procedures, and goals in this two-semester laboratory for liberal arts majors at the Astro 101 university level.
NASA Astrophysics Data System (ADS)
Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides
2011-07-01
Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and communication technology, and specifically of the simulated virtual laboratory 'ThermoLab'. Design and methods A pre-post comparison was applied. Students' design of experiments was rated in eight dimensions; namely, hypothesis forming and verification, selection of variables, initial conditions, device settings, materials and devices used, process and phenomena description. A three-level ranking scheme was employed for the evaluation of students' answers in each dimension. Results A Wilcoxon signed-rank test revealed a statistically significant difference between the students' pre- and post-test scores. Additional analysis by comparing the pre- and post-test scores using the Hake gain showed high gains in all but one dimension, which suggests that this improvement was almost inclusive. Conclusions We consider that our findings support the statement that there was an improvement in students' ability to design experiments.
Interactive instruction of cellular physiology for remote learning.
Huang, C; Huang, H K
2003-12-01
The biomedical sciences are a rapidly changing discipline that have adapted to innovative technological advances. Despite these many advances, we face two major challenges: a) the number of experts in the field is vastly outnumbered by the number of students, many of whom are separated geographically or temporally and b) the teaching methods used to instruct students and learners have not changed. Today's students have adapted to technology--they use the web as a source of information and communicate via email and chat rooms. Teaching in the biomedical sciences should adopt these new information technologies (IT), but has thus far failed to capitalize on technological opportunity. Creating a "digital textbook" of the traditional learning material is not sufficient for dynamic processes such as cellular physiology. This paper describes innovative teaching techniques that incorporate familiar IT and high-quality interactive learning content with user-centric instruction design models. The Virtual Labs Project from Stanford University has created effective interactive online teaching modules in physiology (simPHYSIO) and delivered them over broadband networks to their undergraduate and medical students. Evaluation results of the modules are given as a measure of success of such innovative teaching method. This learning media strategically merges IT innovations with pedagogy to produce user-driven animations of processes and engaging interactive simulations.
Real World Connections Through Videoconferences
NASA Technical Reports Server (NTRS)
Peterson, Ruth; Lytle, John (Technical Monitor)
2002-01-01
The Learning Technologies Project (LTP) is a partner in the National Aeronautics and Space Administration's (NASA's) educational technology program unit, an electronic community center that fosters interaction, collaboration, and sharing among educators, learners, and scientists. The goal of the NASA Glenn Research Center's Learning Technologies Project is to increase students' interest and proficiency in mathematics, science, and technology through the use of computing and communications technology and by using NASA's mission in aerospace technology as a theme. The primary components are: (1) Beginner's Guide to Aeronautics, including interactive simulation packages and teacher-created online activities. (2) NASA Virtual Visits, videoconferences (with online pre-post-conference activities) connecting students and teachers to NASA scientists and researchers.
Hands-on-Entropy, Energy Balance with Biological Relevance
NASA Astrophysics Data System (ADS)
Reeves, Mark
2015-03-01
Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory physics with a bio focus. Supported by NSF DUE.
Simulation and Experimentation in an Astronomy Laboratory, Part II
NASA Astrophysics Data System (ADS)
Maloney, F. P.; Maurone, P. A.; Hones, M.
1995-12-01
The availability of low-cost, high-performance computing hardware and software has transformed the manner by which astronomical concepts can be re-discovered and explored in a laboratory that accompanies an astronomy course for non-scientist students. We report on a strategy for allowing each student to understand fundamental scientific principles by interactively confronting astronomical and physical phenomena, through direct observation and by computer simulation. Direct observation of physical phenomena, such as Hooke's Law, begins by using a computer and hardware interface as a data-collection and presentation tool. In this way, the student is encouraged to explore the physical conditions of the experiment and re-discover the fundamentals involved. The hardware frees the student from the tedium of manual data collection and presentation, and permits experimental design which utilizes data that would otherwise be too fleeting, too imprecise, or too voluminous. Computer simulation of astronomical phenomena allows the student to travel in time and space, freed from the vagaries of weather, to re-discover such phenomena as the daily and yearly cycles, the reason for the seasons, the saros, and Kepler's Laws. By integrating the knowledge gained by experimentation and simulation, the student can understand both the scientific concepts and the methods by which they are discovered and explored. Further, students are encouraged to place these discoveries in an historical context, by discovering, for example, the night sky as seen by the survivors of the sinking Titanic, or Halley's comet as depicted on the Bayeux tapestry. We report on the continuing development of these laboratory experiments. Futher details and the text for the experiments are available at the following site: http://astro4.ast.vill.edu/ This work is supported by a grant from The Pew Charitable Trusts.
'Disaster day': global health simulation teaching.
Mohamed-Ahmed, Rayan; Daniels, Alex; Goodall, Jack; O'Kelly, Emily; Fisher, James
2016-02-01
As society diversifies and globalisation quickens, the importance of teaching global health to medical undergraduates increases. For undergraduates, the majority of exposure to 'hands-on' teaching on global health occurs during optional elective periods. This article describes an innovative student-led initiative, 'Disaster Day', which used simulation to teach global health to undergraduates. The teaching day began with an introduction outlining the work of Médecins Sans Frontières and the basic principles of resuscitation. Students then undertook four interactive simulation scenarios: Infectious Diseases in a Refugee Camp, Natural Disaster and Crush Injury, Obstetric Emergency in a Low-Income Country, and Warzone Gunshot Wound. Sessions were facilitated by experienced doctors and fourth-year students who had been trained in the delivery of the scenarios. Students completed pre- and post-session evaluation forms that included the self-rating of confidence in eight learning domains (using a five-point Likert scale). Twenty-seven students voluntarily attended the session, and all provided written feedback. Analysis of the pre- and post-session evaluations demonstrated statistically significant improvements in confidence across all but one domains (Wilcoxon signed rank test). Free-text feedback was overwhelmingly positive, with students appreciating the practical aspect of the scenarios. For undergraduates, the majority of exposure to 'hands-on' teaching on global health occurs during optional elective periods Simulation-based teaching can provide students with 'hands-on' exposure to global health in a controlled, reproducible fashion and appears to help develop their confidence in a variety of learning domains. The more widespread use of such teaching methods is encouraged: helping tomorrow's doctors develop insight into global health challenges may produce more rounded clinicians capable of caring for more culturally diverse populations. © 2015 John Wiley & Sons Ltd.
Employing Cognitive Tools within Interactive Multimedia Applications.
ERIC Educational Resources Information Center
Hedberg, John; And Others
This paper describes research into the use of cognitive tools in the classroom using "Exploring the Nardoo", an information landscape designed to support student investigation. Simulations and support tools which allow multimedia reporting are embedded in the package and are supported by several metacognitive tools for the writing…
The International Negotiation Seminars Project. Project ICONS.
ERIC Educational Resources Information Center
Wilkenfeld, Jonathan; Kaufman, Joyce; Starkey, Brigid
This report of a study at the University of Maryland describes an international, interactive, and interdisciplinary project for first- and second-year students, which combines a large lecture format with small-group, seminar-type sessions organized around a computer-assisted simulation model, the International Communication and Negotiation…
The Microcomputer and Instruction in Geometry.
ERIC Educational Resources Information Center
Kantowski, Mary Grace
1981-01-01
The microcomputer has great potential for making high school geometry more stimulating and more easily understood by the students. The microcomputer can facilitate instruction in both the logico-deductive and spatial-visual aspects of geometry through graphics representations, simulation of motion, and its capability of interacting with the…
Development of Computer-Based Resources for Textile Education.
ERIC Educational Resources Information Center
Hopkins, Teresa; Thomas, Andrew; Bailey, Mike
1998-01-01
Describes the production of computer-based resources for students of textiles and engineering in the United Kingdom. Highlights include funding by the Teaching and Learning Technology Programme (TLTP), courseware author/subject expert interaction, usage test and evaluation, authoring software, graphics, computer-aided design simulation, self-test…
A simulation for teaching the basic and clinical science of fluid therapy.
Rawson, Richard E; Dispensa, Marilyn E; Goldstein, Richard E; Nicholson, Kimberley W; Vidal, Noni Korf
2009-09-01
The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical cases that, by nature, are diverse, change over time, and respond in unique ways to therapeutic interventions. We developed a dynamic model using STELLA software that simulates normal and abnormal fluid and electrolyte balance in the dog. Students interact, not with the underlying model, but with a user interface that provides sufficient data (skin turgor, chemistry panel, etc.) for the clinical assessment of patients and an opportunity for treatment. Students administer fluids and supplements, and the model responds in "real time," requiring regular reassessment and, potentially, adaptation of the treatment strategy. The level of success is determined by clinical outcome, including improvement, deterioration, or death. We expected that the simulated cases could be used to teach both the clinical and basic science of fluid therapy. The simulation provides exposure to a realistic clinical environment, and students tend to focus on this aspect of the simulation while, for the most part, ignoring an exploration of the underlying physiological basis for patient responses. We discuss how the instructor's expertise can provide sufficient support, feedback, and scaffolding so that students can extract maximum understanding of the basic science in the context of assessing and treating at the clinical level.
Augmenting your own reality: student authoring of science-based augmented reality games.
Klopfer, Eric; Sheldon, Josh
2010-01-01
Augmented Reality (AR) simulations superimpose a virtual overlay of data and interactions onto a real-world context. The simulation engine at the heart of this technology is built to afford elements of game play that support explorations and learning in students' natural context--their own community and surroundings. In one of the more recent games, TimeLab 2100, players role-play citizens of the early 22nd century when global climate change is out of control. Through AR, they see their community as it might be nearly one hundred years in the future. TimeLab and other similar AR games balance location specificity and portability--they are games that are tied to a location and games that are movable from place to place. Focusing students on developing their own AR games provides the best of both virtual and physical worlds: a more portable solution that deeply connects young people to their own surroundings. A series of initiatives has focused on technical and pedagogical solutions to supporting students authoring their own games.
Plant, Jon D
2007-01-01
Veterinary educators are charged with delivering large amounts of information to adult students, who benefit from a more interactive learning environment than is often achieved through didactic lectures. Audience response systems (ARS) with wireless keypad technology facilitate interactive learning and have been used successfully in the education of health professionals. The objectives of this pilot study were to determine the effect of an ARS on the knowledge retention of veterinary dermatology students and to survey student attitudes concerning its use. A cohort-controlled trial was conducted to evaluate the potential benefits of ARS for short-term and long-term knowledge retention. Students also participated in four hours of student-directed case simulations using ARS technology. Students were surveyed regarding opinions on the use of the ARS. The mean short-term knowledge-retention test scores of groups A (ARS+) and B (ARS-) were 81% and 78%, respectively. The mean long-term knowledge-retention test scores of groups A and B were 54% and 55%, respectively. The differences between groups were not significant for either time period (p = 0.32, p = 0.77). Although benefits to short-term and long-term knowledge retention were not detected in this pilot study, all students responding to the survey perceived a benefit and supported the use of ARS in the clinical veterinary curriculum. ARS technology provides a tool for lecturers to create an interactive learning environment well suited for teaching veterinary dermatology.
NASA Astrophysics Data System (ADS)
Rasheva, E. A.
2015-12-01
For decades, role-play and simulation exercises have been utilized for learning and policy decision making. While the power of Model UN simulations in building first-person experience and understanding of complex international issues is well known, the effectiveness of simulations for inspiring citizen engagement in scientific public-policy issues is little studied. My work hypothesizes that climate-change negotiation simulations can enhance students' scientific literacy and policy advocacy. It aims to determine how age and gender influence the responsiveness of students to such simulations. During the 2015 fall semester, I am conducting World Climate exercises for fellow graduate and undergraduate students at San Francisco State University. At the end of the exercise, I will have collected the responses to an anonymous questionnaire in which the participants indicate age and gender. The questionnaire asks participants to describe their hopes and fears for the future and to propose public and personal actions for achieving a strong climate change agreement. I am tracking differences to determine whether participants' age and gender correlate with particular patterns of feeling and thinking. My future research will aim to determine whether and how strongly the World Climate Exercise has affected participants' actual policy engagement. This work will also reflect on my experiences as a World Climate facilitator. I will describe the facilitation process and then discuss some of my observations from the sessions. I will specify the challenges I have encountered and suggest strategies that can strengthen the learning process. World Climate is a computer-simulation-based climate change negotiations role-playing exercise developed by Climate Interactive in partnership with the System Dynamics Group at the MIT Sloan School of Management.
Lou, Xiaoying; Enter, Daniel; Sheen, Luke; Adams, Katherine; Reed, Carolyn E; McCarthy, Patrick M; Calhoon, John H; Verrier, Edward D; Lee, Richard
2013-06-01
Given declining interest in cardiothoracic (CT) training programs during the last decade, increasing emphasis has been placed on engaging candidates early in their training. We examined the effect of supervised and unsupervised practice on medical students' interest in CT surgery. Forty-five medical students participated in this study. Participants' interest level in surgery, CT surgery, and simulation were collected before and after a pretest session. Subsequently, participants were randomized to one of three groups: control (n = 15), unsupervised training on a low-fidelity task simulator (n = 15), or supervised training with a CT surgeon or fellow on the same simulator (n = 15). After 3 weeks, attitudes were reassessed at a posttest session. Interest levels were compared before and after the pretest using paired t tests, and the effects of training on interests were assessed with multiple linear regression analyses. After the pretest session, participants were significantly more interested in simulation (p = 0.001) but not in surgery or CT surgery. After training, compared with control group participants, supervised trainees demonstrated a significant increase in their interest level in pursuing a career in surgery (p = 0.028) and an increasing trend towards a career in CT surgery (p = 0.060), whereas unsupervised trainees did not. Supervised training on low-fidelity simulators enhances interest in a career in surgery. Practice that lacks supervision does not, possibly related to the complexity of the simulated task. Mentorship efforts may need to involve sustained interaction to provide medical students with enough exposure to appreciate a surgical career. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Computational fluid dynamics uses in fluid dynamics/aerodynamics education
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1994-01-01
The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.
NASA Astrophysics Data System (ADS)
Rana, K. P. S.; Kumar, Vineet; Mendiratta, Jatin
2017-11-01
One of the most elementary concepts in freshmen Electrical Engineering subject comprises the Resistance-Inductance-Capacitance (RLC) circuit fundamentals, that is, their time and frequency domain responses. For a beginner, generally, it is difficult to understand and appreciate the step and the frequency responses, particularly the resonance. This paper proposes a student-friendly teaching and learning approach by inculcating the multifaceted versatile software LabVIEWTM along with the educational laboratory virtual instrumentation suite hardware, for studying the RLC circuit time and frequency domain responses. The proposed approach has offered an interactive laboratory experiment where students can model circuits in simulation and hardware circuits on prototype board, and then compare their performances. The theoretical simulations and the obtained experimental data are found to be in very close agreement, thereby enhancing the conviction of students. Finally, the proposed methodology was also subjected to the assessment of learning outcomes based on student feedback, and an average score of 8.05 out of 10 with a standard deviation of 0.471 was received, indicating the overall satisfaction of the students.
Instructional practices at Farm Safety 4 Just Kids (FS4JK) safety day camps.
Mazur, J M; Cole, H P; Reed, D; Claunch, D
2005-05-01
The instructional methods used with 1,347 youth in seven Farm Safety 4 Just Kids (FS4JK) day camp sessions conducted in five states during the summer and fall of 2002 were videotaped. The videotapes, instructor questionnaires, and day camp materials were analyzed using an observation protocol that focused on instructional practices and an interaction analysis of instructor-student talk during the sessions. Results showed that instruction focused on hazard recognition, a high level of participant attention during all the sessions observed, and safety day camp content relevant to rural participants regardless of whether they live or work on a farm. Recommendations for improving instructional practice include better use of print materials, more interactive, participatory activities for students, and reduction of instructor-centered, didactic approaches. Given the high level of students' attention, increased involvement of students in active, participatory approaches might enhance the effectiveness of the instruction by: (1) further engaging students through personalizing hazard recognition, (2) contextualizing reports of injuries, (3) examining the complexities of choosing safe behaviors, and (4) paying more attention to the consequences of injury events. Role-playing, narrative simulations, and other types of interactive and collaborative exercises are instructional approaches that support the inclusion of the pre-event contingencies and post-event consequences that are part of all injury events.
Transforming Professional Healthcare Narratives into Structured Game-Informed-Learning Activities
ERIC Educational Resources Information Center
Begg, Michael; Ellaway, Rachel; Dewhurst, David; Macleod, Hamish
2007-01-01
Noting the dependency of healthcare education on practice-based learning, Michael Begg, Rachel Ellaway, David Dewhurst, and Hamish Macleod suggest that creating a virtual clinical setting for students to interact with virtual patients can begin to address educational demands for clinical experience. They argue that virtual patient simulations that…
Computer-Based Physics: An Anthology.
ERIC Educational Resources Information Center
Blum, Ronald, Ed.
Designed to serve as a guide for integrating interactive problem-solving or simulating computers into a college-level physics course, this anthology contains nine articles each of which includes an introduction, a student manual, and a teacher's guide. Among areas covered in the articles are the computerized reduction of data to a Gaussian…
Teaching Pulmonary Gas Exchange Physiology Using Computer Modeling
ERIC Educational Resources Information Center
Kapitan, Kent S.
2008-01-01
Students often have difficulty understanding the relationship of O[subscript 2] consumption, CO[subscript 2] production, cardiac output, and distribution of ventilation-perfusion ratios in the lung to the final arterial blood gas composition. To overcome this difficulty, I have developed an interactive computer simulation of pulmonary gas exchange…
Interactive Spreadsheets in JCE Webware
ERIC Educational Resources Information Center
Coleman, William F.; Fedosky, Edward W.
2005-01-01
A description of the Microsoft Excel spreadsheet simulation, Anharmonicity.xls that can be used to smoothly and continuously switch a plotted function and its quadratic approximation is presented. It can be used in a classroom demonstration or incorporated into a student-centered computer-laboratory exercise to examine the qualitative behavior of…
Computer Games: Increase Learning in an Interactive Multidisciplinary Environment.
ERIC Educational Resources Information Center
Betz, Joseph A.
1996-01-01
Discusses the educational uses of computer games and simulations and describes a study conducted at the State University of New York College at Farmingdale that used the computer game "Sim City 2000." Highlights include whole systems learning, problem solving, student performance, nonparametric statistics, and treatment of experimental…
Modeling Mendel's Laws on Inheritance in Computational Biology and Medical Sciences
ERIC Educational Resources Information Center
Singh, Gurmukh; Siddiqui, Khalid; Singh, Mankiran; Singh, Satpal
2011-01-01
The current research article is based on a simple and practical way of employing the computational power of widely available, versatile software MS Excel 2007 to perform interactive computer simulations for undergraduate/graduate students in biology, biochemistry, biophysics, microbiology, medicine in college and university classroom setting. To…
Improving Undergraduates' Argumentative Group Essay Writing through Self-Assessment
ERIC Educational Resources Information Center
Fung, Yong Mei; Mei, Hooi Chee
2015-01-01
When writing an argumentative essay, writers develop and evaluate arguments to embody, initiate, or simulate various kinds of interpersonal and textual interaction for reader consideration (Wu & Allison, 2003). This is quite challenging for English as a second language (ESL) learners. To improve the quality of their writing, students need to…
Educational Drama: A Model Used in a Business School
ERIC Educational Resources Information Center
de Villiers, Rouxelle; Botes, Vida L.
2014-01-01
This article considers the advantages, benefits, disadvantages and weaknesses of experiential learning through the use of educational drama (ED) to assist business students and academics to improve competencies required for their future roles in business. A review of the literature was undertaken. Simulated interaction (SI) and role-play (RP) are…
Developing a Remote Laboratory for Engineering Education
ERIC Educational Resources Information Center
Fabregas, E.; Farias, G.; Dormido-Canto, S.; Dormido, S.; Esquembre, F.
2011-01-01
New information technologies provide great opportunities for education. One such opportunity is the use of remote control laboratories for teaching students about control systems. This paper describes the creation of interactive remote laboratories (RLs). Two main software tools are used: Simulink and Easy Java Simulations (EJS). The first is a…
Application of Virtual Reality Technology in Biology Education.
ERIC Educational Resources Information Center
Shim, Kew-Cheol; Park, Jong-Seok; Kim, Hyun-Sup; Kim, Jae-Hyun; Park, Young-Chul; Ryu, Hai-Il
2003-01-01
Reports on the findings of a study designed to develop three-dimensional virtual reality technology (VRT) learning programs for middle school students and evaluate the program's educational value. Focuses on the topic of structure and function of the eye. Concludes that VRT simulations allow comfortable interaction with computers and increase the…
Extensive Air Showers in the Classroom
ERIC Educational Resources Information Center
Badala, A.; Blanco, F.; La Rocca, P.; Pappalardo, G. S.; Pulvirenti, A.; Riggi, F.
2007-01-01
The basic properties of extensive air showers of particles produced in the interaction of a high-energy primary cosmic ray in the Earth's atmosphere are discussed in the context of educational cosmic ray projects involving undergraduate students and high-school teams. Simulation results produced by an air shower development code were made…
A Modern and Interactive Approach to Learning Laser and Optical Communications.
ERIC Educational Resources Information Center
Minasian, Robert; Alameh, Kamal
2002-01-01
Discusses challenges in teaching lasers and optical communications to engineers, including the prohibitive cost of laboratory experiments, and describes the development of a computer-based photonics simulation experiment module which provides students with an understanding and visualization of how lasers can be modulated in telecommunications.…
NASA Astrophysics Data System (ADS)
Ruzhitskaya, Lanika; French, R. S.; Speck, A.
2009-05-01
We report first results from a multi-faceted study employing the lab "Revolution of the Moons of Jupiter" from the CLEA group (Contemporary Laboratory Experiences in Astronomy) in an introductory astronomy laboratory course for nonscience majors. Four laboratory sections participated in the study: two at a traditional four-year public institution in Missouri and two at a two-year community college in California. Students in all sections took identical pre- and post-tests and used the same simulation software. In all sections, students were assigned randomly to work either in pairs or individually. One section at both schools was given a brief mini-lecture on Kepler's laws and introduction to the exercise while the other section at both schools was given no instructions whatsoever. The data allow comparisons between the impact of the simulation with and without instructions and on the influences of peer interactions on learning outcomes.
A pedagogical approach to the Boltzmann factor through experiments and simulations
NASA Astrophysics Data System (ADS)
Battaglia, O. R.; Bonura, A.; Sperandeo-Mineo, R. M.
2009-09-01
The Boltzmann factor is the basis of a huge amount of thermodynamic and statistical physics, both classical and quantum. It governs the behaviour of all systems in nature that are exchanging energy with their environment. To understand why the expression has this specific form involves a deep mathematical analysis, whose flow of logic is hard to see and is not at the level of high school or college students' preparation. We here present some experiments and simulations aimed at directly deriving its mathematical expression and illustrating the fundamental concepts on which it is grounded. Experiments use easily available apparatuses, and simulations are developed in the Net-Logo environment that, besides having a user-friendly interface, allows an easy interaction with the algorithm. The approach supplies pedagogical support for the introduction of the Boltzmann factor at the undergraduate level to students without a background in statistical mechanics.
Cryder, Brian; Mazan, Jennifer; Quiñones-Boex, Ana; Cyganska, Angelika
2017-01-01
Objective. To develop, implement, and assess whether simulated patient case videos improve students’ understanding of and attitudes toward cross-cultural communication in health care. Design. Third-year pharmacy students (N=159) in a health care communications course participated in a one-hour lecture and two-hour workshop on the topic of cross-cultural communication. Three simulated pharmacist-patient case vignettes highlighting cross-cultural communication barriers, the role of active listening, appropriate use of medical interpreters, and useful models to overcome communication barriers were viewed and discussed in groups of 20 students during the workshop. Assessment. A pre-lecture and post-workshop assessed the effect on students’ understanding of and attitudes toward cross-cultural communication. Understanding of cross-cultural communication concepts increased significantly, as did comfort level with providing cross-cultural care. Conclusion. Use of simulated patient case videos in conjunction with an interactive workshop improved pharmacy students' understanding of and comfort level with cross-cultural communication skills and can be useful tools for cultural competency training in the curriculum. PMID:28496276
The Interactive Planetarium: Student-led Investigations of Naked-Eye Astronomy and Planetary Motion
NASA Astrophysics Data System (ADS)
Rice, Emily L.; McCrady, N.
2007-12-01
We have developed a set of interactive, learner-centered planetarium lab activities for the introductory astronomy course for non-majors at UCLA. A planetarium is ideal for the visualization of the celestial sphere as a 2D projection in 3D space and for the direct spatial simulation of geometric relationships. These concepts are fundamental to content areas frequently covered in introductory courses but are notoriously difficult for non-specialists. Opportunities for engaging students in actively learning content and process skills are limited in the traditional "sky show” approach typically employed in a planetarium setting. The novel aspect of our activities is that they actively engage students in learning: students make predictions, design observational tests, and direct the motion of the planetarium sky in order to evaluate their hypotheses. We have also developed complementary, kinesthetic lab activities that take place outside the planetarium with overlapping content and process goals. Several hundred schools, colleges, and universities across the country have immediate access to a planetarium as a classroom, and our method represents a novel way to use the planetarium as interactive lab equipment in college-level introductory astronomy courses.
Immersive virtual reality as a teaching tool for neuroanatomy.
Stepan, Katelyn; Zeiger, Joshua; Hanchuk, Stephanie; Del Signore, Anthony; Shrivastava, Raj; Govindaraj, Satish; Iloreta, Alfred
2017-10-01
Three-dimensional (3D) computer modeling and interactive virtual reality (VR) simulation are validated teaching techniques used throughout medical disciplines. Little objective data exists supporting its use in teaching clinical anatomy. Learner motivation is thought to limit the rate of utilization of such novel technologies. The purpose of this study is to evaluate the effectiveness, satisfaction, and motivation associated with immersive VR simulation in teaching medical students neuroanatomy. Images of normal cerebral anatomy were reconstructed from human Digital Imaging and Communications in Medicine (DICOM) computed tomography (CT) imaging and magnetic resonance imaging (MRI) into 3D VR formats compatible with the Oculus Rift VR System, a head-mounted display with tracking capabilities allowing for an immersive VR experience. The ventricular system and cerebral vasculature were highlighted and labeled to create a focused interactive model. We conducted a randomized controlled study with 66 medical students (33 in both the control and experimental groups). Pertinent neuroanatomical structures were studied using either online textbooks or the VR interactive model, respectively. We then evaluated the students' anatomy knowledge, educational experience, and motivation (using the Instructional Materials Motivation Survey [IMMS], a previously validated assessment). There was no significant difference in anatomy knowledge between the 2 groups on preintervention, postintervention, or retention quizzes. The VR group found the learning experience to be significantly more engaging, enjoyable, and useful (all p < 0.01) and scored significantly higher on the motivation assessment (p < 0.01). Immersive VR educational tools awarded a more positive learner experience and enhanced student motivation. However, the technology was equally as effective as the traditional text books in teaching neuroanatomy. © 2017 ARS-AAOA, LLC.
Simulators, Remote Labs and Robotic Telescopes
NASA Astrophysics Data System (ADS)
Folhas, Alvaro
2015-04-01
There is an increasing gap between students of the twenty-first century and the teaching methodology still stuck in the past century. The myriad stimuli that involve our students, immediate consumption of information, and the availability of resources, should cast the teacher in search methodologies that encourage the student to learn. The simulators, virtual laboratories and remote controlled robotic equipment are examples of high didactic potential resources, created by scientific organizations and universities, to be used in education, providing a direct interaction with science and motivating our students to a future career in science. It is up to us to take advantage of that work, and those resources, to light the sparkle in the eyes of our students. In Astronomy Club I've developed with high school students some practical projects in science, using, over the web, the robotic telescopes through which the students are studying and photographing deep sky objects; or the European network of radio telescope, measuring the speed of the arms of our galaxy in our galactic dance, their temperatures showing where it is more likely to form new stars. Students use these tools, engaging in their own knowledge construction, and forego their Friday afternoons without a hurry to go home for the weekend. That's the spirit we want for the school.
Human patient simulation: state of the science in prelicensure nursing education.
Shinnick, Mary Ann; Woo, Mary A; Mentes, Janet C
2011-02-01
Nurse educators strive to engage students in an active learning process. Human patient simulation (HPS) may provide an interactive learning experience for nursing students. However, the current literature and research published on HPS is restricted and lacks objective evidence supporting this educational method in prelicensure nursing education. Studies with large numbers of participants and clearly defined, objective, and validated data collection methods are rare. Despite the lack of empirical evidence for HPS, many are embracing a technology and form of education in which the efficacy is still in question. This article reviews the current research in the areas of HPS value perceptions and studies of HPS impact on knowledge and knowledge transfer among nurses. Copyright 2011, SLACK Incorporated.
Horstmann, M; Renninger, M; Hennenlotter, J; Horstmann, C C; Stenzl, A
2009-08-01
E-learning is a teaching tool used successfully in many medical subspecialties. Experience with its use in urology, however, is scarce. We present our teaching experience with the INMEDEA simulator to teach urological care to medical students. The INMEDEA simulator is an interactive e-learning system built around a virtual hospital which includes a department of urology. It allows students to solve virtual patient cases online. In this study, students were asked to prepare two urological cases prior to discussion of the cases in small groups. This blended teaching approach was evaluated by students through anonymous questionnaires. Of 70 4th year medical students 76% judged this teaching method as good or very good. Eighty-seven percent felt that it offered a good way to understand urological diseases better and 72% felt that learning with this method was fun. Nevertheless, 30 out of 70 free text statements revealed that further improvements of the program, including an easier and more comfortable navigation and a faster supply of information are necessary. Virtual patient cases offer a practicable solution for teaching based on problem solving in urology with a high acceptance rate by students.
I’m Sorry to Hear That: Empathic Communication in Virtual Education for Nurses
Strekalova, Yulia A.; Krieger, Janice L.; Kleinheksel, A.J.; Kotranza, Aaron
2016-01-01
The current study examined the communication strategies used by undergraduate nursing students (N = 343) to express empathy during simulated health history interviews. Interacting with a virtual patient, students encountered up to 9 information disclosures that warranted the expression of empathy but recognized few (33.54%). Sophistication of language to express empathy varied depending on the disclosure topic. These findings suggest that empathy as a learned skill can be incorporated into a variety of nursing contexts. PMID:27490312
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, J; Villagomez-Bernabe, B; Currell, F
2015-06-15
Purpose: The stochastic nature of the subatomic world presents a challenge for physics education. Even experienced physicists can be amazed at the varied behavior of electrons, x-rays, protons, neutrons, ions and the any short-lived particles that make up the overall behavior of our accelerators, brachytherapy sources and medical imaging systems. The all-particle Monte Carlo particle transport tool, TOPAS Tool for Particle Simulation, originally developed for proton therapy research, has been repurposed into a physics teaching tool, TOPAS-edu. Methods: TOPAS-edu students set up simulated particle sources, collimators, scatterers, imagers and scoring setups by writing simple ASCII files (in the TOPAS Parametermore » Control System format). Students visualize geometry setups and particle trajectories in a variety of modes from OpenGL graphics to VRML 3D viewers to gif and PostScript image files. Results written to simple comma separated values files are imported by the student into their preferred data analysis tool. Students can vary random seeds or adjust parameters of physics processes to better understand the stochastic nature of subatomic physics. Results: TOPAS-edu has been successfully deployed as the centerpiece of a physics course for master’s students at Queen’s University Belfast. Tutorials developed there takes students through a step by step course on the basics of particle transport and interaction, scattering, Bremsstrahlung, etc. At each step in the course, students build simulated experimental setups and then analyze the simulated results. Lessons build one upon another so that a student might end up with a full simulation of a medical accelerator, a water-phantom or an imager. Conclusion: TOPAS-edu was well received by students. A second application of TOPAS-edu is currently in development at Zurich University of Applied Sciences, Switzerland. It is our eventual goal to make TOPAS-edu available free of charge to any non-profit organization, along with associated tutorial materials developed by the TOPAS-edu community. Work supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF00515. B. Villagomez-Bernabe is supported by CONACyT (Mexican Council for Science and Technology) project 231844.« less
Butollo, Maria Asisa; Holzinger, Anita; Wagner-Menghin, Michaela
2018-04-13
The use of simulated patients (SPs) for doctor-patient communication training has been established in medical curricula as an important didactic method. The study addresses the question, if patients' emotions and perceptions are represented adequately in patient-centered communication. 22 of 37 SPs of the Medical University of Vienna (12 women, 10 men) were asked openly about their feelings after having acted as an SP in a semi-structured interview, which employed the Critical Incident Technique. The interviews were recorded, transcribed, separated into situational analysis units und analyzed deductively; we used the evidence based qualities of patient-centered communication and the "Nationaler Kompetenzbasierter Lernzielkatalog Medizin" as a guideline. Out of 192 analysis units, 67 were evaluated as positive and 125 as negative. The SPs reported positive feelings, such as perceiving "stability and trust in relationships" (22%), perception of congruence (15%), acceptance (27%) and empathy (36%). As to negative feelings, SPs reported "perceiving instability" (18%), "incongruence" (11%), "lack of acceptance" (40%) and "lack of empathy" (30%). Additionally, 50% of SPs were positively affected when observing students' learning success. When SPs perceived patient-centered communication, they reported positive emotions. A lack of patient centeredness, on the contrary, provoked negative emotions. An empathic attitude, as well as a "lack of acceptance" with contrary effects had the strongest influence on the SPs' mental state. The reaction of SPs to patient centeredness is sufficiently authentic to reach learning objectives, however it is also affected by reactions of SPs to the learning success of students, which is irrelevant for the real-life doctor-patient interaction. SP reactions are affected by students' attitudes. Students should therefore be prepared well before interacting with SPs in a roleplay setting. While SPs' behavior is authentic in patient-centered communication in general, SPs should be trained to hide their positive emotions concerning students' learning success during roleplay. © Georg Thieme Verlag KG Stuttgart · New York.
The role of simulation in space operations training
NASA Astrophysics Data System (ADS)
Ocasio, Frank; Atkins, Dana
The expanding use of computer simulation to train aerospace personnel is reviewed emphasizing the increasing complexity of responsibilities in the operations segment. The inefficiency of on-the-job training is discussed, and the simulation technologies employed by the USAF Combat Crew Training Squadron are described. The Mission Control Complex-Kernel is employed to simulate an operational Satellite Control Squadron (SCS) and a downscaled SCS. A system for telemetry simulation is incorporated into the launch and early-orbit segments of the training, and the training emphasizes time-critical actions, schedule adherence, and the interaction with external organizations. Hands-on training is required to supplement the simulator training which cannot be used to simulate anomalies in satellites and ground systems. The use of a centralized simulator as an instructional tool facilitates and expedites the transition of the student to operational levels.
Scribner, Richard; Ackleh, Azmy S; Fitzpatrick, Ben G; Jacquez, Geoffrey; Thibodeaux, Jeremy J; Rommel, Robert; Simonsen, Neal
2009-09-01
The misuse and abuse of alcohol among college students remain persistent problems. Using a systems approach to understand the dynamics of student drinking behavior and thus forecasting the impact of campus policy to address the problem represents a novel approach. Toward this end, the successful development of a predictive mathematical model of college drinking would represent a significant advance for prevention efforts. A deterministic, compartmental model of college drinking was developed, incorporating three processes: (1) individual factors, (2) social interactions, and (3) social norms. The model quantifies these processes in terms of the movement of students between drinking compartments characterized by five styles of college drinking: abstainers, light drinkers, moderate drinkers, problem drinkers, and heavy episodic drinkers. Predictions from the model were first compared with actual campus-level data and then used to predict the effects of several simulated interventions to address heavy episodic drinking. First, the model provides a reasonable fit of actual drinking styles of students attending Social Norms Marketing Research Project campuses varying by "wetness" and by drinking styles of matriculating students. Second, the model predicts that a combination of simulated interventions targeting heavy episodic drinkers at a moderately "dry" campus would extinguish heavy episodic drinkers, replacing them with light and moderate drinkers. Instituting the same combination of simulated interventions at a moderately "wet" campus would result in only a moderate reduction in heavy episodic drinkers (i.e., 50% to 35%). A simple, five-state compartmental model adequately predicted the actual drinking patterns of students from a variety of campuses surveyed in the Social Norms Marketing Research Project study. The model predicted the impact on drinking patterns of several simulated interventions to address heavy episodic drinking on various types of campuses.
Scribner, Richard; Ackleh, Azmy S.; Fitzpatrick, Ben G.; Jacquez, Geoffrey; Thibodeaux, Jeremy J.; Rommel, Robert; Simonsen, Neal
2009-01-01
Objective: The misuse and abuse of alcohol among college students remain persistent problems. Using a systems approach to understand the dynamics of student drinking behavior and thus forecasting the impact of campus policy to address the problem represents a novel approach. Toward this end, the successful development of a predictive mathematical model of college drinking would represent a significant advance for prevention efforts. Method: A deterministic, compartmental model of college drinking was developed, incorporating three processes: (1) individual factors, (2) social interactions, and (3) social norms. The model quantifies these processes in terms of the movement of students between drinking compartments characterized by five styles of college drinking: abstainers, light drinkers, moderate drinkers, problem drinkers, and heavy episodic drinkers. Predictions from the model were first compared with actual campus-level data and then used to predict the effects of several simulated interventions to address heavy episodic drinking. Results: First, the model provides a reasonable fit of actual drinking styles of students attending Social Norms Marketing Research Project campuses varying by “wetness” and by drinking styles of matriculating students. Second, the model predicts that a combination of simulated interventions targeting heavy episodic drinkers at a moderately “dry” campus would extinguish heavy episodic drinkers, replacing them with light and moderate drinkers. Instituting the same combination of simulated interventions at a moderately “wet” campus would result in only a moderate reduction in heavy episodic drinkers (i.e., 50% to 35%). Conclusions: A simple, five-state compartmental model adequately predicted the actual drinking patterns of students from a variety of campuses surveyed in the Social Norms Marketing Research Project study. The model predicted the impact on drinking patterns of several simulated interventions to address heavy episodic drinking on various types of campuses. PMID:19737506
Understanding interprofessional relationships by the use of contact theory.
Mohaupt, Jennifer; van Soeren, Mary; Andrusyszyn, Mary-Anne; Macmillan, Kathleen; Devlin-Cop, Sandra; Reeves, Scott
2012-09-01
The importance and necessity of interprofessional collaboration (IPC) present challenges for educators as they determine how best to achieve IPC through interprofessional education (IPE). Simulation-based teaching has been shown to enhance students' understanding of professional roles and promote positive attitudes toward team members; yet, empirical evidence providing direction on the conditions necessary to promote these positive outcomes is lacking. This study used a quasi-experimental design with a pre-/post-test to examine changes in undergraduate healthcare students' perceptions and attitudes toward IPC following their participation in an interprofessional simulation program. Allport's (1954) intergroup contact theory was used to help understand the nature of this IPE workshop and its reported outcomes. Participants included students in the final year of their respective programs (n = 84) such as pharmacy technician, paramedic, nursing and occupational therapy assistant/physical therapy assistant programs. These students were engaged in simulation exercises with interactive contact opportunities. Using the interdisciplinary education perceptions scale, statistically significant increases in positive attitudes in three of four sub-scales were found. An analysis of the structure and format of the workshop suggests that this IPE initiative fulfilled the key conditions suggested by intergroup contact theory. Attention to the key conditions provided by Allport's theory in the context of successful intergroup relationships may help provide direction for educators interested in planning IPE initiatives with student groups enrolled in various health programs.
A surgical simulation curriculum for senior medical students based on TeamSTEPPS.
Meier, Andreas H; Boehler, Maggie L; McDowell, Chris M; Schwind, Cathy; Markwell, Steve; Roberts, Nicole K; Sanfey, Hilary
2012-08-01
To investigate whether the existing Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS) curriculum can effectively teach senior medical students team skills. DESIGN Single-group preintervention and postintervention study. We integrated a TeamSTEPPS module into our existing resident readiness elective. The curriculum included interactive didactic sessions, discussion groups, role-plays, and videotaped immersive simulation scenarios. Improvement of self-assessment scores, multiple-choice examination scores, and performance ratings of videotaped simulation scenarios before and after intervention. The videos were rated by masked reviewers on the basis of a global rating instrument (TeamSTEPPS) and a more detailed nontechnical skills evaluation tool(NOTECHS). Seventeen students participated and completed the study. The self-evaluation scores improved from 12.76 to 16.06 (P < .001). The increase was significant for all of the TeamSTEPPS competencies and highest for leadership skills (from 2.2 to 3.2; P < .001). The multiple-choice score rose from 84.9% to 94.1% (P < .01). The postintervention video ratings were significantly higher for both instruments (TeamSTEPPS, from 2.99 to 3.56; P < .01; and NOTECHS, from 4.07 to 4.59; P < .001). The curriculum led to improved self-evaluation and multiple-choice scores as well as improved team skills during simulated immersive patient encounters. The TeamSTEPPS framework may be suitable for teaching medical students teamwork concepts and improving their competencies. Larger studies using this framework should be considered to further evaluate the generalizability of our results and the effectiveness of TeamSTEPPS for medical students.
Script-theory virtual case: A novel tool for education and research.
Hayward, Jake; Cheung, Amandy; Velji, Alkarim; Altarejos, Jenny; Gill, Peter; Scarfe, Andrew; Lewis, Melanie
2016-11-01
Context/Setting: The script theory of diagnostic reasoning proposes that clinicians evaluate cases in the context of an "illness script," iteratively testing internal hypotheses against new information eventually reaching a diagnosis. We present a novel tool for teaching diagnostic reasoning to undergraduate medical students based on an adaptation of script theory. We developed a virtual patient case that used clinically authentic audio and video, interactive three-dimensional (3D) body images, and a simulated electronic medical record. Next, we used interactive slide bars to record respondents' likelihood estimates of diagnostic possibilities at various stages of the case. Responses were dynamically compared to data from expert clinicians and peers. Comparative frequency distributions were presented to the learner and final diagnostic likelihood estimates were analyzed. Detailed student feedback was collected. Over two academic years, 322 students participated. Student diagnostic likelihood estimates were similar year to year, but were consistently different from expert clinician estimates. Student feedback was overwhelmingly positive: students found the case was novel, innovative, clinically authentic, and a valuable learning experience. We demonstrate the successful implementation of a novel approach to teaching diagnostic reasoning. Future study may delineate reasoning processes associated with differences between novice and expert responses.
NASA Astrophysics Data System (ADS)
Beichner, Robert
2016-03-01
The Student-Centered Active Learning Environment with Upside-down Pedagogies (SCALE-UP) Project combines curricula and a specially-designed instructional space to enhance learning. SCALE-UP students practice communication and teamwork skills while performing activities that enhance their conceptual understanding and problem solving skills. This can be done with small or large classes and has been implemented at more than 250 institutions. Educational research indicates that students should collaborate on interesting tasks and be deeply involved with the material they are studying. SCALE-UP classtime is spent primarily on ``tangibles'' and ``ponderables''--hands-on measurements/observations and interesting questions. There are also computer simulations (called ``visibles'') and hypothesis-driven labs. Students sit at tables designed to facilitate group interactions. Instructors circulate and engage in Socratic dialogues. The setting looks like a banquet hall, with lively interactions nearly all the time. Impressive learning gains have been measured at institutions across the US and internationally. This talk describes today's students, how lecturing got started, what happens in a SCALE-UP classroom, and how the approach has spread. The SCALE-UP project has greatly benefitted from numerous Grants made by NSF and FIPSE to NCSU and other institutions.
Characterizing representational learning: A combined simulation and tutorial on perturbation theory
NASA Astrophysics Data System (ADS)
Kohnle, Antje; Passante, Gina
2017-12-01
Analyzing, constructing, and translating between graphical, pictorial, and mathematical representations of physics ideas and reasoning flexibly through them ("representational competence") is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of Washington style tutorials both have affordances to support representational learning. This article describes work to characterize students' spontaneous use of representations before and after working with a combined simulation and tutorial on first-order energy corrections in the context of quantum-mechanical time-independent perturbation theory. Data were collected from two institutions using pre-, mid-, and post-tests to assess short- and long-term gains. A representational competence level framework was adapted to devise level descriptors for the assessment items. The results indicate an increase in the number of representations used by students and the consistency between them following the combined simulation tutorial. The distributions of representational competence levels suggest a shift from perceptual to semantic use of representations based on their underlying meaning. In terms of activity design, this study illustrates the need to support students in making sense of the representations shown in a simulation and in learning to choose the most appropriate representation for a given task. In terms of characterizing representational abilities, this study illustrates the usefulness of a framework focusing on perceptual, syntactic, and semantic use of representations.
Are Nursing Students Appropriate Partners for the Interdisciplinary Training of Surgery Residents?
Stefanidis, Dimitrios; Ingram, Katherine M; Williams, Kristy H; Bencken, Crystal L; Swiderski, Dawn
2015-01-01
Interdisciplinary team training in a simulation center recreates clinical team interactions and holds promise in improving teamwork of clinicians by breaking down educational silos. The objective of our study was to assess the appropriateness of interdisciplinary training with general surgery residents and nursing students. Over 2 consecutive academic years (2012-2013 and 2013-2014), general surgery residents participated in interdisciplinary team-training simulation-based sessions with senior nursing students. Scenario objectives included demonstration of appropriate teamwork and communication, and clinical decision making; sessions incorporated interdisciplinary debriefing of the scenarios. Participants were asked to assess their team-training experience and the appropriateness of their team-training partner. Responses were compared. A total of 16 team-training sessions were conducted during the study period. Overall, 12 surgery residents (67%) and 44 nursing students (63%) who had participated in at least 1 session responded to the survey. Although both residents and nursing students indicated that the knowledge and team skills acquired during these sessions were useful to them in clinical practice (73% vs 86%, respectively; p = not significant), residents rated their educational value lower (3.3 vs 4.3 on a 5-point scale, respectively; p < 0.01) and only 18% of the residents felt that these sessions should be continued compared with 90% of nursing students (p < 0.05). Most useful components of the sessions were participation in the scenario (73%) and debriefing (54%) for residents and for the nursing students, debriefing (91%), observation of others (68%), and interaction with resident physicians (66%) ranked highest; 48% of student nurses preferred residents as team-training partners whereas 100% residents preferred practicing nurses and 0% with nursing students owing to their limited clinical experience. Interdisciplinary team training and debriefing of surgery residents with nursing students is feasible and highly valued by nursing students. Nevertheless, our experience indicates that residents do not prefer nursing students as team-training partners owing to their limited clinical experience and would rather train with experienced nurses. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Promoting Pre-college Science Education
NASA Astrophysics Data System (ADS)
Taylor, P. L.; Lee, R. L.
2000-10-01
The Fusion Education Program, with continued support from DOE, has strengthened its interactions with educators in promoting pre-college science education for students. Projects aggressively pursued this year include an on-site, college credited, laboratory-based 10-day educator workshop on plasma and fusion science; completion of `Starpower', a fusion power plant simulation on interactive CD; expansion of scientist visits to classrooms; broadened participation in an internet-based science olympiad; and enhancements to the tours of the DIII-D Facility. In the workshop, twelve teachers used bench top devices to explore basic plasma physics. Also included were radiation experiments, computer aided drafting, techniques to integrate fusion science and technology in the classroom, and visits to a University Physics lab and the San Diego Supercomputer Center. Our ``Scientist in a Classroom'' program reached more than 2200 students at 20 schools. Our `Starpower' CD allows a range of interactive learning from the effects of electric and magnetic fields on charged particles to operation of a Tokamak-based power plant. Continuing tours of the DIII-D facility were attended by more than 800 students this past year.
Farnan, Jeanne M; Gaffney, Sean; Poston, Jason T; Slawinski, Kris; Cappaert, Melissa; Kamin, Barry; Arora, Vineet M
2016-03-01
Patient safety curricula in undergraduate medical education (UME) are often didactic format with little focus on skills training. Despite recent focus on safety, practical training in residency education is also lacking. Assessments of safety skills in UME and graduate medical education (GME) are generally knowledge, and not application-focused. We aimed to develop and pilot a safety-focused simulation with medical students and interns to assess knowledge regarding hazards of hospitalisation. A simulation demonstrating common hospital-based safety threats was designed. A case scenario was created including salient patient information and simulated safety threats such as the use of upper-extremity restraints and medication errors. After entering the room and reviewing the mock chart, learners were timed and asked to identify and document as many safety hazards as possible. Learner satisfaction was assessed using constructed-response evaluation. Descriptive statistics, including per cent correct and mean correct hazards, were performed. All 86 third-year medical students completed the encounter. Some hazards were identified by a majority of students (fall risk, 83% of students) while others were rarely identified (absence of deep venous thrombosis prophylaxis, 13% of students). Only 5% of students correctly identified pressure ulcer risk. 128 of 131 interns representing 49 medical schools participated in the GME implementation. Incoming interns were able to identify a mean of 5.1 hazards out of the 9 displayed (SD 1.4) with 40% identifying restraints as a hazard, and 20% identifying the inappropriate urinary catheter as a hazard. A simulation showcasing safety hazards was a feasible and effective way to introduce trainees to safety-focused content. Both students and interns had difficulty identifying common hazards of hospitalisation. Despite poor performance, learners appreciated the interactive experience and its clinical utility. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Medical students, clinical preventive services, and shared decision-making.
Keefe, Carole W; Thompson, Margaret E; Noel, Mary Margaret
2002-11-01
Improving access to preventive care requires addressing patient, provider, and systems barriers. Patients often lack knowledge or are skeptical about the importance of prevention. Physicians feel that they have too little time, are not trained to deliver preventive services, and are concerned about the effectiveness of prevention. We have implemented an educational module in the required family practice clerkship (1) to enhance medical student learning about common clinical preventive services and (2) to teach students how to inform and involve patients in shared decision making about those services. Students are asked to examine available evidence-based information for preventive screening services. They are encouraged to look at the recommendations of various organizations and use such resources as reports from the U.S. Preventive Services Task Force to determine recommendations they want to be knowledgeable about in talking with their patients. For learning shared decision making, students are trained to use a model adapted from Braddock and colleagues(1) to discuss specific screening services and to engage patients in the process of making informed decisions about what is best for their own health. The shared decision making is presented and modeled by faculty, discussed in small groups, and students practice using Web-based cases and simulations. The students are evaluated using formative and summative performance-based assessments as they interact with simulated patients about (1) screening for high blood cholesterol and other lipid abnormalities, (2) screening for colorectal cancer, (3) screening for prostate cancer, and (4) screening for breast cancer. The final student evaluation is a ten-minute, videotaped discussion with a simulated patient about screening for colorectal cancer that is graded against a checklist that focuses primarily on the elements of shared decision making. Our medical students appear quite willing to accept shared decision making as a skill that they should have in working with patients, and this was the primary focus of the newly implemented module. However, we have learned that students need to deepen their understanding of screening services in order to help patients understand the associated benefits and risks. The final videotaped interaction with a simulated patient about colorectal cancer screening has been very helpful in making it more obvious to faculty what students believe and know about screening for colorectal cancer. As the students are asked to discuss clinical issues with patients and discuss the pros and cons of screening tests as part of the shared decision-making process, their thinking becomes transparent and it is evident where curricular changes and enhancements are required. We have found that an explicit model that allows students to demonstrate a process for shared decision making is a good introductory tool. We think it would be helpful to provide students with more formative feedback. We would like to develop faculty development programs around shared decision making so that more of our clinical faculty would model such a process with patients. Performance-based assessments are resource-intensive, but they appear to be worth the added effort in terms of enhanced skills development and a more comprehensive appraisal of student learning.
Rein, Benjamin A; McNeil, Daniel W; Hayes, Allison R; Hawkins, T Anne; Ng, H Mei; Yura, Catherine A
2018-07-01
Training programs exist that prepare college students, faculty, and staff to identify and support students potentially at risk for suicide. Kognito is an online program that trains users through simulated interactions with virtual humans. This study evaluated Kognito's effectiveness in preparing users to intervene with at-risk students. Training was completed by 2,727 university students, faculty, and staff from April, 2014 through September, 2015. Voluntary and mandatory participants at a land-grant university completed Kognito modules designed for higher education, along with pre- and post-assessments. All modules produced significant gains in reported Preparedness, Likelihood, and Self-Efficacy in intervening with troubled students. Despite initial disparities in reported abilities, after training participants reported being similarly capable of assisting at-risk students, including LGBTQ and veteran students. Kognito training appears to be effective, on a large scale, in educating users to act in a facilitative role for at-risk college students.
NASA Astrophysics Data System (ADS)
Makahinda, T.
2018-02-01
The purpose of this research is to find out the effect of learning model based on technology and assessment technique toward thermodynamic achievement by controlling students intelligence. This research is an experimental research. The sample is taken through cluster random sampling with the total respondent of 80 students. The result of the research shows that the result of learning of thermodynamics of students who taught the learning model of environmental utilization is higher than the learning result of student thermodynamics taught by simulation animation, after controlling student intelligence. There is influence of student interaction, and the subject between models of technology-based learning with assessment technique to student learning result of Thermodynamics, after controlling student intelligence. Based on the finding in the lecture then should be used a thermodynamic model of the learning environment with the use of project assessment technique.
O'Flaherty, Jacqueline A; Laws, Thomas A
2014-11-01
Face-to-face communication with students remains the gold standard in teaching; the effectiveness of this approach to learning is commonly and regularly assessed by students' evaluation of teaching and peer reviews of teaching. Critics note that increases in on-line education are driven more by economic forces than consistent evidence to show their long-term effectiveness or acceptance by students. Numerous studies report that students in higher education found their external studies comparatively more challenging than face-to-face delivery. Identifying how educators might best provide sufficient and effective personal support for students studying in the external mode continues to challenge educators. Opportunities do exist for blending on-line course work with synchronous interactions between students and their teachers but evaluations of these innovations rarely appear in the literature. In this study, a web-based virtual classroom simulated the synchronous face-to-face discussions that occur between Bachelor of Nursing students and tutors. First year students enrolled externally in a biological science course interacted in a virtual classroom for 13 weeks completing an 'evaluation of experience' survey following their final assessment. A comparison was made between 'on-campus' and 'external to campus' students to determine the relationship between i) overall satisfaction with the course and ii) final grades, as well as their experience of the virtual class. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Interactive Chemistry Journey (by Steven D. Gammon, Lynn Hunsberger, Sharon Hutchison)
NASA Astrophysics Data System (ADS)
McCool, Debra J.
1998-05-01
Prentice Hall: Upper Saddle River, NJ, 1997. CD-ROM (Hybrid, MAC and WIN). ISBN 013 548116-3. 26.25 purchased separately; 10.00 when purchased with Prentice Hall Textbook. Interactive Chemistry Journey is a single CD-ROM packed with excellent chemistry content. Every topic that would be covered in high school chemistry and first-year college chemistry is well represented: basic skills, energy and matter, atomic structure, molecular structure, gases, kinetics, and equilibrium. Each content unit has interactive lessons and problems, including MCAT review questions. Several units have simulations that the student can manipulate to better understand the concepts.
ERIC Educational Resources Information Center
Brkich, Christopher Andrew; Newkirk, April Cribbs
2015-01-01
Providing middle-grades students the opportunity to engage meaningfully with controversial public issues (CPIs), socioscientific issues (SSIs), or a framework for social justice can be very dangerous work professionally. However, rather than encouraging teacher candidates to eschew controversy, ensuring they receive sufficient training in how to…
A Simulation of the Interaction of Acid Rain with Soil Minerals
ERIC Educational Resources Information Center
Schilling, Amber L.; Hess, Kenneth R.; Leber, Phyllis A.; Yoder, Claude H.
2004-01-01
The atmospheric issue of acid rains is subjected to a five-part laboratory experiment by concentrating on the chemistry of the infiltration process of acid rainwater through soils. This procedure of quantitative scrutiny helps students realize the efficacy of soil minerals in the consumption of surplus acidity in rainwater.
ERIC Educational Resources Information Center
Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.
2016-01-01
Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected…
Computer Generated Optical Illusions: A Teaching and Research Tool.
ERIC Educational Resources Information Center
Bailey, Bruce; Harman, Wade
Interactive computer-generated simulations that highlight psychological principles were investigated in this study in which 33 female and 19 male undergraduate college student volunteers of median age 21 matched line and circle sizes in six variations of Ponzo's illusion. Prior to working with the illusions, data were collected based on subjects'…
Blackbody Radiation from an Incandescent Lamp
ERIC Educational Resources Information Center
Ribeiro, C. I.
2014-01-01
In this article we propose an activity aimed at introductory students to help them understand the Stefan-Boltzmann and Wien's displacement laws. It only requires simple materials that are available at any school: an incandescent lamp, a variable dc energy supply, and a computer to run an interactive simulation of the blackbody spectrum.…
A Cross-Cultural Exercise: Expat in the Marketplace
ERIC Educational Resources Information Center
Oddou, Gary R.
2005-01-01
With the increasing importance of the global marketplace, students need to be more effectively prepared to manage themselves in the context of different cultures. This article explains an effective cross-cultural exercise that is simple to set up yet effective in its simulation of a cross-cultural interaction. Debriefing notes are included to help…
"SimChemistry" as an Active Learning Tool in Chemical Education
ERIC Educational Resources Information Center
Bolton, Kim; Saalman, Elisabeth; Christie, Michael; Ingerman, Ake; Linder, Cedric
2008-01-01
The publicly available free computer program, "SimChemistry," was used as an active learning tool in the chemical engineering curriculum at the University College of Boras, Sweden. The activity involved students writing their own simulation programs on topics in the area of molecular structure and interactions. Evaluation of the learning…
Inquiry Style Interactive Virtual Experiments: A Case on Circular Motion
ERIC Educational Resources Information Center
Zhou, Shaona; Han, Jing; Pelz, Nathaniel; Wang, Xiaojun; Peng, Liangyu; Xiao, Hua; Bao, Lei
2011-01-01
Interest in computer-based learning, especially in the use of virtual reality simulations is increasing rapidly. While there are good reasons to believe that technologies have the potential to improve teaching and learning, how to utilize the technology effectively in teaching specific content difficulties is challenging. To help students develop…
Use of Data Visualisation in the Teaching of Statistics: A New Zealand Perspective
ERIC Educational Resources Information Center
Forbes, Sharleen; Chapman, Jeanette; Harraway, John; Stirling, Doug; Wild, Chris
2014-01-01
For many years, students have been taught to visualise data by drawing graphs. Recently, there has been a growing trend to teach statistics, particularly statistical concepts, using interactive and dynamic visualisation tools. Free down-loadable teaching and simulation software designed specifically for schools, and more general data visualisation…
Chaotic behaviour of Zeeman machines at introductory course of mechanics
NASA Astrophysics Data System (ADS)
Nagy, Péter; Tasnádi, Péter
2016-05-01
Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.
An experiment on the use of disposable plastics as a reinforcement in concrete beams
NASA Technical Reports Server (NTRS)
Chowdhury, Mostafiz R.
1992-01-01
Illustrated here is the concept of reinforced concrete structures by the use of computer simulation and an inexpensive hands-on design experiment. The students in our construction management program use disposable plastic as a reinforcement to demonstrate their understanding of reinforced concrete and prestressed concrete beams. The plastics used for such an experiment vary from plastic bottles to steel reinforced auto tires. This experiment will show the extent to which plastic reinforcement increases the strength of a concrete beam. The procedure of using such throw-away plastics in an experiment to explain the interaction between the reinforcement material and concrete, and a comparison of the test results for using different types of waste plastics are discussed. A computer analysis to simulate the structural response is used to compare the test results and to understand the analytical background of reinforced concrete design. This interaction of using computers to analyze structures and to relate the output results with real experimentation is found to be a very useful method for teaching a math-based analytical subject to our non-engineering students.
Emotion, cognitive load and learning outcomes during simulation training.
Fraser, Kristin; Ma, Irene; Teteris, Elise; Baxter, Heather; Wright, Bruce; McLaughlin, Kevin
2012-11-01
Simulation training has emerged as an effective way to complement clinical training of medical students. Yet outcomes from simulation training must be considered suboptimal when 25-30% of students fail to recognise a cardiac murmur on which they were trained 1 hour previously. There are several possible explanations for failure to improve following simulation training, which include the impact of heightened emotions on learning and cognitive overload caused by interactivity with high-fidelity simulators. This study was conducted to assess emotion during simulation training and to explore the relationships between emotion and cognitive load, and diagnostic performance. We trained 84 Year 1 medical students on a scenario of chest pain caused by symptomatic aortic stenosis. After training, students were asked to rate their emotional state and cognitive load. We then provided training on a dyspnoea scenario before asking participants to diagnose the murmur in which they had been trained (aortic stenosis) and a novel murmur (mitral regurgitation). We used factor analysis to identify the principal components of emotion, and then studied the associations between these components of emotion and cognitive load and diagnostic performance. We identified two principal components of emotion, which we felt represented invigoration and tranquillity. Both of these were associated with cognitive load with adjusted regression coefficients of 0.63 (95% confidence interval [CI] 0.28-0.99; p = 0.001) and - 0.44 (95% CI - 0.77 to - 0.10; p = 0.009), respectively. We found a significant negative association between cognitive load and the odds of subsequently identifying the trained murmur (odds ratio 0.27, 95% CI 0.11-0.67; p = 0.004). We found that increased invigoration and reduced tranquillity during simulation training were associated with increased cognitive load, and that the likelihood of correctly identifying a trained murmur declined with increasing cognitive load. Further studies are needed to evaluate the impact on performance of strategies to alter emotion and cognitive load during simulation training. © Blackwell Publishing Ltd 2012.
An Immersive VR System for Sports Education
NASA Astrophysics Data System (ADS)
Song, Peng; Xu, Shuhong; Fong, Wee Teck; Chin, Ching Ling; Chua, Gim Guan; Huang, Zhiyong
The development of new technologies has undoubtedly promoted the advances of modern education, among which Virtual Reality (VR) technologies have made the education more visually accessible for students. However, classroom education has been the focus of VR applications whereas not much research has been done in promoting sports education using VR technologies. In this paper, an immersive VR system is designed and implemented to create a more intuitive and visual way of teaching tennis. A scalable system architecture is proposed in addition to the hardware setup layout, which can be used for various immersive interactive applications such as architecture walkthroughs, military training simulations, other sports game simulations, interactive theaters, and telepresent exhibitions. Realistic interaction experience is achieved through accurate and robust hybrid tracking technology, while the virtual human opponent is animated in real time using shader-based skin deformation. Potential future extensions are also discussed to improve the teaching/learning experience.
SU-E-P-04: Transport Theory Learning Module in the Maple Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Both, J
2014-06-01
Purpose: The medical physics graduate program at the University of Miami is developing a computerized instructional module which provides an interactive mechanism for students to learn transport theory. While not essential in the medical physics curriculum, transport theory should be taught because the conceptual level of transport theory is fundamental, a substantial literature exists and ought to be accessible, and students should understand commercial software which solves the Boltzmann equation.But conventional teaching and learning of transport theory is challenging. Students may be under prepared to appreciate its methods, results, and relevance, and it is not substantially addressed in textbooks formore » the medical physicists. Other resources an instructor might reasonably use, while excellent, may be too briskly paced for beginning students. The purpose of this work is to render teaching of transport theory more tractable by making learning highly interactive. Methods: The module is being developed in the Maple mathematics environment by instructors and graduate students. It will refresh the students' knowledge of vector calculus and differential equations, and will develop users' intuition for phase space concepts. Scattering concepts will be developed with animated simulations using tunable parameters characterizing interactions, so that students may develop a “feel” for cross section. Transport equations for one and multiple types of radiation will be illustrated with phase space animations. Numerical methods of solution will be illustrated. Results: Attempts to teach rudiments of transport theory in radiation physics and dosimetry courses using conventional classroom techniques at the University of Miami have had small success, because classroom time is limited and the material has been hard for our students to appreciate intuitively. Conclusion: A joint effort of instructor and students to teach and learn transport theory by building an interactive description of it will lead to deeper appreciation of the transport theoretical underpinnings of dosimetry.« less
NASA Astrophysics Data System (ADS)
Shirley, Rachel Elizabeth
Nuclear power plant (NPP) simulators are proliferating in academic research institutions and national laboratories in response to the availability of affordable, digital simulator platforms. Accompanying the new research facilities is a renewed interest in using data collected in NPP simulators for Human Reliability Analysis (HRA) research. An experiment conducted in The Ohio State University (OSU) NPP Simulator Facility develops data collection methods and analytical tools to improve use of simulator data in HRA. In the pilot experiment, student operators respond to design basis accidents in the OSU NPP Simulator Facility. Thirty-three undergraduate and graduate engineering students participated in the research. Following each accident scenario, student operators completed a survey about perceived simulator biases and watched a video of the scenario. During the video, they periodically recorded their perceived strength of significant Performance Shaping Factors (PSFs) such as Stress. This dissertation reviews three aspects of simulator-based research using the data collected in the OSU NPP Simulator Facility: First, a qualitative comparison of student operator performance to computer simulations of expected operator performance generated by the Information Decision Action Crew (IDAC) HRA method. Areas of comparison include procedure steps, timing of operator actions, and PSFs. Second, development of a quantitative model of the simulator bias introduced by the simulator environment. Two types of bias are defined: Environmental Bias and Motivational Bias. This research examines Motivational Bias--that is, the effect of the simulator environment on an operator's motivations, goals, and priorities. A bias causal map is introduced to model motivational bias interactions in the OSU experiment. Data collected in the OSU NPP Simulator Facility are analyzed using Structural Equation Modeling (SEM). Data include crew characteristics, operator surveys, and time to recognize and diagnose the accident in the scenario. These models estimate how the effects of the scenario conditions are mediated by simulator bias, and demonstrate how to quantify the strength of the simulator bias. Third, development of a quantitative model of subjective PSFs based on objective data (plant parameters, alarms, etc.) and PSF values reported by student operators. The objective PSF model is based on the PSF network in the IDAC HRA method. The final model is a mixed effects Bayesian hierarchical linear regression model. The subjective PSF model includes three factors: The Environmental PSF, the simulator Bias, and the Context. The Environmental Bias is mediated by an operator sensitivity coefficient that captures the variation in operator reactions to plant conditions. The data collected in the pilot experiments are not expected to reflect professional NPP operator performance, because the students are still novice operators. However, the models used in this research and the methods developed to analyze them demonstrate how to consider simulator bias in experiment design and how to use simulator data to enhance the technical basis of a complex HRA method. The contributions of the research include a framework for discussing simulator bias, a quantitative method for estimating simulator bias, a method for obtaining operator-reported PSF values, and a quantitative method for incorporating the variability in operator perception into PSF models. The research demonstrates applications of Structural Equation Modeling and hierarchical Bayesian linear regression models in HRA. Finally, the research demonstrates the benefits of using student operators as a test platform for HRA research.
Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics
NASA Astrophysics Data System (ADS)
Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.
2016-06-01
A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.
Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play
NASA Astrophysics Data System (ADS)
Barab, Sasha A.; Sadler, Troy D.; Heiselt, Conan; Hickey, Daniel; Zuiker, Steven
2007-02-01
In this paper we describe our research using a multi-user virtual environment, Quest Atlantis, to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment gaming engine to establish a virtual world through which students learned about science inquiry, water quality concepts, and the challenges in balancing scientific and socio-economic factors. Overall, students were clearly engaged, participated in rich scientific discourse, submitted quality work, and learned science content. Further, through participation in this narrative, students developed a rich perceptual, conceptual, and ethical understanding of science. This study suggests that multi-user virtual worlds can be effectively leveraged to support academic content learning.
Erratum to: Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play
NASA Astrophysics Data System (ADS)
Barab, Sasha A.; Sadler, Troy D.; Heiselt, Conan; Hickey, Daniel; Zuiker, Steven
2010-08-01
In this paper we describe our research using a multi-user virtual environment, Quest Atlantis, to embed fourth grade students in an aquatic habitat simulation. Specifically targeted towards engaging students in a rich inquiry investigation, we layered a socio-scientific narrative and an interactive rule set into a multi-user virtual environment gaming engine to establish a virtual world through which students learned about science inquiry, water quality concepts, and the challenges in balancing scientific and socio-economic factors. Overall, students were clearly engaged, participated in rich scientific discourse, submitted quality work, and learned science content. Further, through participation in this narrative, students developed a rich perceptual, conceptual, and ethical understanding of science. This study suggests that multi-user virtual worlds can be effectively leveraged to support academic content learning.
Effective use of e-grading in the dental simulation clinic.
Morrow, Jay A; Pulido, M Teresa; Smith, P Bradford; McDaniel, Thomas F; Willcox, Austin B
2014-06-01
The purpose of this article is to describe the development and implementation of a grading software system, accessible from any platform, that engages today's generation of students and replaces paper grading. Set up at one U.S. dental school in an all-access, anytime (24/7) web-based program accessed through tablets, the software allows for a comparison between students' self-grading and instructor grading. This comparison facilitates student-faculty interaction, promoting discussion and student learning. The software can also be used for practical examination grading in which blinded grading between instructors is possible. The data gathered can produce descriptive reports students can draw upon to encourage self-learning and guided learning, propelling students to a better understanding of critical principles as they progress through multiple psychomotor skill sets. Other reports generated by the software allow for instructor calibration, exporting of grades directly into the university grading report system, and visual analysis of trends within each class. In a post-course survey, students (56 percent response rate) and faculty (79 percent response rate) agreed that the electronic grading was more efficient and allowed more time for faculty-student interaction than the previous grading system, thus creating an environment more conducive to learning. Overall, the software has improved students' perception of enhanced kinetic skills, while facilitating administration of preclinical projects and practical examinations.
Schwarz, Daniel; Štourač, Petr; Komenda, Martin; Harazim, Hana; Kosinová, Martina; Gregor, Jakub; Hůlek, Richard; Smékalová, Olga; Křikava, Ivo; Štoudek, Roman; Dušek, Ladislav
2013-07-08
Medical Faculties Network (MEFANET) has established itself as the authority for setting standards for medical educators in the Czech Republic and Slovakia, 2 independent countries with similar languages that once comprised a federation and that still retain the same curricular structure for medical education. One of the basic goals of the network is to advance medical teaching and learning with the use of modern information and communication technologies. We present the education portal AKUTNE.CZ as an important part of the MEFANET's content. Our focus is primarily on simulation-based tools for teaching and learning acute medicine issues. Three fundamental elements of the MEFANET e-publishing system are described: (1) medical disciplines linker, (2) authentication/authorization framework, and (3) multidimensional quality assessment. A new set of tools for technology-enhanced learning have been introduced recently: Sandbox (works in progress), WikiLectures (collaborative content authoring), Moodle-MEFANET (central learning management system), and Serious Games (virtual casuistics and interactive algorithms). The latest development in MEFANET is designed for indexing metadata about simulation-based learning objects, also known as electronic virtual patients or virtual clinical cases. The simulations assume the form of interactive algorithms for teaching and learning acute medicine. An anonymous questionnaire of 10 items was used to explore students' attitudes and interests in using the interactive algorithms as part of their medical or health care studies. Data collection was conducted over 10 days in February 2013. In total, 25 interactive algorithms in the Czech and English languages have been developed and published on the AKUTNE.CZ education portal to allow the users to test and improve their knowledge and skills in the field of acute medicine. In the feedback survey, 62 participants completed the online questionnaire (13.5%) from the total 460 addressed. Positive attitudes toward the interactive algorithms outnumbered negative trends. The peer-reviewed algorithms were used for conducting problem-based learning sessions in general medicine (first aid, anesthesiology and pain management, emergency medicine) and in nursing (emergency medicine for midwives, obstetric analgesia, and anesthesia for midwifes). The feedback from the survey suggests that the students found the interactive algorithms as effective learning tools, facilitating enhanced knowledge in the field of acute medicine. The interactive algorithms, as a software platform, are open to academic use worldwide. The existing algorithms, in the form of simulation-based learning objects, can be incorporated into any educational website (subject to the approval of the authors).
NASA Astrophysics Data System (ADS)
Schroeder, Mubina Khan
In science education, the use of digital technology-based learning can help students struggling with difficult concepts such as the movement of molecules. While digital learning tools hold much promise for science education, the question arises as to whether or not such technology can serve as an adequate surrogate for the teacher-student interactions that theorists like Lev Vygotsky (1978) underscored as being critical to learning. In response to such concerns, designers of digital curricula often utilize scaffolds to help students as they learn from such programs. Using a simulation designed to teach students about the concept of diffusion as an example, I examine the effect of including prompting language in the learning sequence of the simulation. The use of prompting language in digital curriculum appears to be successful because it elicits science students to reflect and metacognise about their learning, lending support to Vygotsky's (1978) ideas of teaching and learning involving outer and inner dialog. However, findings from think aloud data continue to underscore the importance of human linguistic exchange as a preferable learning paradigm.
Macfarlane, P.A.; Bohling, G.; Thompson, K.W.; Townsend, M.
2006-01-01
Environmental and earth science students are novice learners and lack the experience needed to rise to the level of expert. To address this problem we have developed the prototype Plume Busters?? software as a capstone educational experience, in which students take on the role of an environmental consultant. Following a pipeline spill, the environmental consultant is hired by the pipeline owner to locate the resulting plume created by spill and remediate the contaminated aquifer at minimum monetary and time cost. The contamination must be removed from the aquifer before it reaches the river and eventually a downstream public water supply. The software consists of an interactive Java application and accompanying HTML linked pages. The application simulates movement of a plume from a pipeline break throug h a shallow alluvial aquifer towards the river. The accompanying web pages establish the simulated contamination scenario and provide students with background material on ground-water flow and transport principles. To make the role-play more realistic, the student must consider cost and time when making decisions about siting observation wells and wells for the pump-and-treat remediation system.
The effect of dyad versus individual simulation-based ultrasound training on skills transfer.
Tolsgaard, Martin G; Madsen, Mette E; Ringsted, Charlotte; Oxlund, Birgitte S; Oldenburg, Anna; Sorensen, Jette L; Ottesen, Bent; Tabor, Ann
2015-03-01
Dyad practice may be as effective as individual practice during clinical skills training, improve students' confidence, and reduce costs of training. However, there is little evidence that dyad training is non-inferior to single-student practice in terms of skills transfer. This study was conducted to compare the effectiveness of simulation-based ultrasound training in pairs (dyad practice) with that of training alone (single-student practice) on skills transfer. In a non-inferiority trial, 30 ultrasound novices were randomised to dyad (n = 16) or single-student (n = 14) practice. All participants completed a 2-hour training programme on a transvaginal ultrasound simulator. Participants in the dyad group practised together and took turns as the active practitioner, whereas participants in the single group practised alone. Performance improvements were evaluated through pre-, post- and transfer tests. The transfer test involved the assessment of a transvaginal ultrasound scan by one of two clinicians using the Objective Structured Assessment of Ultrasound Skills (OSAUS). Thirty participants completed the simulation-based training and 24 of these completed the transfer test. Dyad training was found to be non-inferior to single-student training: transfer test OSAUS scores were significantly higher than the pre-specified non-inferiority margin (delta score 7.8%, 95% confidence interval -3.8-19.6%; p = 0.04). More dyad (71.4%) than single (30.0%) trainees achieved OSAUS scores above a pre-established pass/fail level in the transfer test (p = 0.05). There were significant differences in performance scores before and after training in both groups (pre- versus post-test, p < 0.01) with large effect sizes (Cohen's d = 3.85) and no significant interactions between training type and performance (p = 0.59). The dyad group demonstrated higher training efficiency in terms of simulator score per number of attempts compared with the single-student group (p = 0.03). Dyad practice improves the efficiency of simulation-based training and is non-inferior to individual practice in terms of skills transfer. © 2015 John Wiley & Sons Ltd.
Astronomical Simulations Using Visual Python
NASA Astrophysics Data System (ADS)
Cobb, Michael L.
2007-05-01
The Physics and Engineering Physics Department at Southeast Missouri State University has adopted the “Matter and Interactions I Modern Mechanics” text by Chabay and Sherwood for our calculus based introductory physics course. We have fully integrated the use of modeling and simulations by using the Visual Python language also know as VPython. This powerful, high level, object orientated language with full three dimensional, stereo graphics has stimulated both my students and myself to find wider applications for our new found skills. We have successfully modeled gravitational resonances in planetary rings, galaxy collisions, and planetary orbits around binary star systems. This talk will provide a quick overview of VPython and demonstrate the various simulations.
Foster, Adriana; Chaudhary, Neelam; Murphy, James; Lok, Benjamin; Waller, Jennifer; Buckley, Peter F
2015-12-01
There is increasing use of educational technologies in medical and surgical specialties. Described herein is the development and application of an interactive virtual patient (VP) to teach suicide risk assessment to health profession trainees. We studied the effect of the following: (1) an interaction with a bipolar VP who attempts suicide or (2) completion of a video-teaching module on interviewing a bipolar patient, on medical students' proficiency in assessing suicide risk in standardized patients. We hypothesized that students who interact with a bipolar VP will be at least as likely to assess suicide risk, as their peers who completed a video module. In a randomized, controlled study, we compared the frequency with which second-year students at the Medical College of Georgia asked suicide risk and bipolar symptoms questions by VP/video group. We recruited 67 students. The VP group inquired more frequently than the video group in 4 of 5 suicide risk areas and 11 of 14 other bipolar symptomatology areas. There were minimal to small effect sizes in favor of the VP technology. The students preferred the video over the VP as an educational tool (p = 0.007). Our study provides proof of concept that both VP and video module approaches are feasible for teaching students to assess suicide risk, and we present evidence about the role of active learning to improve communication skills. Depending on the learning context, interviewing a VP or observation of a videotaped interview can enhance the students' suicide risk assessment proficiency in an interview with a standardized patient. An interactive VP is a plausible modality to deliver basic concepts of suicide risk assessment to medical students, can facilitate individual preferences by providing easy access and portability, and has potential generalizability to other aspects of psychiatric training.
Sunnqvist, Charlotta; Karlsson, Karin; Lindell, Lisbeth; Fors, Uno
2016-03-01
Psychiatric and mental health nursing is built on a trusted nurse and patient relationship. Therefore communication and clinical reasoning are two important issues. Our experiences as teachers in psychiatric educational programmes are that the students feel anxiety and fear before they start their clinical practices in psychiatry. Therefore there is a need for bridging over the fear. Technology enhanced learning might support such activities so we used Virtual patients (VPs), an interactive computer simulations of real-life clinical scenarios. The aim of this study was to investigate 4th term nursing students' opinions on the use of Virtual Patients for assessment in a Mental Health and Ill-health course module. We asked 24 volunteering students to practise with five different VP cases during almost 10 weeks before the exam. The participants were gathered together for participating in a written and an oral evaluation. The students were positive to the use of VPs in psychiatry and were very positive to use VPs in their continued nursing education. It seems that Virtual Patients can be an activity producing pedagogic model promoting students' independent knowledge development, critical thinking, reflection and problem solving ability for nurse students in psychiatric care. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Aquino, Karl; Serva, Mark A.
2005-01-01
This article describes a project that simulates the interplay between management and development project teams in a business environment. Each student team was assigned a management role supervising one project and a development role implementing another project. Results indicate that teams that communicate regularly and interact socially outside…
The Results of a Longitudinal Study of the Effects of Network Delays on Learning
ERIC Educational Resources Information Center
Sullivan, Jay; Bush, Francis; Squire, James; Walsh, Vonda
2013-01-01
The use of interactive web-based teaching materials has become an indelible feature of the educational landscape over the last decade especially for technical subjects such as engineering and mathematics. While web-based simulations present great opportunity to provide students with the feedback needed for the acquisition of new concepts, it has…
SAFAS: Unifying Form and Structure through Interactive 3D Simulation
ERIC Educational Resources Information Center
Polys, Nicholas F.; Bacim, Felipe; Setareh, Mehdi; Jones, Brett D.
2015-01-01
There has been a significant gap between the tools used for the design of a building's architectural form and those that evaluate the structural physics of that form. Seeking to bring the perspectives of visual design and structural engineering closer together, we developed and evaluated a design tool for students and practitioners to explore the…
AUTO: An Automation Simulator.
ERIC Educational Resources Information Center
Gold, Bennett Alan
In order to devise an aid for the teaching of formal languages and automata theory, a system was developed which allows a student to design, test, and change automata in an interactive manner. This process permits the user to observe the step-by-step operation of a defined automaton and to correct or alter its operation. Thus, the need for lengthy…
ERIC Educational Resources Information Center
Martin, June M.
This research project analyzed the manifest and hidden curriculum of a sixth-grade writing project to determine how it transmitted societal values. Entitled "Right is Write", the writing project was a simulation game in which students played roles of writers, agents, editors, and publishers interacting to produce, evaluate, buy, and sell…
ERIC Educational Resources Information Center
Tambade, Popat S.
2011-01-01
The objective of this article is to graphically illustrate to the students the physical phenomenon of motion of charged particle under the action of simultaneous electric and magnetic fields by simulating particle motion on a computer. Differential equations of motions are solved analytically and path of particle in three-dimensional space are…
Exploring Experimental Design: An Excel-Based Simulation Using Steller Sea Lion Behavior
ERIC Educational Resources Information Center
Ryan, Wendy L.; St. Iago-McRae, Ezry
2016-01-01
Experimentation is the foundation of science and an important process for students to understand and experience. However, it can be difficult to teach some aspects of experimentation within the time and resource constraints of an academic semester. Interactive models can be a useful tool in bridging this gap. This freely accessible simulation…
ERIC Educational Resources Information Center
Choi, Gahee; Mallinckrodt, Brent; Richardson, John D.
2015-01-01
Undergraduates (N = 135) evaluated 1 of 4 simulated 1st counseling sessions. Two international counselors (Canadian and Korean) alternated between making or not making broaching statements about their language and cultural differences. Significant main effects for counselor nationality and interaction effects between counselor nationality and…
ERIC Educational Resources Information Center
Wold, Kari
2013-01-01
Successfully interacting with those from different cultures is essential to excel in any field, particularly when global, transnational collaborations in the workplace are increasingly common. However, many higher education students in engineering are not explicitly taught how to display the global competency skills desired by future employers. To…
Interprofessional, simulation-based training in end of life care communication: a pilot study.
Efstathiou, Nikolaos; Walker, Wendy Marina
2014-01-01
This paper reports on the process and outcomes of a study, designed to pilot the use of interprofessional, simulation-based training in end of life care communication. Participants comprised 50 final year medicine, nursing, physiotherapy and pharmacy students. Learning methods included observation of role play and facilitated, interactive group discussion. A Likert scale rating questionnaire was used to evaluate the impact of the learning experience. Evaluation data revealed that students were supportive of interprofessional learning and could recognise its benefits. The results indicated self-perceived improvements in knowledge, skills, confidence and competence when dealing with challenging end of life care communication situations. Comparison of pre- and post-intervention scores revealed a statistically significant positive change in the students' perceptions about their level of knowledge (Z = -5.887, p = 0.000). The reported benefits need to be balanced against design and delivery issues that proved labour and resource intensive. Economic evaluation is worthy of further consideration.
NASA Astrophysics Data System (ADS)
Benakli, Nadia; Kostadinov, Boyan; Satyanarayana, Ashwin; Singh, Satyanand
2017-04-01
The goal of this paper is to promote computational thinking among mathematics, engineering, science and technology students, through hands-on computer experiments. These activities have the potential to empower students to learn, create and invent with technology, and they engage computational thinking through simulations, visualizations and data analysis. We present nine computer experiments and suggest a few more, with applications to calculus, probability and data analysis, which engage computational thinking through simulations, visualizations and data analysis. We are using the free (open-source) statistical programming language R. Our goal is to give a taste of what R offers rather than to present a comprehensive tutorial on the R language. In our experience, these kinds of interactive computer activities can be easily integrated into a smart classroom. Furthermore, these activities do tend to keep students motivated and actively engaged in the process of learning, problem solving and developing a better intuition for understanding complex mathematical concepts.
A patient safety course for preclinical medical students.
Shekhter, Ilya; Rosen, Lisa; Sanko, Jill; Everett-Thomas, Ruth; Fitzpatrick, Maureen; Birnbach, David
2012-12-01
We developed a course to introduce incoming third-year medical students to the subject of patient safety, to focus their attention on teamwork and communication, and to create an awareness of patient-safe practices that will positively impact their performance as clinicians. The course, held prior to the start of clinical rotations, consisted of lectures, web-based didactic materials, small group activities and simulation exercises, with an emphasis on experiential learning. First, students inspected a 'room of horrors', which is a simulated clinical environment riddled with errors. Second, we used lenticular puzzles in small groups to elicit teamwork behaviours that parallel real-life interactions in health care. Each team was given 8 minutes to complete a 48-piece puzzle, with five pieces removed at random and given to other teams. The salient teaching point of this exercise is that for a team to complete the task, team members must communicate with members of their own team as well as with other teams. Last, simulation scenarios provided a clinical context to reinforce the skills introduced through the puzzle exercise and lectures. The students were split into groups of six or seven members and challenged with two scenarios. Both scenarios focused on a 56-year-old man in respiratory distress. The teams were debriefed on both clinical management and teamwork. The vast majority of the students (93%) agreed that the course improved their patient safety knowledge and skills. The positive response from students to the introductory course is an important step in fostering a culture of patient safety. © Blackwell Publishing Ltd 2012.
Hallin, Karin; Haggstrom, Marie; Backstrom, Britt; Kristiansen, Lisbeth Porskrog
2015-09-28
Health care educators account for variables affecting patient safety and are responsible for developing the highly complex process of education planning. Clinical judgement is a multidimensional process, which may be affected by learning styles. The aim was to explore three specific hypotheses to test correlations between nursing students' team achievements in clinical judgement and emotional, sociological and physiological learning style preferences. A descriptive cross-sectional study was conducted with Swedish university nursing students in 2012-2013. Convenience sampling was used with 60 teams with 173 nursing students in the final semester of a three-year Bachelor of Science in nursing programme. Data collection included questionnaires of personal characteristics, learning style preferences, determined by the Dunn and Dunn Productivity Environmental Preference Survey, and videotaped complex nursing simulation scenarios. Comparison with Lasater Clinical Judgement Rubric and Non-parametric analyses were performed. Three significant correlations were found between the team achievements and the students' learning style preferences: significant negative correlation with 'Structure' and 'Kinesthetic' at the individual level, and positive correlation with the 'Tactile' variable. No significant correlations with students' 'Motivation', 'Persistence', 'Wish to learn alone' and 'Wish for an authoritative person present' were seen. There were multiple complex interactions between the tested learning style preferences and the team achievements of clinical judgement in the simulation room, which provides important information for the becoming nurses. Several factors may have influenced the results that should be acknowledged when designing further research. We suggest conducting mixed methods to determine further relationships between team achievements, learning style preferences, cognitive learning outcomes and group processes.
NASA Astrophysics Data System (ADS)
Liddicoat, J. C.; Bower, P.
2015-12-01
The U.S. Environmental Protection Agency estimates that presently there are over half a million brownfields in the United States, but this number only includes sites for which an Environmental Site Assessment has been conducted. The actual number of brownfields is certainly in the millions and constitutes one of the major environmental issues confronting all communities today. Taught in part or entirely online for more than 15 years in environmental science, engineering, and hydrology courses at over a dozen colleges, universities, and high schools in the United States, Brownfield Action (BA) is an interactive, web-based simulation that combines scientific expertise, constructivist education philosophy, and multimedia to advance the teaching of environmental science (Bower et al., 2011, 2014; Liddicoat and Bower, 2015). In the online simulation and classroom, students form geotechnical consulting companies with a peer chosen at random to solve a problem in environmental forensics. The BA model contains interdisciplinary scientific and social information that are integrated within a digital learning environment that encourages students to construct their knowledge as they learn by doing. As such, the approach improves the depth and coherence of students understanding of the course material. Like real-world environmental consultants and professionals, students are required to develop and apply expertise from a wide range of fields, including environmental science and engineering as well as journalism, medicine, public health, law, civics, economics, and business management. The overall objective is for students to gain an unprecedented appreciation of the complexity, ambiguity, and risk involved in any environmental issue, and to acquire STEM knowledge that can be used constructively when confronted with such an issue.
Interactive, Online, Adsorption Lab to Support Discovery of the Scientific Process
NASA Astrophysics Data System (ADS)
Carroll, K. C.; Ulery, A. L.; Chamberlin, B.; Dettmer, A.
2014-12-01
Science students require more than methods practice in lab activities; they must gain an understanding of the application of the scientific process through lab work. Large classes, time constraints, and funding may limit student access to science labs, denying students access to the types of experiential learning needed to motivate and develop new scientists. Interactive, discovery-based computer simulations and virtual labs provide an alternative, low-risk opportunity for learners to engage in lab processes and activities. Students can conduct experiments, collect data, draw conclusions, and even abort a session. We have developed an online virtual lab, through which students can interactively develop as scientists as they learn about scientific concepts, lab equipment, and proper lab techniques. Our first lab topic is adsorption of chemicals to soil, but the methodology is transferrable to other topics. In addition to learning the specific procedures involved in each lab, the online activities will prompt exploration and practice in key scientific and mathematical concepts, such as unit conversion, significant digits, assessing risks, evaluating bias, and assessing quantity and quality of data. These labs are not designed to replace traditional lab instruction, but to supplement instruction on challenging or particularly time-consuming concepts. To complement classroom instruction, students can engage in a lab experience outside the lab and over a shorter time period than often required with real-world adsorption studies. More importantly, students can reflect, discuss, review, and even fail at their lab experience as part of the process to see why natural processes and scientific approaches work the way they do. Our Media Productions team has completed a series of online digital labs available at virtuallabs.nmsu.edu and scienceofsoil.com, and these virtual labs are being integrated into coursework to evaluate changes in student learning.
Flentje, Markus; Müßel, Thomas; Henzel, Bettina; Jantzen, Jan-Peter
2016-01-01
Physicians and nursing staff interact as a team on a daily basis in hospital settings. However, both educational paths offer few opportunities to establish contact with the other professional group. Neither professional group can practice its later role with the other group in a "safe" learning environment. Routine interprofessional collaboration is described as being in need of great improvement and carries with it the potential for conflict. To improve interprofessional communication and task management, a simulation-based emergency training session for nursing students and fifth-year medical students was developed at the KRH Klinikum Nordstadt in Hanover, Germany. As a pilot project, the course was held twice in the form of a one-day session with ten nursing and four medical students. Using the example of a patient's fall, course participants were able to observe and actively treat multiple simulated patients. Following each simulation the trainer conducted a comprehensive debriefing. The course was then evaluated using a questionnaire. The evaluation of the team training showed a high level of acceptance among the two participating professional groups. On a scale of 1 (hardly applicable) to 5 (strongly applicable), the course was given a 4 by both professional groups for its relevance to daily work. In the open-ended written responses praise was specifically given for the opportunity to learn how to switch perspectives as a result of the simulation exercises. A common emergency on the hospital ward offers a good opportunity to establish and practice interprofessional team skills. With the knowledge gained about communication and the ability to change viewpoints, participants are able to improve their team skills. Participants demonstrated a high degree of acceptance for the training program.
Gas-Expanded Liquids: Synergism of Experimental and Computational Determinations of Local Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles A. Eckert; Charles L. Liotta; Rigoberto Hernandez
2007-06-26
This project focuses on the characterization of a new class of solvent systems called gas-expanded liquids (GXLs), targeted for green-chemistry processing. The collaboration has adopted a synergistic approach combining elements of molecular dynamics (MD) simulation and spectroscopic experiments to explore the local solvent behavior that could not be studied by simulation or experiment alone. The major accomplishments from this project are: • Applied MD simulations to explore the non-uniform structure of CO2/methanol and CO2/acetone GXLs and studied their dynamic behavior with self-diffusion coefficients and correlation functions • Studied local solvent structure and solvation behavior with a combination of spectroscopy andmore » MD simulations • Measured transport properties of heterocyclic solutes in GXLs through Taylor-Aris diffusion techniques and compared these findings to those of MD simulations • Probed local polarity and specific solute-solvent interactions with Diels-Alder and SN2 reaction studies The broader scientific impact resulting from the research activities of this contract have been recognized by two recent awards: the Presidential Green Chemistry Award (Eckert & Liotta) and a fellowship in the American Association for the Advancement of Science (Hernandez). In addition to the technical aspects of this contract, the investigators have been engaged in a number of programs extending the broader impacts of this project. The project has directly supported the development of two postdoctoral researcher, four graduate students, and five undergraduate students. Several of the undergraduate students were co-funded by a Georgia Tech program, the Presidential Undergraduate Research Award. The other student, an African-American female graduated from Georgia Tech in December 2005, and was co-funded through an NSF Research and Education for Undergraduates (REU) award.« less
Implementation of interactive virtual simulation of physical systems
NASA Astrophysics Data System (ADS)
Sanchez, H.; Escobar, J. J.; Gonzalez, J. D.; Beltran, J.
2014-03-01
Considering the limited availability of laboratories for physics teaching and the difficulties this causes in the learning of school students in Santa Marta Colombia, we have developed software in order to generate greater student interaction with the phenomena physical and improve their understanding. Thereby, this system has been proposed in an architecture Model/View- View- Model (MVVM), sharing the benefits of MVC. Basically, this pattern consists of 3 parts: The Model, that is responsible for business logic related. The View, which is the part with which we are most familiar and the user sees. Its role is to display data to the user and allowing manipulation of the data of the application. The ViewModel, which is the middle part of the Model and the View (analogous to the Controller in the MVC pattern), as well as being responsible for implementing the behavior of the view to respond to user actions and expose data model in a way that is easy to use links to data in the view. .NET Framework 4.0 and editing package Silverlight 4 and 5 are the main requirements needed for the deployment of physical simulations that are hosted in the web application and a web browser (Internet Explorer, Mozilla Firefox or Chrome). The implementation of this innovative application in educational institutions has shown that students improved their contextualization of physical phenomena.
Advancing interprofessional education through the use of high fidelity human patient simulators
Smithburger, Pamela L.; Kane-Gill, Sandra L.; Kloet, Megan A.; Lohr, Brian; Seybert, Amy L.
Background Modern medical care increasingly requires coordinated teamwork and communication between healthcare professionals of different disciplines. Unfortunately, healthcare professional students are rarely afforded the opportunity to learn effective methods of interprofessional (IP) communication and teamwork strategies during their education. The question of how to best incorporate IP interactions in the curricula of the schools of health professions remains unanswered. Objective We aim to solve the lack of IP education in the pharmacy curricula through the use of high fidelity simulation (HFS) to allow teams of medical, pharmacy, nursing, physician assistant, and social work students to work together in a controlled environment to solve cases of complex medical and social issues. Methods Once weekly for a 4-week time period, students worked together to complete complex simulation scenarios in small IP teams consisting of pharmacy, medical, nursing, social work, and physician assistant students. Student perception of the use of HFS was evaluated by a survey given at the conclusion of the HFS sessions. Team communication was evaluated through the use of Communication and Teamwork Skills (CATS) Assessment by 2 independent evaluators external to the project. Results The CATS scores improved from the HFS sessions 1 to 2 (p = 0.01), 2 to 3 (p = 0.035), and overall from 1 to 4 (p = 0.001). The inter-rater reliability between evaluators was high (0.85, 95% CI 0.71, 0.99). Students perceived the HFS improved: their ability to communicate with other professionals (median =4); confidence in patient care in an IP team (median=4). It also stimulated student interest in IP work (median=4.5), and was an efficient use of student time (median=4.5) Conclusions The use of HFS improved student teamwork and communication and was an accepted teaching modality. This method of exposing students of the health sciences to IP care should be incorporated throughout the curricula. PMID:24155851
NASA Astrophysics Data System (ADS)
Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.
2016-02-01
Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected physical and virtual experiences has the potential to promote connections among ideas. This paper explores the effect of augmenting a virtual lab with physical controls on high school chemistry students' understanding of gas laws. We compared students using the augmented virtual lab to students using a similar sensor-based physical lab with teacher-led discussions. Results demonstrate that students in the augmented virtual lab condition made significant gains from pretest and posttest and outperformed traditional students on some but not all concepts. Results provide insight into incorporating mixed-reality technologies into authentic classroom settings.
Medical education and human trafficking: using simulation
Stoklosa, Hanni; Lyman, Michelle; Bohnert, Carrie; Mittel, Olivia
2017-01-01
ABSTRACT Healthcare providers have the potential to play a crucial role in human trafficking prevention, identification, and intervention. However, trafficked patients are often unidentified due to lack of education and preparation available to healthcare professionals at all levels of training and practice. To increase victim identification in healthcare settings, providers need to be educated about the issue of trafficking and its clinical presentations in an interactive format that maximizes learning and ultimately patient-centered outcomes. In 2014, University of Louisville School of Medicine created a simulation-based medical education (SBME) curriculum to prepare students to recognize victims and intervene on their behalf. The authors share the factors that influenced the session’s development and incorporation into an already full third year medical curriculum and outline the development process. The process included a needs assessment for the education intervention, development of objectives and corresponding assessment, implementation of the curriculum, and finally the next steps of the module as it develops further. Additional alternatives are provided for other medical educators seeking to implement similar modules at their home institution. It is our hope that the description of this process will help others to create similar interactive educational programs and ultimately help trafficking survivors receive the care they need. Abbreviations: HCP: Healthcare professional; M-SIGHT: Medical student instruction in global human trafficking; SBME: Simulation-based medical education; SP: Standardized patient; TIC: Trauma-informed care PMID:29228882
Medical education and human trafficking: using simulation.
Stoklosa, Hanni; Lyman, Michelle; Bohnert, Carrie; Mittel, Olivia
2017-01-01
Healthcare providers have the potential to play a crucial role in human trafficking prevention, identification, and intervention. However, trafficked patients are often unidentified due to lack of education and preparation available to healthcare professionals at all levels of training and practice. To increase victim identification in healthcare settings, providers need to be educated about the issue of trafficking and its clinical presentations in an interactive format that maximizes learning and ultimately patient-centered outcomes. In 2014, University of Louisville School of Medicine created a simulation-based medical education (SBME) curriculum to prepare students to recognize victims and intervene on their behalf. The authors share the factors that influenced the session's development and incorporation into an already full third year medical curriculum and outline the development process. The process included a needs assessment for the education intervention, development of objectives and corresponding assessment, implementation of the curriculum, and finally the next steps of the module as it develops further. Additional alternatives are provided for other medical educators seeking to implement similar modules at their home institution. It is our hope that the description of this process will help others to create similar interactive educational programs and ultimately help trafficking survivors receive the care they need. HCP: Healthcare professional; M-SIGHT: Medical student instruction in global human trafficking; SBME: Simulation-based medical education; SP: Standardized patient; TIC: Trauma-informed care.
Fernandez Castelao, Ezequiel; Russo, Sebastian G; Cremer, Stephan; Strack, Micha; Kaminski, Lea; Eich, Christoph; Timmermann, Arnd; Boos, Margarete
2011-10-01
To evaluate the impact of video-based interactive crisis resource management (CRM) training on no-flow time (NFT) and on proportions of team member verbalisations (TMV) during simulated cardiopulmonary resuscitation (CPR). Further, to investigate the link between team leader verbalisation accuracy and NFT. The randomised controlled study was embedded in the obligatory advanced life support (ALS) course for final-year medical students. Students (176; 25.35±1.03 years, 63% female) were alphabetically assigned to 44 four-person teams that were then randomly (computer-generated) assigned to either CRM intervention (n=26), receiving interactive video-based CRM-training, or to control intervention (n=18), receiving an additional ALS-training. Primary outcomes were NFT and proportions of TMV, which were subdivided into eight categories: four team leader verbalisations (TLV) with different accuracy levels and four follower verbalisation categories (FV). Measurements were made of all groups administering simulated adult CPR. NFT rates were significantly lower in the CRM-training group (31.4±6.1% vs. 36.3±6.6%, p=0.014). Proportions of all TLV categories were higher in the CRM-training group (p<0.001). Differences in FV were only found for one category (unsolicited information) (p=0.012). The highest correlation with NFT was found for high accuracy TLV (direct orders) (p=0.06). The inclusion of CRM training in undergraduate medical education reduces NFT in simulated CPR and improves TLV proportions during simulated CPR. Further research will test how these results translate into clinical performance and patient outcome. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Cicero, Mark Xavier; Whitfill, Travis; Overly, Frank; Baird, Janette; Walsh, Barbara; Yarzebski, Jorge; Riera, Antonio; Adelgais, Kathleen; Meckler, Garth D; Baum, Carl; Cone, David Christopher; Auerbach, Marc
2017-01-01
Paramedics and emergency medical technicians (EMTs) triage pediatric disaster victims infrequently. The objective of this study was to measure the effect of a multiple-patient, multiple-simulation curriculum on accuracy of pediatric disaster triage (PDT). Paramedics, paramedic students, and EMTs from three sites were enrolled. Triage accuracy was measured three times (Time 0, Time 1 [two weeks later], and Time 2 [6 months later]) during a disaster simulation, in which high and low fidelity manikins and actors portrayed 10 victims. Accuracy was determined by participant triage decision concordance with predetermined expected triage level (RED [Immediate], YELLOW [Delayed], GREEN [Ambulatory], BLACK [Deceased]) for each victim. Between Time 0 and Time 1, participants completed an interactive online module, and after each simulation there was an individual debriefing. Associations between participant level of training, years of experience, and enrollment site were determined, as were instances of the most dangerous mistriage, when RED and YELLOW victims were triaged BLACK. The study enrolled 331 participants, and the analysis included 261 (78.9%) participants who completed the study, 123 from the Connecticut site, 83 from Rhode Island, and 55 from Massachusetts. Triage accuracy improved significantly from Time 0 to Time 1, after the educational interventions (first simulation with debriefing, and an interactive online module), with a median 10% overall improvement (p < 0.001). Subgroup analyses showed between Time 0 and Time 1, paramedics and paramedic students improved more than EMTs (p = 0.002). Analysis of triage accuracy showed greatest improvement in overall accuracy for YELLOW triage patients (Time 0 50% accurate, Time1 100%), followed by RED patients (Time 0 80%, Time 1 100%). There was no significant difference in accuracy between Time 1 and Time 2 (p = 0.073). This study shows that the multiple-victim, multiple-simulation curriculum yields a durable 10% improvement in simulated triage accuracy. Future iterations of the curriculum can target greater improvements in EMT triage accuracy.
The value of SPaCE in delivering patient feedback.
Clapham, Laura; Allan, Laura; Stirling, Kevin
2016-02-01
The use of simulated patients (SPs) within undergraduate medical curricula is an established and valued learning opportunity. Within the context of simulation, it is imperative to capture feedback from all participants within the simulation activity. The Simulated Patient Candidate Evaluation (SPaCE) tool was developed to deliver SP feedback following a simulation activity. SpaCE is a closed feedback tool that allows SPs to rate a student's performance, using a five-point Likert scale, in three domains: attitude; interaction skills; and management. This research study examined the value of the SPaCE tool and how it contributes to the overall feedback that a student receives. Classical test theory was used to determine the reliability of the SPaCE tool. An evaluation of all SP responses was conducted to observe trends in scoring patterns for each question. Qualitative data were collected via a free-text questionnaire and subsequent focus group discussion. It is imperative to capture feedback from all participants within the simulation activity Classical test theory determined that the SPaCE tool had a reliability co-efficient of 0.89. A total of 13 SPs replied to the questionnaire. A thematic analysis of all questionnaire data identified that the SPaCE tool provides a structure that allows patient feedback to be given effectively following a simulation activity. These themes were discussed further with six SPs who attended the subsequent focus group session. The SPaCE tool has been shown to be a reliable closed feedback tool that allows SPs to discriminate between students, based on their performance. The next stage in the development of the SPaCE tool is to test the wider applicability of this feedback tool. © 2015 John Wiley & Sons Ltd.
Real Science, Real Learning: Bridging the Gap Between Scientists, Educators and Students
NASA Astrophysics Data System (ADS)
Lewis, Y.
2006-05-01
Today as never before, America needs its citizens to be literate in science and technology. Not only must we only inspire a new generation of scientists and engineers and technologists, we must foster a society capable of meeting complex, 21st-century challenges. Unfortunately, the need for creative, flexible thinkers is growing at a time when our young students are lagging in science interest and performance. Over the past 17 years, the JASON Project has worked to link real science and scientists to the classroom. This link provide viable pipeline to creating the next generation scientists and researchers. Ultimately, JASON's mission is to improve the way science is taught by enabling students to learn directly from leading scientists. Through partnerships with agencies such as NOAA and NASA, JASON creates multimedia classroom products based on current scientific research. Broadcasts of science expeditions, hosted by leading researchers, are coupled with classroom materials that include interactive computer-based simulations, video- on-demand, inquiry-based experiments and activities, and print materials for students and teachers. A "gated" Web site hosts online resources and provides a secure platform to network with scientists and other classrooms in a nationwide community of learners. Each curriculum is organized around a specific theme for a comprehensive learning experience. It may be taught as a complete package, or individual components can be selected to teach specific, standards-based concepts. Such thematic units include: Disappearing Wetlands, Mysteries of Earth and Mars, and Monster Storms. All JASON curriculum units are grounded in "inquiry-based learning." The highly interactive curriculum will enable students to access current, real-world scientific research and employ the scientific method through reflection, investigation, identification of problems, sharing of data, and forming and testing hypotheses. JASON specializes in effectively applying technology in science education by designing animated interactive visualizations that promote student understanding of complex scientific concepts and systems (Rieber, 1990, 1996). JASON's experience in utilizing the power of simulation technology has been widely recognized for its effectiveness in exciting and engaging students in science learning by independent evaluations of JASON's multimedia science curriculum (Ba et al., 2001; Goldenberg et al., 2003). The data collected indicates that JASON's science products have had a positive impact on students' science learning, have positively influenced their perceptions of scientists and of becoming scientists, and have helped diverse students grasp a deeper understanding of complex scientific content, concepts and technologies.
NASA Astrophysics Data System (ADS)
Haddad, David Elias
Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's human population lives along active fault zones, a quantitative understanding of the mechanics of earthquakes and faulting is necessary to build accurate earthquake forecasts. My research relies on the quantitative documentation of the geomorphic expression of large earthquakes and the physical processes that control their spatiotemporal distributions. The first part of my research uses high-resolution topographic lidar data to quantitatively document the geomorphic expression of historic and prehistoric large earthquakes. Lidar data allow for enhanced visualization and reconstruction of structures and stratigraphy exposed by paleoseismic trenches. Lidar surveys of fault scarps formed by the 1992 Landers earthquake document the centimeter-scale erosional landforms developed by repeated winter storm-driven erosion. The second part of my research employs a quasi-static numerical earthquake simulator to explore the effects of fault roughness, friction, and structural complexities on earthquake-generated deformation. My experiments show that fault roughness plays a critical role in determining fault-to-fault rupture jumping probabilities. These results corroborate the accepted 3-5 km rupture jumping distance for smooth faults. However, my simulations show that the rupture jumping threshold distance is highly variable for rough faults due to heterogeneous elastic strain energies. Furthermore, fault roughness controls spatiotemporal variations in slip rates such that rough faults exhibit lower slip rates relative to their smooth counterparts. The central implication of these results lies in guiding the interpretation of paleoseismically derived slip rates that are used to form earthquake forecasts. The final part of my research evaluates a set of Earth science-themed lesson plans that I designed for elementary-level learning-disabled students. My findings show that a combination of concept delivery techniques is most effective for learning-disabled students and should incorporate interactive slide presentations, tactile manipulatives, teacher-assisted concept sketches, and student-led teaching to help learning-disabled students grasp Earth science concepts.
Patterson, P E
2007-01-01
In our new global economy, biomedical product development teams need to be even more innovative in an environment constrained by fewer resources with less time from concept to market. Teams are often comprised of individuals spread around the world. To simulate this setting, we revised an existing course to incorporate teams of on-campus and distance students, with each team including both engineers and other specialties. Through interactive lectures and projects, we presented a systematic approach to innovation that should be useful to engineers and non-engineers alike. Students found the course challenging and exciting, displaying an improved ability to work in distributed teams and in developing innovative design solutions.
NASA Astrophysics Data System (ADS)
Reeves, Mark
2014-03-01
Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is dominant contribution of the entropy in driving important biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy) that enable students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce seemingly complex biological processes and structures to be described by tractable models that include deterministic processes and simple probabilistic inference. The students test these models in simulations and in laboratory experiments that are biologically relevant. The students are challenged to bridge the gap between statistical parameterization of their data (mean and standard deviation) and simple model-building by inference. This allows the students to quantitatively describe realistic cellular processes such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront ``random'' forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory physics with a bio focus. Supported by NSF DUE.
Biagioli, Frances E; Elliot, Diane L; Palmer, Ryan T; Graichen, Carla C; Rdesinski, Rebecca E; Ashok Kumar, Kaparaboyna; Galper, Ari B; Tysinger, James W
2017-01-01
Because many medical students do not have access to electronic health records (EHRs) in the clinical environment, simulated EHR training is necessary. Explicitly training medical students to use EHRs appropriately during patient encounters equips them to engage patients while also attending to the accuracy of the record and contributing to a culture of information safety. Faculty developed and successfully implemented an EHR objective structured clinical examination (EHR-OSCE) for clerkship students at two institutions. The EHR-OSCE objectives include assessing EHR-related communication and data management skills. The authors collected performance data for students (n = 71) at the first institution during academic years 2011-2013 and for students (n = 211) at the second institution during academic year 2013-2014. EHR-OSCE assessment checklist scores showed that students performed well in EHR-related communication tasks, such as maintaining eye contact and stopping all computer work when the patient expresses worry. Findings indicated student EHR skill deficiencies in the areas of EHR data management including medical history review, medication reconciliation, and allergy reconciliation. Most students' EHR skills failed to improve as the year progressed, suggesting that they did not gain the EHR training and experience they need in clinics and hospitals. Cross-institutional data comparisons will help determine whether differences in curricula affect students' EHR skills. National and institutional policies and faculty development are needed to ensure that students receive adequate EHR education, including hands-on experience in the clinic as well as simulated EHR practice.
Brownfield Action Online - An Interactive Undergraduate Science Course in Environmental Forensics
NASA Astrophysics Data System (ADS)
Liddicoat, Joseph; Bower, Peter
2014-05-01
Brownfield Action (BA) is a web-based, interactive, three dimensional digital space and learning simulation in which students form geotechnical consulting companies and work collectively to explore problems in environmental forensics. Created at Barnard College (BC) in conjunction with the Center for New Media Teaching and Learning at Columbia University, BA has a 12-year history at BC of use in one semester of a two-semester Introduction to Environmental Science course that is taken by more than 100 female undergraduate non-science majors to satisfy their science requirement. The pedagogical methods and design of the BA model are grounded in a substantial research literature focused on the design, use, and effectiveness of games and simulation in education. The successful use of the BA simulation at BC and 14 other institutions in the U.S. is described in Bower et al. (2011 and 2014). Soon to be taught online to non-traditional undergraduate students, BA has 15 modules that include a reconnaissance survey; scale; topographic, bedrock, and water table maps; oral and written reports from residents and the municipal government; porosity and permeability measurements of the regolith (sand) in the area of interest; hydrocarbon chemistry; direction and velocity of groundwater flow; and methods of geophysical exploration (soil gas, ground penetrating radar, magnetic metal detection, excavation, and drilling). Student performance is assessed by weekly exercises and a semester ending Environmental Site Assessment Phase I Report that summarizes the individual and collective discoveries about a contaminated subsurface plume that emanates from a leaking underground storage tank at a gasoline station upgrade from the water well that serves the surrounding community. Texts for the course are Jonathan Harr's A Civil Action and Rachel Carson's Silent Spring, which are accompanied by questions that direct the reading.
Visualization and simulation techniques for surgical simulators using actual patient's data.
Radetzky, Arne; Nürnberger, Andreas
2002-11-01
Because of the increasing complexity of surgical interventions research in surgical simulation became more and more important over the last years. However, the simulation of tissue deformation is still a challenging problem, mainly due to the short response times that are required for real-time interaction. The demands to hard and software are even larger if not only the modeled human anatomy is used but the anatomy of actual patients. This is required if the surgical simulator should be used as training medium for expert surgeons rather than students. In this article, suitable visualization and simulation methods for surgical simulation utilizing actual patient's datasets are described. Therefore, the advantages and disadvantages of direct and indirect volume rendering for the visualization are discussed and a neuro-fuzzy system is described, which can be used for the simulation of interactive tissue deformations. The neuro-fuzzy system makes it possible to define the deformation behavior based on a linguistic description of the tissue characteristics or to learn the dynamics by using measured data of real tissue. Furthermore, a simulator for minimally-invasive neurosurgical interventions is presented that utilizes the described visualization and simulation methods. The structure of the simulator is described in detail and the results of a system evaluation by an experienced neurosurgeon--a quantitative comparison between different methods of virtual endoscopy as well as a comparison between real brain images and virtual endoscopies--are given. The evaluation proved that the simulator provides a higher realism of the visualization and simulation then other currently available simulators. Copyright 2002 Elsevier Science B.V.
Interaction Design and Usability of Learning Spaces in 3D Multi-user Virtual Worlds
NASA Astrophysics Data System (ADS)
Minocha, Shailey; Reeves, Ahmad John
Three-dimensional virtual worlds are multimedia, simulated environments, often managed over the Web, which users can 'inhabit' and interact via their own graphical, self-representations known as 'avatars'. 3D virtual worlds are being used in many applications: education/training, gaming, social networking, marketing and commerce. Second Life is the most widely used 3D virtual world in education. However, problems associated with usability, navigation and way finding in 3D virtual worlds may impact on student learning and engagement. Based on empirical investigations of learning spaces in Second Life, this paper presents design guidelines to improve the usability and ease of navigation in 3D spaces. Methods of data collection include semi-structured interviews with Second Life students, educators and designers. The findings have revealed that design principles from the fields of urban planning, Human- Computer Interaction, Web usability, geography and psychology can influence the design of spaces in 3D multi-user virtual environments.
ERIC Educational Resources Information Center
May, Dominik; Wold, Kari; Moore, Stephanie
2015-01-01
The world is changing significantly, and it is becoming increasingly globalised. This means that countries, businesses, and professionals must think and act globally to be successful. Many individuals, however, are not prepared with the global competency skills needed to communicate and perform effectively in a globalised system. To address this…
ERIC Educational Resources Information Center
Cleland, Deborah; Dray, Anne; Perez, Pascal; Cruz-Trinidad, Annabelle; Geronimo, Rollan
2012-01-01
REEFGAME is a computer-assisted role-playing game that explores the interactions among management strategies, livelihood options, and ecological degradation in subsistence fishing communities. The tool has been successfully used in the Philippines and a variety of student workshops. In the field, REEFGAME operated as a two-way learning tool,…
Bruen, Catherine; Kreiter, Clarence; Wade, Vincent; Pawlikowska, Teresa
2017-01-01
Experience with simulated patients supports undergraduate learning of medical consultation skills. Adaptive simulations are being introduced into this environment. The authors investigate whether it can underpin valid and reliable assessment by conducting a generalizability analysis using IT data analytics from the interaction of medical students (in psychiatry) with adaptive simulations to explore the feasibility of adaptive simulations for supporting automated learning and assessment. The generalizability (G) study was focused on two clinically relevant variables: clinical decision points and communication skills. While the G study on the communication skills score yielded low levels of true score variance, the results produced by the decision points, indicating clinical decision-making and confirming user knowledge of the process of the Calgary-Cambridge model of consultation, produced reliability levels similar to what might be expected with rater-based scoring. The findings indicate that adaptive simulations have potential as a teaching and assessment tool for medical consultations.
Simulation and visualization of fundamental optics phenomenon by LabVIEW
NASA Astrophysics Data System (ADS)
Lyu, Bohan
2017-08-01
Most instructors teach complex phenomenon by equation and static illustration without interactive multimedia. Students usually memorize phenomenon by taking note. However, only note or complex formula can not make user visualize the phenomenon of the photonics system. LabVIEW is a good tool for in automatic measurement. However, the simplicity of coding in LabVIEW makes it not only suit for automatic measurement, but also suitable for simulation and visualization of fundamental optics phenomenon. In this paper, five simple optics phenomenon will be discuss and simulation with LabVIEW. They are Snell's Law, Hermite-Gaussian beam transverse mode, square and circular aperture diffraction, polarization wave and Poincare sphere, and finally Fabry-Perrot etalon in spectrum domain.
Amer, Kamil M; Mur, Taha; Amer, Kamal; Ilyas, Asif M
2017-05-01
The utilization of surgical simulation continues to grow in medical training. The TouchSurgery application (app) is a new interactive virtual reality smartphone- or tablet-based app that offers a step-by-step tutorial and simulation for the execution of various operations. The purpose of this study was to compare the efficacy of the app versus traditional teaching modalities utilizing the "Carpal Tunnel Surgery" module. We hypothesized that users of the app would score higher than those using the traditional education medium indicating higher understanding of the steps of surgery. A total of 100 medical students were recruited to participate. The control group (n = 50) consisted of students learning about carpal tunnel release surgery using a video lecture utilizing slides. The study group (n = 50) consisted of students learning the procedure through the app. The content covered was identical in both groups but delivered through the different mediums. Outcome measures included comparison of test scores and overall app satisfaction. Test scores in the study group (89.3%) using the app were significantly higher than those in the control group (75.6%). Students in the study group rated the overall content validity, quality of graphics, ease of use, and usefulness to surgery preparation as very high (4.8 of 5). Students utilizing the app performed better on a standardized test examining the steps of a carpal tunnel release than those using a traditional teaching modality. The study findings lend support for the use of the app for medical students to prepare for and learn the steps for various surgical procedures. This study provides useful information on surgical simulation, which can be utilized to educate trainees for new procedures. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Interactive educational simulators in diabetes care.
Lehmann, E D
1997-01-01
Since the Diabetes Control and Complications Trial demonstrated the substantial benefits of tight glycaemic control there has been renewed interest in the application of information technology (IT) based techniques for improving the day-to-day care of patients with diabetes mellitus. Computer-based educational approaches have a great deal of potential for patients use, and may offer a means of training more health-care professionals to deliver such improved care. In this article the potential role of IT in diabetes education is reviewed, focusing in particular on the application of compartmental models in both computer-based interactive simulators and educational video games. Close attention is devoted to practical applications-available today-for use by patients, their relatives, students and health-care professionals. The novel features and potential benefits of such methodologies are highlighted and some of the limitations of currently available software are discussed. The need for improved graphical user interfaces, and for further efforts to evaluate such programs and demonstrate an educational benefit from their use are identified as hurdles to their more widespread application. The review concludes with a look to the future and the type of modelling features which should be provided in the next generation of interactive diabetes simulators and educational video games.
Combined Molecular and Spin Dynamics Simulation of Lattice Vacancies in BCC Iron
NASA Astrophysics Data System (ADS)
Mudrick, Mark; Perera, Dilina; Eisenbach, Markus; Landau, David P.
Using an atomistic model that treats translational and spin degrees of freedom equally, combined molecular and spin dynamics simulations have been performed to study dynamic properties of BCC iron at varying levels of defect impurity. Atomic interactions are described by an empirical many-body potential, and spin interactions with a Heisenberg-like Hamiltonian with a coordinate dependent exchange interaction. Equations of motion are solved numerically using the second-order Suzuki-Trotter decomposition for the time evolution operator. We analyze the spatial and temporal correlation functions for atomic displacements and magnetic order to obtain the effect of vacancy defects on the phonon and magnon excitations. We show that vacancy clusters in the material cause splitting of the characteristic transverse spin-wave excitations, indicating the production of additional excitation modes. Additionally, we investigate the coupling of the atomic and magnetic modes. These modes become more distinct with increasing vacancy cluster size. This material is based upon work supported by the U.S. Department of Energy Office of Science Graduate Student Research (SCGSR) program.
Training students to detect delirium: An interprofessional pilot study.
Chambers, Breah; Meyer, Mary; Peterson, Moya
2018-06-01
The purpose of this paper is to report nursing student knowledge acquisition and attitude after completing and interprofessional simulation with medical students. The IOM has challenged healthcare educators to teach teamwork and communication skills in interprofessional settings. Interprofessional simulation provides a higher fidelity experience than simulation in silos. Simulation may be particularly useful in helping healthcare workers gain the necessary skills to care for psychiatric clients. Specifically, healthcare providers have difficulty differentiating between dementia and delirium. Recognizing this deficit, an interprofessional simulation was created using medical students in their neurology rotation and senior nursing students. Twenty-four volunteer nursing students completed a pre-survey to assess delirium knowledge and then completed an education module about delirium. Twelve of these students participated in a simulation with medicine students. Pre and Post Kid SIM Attitude questionnaires were completed by all students participating in the simulation. After the simulations were complete, all twenty-four students were asked to complete the post-survey regarding delirium knowledge. While delirium knowledge scores improved in both groups, the simulation group scored higher, but the difference did not reach significance. The simulation group demonstrated a statistically significant improvement in attitudes toward simulation, interprofessional education, and teamwork post simulation compared to their pre-simulation scores. Nursing students who participated in an interprofessional simulation developed a heightened appreciation for learning communication, teamwork, situational awareness, and interprofessional roles and responsibilities. These results support the use of interprofessional simulation in healthcare education. Copyright © 2018 Elsevier Ltd. All rights reserved.
Leveraging Conceptual Frameworks to Improve Students' Mental Organization of Astronomy Understanding
NASA Astrophysics Data System (ADS)
Slater, Timothy F.; Lee, K. M.
2006-06-01
Many different types of schematic diagrams are useful in helping students organize and internalize their developing understanding in introductory astronomy courses. These include Venn Diagrams, Flowcharts, Concept Maps, among others, which illustrate the relationships between astronomical objects and dynamic concepts. These conceptual framework diagrams have been incorporated into the NSF-funded ClassAction project. ClassAction is a collection of electronic materials designed to enhance the metacognitive skills of college and university introductory astronomy survey students by promoting interactive engagement and providing rapid feedback in a highly visual setting. The main effort is targeted at creating dynamic think-pair-share questions supported by simulations, animations, and visualizations to be projected in the lecture classroom. The infrastructure allows instructors to recast these questions into alternative forms based on their own pedagogical preferences and feedback from the class. The recourses can be easily selected from a FLASH computer database and are accompanied by outlines, graphics, and numerous simulations which the instructor can use to provide student feedback and, when necessary, remediation. ClassAction materials are publicly available online at URL: http://astro.unl.edu and is funded by NSF Grant #0404988.
Corrigan, Mark; Reardon, Michelle; Shields, Connor; Redmond, Henry
2008-01-01
Information technology has the potential to transform surgical education. Combining symbolic, iconic, and enactive teaching modalities to construct an authentic conceptual model potentially can transform a primarily didactic learning experience into an interactive Web-enhanced one. This study sought to assess the introduction of a Web-based module to complement traditional surgical undergraduate curricula. Adopting the clinical case as its fundamental educational approach, an online resource simulating surgical clinical decision making ("SURGENT," http://www.surgent.ie) was developed, which consists of the interpretation of clinical photographs, laboratory data, and X-rays as well as the formulation of a management plan. Evaluation was in both a qualitative and a quantitative fashion. An anonymous postcourse survey (73% response) of 117 final medical students was used to by researchers to evaluate access, process, and outcome criteria. SURGENT was used by 98% of students, with 69% spending more than 30 minutes per session on the program. First-class honors in the final surgical clinical examination improved from 11% to 20% (p = 0.01) as compared with the previous control year. A Web-enhanced interactive surgical module in an undergraduate course can convey successfully information and understanding beyond the textbook. It is intended that SURGENT will supplement textbooks and ward experience, allowing students to develop their clinical decision-making skills.
NASA Astrophysics Data System (ADS)
Sood, Suresh; Pattinson, Hugh
Traditionally, face-to-face negotiations in the real world have not been looked at as a complex systems interaction of actors resulting in a dynamic and potentially emergent system. If indeed negotiations are an outcome of a dynamic interaction of simpler behavior just as with a complex system, we should be able to see the patterns contributing to the complexities of a negotiation under study. This paper and the supporting research sets out to show B2B (business-to-business) negotiations as complex systems of interacting actors exhibiting dynamic and emergent behavior. This paper discusses the exploratory research based on negotiation simulations in which a large number of business students participate as buyers and sellers. The student interactions are captured on video and a purpose built research method attempts to look for patterns of interactions between actors using visualization techniques traditionally reserved to observe the algorithmic complexity of complex systems. Students are videoed negotiating with partners. Each video is tagged according to a recognized classification and coding scheme for negotiations. The classification relates to the phases through which any particular negotiation might pass, such as laughter, aggression, compromise, and so forth — through some 30 possible categories. Were negotiations more or less successful if they progressed through the categories in different ways? Furthermore, does the data depict emergent pathway segments considered to be more or less successful? This focus on emergence within the data provides further strong support for face-to-face (F2F) negotiations to be construed as complex systems.
NASA Astrophysics Data System (ADS)
Berland, Matthew W.
As scientists use the tools of computational and complex systems theory to broaden science perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school students broaden their perspectives using appropriate tools. The goals of this dissertation project are to build, study, evaluate, and compare activities designed to foster both computational and complex systems fluencies through collaborative constructionist virtual and physical robotics. In these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students collaborate by acting in a common space, teaching each other, and discussing content with one another. As a result, the students improve both their computational fluency and their complex systems fluency, where fluency is defined as the ability to both consume and produce relevant content (DiSessa, 2000). To date, several systems have been designed to foster computational and complex systems fluencies through computer programming and collaborative play (e.g., Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant fluencies through collaborative play, they become mutually reinforcing. In this work, I will present both the design of the VBOT virtual/physical constructionist robotics learning environment and a comparative study of student interaction with the virtual and physical environments across four middle-school classrooms, focusing on the contrast in systems perspectives differently afforded by the two environments. In particular, I found that while performance gains were similar overall, the physical environment supported agent perspectives on aggregate behavior, and the virtual environment supported aggregate perspectives on agent behavior. The primary research questions are: (1) What are the relative affordances of virtual and physical constructionist robotics systems towards computational and complex systems fluencies? (2) What can middle school students learn using computational/complex systems learning environments in a collaborative setting? (3) In what ways are these environments and activities effective in teaching students computational and complex systems fluencies?
NASA Astrophysics Data System (ADS)
Droui, Mohamed
The educational innovation itself is sometimes debatable but it is justified when the teachers confront the learning difficulties of their students. In particular, some notions of physics are notoriously hard for students to understand, as is the case for the photoelectric effect which is not often comprehended by the students at the college level. This research tries to determine if, as part of a physics course, the simulation of the photoelectric effect and the use of mobile devices in collaborative situations facilitate an evolution of the student's conceptions about the concept of light. We have proceeded to develop a scenario of collaborative learning by integrating a simulation of the photoelectric effect on handheld devices (Pocket PC). The design of scenario was first influenced by our socioconstructivist vision of learning. We conducted two preliminary studies to complete our scenario of learning and to validate the platform " MobileSim " and the interface of the simulator used in our experiment. The first studies were completed with a simulation on computers and the second with a simulation on Pocket PC. After that, we carried out the experimentation with two groups of students. The control group was assigned to the traditional approach of teaching and the experimental group was assigned to the approach based on the developed scenario of collaborative learning. We have conducted a test twice to assess a conceptual change about the nature of light and about the phenomenon of the photoelectric effect and related concepts. The first test (pre-test) before the students are involved in the course and the second (post-test) after completion of experiments. Our results in the pre-test and post-test were completed by conducting semi-structured individual interviews with all students, by video recordings and recovered traces (on log files or on paper). Students in the experimental group obtained good results in the test compared to those of the control group. We noted an average gain of learning qualified at a moderate level according to Hake (1998). Interview results were used to identify some conceptual difficulties of student learning. Analysis of collected data from video sequences, questionnaires and recovered tracks allowed us to better understand the process of collaborative learning and has revealed that the number and the time of interactions between students are strongly correlated with the gain of learning. At first, this research project is a success in the designing of a learning scenario of a phenomenon as complex as the photoelectric effect and respects many criteria (collaboration, simulation, mobile devices, etc.) that it seemed for us extremely utopian to combine them in an effective learning situation in the classroom. For instance, this scenario could be adapted to the learning of other concepts in physics. It could also be considered for the design of collaborative environments for innovative mobile learning focused on the needs of learners that integrate the technologies at the right time and for the right activity. Keywords : collaborative learning, simulation, mobile learning, conceptual change, photoelectric effect.
Charging and Heating Dynamics of Nanoparticles in Nonthermal Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kortshagen, Uwe R.
2014-08-15
The focus of this award was to understand the interactions of nanometer-sized particles with ionized gases, also called plasmas. Plasmas are widely used in the fabrication of electronic circuits such as microprocessors and memory devices, in plasma display panels, as well as in medical applications. Recently, these ionized gases are finding applications in the synthesis of advanced nanomaterials with novel properties, which are based on nanometer-sized particulate (nanoparticles) building blocks. As these nanoparticles grow in the plasma environment, they interact with the plasmas species such as electrons and ions which critically determines the nanoparticle properties. The University of Minnesota researchersmore » conducting this project performed numerical simulations and developed analytical models that described the interaction of plasma-bound nanoparticles with the plasma ions. The plasma ions bombard the nanoparticle surface with substantial energy, which can result in the rearrangement of the nanoparticles’ atoms, giving them often desirable structures at the atomic scale. Being able to tune the ion energies allows to control the properties of nanoparticles produced in order to tailor their attributes for certain applications. For instance, when used in high efficiency light emitting devices, nanoparticles produced under high fluxes of highly energetic ions may show superior light emission to particles produced under low fluxes of less energetic ions. The analytical models developed by the University of Minnesota researchers enable the research community to easily determine the energy of ions bombarding the nanoparticles. The researchers extensively tested the validity of the analytical models by comparing them to sophisticated computer simulations based on stochastic particle modeling, also called Monte Carlo modeling, which simulated the motion of hundreds of thousands of ions and their interaction with the nanoparticle surfaces. Beyond the scientific intellectual merits, this award had significant broader impacts. Two graduate students received their doctoral degrees and both have joined a U.S. manufacturer of plasma-based semiconductor processing equipment. Four undergraduate students participated in research conducted under this grant and gained valuable hands-on laboratory experience. A middle school science teacher observed research conducted under this grant and developed three new course modules that introduce middle school students to the concepts of nanometer scale, the atomic structure of matter, and the composition of matter of different chemical elements.« less
Yardley, Sarah; Brosnan, Caragh; Richardson, Jane; Hays, Richard
2013-12-01
This paper addresses the question 'what are the variables influencing social interactions and learning during Authentic Early Experience (AEE)?' AEE is a complex educational intervention for new medical students. Following critique of the existing literature, multiple qualitative methods were used to create a study framework conceptually orientated to a socio-cultural perspective. Study participants were recruited from three groups at one UK medical school: students, workplace supervisors, and medical school faculty. A series of intersecting spectra identified in the data describe dyadic variables that make explicit the parameters within which social interactions are conducted in this setting. Four of the spectra describe social processes related to being in workplaces and developing the ability to manage interactions during authentic early experiences. These are: (1) legitimacy expressed through invited participation or exclusion; (2) finding a role-a spectrum from student identity to doctor mindset; (3) personal perspectives and discomfort in transition from lay to medical; and, (4) taking responsibility for 'risk'-moving from aversion to management through graded progression of responsibility. Four further spectra describe educational consequences of social interactions. These spectra identify how the reality of learning is shaped through social interactions and are (1) generic-specific objectives, (2) parallel-integrated-learning, (3) context specific-transferable learning and (4) performing or simulating-reality. Attention to these variables is important if educators are to maximise constructive learning from AEE. Application of each of the spectra could assist workplace supervisors to maximise the positive learning potential of specific workplaces.
Shewokis, Patricia A; Shariff, Faiz U; Liu, Yichuan; Ayaz, Hasan; Castellanos, Andres; Lind, D Scott
2017-02-01
Using functional near infrared spectroscopy, a noninvasive, optical brain imaging tool that monitors changes in hemodynamics within the prefrontal cortex (PFC), we assessed performance and cognitive effort during the acquisition, retention and transfer of multiple simulated laparoscopic tasks by novice learners within a contextual interference paradigm. Third-year medical students (n = 10) were randomized to either a blocked or random practice schedule. Across 3 days, students performed 108 acquisition trials of 3 laparoscopic tasks on the LapSim ® simulator followed by delayed retention and transfer tests. Performance metrics (Global score, Total time) and hemodynamic responses (total hemoglobin (μm)) were assessed during skill acquisition, retention and transfer. All acquisition tasks resulted in significant practice schedule X trial block interactions for the left medial anterior PFC. During retention and transfer, random performed the skills in less time and had lower total hemoglobin change in the right dorsolateral PFC than blocked. Compared with blocked, random practice resulted in enhanced learning through better performance and less cognitive load for retention and transfer of simulated laparoscopic tasks. Copyright © 2016 Elsevier Inc. All rights reserved.
A Structured-Inquiry Approach to Teaching Neurophysiology Using Computer Simulation
Crisp, Kevin M.
2012-01-01
Computer simulation is a valuable tool for teaching the fundamentals of neurophysiology in undergraduate laboratories where time and equipment limitations restrict the amount of course content that can be delivered through hands-on interaction. However, students often find such exercises to be tedious and unstimulating. In an effort to engage students in the use of computational modeling while developing a deeper understanding of neurophysiology, an attempt was made to use an educational neurosimulation environment as the basis for a novel, inquiry-based research project. During the semester, students in the class wrote a research proposal, used the Neurodynamix II simulator to generate a large data set, analyzed their modeling results statistically, and presented their findings at the Midbrains Neuroscience Consortium undergraduate poster session. Learning was assessed in the form of a series of short term papers and two 10-min in-class writing responses to the open-ended question, “How do ion channels influence neuronal firing?”, which they completed on weeks 6 and 15 of the semester. Students’ answers to this question showed a deeper understanding of neuronal excitability after the project; their term papers revealed evidence of critical thinking about computational modeling and neuronal excitability. Suggestions for the adaptation of this structured-inquiry approach into shorter term lab experiences are discussed. PMID:23494064
Interprofessional simulation of birth in a non-maternity setting for pre-professional students.
McLelland, Gayle; Perera, Chantal; Morphet, Julia; McKenna, Lisa; Hall, Helen; Williams, Brett; Cant, Robyn; Stow, Jill
2017-11-01
Simulation-based learning is an approach recommended for teaching undergraduate health professionals. There is a scarcity of research around interprofessional simulation training for pre-professional students in obstetric emergencies that occur prior to arrival at the maternity ward. The primary aims of the study were to examine whether an interprofessional team-based simulated birth scenario would improve undergraduate paramedic, nursing, and midwifery students' self-efficacy scores and clinical knowledge when managing birth in an unplanned location. The secondary aim was to assess students' satisfaction with the newly developed interprofessional simulation. Quasi-experimental descriptive study with repeated measures. Simulated hospital emergency department. Final year undergraduate paramedic, nursing, and midwifery students. Interprofessional teams of five students managed a simulated unplanned vaginal birth, followed by debriefing. Students completed a satisfaction with simulation survey. Serial surveys of clinical knowledge and self-efficacy were conducted at three time points. Twenty-four students participated in one of five simulation scenarios. Overall, students' self-efficacy and confidence in ability to achieve a successful birth outcome was significantly improved at one month (p<0.001) with a magnitude of increase (effect) of 40% (r=0.71) and remained so after a further three months. Clinical knowledge was significantly increased in only one of three student groups: nursing (p=0.04; r=0.311). Students' satisfaction with the simulation experience was high (M=4.65/5). Results from this study indicate that an interprofessional simulation of a birth in an unplanned setting can improve undergraduate paramedic, nursing and midwifery students' confidence working in an interprofessional team. There was a significant improvement in clinical knowledge of the nursing students (who had least content about managing birth in their program). All students were highly satisfied with the interprofessional simulation experience simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Drug-physiology interaction and its influence on the QT prolongation-mechanistic modeling study.
Wiśniowska, Barbara; Polak, Sebastian
2018-06-01
The current study is an example of drug-disease interaction modeling where a drug induces a condition which can affect the pharmacodynamics of other concomitantly taken drugs. The electrophysiological effects of hypokaliemia and heart rate changes induced by the antiasthmatic drugs were simulated with the use of the cardiac safety simulator. Biophysically detailed model of the human cardiac physiology-ten Tusscher ventricular cardiomyocyte cell model-was employed to generate pseudo-ECG signals and QTc intervals for 44 patients from four clinical studies. Simulated and observed mean QTc values with standard deviation (SD) for each reported study point were compared and differences were analyzed with Student's t test (α = 0.05). The simulated results reflected the QTc interval changes measured in patients, as well as their clinically observed interindividual variability. The QTc interval changes were highly correlated with the change in plasma potassium both in clinical studies and in the simulations (Pearson's correlation coefficient > 0.55). The results suggest that the modeling and simulation approach could provide valuable quantitative insight into the cardiological effect of the potassium and heart rate changes caused by electrophysiologically inactive, non-cardiological drugs. This allows to simulate and predict the joint effect of several risk factors for QT prolongation, e.g., drug-dependent QT prolongation due to the ion channels inhibition and the current patient physiological conditions.
BioSIGHT: Interactive Visualization Modules for Science Education
NASA Technical Reports Server (NTRS)
Wong, Wee Ling
1998-01-01
Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high-speed network capabilities. The BioSIGHT project at is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches toward the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross-disciplinary in nature and requires expertise from many areas including Biology, Computer Science Electrical Engineering, Education, and the Cognitive Sciences. The BioSIGHT team includes a scientific illustrator, educational software designer, computer programmers as well as IMSC graduate and undergraduate students.
Scientific divulgation through the teaching of Astronomy and Mathematics
NASA Astrophysics Data System (ADS)
Silva, Alysson Wanderley Teixeira; de Macedo, Josué Antunes; Voelzke, Marcos Rincon
2015-09-01
This article presents an experience report of a workshop held at the State School Professor Plínio Ribeiro, who aimed to spread the use of interactive materials for teaching Astronomy and its relationship with Mathematics during the Forum Biotemas. Despite being part of the official documents, be present in the curricular proposals from several Brazilian states, and has contributed to the human and technological development, Astronomy is rarely taught adequately in basic education, with unsatisfactory results presented by students and teachers. In this sense was held a workshop planned for elementary education students called 'Astronomy and Mathematics: Learn to Observe the Sky With Other Eyes' involving several resources. The methodology consisted of awareness of those involved, presentation videos, using Stellarium software, application of Mathematics in Astronomy and discussions. Among the main results, can highlight students' interest in scientific matters, because when the study of the sciences takes place without interaction with natural and technological phenomena, a huge gap in the education of students occurs. In this sense, the use of different resources, as templates, observations, real and virtual experiments, animations, simulations, video lessons, can arouse the interest of students by conceptual content, differently from what happens when the study takes place using only conventional resources, with books and handouts.
Viscosity Measurement: A Virtual Experiment - Abstract of Issues 9907W
NASA Astrophysics Data System (ADS)
Papadopoulos, N.; Pitta, A. T.; Markopoulos, N.; Limniou, M.; Lemos, M. A. N. D. A.; Lemos, F.; Freire, F. G.
1999-11-01
Viscosity Measurement: A Virtual Experiment simulates a series of viscosity experiments. Viscosity is an important subject in chemistry and chemical engineering. It is important when dealing with intermolecular forces in liquids and gases and it has enormous relevance in all technological aspects of equipment dealing with liquids or gases. Most university-level chemistry courses include viscosity to some extent. Viscosity Measurement includes three virtual experiments: an Ostwald viscometer simulator, a falling-ball viscometer simulator, and a balance simulator for a simple determination of the density of a liquid. The Ostwald viscometer simulator and the balance simulator allow the student to find out how composition and temperature influence the density and viscosity of an ethanol-water mixture. The falling-ball viscometer simulator allows the student to determine experimentally the size and density of the ball required to measure viscosity of various liquids. Each virtual experiment includes a corresponding theoretical section. Support from the program is sufficient to enable the students to carry out a virtual experiment sensibly and on their own. Preparation is not essential. Students can use the program unsupervised, thus saving staff time and allowing flexibility in students' time. The design of the program interface plays a key role in the success of a simulated experiment. Direct manipulation has greater intuitive appeal than alternative interface forms such as menus and has been observed to provide performance and learning advantages (1). We tried to design an interface that is visually attractive, is user friendly with simple and intuitive navigation, and provides appropriate schematic animations to clarify the principles of the laboratory procedures. The opening screen presents the virtual experiments that can be selected. Clicking an icon takes the student to the appropriate section. Viscosity Measurement allows the student to concentrate on the experiments at hand and not on learning how to use the program. It communicates its ideas visually with pictures and diagrams relegating on-screen text to the minimum required for the student to understand the presentation. A full presentation of viscosity is reserved for the textbook, which the computer cannot replace. It is well established (2) that people read text on a computer screen more slowly and with greater strain than they do text in a book. Moreover, relatively open-ended exploration does not appear to be a successful method of practice, because practice devised by the learner tends, not to be well conceived and well integrated in the students' learning path (3). For every virtual experiment we suggest a set of coherent exercises that highlight what we want students to know before they enter the real laboratory. Acknowledgment The Greek Ministry of Education and the European Community provided financial help to create the New Educational Technologies for the Teaching of Chemistry course that made development of the viscosity simulator possible. Literature Cited
Eukel, Heidi N.; Frenzel, Jeanne E.; Werremeyer, Amy; McDaniel, Becky
2016-01-01
Objective. To increase student pharmacist empathy through the use of an auditory hallucination simulation. Design. Third-year professional pharmacy students independently completed seven stations requiring skills such as communication, following directions, reading comprehension, and cognition while listening to an audio recording simulating what one experiencing auditory hallucinations may hear. Following the simulation, students participated in a faculty-led debriefing and completed a written reflection. Assessment. The Kiersma-Chen Empathy Scale was completed by each student before and after the simulation to measure changes in empathy. The written reflections were read and qualitatively analyzed. Empathy scores increased significantly after the simulation. Qualitative analysis showed students most frequently reported feeling distracted and frustrated. All student participants recommended the simulation be offered to other student pharmacists, and 99% felt the simulation would impact their future careers. Conclusions. With approximately 10 million adult Americans suffering from serious mental illness, it is important for pharmacy educators to prepare students to provide adequate patient care to this population. This auditory hallucination simulation increased student pharmacist empathy for patients with mental illness. PMID:27899838
Hunting for Habitable Worlds: Engaging Students in an Adaptive Online Setting
NASA Astrophysics Data System (ADS)
Horodyskyj, L.; Ben-Naim, D.; Anbar, A. D.; Semken, S. C.
2011-12-01
The field of astrobiology, through its breadth of scope and high level of public interest, offers a unique prospect for introductory science curricula, particularly at the undergraduate level. Traditional university-level science instruction consists of lectures and accompanying lab courses that are highly scripted to emphasize correct replication of results rather than inquiry-driven exploration. These methodologies give students the impression that science is an authoritative list of abstract concepts and experimental results requiring memorization, rather than a methodology for narrowing uncertainties in our knowledge. Additionally, this particular class structure does not take advantage of many new and emerging online multimedia technologies. To address the shortcomings of current pedagogical approaches, we adapted the Arizona State University introductory-level course "Habitable Worlds" for online delivery in the fall semester of 2011. This course is built around the Drake Equation, which allows us to introduce non-science students to the basics of scientific thought and methodology while exploring disciplines as diverse as astronomy, geology, biology, and sustainability in an integrated manner. The online version of this course is structured around a habitable-worlds-hunting quest, where each student is provided with an individualized universe and tasked with finding scientifically realistic computer-generated inhabited planets around realistic stars. In order to successfully complete this mission, students work their way through the course curriculum via interactive exercises that focus on the discovery of basic scientific concepts followed by the mathematics and models that explain them, hence inverting the lecture-lab paradigm. The "Habitable Worlds" course is built on the Adaptive eLearning Platform (AeLP), an innovative educational technology that provides a "tutor over the shoulder" learning experience for students. Our focus is on engaging students with rich interactions (such as data collection using Google Earth, virtual field trips, and interactive simulations) while providing them with intelligent and adaptive feedback and lesson structure. As such, advanced students proceed quickly and are kept engaged, while students with difficulty receive the appropriate remediation and support they need. The AeLP's analytics engine allows instructors to explore large datasets of students' interaction, and assists in identifying problematic concepts or flaws in instructional design. Subsequently, instructors can further adapt and improve the content to their students' specific needs.
Sangappa, Sunila B; Tekian, Ara
2013-08-01
This study assessed the impact of a course on communication skills for third-year undergraduate dental students at a dental institute in India. A randomized pretest, posttest controlled trial was conducted with all the students from four cohorts of third-year dental undergraduate students, divided into an intervention group (n=30) and a control group (n=30). The course was developed using Kern's six-step approach to curriculum development. Needs assessment was ascertained, and readings, lectures, and role-plays with real and simulated patients were implemented. Encounters of students during two patient interviews (simulated and real) were rated by two raters using a twenty-seven-item dental consultation communication checklist with a rating scale 0 to 3. Students completed a questionnaire regarding their acceptance of the course. A 2×2 (group × time) ANOVA with group as a between-subjects factor (control vs. experimental) and time as a within-subjects factor (pre vs. post) was performed. The two groups did not differ at pretest but differed significantly at posttest. This study showed that simply attending to patients during a clinical course did not improve professional communication skills. In contrast, the implementation of a course on communication skills did improve the students' dentist-patient interactions. Integrating the teaching and development of a relevant, outcome-based course on communication skills provided clear evidence of communication skills acquisition among these dental students. The course could be introduced in other Indian dental schools.
Seguino, Alessandro; Seguino, Ferruccio; Eleuteri, Antonio; Rhind, Susan M
2014-01-01
Veterinary surgeons working on farms and food-processing establishments play a fundamental role in safeguarding both public health and the welfare of animals under their care. An essential part of veterinary public health (VPH) undergraduate training in the UK involves students undertaking placements within abattoirs, a practice that remains vital to the educational experience of future veterinary professionals. However, several issues have adversely affected the ability of students to gain such extramural placements. For this reason, the Virtual Slaughterhouse Simulator (VSS) was developed to strengthen and enhance undergraduate VPH teaching at the Royal (Dick) School of Veterinary Studies, enabling students to explore a realistic abattoir work environment with embedded educational activities. The aim of this research project was to evaluate the VSS as a teaching and learning tool for training and educating veterinary students. Ninety-eight final-year veterinary students engaged with the prototype VSS, followed by assessment of their knowledge and behavior when faced with a "real-life" abattoir situation. Further evaluation of their experiences with the VSS was carried out using questionnaires and focus groups. The results of this investigation show that there is the potential for the VSS to enhance the student learning experience in basic abattoir procedures. This innovative tool provides a visually based learning resource that can support traditional lectures and practical classes and can also be used to stimulate interactive problem-solving activities embedded in the relevant context.
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2014-01-01
The article describes the use of Mathematica, a computer algebra system (CAS), in a high school chemistry course. Mathematica was used to generate a graph, where a slider controls the value of parameter(s) in the equation; thus, students can visualize the effect of the parameter(s) on the behavior of the system. Also, Mathematica can show the…
Jeffries, Pamela R; Woolf, Shirley; Linde, Beverly
2003-01-01
The purpose of this study was to compare the effectiveness of an interactive, multimedia CD-ROM with traditional methods of teaching the skill of performing a 12-lead ECG. A randomized pre/posttest experimental design was used. Seventy-seven baccalaureate nursing students in a required, senior-level critical-care course at a large midwestern university were recruited for the study. Two teaching methods were compared. The traditional method included a self-study module, a brief lecture and demonstration by an instructor, and hands-on experience using a plastic manikin and a real 12-lead ECG machine in the learning laboratory. The second method covered the same content using an interactive, multimedia CD-ROM embedded with virtual reality and supplemented with a self-study module. There were no significant (p < .05) baseline differences in pretest scores between the two groups and no significant differences by group in cognitive gains, student satisfaction with their learning method, or perception of self-efficacy in performing the skill. Overall results indicated that both groups were satisfied with their instructional method and were similar in their ability to demonstrate the skill correctly on a live, simulated patient. This evaluation study is a beginning step to assess new and potentially more cost-effective teaching methods and their effects on student learning outcomes and behaviors, including the transfer of skill acquisition via a computer simulation to a real patient.
Using a Low Cost Flight Simulation Environment for Interdisciplinary Education
NASA Technical Reports Server (NTRS)
Khan, M. Javed; Rossi, Marcia; ALi, Syed F.
2004-01-01
A multi-disciplinary and inter-disciplinary education is increasingly being emphasized for engineering undergraduates. However, often the focus is on interaction between engineering disciplines. This paper discusses the experience at Tuskegee University in providing interdisciplinary research experiences for undergraduate students in both Aerospace Engineering and Psychology through the utilization of a low cost flight simulation environment. The environment, which is pc-based, runs a low-cost of-the-shelf software and is configured for multiple out-of-the-window views and a synthetic heads down display with joystick, rudder and throttle controls. While the environment is being utilized to investigate and evaluate various strategies for training novice pilots, students were involved to provide them with experience in conducting such interdisciplinary research. On the global inter-disciplinary level these experiences included developing experimental designs and research protocols, consideration of human participant ethical issues, and planning and executing the research studies. During the planning phase students were apprised of the limitations of the software in its basic form and the enhancements desired to investigate human factors issues. A number of enhancements to the flight environment were then undertaken, from creating Excel macros for determining the performance of the 'pilots', to interacting with the software to provide various audio/video cues based on the experimental protocol. These enhancements involved understanding the flight model and performance, stability & control issues. Throughout this process, discussions of data analysis included a focus from a human factors perspective as well as an engineering point of view.
A team-based interprofessional education course for first-year health professions students.
Peeters, Michael J; Sexton, Martha; Metz, Alexia E; Hasbrouck, Carol S
2017-11-01
Interprofessional education (IPE) is required within pharmacy education, and should include classroom-based education along with experiential interprofessional collaboration. For classroom-based education, small-group learning environments may create a better platform for engaging students in the essential domain of interprofessional collaboration towards meaningful learning within IPE sub-domains (interprofessional communication, teams and teamwork, roles and responsibilities, and values and ethics). Faculty envisioned creating a small-group learning environment that was inviting, interactive, and flexible using situated learning theory. This report describes an introductory, team-based, IPE course for first-year health-professions students; it used small-group methods for health-professions students' learning of interprofessional collaboration. The University of Toledo implemented a 14-week required course involving 554 first-year health-sciences students from eight professions. The course focused on the Interprofessional Education Collaborative's (IPEC) Core Competencies for Interprofessional Collaboration. Students were placed within interprofessional teams of 11-12 students each and engaged in simulations, standardized-patient interviews, case-based communications exercises, vital signs training, and patient safety rotations. Outcomes measured were students' self-ratings of attaining learning objectives, perceptions of other professions (from word cloud), and satisfaction through end-of-course evaluations. This introductory, team-based IPE course with 554 students improved students' self-assessed competency in learning objectives (p < 0.01, Cohen's d = 0.9), changed students' perceptions of other professions (via word clouds), and met students' satisfaction through course evaluations. Through triangulation of our various assessment methods, we considered this course offering a success. This interprofessional, team-based, small-group strategy to teaching and learning IPE appeared helpful within this interactive, classroom-based course. Copyright © 2017 Elsevier Inc. All rights reserved.
Khadivzadeh, Talat; Erfanian, Fatemeh
2012-10-01
Midwifery students experience high levels of stress during their initial clinical practices. Addressing the learner's source of anxiety and discomfort can ease the learning experience and lead to better outcomes. The aim of this study was to find out the effect of a simulation-based course, using simulated patients and simulated gynecologic models on student anxiety and comfort while practicing to provide intrauterine device (IUD) services. Fifty-six eligible midwifery students were randomly allocated into simulation-based and traditional training groups. They participated in a 12-hour workshop in providing IUD services. The simulation group was trained through an educational program including simulated gynecologic models and simulated patients. The students in both groups then practiced IUD consultation and insertion with real patients in the clinic. The students' anxiety in IUD insertion was assessed using the "Spielberger anxiety test" and the "comfort in providing IUD services" questionnaire. There were significant differences between students in 2 aspects of anxiety including state (P < 0.001) and trait (P = 0.024) and the level of comfort (P = 0.000) in providing IUD services in simulation and traditional groups. "Fear of uterine perforation during insertion" was the most important cause of students' anxiety in providing IUD services, which was reported by 74.34% of students. Simulated patients and simulated gynecologic models are effective in optimizing students' anxiety levels when practicing to deliver IUD services. Therefore, it is recommended that simulated patients and simulated gynecologic models be used before engaging students in real clinical practice.
Enlightening Students about Dark Matter
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Barr, Alex; Eidelman, Dave
2018-01-01
Dark matter pervades the universe. While it is invisible to us, we can detect its influence on matter we can see. To illuminate this concept, we have created an interactive javascript program illustrating predictions made by six different models for dark matter distributions in galaxies. Students are able to match the predicted data with actual experimental results, drawn from several astronomy papers discussing dark matter’s impact on galactic rotation curves. Programming each new model requires integration of density equations with parameters determined by nonlinear curve-fitting using MATLAB scripts we developed. Using our javascript simulation, students can determine the most plausible dark matter models as well as the average percentage of dark matter lurking in galaxies, areas where the scientific community is still continuing to research. In that light, we strive to use the most up-to-date and accepted concepts: two of our dark matter models are the pseudo-isothermal halo and Navarro-Frenk-White, and we integrate out to each galaxy’s virial radius. Currently, our simulation includes NGC3198, NGC2403, and our own Milky Way.
Coret, Alon; Boyd, Kerry; Hobbs, Kevin; Zazulak, Joyce; McConnell, Meghan
2017-12-28
People with intellectual and developmental disabilities (IDD) face complex biopsychosocial challenges and are medically underserved. This is in part due to insufficient resources and supports but can also be attributed to a lack of adequate physician training in addressing the unique needs of this population. This study aimed to introduce 1st-year medical students to the IDD population using a blended educational experience that included video narratives of and direct interactions with people affected by IDD. The goal of this intervention was to promote person-centered attitudes and communication among early medical trainees. The study recruited 27 first-year medical students and randomly assigned each to 1 of 2 groups. The control group received an introductory video lecture about IDD healthcare, followed by a quiz. The narrative group received the same lecture, followed by reflective discussion of videos featuring people living with IDD sharing their perspectives and stories. All students then participated in 4 simulated clinical encounters with patient educators (PEs) who have lived experiences of IDD. Focus groups were conducted with students following the simulated encounters to explore their experiences and perceptions of this blended learning activity. Moreover, secondary quantitative data were collected to assess students' performance in the clinical encounters, along with self-reports of comfort, confidence, and competence of interacting with people with IDD (pre- and postparticipation). All students thought that the blended educational experience was valuable and enjoyable, commenting on the importance of adaptable language and engagement of people with IDD, as well as the merits of reflecting on patient narratives. Students also discussed feelings of discomfort stemming from a lack of knowledge and previous exposure to IDD and how this discomfort might motivate them to learn more and develop their skills further. In addition, descriptive analyses revealed that students in the narrative group showed greater self-rated measures of comfort, confidence, and competence compared to control; they also had higher mean performance scores across all PE interview stations. PEs add a powerful real-life dimension to communication skills teaching and have been shown to be a valuable educational modality. Moreover, exposure to and reflection on video-based patient narratives are useful ways of teaching medical students about patients' lived experiences and promoting person-centered communication, both within and beyond IDD.
Elcin, Melih; Onan, Arif; Odabasi, Orhan; Saylam, Melahat; Ilhan, Handan; Daylan Kockaya, Pinar; Gurcuoglu, Ilker; Uckuyu, Yavuz; Cengiz, Duygu; Nacar, Osman Arikan
2016-12-01
Middle East Respiratory Syndrome (MERS) is a major global health threat. Prehospital professionals face the risk of infection as they work to save lives. They should be made aware of the disease and be prepared to handle such cases. The aims of our study are to develop a training program about the prehospital management of a MERS case using standardized patient (SP) scenarios, to evaluate the awareness and preparedness of the participants about MERS, and to evaluate the effectiveness of this training. We developed 5 scenarios using SPs and an observation form. We included paramedic students and emergency medical service (EMS) providers in our study. They were involved in the simulations. A total of 24 paramedic students and 33 EMS providers participated in our study. Sixteen (84%) of 19 teams recognized the possibility of MERS as a measure of their awareness in the baseline evaluation. The participants lacked donning and doffing personal protective equipments, which revealed their baseline level of preparedness for MERS. Certain improvements in donning and doffing personal protective equipment were observed in the posttraining evaluation. The participants provided positive feedback on the training program. The training program was appropriate for both paramedic students and EMS providers. A positive educational climate was created. Because the main concerns of this study were awareness and preparedness, which required human interaction, the SP methodology was the optimal simulation modality.
Zapko, Karen A; Ferranto, Mary Lou Gemma; Blasiman, Rachael; Shelestak, Debra
2018-01-01
The National League for Nursing (NLN) has endorsed simulation as a necessary teaching approach to prepare students for the demanding role of professional nursing. Questions arise about the suitability of simulation experiences to educate students. Empirical support for the effect of simulation on patient outcomes is sparse. Most studies on simulation report only anecdotal results rather than data obtained using evaluative tools. The aim of this study was to examine student perception of best educational practices in simulation and to evaluate their satisfaction and self-confidence in simulation. This study was a descriptive study designed to explore students' perceptions of the simulation experience over a two-year period. Using the Jeffries framework, a Simulation Day was designed consisting of serial patient simulations using high and medium fidelity simulators and live patient actors. The setting for the study was a regional campus of a large Midwestern Research 2 university. The convenience sample consisted of 199 participants and included sophomore, junior, and senior nursing students enrolled in the baccalaureate nursing program. The Simulation Days consisted of serial patient simulations using high and medium fidelity simulators and live patient actors. Participants rotated through four scenarios that corresponded to their level in the nursing program. Data was collected in two consecutive years. Participants completed both the Educational Practices Questionnaire (Student Version) and the Student Satisfaction and Self-Confidence in Learning Scale. Results provide strong support for using serial simulation as a learning tool. Students were satisfied with the experience, felt confident in their performance, and felt the simulations were based on sound educational practices and were important for learning. Serial simulations and having students experience simulations more than once in consecutive years is a valuable method of clinical instruction. When conducted well, simulations can lead to increased student satisfaction and self-confidence. Copyright © 2017 Elsevier Ltd. All rights reserved.