Dendroscope: An interactive viewer for large phylogenetic trees
Huson, Daniel H; Richter, Daniel C; Rausch, Christian; Dezulian, Tobias; Franz, Markus; Rupp, Regula
2007-01-01
Background Research in evolution requires software for visualizing and editing phylogenetic trees, for increasingly very large datasets, such as arise in expression analysis or metagenomics, for example. It would be desirable to have a program that provides these services in an effcient and user-friendly way, and that can be easily installed and run on all major operating systems. Although a large number of tree visualization tools are freely available, some as a part of more comprehensive analysis packages, all have drawbacks in one or more domains. They either lack some of the standard tree visualization techniques or basic graphics and editing features, or they are restricted to small trees containing only tens of thousands of taxa. Moreover, many programs are diffcult to install or are not available for all common operating systems. Results We have developed a new program, Dendroscope, for the interactive visualization and navigation of phylogenetic trees. The program provides all standard tree visualizations and is optimized to run interactively on trees containing hundreds of thousands of taxa. The program provides tree editing and graphics export capabilities. To support the inspection of large trees, Dendroscope offers a magnification tool. The software is written in Java 1.4 and installers are provided for Linux/Unix, MacOS X and Windows XP. Conclusion Dendroscope is a user-friendly program for visualizing and navigating phylogenetic trees, for both small and large datasets. PMID:18034891
ERIC Educational Resources Information Center
Davis, Pryce; Horn, Michael; Block, Florian; Phillips, Brenda; Evans, E. Margaret; Diamond, Judy; Shen, Chia
2015-01-01
In this paper we present a qualitative analysis of natural history museum visitor interaction around a multi-touch tabletop exhibit called "DeepTree" that we designed around concepts of evolution and common descent. DeepTree combines several large scientific datasets and an innovative visualization technique to display a phylogenetic…
Visualizing Biological Data in Museums: Visitor Learning with an Interactive Tree of Life Exhibit
ERIC Educational Resources Information Center
Horn, Michael S.; Phillips, Brenda C.; Evans, Evelyn Margaret; Block, Florian; Diamond, Judy; Shen, Chia
2016-01-01
In this study, we investigate museum visitor learning and engagement at an interactive visualization of an evolutionary tree of life consisting of over 70,000 species. The study was conducted at two natural history museums where visitors collaboratively explored the tree of life using direct touch gestures on a multi-touch tabletop display. In the…
SILVA tree viewer: interactive web browsing of the SILVA phylogenetic guide trees.
Beccati, Alan; Gerken, Jan; Quast, Christian; Yilmaz, Pelin; Glöckner, Frank Oliver
2017-09-30
Phylogenetic trees are an important tool to study the evolutionary relationships among organisms. The huge amount of available taxa poses difficulties in their interactive visualization. This hampers the interaction with the users to provide feedback for the further improvement of the taxonomic framework. The SILVA Tree Viewer is a web application designed for visualizing large phylogenetic trees without requiring the download of any software tool or data files. The SILVA Tree Viewer is based on Web Geographic Information Systems (Web-GIS) technology with a PostgreSQL backend. It enables zoom and pan functionalities similar to Google Maps. The SILVA Tree Viewer enables access to two phylogenetic (guide) trees provided by the SILVA database: the SSU Ref NR99 inferred from high-quality, full-length small subunit sequences, clustered at 99% sequence identity and the LSU Ref inferred from high-quality, full-length large subunit sequences. The Tree Viewer provides tree navigation, search and browse tools as well as an interactive feedback system to collect any kinds of requests ranging from taxonomy to data curation and improving the tool itself.
TreeNetViz: revealing patterns of networks over tree structures.
Gou, Liang; Zhang, Xiaolong Luke
2011-12-01
Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE
TreePlus: interactive exploration of networks with enhanced tree layouts.
Lee, Bongshin; Parr, Cynthia S; Plaisant, Catherine; Bederson, Benjamin B; Veksler, Vladislav D; Gray, Wayne D; Kotfila, Christopher
2006-01-01
Despite extensive research, it is still difficult to produce effective interactive layouts for large graphs. Dense layout and occlusion make food webs, ontologies, and social networks difficult to understand and interact with. We propose a new interactive Visual Analytics component called TreePlus that is based on a tree-style layout. TreePlus reveals the missing graph structure with visualization and interaction while maintaining good readability. To support exploration of the local structure of the graph and gathering of information from the extensive reading of labels, we use a guiding metaphor of "Plant a seed and watch it grow." It allows users to start with a node and expand the graph as needed, which complements the classic overview techniques that can be effective at (but often limited to) revealing clusters. We describe our design goals, describe the interface, and report on a controlled user study with 28 participants comparing TreePlus with a traditional graph interface for six tasks. In general, the advantage of TreePlus over the traditional interface increased as the density of the displayed data increased. Participants also reported higher levels of confidence in their answers with TreePlus and most of them preferred TreePlus.
Letunic, Ivica; Bork, Peer
2016-07-08
Interactive Tree Of Life (http://itol.embl.de) is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. The current version was completely redesigned and rewritten, utilizing current web technologies for speedy and streamlined processing. Numerous new features were introduced and several new data types are now supported. Trees with up to 100,000 leaves can now be efficiently displayed. Full interactive control over precise positioning of various annotation features and an unlimited number of datasets allow the easy creation of complex tree visualizations. iTOL 3 is the first tool which supports direct visualization of the recently proposed phylogenetic placements format. Finally, iTOL's account system has been redesigned to simplify the management of trees in user-defined workspaces and projects, as it is heavily used and currently handles already more than 500,000 trees from more than 10,000 individual users. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Phylo.io: Interactive Viewing and Comparison of Large Phylogenetic Trees on the Web.
Robinson, Oscar; Dylus, David; Dessimoz, Christophe
2016-08-01
Phylogenetic trees are pervasively used to depict evolutionary relationships. Increasingly, researchers need to visualize large trees and compare multiple large trees inferred for the same set of taxa (reflecting uncertainty in the tree inference or genuine discordance among the loci analyzed). Existing tree visualization tools are however not well suited to these tasks. In particular, side-by-side comparison of trees can prove challenging beyond a few dozen taxa. Here, we introduce Phylo.io, a web application to visualize and compare phylogenetic trees side-by-side. Its distinctive features are: highlighting of similarities and differences between two trees, automatic identification of the best matching rooting and leaf order, scalability to large trees, high usability, multiplatform support via standard HTML5 implementation, and possibility to store and share visualizations. The tool can be freely accessed at http://phylo.io and can easily be embedded in other web servers. The code for the associated JavaScript library is available at https://github.com/DessimozLab/phylo-io under an MIT open source license. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Visual exploration of parameter influence on phylogenetic trees.
Hess, Martin; Bremm, Sebastian; Weissgraeber, Stephanie; Hamacher, Kay; Goesele, Michael; Wiemeyer, Josef; von Landesberger, Tatiana
2014-01-01
Evolutionary relationships between organisms are frequently derived as phylogenetic trees inferred from multiple sequence alignments (MSAs). The MSA parameter space is exponentially large, so tens of thousands of potential trees can emerge for each dataset. A proposed visual-analytics approach can reveal the parameters' impact on the trees. Given input trees created with different parameter settings, it hierarchically clusters the trees according to their structural similarity. The most important clusters of similar trees are shown together with their parameters. This view offers interactive parameter exploration and automatic identification of relevant parameters. Biologists applied this approach to real data of 16S ribosomal RNA and protein sequences of ion channels. It revealed which parameters affected the tree structures. This led to a more reliable selection of the best trees.
MTVis: tree exploration using a multitouch interface
NASA Astrophysics Data System (ADS)
Andrews, David; Teoh, Soon Tee
2010-01-01
We present MTVis, a multi-touch interactive tree visualization system. The multi-touch interface display hardware is built using the LED-LP technology, and the tree layout is based on RINGS, but enhanced with multitouch interactions. We describe the features of the system, and how the multi-touch interface enhances the user's experience in exploring the tree data structure. In particular, the multi-touch interface allows the user to simultaneously control two child nodes of the root, and rotate them so that some nodes are magnified, while preserving the layout of the tree. We also describe the other meaninful touch screen gestures the users can use to intuitively explore the tree.
TreeQ-VISTA: An Interactive Tree Visualization Tool withFunctional Annotation Query Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Shengyin; Anderson, Iain; Kunin, Victor
2007-05-07
Summary: We describe a general multiplatform exploratorytool called TreeQ-Vista, designed for presenting functional annotationsin a phylogenetic context. Traits, such as phenotypic and genomicproperties, are interactively queried from a relational database with auser-friendly interface which provides a set of tools for users with orwithout SQL knowledge. The query results are projected onto aphylogenetic tree and can be displayed in multiple color groups. A richset of browsing, grouping and query tools are provided to facilitatetrait exploration, comparison and analysis.Availability: The program,detailed tutorial and examples are available online athttp://genome-test.lbl.gov/vista/TreeQVista.
Contact Trees: Network Visualization beyond Nodes and Edges
Sallaberry, Arnaud; Fu, Yang-chih; Ho, Hwai-Chung; Ma, Kwan-Liu
2016-01-01
Node-Link diagrams make it possible to take a quick glance at how nodes (or actors) in a network are connected by edges (or ties). A conventional network diagram of a “contact tree” maps out a root and branches that represent the structure of nodes and edges, often without further specifying leaves or fruits that would have grown from small branches. By furnishing such a network structure with leaves and fruits, we reveal details about “contacts” in our ContactTrees upon which ties and relationships are constructed. Our elegant design employs a bottom-up approach that resembles a recent attempt to understand subjective well-being by means of a series of emotions. Such a bottom-up approach to social-network studies decomposes each tie into a series of interactions or contacts, which can help deepen our understanding of the complexity embedded in a network structure. Unlike previous network visualizations, ContactTrees highlight how relationships form and change based upon interactions among actors, as well as how relationships and networks vary by contact attributes. Based on a botanical tree metaphor, the design is easy to construct and the resulting tree-like visualization can display many properties at both tie and contact levels, thus recapturing a key ingredient missing from conventional techniques of network visualization. We demonstrate ContactTrees using data sets consisting of up to three waves of 3-month contact diaries over the 2004-2012 period, and discuss how this design can be applied to other types of datasets. PMID:26784350
How Hierarchical Topics Evolve in Large Text Corpora.
Cui, Weiwei; Liu, Shixia; Wu, Zhuofeng; Wei, Hao
2014-12-01
Using a sequence of topic trees to organize documents is a popular way to represent hierarchical and evolving topics in text corpora. However, following evolving topics in the context of topic trees remains difficult for users. To address this issue, we present an interactive visual text analysis approach to allow users to progressively explore and analyze the complex evolutionary patterns of hierarchical topics. The key idea behind our approach is to exploit a tree cut to approximate each tree and allow users to interactively modify the tree cuts based on their interests. In particular, we propose an incremental evolutionary tree cut algorithm with the goal of balancing 1) the fitness of each tree cut and the smoothness between adjacent tree cuts; 2) the historical and new information related to user interests. A time-based visualization is designed to illustrate the evolving topics over time. To preserve the mental map, we develop a stable layout algorithm. As a result, our approach can quickly guide users to progressively gain profound insights into evolving hierarchical topics. We evaluate the effectiveness of the proposed method on Amazon's Mechanical Turk and real-world news data. The results show that users are able to successfully analyze evolving topics in text data.
Microreact: visualizing and sharing data for genomic epidemiology and phylogeography
Argimón, Silvia; Abudahab, Khalil; Goater, Richard J. E.; Fedosejev, Artemij; Bhai, Jyothish; Glasner, Corinna; Feil, Edward J.; Holden, Matthew T. G.; Yeats, Corin A.; Grundmann, Hajo; Spratt, Brian G.
2016-01-01
Visualization is frequently used to aid our interpretation of complex datasets. Within microbial genomics, visualizing the relationships between multiple genomes as a tree provides a framework onto which associated data (geographical, temporal, phenotypic and epidemiological) are added to generate hypotheses and to explore the dynamics of the system under investigation. Selected static images are then used within publications to highlight the key findings to a wider audience. However, these images are a very inadequate way of exploring and interpreting the richness of the data. There is, therefore, a need for flexible, interactive software that presents the population genomic outputs and associated data in a user-friendly manner for a wide range of end users, from trained bioinformaticians to front-line epidemiologists and health workers. Here, we present Microreact, a web application for the easy visualization of datasets consisting of any combination of trees, geographical, temporal and associated metadata. Data files can be uploaded to Microreact directly via the web browser or by linking to their location (e.g. from Google Drive/Dropbox or via API), and an integrated visualization via trees, maps, timelines and tables provides interactive querying of the data. The visualization can be shared as a permanent web link among collaborators, or embedded within publications to enable readers to explore and download the data. Microreact can act as an end point for any tool or bioinformatic pipeline that ultimately generates a tree, and provides a simple, yet powerful, visualization method that will aid research and discovery and the open sharing of datasets. PMID:28348833
The Hype over Hyperbolic Browsers.
ERIC Educational Resources Information Center
Allen, Maryellen Mott
2002-01-01
Considers complaints about the usability in the human-computer interaction aspect of information retrieval and discusses information visualization, the Online Library of Information Visualization Environments, hyperbolic information structure, subject searching, real-world applications, relational databases and hyperbolic trees, and the future of…
Smits, Samuel A; Ouverney, Cleber C
2010-08-18
Many software packages have been developed to address the need for generating phylogenetic trees intended for print. With an increased use of the web to disseminate scientific literature, there is a need for phylogenetic trees to be viewable across many types of devices and feature some of the interactive elements that are integral to the browsing experience. We propose a novel approach for publishing interactive phylogenetic trees. We present a javascript library, jsPhyloSVG, which facilitates constructing interactive phylogenetic trees from raw Newick or phyloXML formats directly within the browser in Scalable Vector Graphics (SVG) format. It is designed to work across all major browsers and renders an alternative format for those browsers that do not support SVG. The library provides tools for building rectangular and circular phylograms with integrated charting. Interactive features may be integrated and made to respond to events such as clicks on any element of the tree, including labels. jsPhyloSVG is an open-source solution for rendering dynamic phylogenetic trees. It is capable of generating complex and interactive phylogenetic trees across all major browsers without the need for plugins. It is novel in supporting the ability to interpret the tree inference formats directly, exposing the underlying markup to data-mining services. The library source code, extensive documentation and live examples are freely accessible at www.jsphylosvg.com.
CartograTree: connecting tree genomes, phenotypes and environment.
Vasquez-Gross, Hans A; Yu, John J; Figueroa, Ben; Gessler, Damian D G; Neale, David B; Wegrzyn, Jill L
2013-05-01
Today, researchers spend a tremendous amount of time gathering, formatting, filtering and visualizing data collected from disparate sources. Under the umbrella of forest tree biology, we seek to provide a platform and leverage modern technologies to connect biotic and abiotic data. Our goal is to provide an integrated web-based workspace that connects environmental, genomic and phenotypic data via geo-referenced coordinates. Here, we connect the genomic query web-based workspace, DiversiTree and a novel geographical interface called CartograTree to data housed on the TreeGenes database. To accomplish this goal, we implemented Simple Semantic Web Architecture and Protocol to enable the primary genomics database, TreeGenes, to communicate with semantic web services regardless of platform or back-end technologies. The novelty of CartograTree lies in the interactive workspace that allows for geographical visualization and engagement of high performance computing (HPC) resources. The application provides a unique tool set to facilitate research on the ecology, physiology and evolution of forest tree species. CartograTree can be accessed at: http://dendrome.ucdavis.edu/cartogratree. © 2013 Blackwell Publishing Ltd.
A reference guide for tree analysis and visualization
2010-01-01
The quantities of data obtained by the new high-throughput technologies, such as microarrays or ChIP-Chip arrays, and the large-scale OMICS-approaches, such as genomics, proteomics and transcriptomics, are becoming vast. Sequencing technologies become cheaper and easier to use and, thus, large-scale evolutionary studies towards the origins of life for all species and their evolution becomes more and more challenging. Databases holding information about how data are related and how they are hierarchically organized expand rapidly. Clustering analysis is becoming more and more difficult to be applied on very large amounts of data since the results of these algorithms cannot be efficiently visualized. Most of the available visualization tools that are able to represent such hierarchies, project data in 2D and are lacking often the necessary user friendliness and interactivity. For example, the current phylogenetic tree visualization tools are not able to display easy to understand large scale trees with more than a few thousand nodes. In this study, we review tools that are currently available for the visualization of biological trees and analysis, mainly developed during the last decade. We describe the uniform and standard computer readable formats to represent tree hierarchies and we comment on the functionality and the limitations of these tools. We also discuss on how these tools can be developed further and should become integrated with various data sources. Here we focus on freely available software that offers to the users various tree-representation methodologies for biological data analysis. PMID:20175922
3D Visualization of Machine Learning Algorithms with Astronomical Data
NASA Astrophysics Data System (ADS)
Kent, Brian R.
2016-01-01
We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.
Wu, Yubao; Zhu, Xiaofeng; Chen, Jian; Zhang, Xiang
2013-11-01
Epistasis (gene-gene interaction) detection in large-scale genetic association studies has recently drawn extensive research interests as many complex traits are likely caused by the joint effect of multiple genetic factors. The large number of possible interactions poses both statistical and computational challenges. A variety of approaches have been developed to address the analytical challenges in epistatic interaction detection. These methods usually output the identified genetic interactions and store them in flat file formats. It is highly desirable to develop an effective visualization tool to further investigate the detected interactions and unravel hidden interaction patterns. We have developed EINVis, a novel visualization tool that is specifically designed to analyze and explore genetic interactions. EINVis displays interactions among genetic markers as a network. It utilizes a circular layout (specially, a tree ring view) to simultaneously visualize the hierarchical interactions between single nucleotide polymorphisms (SNPs), genes, and chromosomes, and the network structure formed by these interactions. Using EINVis, the user can distinguish marginal effects from interactions, track interactions involving more than two markers, visualize interactions at different levels, and detect proxy SNPs based on linkage disequilibrium. EINVis is an effective and user-friendly free visualization tool for analyzing and exploring genetic interactions. It is publicly available with detailed documentation and online tutorial on the web at http://filer.case.edu/yxw407/einvis/. © 2013 WILEY PERIODICALS, INC.
HierarchicalTopics: visually exploring large text collections using topic hierarchies.
Dou, Wenwen; Yu, Li; Wang, Xiaoyu; Ma, Zhiqiang; Ribarsky, William
2013-12-01
Analyzing large textual collections has become increasingly challenging given the size of the data available and the rate that more data is being generated. Topic-based text summarization methods coupled with interactive visualizations have presented promising approaches to address the challenge of analyzing large text corpora. As the text corpora and vocabulary grow larger, more topics need to be generated in order to capture the meaningful latent themes and nuances in the corpora. However, it is difficult for most of current topic-based visualizations to represent large number of topics without being cluttered or illegible. To facilitate the representation and navigation of a large number of topics, we propose a visual analytics system--HierarchicalTopic (HT). HT integrates a computational algorithm, Topic Rose Tree, with an interactive visual interface. The Topic Rose Tree constructs a topic hierarchy based on a list of topics. The interactive visual interface is designed to present the topic content as well as temporal evolution of topics in a hierarchical fashion. User interactions are provided for users to make changes to the topic hierarchy based on their mental model of the topic space. To qualitatively evaluate HT, we present a case study that showcases how HierarchicalTopics aid expert users in making sense of a large number of topics and discovering interesting patterns of topic groups. We have also conducted a user study to quantitatively evaluate the effect of hierarchical topic structure. The study results reveal that the HT leads to faster identification of large number of relevant topics. We have also solicited user feedback during the experiments and incorporated some suggestions into the current version of HierarchicalTopics.
Visual cues for woodpeckers: light reflectance of decayed wood varies by decay fungus
O'Daniels, Sean T.; Kesler, Dylan C.; Mihail, Jeanne D.; Webb, Elisabeth B.; Werner, Scott J.
2018-01-01
The appearance of wood substrates is likely relevant to bird species with life histories that require regular interactions with wood for food and shelter. Woodpeckers detect decayed wood for cavity placement or foraging, and some species may be capable of detecting trees decayed by specific fungi; however, a mechanism allowing for such specificity remains unidentified. We hypothesized that decay fungi associated with woodpecker cavity sites alter the substrate reflectance in a species-specific manner that is visually discriminable by woodpeckers. We grew 10 species of wood decay fungi from pure cultures on sterile wood substrates of 3 tree species. We then measured the relative reflectance spectra of decayed and control wood wafers and compared them using the receptor noise-limited (RNL) color discrimination model. The RNL model has been used in studies of feather coloration, egg shells, flowers, and fruit to model how the colors of objects appear to birds. Our analyses indicated 6 of 10 decayed substrate/control comparisons were above the threshold of discrimination (i.e., indicating differences discriminable by avian viewers), and 12 of 13 decayed substrate comparisons were also above threshold for a hypothetical woodpecker. We conclude that woodpeckers should be capable of visually detecting decayed wood on trees where bark is absent, and they should also be able to detect visually species-specific differences in wood substrates decayed by fungi used in this study. Our results provide evidence for a visual mechanism by which woodpeckers could identify and select substrates decayed by specific fungi, which has implications for understanding ecologically important woodpecker–fungus interactions.
Using Fault Trees to Advance Understanding of Diagnostic Errors.
Rogith, Deevakar; Iyengar, M Sriram; Singh, Hardeep
2017-11-01
Diagnostic errors annually affect at least 5% of adults in the outpatient setting in the United States. Formal analytic techniques are only infrequently used to understand them, in part because of the complexity of diagnostic processes and clinical work flows involved. In this article, diagnostic errors were modeled using fault tree analysis (FTA), a form of root cause analysis that has been successfully used in other high-complexity, high-risk contexts. How factors contributing to diagnostic errors can be systematically modeled by FTA to inform error understanding and error prevention is demonstrated. A team of three experts reviewed 10 published cases of diagnostic error and constructed fault trees. The fault trees were modeled according to currently available conceptual frameworks characterizing diagnostic error. The 10 trees were then synthesized into a single fault tree to identify common contributing factors and pathways leading to diagnostic error. FTA is a visual, structured, deductive approach that depicts the temporal sequence of events and their interactions in a formal logical hierarchy. The visual FTA enables easier understanding of causative processes and cognitive and system factors, as well as rapid identification of common pathways and interactions in a unified fashion. In addition, it enables calculation of empirical estimates for causative pathways. Thus, fault trees might provide a useful framework for both quantitative and qualitative analysis of diagnostic errors. Future directions include establishing validity and reliability by modeling a wider range of error cases, conducting quantitative evaluations, and undertaking deeper exploration of other FTA capabilities. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Nguyen, Lac; Kenney, Patrick J.
1993-01-01
Development of interactive virtual environments (VE) has typically consisted of three primary activities: model (object) development, model relationship tree development, and environment behavior definition and coding. The model and relationship tree development activities are accomplished with a variety of well-established graphic library (GL) based programs - most utilizing graphical user interfaces (GUI) with point-and-click interactions. Because of this GUI format, little programming expertise on the part of the developer is necessary to create the 3D graphical models or to establish interrelationships between the models. However, the third VE development activity, environment behavior definition and coding, has generally required the greatest amount of time and programmer expertise. Behaviors, characteristics, and interactions between objects and the user within a VE must be defined via command line C coding prior to rendering the environment scenes. In an effort to simplify this environment behavior definition phase for non-programmers, and to provide easy access to model and tree tools, a graphical interface and development tool has been created. The principal thrust of this research is to effect rapid development and prototyping of virtual environments. This presentation will discuss the 'Visual Interface for Virtual Interaction Development' (VIVID) tool; an X-Windows based system employing drop-down menus for user selection of program access, models, and trees, behavior editing, and code generation. Examples of these selection will be highlighted in this presentation, as will the currently available program interfaces. The functionality of this tool allows non-programming users access to all facets of VE development while providing experienced programmers with a collection of pre-coded behaviors. In conjunction with its existing, interfaces and predefined suite of behaviors, future development plans for VIVID will be described. These include incorporation of dual user virtual environment enhancements, tool expansion, and additional behaviors.
Visualization of semantic indexing similarity over MeSH.
Du, Haixia; Yoo, Terry S
2007-10-11
We present an interactive visualization system for the evaluation of indexing results of the MEDLINE data-base over the Medical Subject Headings (MeSH) structure in a graphical radial-tree layout. It displays indexing similarity measurements with 2D color coding and a 3D height field permitting the evaluation of the automatic Medical Text Indexer (MTI), compared with human indexers.
Tree-Structured Methods for Prediction and Data Visualization
2009-03-18
which variables are most important for predicting smoking abstinence . GUIDE, on the other hand, can model interactions of any order. Fur- ther, it...tree for predicting smoking abstinence after one week of treatment. An observation goes to the left node if and only if the stated condition is...H. E., and Loh, W.-Y. (2009). Which surface atmospheric variable drives the seasonal cycle of sea surface temperature over the global ocean
Effects of Silicon Amendment on Soilborne and Fruit Diseases of Avocado
Dann, Elizabeth K.; Le, Duy P.
2017-01-01
The effects of silicon (Si) amendment have been studied in several plant/pathogen interactions; however, studies in horticultural tree crops are limited. Effects of amendment with soluble potassium silicate (AgSil®32, approximately 30% available Si), or milled cement building board by-products (Mineral Mulch (MM) or Mineral Dust (MD), containing 5% available Si) were investigated in field and greenhouse trials with avocado. Orchard soil drench applications with potassium silicate improved yield and quality of fruit, but visual health of trees declining from Phytophthora root rot (PRR) was not affected. Orchard spray or trunk injection applications with potassium silicate were ineffective. Amendment of potting mix with MM and MD reduced root necrosis of avocado seedlings after inoculation with Calonectria ilicicola, an aggressive soilborne pathogen causing black root rot. Application of MM to mature orchard trees declining with PRR had a beneficial effect on visual tree health, and Si accumulation in leaves and fruit peel, after only 10 months. Products that deliver available Si consistently for uptake are likely to be most successful in perennial tree crops. PMID:29053639
A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis
De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan
2016-01-01
Background and Aims Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Methods Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Key Results Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. Conclusions A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. PMID:27107414
Dendrometric measurements reveal stages leading to tree mortality in a semiarid pine forest
NASA Astrophysics Data System (ADS)
Tatarinov, Fyodor; Preisler, Yakir; Klein, Tamir; Rotenberg, Eyal; Yakir, Dan
2017-04-01
Increasing frequency and intensity of climatic extreme events, such as droughts may lead to increasing vulnerability of forests, especially in semi-arid regions. In the spring of 2016 mortality was observed among trees used for sap flow (SF) and dendrometry measurements in the semi-arid Fluxnet pine forest site of Yatir in Israel (280mm annual mean precipitation). This was accompanied by bark-beetle attack, and with visual drying of needles starting in April 2016. Comparative analysis of dendrometry and sap flux (SF) measurements in 31 trees of which 7 died and 24 survived permitted identification of the stages leading to tree mortality. Distinction between dying and surviving trees was identified in the dendrometric measurements from Nov. 2015, about five months before visual mortality signs: First, clear decline in diameter (DBH) was observed in all dying trees, whereas DBH of living trees remained constant until the first rain in January 2016 followed by growth. Second, the diurnal patterns in DBH showed a gradual shift of the diurnal DBH maximum from noon-time to early morning from the summer of 2015 to the spring of 2016 in surviving trees, whereas in dying trees it remained stable around noontime. Third, the diurnal swelling/shrinkage dynamics, assumed to reflect water use and storage dynamics, showed clear decline in magnitude, down to near zero, in the dying trees while regular daily cycle continued in the surviving trees. In September 2015 Shoot measurements showed midnight minimum of leaf water potential, lower than in living trees (-4.5 vs. -3.6 MPa respectively). Sap flow measurements were not sufficiently sensitive during the non-active season (fall and early winter) and indicated changes only after the first rain in January 2016. At this time, SF showed dramatic increase in SF with typical midday maximum in the surviving trees, whereas in dying trees SF remained low and irregular. The results show that indicators of mortality can be detected at least 5 months before visual signs are observed, and demonstrate the interacting effects of carbon economy (growth) and tree water management (radial water movement and storage) on the development of mortality in Aleppo pine trees.
Optogenetic Assessment of Horizontal Interactions in Primary Visual Cortex
Huang, Xiaoying; Elyada, Yishai M.; Bosking, William H.; Walker, Theo
2014-01-01
Columnar organization of orientation selectivity and clustered horizontal connections linking orientation columns are two of the distinctive organizational features of primary visual cortex in many mammalian species. However, the functional role of these connections has been harder to characterize. Here we examine the extent and nature of horizontal interactions in V1 of the tree shrew using optical imaging of intrinsic signals, optogenetic stimulation, and multi-unit recording. Surprisingly, we find the effects of optogenetic stimulation depend primarily on distance and not on the specific orientation domains or axes in the cortex, which are stimulated. In addition, across a wide range of variation in both visual and optogenetic stimulation we find linear addition of the two inputs. These results emphasize that the cortex provides a rich substrate for functional interactions that are not limited to the orientation-specific interactions predicted by the monosynaptic distribution of horizontal connections. PMID:24695715
[Construction of information management-based virtual forest landscape and its application].
Chen, Chongcheng; Tang, Liyu; Quan, Bing; Li, Jianwei; Shi, Song
2005-11-01
Based on the analysis of the contents and technical characteristics of different scale forest visualization modeling, this paper brought forward the principles and technical systems of constructing an information management-based virtual forest landscape. With the combination of process modeling and tree geometric structure description, a software method of interactively and parameterized tree modeling was developed, and the corresponding renderings and geometrical elements simplification algorithms were delineated to speed up rendering run-timely. As a pilot study, the geometrical model bases associated with the typical tree categories in Zhangpu County of Fujian Province, southeast China were established as template files. A Virtual Forest Management System prototype was developed with GIS component (ArcObject), OpenGL graphics environment, and Visual C++ language, based on forest inventory and remote sensing data. The prototype could be used for roaming between 2D and 3D, information query and analysis, and virtual and interactive forest growth simulation, and its reality and accuracy could meet the needs of forest resource management. Some typical interfaces of the system and the illustrative scene cross-sections of simulated masson pine growth under conditions of competition and thinning were listed.
NASA Astrophysics Data System (ADS)
Böhm, J.; Bredif, M.; Gierlinger, T.; Krämer, M.; Lindenberg, R.; Liu, K.; Michel, F.; Sirmacek, B.
2016-06-01
Current 3D data capturing as implemented on for example airborne or mobile laser scanning systems is able to efficiently sample the surface of a city by billions of unselective points during one working day. What is still difficult is to extract and visualize meaningful information hidden in these point clouds with the same efficiency. This is where the FP7 IQmulus project enters the scene. IQmulus is an interactive facility for processing and visualizing big spatial data. In this study the potential of IQmulus is demonstrated on a laser mobile mapping point cloud of 1 billion points sampling ~ 10 km of street environment in Toulouse, France. After the data is uploaded to the IQmulus Hadoop Distributed File System, a workflow is defined by the user consisting of retiling the data followed by a PCA driven local dimensionality analysis, which runs efficiently on the IQmulus cloud facility using a Spark implementation. Points scattering in 3 directions are clustered in the tree class, and are separated next into individual trees. Five hours of processing at the 12 node computing cluster results in the automatic identification of 4000+ urban trees. Visualization of the results in the IQmulus fat client helps users to appreciate the results, and developers to identify remaining flaws in the processing workflow.
Visualization of time-varying natural tree data
S. Brasch; L. Linsen; E.G. McPherson
2007-01-01
Given a set of global (natural) tree parameters measured for many specimens of different ages for a range of species, we have developed a tool that visualizes these parameters over time. The parameters include measures of tree dimensions like heights, diameters, and crown shape, and measures of costs and benefits for growing the tree. We visualize the tree dimensions...
Ni, Ming; Ye, Fuqiang; Zhu, Juanjuan; Li, Zongwei; Yang, Shuai; Yang, Bite; Han, Lu; Wu, Yongge; Chen, Ying; Li, Fei; Wang, Shengqi; Bo, Xiaochen
2014-12-01
Numerous public microarray datasets are valuable resources for the scientific communities. Several online tools have made great steps to use these data by querying related datasets with users' own gene signatures or expression profiles. However, dataset annotation and result exhibition still need to be improved. ExpTreeDB is a database that allows for queries on human and mouse microarray experiments from Gene Expression Omnibus with gene signatures or profiles. Compared with similar applications, ExpTreeDB pays more attention to dataset annotations and result visualization. We introduced a multiple-level annotation system to depict and organize original experiments. For example, a tamoxifen-treated cell line experiment is hierarchically annotated as 'agent→drug→estrogen receptor antagonist→tamoxifen'. Consequently, retrieved results are exhibited by an interactive tree-structured graphics, which provide an overview for related experiments and might enlighten users on key items of interest. The database is freely available at http://biotech.bmi.ac.cn/ExpTreeDB. Web site is implemented in Perl, PHP, R, MySQL and Apache. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis.
De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan
2016-06-01
Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Web-based visual analysis for high-throughput genomics
2013-01-01
Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments. PMID:23758618
Peña-García, Antonio; de Oña, Rocío; García, Pedro Antonio; de Oña, Juan
2016-12-01
Daytime running lamps (DRL) on vehicles have proven to be an effective measure to prevent accidents during the daytime, particularly when pedestrians and cyclists are involved. However, there are negative interactions of DRL with other functions in automotive lighting, such as delays in pedestrians' visual reaction time (VRT) when turn indicators are activated in the presence of DRL. These negative interactions need to be reduced. This work analyses the influence of variables inherent to pedestrians, such as height, gender and visual defects, on the VRT using a classification and regression tree as an exploratory analysis and a generalized linear model to validate the results. Some pedestrian characteristics, such as gender, alone or combined with the DRL colour, and visual defects, were found to have a statistically significant influence on VRT and, hence, on traffic safety. These results and conclusions concerning the interaction between pedestrians and vehicles are presented and discussed. Practitioner Summary: Visual interactions of vehicle daytime running lamps (DRL) with other functions in automotive lighting, such as turn indicators, have an important impact on a vehicle's conspicuity for pedestrians. Depending on several factors inherent to pedestrians, the visual reaction time (VRT) can be remarkably delayed, which has implications in traffic safety.
Green, T A; Prokopy, R J; Hosmer, D W
1994-09-01
Mature female apple maggot flies,Rhagoletis pomonella (Walsh), were released individually onto a single potted, fruitless hawthorne tree in the center of an open field. The tree was surrounded by four 1-m(2) plywood host tree models painted green or white, with or without synthetic host fruit odor (butyl hexanoate), and placed at one of several distances from the release tree. Each fly was permitted to forage freely on the release tree for up to 1 hr, or until it left the tree. Flies left the tree significantly sooner when green models with host fruit were present at 0.5, 1.5, or 2.5 m distance from the release tree than when these models were placed at a greater distance (4.5 m) from the release tree or when no models were present. Flies responded detectably to 1-m(2) models without odor up to a maximum distance of 1.5 m. These results suggest that female apple maggot flies did not detect green 1-m(2) models with odor 4.5 m away or models without odor 2.5 m or more away. Flies responded to white models with and without odor to a much lesser extent, both in terms of response distance and flight to and alightment upon models. Increasing model size to 2 m(2) increased the distance to 2.5 m at which flies responded to green models without odor. Decreasing model size to 0.5 m(2) reduced fly responsiveness to green or white models. The presence of host fruit odor alone, without the visual stimulus of a green model, did not influence residence time on the release tree.
Mapping Topographic Structure in White Matter Pathways with Level Set Trees
Kent, Brian P.; Rinaldo, Alessandro; Yeh, Fang-Cheng; Verstynen, Timothy
2014-01-01
Fiber tractography on diffusion imaging data offers rich potential for describing white matter pathways in the human brain, but characterizing the spatial organization in these large and complex data sets remains a challenge. We show that level set trees–which provide a concise representation of the hierarchical mode structure of probability density functions–offer a statistically-principled framework for visualizing and analyzing topography in fiber streamlines. Using diffusion spectrum imaging data collected on neurologically healthy controls (N = 30), we mapped white matter pathways from the cortex into the striatum using a deterministic tractography algorithm that estimates fiber bundles as dimensionless streamlines. Level set trees were used for interactive exploration of patterns in the endpoint distributions of the mapped fiber pathways and an efficient segmentation of the pathways that had empirical accuracy comparable to standard nonparametric clustering techniques. We show that level set trees can also be generalized to model pseudo-density functions in order to analyze a broader array of data types, including entire fiber streamlines. Finally, resampling methods show the reliability of the level set tree as a descriptive measure of topographic structure, illustrating its potential as a statistical descriptor in brain imaging analysis. These results highlight the broad applicability of level set trees for visualizing and analyzing high-dimensional data like fiber tractography output. PMID:24714673
He, Zilong; Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Chen, Wei-Hua; Hu, Songnian
2016-07-08
Evolview is an online visualization and management tool for customized and annotated phylogenetic trees. It allows users to visualize phylogenetic trees in various formats, customize the trees through built-in functions and user-supplied datasets and export the customization results to publication-ready figures. Its 'dataset system' contains not only the data to be visualized on the tree, but also 'modifiers' that control various aspects of the graphical annotation. Evolview is a single-page application (like Gmail); its carefully designed interface allows users to upload, visualize, manipulate and manage trees and datasets all in a single webpage. Developments since the last public release include a modern dataset editor with keyword highlighting functionality, seven newly added types of annotation datasets, collaboration support that allows users to share their trees and datasets and various improvements of the web interface and performance. In addition, we included eleven new 'Demo' trees to demonstrate the basic functionalities of Evolview, and five new 'Showcase' trees inspired by publications to showcase the power of Evolview in producing publication-ready figures. Evolview is freely available at: http://www.evolgenius.info/evolview/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Dynamic Attack Tree Tool for Risk Assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Karl
2012-03-13
DATT enables interactive visualization, qualitative analysis and recording of cyber and other forms of risk. It facilitates dynamic risk-based approaches (as opposed to static compliance-based) to security and risk management in general. DATT allows decision makers to consistently prioritize risk mitigation strategies and quickly see where attention is most needed across the enterprise.
TreeScaper: Visualizing and Extracting Phylogenetic Signal from Sets of Trees.
Huang, Wen; Zhou, Guifang; Marchand, Melissa; Ash, Jeremy R; Morris, David; Van Dooren, Paul; Brown, Jeremy M; Gallivan, Kyle A; Wilgenbusch, Jim C
2016-12-01
Modern phylogenomic analyses often result in large collections of phylogenetic trees representing uncertainty in individual gene trees, variation across genes, or both. Extracting phylogenetic signal from these tree sets can be challenging, as they are difficult to visualize, explore, and quantify. To overcome some of these challenges, we have developed TreeScaper, an application for tree set visualization as well as the identification of distinct phylogenetic signals. GUI and command-line versions of TreeScaper and a manual with tutorials can be downloaded from https://github.com/whuang08/TreeScaper/releases TreeScaper is distributed under the GNU General Public License. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A prototype system based on visual interactive SDM called VGC
NASA Astrophysics Data System (ADS)
Jia, Zelu; Liu, Yaolin; Liu, Yanfang
2009-10-01
In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. For spatial data mining of large data sets to be effective, it is also important to include humans in the data exploration process and combine their flexibility, creativity, and general knowledge with the enormous storage capacity and computational power of today's computers. Visual spatial data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the information and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper a visual interactive spatial data mining prototype system (visual geo-classify) based on VC++6.0 and MapObject2.0 are designed and developed, the basic algorithms of the spatial data mining is used decision tree and Bayesian networks, and data classify are used training and learning and the integration of the two to realize. The result indicates it's a practical and extensible visual interactive spatial data mining tool.
ActiviTree: interactive visual exploration of sequences in event-based data using graph similarity.
Vrotsou, Katerina; Johansson, Jimmy; Cooper, Matthew
2009-01-01
The identification of significant sequences in large and complex event-based temporal data is a challenging problem with applications in many areas of today's information intensive society. Pure visual representations can be used for the analysis, but are constrained to small data sets. Algorithmic search mechanisms used for larger data sets become expensive as the data size increases and typically focus on frequency of occurrence to reduce the computational complexity, often overlooking important infrequent sequences and outliers. In this paper we introduce an interactive visual data mining approach based on an adaptation of techniques developed for web searching, combined with an intuitive visual interface, to facilitate user-centred exploration of the data and identification of sequences significant to that user. The search algorithm used in the exploration executes in negligible time, even for large data, and so no pre-processing of the selected data is required, making this a completely interactive experience for the user. Our particular application area is social science diary data but the technique is applicable across many other disciplines.
PhyloDet: a scalable visualization tool for mapping multiple traits to large evolutionary trees
Lee, Bongshin; Nachmanson, Lev; Robertson, George; Carlson, Jonathan M.; Heckerman, David
2009-01-01
Summary: Evolutionary biologists are often interested in finding correlations among biological traits across a number of species, as such correlations may lead to testable hypotheses about the underlying function. Because some species are more closely related than others, computing and visualizing these correlations must be done in the context of the evolutionary tree that relates species. In this note, we introduce PhyloDet (short for PhyloDetective), an evolutionary tree visualization tool that enables biologists to visualize multiple traits mapped to the tree. Availability: http://research.microsoft.com/cue/phylodet/ Contact: bongshin@microsoft.com. PMID:19633096
EvolView, an online tool for visualizing, annotating and managing phylogenetic trees.
Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Hu, Songnian; Chen, Wei-Hua
2012-07-01
EvolView is a web application for visualizing, annotating and managing phylogenetic trees. First, EvolView is a phylogenetic tree viewer and customization tool; it visualizes trees in various formats, customizes them through built-in functions that can link information from external datasets, and exports the customized results to publication-ready figures. Second, EvolView is a tree and dataset management tool: users can easily organize related trees into distinct projects, add new datasets to trees and edit and manage existing trees and datasets. To make EvolView easy to use, it is equipped with an intuitive user interface. With a free account, users can save data and manipulations on the EvolView server. EvolView is freely available at: http://www.evolgenius.info/evolview.html.
EvolView, an online tool for visualizing, annotating and managing phylogenetic trees
Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J.; Hu, Songnian; Chen, Wei-Hua
2012-01-01
EvolView is a web application for visualizing, annotating and managing phylogenetic trees. First, EvolView is a phylogenetic tree viewer and customization tool; it visualizes trees in various formats, customizes them through built-in functions that can link information from external datasets, and exports the customized results to publication-ready figures. Second, EvolView is a tree and dataset management tool: users can easily organize related trees into distinct projects, add new datasets to trees and edit and manage existing trees and datasets. To make EvolView easy to use, it is equipped with an intuitive user interface. With a free account, users can save data and manipulations on the EvolView server. EvolView is freely available at: http://www.evolgenius.info/evolview.html. PMID:22695796
Multitask visual learning using genetic programming.
Jaśkowski, Wojciech; Krawiec, Krzysztof; Wieloch, Bartosz
2008-01-01
We propose a multitask learning method of visual concepts within the genetic programming (GP) framework. Each GP individual is composed of several trees that process visual primitives derived from input images. Two trees solve two different visual tasks and are allowed to share knowledge with each other by commonly calling the remaining GP trees (subfunctions) included in the same individual. The performance of a particular tree is measured by its ability to reproduce the shapes contained in the training images. We apply this method to visual learning tasks of recognizing simple shapes and compare it to a reference method. The experimental verification demonstrates that such multitask learning often leads to performance improvements in one or both solved tasks, without extra computational effort.
Alam, Zaid; Peddinti, Gopal
2017-01-01
Abstract The advent of polypharmacology paradigm in drug discovery calls for novel chemoinformatic tools for analyzing compounds’ multi-targeting activities. Such tools should provide an intuitive representation of the chemical space through capturing and visualizing underlying patterns of compound similarities linked to their polypharmacological effects. Most of the existing compound-centric chemoinformatics tools lack interactive options and user interfaces that are critical for the real-time needs of chemical biologists carrying out compound screening experiments. Toward that end, we introduce C-SPADE, an open-source exploratory web-tool for interactive analysis and visualization of drug profiling assays (biochemical, cell-based or cell-free) using compound-centric similarity clustering. C-SPADE allows the users to visually map the chemical diversity of a screening panel, explore investigational compounds in terms of their similarity to the screening panel, perform polypharmacological analyses and guide drug-target interaction predictions. C-SPADE requires only the raw drug profiling data as input, and it automatically retrieves the structural information and constructs the compound clusters in real-time, thereby reducing the time required for manual analysis in drug development or repurposing applications. The web-tool provides a customizable visual workspace that can either be downloaded as figure or Newick tree file or shared as a hyperlink with other users. C-SPADE is freely available at http://cspade.fimm.fi/. PMID:28472495
Thanki, Anil S; Soranzo, Nicola; Haerty, Wilfried; Davey, Robert P
2018-03-01
Gene duplication is a major factor contributing to evolutionary novelty, and the contraction or expansion of gene families has often been associated with morphological, physiological, and environmental adaptations. The study of homologous genes helps us to understand the evolution of gene families. It plays a vital role in finding ancestral gene duplication events as well as identifying genes that have diverged from a common ancestor under positive selection. There are various tools available, such as MSOAR, OrthoMCL, and HomoloGene, to identify gene families and visualize syntenic information between species, providing an overview of syntenic regions evolution at the family level. Unfortunately, none of them provide information about structural changes within genes, such as the conservation of ancestral exon boundaries among multiple genomes. The Ensembl GeneTrees computational pipeline generates gene trees based on coding sequences, provides details about exon conservation, and is used in the Ensembl Compara project to discover gene families. A certain amount of expertise is required to configure and run the Ensembl Compara GeneTrees pipeline via command line. Therefore, we converted this pipeline into a Galaxy workflow, called GeneSeqToFamily, and provided additional functionality. This workflow uses existing tools from the Galaxy ToolShed, as well as providing additional wrappers and tools that are required to run the workflow. GeneSeqToFamily represents the Ensembl GeneTrees pipeline as a set of interconnected Galaxy tools, so they can be run interactively within the Galaxy's user-friendly workflow environment while still providing the flexibility to tailor the analysis by changing configurations and tools if necessary. Additional tools allow users to subsequently visualize the gene families produced by the workflow, using the Aequatus.js interactive tool, which has been developed as part of the Aequatus software project.
W-tree indexing for fast visual word generation.
Shi, Miaojing; Xu, Ruixin; Tao, Dacheng; Xu, Chao
2013-03-01
The bag-of-visual-words representation has been widely used in image retrieval and visual recognition. The most time-consuming step in obtaining this representation is the visual word generation, i.e., assigning visual words to the corresponding local features in a high-dimensional space. Recently, structures based on multibranch trees and forests have been adopted to reduce the time cost. However, these approaches cannot perform well without a large number of backtrackings. In this paper, by considering the spatial correlation of local features, we can significantly speed up the time consuming visual word generation process while maintaining accuracy. In particular, visual words associated with certain structures frequently co-occur; hence, we can build a co-occurrence table for each visual word for a large-scale data set. By associating each visual word with a probability according to the corresponding co-occurrence table, we can assign a probabilistic weight to each node of a certain index structure (e.g., a KD-tree and a K-means tree), in order to re-direct the searching path to be close to its global optimum within a small number of backtrackings. We carefully study the proposed scheme by comparing it with the fast library for approximate nearest neighbors and the random KD-trees on the Oxford data set. Thorough experimental results suggest the efficiency and effectiveness of the new scheme.
Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.
Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling
2015-11-01
In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.
Foliar fungi of Betula pendula: impact of tree species mixtures and assessment methods
Nguyen, Diem; Boberg, Johanna; Cleary, Michelle; Bruelheide, Helge; Hönig, Lydia; Koricheva, Julia; Stenlid, Jan
2017-01-01
Foliar fungi of silver birch (Betula pendula) in an experimental Finnish forest were investigated across a gradient of tree species richness using molecular high-throughput sequencing and visual macroscopic assessment. We hypothesized that the molecular approach detects more fungal taxa than visual assessment, and that there is a relationship among the most common fungal taxa detected by both techniques. Furthermore, we hypothesized that the fungal community composition, diversity, and distribution patterns are affected by changes in tree diversity. Sequencing revealed greater diversity of fungi on birch leaves than the visual assessment method. One species showed a linear relationship between the methods. Species-specific variation in fungal community composition could be partially explained by tree diversity, though overall fungal diversity was not affected by tree diversity. Analysis of specific fungal taxa indicated tree diversity effects at the local neighbourhood scale, where the proportion of birch among neighbouring trees varied, but not at the plot scale. In conclusion, both methods may be used to determine tree diversity effects on the foliar fungal community. However, high-throughput sequencing provided higher resolution of the fungal community, while the visual macroscopic assessment detected functionally active fungal species. PMID:28150710
The shaping of information by visual metaphors.
Ziemkiewicz, Caroline; Kosara, Robert
2008-01-01
The nature of an information visualization can be considered to lie in the visual metaphors it uses to structure information. The process of understanding a visualization therefore involves an interaction between these external visual metaphors and the user's internal knowledge representations. To investigate this claim, we conducted an experiment to test the effects of visual metaphor and verbal metaphor on the understanding of tree visualizations. Participants answered simple data comprehension questions while viewing either a treemap or a node-link diagram. Questions were worded to reflect a verbal metaphor that was either compatible or incompatible with the visualization a participant was using. The results (based on correctness and response time) suggest that the visual metaphor indeed affects how a user derives information from a visualization. Additionally, we found that the degree to which a user is affected by the metaphor is strongly correlated with the user's ability to answer task questions correctly. These findings are a first step towards illuminating how visual metaphors shape user understanding, and have significant implications for the evaluation, application, and theory of visualization.
Assessing visual green effects of individual urban trees using airborne Lidar data.
Chen, Ziyue; Xu, Bing; Gao, Bingbo
2015-12-01
Urban trees benefit people's daily life in terms of air quality, local climate, recreation and aesthetics. Among these functions, a growing number of studies have been conducted to understand the relationship between residents' preference towards local environments and visual green effects of urban greenery. However, except for on-site photography, there are few quantitative methods to calculate green visibility, especially tree green visibility, from viewers' perspectives. To fill this research gap, a case study was conducted in the city of Cambridge, which has a diversity of tree species, sizes and shapes. Firstly, a photograph-based survey was conducted to approximate the actual value of visual green effects of individual urban trees. In addition, small footprint airborne Lidar (Light detection and ranging) data was employed to measure the size and shape of individual trees. Next, correlations between visual tree green effects and tree structural parameters were examined. Through experiments and gradual refinement, a regression model with satisfactory R2 and limited large errors is proposed. Considering the diversity of sample trees and the result of cross-validation, this model has the potential to be applied to other study sites. This research provides urban planners and decision makers with an innovative method to analyse and evaluate landscape patterns in terms of tree greenness. Copyright © 2015 Elsevier B.V. All rights reserved.
Student Interpretations of Phylogenetic Trees in an Introductory Biology Course
ERIC Educational Resources Information Center
Dees, Jonathan; Momsen, Jennifer L.; Niemi, Jarad; Montplaisir, Lisa
2014-01-01
Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa…
Treelink: data integration, clustering and visualization of phylogenetic trees.
Allende, Christian; Sohn, Erik; Little, Cedric
2015-12-29
Phylogenetic trees are central to a wide range of biological studies. In many of these studies, tree nodes need to be associated with a variety of attributes. For example, in studies concerned with viral relationships, tree nodes are associated with epidemiological information, such as location, age and subtype. Gene trees used in comparative genomics are usually linked with taxonomic information, such as functional annotations and events. A wide variety of tree visualization and annotation tools have been developed in the past, however none of them are intended for an integrative and comparative analysis. Treelink is a platform-independent software for linking datasets and sequence files to phylogenetic trees. The application allows an automated integration of datasets to trees for operations such as classifying a tree based on a field or showing the distribution of selected data attributes in branches and leafs. Genomic and proteonomic sequences can also be linked to the tree and extracted from internal and external nodes. A novel clustering algorithm to simplify trees and display the most divergent clades was also developed, where validation can be achieved using the data integration and classification function. Integrated geographical information allows ancestral character reconstruction for phylogeographic plotting based on parsimony and likelihood algorithms. Our software can successfully integrate phylogenetic trees with different data sources, and perform operations to differentiate and visualize those differences within a tree. File support includes the most popular formats such as newick and csv. Exporting visualizations as images, cluster outputs and genomic sequences is supported. Treelink is available as a web and desktop application at http://www.treelinkapp.com .
d-Omix: a mixer of generic protein domain analysis tools.
Wichadakul, Duangdao; Numnark, Somrak; Ingsriswang, Supawadee
2009-07-01
Domain combination provides important clues to the roles of protein domains in protein function, interaction and evolution. We have developed a web server d-Omix (a Mixer of Protein Domain Analysis Tools) aiming as a unified platform to analyze, compare and visualize protein data sets in various aspects of protein domain combinations. With InterProScan files for protein sets of interest provided by users, the server incorporates four services for domain analyses. First, it constructs protein phylogenetic tree based on a distance matrix calculated from protein domain architectures (DAs), allowing the comparison with a sequence-based tree. Second, it calculates and visualizes the versatility, abundance and co-presence of protein domains via a domain graph. Third, it compares the similarity of proteins based on DA alignment. Fourth, it builds a putative protein network derived from domain-domain interactions from DOMINE. Users may select a variety of input data files and flexibly choose domain search tools (e.g. hmmpfam, superfamily) for a specific analysis. Results from the d-Omix could be interactively explored and exported into various formats such as SVG, JPG, BMP and CSV. Users with only protein sequences could prepare an InterProScan file using a service provided by the server as well. The d-Omix web server is freely available at http://www.biotec.or.th/isl/Domix.
Universality in the Evolution of Orientation Columns in the Visual Cortex
Kaschube, Matthias; Schnabel, Michael; Löwel, Siegrid; Coppola, David M.; White, Leonard E.; Wolf, Fred
2011-01-01
The brain’s visual cortex processes information concerning form, pattern, and motion within functional maps that reflect the layout of neuronal circuits. We analyzed functional maps of orientation preference in the ferret, tree shrew, and galago—three species separated since the basal radiation of placental mammals more than 65 million years ago—and found a common organizing principle. A symmetry-based class of models for the self-organization of cortical networks predicts all essential features of the layout of these neuronal circuits, but only if suppressive long-range interactions dominate development. We show mathematically that orientation-selective long-range connectivity can mediate the required interactions. Our results suggest that self-organization has canalized the evolution of the neuronal circuitry underlying orientation preference maps into a single common design. PMID:21051599
Comprehensive decision tree models in bioinformatics.
Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter
2012-01-01
Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics.
Comprehensive Decision Tree Models in Bioinformatics
Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter
2012-01-01
Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics. PMID:22479449
Efficient Encoding and Rendering of Time-Varying Volume Data
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Smith, Diann; Shih, Ming-Yun; Shen, Han-Wei
1998-01-01
Visualization of time-varying volumetric data sets, which may be obtained from numerical simulations or sensing instruments, provides scientists insights into the detailed dynamics of the phenomenon under study. This paper describes a coherent solution based on quantization, coupled with octree and difference encoding for visualizing time-varying volumetric data. Quantization is used to attain voxel-level compression and may have a significant influence on the performance of the subsequent encoding and visualization steps. Octree encoding is used for spatial domain compression, and difference encoding for temporal domain compression. In essence, neighboring voxels may be fused into macro voxels if they have similar values, and subtrees at consecutive time steps may be merged if they are identical. The software rendering process is tailored according to the tree structures and the volume visualization process. With the tree representation, selective rendering may be performed very efficiently. Additionally, the I/O costs are reduced. With these combined savings, a higher level of user interactivity is achieved. We have studied a variety of time-varying volume datasets, performed encoding based on data statistics, and optimized the rendering calculations wherever possible. Preliminary tests on workstations have shown in many cases tremendous reduction by as high as 90% in both storage space and inter-frame delay.
Quantification and Visualization of Variation in Anatomical Trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amenta, Nina; Datar, Manasi; Dirksen, Asger
This paper presents two approaches to quantifying and visualizing variation in datasets of trees. The first approach localizes subtrees in which significant population differences are found through hypothesis testing and sparse classifiers on subtree features. The second approach visualizes the global metric structure of datasets through low-distortion embedding into hyperbolic planes in the style of multidimensional scaling. A case study is made on a dataset of airway trees in relation to Chronic Obstructive Pulmonary Disease.
Nicklas Samils; Malin Elfstrand; Daniel L. Lindner Czederpiltz; Jan Fahleson; Ake Olson; Christina Dixelius; Jan Stenlid
2006-01-01
Heterobasidion annosum causes root and butt-rot in trees and is the most serious forest pathogen in the northern hemisphere. We developed a rapid and simple Agrobacterium-mediated method of gene delivery into H. annosum to be used in functional studies of candidate genes and for visualization of mycelial interactions. Heterobasidion annosum TC 32-1 was cocultivated at...
MASTtreedist: visualization of tree space based on maximum agreement subtree.
Huang, Hong; Li, Yongji
2013-01-01
Phylogenetic tree construction process might produce many candidate trees as the "best estimates." As the number of constructed phylogenetic trees grows, the need to efficiently compare their topological or physical structures arises. One of the tree comparison's software tools, the Mesquite's Tree Set Viz module, allows the rapid and efficient visualization of the tree comparison distances using multidimensional scaling (MDS). Tree-distance measures, such as Robinson-Foulds (RF), for the topological distance among different trees have been implemented in Tree Set Viz. New and sophisticated measures such as Maximum Agreement Subtree (MAST) can be continuously built upon Tree Set Viz. MAST can detect the common substructures among trees and provide more precise information on the similarity of the trees, but it is NP-hard and difficult to implement. In this article, we present a practical tree-distance metric: MASTtreedist, a MAST-based comparison metric in Mesquite's Tree Set Viz module. In this metric, the efficient optimizations for the maximum weight clique problem are applied. The results suggest that the proposed method can efficiently compute the MAST distances among trees, and such tree topological differences can be translated as a scatter of points in two-dimensional (2D) space. We also provide statistical evaluation of provided measures with respect to RF-using experimental data sets. This new comparison module provides a new tree-tree pairwise comparison metric based on the differences of the number of MAST leaves among constructed phylogenetic trees. Such a new phylogenetic tree comparison metric improves the visualization of taxa differences by discriminating small divergences of subtree structures for phylogenetic tree reconstruction.
Estimating Starch Content in Roots of Deciduous Trees--A Visual Technique
Philip M. Wargo; Philip M. Wargo
1975-01-01
A visual technique for determining starch content in roots of forest trees, based onz iodine-staining of starch granules, was compared with a chemical method. Although the chemical method was more precise, roots could be sorted with the visual method into groups that are probably biologically important. The visual technique is simple and can be adapted for use in the...
Freas, Cody A.; Wystrach, Antione; Narendra, Ajay; Cheng, Ken
2018-01-01
Solitary foraging ants commonly use visual cues from their environment for navigation. Foragers are known to store visual scenes from the surrounding panorama for later guidance to known resources and to return successfully back to the nest. Several ant species travel not only on the ground, but also climb trees to locate resources. The navigational information that guides animals back home during their descent, while their body is perpendicular to the ground, is largely unknown. Here, we investigate in a nocturnal ant, Myrmecia midas, whether foragers travelling down a tree use visual information to return home. These ants establish nests at the base of a tree on which they forage and in addition, they also forage on nearby trees. We collected foragers and placed them on the trunk of the nest tree or a foraging tree in multiple compass directions. Regardless of the displacement location, upon release ants immediately moved to the side of the trunk facing the nest during their descent. When ants were released on non-foraging trees near the nest, displaced foragers again travelled around the tree to the side facing the nest. All the displaced foragers reached the correct side of the tree well before reaching the ground. However, when the terrestrial cues around the tree were blocked, foragers were unable to orient correctly, suggesting that the surrounding panorama is critical to successful orientation on the tree. Through analysis of panoramic pictures, we show that views acquired at the base of the foraging tree nest can provide reliable nest-ward orientation up to 1.75 m above the ground. We discuss, how animals descending from trees compare their current scene to a memorised scene and report on the similarities in visually guided behaviour while navigating on the ground and descending from trees. PMID:29422880
Freas, Cody A; Wystrach, Antione; Narendra, Ajay; Cheng, Ken
2018-01-01
Solitary foraging ants commonly use visual cues from their environment for navigation. Foragers are known to store visual scenes from the surrounding panorama for later guidance to known resources and to return successfully back to the nest. Several ant species travel not only on the ground, but also climb trees to locate resources. The navigational information that guides animals back home during their descent, while their body is perpendicular to the ground, is largely unknown. Here, we investigate in a nocturnal ant, Myrmecia midas , whether foragers travelling down a tree use visual information to return home. These ants establish nests at the base of a tree on which they forage and in addition, they also forage on nearby trees. We collected foragers and placed them on the trunk of the nest tree or a foraging tree in multiple compass directions. Regardless of the displacement location, upon release ants immediately moved to the side of the trunk facing the nest during their descent. When ants were released on non-foraging trees near the nest, displaced foragers again travelled around the tree to the side facing the nest. All the displaced foragers reached the correct side of the tree well before reaching the ground. However, when the terrestrial cues around the tree were blocked, foragers were unable to orient correctly, suggesting that the surrounding panorama is critical to successful orientation on the tree. Through analysis of panoramic pictures, we show that views acquired at the base of the foraging tree nest can provide reliable nest-ward orientation up to 1.75 m above the ground. We discuss, how animals descending from trees compare their current scene to a memorised scene and report on the similarities in visually guided behaviour while navigating on the ground and descending from trees.
KinMap: a web-based tool for interactive navigation through human kinome data.
Eid, Sameh; Turk, Samo; Volkamer, Andrea; Rippmann, Friedrich; Fulle, Simone
2017-01-05
Annotations of the phylogenetic tree of the human kinome is an intuitive way to visualize compound profiling data, structural features of kinases or functional relationships within this important class of proteins. The increasing volume and complexity of kinase-related data underlines the need for a tool that enables complex queries pertaining to kinase disease involvement and potential therapeutic uses of kinase inhibitors. Here, we present KinMap, a user-friendly online tool that facilitates the interactive navigation through kinase knowledge by linking biochemical, structural, and disease association data to the human kinome tree. To this end, preprocessed data from freely-available sources, such as ChEMBL, the Protein Data Bank, and the Center for Therapeutic Target Validation platform are integrated into KinMap and can easily be complemented by proprietary data. The value of KinMap will be exemplarily demonstrated for uncovering new therapeutic indications of known kinase inhibitors and for prioritizing kinases for drug development efforts. KinMap represents a new generation of kinome tree viewers which facilitates interactive exploration of the human kinome. KinMap enables generation of high-quality annotated images of the human kinome tree as well as exchange of kinome-related data in scientific communications. Furthermore, KinMap supports multiple input and output formats and recognizes alternative kinase names and links them to a unified naming scheme, which makes it a useful tool across different disciplines and applications. A web-service of KinMap is freely available at http://www.kinhub.org/kinmap/ .
IVisTMSA: Interactive Visual Tools for Multiple Sequence Alignments.
Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Naeem; Naveed, Nasir; Ahmad, Sarfraz; Muhammad, Shah; Qadri, Salman; Shahid, Muhammad; Hussain, Tanveer; Javed, Maryam
2015-01-01
IVisTMSA is a software package of seven graphical tools for multiple sequence alignments. MSApad is an editing and analysis tool. It can load 409% more data than Jalview, STRAP, CINEMA, and Base-by-Base. MSA comparator allows the user to visualize consistent and inconsistent regions of reference and test alignments of more than 21-MB size in less than 12 seconds. MSA comparator is 5,200% efficient and more than 40% efficient as compared to BALiBASE c program and FastSP, respectively. MSA reconstruction tool provides graphical user interfaces for four popular aligners and allows the user to load several sequence files at a time. FASTA generator converts seven formats of alignments of unlimited size into FASTA format in a few seconds. MSA ID calculator calculates identity matrix of more than 11,000 sequences with a sequence length of 2,696 base pairs in less than 100 seconds. Tree and Distance Matrix calculation tools generate phylogenetic tree and distance matrix, respectively, using neighbor joining% identity and BLOSUM 62 matrix.
Deficient cortical face-sensitive N170 responses and basic visual processing in schizophrenia.
Maher, S; Mashhoon, Y; Ekstrom, T; Lukas, S; Chen, Y
2016-01-01
Face detection, an ability to identify a visual stimulus as a face, is impaired in patients with schizophrenia. It is unclear whether impaired face processing in this psychiatric disorder results from face-specific domains or stems from more basic visual domains. In this study, we examined cortical face-sensitive N170 response in schizophrenia, taking into account deficient basic visual contrast processing. We equalized visual contrast signals among patients (n=20) and controls (n=20) and between face and tree images, based on their individual perceptual capacities (determined using psychophysical methods). We measured N170, a putative temporal marker of face processing, during face detection and tree detection. In controls, N170 amplitudes were significantly greater for faces than trees across all three visual contrast levels tested (perceptual threshold, two times perceptual threshold and 100%). In patients, however, N170 amplitudes did not differ between faces and trees, indicating diminished face selectivity (indexed by the differential responses to face vs. tree). These results indicate a lack of face-selectivity in temporal responses of brain machinery putatively responsible for face processing in schizophrenia. This neuroimaging finding suggests that face-specific processing is compromised in this psychiatric disorder. Copyright © 2015 Elsevier B.V. All rights reserved.
Visualizing phylogenetic tree landscapes.
Wilgenbusch, James C; Huang, Wen; Gallivan, Kyle A
2017-02-02
Genomic-scale sequence alignments are increasingly used to infer phylogenies in order to better understand the processes and patterns of evolution. Different partitions within these new alignments (e.g., genes, codon positions, and structural features) often favor hundreds if not thousands of competing phylogenies. Summarizing and comparing phylogenies obtained from multi-source data sets using current consensus tree methods discards valuable information and can disguise potential methodological problems. Discovery of efficient and accurate dimensionality reduction methods used to display at once in 2- or 3- dimensions the relationship among these competing phylogenies will help practitioners diagnose the limits of current evolutionary models and potential problems with phylogenetic reconstruction methods when analyzing large multi-source data sets. We introduce several dimensionality reduction methods to visualize in 2- and 3-dimensions the relationship among competing phylogenies obtained from gene partitions found in three mid- to large-size mitochondrial genome alignments. We test the performance of these dimensionality reduction methods by applying several goodness-of-fit measures. The intrinsic dimensionality of each data set is also estimated to determine whether projections in 2- and 3-dimensions can be expected to reveal meaningful relationships among trees from different data partitions. Several new approaches to aid in the comparison of different phylogenetic landscapes are presented. Curvilinear Components Analysis (CCA) and a stochastic gradient decent (SGD) optimization method give the best representation of the original tree-to-tree distance matrix for each of the three- mitochondrial genome alignments and greatly outperformed the method currently used to visualize tree landscapes. The CCA + SGD method converged at least as fast as previously applied methods for visualizing tree landscapes. We demonstrate for all three mtDNA alignments that 3D projections significantly increase the fit between the tree-to-tree distances and can facilitate the interpretation of the relationship among phylogenetic trees. We demonstrate that the choice of dimensionality reduction method can significantly influence the spatial relationship among a large set of competing phylogenetic trees. We highlight the importance of selecting a dimensionality reduction method to visualize large multi-locus phylogenetic landscapes and demonstrate that 3D projections of mitochondrial tree landscapes better capture the relationship among the trees being compared.
NASA Technical Reports Server (NTRS)
Lee, Charles; Alena, Richard L.; Robinson, Peter
2004-01-01
We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Like; Kang, Jian, E-mail: j.kang@sheffield.ac.uk; Schroth, Olaf
Large scale transportation projects can adversely affect the visual perception of environmental quality and require adequate visual impact assessment. In this study, we investigated the effects of the characteristics of the road project and the character of the existing landscape on the perceived visual impact of motorways, and developed a GIS-based prediction model based on the findings. An online survey using computer-visualised scenes of different motorway and landscape scenarios was carried out to obtain perception-based judgements on the visual impact. Motorway scenarios simulated included the baseline scenario without road, original motorway, motorways with timber noise barriers, transparent noise barriers andmore » tree screen; different landscape scenarios were created by changing land cover of buildings and trees in three distance zones. The landscape content of each scene was measured in GIS. The result shows that presence of a motorway especially with the timber barrier significantly decreases the visual quality of the view. The resulted visual impact tends to be lower where it is less visually pleasant with more buildings in the view, and can be slightly reduced by the visual absorption effect of the scattered trees between the motorway and the viewpoint. Based on the survey result, eleven predictors were identified for the visual impact prediction model which was applied in GIS to generate maps of visual impact of motorways in different scenarios. The proposed prediction model can be used to achieve efficient and reliable assessment of visual impact of motorways. - Highlights: • Motorways induce significant visual impact especially with timber noise barriers. • Visual impact is negatively correlated with amount of buildings in the view. • Visual impact is positively correlated with percentage of trees in the view. • Perception-based motorway visual impact prediction model using mapped predictors • Predicted visual impacts in different scenarios are mapped in GIS.« less
Treangen, Todd J; Ondov, Brian D; Koren, Sergey; Phillippy, Adam M
2014-01-01
Whole-genome sequences are now available for many microbial species and clades, however existing whole-genome alignment methods are limited in their ability to perform sequence comparisons of multiple sequences simultaneously. Here we present the Harvest suite of core-genome alignment and visualization tools for the rapid and simultaneous analysis of thousands of intraspecific microbial strains. Harvest includes Parsnp, a fast core-genome multi-aligner, and Gingr, a dynamic visual platform. Together they provide interactive core-genome alignments, variant calls, recombination detection, and phylogenetic trees. Using simulated and real data we demonstrate that our approach exhibits unrivaled speed while maintaining the accuracy of existing methods. The Harvest suite is open-source and freely available from: http://github.com/marbl/harvest.
A Critical Review on the Use of Support Values in Tree Viewers and Bioinformatics Toolkits.
Czech, Lucas; Huerta-Cepas, Jaime; Stamatakis, Alexandros
2017-06-01
Phylogenetic trees are routinely visualized to present and interpret the evolutionary relationships of species. Most empirical evolutionary data studies contain a visualization of the inferred tree with branch support values. Ambiguous semantics in tree file formats can lead to erroneous tree visualizations and therefore to incorrect interpretations of phylogenetic analyses. Here, we discuss problems that arise when displaying branch values on trees after rerooting. Branch values are typically stored as node labels in the widely-used Newick tree format. However, such values are attributes of branches. Storing them as node labels can therefore yield errors when rerooting trees. This depends on the mostly implicit semantics that tools deploy to interpret node labels. We reviewed ten tree viewers and ten bioinformatics toolkits that can display and reroot trees. We found that 14 out of 20 of these tools do not permit users to select the semantics of node labels. Thus, unaware users might obtain incorrect results when rooting trees. We illustrate such incorrect mappings for several test cases and real examples taken from the literature. This review has already led to improvements in eight tools. We suggest tools should provide options that explicitly force users to define the semantics of node labels. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Topological Cacti: Visualizing Contour-based Statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio
2011-05-26
Contours, the connected components of level sets, play an important role in understanding the global structure of a scalar field. In particular their nestingbehavior and topology-often represented in form of a contour tree-have been used extensively for visualization and analysis. However, traditional contour trees onlyencode structural properties like number of contours or the nesting of contours, but little quantitative information such as volume or other statistics. Here we use thesegmentation implied by a contour tree to compute a large number of per-contour (interval) based statistics of both the function defining the contour tree as well asother co-located functions. We introducemore » a new visual metaphor for contour trees, called topological cacti, that extends the traditional toporrery display of acontour tree to display additional quantitative information as width of the cactus trunk and length of its spikes. We apply the new technique to scalar fields ofvarying dimension and different measures to demonstrate the effectiveness of the approach.« less
ColorTree: a batch customization tool for phylogenic trees
Chen, Wei-Hua; Lercher, Martin J
2009-01-01
Background Genome sequencing projects and comparative genomics studies typically aim to trace the evolutionary history of large gene sets, often requiring human inspection of hundreds of phylogenetic trees. If trees are checked for compatibility with an explicit null hypothesis (e.g., the monophyly of certain groups), this daunting task is greatly facilitated by an appropriate coloring scheme. Findings In this note, we introduce ColorTree, a simple yet powerful batch customization tool for phylogenic trees. Based on pattern matching rules, ColorTree applies a set of customizations to an input tree file, e.g., coloring labels or branches. The customized trees are saved to an output file, which can then be viewed and further edited by Dendroscope (a freely available tree viewer). ColorTree runs on any Perl installation as a stand-alone command line tool, and its application can thus be easily automated. This way, hundreds of phylogenic trees can be customized for easy visual inspection in a matter of minutes. Conclusion ColorTree allows efficient and flexible visual customization of large tree sets through the application of a user-supplied configuration file to multiple tree files. PMID:19646243
ColorTree: a batch customization tool for phylogenic trees.
Chen, Wei-Hua; Lercher, Martin J
2009-07-31
Genome sequencing projects and comparative genomics studies typically aim to trace the evolutionary history of large gene sets, often requiring human inspection of hundreds of phylogenetic trees. If trees are checked for compatibility with an explicit null hypothesis (e.g., the monophyly of certain groups), this daunting task is greatly facilitated by an appropriate coloring scheme. In this note, we introduce ColorTree, a simple yet powerful batch customization tool for phylogenic trees. Based on pattern matching rules, ColorTree applies a set of customizations to an input tree file, e.g., coloring labels or branches. The customized trees are saved to an output file, which can then be viewed and further edited by Dendroscope (a freely available tree viewer). ColorTree runs on any Perl installation as a stand-alone command line tool, and its application can thus be easily automated. This way, hundreds of phylogenic trees can be customized for easy visual inspection in a matter of minutes. ColorTree allows efficient and flexible visual customization of large tree sets through the application of a user-supplied configuration file to multiple tree files.
ETE: a python Environment for Tree Exploration.
Huerta-Cepas, Jaime; Dopazo, Joaquín; Gabaldón, Toni
2010-01-13
Many bioinformatics analyses, ranging from gene clustering to phylogenetics, produce hierarchical trees as their main result. These are used to represent the relationships among different biological entities, thus facilitating their analysis and interpretation. A number of standalone programs are available that focus on tree visualization or that perform specific analyses on them. However, such applications are rarely suitable for large-scale surveys, in which a higher level of automation is required. Currently, many genome-wide analyses rely on tree-like data representation and hence there is a growing need for scalable tools to handle tree structures at large scale. Here we present the Environment for Tree Exploration (ETE), a python programming toolkit that assists in the automated manipulation, analysis and visualization of hierarchical trees. ETE libraries provide a broad set of tree handling options as well as specific methods to analyze phylogenetic and clustering trees. Among other features, ETE allows for the independent analysis of tree partitions, has support for the extended newick format, provides an integrated node annotation system and permits to link trees to external data such as multiple sequence alignments or numerical arrays. In addition, ETE implements a number of built-in analytical tools, including phylogeny-based orthology prediction and cluster validation techniques. Finally, ETE's programmable tree drawing engine can be used to automate the graphical rendering of trees with customized node-specific visualizations. ETE provides a complete set of methods to manipulate tree data structures that extends current functionality in other bioinformatic toolkits of a more general purpose. ETE is free software and can be downloaded from http://ete.cgenomics.org.
ETE: a python Environment for Tree Exploration
2010-01-01
Background Many bioinformatics analyses, ranging from gene clustering to phylogenetics, produce hierarchical trees as their main result. These are used to represent the relationships among different biological entities, thus facilitating their analysis and interpretation. A number of standalone programs are available that focus on tree visualization or that perform specific analyses on them. However, such applications are rarely suitable for large-scale surveys, in which a higher level of automation is required. Currently, many genome-wide analyses rely on tree-like data representation and hence there is a growing need for scalable tools to handle tree structures at large scale. Results Here we present the Environment for Tree Exploration (ETE), a python programming toolkit that assists in the automated manipulation, analysis and visualization of hierarchical trees. ETE libraries provide a broad set of tree handling options as well as specific methods to analyze phylogenetic and clustering trees. Among other features, ETE allows for the independent analysis of tree partitions, has support for the extended newick format, provides an integrated node annotation system and permits to link trees to external data such as multiple sequence alignments or numerical arrays. In addition, ETE implements a number of built-in analytical tools, including phylogeny-based orthology prediction and cluster validation techniques. Finally, ETE's programmable tree drawing engine can be used to automate the graphical rendering of trees with customized node-specific visualizations. Conclusions ETE provides a complete set of methods to manipulate tree data structures that extends current functionality in other bioinformatic toolkits of a more general purpose. ETE is free software and can be downloaded from http://ete.cgenomics.org. PMID:20070885
Visualizing speciation in artificial cichlid fish.
Clement, Ross
2006-01-01
The Cichlid Speciation Project (CSP) is an ALife simulation system for investigating open problems in the speciation of African cichlid fish. The CSP can be used to perform a wide range of experiments that show that speciation is a natural consequence of certain biological systems. A visualization system capable of extracting the history of speciation from low-level trace data and creating a phylogenetic tree has been implemented. Unlike previous approaches, this visualization system presents a concrete trace of speciation, rather than a summary of low-level information from which the viewer can make subjective decisions on how speciation progressed. The phylogenetic trees are a more objective visualization of speciation, and enable automated collection and summarization of the results of experiments. The visualization system is used to create a phylogenetic tree from an experiment that models sympatric speciation.
MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.
Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik
2016-01-01
Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.
Scalable isosurface visualization of massive datasets on commodity off-the-shelf clusters
Bajaj, Chandrajit
2009-01-01
Tomographic imaging and computer simulations are increasingly yielding massive datasets. Interactive and exploratory visualizations have rapidly become indispensable tools to study large volumetric imaging and simulation data. Our scalable isosurface visualization framework on commodity off-the-shelf clusters is an end-to-end parallel and progressive platform, from initial data access to the final display. Interactive browsing of extracted isosurfaces is made possible by using parallel isosurface extraction, and rendering in conjunction with a new specialized piece of image compositing hardware called Metabuffer. In this paper, we focus on the back end scalability by introducing a fully parallel and out-of-core isosurface extraction algorithm. It achieves scalability by using both parallel and out-of-core processing and parallel disks. It statically partitions the volume data to parallel disks with a balanced workload spectrum, and builds I/O-optimal external interval trees to minimize the number of I/O operations of loading large data from disk. We also describe an isosurface compression scheme that is efficient for progress extraction, transmission and storage of isosurfaces. PMID:19756231
Geometric Modelling of Tree Roots with Different Levels of Detail
NASA Astrophysics Data System (ADS)
Guerrero Iñiguez, J. I.
2017-09-01
This paper presents a geometric approach for modelling tree roots with different Levels of Detail, suitable for analysis of the tree anchoring, potentially occupied underground space, interaction with urban elements and damage produced and taken in the built-in environment. Three types of tree roots are considered to cover several species: tap root, heart shaped root and lateral roots. Shrubs and smaller plants are not considered, however, a similar approach can be considered if the information is available for individual species. The geometrical approach considers the difficulties of modelling the actual roots, which are dynamic and almost opaque to direct observation, proposing generalized versions. For each type of root, different geometric models are considered to capture the overall shape of the root, a simplified block model, and a planar or surface projected version. Lower detail versions are considered as compatibility version for 2D systems while higher detail models are suitable for 3D analysis and visualization. The proposed levels of detail are matched with CityGML Levels of Detail, enabling both analysis and aesthetic views for urban modelling.
IcyTree: rapid browser-based visualization for phylogenetic trees and networks
2017-01-01
Abstract Summary: IcyTree is an easy-to-use application which can be used to visualize a wide variety of phylogenetic trees and networks. While numerous phylogenetic tree viewers exist already, IcyTree distinguishes itself by being a purely online tool, having a responsive user interface, supporting phylogenetic networks (ancestral recombination graphs in particular), and efficiently drawing trees that include information such as ancestral locations or trait values. IcyTree also provides intuitive panning and zooming utilities that make exploring large phylogenetic trees of many thousands of taxa feasible. Availability and Implementation: IcyTree is a web application and can be accessed directly at http://tgvaughan.github.com/icytree. Currently supported web browsers include Mozilla Firefox and Google Chrome. IcyTree is written entirely in client-side JavaScript (no plugin required) and, once loaded, does not require network access to run. IcyTree is free software, and the source code is made available at http://github.com/tgvaughan/icytree under version 3 of the GNU General Public License. Contact: tgvaughan@gmail.com PMID:28407035
IcyTree: rapid browser-based visualization for phylogenetic trees and networks.
Vaughan, Timothy G
2017-08-01
IcyTree is an easy-to-use application which can be used to visualize a wide variety of phylogenetic trees and networks. While numerous phylogenetic tree viewers exist already, IcyTree distinguishes itself by being a purely online tool, having a responsive user interface, supporting phylogenetic networks (ancestral recombination graphs in particular), and efficiently drawing trees that include information such as ancestral locations or trait values. IcyTree also provides intuitive panning and zooming utilities that make exploring large phylogenetic trees of many thousands of taxa feasible. IcyTree is a web application and can be accessed directly at http://tgvaughan.github.com/icytree . Currently supported web browsers include Mozilla Firefox and Google Chrome. IcyTree is written entirely in client-side JavaScript (no plugin required) and, once loaded, does not require network access to run. IcyTree is free software, and the source code is made available at http://github.com/tgvaughan/icytree under version 3 of the GNU General Public License. tgvaughan@gmail.com. © The Author(s) 2017. Published by Oxford University Press.
Visual tree grading systems for estimating lumber yields in young and mature southern pine
Alexander Clark; Robert H. McAlister
1998-01-01
New visual tree grading systems for mature southern pine ? 35 years old and young pine ? 35 years old based on number and size of branches in the lower bole are described. A series of lumber grade yield studies was conducted to test the new grading rules. A total of 214 natural loblolly pine (Pinus taeda L.) and shortleaf pine (P. echinata Mill) trees 9 to 20 inches...
Mountain pine beetle selectivity in old-growth ponderosa pine forests, Montana, USA.
Knapp, Paul A; Soulé, Peter T; Maxwell, Justin T
2013-05-01
A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860-2007/8) of co-occurring mature healthy and MPB-infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water-use efficiency (iWUE) at Cabin Gulch; and (3) compared climate-growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20-30 years, at which point the visually healthy populations had consistently higher BAI values (22-34%) than the MPB-infected trees. These results suggest that growth rates two-three decades prior to the current outbreak diverged between our selected populations, with the slower-growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955-59 for the visually healthy trees and 1960-64 for the MPB-infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB-infected trees prior to infection during a multi-decadal period of drying summertime conditions. Intrinsic water-use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB-infected chronologies.
Computing and visualizing time-varying merge trees for high-dimensional data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oesterling, Patrick; Heine, Christian; Weber, Gunther H.
2017-06-03
We introduce a new method that identifies and tracks features in arbitrary dimensions using the merge tree -- a structure for identifying topological features based on thresholding in scalar fields. This method analyzes the evolution of features of the function by tracking changes in the merge tree and relates features by matching subtrees between consecutive time steps. Using the time-varying merge tree, we present a structural visualization of the changing function that illustrates both features and their temporal evolution. We demonstrate the utility of our approach by applying it to temporal cluster analysis of high-dimensional point clouds.
Subtle changes in the landmark panorama disrupt visual navigation in a nocturnal bull ant
2017-01-01
The ability of ants to navigate when the visual landmark information is altered has often been tested by creating large and artificial discrepancies in their visual environment. Here, we had an opportunity to slightly modify the natural visual environment around the nest of the nocturnal bull ant Myrmecia pyriformis. We achieved this by felling three dead trees, two located along the typical route followed by the foragers of that particular nest and one in a direction perpendicular to their foraging direction. An image difference analysis showed that the change in the overall panorama following the removal of these trees was relatively little. We filmed the behaviour of ants close to the nest and tracked their entire paths, both before and after the trees were removed. We found that immediately after the trees were removed, ants walked slower and were less directed. Their foraging success decreased and they looked around more, including turning back to look towards the nest. We document how their behaviour changed over subsequent nights and discuss how the ants may detect and respond to a modified visual environment in the evening twilight period. This article is part of the themed issue ‘Vision in dim light’. PMID:28193813
NASA Astrophysics Data System (ADS)
Stowell, Marilyn Ruth
This research compared the effectiveness and performance of interactive visualizations of the GIS&T Body of Knowledge 1. The visualizations were created using Processing, and display the structure and content of the Body of Knowledge using various spatial layout methods: the Indented List, Tree Graph, treemap and Similarity Graph. The first three methods utilize the existing hierarchical structure of the BoK text, while the fourth method (Similarity Graph) serves as a jumping off point for exploring content-based visualizations of the BoK. The following questions have guided the framework of this research: (1) Which of the spatial layouts is most effective for completing tasks related to the GIS&T; BoK overall? How do they compare to each other in terms of performance? (2) Is one spatial layout significantly more or less effective than others for completing a particular cognitive task? (3) Is the user able to utilize the BoK as a basemap or reference system and make inferences based on BoK scorecard overlays? (4) Which design aspects of the interface assist in carrying out the survey objectives? Which design aspects of the application detract from fulfilling the objectives? To answer these questions, human subjects were recruited to participate in a survey, during which they were assigned a random spatial layout and were asked questions about the BoK based on their interaction with the visualization tool. 75 users were tested, 25 for each spatial layout. Statistical analysis revealed that there were no statistically significant differences between means for overall accuracy when comparing the three visualizations. In looking at individual questions, Tree Graph and Indented List yielded statistically significant higher scores for questions regarding the structure of the Body of Knowledge, as compared to the treemap. There was a significant strong positive correlation between the time taken to complete the survey and the final survey score. This correlation was particularly strong with treemap, possibly confirming the steeper learning curve with the more complex layout. Users were asked for feedback on the perceived "ease" of using the interface, and though few users said the interface was easy to use, there was a positive correlation between perceived "ease" and overall score. Qualitative feedback revealed that the external controls on the interface were not inviting to use, and the interface overall was not intuitive. Additional human subjects were recruited from the professional GIS community to participate in testing remotely. These results weren't significant due to small sample size, but helped to verify the feedback and results from the controlled testing.
dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering
2015-01-01
Summary: dendextend is an R package for creating and comparing visually appealing tree diagrams. dendextend provides utility functions for manipulating dendrogram objects (their color, shape and content) as well as several advanced methods for comparing trees to one another (both statistically and visually). As such, dendextend offers a flexible framework for enhancing R's rich ecosystem of packages for performing hierarchical clustering of items. Availability and implementation: The dendextend R package (including detailed introductory vignettes) is available under the GPL-2 Open Source license and is freely available to download from CRAN at: (http://cran.r-project.org/package=dendextend) Contact: Tal.Galili@math.tau.ac.il PMID:26209431
Measuring visibility using smartphones
NASA Astrophysics Data System (ADS)
Friesen, Jan; Bialon, Raphael; Claßen, Christoph; Graffi, Kalman
2017-04-01
Spatial information on fog density is an important parameter for ecohydrological studies in cloud forests. The Dhofar cloud forest in Southern Oman exhibits a close interaction between the fog, trees, and rainfall. During the three month monsoon season the trees capture substantial amounts of horizontal precipitation from fog which increases net precipitation below the tree canopy. As fog density measurements are scarce, a smartphone app was designed to measure visibility. Different smartphone units use a variety of different parts. It is therefore important to assess the developed visibility measurement across a suite of different smartphones. In this study we tested five smartphones/ tablets (Google/ LG Nexus 5X, Huawei P8 lite, Huawei Y3, HTC Nexus 9, and Samsung Galaxy S4 mini) against digital camera (Sony DLSR-A900) and visual visibility observations. Visibility was assessed from photos using image entropy, from the number of visible targets, and from WiFi signal strength using RSSI. Results show clear relationships between object distance and fog density, yet a considerable spread across the different smartphone/ tablet units is evident.
Mountain pine beetle selectivity in old-growth ponderosa pine forests, Montana, USA
Knapp, Paul A; Soulé, Peter T; Maxwell, Justin T
2013-01-01
A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860–2007/8) of co-occurring mature healthy and MPB-infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water-use efficiency (iWUE) at Cabin Gulch; and (3) compared climate-growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20–30 years, at which point the visually healthy populations had consistently higher BAI values (22–34%) than the MPB-infected trees. These results suggest that growth rates two–three decades prior to the current outbreak diverged between our selected populations, with the slower-growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955–59 for the visually healthy trees and 1960–64 for the MPB-infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB-infected trees prior to infection during a multi-decadal period of drying summertime conditions. Intrinsic water-use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB-infected chronologies. PMID:23762502
A Forest Landscape Visualization System
Tim McDonald; Bryce Stokes
1998-01-01
A forest landscape visualization system was developed and used in creating realistic images depicting how an area might appear if harvested. The system uses a ray-tracing renderer to draw model trees on a virtual landscape. The system includes components to create landscape surfaces from digital elevation data, populate/cut trees within (polygonal) areas, and convert...
Fifth Graders' Interpretations of "The Red Tree"
ERIC Educational Resources Information Center
Barone, Diane; Barone, Rebecca
2017-01-01
Fifth graders responded to a video of a picturebook,"The Red Tree" by Shaun Tan. They had not experienced explicit instruction in visual literacy and their responses served as a foundation for basic understanding of their analysis. We learned that they focused on four major areas: emotional aspects; visual qualities, summaries of the…
Water Stress Impacts Tree-Atmosphere Interaction in the Amazon
NASA Astrophysics Data System (ADS)
van Emmerik, T. H. M.; Steele-Dunne, S. C.; Gentine, P.; Oliveira, R. S.; Van De Giesen, N.
2017-12-01
Land-atmosphere interactions depend on momentum exchange from the atmosphere to the canopy, which depends on the tree drag coefficient. It is known that the drag coefficient, and thus tree-atmosphere interaction, can vary strongly within a canopy. Yet, only few measurements are available to study the variation of tree-atmosphere interaction in time and space, and in response to vegetation water stress. Recent work [1] demonstrated how accelerometers can be used to study tree properties and responses. For this study, accelerometers were used to derive a measure of tree-atmosphere interaction for 19 individual trees of seven different species in the Brazilian Amazon. This study demonstrates that under field conditions, tree-atmosphere interaction can vary considerably in time and space. The five month measurement period included the transitioning from the wet to the dry season. We demonstrate that increased tree water deficit, measured with dendrometers, is related to observed changes in tree-atmosphere interaction, which is hypothesized to be caused by water stress induced changes in tree mass. References [1]. van Emmerik, T.; Steele-Dunne, S.; Hut, R.; Gentine, P.; Guerin, M.; Oliveira, R.S.; Wagner, J.; Selker, J.; van de Giesen, N. Measuring Tree Properties and Responses Using Low-Cost Accelerometers. Sensors 2017, 17, 1098.
The ability of adults and children to visually identify peanuts and tree nuts.
Hostetler, Todd L; Hostetler, Sarah G; Phillips, Gary; Martin, Bryan L
2012-01-01
Peanuts and tree nuts are common food allergens and are the leading cause of fatalities from food-induced anaphylaxis. Dietary avoidance is the primary management of these allergies and requires the ability to identify peanuts or tree nuts. To investigate the ability of adults and children to visually identify peanuts and tree nuts. A nut display was assembled that held peanuts and 9 tree nuts in a total of 19 different forms. Persons 6 years or older completed a worksheet to name the items. One-thousand one-hundred five subjects completed the study. The mean number of peanuts and tree nuts identified by all subjects was 8.4 (44.2%) out of a possible 19. The mean for children ages 6 to 18 was 4.6 (24.2%), compared with 11.1 (58.4%) for adults older than 18 (P < .001). The most commonly identified items were peanut in the shell and without the shell. The least identified was hazelnut (filbert) in the shell and without the shell. No difference was seen in the performance of peanut- or tree nut-allergic subjects compared with nonallergic subjects. Fifty percent of subjects with a peanut or tree nut allergy correctly identified all forms of peanuts or tree nuts to which they are allergic. Parents of peanut- or tree nut-allergic children did no better than parents of children without such allergy. Overall, both children and adults are unreliable at visually identifying most nuts. Treatment of nut allergies with dietary avoidance should include education for both adults and children on identification of peanuts and tree nuts. Copyright © 2012 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy.
Letunic, Ivica; Bork, Peer
2011-07-01
Interactive Tree Of Life (http://itol.embl.de) is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. In addition to classical tree viewer functions, iTOL offers many novel ways of annotating trees with various additional data. Current version introduces numerous new features and greatly expands the number of supported data set types. Trees can be interactively manipulated and edited. A free personal account system is available, providing management and sharing of trees in user defined workspaces and projects. Export to various bitmap and vector graphics formats is supported. Batch access interface is available for programmatic access or inclusion of interactive trees into other web services.
A short note on the use of the red-black tree in Cartesian adaptive mesh refinement algorithms
NASA Astrophysics Data System (ADS)
Hasbestan, Jaber J.; Senocak, Inanc
2017-12-01
Mesh adaptivity is an indispensable capability to tackle multiphysics problems with large disparity in time and length scales. With the availability of powerful supercomputers, there is a pressing need to extend time-proven computational techniques to extreme-scale problems. Cartesian adaptive mesh refinement (AMR) is one such method that enables simulation of multiscale, multiphysics problems. AMR is based on construction of octrees. Originally, an explicit tree data structure was used to generate and manipulate an adaptive Cartesian mesh. At least eight pointers are required in an explicit approach to construct an octree. Parent-child relationships are then used to traverse the tree. An explicit octree, however, is expensive in terms of memory usage and the time it takes to traverse the tree to access a specific node. For these reasons, implicit pointerless methods have been pioneered within the computer graphics community, motivated by applications requiring interactivity and realistic three dimensional visualization. Lewiner et al. [1] provides a concise review of pointerless approaches to generate an octree. Use of a hash table and Z-order curve are two key concepts in pointerless methods that we briefly discuss next.
NASA Astrophysics Data System (ADS)
Zlinszky, András; Schroiff, Anke; Otepka, Johannes; Mandlburger, Gottfried; Pfeifer, Norbert
2014-05-01
LIDAR point clouds hold valuable information for land cover and vegetation analysis, not only in the spatial distribution of the points but also in their various attributes. However, LIDAR point clouds are rarely used for visual interpretation, since for most users, the point cloud is difficult to interpret compared to passive optical imagery. Meanwhile, point cloud viewing software is available allowing interactive 3D interpretation, but typically only one attribute at a time. This results in a large number of points with the same colour, crowding the scene and often obscuring detail. We developed a scheme for mapping information from multiple LIDAR point attributes to the Red, Green, and Blue channels of a widely used LIDAR data format, which are otherwise mostly used to add information from imagery to create "photorealistic" point clouds. The possible combinations of parameters are therefore represented in a wide range of colours, but relative differences in individual parameter values of points can be well understood. The visualization was implemented in OPALS software, using a simple and robust batch script, and is viewer independent since the information is stored in the point cloud data file itself. In our case, the following colour channel assignment delivered best results: Echo amplitude in the Red, echo width in the Green and normalized height above a Digital Terrain Model in the Blue channel. With correct parameter scaling (but completely without point classification), points belonging to asphalt and bare soil are dark red, low grassland and crop vegetation are bright red to yellow, shrubs and low trees are green and high trees are blue. Depending on roof material and DTM quality, buildings are shown from red through purple to dark blue. Erroneously high or low points, or points with incorrect amplitude or echo width usually have colours contrasting from terrain or vegetation. This allows efficient visual interpretation of the point cloud in planar, profile and 3D views since it reduces crowding of the scene and delivers intuitive contextual information. The resulting visualization has proved useful for vegetation analysis for habitat mapping, and can also be applied as a first step for point cloud level classification. An interactive demonstration of the visualization script is shown during poster attendance, including the opportunity to view your own point cloud sample files.
Extraction and visualization of the central chest lymph-node stations
NASA Astrophysics Data System (ADS)
Lu, Kongkuo; Merritt, Scott A.; Higgins, William E.
2008-03-01
Lung cancer remains the leading cause of cancer death in the United States and is expected to account for nearly 30% of all cancer deaths in 2007. Central to the lung-cancer diagnosis and staging process is the assessment of the central chest lymph nodes. This assessment typically requires two major stages: (1) location of the lymph nodes in a three-dimensional (3D) high-resolution volumetric multi-detector computed-tomography (MDCT) image of the chest; (2) subsequent nodal sampling using transbronchial needle aspiration (TBNA). We describe a computer-based system for automatically locating the central chest lymph-node stations in a 3D MDCT image. Automated analysis methods are first run that extract the airway tree, airway-tree centerlines, aorta, pulmonary artery, lungs, key skeletal structures, and major-airway labels. This information provides geometrical and anatomical cues for localizing the major nodal stations. Our system demarcates these stations, conforming to criteria outlined for the Mountain and Wang standard classification systems. Visualization tools within the system then enable the user to interact with these stations to locate visible lymph nodes. Results derived from a set of human 3D MDCT chest images illustrate the usage and efficacy of the system.
TreeGenes and CartograTree: Enabling visualization and analysis in forest tree genomics
E.S. Grau; S.A. Demurjian; H.A. Vasquez-Gross; D.G. Gessler; D.B. Neale; J.L. Wegrzyn
2017-01-01
Association studies integrating environmental, phenotypic, and genetic data are key in understanding forest tree resilience to climate change and disease. As genomic resources increase, both in terms of complete reference sequences and magnitude of individuals genotyped, researchers are better equipped to identify correlations between genetic variation and adaptive or...
Detecting a currency's dominance or dependence using foreign exchange network trees
NASA Astrophysics Data System (ADS)
McDonald, Mark; Suleman, Omer; Williams, Stacy; Howison, Sam; Johnson, Neil F.
2005-10-01
In a system containing a large number of interacting stochastic processes, there will typically be many nonzero correlation coefficients. This makes it difficult to either visualize the system’s interdependencies, or identify its dominant elements. Such a situation arises in foreign exchange (FX), which is the world’s biggest market. Here we develop a network analysis of these correlations using minimum spanning trees (MSTs). We show that not only do the MSTs provide a meaningful representation of the global FX dynamics, but they also enable one to determine momentarily dominant and dependent currencies. We find that information about a country’s geographical ties emerges from the raw exchange-rate data. Most importantly from a trading perspective, we discuss how to infer which currencies are “in play” during a particular period of time.
Xiping Wang; R. Bruce Allison
2008-01-01
Arborists are often challenged to identify internal structural defects hidden from view within tree trunks. This article reports the results of a study using a trunk inspection protocol combining visual observation, single-path stress wave testing, acoustic tomography, and resistance microdrilling to detect internal defects. Two century-old red oak (Quercus rubra)...
Visual preference and ecological assessments for designed alternative brownfield rehabilitations.
Lafortezza, Raffaele; Corry, Robert C; Sanesi, Giovanni; Brown, Robert D
2008-11-01
This paper describes an integrative method for quantifying, analyzing, and comparing the effects of alternative rehabilitation approaches with visual preference. The method was applied to a portion of a major industrial area located in southern Italy. Four alternative approaches to rehabilitation (alternative designs) were developed and analyzed. The scenarios consisted of the cleanup of the brownfields plus: (1) the addition of ground cover species; (2) the addition of ground cover species and a few trees randomly distributed; (3) the addition of ground cover species and a few trees in small groups; and (4) the addition of ground cover species and several trees in large groups. The approaches were analyzed and compared to the baseline condition through the use of cost-surface modeling (CSM) and visual preference assessment (VPA). Statistical results showed that alternatives that were more ecologically functional for forest bird species dispersal were also more visually preferable. Some differences were identified based on user groups and location of residence. The results of the study are used to identify implications for enhancing both ecological attributes and visual preferences of rehabilitating landscapes through planning and design.
Comparative analysis and visualization of multiple collinear genomes
2012-01-01
Background Genome browsers are a common tool used by biologists to visualize genomic features including genes, polymorphisms, and many others. However, existing genome browsers and visualization tools are not well-suited to perform meaningful comparative analysis among a large number of genomes. With the increasing quantity and availability of genomic data, there is an increased burden to provide useful visualization and analysis tools for comparison of multiple collinear genomes such as the large panels of model organisms which are the basis for much of the current genetic research. Results We have developed a novel web-based tool for visualizing and analyzing multiple collinear genomes. Our tool illustrates genome-sequence similarity through a mosaic of intervals representing local phylogeny, subspecific origin, and haplotype identity. Comparative analysis is facilitated through reordering and clustering of tracks, which can vary throughout the genome. In addition, we provide local phylogenetic trees as an alternate visualization to assess local variations. Conclusions Unlike previous genome browsers and viewers, ours allows for simultaneous and comparative analysis. Our browser provides intuitive selection and interactive navigation about features of interest. Dynamic visualizations adjust to scale and data content making analysis at variable resolutions and of multiple data sets more informative. We demonstrate our genome browser for an extensive set of genomic data sets composed of almost 200 distinct mouse laboratory strains. PMID:22536897
Growth of Douglas-fir near equipment trails used for commercial thinning in the Oregon Coast Range.
Richard E. Miller; Jim Smith; Paul W. Adams; Harry W. Anderson
2007-01-01
Soil disturbance is a visually apparent result of using heavy equipment to harvest trees. Subsequent consequences for growth of remaining trees, however, are variable and seldom quantified. We measured tree growth 7 and 11 years after thinning of trees in four stands of coast Douglas-fir (Pseudotsuga menziesii var. menziesii(...
Emerald ash borer (Agrilus planipennis): Towards a classification of tree health and early detection
Matthew P. Peters; Louis R. Iverson; T. Davis Sydnor
2009-01-01
Forty-five green ash (Fraxinus pennsylvanica) street trees in Toledo, Ohio were photographed, measured, and visually rated for conditions related to emerald ash borer (Agrilus planipennis) (EAB) attacks. These trees were later removed, and sections were examined from each tree to determine the length of time that growth rates had...
Monitoring environmental stress in forest trees using biochemical and physiological markers
R. Minocha; S.C. Minocha; S. Long
2003-01-01
Our objective was to determine the usefulness of polyamines, particularly putrescine, and amino acids such as arginine, as foliar indicators of abiotic stress in visually asymptomatic trees. An evaluation of apparently healthy trees is essential in developing risk assessment and stress remediation strategies for forest trees prior to the onset of obvious decline....
Dynamic Visualization of Co-expression in Systems Genetics Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
New, Joshua Ryan; Huang, Jian; Chesler, Elissa J
2008-01-01
Biologists hope to address grand scientific challenges by exploring the abundance of data made available through modern microarray technology and other high-throughput techniques. The impact of this data, however, is limited unless researchers can effectively assimilate such complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical studies of gene co-expression require novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These tools should allow biologists to develop an intuitive understanding of the structure of biologicalmore » networks and discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian gene co-expression.« less
A rapid hard-mast index from acorn presence-absence tallies
Cathryn H. Greenberg; Gordon S. Warburton
2007-01-01
We used 21 years of acorn data from visual surveys of oak (Quercus spp.) trees (n ¼ 20,113) conducted in western North Carolina, USA, to develop predictive equations for hard-mast indices (HMIs) based on the proportion of trees bearing acorns (PBA). We calculated PBA using visual estimates of the percentage of oak crown with acorns (PCA), assigning acorn presence if...
Gap-free segmentation of vascular networks with automatic image processing pipeline.
Hsu, Chih-Yang; Ghaffari, Mahsa; Alaraj, Ali; Flannery, Michael; Zhou, Xiaohong Joe; Linninger, Andreas
2017-03-01
Current image processing techniques capture large vessels reliably but often fail to preserve connectivity in bifurcations and small vessels. Imaging artifacts and noise can create gaps and discontinuity of intensity that hinders segmentation of vascular trees. However, topological analysis of vascular trees require proper connectivity without gaps, loops or dangling segments. Proper tree connectivity is also important for high quality rendering of surface meshes for scientific visualization or 3D printing. We present a fully automated vessel enhancement pipeline with automated parameter settings for vessel enhancement of tree-like structures from customary imaging sources, including 3D rotational angiography, magnetic resonance angiography, magnetic resonance venography, and computed tomography angiography. The output of the filter pipeline is a vessel-enhanced image which is ideal for generating anatomical consistent network representations of the cerebral angioarchitecture for further topological or statistical analysis. The filter pipeline combined with computational modeling can potentially improve computer-aided diagnosis of cerebrovascular diseases by delivering biometrics and anatomy of the vasculature. It may serve as the first step in fully automatic epidemiological analysis of large clinical datasets. The automatic analysis would enable rigorous statistical comparison of biometrics in subject-specific vascular trees. The robust and accurate image segmentation using a validated filter pipeline would also eliminate operator dependency that has been observed in manual segmentation. Moreover, manual segmentation is time prohibitive given that vascular trees have more than thousands of segments and bifurcations so that interactive segmentation consumes excessive human resources. Subject-specific trees are a first step toward patient-specific hemodynamic simulations for assessing treatment outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H
2017-10-25
Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.
Agrafiotis, Dimitris K; Wiener, John J M
2010-07-08
We introduce Scaffold Explorer, an interactive tool that allows medicinal chemists to define hierarchies of chemical scaffolds and use them to explore their project data. Scaffold Explorer allows the user to construct a tree, where each node corresponds to a specific scaffold. Each node can have multiple children, each of which represents a more refined substructure relative to its parent node. Once the tree is defined, it can be mapped onto any collection of compounds and be used as a navigational tool to explore structure-activity relationships (SAR) across different chemotypes. The rich visual analytics of Scaffold Explorer afford the user a "bird's-eye" view of the chemical space spanned by a particular data set, map any physicochemical property or biological activity of interest onto the individual scaffold nodes, serve as an aggregator for the properties of the compounds represented by these nodes, and quickly distinguish promising chemotypes from less interesting or problematic ones. Unlike previous approaches, which focused on automated extraction and classification of scaffolds, the utility of the new tool rests on its interactivity and ability to accommodate the medicinal chemists' intuition by allowing the use of arbitrary substructures containing variable atoms, bonds, and/or substituents such as those employed in substructure search.
Student Interpretations of Phylogenetic Trees in an Introductory Biology Course
Dees, Jonathan; Niemi, Jarad; Montplaisir, Lisa
2014-01-01
Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa relatedness on phylogenetic trees, to measure the prevalence of correct taxa-relatedness interpretations, and to determine how student reasoning and correctness change in response to instruction and over time. Counting synapomorphies and nodes between taxa were the most common forms of incorrect reasoning, which presents a pedagogical dilemma concerning labeled synapomorphies on phylogenetic trees. Students also independently generated an alternative form of correct reasoning using monophyletic groups, the use of which decreased in popularity over time. Approximately half of all students were able to correctly interpret taxa relatedness on phylogenetic trees, and many memorized correct reasoning without understanding its application. Broad initial instruction that allowed students to generate inferences on their own contributed very little to phylogenetic tree understanding, while targeted instruction on evolutionary relationships improved understanding to some extent. Phylogenetic trees, which can directly affect student understanding of evolution, appear to offer introductory biology instructors a formidable pedagogical challenge. PMID:25452489
Global processing takes time: A meta-analysis on local-global visual processing in ASD.
Van der Hallen, Ruth; Evers, Kris; Brewaeys, Katrien; Van den Noortgate, Wim; Wagemans, Johan
2015-05-01
What does an individual with autism spectrum disorder (ASD) perceive first: the forest or the trees? In spite of 30 years of research and influential theories like the weak central coherence (WCC) theory and the enhanced perceptual functioning (EPF) account, the interplay of local and global visual processing in ASD remains only partly understood. Research findings vary in indicating a local processing bias or a global processing deficit, and often contradict each other. We have applied a formal meta-analytic approach and combined 56 articles that tested about 1,000 ASD participants and used a wide range of stimuli and tasks to investigate local and global visual processing in ASD. Overall, results show no enhanced local visual processing nor a deficit in global visual processing. Detailed analysis reveals a difference in the temporal pattern of the local-global balance, that is, slow global processing in individuals with ASD. Whereas task-dependent interaction effects are obtained, gender, age, and IQ of either participant groups seem to have no direct influence on performance. Based on the overview of the literature, suggestions are made for future research. (c) 2015 APA, all rights reserved).
Behavioral Evidence for Host Transitions in Plant, Plant Parasite, and Insect Interactions.
Halbritter, Dale A; Willett, Denis S; Gordon, Johnalyn M; Stelinski, Lukasz L; Daniels, Jaret C
2018-06-06
Specialized herbivorous insects have the ability to transition between host plant taxa, and considering the co-evolutionary history between plants and the organisms utilizing them is important to understanding plant insect interactions. We investigated the role of a pine tree parasite, dwarf mistletoe (Arceuthobium spp.) M. Bieb. Santalales: Viscaceae, in mediating interactions between Neophasia (Lepidoptera: Pieridae) butterflies and pine trees, the butterflies' larval hosts. Mistletoe is considered the butterflies' ancestral host, and the evolutionary transition to pine may have occurred recently. In Arizona, United States, we studied six sites in pine forest habitats: three in Neophasia menapia (Felder and R. Felder, 1859) habitat and three in Neophasia terlooii Behr, 1869 habitat. Each site contained six stands of trees that varied in mistletoe infection severity. Butterfly behavior was observed and ranked at each stand. Volatile compounds were collected from trees at each site and analyzed using gas chromatography-mass spectroscopy. Female butterflies landed on or patrolled around pine trees (i.e., interacted) more than males, and N. terlooii interacted more with pine trees than N. menapia. Both butterfly species interacted more with tree stands harboring greater mistletoe infection, and N. terlooii interacted more with heavily infected tree stands than did N. menapia. The influence of mistletoe on Neophasia behavior may be mediated by differences in tree volatiles resulting from mistletoe infection. Volatile profiles significantly differed between infected and uninfected pine trees. The role of mistletoe in mediating butterfly interactions with pines has implications for conservation biology and forest management, and highlights the importance of understanding an organism's niche in an evolutionary context.
Stevens, John R; Jones, Todd R; Lefevre, Michael; Ganesan, Balasubramanian; Weimer, Bart C
2017-01-01
Microbial community analysis experiments to assess the effect of a treatment intervention (or environmental change) on the relative abundance levels of multiple related microbial species (or operational taxonomic units) simultaneously using high throughput genomics are becoming increasingly common. Within the framework of the evolutionary phylogeny of all species considered in the experiment, this translates to a statistical need to identify the phylogenetic branches that exhibit a significant consensus response (in terms of operational taxonomic unit abundance) to the intervention. We present the R software package SigTree , a collection of flexible tools that make use of meta-analysis methods and regular expressions to identify and visualize significantly responsive branches in a phylogenetic tree, while appropriately adjusting for multiple comparisons.
Wills, Christopher; Harms, Kyle E; Wiegand, Thorsten; Punchi-Manage, Ruwan; Gilbert, Gregory S; Erickson, David; Kress, W John; Hubbell, Stephen P; Gunatilleke, C V Savitri; Gunatilleke, I A U Nimal
2016-01-01
Studies of forest dynamics plots (FDPs) have revealed a variety of negative density-dependent (NDD) demographic interactions, especially among conspecific trees. These interactions can affect growth rate, recruitment and mortality, and they play a central role in the maintenance of species diversity in these complex ecosystems. Here we use an equal area annulus (EAA) point-pattern method to comprehensively analyze data from two tropical FDPs, Barro Colorado Island in Panama and Sinharaja in Sri Lanka. We show that these NDD interactions also influence the continued evolutionary diversification of even distantly related tree species in these FDPs. We examine the details of a wide range of these interactions between individual trees and the trees that surround them. All these interactions, and their cumulative effects, are strongest among conspecific focal and surrounding tree species in both FDPs. They diminish in magnitude with increasing phylogenetic distance between heterospecific focal and surrounding trees, but do not disappear or change the pattern of their dependence on size, density, frequency or physical distance even among the most distantly related trees. The phylogenetic persistence of all these effects provides evidence that interactions between tree species that share an ecosystem may continue to promote adaptive divergence even after the species' gene pools have become separated. Adaptive divergence among taxa would operate in stark contrast to an alternative possibility that has previously been suggested, that distantly related species with dispersal-limited distributions and confronted with unpredictable neighbors will tend to converge on common strategies of resource use. In addition, we have also uncovered a positive density-dependent effect: growth rates of large trees are boosted in the presence of a smaller basal area of surrounding trees. We also show that many of the NDD interactions switch sign rapidly as focal trees grow in size, and that their cumulative effect can strongly influence the distributions and species composition of the trees that surround the focal trees during the focal trees' lifetimes.
ERIC Educational Resources Information Center
Smith, James J.; Cheruvelil, Kendra Spence; Auvenshine, Stacie
2013-01-01
Phylogenetic trees provide visual representations of ancestor-descendant relationships, a core concept of evolutionary theory. We introduced "tree thinking" into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted…
Social Studies: It's a Family Affair.
ERIC Educational Resources Information Center
Melendez, Ruth
1999-01-01
Describes an elementary-level family tree project for social studies classes that teaches students about their personal history and the country's diverse culture. Children complete a family tree chart, then the class creates visual presentations using a world map and bar graph. Finally, students write summary statements based on the family trees,…
The environmental psychology of shopping: assessing the value of trees
Kathleen L. Wolf
2007-01-01
A multi-study research program has investigated how consumers respond to trees in various business settings in cities and towns. Some studies focused on central business districts, others tested perceptions along freeways and arterials. Results are remarkably consistent. Trees not only positively affect judgments of visual quality but,...
KaDonna C. Randolph
2018-01-01
Tree crown conditions are visually assessed by the U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) Program as an indicator of forest health. These assessments are useful because individual tree photosynthetic capacity is dependent upon the size and condition of the crown. In general, trees with full, vigorous crowns are associated...
L. Linsen; B.J. Karis; E.G. McPherson; B. Hamann
2005-01-01
In computer graphics, models describing the fractal branching structure of trees typically exploit the modularity of tree structures. The models are based on local production rules, which are applied iteratively and simultaneously to create a complex branching system. The objective is to generate three-dimensional scenes of often many realistic- looking and non-...
The effects of explicit visual cues in reading biological diagrams
NASA Astrophysics Data System (ADS)
Ge, Yun-Ping; Unsworth, Len; Wang, Kuo-Hua
2017-03-01
Drawing on cognitive theories, this study intends to investigate the effects of explicit visual cues which have been proposed as a critical factor in facilitating understanding of biological images. Three diagrams from Taiwanese textbooks with implicit visual cues, involving the concepts of biological classification systems, fish taxonomy, and energy pyramid, were selected as the reading materials for the control group and reformatted in tree structure or with additional arrows as the diagrams for the treatment group. A quasi-experiment with an online reading test was conducted to examine the effect of the different image conditions on reading comprehension of the two groups. In total, 192 Taiwanese participants from year 7 were assigned randomly into either control group or treatment group according to the pre-test of relevant prior knowledge. The results indicated that not all explicit visual cues were significantly efficient. Only the explicit tree-structured diagrams cued significantly the key concepts of qualitative class-inclusion, parallel relations, and fish taxonomy. Meanwhile the effect of indexical arrows was not significant. The inconsistent effect of tree structure and arrows might be related to the extent of image reformation in which the tree-structured diagrams had undergone radical change of knowledge representation; meanwhile, the arrows had not changed the diagram structure of energy pyramid. The factor of prior knowledge was essential in considering the influence of image design as the effect of diagrams was very different for low and high prior knowledge students. Implications are drawn for the importance of visual design in textbooks.
Root starch in defoliated sugar maples following thrips damage
Barbara S. Burns
1991-01-01
Sugar maple root starch evaluations were done in 1987 and 1988 as a service to Vermont sugarmakers concerned about tree health. Trees were rated for starch content in late fall, using a visual iodine-staining technique. On the average, trees with heavy pear thrips damage in the spring of 1988 had higher levels of root starch the following fall than trees with light or...
Kang, Chang-ku; Moon, Jong-yeol; Lee, Sang-im; Jablonski, Piotr G.
2013-01-01
Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths’ behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis. PMID:24205118
Kang, Chang-Ku; Moon, Jong-Yeol; Lee, Sang-Im; Jablonski, Piotr G
2013-01-01
Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths' behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis.
Wills, Christopher; Harms, Kyle E.; Wiegand, Thorsten; Punchi-Manage, Ruwan; Gilbert, Gregory S.; Erickson, David; Kress, W. John; Hubbell, Stephen P.; Gunatilleke, C. V. Savitri; Gunatilleke, I. A. U. Nimal
2016-01-01
Studies of forest dynamics plots (FDPs) have revealed a variety of negative density-dependent (NDD) demographic interactions, especially among conspecific trees. These interactions can affect growth rate, recruitment and mortality, and they play a central role in the maintenance of species diversity in these complex ecosystems. Here we use an equal area annulus (EAA) point-pattern method to comprehensively analyze data from two tropical FDPs, Barro Colorado Island in Panama and Sinharaja in Sri Lanka. We show that these NDD interactions also influence the continued evolutionary diversification of even distantly related tree species in these FDPs. We examine the details of a wide range of these interactions between individual trees and the trees that surround them. All these interactions, and their cumulative effects, are strongest among conspecific focal and surrounding tree species in both FDPs. They diminish in magnitude with increasing phylogenetic distance between heterospecific focal and surrounding trees, but do not disappear or change the pattern of their dependence on size, density, frequency or physical distance even among the most distantly related trees. The phylogenetic persistence of all these effects provides evidence that interactions between tree species that share an ecosystem may continue to promote adaptive divergence even after the species’ gene pools have become separated. Adaptive divergence among taxa would operate in stark contrast to an alternative possibility that has previously been suggested, that distantly related species with dispersal-limited distributions and confronted with unpredictable neighbors will tend to converge on common strategies of resource use. In addition, we have also uncovered a positive density-dependent effect: growth rates of large trees are boosted in the presence of a smaller basal area of surrounding trees. We also show that many of the NDD interactions switch sign rapidly as focal trees grow in size, and that their cumulative effect can strongly influence the distributions and species composition of the trees that surround the focal trees during the focal trees’ lifetimes. PMID:27305092
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Dmitriy; Weber, Gunther H.
2014-03-31
Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SPECIAL PROGRAMS TREE ASSISTANCE PROGRAM § 783.5 Application. (a) A complete application for TAP benefits... written estimate of the number of trees, bushes or vines lost or damaged which is prepared by the owner or... the number of acres involved by on-site visual inspection of the land and trees, bushes or vines. (3...
Tree crown conditions in Missouri, 2000-2003
KaDonna C. Randolph; W. Keith Moser
2009-01-01
The Forest Service, U.S. Department of Agriculture, Forest Inventory and Analysis (FIA) Program uses visual assessments of tree crown condition to monitor changes and trends in forest health. This report describes three FIA tree crown condition indicators (crown dieback, crown density, and foliage transparency) and sapling crown vigor measured in Missouri between 2000...
ERIC Educational Resources Information Center
Guri-Rozenblit, Sarah
1989-01-01
Examines the effect of a tree diagram on college students' comprehension of main ideas in a social sciences expository text. Concludes that the tree diagram significantly improved comprehension of main ideas and relations between elements, irrespective of the students' initial verbal and visual aptitudes. (RS)
Skoura, Angeliki; Bakic, Predrag R; Megalooikonomou, Vasilis
2013-01-01
The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis.
Skoura, Angeliki; Bakic, Predrag R.; Megalooikonomou, Vasilis
2014-01-01
The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis. PMID:25414850
Decision trees in epidemiological research.
Venkatasubramaniam, Ashwini; Wolfson, Julian; Mitchell, Nathan; Barnes, Timothy; JaKa, Meghan; French, Simone
2017-01-01
In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.
[Understory effects on overstory trees: A review.
Du, Zhong; Cai, Xiao Hu; Bao, Wei Kai; Chen, Huai; Pan, Hong Li
2016-03-01
Plant-plant interactions play a key role in regulating the composition and structure of communities and ecosystems. Studies of plant-plant interactions in forest ecosystems have traditionally concentrated on either tree-tree interactions or overstory species' impacts on understory plants. The possible effects of understory species on overstory trees have received less attention. We summarized the effects of understory species on soil physiological properties, soil fauna activities, leaf litter decomposition, and ecophysiology and growth of the overstory species. Then the effects of distur-bance on understory-overstory interactions were discussed. Finally, an ecophysiology-based concept model of understory effects on overstory trees was proposed. Understory removal experiments showed that the study area, overstory species age, soil fertility and understory species could significantly affect the understory-overstory interactions.
Unravelling the limits to tree height: a major role for water and nutrient trade-offs.
Cramer, Michael D
2012-05-01
Competition for light has driven forest trees to grow exceedingly tall, but the lack of a single universal limit to tree height indicates multiple interacting environmental limitations. Because soil nutrient availability is determined by both nutrient concentrations and soil water, water and nutrient availabilities may interact in determining realised nutrient availability and consequently tree height. In SW Australia, which is characterised by nutrient impoverished soils that support some of the world's tallest forests, total [P] and water availability were independently correlated with tree height (r = 0.42 and 0.39, respectively). However, interactions between water availability and each of total [P], pH and [Mg] contributed to a multiple linear regression model of tree height (r = 0.72). A boosted regression tree model showed that maximum tree height was correlated with water availability (24%), followed by soil properties including total P (11%), Mg (10%) and total N (9%), amongst others, and that there was an interaction between water availability and total [P] in determining maximum tree height. These interactions indicated a trade-off between water and P availability in determining maximum tree height in SW Australia. This is enabled by a species assemblage capable of growing tall and surviving (some) disturbances. The mechanism for this trade-off is suggested to be through water enabling mass-flow and diffusive mobility of P, particularly of relatively mobile organic P, although water interactions with microbial activity could also play a role.
Journeying into the Anthropocene - Scots pine and eastern hemlock over the next 400 years
Duncan Stone
2014-01-01
Our native trees are much loved and valued components of our forests and fields, towns and cities. For a host of reasons - conservation, landscape, shade, and their sheer visual glory, we want our trees to grow big and old. But it takes time - often several centuries - from planting a tree to the desired outcome. This means that we need to choose trees today, which can...
Whole-tree canopy enclosures: why cage a tree?
Jerome F. Grant; Abdul Hakeem; Paris L. Lambdin; Gregory J. Wiggins; Rusty J. Rhea
2011-01-01
The use of whole-tree canopy enclosures (i.e., cages) is not a typical approach to assessing biological parameters and interactions in a forest setting. However, the successful application of this technology may enable researchers to better understand certain types of tree/organismal interactions.
HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.
Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye
2017-02-09
In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.
Environmental stress and whole-tree physiology
Peter L. Jr. Lorio
1993-01-01
Interactions among bark beetles, pathogens, and conifers constitute a triangle. Another triangle of interactions exist among the invading organism (bark beetles and pathogens), the trees, and the environment. How important, variable or constant, simple or complex, is the role of trees in these triangles? Understanding the wide range of interactions that take place...
Descriptive statistics of tree crown condition in California, Oregon, and Washington
KaDonna C. Randolph; Sally J. Campbell; Glenn Christensen
2010-01-01
The U.S. Forest Service Forest Inventory and Analysis (FIA) Program uses visual assessments of tree crown condition to monitor changes and trends in forest health. This report describes four tree crown condition indicators (crown dieback, crown density, foliage transparency, and sapling crown vigor) measured in California, Oregon, and Washington between 1996 and 1999....
Sprouting of dormant buds on border trees
G.R., Jr. Trimble; H. Clay Smith; H. Clay Smith
1970-01-01
As part of an evaluation of silvicultura1 systems used in managing Appalachian hardwoods, we are studying degrade of border trees surrounding harvest-cut openings made in the patch cutting and group selection systems. One facet of this research dealt with determining what portion of visually evident dormant buds on border tree boles sprouted when the openings were cut...
Perception of Graphical Virtual Environments by Blind Users via Sensory Substitution
Maidenbaum, Shachar; Buchs, Galit; Abboud, Sami; Lavi-Rotbain, Ori; Amedi, Amir
2016-01-01
Graphical virtual environments are currently far from accessible to blind users as their content is mostly visual. This is especially unfortunate as these environments hold great potential for this population for purposes such as safe orientation, education, and entertainment. Previous tools have increased accessibility but there is still a long way to go. Visual-to-audio Sensory-Substitution-Devices (SSDs) can increase accessibility generically by sonifying on-screen content regardless of the specific environment and offer increased accessibility without the use of expensive dedicated peripherals like electrode/vibrator arrays. Using SSDs virtually utilizes similar skills as when using them in the real world, enabling both training on the device and training on environments virtually before real-world visits. This could enable more complex, standardized and autonomous SSD training and new insights into multisensory interaction and the visually-deprived brain. However, whether congenitally blind users, who have never experienced virtual environments, will be able to use this information for successful perception and interaction within them is currently unclear.We tested this using the EyeMusic SSD, which conveys whole-scene visual information, to perform virtual tasks otherwise impossible without vision. Congenitally blind users had to navigate virtual environments and find doors, differentiate between them based on their features (Experiment1:task1) and surroundings (Experiment1:task2) and walk through them; these tasks were accomplished with a 95% and 97% success rate, respectively. We further explored the reactions of congenitally blind users during their first interaction with a more complex virtual environment than in the previous tasks–walking down a virtual street, recognizing different features of houses and trees, navigating to cross-walks, etc. Users reacted enthusiastically and reported feeling immersed within the environment. They highlighted the potential usefulness of such environments for understanding what visual scenes are supposed to look like and their potential for complex training and suggested many future environments they wished to experience. PMID:26882473
Perception of Graphical Virtual Environments by Blind Users via Sensory Substitution.
Maidenbaum, Shachar; Buchs, Galit; Abboud, Sami; Lavi-Rotbain, Ori; Amedi, Amir
2016-01-01
Graphical virtual environments are currently far from accessible to blind users as their content is mostly visual. This is especially unfortunate as these environments hold great potential for this population for purposes such as safe orientation, education, and entertainment. Previous tools have increased accessibility but there is still a long way to go. Visual-to-audio Sensory-Substitution-Devices (SSDs) can increase accessibility generically by sonifying on-screen content regardless of the specific environment and offer increased accessibility without the use of expensive dedicated peripherals like electrode/vibrator arrays. Using SSDs virtually utilizes similar skills as when using them in the real world, enabling both training on the device and training on environments virtually before real-world visits. This could enable more complex, standardized and autonomous SSD training and new insights into multisensory interaction and the visually-deprived brain. However, whether congenitally blind users, who have never experienced virtual environments, will be able to use this information for successful perception and interaction within them is currently unclear.We tested this using the EyeMusic SSD, which conveys whole-scene visual information, to perform virtual tasks otherwise impossible without vision. Congenitally blind users had to navigate virtual environments and find doors, differentiate between them based on their features (Experiment1:task1) and surroundings (Experiment1:task2) and walk through them; these tasks were accomplished with a 95% and 97% success rate, respectively. We further explored the reactions of congenitally blind users during their first interaction with a more complex virtual environment than in the previous tasks-walking down a virtual street, recognizing different features of houses and trees, navigating to cross-walks, etc. Users reacted enthusiastically and reported feeling immersed within the environment. They highlighted the potential usefulness of such environments for understanding what visual scenes are supposed to look like and their potential for complex training and suggested many future environments they wished to experience.
Tree Colors: Color Schemes for Tree-Structured Data.
Tennekes, Martijn; de Jonge, Edwin
2014-12-01
We present a method to map tree structures to colors from the Hue-Chroma-Luminance color model, which is known for its well balanced perceptual properties. The Tree Colors method can be tuned with several parameters, whose effect on the resulting color schemes is discussed in detail. We provide a free and open source implementation with sensible parameter defaults. Categorical data are very common in statistical graphics, and often these categories form a classification tree. We evaluate applying Tree Colors to tree structured data with a survey on a large group of users from a national statistical institute. Our user study suggests that Tree Colors are useful, not only for improving node-link diagrams, but also for unveiling tree structure in non-hierarchical visualizations.
Rainfall interception by tree crown and leaf litter: an interactive process
Xiang Li; Qingfu Xiao; Jianzhi Niu; Salli Dymond; E. Gregory McPherson; Natalie van Doorn; Xinxiao Yu; Baoyuan Xie; Kebin Zhang; Jiao Li
2017-01-01
Rainfall interception research in forest ecosystems usually focuses on interception by either tree crown or leaf litter, although the 2 components interact when rainfall occurs. A process-based study was conducted to jointly measure rainfall interception by crown and litter and the interaction between the 2 interception processes for 4 tree species (...
Application of time-lapse ERT to characterize soil-water-disease interactions of young citrus trees
NASA Astrophysics Data System (ADS)
Peddinti, S. R.; Kbvn, D. P.; Ranjan, S.; R M, P. G.
2016-12-01
Vidarbha region in Maharashtra, India is witnessing a continuous decrease in orange crop due to the propagation of `Phytopthora root rot', a water mold disease. Under favorable conditions, the disease causing bacteria can attack the plant root system and propagates to the surface (where first visual impression is made), making difficult to regain the plant health. This research aims at co-relating eco-hydrological fluxes with disease sensing parameters of orange trees. Two experimental plots around a healthy-young and declined-young orange trees were selected for our analysis. A 3-dimentional electrical resistivity tomography (ERT) (Figure) was carried at each plot to quantify the soil moisture distribution at a vadose zone. Pedo-electric relations were obtained considering modified Archie's law parameters. ERT derived moisture data was validated with time domain reflectometry (TDR) point observations. Soil moisture profiles derived from ERT were observed to be differ marginally between the two plots. Disease quantification was done by estimating the density of Phytopthora spp. inoculum in soils sampled along the root zone. Identification of Phytopthora spp. was done in the laboratory using taxonomic and morphologic criteria of the colonies. Spatio-temporal profiles of soil moisture and inoculum density were then co-related to comment on the eco-hydrological fluxes contributing to the health propagation of root rot in orange tree for implementing effective water management practices.
USDA-ARS?s Scientific Manuscript database
Sounds produced by larval and adult palm tree pests in Saudi Arabian date palm orchards were recorded using commercially available insect acoustic detection instruments. The trees and offshoots were inspected for presence/absence of insects and other visual signs of infestation. Subsequently, the sp...
KaDonna C. Randolph
2006-01-01
The U.S. Department of Agriculture Forest Service, Forest Inventory and Analysis Program (FIA) utilizes visual assessments of tree crown condition to monitor changes and trends in forest health. This report describes and discusses distributions of three FIA crown condition indicators (crown density, crown dieback, and foliage transparency) for trees in the Southern...
On the use of cartographic projections in visualizing phylo-genetic tree space
2010-01-01
Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger data sets. PMID:20529355
Sound imaging of nocturnal animal calls in their natural habitat.
Mizumoto, Takeshi; Aihara, Ikkyu; Otsuka, Takuma; Takeda, Ryu; Aihara, Kazuyuki; Okuno, Hiroshi G
2011-09-01
We present a novel method for imaging acoustic communication between nocturnal animals. Investigating the spatio-temporal calling behavior of nocturnal animals, e.g., frogs and crickets, has been difficult because of the need to distinguish many animals' calls in noisy environments without being able to see them. Our method visualizes the spatial and temporal dynamics using dozens of sound-to-light conversion devices (called "Firefly") and an off-the-shelf video camera. The Firefly, which consists of a microphone and a light emitting diode, emits light when it captures nearby sound. Deploying dozens of Fireflies in a target area, we record calls of multiple individuals through the video camera. We conduct two experiments, one indoors and the other in the field, using Japanese tree frogs (Hyla japonica). The indoor experiment demonstrates that our method correctly visualizes Japanese tree frogs' calling behavior. It has confirmed the known behavior; two frogs call synchronously or in anti-phase synchronization. The field experiment (in a rice paddy where Japanese tree frogs live) also visualizes the same calling behavior to confirm anti-phase synchronization in the field. Experimental results confirm that our method can visualize the calling behavior of nocturnal animals in their natural habitat.
AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis
Boyle, Thomas J; Bao, Zhirong; Murray, John I; Araya, Carlos L; Waterston, Robert H
2006-01-01
Background The invariant lineage of the nematode Caenorhabditis elegans has potential as a powerful tool for the description of mutant phenotypes and gene expression patterns. We previously described procedures for the imaging and automatic extraction of the cell lineage from C. elegans embryos. That method uses time-lapse confocal imaging of a strain expressing histone-GFP fusions and a software package, StarryNite, processes the thousands of images and produces output files that describe the location and lineage relationship of each nucleus at each time point. Results We have developed a companion software package, AceTree, which links the images and the annotations using tree representations of the lineage. This facilitates curation and editing of the lineage. AceTree also contains powerful visualization and interpretive tools, such as space filling models and tree-based expression patterning, that can be used to extract biological significance from the data. Conclusion By pairing a fast lineaging program written in C with a user interface program written in Java we have produced a powerful software suite for exploring embryonic development. PMID:16740163
AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis.
Boyle, Thomas J; Bao, Zhirong; Murray, John I; Araya, Carlos L; Waterston, Robert H
2006-06-01
The invariant lineage of the nematode Caenorhabditis elegans has potential as a powerful tool for the description of mutant phenotypes and gene expression patterns. We previously described procedures for the imaging and automatic extraction of the cell lineage from C. elegans embryos. That method uses time-lapse confocal imaging of a strain expressing histone-GFP fusions and a software package, StarryNite, processes the thousands of images and produces output files that describe the location and lineage relationship of each nucleus at each time point. We have developed a companion software package, AceTree, which links the images and the annotations using tree representations of the lineage. This facilitates curation and editing of the lineage. AceTree also contains powerful visualization and interpretive tools, such as space filling models and tree-based expression patterning, that can be used to extract biological significance from the data. By pairing a fast lineaging program written in C with a user interface program written in Java we have produced a powerful software suite for exploring embryonic development.
Visualizing Decision-making Behaviours in Agent-based Autonomous Spacecraft
NASA Technical Reports Server (NTRS)
North, Steve; Hennessy, Joseph F. (Technical Monitor)
2003-01-01
The authors will report initial progress on the PIAudit project as a Research Resident Associate Program. The objective of this research is to prototype a tool for visualizing decision-making behaviours in autonomous spacecraft. This visualization will serve as an information source for human analysts. The current visualization prototype for PIAudit combines traditional Decision Trees with Weights of Evidence.
A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks
Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip
2013-01-01
Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855
Shingrani, Rahul; Krenz, Gary; Molthen, Robert
2010-01-01
With advances in medical imaging scanners, it has become commonplace to generate large multidimensional datasets. These datasets require tools for a rapid, thorough analysis. To address this need, we have developed an automated algorithm for morphometric analysis incorporating A Visualization Workshop computational and image processing libraries for three-dimensional segmentation, vascular tree generation and structural hierarchical ordering with a two-stage numeric optimization procedure for estimating vessel diameters. We combine this new technique with our mathematical models of pulmonary vascular morphology to quantify structural and functional attributes of lung arterial trees. Our physiological studies require repeated measurements of vascular structure to determine differences in vessel biomechanical properties between animal models of pulmonary disease. Automation provides many advantages including significantly improved speed and minimized operator interaction and biasing. The results are validated by comparison with previously published rat pulmonary arterial micro-CT data analysis techniques, in which vessels were manually mapped and measured using intense operator intervention. Published by Elsevier Ireland Ltd.
Visualizing the Bayesian 2-test case: The effect of tree diagrams on medical decision making.
Binder, Karin; Krauss, Stefan; Bruckmaier, Georg; Marienhagen, Jörg
2018-01-01
In medicine, diagnoses based on medical test results are probabilistic by nature. Unfortunately, cognitive illusions regarding the statistical meaning of test results are well documented among patients, medical students, and even physicians. There are two effective strategies that can foster insight into what is known as Bayesian reasoning situations: (1) translating the statistical information on the prevalence of a disease and the sensitivity and the false-alarm rate of a specific test for that disease from probabilities into natural frequencies, and (2) illustrating the statistical information with tree diagrams, for instance, or with other pictorial representation. So far, such strategies have only been empirically tested in combination for "1-test cases", where one binary hypothesis ("disease" vs. "no disease") has to be diagnosed based on one binary test result ("positive" vs. "negative"). However, in reality, often more than one medical test is conducted to derive a diagnosis. In two studies, we examined a total of 388 medical students from the University of Regensburg (Germany) with medical "2-test scenarios". Each student had to work on two problems: diagnosing breast cancer with mammography and sonography test results, and diagnosing HIV infection with the ELISA and Western Blot tests. In Study 1 (N = 190 participants), we systematically varied the presentation of statistical information ("only textual information" vs. "only tree diagram" vs. "text and tree diagram in combination"), whereas in Study 2 (N = 198 participants), we varied the kinds of tree diagrams ("complete tree" vs. "highlighted tree" vs. "pruned tree"). All versions were implemented in probability format (including probability trees) and in natural frequency format (including frequency trees). We found that natural frequency trees, especially when the question-related branches were highlighted, improved performance, but that none of the corresponding probabilistic visualizations did.
Simulation of cooperating robot manipulators on a mobile platform
NASA Technical Reports Server (NTRS)
Murphy, Steve H.; Wen, John T.; Saridis, George N.
1990-01-01
The dynamic equations of motion for two manipulators holding a common object on a freely moving mobile platform are developed. The full dynamic interactions from arms to platform and arm-tip to arm-tip are included in the formulation. The development of the closed chain dynamics allows for the use of any solution for the open topological tree of base and manipulator links. In particular, because the system has 18 degrees of freedom, recursive solutions for the dynamic simulation become more promising for efficient calculations of the motion. Simulation of the system is accomplished through a MATLAB program, and the response is visualized graphically using the SILMA Cimstation.
Rakesh Minocha; Walter C. Shortle; Gregory B. Lawrence; Mark B. David; Subhash C. Minocha
1997-01-01
Forest trees are constantly exposed to various types of natural and anthropogenic stressors. A major long-term goal of our research is to develop a set of early physiological and biochemical markers of stress in trees before the appearance of visual symptoms. Six red spruce (Picea rubens Sarg.) stands from the northeastern United States were selected...
BIO::Phylo-phyloinformatic analysis using perl.
Vos, Rutger A; Caravas, Jason; Hartmann, Klaas; Jensen, Mark A; Miller, Chase
2011-02-27
Phyloinformatic analyses involve large amounts of data and metadata of complex structure. Collecting, processing, analyzing, visualizing and summarizing these data and metadata should be done in steps that can be automated and reproduced. This requires flexible, modular toolkits that can represent, manipulate and persist phylogenetic data and metadata as objects with programmable interfaces. This paper presents Bio::Phylo, a Perl5 toolkit for phyloinformatic analysis. It implements classes and methods that are compatible with the well-known BioPerl toolkit, but is independent from it (making it easy to install) and features a richer API and a data model that is better able to manage the complex relationships between different fundamental data and metadata objects in phylogenetics. It supports commonly used file formats for phylogenetic data including the novel NeXML standard, which allows rich annotations of phylogenetic data to be stored and shared. Bio::Phylo can interact with BioPerl, thereby giving access to the file formats that BioPerl supports. Many methods for data simulation, transformation and manipulation, the analysis of tree shape, and tree visualization are provided. Bio::Phylo is composed of 59 richly documented Perl5 modules. It has been deployed successfully on a variety of computer architectures (including various Linux distributions, Mac OS X versions, Windows, Cygwin and UNIX-like systems). It is available as open source (GPL) software from http://search.cpan.org/dist/Bio-Phylo.
BIO::Phylo-phyloinformatic analysis using perl
2011-01-01
Background Phyloinformatic analyses involve large amounts of data and metadata of complex structure. Collecting, processing, analyzing, visualizing and summarizing these data and metadata should be done in steps that can be automated and reproduced. This requires flexible, modular toolkits that can represent, manipulate and persist phylogenetic data and metadata as objects with programmable interfaces. Results This paper presents Bio::Phylo, a Perl5 toolkit for phyloinformatic analysis. It implements classes and methods that are compatible with the well-known BioPerl toolkit, but is independent from it (making it easy to install) and features a richer API and a data model that is better able to manage the complex relationships between different fundamental data and metadata objects in phylogenetics. It supports commonly used file formats for phylogenetic data including the novel NeXML standard, which allows rich annotations of phylogenetic data to be stored and shared. Bio::Phylo can interact with BioPerl, thereby giving access to the file formats that BioPerl supports. Many methods for data simulation, transformation and manipulation, the analysis of tree shape, and tree visualization are provided. Conclusions Bio::Phylo is composed of 59 richly documented Perl5 modules. It has been deployed successfully on a variety of computer architectures (including various Linux distributions, Mac OS X versions, Windows, Cygwin and UNIX-like systems). It is available as open source (GPL) software from http://search.cpan.org/dist/Bio-Phylo PMID:21352572
Facilitation or Competition? Tree Effects on Grass Biomass across a Precipitation Gradient
Moustakas, Aristides; Kunin, William E.; Cameron, Tom C.; Sankaran, Mahesh
2013-01-01
Savanna ecosystems are dominated by two distinct plant life forms, grasses and trees, but the interactions between them are poorly understood. Here, we quantified the effects of isolated savanna trees on grass biomass as a function of distance from the base of the tree and tree height, across a precipitation gradient in the Kruger National Park, South Africa. Our results suggest that mean annual precipitation (MAP) mediates the nature of tree-grass interactions in these ecosystems, with the impact of trees on grass biomass shifting qualitatively between 550 and 737 mm MAP. Tree effects on grass biomass were facilitative in drier sites (MAP≤550 mm), with higher grass biomass observed beneath tree canopies than outside. In contrast, at the wettest site (MAP = 737 mm), grass biomass did not differ significantly beneath and outside tree canopies. Within this overall precipitation-driven pattern, tree height had positive effect on sub-canopy grass biomass at some sites, but these effects were weak and not consistent across the rainfall gradient. For a more synthetic understanding of tree-grass interactions in savannas, future studies should focus on isolating the different mechanisms by which trees influence grass biomass, both positively and negatively, and elucidate how their relative strengths change over broad environmental gradients. PMID:23451137
Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P
2016-03-16
Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'. © 2016 The Author(s).
Magrach, Ainhoa; Senior, Rebecca A.; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F.; Santamaria, Luis; Edwards, David P.
2016-01-01
Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the ‘health’ and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana–tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of ‘extinction debt’. PMID:26936241
Interactive modeling and simulation of peripheral nerve cords in virtual environments
NASA Astrophysics Data System (ADS)
Ullrich, Sebastian; Frommen, Thorsten; Eckert, Jan; Schütz, Astrid; Liao, Wei; Deserno, Thomas M.; Ntouba, Alexandre; Rossaint, Rolf; Prescher, Andreas; Kuhlen, Torsten
2008-03-01
This paper contributes to modeling, simulation and visualization of peripheral nerve cords. Until now, only sparse datasets of nerve cords can be found. In addition, this data has not yet been used in simulators, because it is only static. To build up a more flexible anatomical structure of peripheral nerve cords, we propose a hierarchical tree data structure where each node represents a nerve branch. The shape of the nerve segments itself is approximated by spline curves. Interactive modeling allows for the creation and editing of control points which are used for branching nerve sections, calculating spline curves and editing spline representations via cross sections. Furthermore, the control points can be attached to different anatomic structures. Through this approach, nerve cords deform in accordance to the movement of the connected structures, e.g., muscles or bones. As a result, we have developed an intuitive modeling system that runs on desktop computers and in immersive environments. It allows anatomical experts to create movable peripheral nerve cords for articulated virtual humanoids. Direct feedback of changes induced by movement or deformation is achieved by visualization in real-time. The techniques and the resulting data are already used for medical simulators.
Semiautomated landscape feature extraction and modeling
NASA Astrophysics Data System (ADS)
Wasilewski, Anthony A.; Faust, Nickolas L.; Ribarsky, William
2001-08-01
We have developed a semi-automated procedure for generating correctly located 3D tree objects form overhead imagery. Cross-platform software partitions arbitrarily large, geocorrected and geolocated imagery into management sub- images. The user manually selected tree areas from one or more of these sub-images. Tree group blobs are then narrowed to lines using a special thinning algorithm which retains the topology of the blobs, and also stores the thickness of the parent blob. Maxima along these thinned tree grous are found, and used as individual tree locations within the tree group. Magnitudes of the local maxima are used to scale the radii of the tree objects. Grossly overlapping trees are culled based on a comparison of tree-tree distance to combined radii. Tree color is randomly selected based on the distribution of sample tree pixels, and height is estimated form tree radius. The final tree objects are then inserted into a terrain database which can be navigated by VGIS, a high-resolution global terrain visualization system developed at Georgia Tech.
TeachEnG: a Teaching Engine for Genomics.
Kim, Minji; Kim, Yeonsung; Qian, Lei; Song, Jun S
2017-10-15
Bioinformatics is a rapidly growing field that has emerged from the synergy of computer science, statistics and biology. Given the interdisciplinary nature of bioinformatics, many students from diverse fields struggle with grasping bioinformatic concepts only from classroom lectures. Interactive tools for helping students reinforce their learning would be thus desirable. Here, we present an interactive online educational tool called TeachEnG (acronym for Teaching Engine for Genomics) for reinforcing key concepts in sequence alignment and phylogenetic tree reconstruction. Our instructional games allow students to align sequences by hand, fill out the dynamic programming matrix in the Needleman-Wunsch global sequence alignment algorithm, and reconstruct phylogenetic trees via the maximum parsimony, Unweighted Pair Group Method with Arithmetic mean (UPGMA) and Neighbor-Joining algorithms. With an easily accessible interface and instant visual feedback, TeachEnG will help promote active learning in bioinformatics. TeachEnG is freely available at http://teacheng.illinois.edu. The source code is available from https://github.com/KnowEnG/TeachEnG under the Artistic License 2.0. It is written in JavaScript and compatible with Firefox, Safari, Chrome and Microsoft Edge. songj@illinois.edu. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Gehring, Catherine; Flores-Rentería, Dulce; Sthultz, Christopher M; Leonard, Tierra M; Flores-Rentería, Lluvia; Whipple, Amy V; Whitham, Thomas G
2014-03-01
Although the importance of plant-associated microbes is increasingly recognized, little is known about the biotic and abiotic factors that determine the composition of that microbiome. We examined the influence of plant genetic variation, and two stressors, one biotic and one abiotic, on the ectomycorrhizal (EM) fungal community of a dominant tree species, Pinus edulis. During three periods across 16 years that varied in drought severity, we sampled the EM fungal communities of a wild stand of P. edulis in which genetically based resistance and susceptibility to insect herbivory was linked with drought tolerance and the abundance of competing shrubs. We found that the EM fungal communities of insect-susceptible trees remained relatively constant as climate dried, while those of insect-resistant trees shifted significantly, providing evidence of a genotype by environment interaction. Shrub removal altered the EM fungal communities of insect-resistant trees, but not insect-susceptible trees, also a genotype by environment interaction. The change in the EM fungal community of insect-resistant trees following shrub removal was associated with greater shoot growth, evidence of competitive release. However, shrub removal had a 7-fold greater positive effect on the shoot growth of insect-susceptible trees than insect-resistant trees when shrub density was taken into account. Insect-susceptible trees had higher growth than insect-resistant trees, consistent with the hypothesis that the EM fungi associated with susceptible trees were superior mutualists. These complex, genetic-based interactions among species (tree-shrub-herbivore-fungus) argue that the ultimate impacts of climate change are both ecological and evolutionary. © 2013 John Wiley & Sons Ltd.
Constructing phylogenetic trees using interacting pathways.
Wan, Peng; Che, Dongsheng
2013-01-01
Phylogenetic trees are used to represent evolutionary relationships among biological species or organisms. The construction of phylogenetic trees is based on the similarities or differences of their physical or genetic features. Traditional approaches of constructing phylogenetic trees mainly focus on physical features. The recent advancement of high-throughput technologies has led to accumulation of huge amounts of biological data, which in turn changed the way of biological studies in various aspects. In this paper, we report our approach of building phylogenetic trees using the information of interacting pathways. We have applied hierarchical clustering on two domains of organisms-eukaryotes and prokaryotes. Our preliminary results have shown the effectiveness of using the interacting pathways in revealing evolutionary relationships.
Tree phylogenetic diversity promotes host-parasitoid interactions.
Staab, Michael; Bruelheide, Helge; Durka, Walter; Michalski, Stefan; Purschke, Oliver; Zhu, Chao-Dong; Klein, Alexandra-Maria
2016-07-13
Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish. © 2016 The Author(s).
Rooting depth explains [CO2] x drought interaction in Eucalyptus saligna.
Duursma, Remko A; Barton, Craig V M; Eamus, Derek; Medlyn, Belinda E; Ellsworth, David S; Forster, Michael A; Tissue, David T; Linder, Sune; McMurtrie, Ross E
2011-09-01
Elevated atmospheric [CO(2)] (eC(a)) often decreases stomatal conductance, which may delay the start of drought, as well as alleviate the effect of dry soil on plant water use and carbon uptake. We studied the interaction between drought and eC(a) in a whole-tree chamber experiment with Eucalyptus saligna. Trees were grown for 18 months in their C(a) treatments before a 4-month dry-down. Trees grown in eC(a) were smaller than those grown in ambient C(a) (aC(a)) due to an early growth setback that was maintained throughout the duration of the experiment. Pre-dawn leaf water potentials were not different between C(a) treatments, but were lower in the drought treatment than the irrigated control. Counter to expectations, the drought treatment caused a larger reduction in canopy-average transpiration rates for trees in the eC(a) treatment compared with aC(a). Total tree transpiration over the dry-down was positively correlated with the decrease in soil water storage, measured in the top 1.5 m, over the drying cycle; however, we could not close the water budget especially for the larger trees, suggesting soil water uptake below 1.5 m depth. Using neutron probe soil water measurements, we estimated fractional water uptake to a depth of 4.5 m and found that larger trees were able to extract more water from deep soil layers. These results highlight the interaction between rooting depth and response of tree water use to drought. The responses of tree water use to eC(a) involve interactions between tree size, root distribution and soil moisture availability that may override the expected direct effects of eC(a). It is essential that these interactions be considered when interpreting experimental results.
Effects of snow-reflected light levels on human visual comfort.
Yilmaz, Hasan; Demircioglu Yildiz, Nalan; Yilmaz, Sevgi
2008-09-01
The intensity of the sunlight reflected by the snow-covered surfaces is so high that it may disturb humans many times. This study aims to determine the reflected sunlight intensities from snow covered areas at points near (at a distance of 2 m) and under an individual tree and among trees (in the forest area) by accepting the open area as control; the reducing effects of the plant materials on reflected sunlight in percentage by comparing with the values of the open (control) area; and critical reflected sunlight threshold values for human visual comfort. The study was carried out over 22 clear and calm, i.e. sky was cloudless and wind was calm, days between the 1st and 31st days of January 2004, at 8:30 in the morning, at 12:30 at noon and at 14:30 in the afternoon in Erzurum. In order to determine the discomforting light intensity levels, 25 females and 26 male (totally 51) student subjects whose mean age was 20 and who had no visual disorders were selected. Considering the open area as control, mean reflected sunlight reducing effects were found to be 19.0, 66.0 and 82.7% for the 2 m near a tree, under a tree, and forest area, respectively. According to the responses of 51 subjects in the study, visually "very comfortable" range is between 5,000 and 8,000 lx; "comfortable" range is between 11,000 and 75,000 lx (mostly at 12,000 lx); "uncomfortable" condition is above the light intensity value of 43,000 lx and "very uncomfortable" condition is above the intensity of 80,000 lx. Great majority of the subjects (91%) found the value of 103,000 lx to be "very uncomfortable." As it is not an applicable way to use the great and dense tree masses in the cities, at least individual trees should be used along the main pedestrian axels in the cities having the same features with Erzurum to prevent the natural light pollution and discomforting effects of the snow-reflected sunlight.
Visual aids for aerial observers on forest insect surveys.
A.T. Larsen
1957-01-01
Aerial surveys are widely used to detect, appraise, and map damage caused to forest trees by insects. The success of these surveys largely depends upon the ability of observers to distinguish differences in foliage color and tree condition. The observers' ability is influenced by several factors.
Business district streetscapes, trees, and consumer response
Kathleen L. Wolf
2005-01-01
A multistudy research program has investigated how consumers respond to the urban forest in central business districts of cities of various sizes. Trees positively affect judgments of visual quality but, more significantly, may influence other consumer responses and behaviors. Survey respondents from all regions of the United States...
Analysis of hand contact areas and interaction capabilities during manipulation and exploration.
Gonzalez, Franck; Gosselin, Florian; Bachta, Wael
2014-01-01
Manual human-computer interfaces for virtual reality are designed to allow an operator interacting with a computer simulation as naturally as possible. Dexterous haptic interfaces are the best suited for this goal. They give intuitive and efficient control on the environment with haptic and tactile feedback. This paper is aimed at helping in the choice of the interaction areas to be taken into account in the design of such interfaces. The literature dealing with hand interactions is first reviewed in order to point out the contact areas involved in exploration and manipulation tasks. Their frequencies of use are then extracted from existing recordings. The results are gathered in an original graphical interaction map allowing for a simple visualization of the way the hand is used, and compared with a map of mechanoreceptors densities. Then an interaction tree, mapping the relative amount of actions made available through the use of a given contact area, is built and correlated with the losses of hand function induced by amputations. A rating of some existing haptic interfaces and guidelines for their design are finally achieved to illustrate a possible use of the developed graphical tools.
Physiology and Genetics of Tree-Phytophage Interactions
Frances Lieutier; William J. Mattson; Michael R. Wagner
1999-01-01
Interactions between trees and phytophagous organisms represent an important fundamental process in the evolution of forest ecosystems. Through evolutionary time, the special traits of trees have lead the herbivore populations to differentiate and evolve in order to cope with the variability in natural resistance mechanisms of their hosts. Conversely, damage by...
Ashkenazy, Haim; Abadi, Shiran; Martz, Eric; Chay, Ofer; Mayrose, Itay; Pupko, Tal; Ben-Tal, Nir
2016-01-01
The degree of evolutionary conservation of an amino acid in a protein or a nucleic acid in DNA/RNA reflects a balance between its natural tendency to mutate and the overall need to retain the structural integrity and function of the macromolecule. The ConSurf web server (http://consurf.tau.ac.il), established over 15 years ago, analyses the evolutionary pattern of the amino/nucleic acids of the macromolecule to reveal regions that are important for structure and/or function. Starting from a query sequence or structure, the server automatically collects homologues, infers their multiple sequence alignment and reconstructs a phylogenetic tree that reflects their evolutionary relations. These data are then used, within a probabilistic framework, to estimate the evolutionary rates of each sequence position. Here we introduce several new features into ConSurf, including automatic selection of the best evolutionary model used to infer the rates, the ability to homology-model query proteins, prediction of the secondary structure of query RNA molecules from sequence, the ability to view the biological assembly of a query (in addition to the single chain), mapping of the conservation grades onto 2D RNA models and an advanced view of the phylogenetic tree that enables interactively rerunning ConSurf with the taxa of a sub-tree. PMID:27166375
InCHlib - interactive cluster heatmap for web applications.
Skuta, Ctibor; Bartůněk, Petr; Svozil, Daniel
2014-12-01
Hierarchical clustering is an exploratory data analysis method that reveals the groups (clusters) of similar objects. The result of the hierarchical clustering is a tree structure called dendrogram that shows the arrangement of individual clusters. To investigate the row/column hierarchical cluster structure of a data matrix, a visualization tool called 'cluster heatmap' is commonly employed. In the cluster heatmap, the data matrix is displayed as a heatmap, a 2-dimensional array in which the colour of each element corresponds to its value. The rows/columns of the matrix are ordered such that similar rows/columns are near each other. The ordering is given by the dendrogram which is displayed on the side of the heatmap. We developed InCHlib (Interactive Cluster Heatmap Library), a highly interactive and lightweight JavaScript library for cluster heatmap visualization and exploration. InCHlib enables the user to select individual or clustered heatmap rows, to zoom in and out of clusters or to flexibly modify heatmap appearance. The cluster heatmap can be augmented with additional metadata displayed in a different colour scale. In addition, to further enhance the visualization, the cluster heatmap can be interconnected with external data sources or analysis tools. Data clustering and the preparation of the input file for InCHlib is facilitated by the Python utility script inchlib_clust . The cluster heatmap is one of the most popular visualizations of large chemical and biomedical data sets originating, e.g., in high-throughput screening, genomics or transcriptomics experiments. The presented JavaScript library InCHlib is a client-side solution for cluster heatmap exploration. InCHlib can be easily deployed into any modern web application and configured to cooperate with external tools and data sources. Though InCHlib is primarily intended for the analysis of chemical or biological data, it is a versatile tool which application domain is not limited to the life sciences only.
The Forest, the Trees, and the Leaves: Differences of Processing across Development
ERIC Educational Resources Information Center
Krakowski, Claire-Sara; Poirel, Nicolas; Vidal, Julie; Roëll, Margot; Pineau, Arlette; Borst, Grégoire; Houdé, Olivier
2016-01-01
To act and think, children and adults are continually required to ignore irrelevant visual information to focus on task-relevant items. As real-world visual information is organized into structures, we designed a feature visual search task containing 3-level hierarchical stimuli (i.e., local shapes that constituted intermediate shapes that formed…
webPIPSA: a web server for the comparison of protein interaction properties
Richter, Stefan; Wenzel, Anne; Stein, Matthias; Gabdoulline, Razif R.; Wade, Rebecca C.
2008-01-01
Protein molecular interaction fields are key determinants of protein functionality. PIPSA (Protein Interaction Property Similarity Analysis) is a procedure to compare and analyze protein molecular interaction fields, such as the electrostatic potential. PIPSA may assist in protein functional assignment, classification of proteins, the comparison of binding properties and the estimation of enzyme kinetic parameters. webPIPSA is a web server that enables the use of PIPSA to compare and analyze protein electrostatic potentials. While PIPSA can be run with downloadable software (see http://projects.eml.org/mcm/software/pipsa), webPIPSA extends and simplifies a PIPSA run. This allows non-expert users to perform PIPSA for their protein datasets. With input protein coordinates, the superposition of protein structures, as well as the computation and analysis of electrostatic potentials, is automated. The results are provided as electrostatic similarity matrices from an all-pairwise comparison of the proteins which can be subjected to clustering and visualized as epograms (tree-like diagrams showing electrostatic potential differences) or heat maps. webPIPSA is freely available at: http://pipsa.eml.org. PMID:18420653
Charles E. Flower; Kathleen S. Knight; Joanne Rebbeck; Miquel A. Gonzalez-Meler
2013-01-01
Ash trees (Fraxinus spp.) in North America are being severely impacted by the invasive emerald ash borer (Agrilus planipennis Fairmaire) which was inadvertently introduced to the US in the 1990s from Asia. The emerald ash borer (EAB) is a phloem boring beetle which relies exclusively on ash trees to complete its life cycle. Larvae...
CytoSPADE: high-performance analysis and visualization of high-dimensional cytometry data
Linderman, Michael D.; Simonds, Erin F.; Qiu, Peng; Bruggner, Robert V.; Sheode, Ketaki; Meng, Teresa H.; Plevritis, Sylvia K.; Nolan, Garry P.
2012-01-01
Motivation: Recent advances in flow cytometry enable simultaneous single-cell measurement of 30+ surface and intracellular proteins. CytoSPADE is a high-performance implementation of an interface for the Spanning-tree Progression Analysis of Density-normalized Events algorithm for tree-based analysis and visualization of this high-dimensional cytometry data. Availability: Source code and binaries are freely available at http://cytospade.org and via Bioconductor version 2.10 onwards for Linux, OSX and Windows. CytoSPADE is implemented in R, C++ and Java. Contact: michael.linderman@mssm.edu Supplementary Information: Additional documentation available at http://cytospade.org. PMID:22782546
Ancient Wings: animating the evolution of butterfly wing patterns.
Arbesman, Samuel; Enthoven, Leo; Monteiro, Antónia
2003-10-01
Character optimization methods can be used to reconstruct ancestral states at the internal nodes of phylogenetic trees. However, seldom are these ancestral states visualized collectively. Ancient Wings is a computer program that provides a novel method of visualizing the evolution of several morphological traits simultaneously. It allows users to visualize how the ventral hindwing pattern of 54 butterflies in the genus Bicyclus may have changed over time. By clicking on each of the nodes within the evolutionary tree, the user can see an animation of how wing size, eyespot size, and eyespot position relative the wing margin, have putatively evolved as a collective whole. Ancient Wings may be used as a pedagogical device as well as a research tool for hypothesis-generation in the fields of evolutionary, ecological, and developmental biology.
Toward the development of survey trapping technology for the emerald ash borer
Therese Poland; Damon Crook; Joseph Francese; Jason Oliver; Gard Otis; Peter De Groot; Gary Grant; Linda MacDonald; Deborah McCullough; Ivich Fraser; David Lance; Victor Mastro; Nadeer Youssef; Tanya Turk; Melodie Youngs
2007-01-01
Improved survey tools are essential for accurately delimiting the infestation of emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) and for detecting new infestations. Current survey methods including visual surveys for damage, girdled trap trees, and trunk dissections are less than ideal because newly infested trees...
Zhao, Yang; Zheng, Wei; Zhuo, Daisy Y; Lu, Yuefeng; Ma, Xiwen; Liu, Hengchang; Zeng, Zhen; Laird, Glen
2017-10-11
Personalized medicine, or tailored therapy, has been an active and important topic in recent medical research. Many methods have been proposed in the literature for predictive biomarker detection and subgroup identification. In this article, we propose a novel decision tree-based approach applicable in randomized clinical trials. We model the prognostic effects of the biomarkers using additive regression trees and the biomarker-by-treatment effect using a single regression tree. Bayesian approach is utilized to periodically revise the split variables and the split rules of the decision trees, which provides a better overall fitting. Gibbs sampler is implemented in the MCMC procedure, which updates the prognostic trees and the interaction tree separately. We use the posterior distribution of the interaction tree to construct the predictive scores of the biomarkers and to identify the subgroup where the treatment is superior to the control. Numerical simulations show that our proposed method performs well under various settings comparing to existing methods. We also demonstrate an application of our method in a real clinical trial.
Student interpretations of phylogenetic trees in an introductory biology course.
Dees, Jonathan; Momsen, Jennifer L; Niemi, Jarad; Montplaisir, Lisa
2014-01-01
Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa relatedness on phylogenetic trees, to measure the prevalence of correct taxa-relatedness interpretations, and to determine how student reasoning and correctness change in response to instruction and over time. Counting synapomorphies and nodes between taxa were the most common forms of incorrect reasoning, which presents a pedagogical dilemma concerning labeled synapomorphies on phylogenetic trees. Students also independently generated an alternative form of correct reasoning using monophyletic groups, the use of which decreased in popularity over time. Approximately half of all students were able to correctly interpret taxa relatedness on phylogenetic trees, and many memorized correct reasoning without understanding its application. Broad initial instruction that allowed students to generate inferences on their own contributed very little to phylogenetic tree understanding, while targeted instruction on evolutionary relationships improved understanding to some extent. Phylogenetic trees, which can directly affect student understanding of evolution, appear to offer introductory biology instructors a formidable pedagogical challenge. © 2014 J. Dees et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Belowground carbon trade among tall trees in a temperate forest.
Klein, Tamir; Siegwolf, Rolf T W; Körner, Christian
2016-04-15
Forest trees compete for light and soil resources, but photoassimilates, once produced in the foliage, are not considered to be exchanged between individuals. Applying stable carbon isotope labeling at the canopy scale, we show that carbon assimilated by 40-meter-tall spruce is traded over to neighboring beech, larch, and pine via overlapping root spheres. Isotope mixing signals indicate that the interspecific, bidirectional transfer, assisted by common ectomycorrhiza networks, accounted for 40% of the fine root carbon (about 280 kilograms per hectare per year tree-to-tree transfer). Although competition for resources is commonly considered as the dominant tree-to-tree interaction in forests, trees may interact in more complex ways, including substantial carbon exchange. Copyright © 2016, American Association for the Advancement of Science.
Belowground Microbiota and the Health of Tree Crops.
Mercado-Blanco, Jesús; Abrantes, Isabel; Barra Caracciolo, Anna; Bevivino, Annamaria; Ciancio, Aurelio; Grenni, Paola; Hrynkiewicz, Katarzyna; Kredics, László; Proença, Diogo N
2018-01-01
Trees are crucial for sustaining life on our planet. Forests and land devoted to tree crops do not only supply essential edible products to humans and animals, but also additional goods such as paper or wood. They also prevent soil erosion, support microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling processes, and mitigate the effects of climate change acting as carbon dioxide sinks. Hence, the health of forests and tree cropping systems is of particular significance. In particular, soil/rhizosphere/root-associated microbial communities (known as microbiota) are decisive to sustain the fitness, development, and productivity of trees. These benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific members of the microbial communities associated with perennial tree crops interact with soil invertebrate food webs, underpinning many density regulation mechanisms. This review discusses belowground microbiota interactions influencing the growth of tree crops. The study of tree-(micro)organism interactions taking place at the belowground level is crucial to understand how they contribute to processes like carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A comprehensive understanding of the relationship between roots and their associate microbiota can also facilitate the design of novel sustainable approaches for the benefit of these relevant agro-ecosystems. Here, we summarize the methodological approaches to unravel the composition and function of belowground microbiota, the factors influencing their interaction with tree crops, their benefits and harms, with a focus on representative examples of Biological Control Agents (BCA) used against relevant biotic constraints of tree crops. Finally, we add some concluding remarks and suggest future perspectives concerning the microbiota-assisted management strategies to sustain tree crops.
Belowground Microbiota and the Health of Tree Crops
Mercado-Blanco, Jesús; Abrantes, Isabel; Barra Caracciolo, Anna; Bevivino, Annamaria; Ciancio, Aurelio; Grenni, Paola; Hrynkiewicz, Katarzyna; Kredics, László; Proença, Diogo N.
2018-01-01
Trees are crucial for sustaining life on our planet. Forests and land devoted to tree crops do not only supply essential edible products to humans and animals, but also additional goods such as paper or wood. They also prevent soil erosion, support microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling processes, and mitigate the effects of climate change acting as carbon dioxide sinks. Hence, the health of forests and tree cropping systems is of particular significance. In particular, soil/rhizosphere/root-associated microbial communities (known as microbiota) are decisive to sustain the fitness, development, and productivity of trees. These benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific members of the microbial communities associated with perennial tree crops interact with soil invertebrate food webs, underpinning many density regulation mechanisms. This review discusses belowground microbiota interactions influencing the growth of tree crops. The study of tree-(micro)organism interactions taking place at the belowground level is crucial to understand how they contribute to processes like carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A comprehensive understanding of the relationship between roots and their associate microbiota can also facilitate the design of novel sustainable approaches for the benefit of these relevant agro-ecosystems. Here, we summarize the methodological approaches to unravel the composition and function of belowground microbiota, the factors influencing their interaction with tree crops, their benefits and harms, with a focus on representative examples of Biological Control Agents (BCA) used against relevant biotic constraints of tree crops. Finally, we add some concluding remarks and suggest future perspectives concerning the microbiota-assisted management strategies to sustain tree crops. PMID:29922245
A Guide to the PLAZA 3.0 Plant Comparative Genomic Database.
Vandepoele, Klaas
2017-01-01
PLAZA 3.0 is an online resource for comparative genomics and offers a versatile platform to study gene functions and gene families or to analyze genome organization and evolution in the green plant lineage. Starting from genome sequence information for over 35 plant species, precomputed comparative genomic data sets cover homologous gene families, multiple sequence alignments, phylogenetic trees, and genomic colinearity information within and between species. Complementary functional data sets, a Workbench, and interactive visualization tools are available through a user-friendly web interface, making PLAZA an excellent starting point to translate sequence or omics data sets into biological knowledge. PLAZA is available at http://bioinformatics.psb.ugent.be/plaza/ .
OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media.
Wu, Yingcai; Liu, Shixia; Yan, Kai; Liu, Mengchen; Wu, Fangzhao
2014-12-01
It is important for many different applications such as government and business intelligence to analyze and explore the diffusion of public opinions on social media. However, the rapid propagation and great diversity of public opinions on social media pose great challenges to effective analysis of opinion diffusion. In this paper, we introduce a visual analysis system called OpinionFlow to empower analysts to detect opinion propagation patterns and glean insights. Inspired by the information diffusion model and the theory of selective exposure, we develop an opinion diffusion model to approximate opinion propagation among Twitter users. Accordingly, we design an opinion flow visualization that combines a Sankey graph with a tailored density map in one view to visually convey diffusion of opinions among many users. A stacked tree is used to allow analysts to select topics of interest at different levels. The stacked tree is synchronized with the opinion flow visualization to help users examine and compare diffusion patterns across topics. Experiments and case studies on Twitter data demonstrate the effectiveness and usability of OpinionFlow.
R. W. Hofstetter; Jolie B. Mahfouz; Kier D. Klepzig; M. P. Ayres
2005-01-01
We examined the interaction between host trees and fungi associated with a tree-killing bark beetle, Dendroctonus frontalis. We evaluated (1) the response of four Pinus species to fungal invasion and (2) the effects of plant secondary metabolites on primary growth of and secondary colonization of three consistent fungal associates...
NASA Astrophysics Data System (ADS)
Espinosa Aldama, Mariana
2015-04-01
The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion.
Punchi-Manage, Ruwan; Wiegand, Thorsten; Wiegand, Kerstin; Getzin, Stephan; Huth, Andreas; Gunatilleke, C V Savitri; Gunatilleke, I A U Nimal
2015-07-01
Interactions among neighboring individuals influence plant performance and should create spatial patterns in local community structure. In order to assess the role of large trees in generating spatial patterns in local species richness, we used the individual species-area relationship (ISAR) to evaluate the species richness of trees of different size classes (and dead trees) in circular neighborhoods with varying radius around large trees of different focal species. To reveal signals of species interactions, we compared the ISAR function of the individuals of focal species with that of randomly selected nearby locations. We expected that large trees should strongly affect the community structure of smaller trees in their neighborhood, but that these effects should fade away with increasing size class. Unexpectedly, we found that only few focal species showed signals of species interactions with trees of the different size classes and that this was less likely for less abundant focal species. However, the few and relatively weak departures from independence were consistent with expectations of the effect of competition for space and the dispersal syndrome on spatial patterns. A noisy signal of competition for space found for large trees built up gradually with increasing life stage; it was not yet present for large saplings but detectable for intermediates. Additionally, focal species with animal-dispersed seeds showed higher species richness in their neighborhood than those with gravity- and gyration-dispersed seeds. Our analysis across the entire ontogeny from recruits to large trees supports the hypothesis that stochastic effects dilute deterministic species interactions in highly diverse communities. Stochastic dilution is a consequence of the stochastic geometry of biodiversity in species-rich communities where the identities of the nearest neighbors of a given plant are largely unpredictable. While the outcome of local species interactions is governed for each plant by deterministic fitness and niche differences, the large variability of competitors causes also a large variability in the outcomes of interactions and does not allow for strong directed responses at the species level. Collectively, our results highlight the critical effect of the stochastic geometry of biodiversity in structuring local spatial patterns of tropical forest diversity.
CSTutor: A Sketch-Based Tool for Visualizing Data Structures
ERIC Educational Resources Information Center
Buchanan, Sarah; Laviola, Joseph J., Jr.
2014-01-01
We present CSTutor, a sketch-based interface designed to help students understand data structures, specifically Linked Lists, Binary Search Trees, AVL Trees, and Heaps. CSTutor creates an environment that seamlessly combines a user's sketched diagram and code. In each of these data structure modes, the user can naturally sketch a data structure on…
Evaluation of three electronic noses for detecting incipient wood decay
Manuela Baietto; Alphus D. Wilson; Daniele Bassi; Francesco Ferrini
2010-01-01
Tree assessment methodologies, currently used to evaluate the structural stability of individual urban trees, usually involve a visual analysis followed by measurements of the internal soundness of wood using various instruments that are often invasive, expensive, or inadequate for use within the urban environment. Moreover, most conventional instruments do not provide...
Descriptive statistics of tree crown condition in the Northeastern United States
KaDonna C. Randolph; Randall S. Morin; Jim Steinman
2010-01-01
The U.S. Forest Service Forest Inventory and Analysis (FIA) Program uses visual assessments of tree crown condition to monitor changes and trends in forest health. This report describes four crown condition indicators (crown dieback, crown density, foliage transparency, and sapling crown vigor) measured in Connecticut, Delaware, Maine, Maryland, Massachusetts, New...
Visualization of heterogeneous forest structures following treatment in the southern Rocky Mountains
Wade T. Tinkham; Yvette Dickinson; Chad M. Hoffman; Mike A. Battaglia; Seth Ex; Jeffrey Underhill
2017-01-01
Manipulation of forest spatial patterns has become a common objective in restoration prescriptions throughout the central and southern Rocky Mountain dry-mixed conifer forest systems. Pre-Euro-American settlement forest reconstructions indicate that frequent-fire regimes developed forests with complex mosaics of individual trees, tree clumps of varying size, and...
Monitoring hemlock vitality using ground-based digital imaging
Neil A. Clark; Sang-Mook Lee
2005-01-01
The vitality of hemlock (Tsuga spp.) trees needs to be assessed in order to evaluate the effectiveness of treatments that combat hemlock woolly adelgid (HWA), Adelges tsugae Annand 1 (Homoptera: Adelgidae). Ground-based photomonitoring can be used to assess canopy dynamics, which serves as a visual indicator of tree vitality. Here we propose a...
Enhanced visualization of the retinal vasculature using depth information in OCT.
de Moura, Joaquim; Novo, Jorge; Charlón, Pablo; Barreira, Noelia; Ortega, Marcos
2017-12-01
Retinal vessel tree extraction is a crucial step for analyzing the microcirculation, a frequently needed process in the study of relevant diseases. To date, this has normally been done by using 2D image capture paradigms, offering a restricted visualization of the real layout of the retinal vasculature. In this work, we propose a new approach that automatically segments and reconstructs the 3D retinal vessel tree by combining near-infrared reflectance retinography information with Optical Coherence Tomography (OCT) sections. Our proposal identifies the vessels, estimates their calibers, and obtains the depth at all the positions of the entire vessel tree, thereby enabling the reconstruction of the 3D layout of the complete arteriovenous tree for subsequent analysis. The method was tested using 991 OCT images combined with their corresponding near-infrared reflectance retinography. The different stages of the methodology were validated using the opinion of an expert as a reference. The tests offered accurate results, showing coherent reconstructions of the 3D vasculature that can be analyzed in the diagnosis of relevant diseases affecting the retinal microcirculation, such as hypertension or diabetes, among others.
Chemical ecology of the emerald ash borer Agrilus planipennis.
Crook, Damon J; Mastro, Victor C
2010-01-01
The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is a serious invasive pest that has caused devastating mortality of ash trees (Fraxinus sp., Oleaceae) since it was first identified in North America in 2002. Shortly after its discovery, surveys were conducted, based on the visual inspection of trees. The shortcomings of visual surveys have led to a critical research need to find an efficient survey method for detecting A. planipennis infestations. Here, we present a review of research that has led to the development of effective trapping methods for A. planipennis. Studies on the insect's biology and behavior have led to the identification of several potential attractants as well as the design of a visually attractive trap. The ongoing challenge in developing an optimally efficient trapping methodology for A. planipennis will involve finding the best combination of variables, such as trap shape, trap color (or other visual properties), trap placement, lure components, as well as the ratios and release rates of those components.
NASA Astrophysics Data System (ADS)
Davi, N. K.; Wattenberg, F.; Pringle, P. T.; Tanenbaum, J.; O'Brien, A.; Greidanus, I.; Perry, M.
2012-12-01
Tree-ring research provides an engaging, intuitive, and relevant entryway into understanding both climate-change and environmental research, as well as the process of science from inspiration, to fieldwork, to analysis, to publishing and communicating. The basic premise of dendrochronology is that annual rings reflect environmental conditions year-by-year and that by studying long-lived trees we can learn about past environments and climates for hundreds-to-thousands of years in the past. Conceptually, this makes tree-ring studies accessible to students and faculty for a number of reasons. First, in order to collect their data, dendrochronologists often launch expeditions to stunningly picturesque and remote places in search of long-lived, climate sensitive trees. Scientist exciting stories and images from the field can be leveraged to connect students to the study and the data. Second, tree-rings can be more easily explained as a proxy for climate than other methods (ice cores, carbon-isotope ratios, etc.), and most people have prior-knowledge about trees and annual growth rings. It is even possible, for example, for non-expert audiences to see climate variability through time with the naked eye by looking at climate sensitive tree cores. Third, tree-rings are interdisciplinary and illustrate the interplay between the mathematical sciences, the biological sciences, and the geosciences—that is, they show that the biosphere is a fundamental component of the Earth system. Here, we will present several projects have been initiated for a range of audiences, including; elementary school, where 5th graders visited a local forest to collect samples and apply their samples and what they learned to math and science classes. 5th grade students also leaned how to use Climate Explorer (KNMI), an online tool that allows scientist and students the opportunity to access and visualize global climate data within a few clicks. Geared to 2 and 4 year colleges, we are also collaboratively developing new interdisciplinary science and mathematical curriculum, interactive game modules, and multi-media that focus on using tree-ring expeditions and research projects that have real-world applications related to societal concerns (drought, warming, or in some cases, finances) to support student-centered inquiry-based learning. We are also creating professional development guides for teachers.
Efficient visualization of urban spaces
NASA Astrophysics Data System (ADS)
Stamps, A. E.
2012-10-01
This chapter presents a new method for calculating efficiency and applies that method to the issues of selecting simulation media and evaluating the contextual fit of new buildings in urban spaces. The new method is called "meta-analysis". A meta-analytic review of 967 environments indicated that static color simulations are the most efficient media for visualizing urban spaces. For contextual fit, four original experiments are reported on how strongly five factors influence visual appeal of a street: architectural style, trees, height of a new building relative to the heights of existing buildings, setting back a third story, and distance. A meta-analysis of these four experiments and previous findings, covering 461 environments, indicated that architectural style, trees, and height had effects strong enough to warrant implementation, but the effects of setting back third stories and distance were too small to warrant implementation.
Reconstructing the Alcatraz escape
NASA Astrophysics Data System (ADS)
Baart, F.; Hoes, O.; Hut, R.; Donchyts, G.; van Leeuwen, E.
2014-12-01
In the night of June 12, 1962 three inmates used a raft made of raincoatsto escaped the ultimate maximum security prison island Alcatraz in SanFrancisco, United States. History is unclear about what happened tothe escapees. At what time did they step into the water, did theysurvive, if so, where did they reach land? The fate of the escapees has been the subject of much debate: did theymake landfall on Angel Island, or did the current sweep them out ofthe bay and into the cold pacific ocean? In this presentation, we try to shed light on this historic case using avisualization of a high-resolution hydrodynamic simulation of the San Francisco Bay, combined with historical tidal records. By reconstructing the hydrodynamic conditions and using a particle based simulation of the escapees we show possible scenarios. The interactive model is visualized using both a 3D photorealistic and web based visualization. The "Escape from Alcatraz" scenario demonstrates the capabilities of the 3Di platform. This platform is normally used for overland flooding (1D/2D). The model engine uses a quad tree structure, resulting in an order of magnitude speedup. The subgrid approach takes detailed bathymetry information into account. The inter-model variability is tested by comparing the results with the DFlow Flexible Mesh (DFlowFM) San Francisco Bay model. Interactivity is implemented by converting the models from static programs to interactive libraries, adhering to the Basic ModelInterface (BMI). Interactive models are more suitable for answeringexploratory research questions such as this reconstruction effort. Although these hydrodynamic simulations only provide circumstantialevidence for solving the mystery of what happened during the foggy darknight of June 12, 1962, it can be used as a guidance and provides aninteresting testcase to apply interactive modelling.
TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees.
Muhlbacher, Thomas; Linhardt, Lorenz; Moller, Torsten; Piringer, Harald
2018-01-01
Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees. However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model. This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.
Tree mortality from drought, insects, and their interactions in a changing climate.
Anderegg, William R L; Hicke, Jeffrey A; Fisher, Rosie A; Allen, Craig D; Aukema, Juliann; Bentz, Barbara; Hood, Sharon; Lichstein, Jeremy W; Macalady, Alison K; McDowell, Nate; Pan, Yude; Raffa, Kenneth; Sala, Anna; Shaw, John D; Stephenson, Nathan L; Tague, Christina; Zeppel, Melanie
2015-11-01
Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects - bark beetles and defoliators - which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree-insect interactions will better inform projections of forest ecosystem responses to climate change. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
2010-01-01
Background Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. "Phylogenetic placement," where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets. Results This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence. Conclusions Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service. PMID:21034504
Carbone, Ignazio; White, James B; Miadlikowska, Jolanta; Arnold, A Elizabeth; Miller, Mark A; Kauff, Frank; U'Ren, Jana M; May, Georgiana; Lutzoni, François
2017-04-15
High-quality phylogenetic placement of sequence data has the potential to greatly accelerate studies of the diversity, systematics, ecology and functional biology of diverse groups. We developed the Tree-Based Alignment Selector (T-BAS) toolkit to allow evolutionary placement and visualization of diverse DNA sequences representing unknown taxa within a robust phylogenetic context, and to permit the downloading of highly curated, single- and multi-locus alignments for specific clades. In its initial form, T-BAS v1.0 uses a core phylogeny of 979 taxa (including 23 outgroup taxa, as well as 61 orders, 175 families and 496 genera) representing all 13 classes of largest subphylum of Fungi-Pezizomycotina (Ascomycota)-based on sequence alignments for six loci (nr5.8S, nrLSU, nrSSU, mtSSU, RPB1, RPB2 ). T-BAS v1.0 has three main uses: (i) Users may download alignments and voucher tables for members of the Pezizomycotina directly from the reference tree, facilitating systematics studies of focal clades. (ii) Users may upload sequence files with reads representing unknown taxa and place these on the phylogeny using either BLAST or phylogeny-based approaches, and then use the displayed tree to select reference taxa to include when downloading alignments. The placement of unknowns can be performed for large numbers of Sanger sequences obtained from fungal cultures and for alignable, short reads of environmental amplicons. (iii) User-customizable metadata can be visualized on the tree. T-BAS Version 1.0 is available online at http://tbas.hpc.ncsu.edu . Registration is required to access the CIPRES Science Gateway and NSF XSEDE's large computational resources. icarbon@ncsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Sharma, Dinghy Kristine B; Lopez, Ellen D S; Mekiana, Deborah; Ctibor, Alaina; Church, Charlene
2013-01-01
Alaska Native (AN) college students experience higher attrition rates than their non-Native peers. Understanding the factors that contribute to quality of life ("what makes life good") for AN students will help inform supportive programs that are congruent with their culture and college life experiences. Co-develop a conceptual model and a measure of quality of life (QOL) that reflects the experiences of AN college students. Six focus groups were conducted with 26 AN college students. Within a community-academic partnership, interactive data collection activities, co-analysis workgroup sessions and an interactive findings forum ensured a participant-driven research process. Students identified and operationally defined eight QOL domains (values, culture and traditions, spirituality, relationships, basic needs, health, learning and leisure). The metaphor of a tree visually illustrates how the domains values, culture and traditions and spirituality form the roots to the other domains that appear to branch out as students navigate the dual worldviews of Native and Western ways of living. The eight QOL domains and their items identified during focus groups were integrated into a visual model and an objective QOL measure. The hope is to provide a useful tool for developing and evaluating university-based programs and services aimed toward promoting a positive QOL and academic success for AN students.
Interspecific variation in growth responses to climate and competition of five eastern tree species.
Rollinson, Christine R; Kaye, Margot W; Canham, Charles D
2016-04-01
Climate and competition are often presented from two opposing views of the dominant driver of individual tree growth and species distribution in temperate forests, such as those in the eastern United States. Previous studies have provided abundant evidence indicating that both factors influence tree growth, and we argue that these effects are not independent of one another and rather that interactions between climate, competition, and size best describe tree growth. To illustrate this point, we describe the growth responses of five common eastern tree species to interacting effects of temperature, precipitation, competition, and individual size using maximum likelihood estimation. Models that explicitly include interactions among these four factors explained over half of the variance in annual growth for four out of five species using annual climate. Expanding temperature and precipitation analyses to include seasonal interactions resulted in slightly improved models with a mean R2 of 0.61 (SD 0.10). Growth responses to individual factors as well their interactions varied greatly among species. For example, growth sensitivity to temperature for Quercus rubra increased with maximum annual precipitation, but other species showed no change in sensitivity or slightly reduced annual growth. Our results also indicate that three-way interactions among individual stem size, competition, and temperature may determine which of the five co-occurring species in our study could have the highest growth rate in a given year. Continued consideration and quantification of interactions among climate, competition, and individual-based characteristics are likely to increase understanding of key biological processes such as tree growth. Greater parameterization of interactions between traditionally segregated factors such as climate and competition may also help build a framework to reconcile drivers of individual-based processes such as growth with larger-scale patterns of species distribution.
Real-Time Interactive Tree Animation.
Quigley, Ed; Yu, Yue; Huang, Jingwei; Lin, Winnie; Fedkiw, Ronald
2018-05-01
We present a novel method for posing and animating botanical tree models interactively in real time. Unlike other state of the art methods which tend to produce trees that are overly flexible, bending and deforming as if they were underwater plants, our approach allows for arbitrarily high stiffness while still maintaining real-time frame rates without spurious artifacts, even on quite large trees with over ten thousand branches. This is accomplished by using an articulated rigid body model with as-stiff-as-desired rotational springs in conjunction with our newly proposed simulation technique, which is motivated both by position based dynamics and the typical algorithms for articulated rigid bodies. The efficiency of our algorithm allows us to pose and animate trees with millions of branches or alternatively simulate a small forest comprised of many highly detailed trees. Even using only a single CPU core, we can simulate ten thousand branches in real time while still maintaining quite crisp user interactivity. This has allowed us to incorporate our framework into a commodity game engine to run interactively even on a low-budget tablet. We show that our method is amenable to the incorporation of a large variety of desirable effects such as wind, leaves, fictitious forces, collisions, fracture, etc.
Tree mortality from drought, insects, and their interactions in a changing climate
Anderegg, William R.L.; Hicke, Jeffrey A.; Fisher, Rosie A.; Allen, Craig D.; Aukema, Juliann E.; Bentz, Barbara; Hood, Sharon; Lichstein, Jeremy W.; Macalady, Alison K.; McDowell, Nate G.; Pan, Yude; Raffa, Kenneth; Sala, Anna; Shaw, John D.; Stephenson, Nathan L.; Tague, Christina L.; Zeppel, Melanie
2015-01-01
Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects – bark beetles and defoliators – which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree–insect interactions will better inform projections of forest ecosystem responses to climate change.
D.A. Marquis
1991-01-01
Many studies have shown that initial tree diameter is closely correlated with subsequent tree growth. But initial tree diameter is actually a confounded variable, incorporating both competitive position (crown class) and age.
Across a macro-ecological gradient forest competition is strongest at the most productive sites
Prior, Lynda D.; Bowman, David M. J. S.
2014-01-01
We tested the hypothesis that the effect of forest basal area on tree growth interacts with macro-ecological gradients of primary productivity, using a large dataset of eucalypt tree growth collected across temperate and sub- tropical mesic Australia. To do this, we derived an index of inter-tree competition based on stand basal area (stand BA) relative to the climatically determined potential basal area. Using linear mixed effects modeling, we found that the main effects of climatic productivity, tree size, and competition explained 26.5% of the deviance in individual tree growth, but adding interactions to the model could explain a further 8.9%. The effect of competition on growth interacts with the gradient of climatic productivity, with negligible effect of competition in low productivity environments, but marked negative effects at the most productive sites. We also found a positive interaction between tree size and stand BA, which was most pronounced in the most productive sites. We interpret these patterns as reflecting intense competition for light amongst maturing trees on more productive sites, and below ground moisture limitation at low productivity sites, which results in open stands with little competition for light. These trends are consistent with the life history and stand development of eucalypt forests: in cool moist environments, light is the most limiting resource, resulting in size-asymmetric competition, while in hot, low rainfall environments are open forests with little competition for light but where the amount of tree regeneration is limited by water availability. PMID:24926304
Directional floral orientation in Joshua trees (Yucca brevifolia)
Steve Warren; L. Scott Baggett; Heather Warren
2016-01-01
Joshua tree (Yucca brevifolia Engelm.) is a large, arborescent member of the yucca genus. It is an endemic and visually dominant plant in portions of the Mojave Desert, USA. We document the unique and heretofore unreported directional orientation of its flower panicles. The flower panicles grow primarily at the tips of branches that are oriented to the south....
Reliability assessment of selected indicators of tree health
Pawel M. Lech
2000-01-01
The measurements of electrical resistance of near-cambium tissues, selected biometric features of needles and shoots, and the annual radial increment as well as visual estimates of crown defoliation were performed on about 100 Norway spruce trees in three 60- to 70-year-old stands located in the Western Sudety Mountains. The defoliation, electrical resistance, and...
Effect of acorn size on development of northern red oak 1-0 seedlings
Paul P. Kormanik; Shi-Jean S. Sung; T.L. Kormanik; S.E. Schlarbaum; Stanley J. Zarnoch
1998-01-01
The effect of acorn size on seedling development was determined for 20 northern red oak (Quercus rubra L.) mother tree selections from the USDA Forest Service's Eastern Tennessee Watauga seed orchard. Acorns from each mother tree were visually separated into three size groups, weighed, and sown separately in forest nurseries located in Georgia,...
Descriptive statistics of tree crown condition in the North Central United States
KaDonna C. Randolph; Randall S. Morin; Jim Steinman
2010-01-01
The U.S. Forest Service Forest Inventory and Analysis (FIA) Program uses visual assessments of tree crown condition to monitor changes and trends in forest health. This report describes four crown condition indicators (crown dieback, crown density, foliage transparency, and sapling crown vigor) measured in Illinois, Indiana, Michigan, Minnesota, Missouri, and Wisconsin...
Descriptive statistics of tree crown condition in the United States Interior West
KaDonna C. Randolph; Mike T. Thompson
2010-01-01
The U.S. Forest Service Forest Inventory and Analysis (FIA) Program uses visual assessments of tree crown condition to monitor changes and trends in forest health. This report describes four crown condition indicators (crown dieback, crown density, foliage transparency, and sapling crown vigor) measured in Colorado, Idaho, Nevada, Utah, and Wyoming between 1996 and...
Characterization and visualization of the accuracy of FIA's CONUS-wide tree species datasets
Rachel Riemann; Barry T. Wilson
2014-01-01
Modeled geospatial datasets have been created for 325 tree species across the contiguous United States (CONUS). Effective application of all geospatial datasets depends on their accuracy. Dataset error can be systematic (bias) or unsystematic (scatter), and their magnitude can vary by region and scale. Each of these characteristics affects the locations, scales, uses,...
The Prospects of Employing Semiochemical and Visual Deterrents in Protecting Trees from Bark Beetles
B.L. Strom; L.M. Roton; J.L. Hayes; R.A. Goyer
1996-01-01
Tree protection tactics based on semiochemicals are being investigated by many forest scientists but their consistent effectiveness remains a concern. One approach toward increasing the efficacy of such treatments is to combine semiochemically-based tactics with deterrents that disrupt other cues necessary for host finding and colonization. In this study we...
Digital photography for urban street tree crown conditions
Neil A. Clark; Sang-Mook Lee; William A. Bechtold; Gregory A. Reams
2006-01-01
Crown variables such as height, diameter, live crown ratio, dieback, transparency, and density are all collected as part of the overall crown assessment (USDA 2004). Transparency and density are related to the amount of foliage and thus the photosynthetic potential of the tree. These measurements are both currently based on visual estimates and have been shown to be...
Decision tree methods: applications for classification and prediction.
Song, Yan-Yan; Lu, Ying
2015-04-25
Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.
RecPhyloXML - a format for reconciled gene trees.
Duchemin, Wandrille; Gence, Guillaume; Arigon Chifolleau, Anne-Muriel; Arvestad, Lars; Bansal, Mukul S; Berry, Vincent; Boussau, Bastien; Chevenet, François; Comte, Nicolas; Davín, Adrián A; Dessimoz, Christophe; Dylus, David; Hasic, Damir; Mallo, Diego; Planel, Rémi; Posada, David; Scornavacca, Celine; Szöllosi, Gergely; Zhang, Louxin; Tannier, Éric; Daubin, Vincent
2018-05-14
A reconciliation is an annotation of the nodes of a gene tree with evolutionary events-for example, speciation, gene duplication, transfer, loss, etc-along with a mapping onto a species tree. Many algorithms and software produce or use reconciliations but often using different reconciliation formats, regarding the type of events considered or whether the species tree is dated or not. This complicates the comparison and communication between different programs. Here, we gather a consortium of software developers in gene tree species tree reconciliation to propose and endorse a format that aims to promote an integrative-albeit flexible-specification of phylogenetic reconciliations. This format, named recPhyloXML, is accompanied by several tools such as a reconciled tree visualizer and conversion utilities. http://phylariane.univ-lyon1.fr/recphyloxml/. wandrille.duchemin@univ-lyon1.fr. There is no supplementary data associated with this publication.
Philpott, Stacy M; Serber, Zachary; De la Mora, Aldo
2018-04-05
Ant community assembly is driven by many factors including species interactions (e.g., competition, predation, parasitism), habitat filtering (e.g., vegetation differences, microclimate, food and nesting resources), and dispersal. Canopy ant communities, including dominant and twig-nesting ants, are structured by all these different factors, but we know less about the impacts of species interactions and habitat filters acting at the colonization or recruitment stage. We examined occupation of artificial twig nests placed in shade trees in coffee agroecosystems. We asked whether species interactions-aggression from the dominant canopy ant, Azteca sericeasur Longino (Hymenoptera: Formicidae)-or habitat filtering-species of tree where nests were placed or surrounding vegetation-influence colonization, species richness, and community composition of twig-nesting ants. We found 20 species of ants occupying artificial nests. Nest occupation was lower on trees with A. sericeasur, but did not differ depending on tree species or surrounding vegetation. Yet, there were species-specific differences in occupation depending on A. sericeasur presence and tree species. Ant species richness did not vary with A. sericeasur presence or tree species. Community composition varied with A. sericeasur presence and surrounding vegetation. Our results suggest that species interactions with dominant ants are important determinants of colonization and community composition of twig-nesting ants. Habitat filtering at the level of tree species did not have strong effects on twig-nesting ants, but changes in coffee management may contribute to differences in community composition with important implications for ant conservation in agricultural landscapes, as well as biological control of coffee pests.
TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
Ji, Zhicheng; Ji, Hongkai
2016-01-01
When analyzing single-cell RNA-seq data, constructing a pseudo-temporal path to order cells based on the gradual transition of their transcriptomes is a useful way to study gene expression dynamics in a heterogeneous cell population. Currently, a limited number of computational tools are available for this task, and quantitative methods for comparing different tools are lacking. Tools for Single Cell Analysis (TSCAN) is a software tool developed to better support in silico pseudo-Time reconstruction in Single-Cell RNA-seq ANalysis. TSCAN uses a cluster-based minimum spanning tree (MST) approach to order cells. Cells are first grouped into clusters and an MST is then constructed to connect cluster centers. Pseudo-time is obtained by projecting each cell onto the tree, and the ordered sequence of cells can be used to study dynamic changes of gene expression along the pseudo-time. Clustering cells before MST construction reduces the complexity of the tree space. This often leads to improved cell ordering. It also allows users to conveniently adjust the ordering based on prior knowledge. TSCAN has a graphical user interface (GUI) to support data visualization and user interaction. Furthermore, quantitative measures are developed to objectively evaluate and compare different pseudo-time reconstruction methods. TSCAN is available at https://github.com/zji90/TSCAN and as a Bioconductor package. PMID:27179027
TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis.
Ji, Zhicheng; Ji, Hongkai
2016-07-27
When analyzing single-cell RNA-seq data, constructing a pseudo-temporal path to order cells based on the gradual transition of their transcriptomes is a useful way to study gene expression dynamics in a heterogeneous cell population. Currently, a limited number of computational tools are available for this task, and quantitative methods for comparing different tools are lacking. Tools for Single Cell Analysis (TSCAN) is a software tool developed to better support in silico pseudo-Time reconstruction in Single-Cell RNA-seq ANalysis. TSCAN uses a cluster-based minimum spanning tree (MST) approach to order cells. Cells are first grouped into clusters and an MST is then constructed to connect cluster centers. Pseudo-time is obtained by projecting each cell onto the tree, and the ordered sequence of cells can be used to study dynamic changes of gene expression along the pseudo-time. Clustering cells before MST construction reduces the complexity of the tree space. This often leads to improved cell ordering. It also allows users to conveniently adjust the ordering based on prior knowledge. TSCAN has a graphical user interface (GUI) to support data visualization and user interaction. Furthermore, quantitative measures are developed to objectively evaluate and compare different pseudo-time reconstruction methods. TSCAN is available at https://github.com/zji90/TSCAN and as a Bioconductor package. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
User's Manual for Total-Tree Multiproduct Cruise Program
Alexander Clark; Thomas M. Burgan; Richard C. Field; Peter E. Dress
1985-01-01
This interactive computer program uses standard tree-cruise data to estimate the weight and volume of the total tree, saw logs, plylogs, chipping logs, pulpwood, crown firewood, and logging residue in timber stands.Input is cumulative cruise data for tree counts by d.b.h. and height. Output is in tables: board-foot volume by d.b.h.; total-tree and tree-component...
Kane, Jeffrey M.; Varner, J. Morgan; Metz, Margaret R.; van Mantgem, Phillip J.
2017-01-01
Increasing evidence that pervasive warming trends are altering disturbance regimes and their interactions with fire has generated substantial interest and debate over the implications of these changes. Previous work has primarily focused on conditions that promote non-additive interactions of linked and compounded disturbances, but the spectrum of potential interaction patterns has not been fully considered. Here we develop and define terminology, expand on the existing conceptual framework and review the patterns and mechanisms of disturbance interactions with a focus on interactions between fire and other forest disturbances and a specific emphasis on resulting tree mortality. The types of interactions reflect the positive, negative, or neutral responses to the incidence, intensity, and effects of the interaction. These types of interactions are not always mutually exclusive, but can be distinct. The collective effect of the interactions will determine the longer-term ecosystem response that can result in a resistant, resilient, or compounded interaction. Our review indicates that the interactions of drought, bark beetles, or pathogens with fire often result in neutral or maintained interactions that do not negatively or positively influence the incidence or intensity following fire. The effect of these disturbance interactions on tree mortality ranged from antagonistic (reduced mortality compared to individual disturbances) to synergistic (greater mortality compared to individual disturbances) within and among disturbance interaction types but often resulted in additive effects (mortality is consistent with the summation of the two disturbances). Synergistic effects on tree mortality have been observed when the severity of the initial disturbance is moderate to high and time between disturbances is relatively short. When the sequence of disturbance interaction is reversed (e.g., fire precedes other disturbances) the conditions can generally promote impeded interactions (lower incidence of interaction), reduced interactions (lower intensity of interaction), and antagonistic interactions (lower tree mortality). While recent research on fire-disturbance interactions has increased over the last decade and provided important insights, more research that identifies the specific thresholds of incidence, intensity, and effects of interaction by region and forest type are needed to better assist management solutions that promote desired outcomes in rapidly changing ecosystems.
Balaram, P; Isaamullah, M; Petry, HM; Bickford, ME; Kaas, JH
2014-01-01
Vesicular glutamate transporter (VGLUT) proteins regulate the storage and release of glutamate from synapses of excitatory neurons. Two isoforms, VGLUT1 and VGLUT2, are found in most glutamatergic projections across the mammalian visual system, and appear to differentially identify subsets of excitatory projections between visual structures. To expand current knowledge on the distribution of VGLUT isoforms in highly visual mammals, we examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the lateral geniculate nucleus (LGN), superior colliculus, pulvinar complex, and primary visual cortex (V1) in tree shrews (Tupaia belangeri), which are closely related to primates but classified as a separate order (Scandentia). We found that VGLUT1 was distributed in intrinsic and corticothalamic connections, whereas VGLUT2 was predominantly distributed in subcortical and thalamocortical connections. VGLUT1 and VGLUT2 were coexpressed in the LGN and in the pulvinar complex, as well as in restricted layers of V1, suggesting a greater heterogeneity in the range of efferent glutamatergic projections from these structures. These findings provide further evidence that VGLUT1 and VGLUT2 identify distinct populations of excitatory neurons in visual brain structures across mammals. Observed variations in individual projections may highlight the evolution of these connections through the mammalian lineage. PMID:25521420
Simulation of Tsunami Resistance of a Pinus Thunbergii tree in Coastal Forest in Japan
NASA Astrophysics Data System (ADS)
Nanko, K.; Suzuki, S.; Noguchi, H.; Hagino, H.
2015-12-01
Forests reduce fluid force of tsunami, whereas extreme tsunami sometimes breaks down the forest trees. It is difficult to estimate the interactive relationship between the fluid and the trees because fluid deform tree architecture and deformed tree changes flow field. Dynamic tree deformation and fluid behavior should be clarified by fluid-structure interaction analysis. For the initial step, we have developed dynamic simulation of tree sway and breakage caused by tsunami based on a vibrating system with multiple degrees of freedom. The target specie of the simulation was Japanese black pine (pinus thunbergii), which is major specie in the coastal forest to secure livelihood area from the damage by blown sand and salt in Japanese coastal area. For the simulation, a tree was segmented into 0.2 m long circular truncated cones. Turning moment induced by tsunami and self-weight was calculated at each segment bottom. Tree deformation was computed on multi-degree-of-freedom vibration equation. Tree sway was simulated by iterative calculation of the tree deformation with time step 0.05 second with temporally varied flow velocity of tsunami. From the calculation of bending stress and turning moment at tree base, we estimated resistance of a Pinus thunbergii tree from tsunami against tree breakage.
Buchner, Florian; Wasem, Jürgen; Schillo, Sonja
2017-01-01
Risk equalization formulas have been refined since their introduction about two decades ago. Because of the complexity and the abundance of possible interactions between the variables used, hardly any interactions are considered. A regression tree is used to systematically search for interactions, a methodologically new approach in risk equalization. Analyses are based on a data set of nearly 2.9 million individuals from a major German social health insurer. A two-step approach is applied: In the first step a regression tree is built on the basis of the learning data set. Terminal nodes characterized by more than one morbidity-group-split represent interaction effects of different morbidity groups. In the second step the 'traditional' weighted least squares regression equation is expanded by adding interaction terms for all interactions detected by the tree, and regression coefficients are recalculated. The resulting risk adjustment formula shows an improvement in the adjusted R 2 from 25.43% to 25.81% on the evaluation data set. Predictive ratios are calculated for subgroups affected by the interactions. The R 2 improvement detected is only marginal. According to the sample level performance measures used, not involving a considerable number of morbidity interactions forms no relevant loss in accuracy. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Fajardo, Alex; Torres-Díaz, Cristian; Till-Bottraud, Irène
2016-01-01
Disturbances, dispersal and biotic interactions are three major drivers of the spatial distribution of genotypes within populations, the last of which has been less studied than the other two. This study aimed to determine the role of competition and facilitation in the degree of conspecific genetic relatedness of nearby individuals of tree populations. It was expected that competition among conspecifics will lead to low relatedness, while facilitation will lead to high relatedness (selection for high relatedness within clusters). The stand structure and spatial genetic structure (SGS) of trees were examined within old-growth and second-growth forests (including multi-stemmed trees at the edge of forests) of Nothofagus pumilio following large-scale fires in Patagonia, Chile. Genetic spatial autocorrelations were computed on a spatially explicit sampling of the forests using five microsatellite loci. As biotic plant interactions occur among immediate neighbours, mean nearest neighbour distance (MNND) among trees was computed as a threshold for distinguishing the effects of disturbances and biotic interactions. All forests exhibited a significant SGS for distances greater than the MNND. The old-growth forest genetic and stand structure indicated gap recolonization from nearby trees (significantly related trees at distances between 4 and 10 m). At distances smaller than the MNND, trees of the second-growth interior forest showed significantly lower relatedness, suggesting a fading of the recolonization structure by competition, whereas the second-growth edge forest showed a positive and highly significant relatedness among trees (higher among stems of a cluster than among stems of different clusters), resulting from facilitation. Biotic interactions are shown to influence the genetic composition of a tree population. However, facilitation can only persist if individuals are related. Thus, the genetic composition in turn influences what type of biotic interactions will take place among immediate neighbours in post-disturbance forests. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Miranda T. Curzon; Anthony W. D' Amato; Shawn Fraver; Emily S. Huff; Brian J. Palik
2016-01-01
Resource availability and its influence on tree-to-tree interactions are expected to change over the course of forest stand development, but the rarity of long-term datasets has limited examinations of neighborhood crowding over extended time periods. How do a history of neighborhood interactions and population-level dynamics, including demographic transition, impact...
Below-ground biotic interactions moderated the postglacial range dynamics of trees.
Pither, Jason; Pickles, Brian J; Simard, Suzanne W; Ordonez, Alejandro; Williams, John W
2018-05-17
Tree range shifts during geohistorical global change events provide a useful real-world model for how future changes in forest biomes may proceed. In North America, during the last deglaciation, the distributions of tree taxa varied significantly as regards the rate and direction of their responses for reasons that remain unclear. Local-scale processes such as establishment, growth, and resilience to environmental stress ultimately influence range dynamics. Despite the fact that interactions between trees and soil biota are known to influence local-scale processes profoundly, evidence linking below-ground interactions to distribution dynamics remains scarce. We evaluated climate velocity and plant traits related to dispersal, environmental tolerance and below-ground symbioses, as potential predictors of the geohistorical rates of expansion and contraction of the core distributions of tree genera between 16 and 7 ka bp. The receptivity of host genera towards ectomycorrhizal fungi was strongly supported as a positive predictor of poleward rates of distribution expansion, and seed mass was supported as a negative predictor. Climate velocity gained support as a positive predictor of rates of distribution contraction, but not expansion. Our findings indicate that understanding how tree distributions, and thus forest ecosystems, respond to climate change requires the simultaneous consideration of traits, biotic interactions and abiotic forcing. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Visualizing Phylogenetic Treespace Using Cartographic Projections
NASA Astrophysics Data System (ADS)
Sundberg, Kenneth; Clement, Mark; Snell, Quinn
Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger datasets.
Grasses and browsers reinforce landscape heterogeneity by excluding trees from ecosystem hotspots.
Porensky, Lauren M; Veblen, Kari E
2012-03-01
Spatial heterogeneity in woody cover affects biodiversity and ecosystem function, and may be particularly influential in savanna ecosystems. Browsing and interactions with herbaceous plants can create and maintain heterogeneity in woody cover, but the relative importance of these drivers remains unclear, especially when considered across multiple edaphic contexts. In African savannas, abandoned temporary livestock corrals (bomas) develop into long-term, nutrient-rich ecosystem hotspots with unique vegetation. In central Kenya, abandoned corral sites persist for decades as treeless 'glades' in a wooded matrix. Though glades are treeless, areas between adjacent glades have higher tree densities than the background savanna or areas near isolated glades. The mechanisms maintaining these distinctive woody cover patterns remain unclear. We asked whether browsing or interactions with herbaceous plants help to maintain landscape heterogeneity by differentially impacting young trees in different locations. We planted the mono-dominant tree species (Acacia drepanolobium) in four locations: inside glades, far from glades, at edges of isolated glades and at edges between adjacent glades. Within each location, we assessed the separate and combined effects of herbivore exclusion (caging) and herbaceous plant removal (clearing) on tree survival and growth. Both caging and clearing improved tree survival and growth inside glades. When herbaceous plants were removed, trees inside glades grew more than trees in other locations, suggesting that glade soils were favorable for tree growth. Different types of glade edges (isolated vs. non-isolated) did not have significantly different impacts on tree performance. This represents one of the first field-based experiments testing the separate and interactive effects of browsing, grass competition and edaphic context on savanna tree performance. Our findings suggest that, by excluding trees from otherwise favorable sites, both herbaceous plants and herbivores help to maintain functionally important landscape heterogeneity in African savannas.
Interaction of gusts with forest edges
NASA Astrophysics Data System (ADS)
Ruck, Bodo; Tischmacher, Michael
2012-05-01
Experimental investigations in an atmospheric boundary layer wind tunnel were carried out in order to study the interaction of gusts with forest edges. Summarizing the state of knowledge in the field of forest damages generated by extreme storms, there is a strong indication that in many cases, windthrow of trees starts near the forest edge from where it spreads into the stand. The high-transient interaction between gusts and (porous) forest edges produce unsteady flow phenomena not known so far. From a fluid mechanical point of view, the flow type resembles a forward-facing porous step flow, which is significantly influenced by the characteristics of the oncoming atmospheric boundary layer flow and the shape and `porous properties' of the forest edge. The paper reports systematic investigations on the interaction of artificially generated gusts and forest edge models in an atmospheric boundary layer wind tunnel. The experimental investigations were carried out with a laser-based time-resolved PIV-system and high speed photography. Different flow phenomena like gust streching, vortex formation, Kelvin-Helmholtz instabilities or wake production of turbulence could be measured or visualized contributing to the understanding of the complex flow perfomance over the forest edge.
NASA Astrophysics Data System (ADS)
Vastaranta, Mikko; Kankare, Ville; Holopainen, Markus; Yu, Xiaowei; Hyyppä, Juha; Hyyppä, Hannu
2012-01-01
The two main approaches to deriving forest variables from laser-scanning data are the statistical area-based approach (ABA) and individual tree detection (ITD). With ITD it is feasible to acquire single tree information, as in field measurements. Here, ITD was used for measuring training data for the ABA. In addition to automatic ITD (ITD auto), we tested a combination of ITD auto and visual interpretation (ITD visual). ITD visual had two stages: in the first, ITD auto was carried out and in the second, the results of the ITD auto were visually corrected by interpreting three-dimensional laser point clouds. The field data comprised 509 circular plots ( r = 10 m) that were divided equally for testing and training. ITD-derived forest variables were used for training the ABA and the accuracies of the k-most similar neighbor ( k-MSN) imputations were evaluated and compared with the ABA trained with traditional measurements. The root-mean-squared error (RMSE) in the mean volume was 24.8%, 25.9%, and 27.2% with the ABA trained with field measurements, ITD auto, and ITD visual, respectively. When ITD methods were applied in acquiring training data, the mean volume, basal area, and basal area-weighted mean diameter were underestimated in the ABA by 2.7-9.2%. This project constituted a pilot study for using ITD measurements as training data for the ABA. Further studies are needed to reduce the bias and to determine the accuracy obtained in imputation of species-specific variables. The method could be applied in areas with sparse road networks or when the costs of fieldwork must be minimized.
Wood decay in living and dead trees: A pictorial overview
Walter C. Shortle; Kenneth R. Dudzik
2012-01-01
Pioneering research by Alex L. Shigo and his associates has produced a series of pictorial guidelines to provide a better understanding of how trees respond to wounding and subsequent microbial infections that lead to wood decay. The purpose of this paper is to visually summarize through the use of 96 color photographs and illustrations, the varied patterns of wood...
Manuela Baietto; A. Dan Wilson; Daniele Bassi; Francesco Ferrini
2008-01-01
The tree stability-assessment methodology currently used in Italian cities initially follows a visual analysis of individual trees, followed by an evaluation of the internal state using different instruments that are often invasive, expensive, or cannot be effectively used in the urban environment. Moreover, many of these instruments do not provide an adequate...
A three-dimensional bucking system for optimal bucking of Central Appalachian hardwoods
Jingxin Wang; Jingang Liu; Chris B. LeDoux
2009-01-01
An optimal tree stembucking systemwas developed for central Appalachian hardwood species using three-dimensional (3D) modeling techniques. ActiveX Data Objects were implemented via MS Visual C++/OpenGL to manipulate tree data which were supported by a backend relational data model with five data entity types for stems, grades and prices, logs, defects, and stem shapes...
Visual and olfactory disruption of orientation by the western pine beetle to attractant-baited traps
B.L. Strom; R.A. Goyer; P.J. Shea
2001-01-01
Olfactory deterrents have been proposed as tree protectants against attack by bark beetles, but their development has been hindered by a lack of knowledge of host selection behavior. Among the primary tree-killing (aggressive) Dendroctonus, vision appears to be an integral part of the host selection process. We evaluated the importance of vision in...
An alternative method for estimating crown characteristics of urban trees using digital photographs
Matthew F. Winn; Philip A. Araman
2012-01-01
The USDA Forest Service Forest Inventory and Analysis (FIA) program has concluded that statewide urban forest inventories are feasible based on a series of pilot studies initiated in 2001. However, much of the tree crown data collected during inventories are based on visual inspection and therefore highly subjective. In order to objectively determine the crown...
Abstracting GIS Layers from Hyperspectral Imagery
2009-03-01
Difference Vegetative Index ( NDVI ) 2-20 2.2.10 Separating Trees from Grass . . . . . . . . . . . 2-22 2.3 Spatial Analysis...2-18 2.10. Example of the Normalized Difference Vegetation Index ( NDVI ) applied to a hyperspectral image. . . . . . . . . . . . . . . . . . 2-20...3.5. Example of applying NDVI to a SOM. . . . . . . . . . . . . . . 3-8 3.6. Visualization of the NIR scatter tree ID algorithm. . . . . . . . 3-9 ix
Pulse sequence programming in a dynamic visual environment: SequenceTree.
Magland, Jeremy F; Li, Cheng; Langham, Michael C; Wehrli, Felix W
2016-01-01
To describe SequenceTree, an open source, integrated software environment for implementing MRI pulse sequences and, ideally, exporting them to actual MRI scanners. The software is a user-friendly alternative to vendor-supplied pulse sequence design and editing tools and is suited for programmers and nonprogrammers alike. The integrated user interface was programmed using the Qt4/C++ toolkit. As parameters and code are modified, the pulse sequence diagram is automatically updated within the user interface. Several aspects of pulse programming are handled automatically, allowing users to focus on higher-level aspects of sequence design. Sequences can be simulated using a built-in Bloch equation solver and then exported for use on a Siemens MRI scanner. Ideally, other types of scanners will be supported in the future. SequenceTree has been used for 8 years in our laboratory and elsewhere and has contributed to more than 50 peer-reviewed publications in areas such as cardiovascular imaging, solid state and nonproton NMR, MR elastography, and high-resolution structural imaging. SequenceTree is an innovative, open source, visual pulse sequence environment for MRI combining simplicity with flexibility and is ideal both for advanced users and users with limited programming experience. © 2015 Wiley Periodicals, Inc.
Modeling non-linear growth responses to temperature and hydrology in wetland trees
NASA Astrophysics Data System (ADS)
Keim, R.; Allen, S. T.
2016-12-01
Growth responses of wetland trees to flooding and climate variations are difficult to model because they depend on multiple, apparently interacting factors, but are a critical link in hydrological control of wetland carbon budgets. To more generally understand tree growth to hydrological forcing, we modeled non-linear responses of tree ring growth to flooding and climate at sub-annual time steps, using Vaganov-Shashkin response functions. We calibrated the model to six baldcypress tree-ring chronologies from two hydrologically distinct sites in southern Louisiana, and tested several hypotheses of plasticity in wetlands tree responses to interacting environmental variables. The model outperformed traditional multiple linear regression. More importantly, optimized response parameters were generally similar among sites with varying hydrological conditions, suggesting generality to the functions. Model forms that included interacting responses to multiple forcing factors were more effective than were single response functions, indicating the principle of a single limiting factor is not correct in wetlands and both climatic and hydrological variables must be considered in predicting responses to hydrological or climate change.
Tree age and tree species shape positive and negative interactions in a montane meadow
Ryan D. Haugo; Charles Halpern
2010-01-01
Few studies have considered how interactions between woody and herbaceous species change in direction or magnitude over time or with traits of the dominant woody species. We used a chronosequence approach to explore these interactions in a montane meadow in which Pinus contorta Dougl. ex Loud. and Abies grandis (Dougl. ex. D....
Variation in the nutritional physiology of tree-feeding swallowtail caterpillars
Matthew P. Ayres; Janice L. Bossart; J. Mark Scriber
1991-01-01
A key problem in addressing patterns of interaction between forest insects and their host trees is determining the level at which important ecological and evolutionary interactions occur. We commonly view plant-herbivore relations as herbivore species interacting with plant species, tacitly assuming that variation among members of either species is small and one can...
David W. Green; Bradley E. Shelley
2006-01-01
The objective of this document is to provide philosophy and guidelines for the assignment of allowable properties to visually graded dimension lumber produced from trees not grown in the United States. This document assumes, as a starting point, the procedures of ASTM D 1990.
PREVIEW: Computer Assistance for Visual Management of Forested Landscapes
Erik Myklestad; J. Alan Wagar
1976-01-01
The PREVIEW computer program facilitates visual management of forested landscapes by generating perspective drawings that show proposed timber harvesting and regrowth throughout a rotation. Drawings show how changes would appear from selected viewing points and show landscapes as either a grid of distorted squares or by symbols representing trees, clearings, water,...
Su, Xiaogang; Peña, Annette T; Liu, Lei; Levine, Richard A
2018-04-29
Assessing heterogeneous treatment effects is a growing interest in advancing precision medicine. Individualized treatment effects (ITEs) play a critical role in such an endeavor. Concerning experimental data collected from randomized trials, we put forward a method, termed random forests of interaction trees (RFIT), for estimating ITE on the basis of interaction trees. To this end, we propose a smooth sigmoid surrogate method, as an alternative to greedy search, to speed up tree construction. The RFIT outperforms the "separate regression" approach in estimating ITE. Furthermore, standard errors for the estimated ITE via RFIT are obtained with the infinitesimal jackknife method. We assess and illustrate the use of RFIT via both simulation and the analysis of data from an acupuncture headache trial. Copyright © 2018 John Wiley & Sons, Ltd.
Towards a holistic understanding of the beneficial interactions across the Populus microbiome
Hacquard, Stéphane; Schadt, Christopher W.
2014-11-24
Interactions between trees and microorganisms are extremely complex and the multispecies networks resulting from these associations have consequences for plant growth and productivity. However, a more holistic view is needed to better understand trees as ecosystems and superorganisms, where many interacting species contribute to the overall stability of the system. While much progress has been made on microbial communities associated with individual tree niches and the molecular interactions between model symbiotic partners, there is still a lack of knowledge of the multi-component interactions necessary for holistic ecosystem-level understanding. Finally, we review recent studies in Populus to emphasize the importance ofmore » such holistic efforts across the leaf, stem and rooting zones, and discuss prospects for future research in these important ecosystems.« less
Attention trees and semantic paths
NASA Astrophysics Data System (ADS)
Giusti, Christian; Pieroni, Goffredo G.; Pieroni, Laura
2007-02-01
In the last few decades several techniques for image content extraction, often based on segmentation, have been proposed. It has been suggested that under the assumption of very general image content, segmentation becomes unstable and classification becomes unreliable. According to recent psychological theories, certain image regions attract the attention of human observers more than others and, generally, the image main meaning appears concentrated in those regions. Initially, regions attracting our attention are perceived as a whole and hypotheses on their content are formulated; successively the components of those regions are carefully analyzed and a more precise interpretation is reached. It is interesting to observe that an image decomposition process performed according to these psychological visual attention theories might present advantages with respect to a traditional segmentation approach. In this paper we propose an automatic procedure generating image decomposition based on the detection of visual attention regions. A new clustering algorithm taking advantage of the Delaunay- Voronoi diagrams for achieving the decomposition target is proposed. By applying that algorithm recursively, starting from the whole image, a transformation of the image into a tree of related meaningful regions is obtained (Attention Tree). Successively, a semantic interpretation of the leaf nodes is carried out by using a structure of Neural Networks (Neural Tree) assisted by a knowledge base (Ontology Net). Starting from leaf nodes, paths toward the root node across the Attention Tree are attempted. The task of the path consists in relating the semantics of each child-parent node pair and, consequently, in merging the corresponding image regions. The relationship detected in this way between two tree nodes generates, as a result, the extension of the interpreted image area through each step of the path. The construction of several Attention Trees has been performed and partial results will be shown.
MulRF: a software package for phylogenetic analysis using multi-copy gene trees.
Chaudhary, Ruchi; Fernández-Baca, David; Burleigh, John Gordon
2015-02-01
MulRF is a platform-independent software package for phylogenetic analysis using multi-copy gene trees. It seeks the species tree that minimizes the Robinson-Foulds (RF) distance to the input trees using a generalization of the RF distance to multi-labeled trees. The underlying generic tree distance measure and fast running time make MulRF useful for inferring phylogenies from large collections of gene trees, in which multiple evolutionary processes as well as phylogenetic error may contribute to gene tree discord. MulRF implements several features for customizing the species tree search and assessing the results, and it provides a user-friendly graphical user interface (GUI) with tree visualization. The species tree search is implemented in C++ and the GUI in Java Swing. MulRF's executable as well as sample datasets and manual are available at http://genome.cs.iastate.edu/CBL/MulRF/, and the source code is available at https://github.com/ruchiherself/MulRFRepo. ruchic@ufl.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Technical aspects of virtual liver resection planning.
Glombitza, G; Lamadé, W; Demiris, A M; Göpfert, M R; Mayer, A; Bahner, M L; Meinzer, H P; Richter, G; Lehnert, T; Herfarth, C
1998-01-01
Operability of a liver tumor is depending on its three dimensional relation to the intrahepatic vascular trees which define autonomously functioning liver (sub-)segments. Precise operation planning is complicated by anatomic variability, distortion of the vascular trees by the tumor or preceding liver resections. Because of the missing possibility to track the deformation of the liver during the operation an integration of the resection planning system into an intra-operative navigation system is not feasible. So the main task of an operation planning system in this domain is a quantifiable patient selection by exact prediction of post-operative liver function and a quantifiable resection proposal. The system quantifies the organ structures and resection volumes by means of absolute and relative values. It defines resection planes depending on security margins and the vascular trees and presents the data in visualized form as a 3D movie. The new 3D operation planning system offers quantifiable liver resection proposals based on individualized liver anatomy. The results are visualized in digital movies as well as in quantitative reports.
Using a wireless motion controller for 3D medical image catheter interactions
NASA Astrophysics Data System (ADS)
Vitanovski, Dime; Hahn, Dieter; Daum, Volker; Hornegger, Joachim
2009-02-01
State-of-the-art morphological imaging techniques usually provide high resolution 3D images with a huge number of slices. In clinical practice, however, 2D slice-based examinations are still the method of choice even for these large amounts of data. Providing intuitive interaction methods for specific 3D medical visualization applications is therefore a critical feature for clinical imaging applications. For the domain of catheter navigation and surgery planning, it is crucial to assist the physician with appropriate visualization techniques, such as 3D segmentation maps, fly-through cameras or virtual interaction approaches. There has been an ongoing development and improvement for controllers that help to interact with 3D environments in the domain of computer games. These controllers are based on both motion and infrared sensors and are typically used to detect 3D position and orientation. We have investigated how a state-of-the-art wireless motion sensor controller (Wiimote), developed by Nintendo, can be used for catheter navigation and planning purposes. By default the Wiimote controller only measure rough acceleration over a range of +/- 3g with 10% sensitivity and orientation. Therefore, a pose estimation algorithm was developed for computing accurate position and orientation in 3D space regarding 4 Infrared LEDs. Current results show that for the translation it is possible to obtain a mean error of (0.38cm, 0.41cm, 4.94cm) and for the rotation (0.16, 0.28) respectively. Within this paper we introduce a clinical prototype that allows steering of a virtual fly-through camera attached to the catheter tip by the Wii controller on basis of a segmented vessel tree.
Provenance Storage, Querying, and Visualization in PBase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kianmajd, Parisa; Ludascher, Bertram; Missier, Paolo
2015-01-01
We present PBase, a repository for scientific workflows and their corresponding provenance information that facilitates the sharing of experiments among the scientific community. PBase is interoperable since it uses ProvONE, a standard provenance model for scientific workflows. Workflows and traces are stored in RDF, and with the support of SPARQL and the tree cover encoding, the repository provides a scalable infrastructure for querying the provenance data. Furthermore, through its user interface, it is possible to: visualize workflows and execution traces; visualize reachability relations within these traces; issue SPARQL queries; and visualize query results.
NASA Technical Reports Server (NTRS)
Nakamura, Teruko
2003-01-01
We have studied the weeping habit of Japanese flowering cherry tree in the field of Tama Forest Science Garden, Forestry and Forest Products Research Institute at the foot of Mt. Takao. Since cherry trees at various age were the materials for our plant physiology experiments, our studies were conducted in the fields where we experienced certain difficulties. Even under such difficult environment that was rather unexpected and uncontrollable, we could obtain fruitful results on the growth of cherry tree, and found them scientifically significant, especially in terms of biological effects of gravity on earth. Moreover, a lot of interesting interactions of cherry trees with various kinds of animals were observed in parallel to the plant physiology.
TreeVector: scalable, interactive, phylogenetic trees for the web.
Pethica, Ralph; Barker, Gary; Kovacs, Tim; Gough, Julian
2010-01-28
Phylogenetic trees are complex data forms that need to be graphically displayed to be human-readable. Traditional techniques of plotting phylogenetic trees focus on rendering a single static image, but increases in the production of biological data and large-scale analyses demand scalable, browsable, and interactive trees. We introduce TreeVector, a Scalable Vector Graphics-and Java-based method that allows trees to be integrated and viewed seamlessly in standard web browsers with no extra software required, and can be modified and linked using standard web technologies. There are now many bioinformatics servers and databases with a range of dynamic processes and updates to cope with the increasing volume of data. TreeVector is designed as a framework to integrate with these processes and produce user-customized phylogenies automatically. We also address the strengths of phylogenetic trees as part of a linked-in browsing process rather than an end graphic for print. TreeVector is fast and easy to use and is available to download precompiled, but is also open source. It can also be run from the web server listed below or the user's own web server. It has already been deployed on two recognized and widely used database Web sites.
Conspecific Plant-Soil Feedbacks of Temperate Tree Species in the Southern Appalachians, USA
Reinhart, Kurt O.; Johnson, Daniel; Clay, Keith
2012-01-01
Many tree species have seedling recruitment patterns suggesting that they are affected by non-competitive distance-dependent sources of mortality. We conducted an experiment, with landscape-level replication, to identify cases of negative distance-dependent effects and whether variation in these effects corresponded with tree recruitment patterns in the southern Appalachian Mountains region. Specifically, soil was collected from 14 sites and used as inocula in a 62 day growth chamber experiment determining whether tree seedling growth was less when interacting with soil from conspecific (like) than heterospecific (other) tree species. Tests were performed on six tree species. Three of the tree species had been previously described as having greater recruitment around conspecifics (i.e. facilitator species group) compared to the other half (i.e. inhibitor species group). We were then able to determine whether variation in negative distance-dependent effects corresponded with recruitment patterns in the field. Across the six species, none were negatively affected by soil inocula from conspecific relative to heterospecific sources. Most species (four of six) were unaffected by soil source. Two species (Prunus serotina and Tsuga canadensis) had enhanced growth in pots inoculated with soil from conspecific trees vs. heterospecifics. Species varied in their susceptibility to soil pathogens, but trends across all species revealed that species classified as inhibitors were not more negatively affected by conspecific than heterospecific soil inocula or more susceptible to pathogenic effects than facilitators. Although plant-soil biota interactions may be important for individual species and sites, it may be difficult to scale these interactions over space or levels of ecological organization. Generalizing the importance of plant-soil feedbacks or other factors across regional scales may be especially problematic for hyperdiverse temperate forests where interactions may be spatially variable. PMID:22808231
Conspecific plant-soil feedbacks of temperate tree species in the southern Appalachians, USA.
Reinhart, Kurt O; Johnson, Daniel; Clay, Keith
2012-01-01
Many tree species have seedling recruitment patterns suggesting that they are affected by non-competitive distance-dependent sources of mortality. We conducted an experiment, with landscape-level replication, to identify cases of negative distance-dependent effects and whether variation in these effects corresponded with tree recruitment patterns in the southern Appalachian Mountains region. Specifically, soil was collected from 14 sites and used as inocula in a 62 day growth chamber experiment determining whether tree seedling growth was less when interacting with soil from conspecific (like) than heterospecific (other) tree species. Tests were performed on six tree species. Three of the tree species had been previously described as having greater recruitment around conspecifics (i.e. facilitator species group) compared to the other half (i.e. inhibitor species group). We were then able to determine whether variation in negative distance-dependent effects corresponded with recruitment patterns in the field. Across the six species, none were negatively affected by soil inocula from conspecific relative to heterospecific sources. Most species (four of six) were unaffected by soil source. Two species (Prunus serotina and Tsuga canadensis) had enhanced growth in pots inoculated with soil from conspecific trees vs. heterospecifics. Species varied in their susceptibility to soil pathogens, but trends across all species revealed that species classified as inhibitors were not more negatively affected by conspecific than heterospecific soil inocula or more susceptible to pathogenic effects than facilitators. Although plant-soil biota interactions may be important for individual species and sites, it may be difficult to scale these interactions over space or levels of ecological organization. Generalizing the importance of plant-soil feedbacks or other factors across regional scales may be especially problematic for hyperdiverse temperate forests where interactions may be spatially variable.
Hierarchical Task Network Prototyping In Unity3d
2016-06-01
visually debug. Here we present a solution for prototyping HTNs by extending an existing commercial implementation of Behavior Trees within the Unity3D game ...HTN, dynamic behaviors, behavior prototyping, agent-based simulation, entity-level combat model, game engine, discrete event simulation, virtual...commercial implementation of Behavior Trees within the Unity3D game engine prior to building the HTN in COMBATXXI. Existing HTNs were emulated within
Mariko Yamasaki; Christine A. Costello; William B. Leak
2014-01-01
Clearcutting is an effective regeneration practice for northern hardwoods in New England. However, in esthetically sensitive areas forest managers sometimes use methods that soften the visual impact, such as smaller clearcuts (patch cuts) or low-density shelterwoods. It is unclear if these methods produce the same effects as clearcuts on tree regeneration and breeding...
Margarida Tome; Maria Vasconcelos
2000-01-01
The study presented in this paper is part of a project to monitor the defoliation degree of cork and holm oak trees in stands with signs of "decline," alter application of different amounts of Aliette, a product specific for Phytophotora cinnamonii, one of the possible causes of the "decline". The specific objective was to...
John Tipton; Gretchen Moisen; Paul Patterson; Thomas A. Jackson; John Coulston
2012-01-01
There are many factors that will determine the final cost of modeling and mapping tree canopy cover nationwide. For example, applying a normalization process to Landsat data used in the models is important in standardizing reflectance values among scenes and eliminating visual seams in the final map product. However, normalization at the national scale is expensive and...
Mapping the occurrence of tree damage in the forests of the northern United States
Randall S. Morin; Scott A. Pugh; Jim. Steinman
2016-01-01
The U.S. Forest Service Forest Inventory and Analysis Program uses visual inspections of trees from bottom to top to record damage that is likely to prevent survival, reduce growth, or hinder capability to produce marketable products. This report describes the types of damage and occurrence as measured across the 24-state northern region between 2009 and 2013....
Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Alamgir, Mohammed; Porolak, Gabriel; Mohandass, D; Laurance, William F
2018-04-01
Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.
High-confidence prediction of global interactomes based on genome-wide coevolutionary networks
Juan, David; Pazos, Florencio; Valencia, Alfonso
2008-01-01
Interacting or functionally related protein families tend to have similar phylogenetic trees. Based on this observation, techniques have been developed to predict interaction partners. The observed degree of similarity between the phylogenetic trees of two proteins is the result of many different factors besides the actual interaction or functional relationship between them. Such factors influence the performance of interaction predictions. One aspect that can influence this similarity is related to the fact that a given protein interacts with many others, and hence it must adapt to all of them. Accordingly, the interaction or coadaptation signal within its tree is a composite of the influence of all of the interactors. Here, we introduce a new estimator of coevolution to overcome this and other problems. Instead of relying on the individual value of tree similarity between two proteins, we use the whole network of similarities between all of the pairs of proteins within a genome to reassess the similarity of that pair, thereby taking into account its coevolutionary context. We show that this approach offers a substantial improvement in interaction prediction performance, providing a degree of accuracy/coverage comparable with, or in some cases better than, that of experimental techniques. Moreover, important information on the structure, function, and evolution of macromolecular complexes can be inferred with this methodology. PMID:18199838
High-confidence prediction of global interactomes based on genome-wide coevolutionary networks.
Juan, David; Pazos, Florencio; Valencia, Alfonso
2008-01-22
Interacting or functionally related protein families tend to have similar phylogenetic trees. Based on this observation, techniques have been developed to predict interaction partners. The observed degree of similarity between the phylogenetic trees of two proteins is the result of many different factors besides the actual interaction or functional relationship between them. Such factors influence the performance of interaction predictions. One aspect that can influence this similarity is related to the fact that a given protein interacts with many others, and hence it must adapt to all of them. Accordingly, the interaction or coadaptation signal within its tree is a composite of the influence of all of the interactors. Here, we introduce a new estimator of coevolution to overcome this and other problems. Instead of relying on the individual value of tree similarity between two proteins, we use the whole network of similarities between all of the pairs of proteins within a genome to reassess the similarity of that pair, thereby taking into account its coevolutionary context. We show that this approach offers a substantial improvement in interaction prediction performance, providing a degree of accuracy/coverage comparable with, or in some cases better than, that of experimental techniques. Moreover, important information on the structure, function, and evolution of macromolecular complexes can be inferred with this methodology.
An interactive app for color deficient viewers
NASA Astrophysics Data System (ADS)
Lau, Cheryl; Perdu, Nicolas; Rodríguez-Pardo, Carlos E.; Süsstrunk, Sabine; Sharma, Gaurav
2015-01-01
Color deficient individuals have trouble seeing color contrasts that could be very apparent to individuals with normal color vision. For example, for some color deficient individuals, red and green apples do not have the striking contrast they have for those with normal color vision, or the abundance of red cherries in a tree is not immediately clear due to a lack of perceived contrast. We present a smartphone app that enables color deficient users to visualize such problematic color contrasts in order to help them with daily tasks. The user interacts with the app through the touchscreen. As the user traces a path around the touchscreen, the colors in the image change continuously via a transform that enhances contrasts that are weak or imperceptible for the user under native viewing conditions. Specifically, we propose a transform that shears the data along lines parallel to the dimension corresponding to the affected cone sensitivity of the user. The amount and direction of shear are controlled by the user's finger movement over the touchscreen allowing them to visualize these contrasts. Using the GPU, this simple transformation, consisting of a linear shear and translation, is performed efficiently on each pixel and in real-time with the changing position of the user's finger. The user can use the app to aid daily tasks such as distinguishing between red and green apples or picking out ripe bananas.
Sharma, Dinghy Kristine B.; Lopez, Ellen D. S.; Mekiana, Deborah; Ctibor, Alaina; Church, Charlene
2013-01-01
Background Alaska Native (AN) college students experience higher attrition rates than their non-Native peers. Understanding the factors that contribute to quality of life (“what makes life good”) for AN students will help inform supportive programs that are congruent with their culture and college life experiences. Objectives Co-develop a conceptual model and a measure of quality of life (QOL) that reflects the experiences of AN college students. Methods Six focus groups were conducted with 26 AN college students. Within a community–academic partnership, interactive data collection activities, co-analysis workgroup sessions and an interactive findings forum ensured a participant-driven research process. Findings Students identified and operationally defined eight QOL domains (values, culture and traditions, spirituality, relationships, basic needs, health, learning and leisure). The metaphor of a tree visually illustrates how the domains values, culture and traditions and spirituality form the roots to the other domains that appear to branch out as students navigate the dual worldviews of Native and Western ways of living. Conclusions The eight QOL domains and their items identified during focus groups were integrated into a visual model and an objective QOL measure. The hope is to provide a useful tool for developing and evaluating university-based programs and services aimed toward promoting a positive QOL and academic success for AN students. PMID:23984302
Balaram, P; Isaamullah, M; Petry, H M; Bickford, M E; Kaas, J H
2015-08-15
Vesicular glutamate transporter (VGLUT) proteins regulate the storage and release of glutamate from synapses of excitatory neurons. Two isoforms, VGLUT1 and VGLUT2, are found in most glutamatergic projections across the mammalian visual system, and appear to differentially identify subsets of excitatory projections between visual structures. To expand current knowledge on the distribution of VGLUT isoforms in highly visual mammals, we examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the lateral geniculate nucleus (LGN), superior colliculus, pulvinar complex, and primary visual cortex (V1) in tree shrews (Tupaia belangeri), which are closely related to primates but classified as a separate order (Scandentia). We found that VGLUT1 was distributed in intrinsic and corticothalamic connections, whereas VGLUT2 was predominantly distributed in subcortical and thalamocortical connections. VGLUT1 and VGLUT2 were coexpressed in the LGN and in the pulvinar complex, as well as in restricted layers of V1, suggesting a greater heterogeneity in the range of efferent glutamatergic projections from these structures. These findings provide further evidence that VGLUT1 and VGLUT2 identify distinct populations of excitatory neurons in visual brain structures across mammals. Observed variations in individual projections may highlight the evolution of these connections through the mammalian lineage. © 2015 Wiley Periodicals, Inc.
A measuring tool for tree-rings analysis
NASA Astrophysics Data System (ADS)
Shumilov, Oleg; Kanatjev, Alexander; Kasatkina, Elena
2013-04-01
A special tool has been created for the annual tree-ring widths measurement and analysis. It consists of professional scanner, computer system and software. This created complex in many aspects does not yield the similar systems (LINTAB, WinDENDRO), but in comparison to manual measurement systems, it offers a number of advantages: productivity gain, possibility of archiving the results of the measurements at any stage of the processing, operator comfort. It has been developed a new software, allowing processing of samples of different types (cores, saw cuts), including those which is difficult to process, having got a complex wood structure (inhomogeneity of growing in different directions, missed, light and false rings etc.). This software can analyze pictures made with optical scanners, analog or digital cameras. The complex software program was created on programming language C++, being compatible with modern operating systems like Windows X. Annual ring widths are measured along paths traced interactively. These paths can have any orientation and can be created so that ring widths are measured perpendicular to ring boundaries. A graphic of ring-widths in function of the year is displayed on a screen during the analysis and it can be used for visual and numerical cross-dating and comparison with other series or master-chronologies. Ring widths are saved to the text files in a special format, and those files are converted to the format accepted for data conservation in the International Tree-Ring Data Bank. The created complex is universal in application that will allow its use for decision of the different problems in biology and ecology. With help of this complex it has been reconstructed a long-term juniper (1328-2004) and pine (1445-2005) tree-ring chronologies on the base of samples collected at Kola Peninsula (northwestern Russia).
Sun, Yahui; Hameed, Pathima Nusrath; Verspoor, Karin; Halgamuge, Saman
2016-12-05
Drug repositioning can reduce the time, costs and risks of drug development by identifying new therapeutic effects for known drugs. It is challenging to reposition drugs as pharmacological data is large and complex. Subnetwork identification has already been used to simplify the visualization and interpretation of biological data, but it has not been applied to drug repositioning so far. In this paper, we fill this gap by proposing a new Physarum-inspired Prize-Collecting Steiner Tree algorithm to identify subnetworks for drug repositioning. Drug Similarity Networks (DSN) are generated using the chemical, therapeutic, protein, and phenotype features of drugs. In DSNs, vertex prizes and edge costs represent the similarities and dissimilarities between drugs respectively, and terminals represent drugs in the cardiovascular class, as defined in the Anatomical Therapeutic Chemical classification system. A new Physarum-inspired Prize-Collecting Steiner Tree algorithm is proposed in this paper to identify subnetworks. We apply both the proposed algorithm and the widely-used GW algorithm to identify subnetworks in our 18 generated DSNs. In these DSNs, our proposed algorithm identifies subnetworks with an average Rand Index of 81.1%, while the GW algorithm can only identify subnetworks with an average Rand Index of 64.1%. We select 9 subnetworks with high Rand Index to find drug repositioning opportunities. 10 frequently occurring drugs in these subnetworks are identified as candidates to be repositioned for cardiovascular diseases. We find evidence to support previous discoveries that nitroglycerin, theophylline and acarbose may be able to be repositioned for cardiovascular diseases. Moreover, we identify seven previously unknown drug candidates that also may interact with the biological cardiovascular system. These discoveries show our proposed Prize-Collecting Steiner Tree approach as a promising strategy for drug repositioning.
Wait, Eric; Winter, Mark; Bjornsson, Chris; Kokovay, Erzsebet; Wang, Yue; Goderie, Susan; Temple, Sally; Cohen, Andrew R
2014-10-03
Neural stem cells are motile and proliferative cells that undergo mitosis, dividing to produce daughter cells and ultimately generating differentiated neurons and glia. Understanding the mechanisms controlling neural stem cell proliferation and differentiation will play a key role in the emerging fields of regenerative medicine and cancer therapeutics. Stem cell studies in vitro from 2-D image data are well established. Visualizing and analyzing large three dimensional images of intact tissue is a challenging task. It becomes more difficult as the dimensionality of the image data increases to include time and additional fluorescence channels. There is a pressing need for 5-D image analysis and visualization tools to study cellular dynamics in the intact niche and to quantify the role that environmental factors play in determining cell fate. We present an application that integrates visualization and quantitative analysis of 5-D (x,y,z,t,channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. We combine unsupervised image analysis algorithms with an interactive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.
Fast and Exact Fiber Surfaces for Tetrahedral Meshes.
Klacansky, Pavol; Tierny, Julien; Carr, Hamish; Zhao Geng
2017-07-01
Isosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm for their computation is approximate, and is limited to closed polygons. Moreover, its runtime performance does not allow instantaneous updates of the fiber surfaces upon user edits of the polygons. Overall, these limitations prevent a reliable and interactive exploration of the space of fiber surfaces. This paper introduces the first algorithm for the exact computation of fiber surfaces in tetrahedral meshes. It assumes no restriction on the topology of the input polygon, handles degenerate cases and better captures sharp features induced by polygon bends. The algorithm also allows visualization of individual fibers on the output surface, better illustrating their relationship with data features in range space. To enable truly interactive exploration sessions, we further improve the runtime performance of this algorithm. In particular, we show that it is trivially parallelizable and that it scales nearly linearly with the number of cores. Further, we study acceleration data-structures both in geometrical domain and range space and we show how to generalize interval trees used in isosurface extraction to fiber surface extraction. Experiments demonstrate the superiority of our algorithm over previous work, both in terms of accuracy and running time, with up to two orders of magnitude speedups. This improvement enables interactive edits of range polygons with instantaneous updates of the fiber surface for exploration purpose. A VTK-based reference implementation is provided as additional material to reproduce our results.
Vergara, Pablo M.; Soto, Gerardo E.; Rodewald, Amanda D.; Meneses, Luis O.; Pérez-Hernández, Christian G.
2016-01-01
Theoretical models predict that animals should make foraging decisions after assessing the quality of available habitat, but most models fail to consider the spatio-temporal scales at which animals perceive habitat availability. We tested three foraging strategies that explain how Magellanic woodpeckers (Campephilus magellanicus) assess the relative quality of trees: 1) Woodpeckers with local knowledge select trees based on the available trees in the immediate vicinity. 2) Woodpeckers lacking local knowledge select trees based on their availability at previously visited locations. 3) Woodpeckers using information from long-term memory select trees based on knowledge about trees available within the entire landscape. We observed foraging woodpeckers and used a Brownian Bridge Movement Model to identify trees available to woodpeckers along foraging routes. Woodpeckers selected trees with a later decay stage than available trees. Selection models indicated that preferences of Magellanic woodpeckers were based on clusters of trees near the most recently visited trees, thus suggesting that woodpeckers use visual cues from neighboring trees. In a second analysis, Cox’s proportional hazards models showed that woodpeckers used information consolidated across broader spatial scales to adjust tree residence times. Specifically, woodpeckers spent more time at trees with larger diameters and in a more advanced stage of decay than trees available along their routes. These results suggest that Magellanic woodpeckers make foraging decisions based on the relative quality of trees that they perceive and memorize information at different spatio-temporal scales. PMID:27416115
Vergara, Pablo M; Soto, Gerardo E; Moreira-Arce, Darío; Rodewald, Amanda D; Meneses, Luis O; Pérez-Hernández, Christian G
2016-01-01
Theoretical models predict that animals should make foraging decisions after assessing the quality of available habitat, but most models fail to consider the spatio-temporal scales at which animals perceive habitat availability. We tested three foraging strategies that explain how Magellanic woodpeckers (Campephilus magellanicus) assess the relative quality of trees: 1) Woodpeckers with local knowledge select trees based on the available trees in the immediate vicinity. 2) Woodpeckers lacking local knowledge select trees based on their availability at previously visited locations. 3) Woodpeckers using information from long-term memory select trees based on knowledge about trees available within the entire landscape. We observed foraging woodpeckers and used a Brownian Bridge Movement Model to identify trees available to woodpeckers along foraging routes. Woodpeckers selected trees with a later decay stage than available trees. Selection models indicated that preferences of Magellanic woodpeckers were based on clusters of trees near the most recently visited trees, thus suggesting that woodpeckers use visual cues from neighboring trees. In a second analysis, Cox's proportional hazards models showed that woodpeckers used information consolidated across broader spatial scales to adjust tree residence times. Specifically, woodpeckers spent more time at trees with larger diameters and in a more advanced stage of decay than trees available along their routes. These results suggest that Magellanic woodpeckers make foraging decisions based on the relative quality of trees that they perceive and memorize information at different spatio-temporal scales.
DBMap: a TreeMap-based framework for data navigation and visualization of brain research registry
NASA Astrophysics Data System (ADS)
Zhang, Ming; Zhang, Hong; Tjandra, Donny; Wong, Stephen T. C.
2003-05-01
The purpose of this study is to investigate and apply a new, intuitive and space-conscious visualization framework to facilitate efficient data presentation and exploration of large-scale data warehouses. We have implemented the DBMap framework for the UCSF Brain Research Registry. Such a novel utility would facilitate medical specialists and clinical researchers in better exploring and evaluating a number of attributes organized in the brain research registry. The current UCSF Brain Research Registry consists of a federation of disease-oriented database modules, including Epilepsy, Brain Tumor, Intracerebral Hemorrphage, and CJD (Creuzfeld-Jacob disease). These database modules organize large volumes of imaging and non-imaging data to support Web-based clinical research. While the data warehouse supports general information retrieval and analysis, there lacks an effective way to visualize and present the voluminous and complex data stored. This study investigates whether the TreeMap algorithm can be adapted to display and navigate categorical biomedical data warehouse or registry. TreeMap is a space constrained graphical representation of large hierarchical data sets, mapped to a matrix of rectangles, whose size and color represent interested database fields. It allows the display of a large amount of numerical and categorical information in limited real estate of computer screen with an intuitive user interface. The paper will describe, DBMap, the proposed new data visualization framework for large biomedical databases. Built upon XML, Java and JDBC technologies, the prototype system includes a set of software modules that reside in the application server tier and provide interface to backend database tier and front-end Web tier of the brain registry.
Vernal freeze damage and genetic variation alter tree growth, chemistry, and insect interactions.
Rubert-Nason, Kennedy F; Couture, John J; Gryzmala, Elizabeth A; Townsend, Philip A; Lindroth, Richard L
2017-11-01
Anticipated consequences of climate change in temperate regions include early spring warmup punctuated by intermittent hard freezes. Warm weather accelerates leaf flush in perennial woody species, potentially exposing vulnerable young tissues to damaging frosts. We employed a 2 × 6 randomized factorial design to examine how the interplay of vernal (springtime) freeze damage and genetic variation in a hardwood species (Populus tremuloides) influences tree growth, phytochemistry, and interactions with an insect herbivore (Chaitophorus stevensis). Acute effects of freezing included defoliation and mortality. Surviving trees exhibited reduced growth and altered biomass distribution. Reflushed leaves on these trees had lower mass per area, lower lignin concentrations, and higher nitrogen concentrations, altered chemical defence profiles, and supported faster aphid population growth. Many effects varied among plant genotypes and were related with herbivore performance. This study suggests that a single damaging vernal freeze event can alter tree-insect interactions through effects on plant growth and chemistry. Differential responses of various genotypes to freeze damage suggest that more frequent vernal freeze events could also influence natural selection, favouring trees with greater freeze hardiness, and more resistance or tolerance to herbivores following damage. © 2017 John Wiley & Sons Ltd.
A Visual Interface for Querying Heterogeneous Phylogenetic Databases.
Jamil, Hasan M
2017-01-01
Despite the recent growth in the number of phylogenetic databases, access to these wealth of resources remain largely tool or form-based interface driven. It is our thesis that the flexibility afforded by declarative query languages may offer the opportunity to access these repositories in a better way, and to use such a language to pose truly powerful queries in unprecedented ways. In this paper, we propose a substantially enhanced closed visual query language, called PhyQL, that can be used to query phylogenetic databases represented in a canonical form. The canonical representation presented helps capture most phylogenetic tree formats in a convenient way, and is used as the storage model for our PhyloBase database for which PhyQL serves as the query language. We have implemented a visual interface for the end users to pose PhyQL queries using visual icons, and drag and drop operations defined over them. Once a query is posed, the interface translates the visual query into a Datalog query for execution over the canonical database. Responses are returned as hyperlinks to phylogenies that can be viewed in several formats using the tree viewers supported by PhyloBase. Results cached in PhyQL buffer allows secondary querying on the computed results making it a truly powerful querying architecture.
Symbiosis and competition: complex interactions among beetles, fungi, and mites
Kier D. Klepzig; J.C. Moser; F.J. Lombardero; R.W. Hofstetter; M.P. Ayres
2001-01-01
Symbioses among bark beetles and their fungal and mite associates involve complex, multi-level interactions. Dendroctonus frontalis attacks and kills southern pines, introducing fungi into the tree. Ophiostoma minus may initially aid beetles in killing trees, but later this "bluestain" fungus becomes an antagonist,...
Wendler, Renate; Millard, Peter
1996-01-01
We determined the response of Betula pendula Roth. trees to a restricted water supply, and quantified the interactions between tree N and water status on leaf demography and internal N cycling. In April 1993, 3-year-old trees were planted in sand culture and four treatments applied: high-N supply (56 mg tree(-1) week(-1)) with either 2 dm(3) water week(-1) (HN+) or 0.9 dm(3) water week(-1) (HN-), or low-N supply (14 mg tree(-1) week(-1)) with 2 dm(3) (LN+) or 0.9 dm(3) (LN-) water week(-1). Until 1994, the N supplied to trees was enriched with (15)N to 5.4 atom %. During 1993, there were few differences in the growth or leaf demography of trees in the LN+ and LN- treatments, but the high-N treatment increased tree growth. Leaf mass and area were initially similar in trees in the HN+ and HN- treatments, but the trees in the HN- treatment had a smaller root system. Net assimilation rate under saturating light was higher in trees in the HN+ treatment than in trees in the LN+ treatment. There was an N x water supply interaction as a result of trees in the HN- treatment closing their stomata by the beginning of August. However, there was no difference in gas exchange characteristics of leaves in the LN+ and LN- treatments. Although leaf senescence and abscission started in the HN- treatment by mid-August and continued for about 90 days, whereas leaf abscission in the other treatments did not start until the beginning of October and only lasted 25-30 days, the trees in the HN+ and HN- treatments remobilized similar amounts of (15)N for leaf growth in the spring of 1994. There were no differences in predawn water potential among treatments and no evidence of osmotic adjustment. We conclude that B. pendula trees avoid rather than tolerate drought. The interaction between the effects of nitrogen and water supplies on leaf demography and internal cycling of N are discussed.
NASA Astrophysics Data System (ADS)
Zaremotlagh, S.; Hezarkhani, A.
2017-04-01
Some evidences of rare earth elements (REE) concentrations are found in iron oxide-apatite (IOA) deposits which are located in Central Iranian microcontinent. There are many unsolved problems about the origin and metallogenesis of IOA deposits in this district. Although it is considered that felsic magmatism and mineralization were simultaneous in the district, interaction of multi-stage hydrothermal-magmatic processes within the Early Cambrian volcano-sedimentary sequence probably caused some epigenetic mineralizations. Secondary geological processes (e.g., multi-stage mineralization, alteration, and weathering) have affected on variations of major elements and possible redistribution of REE in IOA deposits. Hence, the geochemical behaviors and distribution patterns of REE are expected to be complicated in different zones of these deposits. The aim of this paper is recognizing LREE distribution patterns based on whole-rock chemical compositions and automatic discovery of their geochemical rules. For this purpose, the pattern recognition techniques including decision tree and neural network were applied on a high-dimensional geochemical dataset from Choghart IOA deposit. Because some data features were irrelevant or redundant in recognizing the distribution patterns of each LREE, a greedy attribute subset selection technique was employed to select the best subset of predictors used in classification tasks. The decision trees (CART algorithm) were pruned optimally to more accurately categorize independent test data than unpruned ones. The most effective classification rules were extracted from the pruned tree to describe the meaningful relationships between the predictors and different concentrations of LREE. A feed-forward artificial neural network was also applied to reliably predict the influence of various rock compositions on the spatial distribution patterns of LREE with a better performance than the decision tree induction. The findings of this study could be effectively used to visualize the LREE distribution patterns as geochemical maps.
NASA Astrophysics Data System (ADS)
Peddinti, S. R.; Kbvn, D. P.; Ranjan, S.; Suradhaniwar, S.; J, P. A.; R M, G.
2015-12-01
Vidarbha region in Maharashtra, India (home for mandarin Orange) experience severe climatic uncertainties resulting in crop failure. Phytopthora are the soil-borne fungal species that accumulate in the presence of moisture, and attack the root / trunk system of Orange trees at any stage. A scientific understanding of soil-moisture-disease relations within the active root zone under different climatic, irrigation, and crop cycle conditions can help in practicing management activities for improved crop yield. In this study, we developed a protocol for performing 3-D time-lapse electrical resistivity tomography (ERT) at micro scale resolution to monitor the changes in resistivity distribution within the root zone of Orange trees. A total of 40 electrodes, forming a grid of 3.5 m x 2 m around each Orange tree were used in ERT survey with gradient and Wenner configurations. A laboratory test on un-disturbed soil samples of the region was performed to plot the variation of electrical conductivity with saturation. Curve fitting techniques were applied to get the modified Archie's model parameters. The calibrated model was further applied to generate the 3-D soil moisture profiles of the study area. The point estimates of soil moisture were validated using TDR probe measurements at 3 different depths (10, 20, and 40 cm) near to the root zone. In order to understand the effect of soil-water relations on plant-disease relations, we performed ERT analysis at two locations, one at healthy and other at Phytopthora affected Orange tree during the crop cycle, under dry and irrigated conditions. The degree to which an Orange tree is affected by Phytopthora under each condition is evaluated using 'grading scale' approach following visual inspection of the canopy features. Spatial-temporal distribution of moisture profiles is co-related with grading scales to comment on the effect of climatic and irrigation scenarios on the degree and intensity of crop disease caused by Phytopthora.
An evaluation-guided approach for effective data visualization on tablets
NASA Astrophysics Data System (ADS)
Games, Peter S.; Joshi, Alark
2015-01-01
There is a rising trend of data analysis and visualization tasks being performed on a tablet device. Apps with interactive data visualization capabilities are available for a wide variety of domains. We investigate whether users grasp how to effectively interpret and interact with visualizations. We conducted a detailed user evaluation to study the abilities of individuals with respect to analyzing data on a tablet through an interactive visualization app. Based upon the results of the user evaluation, we find that most subjects performed well at understanding and interacting with simple visualizations, specifically tables and line charts. A majority of the subjects struggled with identifying interactive widgets, recognizing interactive widgets with overloaded functionality, and understanding visualizations which do not display data for sorted attributes. Based on our study, we identify guidelines for designers and developers of mobile data visualization apps that include recommendations for effective data representation and interaction.
Integrating visualization and interaction research to improve scientific workflows.
Keefe, Daniel F
2010-01-01
Scientific-visualization research is, nearly by necessity, interdisciplinary. In addition to their collaborators in application domains (for example, cell biology), researchers regularly build on close ties with disciplines related to visualization, such as graphics, human-computer interaction, and cognitive science. One of these ties is the connection between visualization and interaction research. This isn't a new direction for scientific visualization (see the "Early Connections" sidebar). However, momentum recently seems to be increasing toward integrating visualization research (for example, effective visual presentation of data) with interaction research (for example, innovative interactive techniques that facilitate manipulating and exploring data). We see evidence of this trend in several places, including the visualization literature and conferences.
Hess, Carsten; Niemeyer, Thomas; Fichtner, Andreas; Jansen, Kirstin; Kunz, Matthias; Maneke, Moritz; von Wehrden, Henrik; Quante, Markus; Walmsley, David; von Oheimb, Goddert; Härdtle, Werner
2018-02-01
Global change affects the functioning of forest ecosystems and the services they provide, but little is known about the interactive effects of co-occurring global change drivers on important functions such as tree growth and vitality. In the present study we quantified the interactive (i.e. synergistic or antagonistic) effects of atmospheric nitrogen (N) deposition and climatic variables (temperature, precipitation) on tree growth (in terms of tree-ring width, TRW), taking forest ecosystems with European beech (Fagus sylvatica L.) as an example. We hypothesised that (i) N deposition and climatic variables can evoke non-additive responses of the radial increment of beech trees, and (ii) N loads have the potential to strengthen the trees' sensitivity to climate change. In young stands, we found a synergistic positive effect of N deposition and annual mean temperature on TRW, possibly linked to the alleviation of an N shortage in young stands. In mature stands, however, high N deposition significantly increased the trees' sensitivity to increasing annual mean temperatures (antagonistic effect on TRW), possibly due to increased fine root dieback, decreasing mycorrhizal colonization or shifts in biomass allocation patterns (aboveground vs. belowground). Accordingly, N deposition and climatic variables caused both synergistic and antagonistic effects on the radial increment of beech trees, depending on tree age and stand characteristics. Hence, the nature of interactions could mediate the long-term effects of global change drivers (including N deposition) on forest carbon sequestration. In conclusion, our findings illustrate that interaction processes between climatic variables and N deposition are complex and have the potential to impair growth and performance of European beech. This in turn emphasises the importance of multiple-factor studies to foster an integrated understanding and models aiming at improved projections of tree growth responses to co-occurring drivers of global change. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phylogenetic trees in bioinformatics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, Tom L
2008-01-01
Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding themore » best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.« less
Effect of odour on multisensory environmental evaluations of road traffic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Like, E-mail: jianglike@yahoo.com; Masullo, Massimiliano, E-mail: Massimiliano.MASULLO@unina2.it; Maffei, Luigi, E-mail: luigi.maffei@unina2.it
This study investigated the effect of odour on multisensory environmental evaluations of road traffic. The study aimed to answer: (1) Does odour have any effect on evaluations on noise, landscape and the overall environment? (2) How different are participants' responses to odour stimuli and are these differences influential on the evaluations? Experimental scenarios varied in three Traffic levels, three Tree screening conditions and two Odour presence conditions were designed, and presented to participants in virtual reality. Perceived Loudness, Noise Annoyance, Landscape Quality and Overall Pleasantness of each scenario were evaluated and the results were analysed. It shows that Odour presencemore » did not have significant main effect on any of the evaluations, but has significant interactions with Traffic level on Noise Annoyance and with Tree screening on Landscape Quality, indicating the potential of odour to modulate noise and visual landscape perceptions in specific environmental content. Concerning participants' responses to odour stimuli, large differences were found in this study. However, the differences did not seem to be influential on environmental evaluations in this study. Larger samples of participants may benefit this study for more significant results of odour effect.« less
Richard A. Sniezko; Alvin D. Yanchuk; John T. Kliejunas; Katharine M. Palmieri; Janice M. Alexander; Susan J. Frankel
2012-01-01
Individual papers are available at http://www.fs.fed.us/psw/publications/documents/psw_gtr240/The Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Disease and Insect Resistance in Forest Trees...
Mucociliary Interaction in the Tracheobronchial Tree and Environmental Pollution
ERIC Educational Resources Information Center
Schlesinger, Richard B.
1973-01-01
Discusses the interaction of the various factors involved in the normal functioning of the mucociliary system of the human respiratory tract. The mucociliary system constitutes a major mammalian defense against dangerous inhaled particles by acting to collect, transport, and eventually eliminate such materials from the tracheobronchial tree. (JR)
Cross-scale interactions affect tree growth and intrinsic water ...
1. We investigated the potential of cross-scale interactions to affect the outcome of density reduction in a large-scale silvicultural experiment. 2. We measured tree growth and intrinsic water-use efficiency (iWUE) based on stable carbon isotopes (13C) to investigate the impacts of thinning across a range of progressively finer spatial scales: site, stand, hillslope position, and neighborhood position. In particular, we focused on the influence of thinning beyond the boundaries of thinned stands to include impacts on downslope and neighboring stands across sites varying in soil moisture. 3. Trees at the wet site responded to thinning with increased growth when compared with trees at the dry site. Additionally, trees in thinned stands at the dry site responded with increased iWUE while trees in thinned stands at the wet site showed no difference in iWUE compared to unthinned stands. 4. We hypothesized that water is not the primary limiting factor for growth at our sites, but that thinning released other resources, such as growing space or nutrients to drive the growth response. At progressively finer spatial scales we found that the responses of trees was not driven by hillslope location (i.e., downslope of thinning) but to changes in local neighborhood tree density. 5. The results of this study demonstrated that water can be viewed as an “agent” that allows us to investigate cross-scale interactions as it links coarse to finer spatial scales and vice ver
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhang, Su; Li, Wenying; Chen, Yaqing; Lu, Hongtao; Chen, Wufan; Chen, Yazhu
2010-04-01
Various computerized features extracted from breast ultrasound images are useful in assessing the malignancy of breast tumors. However, the underlying relationship between the computerized features and tumor malignancy may not be linear in nature. We use the decision tree ensemble trained by the cost-sensitive boosting algorithm to approximate the target function for malignancy assessment and to reflect this relationship qualitatively. Partial dependence plots are employed to explore and visualize the effect of features on the output of the decision tree ensemble. In the experiments, 31 image features are extracted to quantify the sonographic characteristics of breast tumors. Patient age is used as an external feature because of its high clinical importance. The area under the receiver-operating characteristic curve of the tree ensembles can reach 0.95 with sensitivity of 0.95 (61/64) at the associated specificity 0.74 (77/104). The partial dependence plots of the four most important features are demonstrated to show the influence of the features on malignancy, and they are in accord with the empirical observations. The results can provide visual and qualitative references on the computerized image features for physicians, and can be useful for enhancing the interpretability of computer-aided diagnosis systems for breast ultrasound.
Smith, James J; Cheruvelil, Kendra Spence; Auvenshine, Stacie
2013-01-01
Phylogenetic trees provide visual representations of ancestor-descendant relationships, a core concept of evolutionary theory. We introduced "tree thinking" into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted of designing and implementing a set of experiences to help students learn to read, interpret, and manipulate phylogenetic trees, with a particular emphasis on using data to evaluate alternative phylogenetic hypotheses (trees). To assess the outcomes of these learning experiences, we designed and implemented a Phylogeny Assessment Tool (PhAT), an open-ended response instrument that asked students to: 1) map characters on phylogenetic trees; 2) apply an objective criterion to decide which of two trees (alternative hypotheses) is "better"; and 3) demonstrate understanding of phylogenetic trees as depictions of ancestor-descendant relationships. A pre-post test design was used with the PhAT to collect data from students in two consecutive Fall semesters. Students in both semesters made significant gains in their abilities to map characters onto phylogenetic trees and to choose between two alternative hypotheses of relationship (trees) by applying the principle of parsimony (Occam's razor). However, learning gains were much lower in the area of student interpretation of phylogenetic trees as representations of ancestor-descendant relationships.
Smith, James J.; Cheruvelil, Kendra Spence; Auvenshine, Stacie
2013-01-01
Phylogenetic trees provide visual representations of ancestor–descendant relationships, a core concept of evolutionary theory. We introduced “tree thinking” into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted of designing and implementing a set of experiences to help students learn to read, interpret, and manipulate phylogenetic trees, with a particular emphasis on using data to evaluate alternative phylogenetic hypotheses (trees). To assess the outcomes of these learning experiences, we designed and implemented a Phylogeny Assessment Tool (PhAT), an open-ended response instrument that asked students to: 1) map characters on phylogenetic trees; 2) apply an objective criterion to decide which of two trees (alternative hypotheses) is “better”; and 3) demonstrate understanding of phylogenetic trees as depictions of ancestor–descendant relationships. A pre–post test design was used with the PhAT to collect data from students in two consecutive Fall semesters. Students in both semesters made significant gains in their abilities to map characters onto phylogenetic trees and to choose between two alternative hypotheses of relationship (trees) by applying the principle of parsimony (Occam's razor). However, learning gains were much lower in the area of student interpretation of phylogenetic trees as representations of ancestor–descendant relationships. PMID:24006401
Advanced Data Visualization in Astrophysics: The X3D Pathway
NASA Astrophysics Data System (ADS)
Vogt, Frédéric P. A.; Owen, Chris I.; Verdes-Montenegro, Lourdes; Borthakur, Sanchayeeta
2016-02-01
Most modern astrophysical data sets are multi-dimensional; a characteristic that can nowadays generally be conserved and exploited scientifically during the data reduction/simulation and analysis cascades. However, the same multi-dimensional data sets are systematically cropped, sliced, and/or projected to printable two-dimensional diagrams at the publication stage. In this article, we introduce the concept of the “X3D pathway” as a mean of simplifying and easing the access to data visualization and publication via three-dimensional (3D) diagrams. The X3D pathway exploits the facts that (1) the X3D 3D file format lies at the center of a product tree that includes interactive HTML documents, 3D printing, and high-end animations, and (2) all high-impact-factor and peer-reviewed journals in astrophysics are now published (some exclusively) online. We argue that the X3D standard is an ideal vector for sharing multi-dimensional data sets because it provides direct access to a range of different data visualization techniques, is fully open source, and is a well-defined standard from the International Organization for Standardization. Unlike other earlier propositions to publish multi-dimensional data sets via 3D diagrams, the X3D pathway is not tied to specific software (prone to rapid and unexpected evolution), but instead is compatible with a range of open-source software already in use by our community. The interactive HTML branch of the X3D pathway is also actively supported by leading peer-reviewed journals in the field of astrophysics. Finally, this article provides interested readers with a detailed set of practical astrophysical examples designed to act as a stepping stone toward the implementation of the X3D pathway for any other data set.
Ruiz-Benito, Paloma; Lines, Emily R.; Gómez-Aparicio, Lorena; Zavala, Miguel A.; Coomes, David A.
2013-01-01
Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions. PMID:23451096
Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma.
Maust, B E; Espadas, F; Talavera, C; Aguilar, M; Santamaría, J M; Oropeza, C
2003-08-01
ABSTRACT Lethal yellowing (LY), a disease caused by a phytoplasma, is the most devastating disease affecting coconut (Cocos nucifera) in Mexico. Thousands of coconut palm trees have died on the Yucatan peninsula while plantations in Central America and on the Pacific coast of Mexico are severely threatened. Polymerase chain reaction assays enable identification of incubating palm trees (stage 0+, phytoplasma detected but palm asymptomatic). With the development of LY, palm trees exhibit various visual symptoms such as premature nut fall (stage 1), inflorescence necrosis (stages 2 to 3), leaf chlorosis and senescence (stages 4 to 6), and finally palm death. However, physiological changes occur in the leaves and roots prior to onset of visual symptoms. Stomatal conductance, photosynthesis, and root respiration decreased in stages 0+ to 6. The number of active photosystem II (PSII) reaction centers decreased during stage 2, but maximum quantum use efficiency of PSII remained similar until stage 3 before declining. Sugar and starch concentrations in intermediate leaves (leaf 14) and upper leaves (leaf 4) increased from stage 0- (healthy) to stages 2 to 4, while root carbohydrate concentrations decreased rapidly from stage 0- to stage 0+ (incubating phytoplasma). Although photosynthetic rates and root carbohydrate concentrations decreased, leaf carbohydrate concentrations increased, suggesting inhibition of sugar transport in the phloem leading to stress in sink tissues and development of visual symptoms of LY.
Javier Jimenez-Perez; Oscar Aguirre-Calderon; Horst Kramer
2006-01-01
Characterization of tree crown structure provides critical information to assess a variety of ecological conditions for multiple purposes and applications. For biomass growth, for example, tree crowns have basic physiological functions: assimilation, respiration, and transpiration. How tree crowns spatially interact and grow can bring about a seamless landscape of...
Genetic interactions underlying tree branch orientation
USDA-ARS?s Scientific Manuscript database
Expanding our understanding of the molecular and genetic mechanisms behind branch orientation in trees both addresses a fundamental developmental phenomenon and can lead to significant impacts on tree crop agriculture and forestry. Using the p-nome (pooled genome) sequencing-based mapping approac...
Arne Arnberger; Martin Ebenberger; Ingrid E. Schneider; Stuart Cottrell; Alexander C. Schlueter; Eick von Ruschkowski; Robert C. Venette; Stephanie A. Snyder; Paul H. Gobster
2018-01-01
Extensive outbreaks of tree-killing insects are increasing across forests in Europe and North America due to climate change and other factors. Yet, little recent research examines visitor response to visual changes in conifer forest recreation settings resulting from forest insect infestations, how visitors weigh trade-offs between physical and social forest...
Ecological interactions are evolutionarily conserved across the entire tree of life.
Gómez, José M; Verdú, Miguel; Perfectti, Francisco
2010-06-17
Ecological interactions are crucial to understanding both the ecology and the evolution of organisms. Because the phenotypic traits regulating species interactions are largely a legacy of their ancestors, it is widely assumed that ecological interactions are phylogenetically conserved, with closely related species interacting with similar partners. However, the existing empirical evidence is inadequate to appropriately evaluate the hypothesis of phylogenetic conservatism in ecological interactions, because it is both ecologically and taxonomically biased. In fact, most studies on the evolution of ecological interactions have focused on specialized organisms, such as some parasites or insect herbivores, belonging to a limited subset of the overall tree of life. Here we study the evolution of host use in a large and diverse group of interactions comprising both specialist and generalist acellular, unicellular and multicellular organisms. We show that, as previously found for specialized interactions, generalized interactions can be evolutionarily conserved. Significant phylogenetic conservatism of interaction patterns was equally likely to occur in symbiotic and non-symbiotic interactions, as well as in mutualistic and antagonistic interactions. Host-use differentiation among species was higher in phylogenetically conserved clades, irrespective of their generalization degree and taxonomic position within the tree of life. Our findings strongly suggest a shared pattern in the organization of biological systems through evolutionary time, mediated by marked conservatism of ecological interactions among taxa.
Tomback, Diana F; Blakeslee, Sarah C; Wagner, Aaron C; Wunder, Michael B; Resler, Lynn M; Pyatt, Jill C; Diaz, Soledad
2016-08-01
In stressful environments, facilitation often aids plant establishment, but invasive plant pathogens may potentially disrupt these interactions. In many treeline communities in the northern Rocky Mountains of the U.S. and Canada, Pinus albicaulis, a stress-tolerant pine, initiates tree islands at higher frequencies than other conifers - that is, leads to leeward tree establishment more frequently. The facilitation provided by a solitary (isolated) P. albicaulis leading to tree island initiation may be important for different life-history stages for leeward conifers, but it is not known which life-history stages are influenced and protection provided. However, P. albicaulis mortality from the non-native pathogen Cronartium ribicola potentially disrupts these facilitative interactions, reducing tree island initiation. In two Rocky Mountain eastern slope study areas, we experimentally examined fundamental plant-plant interactions which might facilitate tree island formation: the protection offered by P. albicaulis to leeward seed and seedling life-history stages, and to leeward krummholz conifers. In the latter case, we simulated mortality from C. ribicola for windward P. albicaulis to determine whether loss of P. albicaulis from C. ribicola impacts leeward conifers. Relative to other common solitary conifers at treeline, solitary P. albicaulis had higher abundance. More seeds germinated in leeward rock microsites than in conifer or exposed microsites, but the odds of cotyledon seedling survival during the growing season were highest in P. albicaulis microsites. Planted seedling survival was low among all microsites examined. Simulating death of windward P. albicaulis by C. ribicola reduced shoot growth of leeward trees. Loss of P. albicaulis to exotic disease may limit facilitation interactions and conifer community development at treeline and potentially impede upward movement as climate warms.
Visual adaptation dominates bimodal visual-motor action adaptation
de la Rosa, Stephan; Ferstl, Ylva; Bülthoff, Heinrich H.
2016-01-01
A long standing debate revolves around the question whether visual action recognition primarily relies on visual or motor action information. Previous studies mainly examined the contribution of either visual or motor information to action recognition. Yet, the interaction of visual and motor action information is particularly important for understanding action recognition in social interactions, where humans often observe and execute actions at the same time. Here, we behaviourally examined the interaction of visual and motor action recognition processes when participants simultaneously observe and execute actions. We took advantage of behavioural action adaptation effects to investigate behavioural correlates of neural action recognition mechanisms. In line with previous results, we find that prolonged visual exposure (visual adaptation) and prolonged execution of the same action with closed eyes (non-visual motor adaptation) influence action recognition. However, when participants simultaneously adapted visually and motorically – akin to simultaneous execution and observation of actions in social interactions - adaptation effects were only modulated by visual but not motor adaptation. Action recognition, therefore, relies primarily on vision-based action recognition mechanisms in situations that require simultaneous action observation and execution, such as social interactions. The results suggest caution when associating social behaviour in social interactions with motor based information. PMID:27029781
Using tree diversity to compare phylogenetic heuristics.
Sul, Seung-Jin; Matthews, Suzanne; Williams, Tiffani L
2009-04-29
Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees-especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest.
Organizing Books and Authors by Multilayer SOM.
Zhang, Haijun; Chow, Tommy W S; Wu, Q M Jonathan
2016-12-01
This paper introduces a new framework for the organization of electronic books (e-books) and their corresponding authors using a multilayer self-organizing map (MLSOM). An author is modeled by a rich tree-structured representation, and an MLSOM-based system is used as an efficient solution to the organizational problem of structured data. The tree-structured representation formulates author features in a hierarchy of author biography, books, pages, and paragraphs. To efficiently tackle the tree-structured representation, we used an MLSOM algorithm that serves as a clustering technique to handle e-books and their corresponding authors. A book and author recommender system is then implemented using the proposed framework. The effectiveness of our approach was examined in a large-scale data set containing 3868 authors along with the 10500 e-books that they wrote. We also provided visualization results of MLSOM for revealing the relevance patterns hidden from presented author clusters. The experimental results corroborate that the proposed method outperforms other content-based models (e.g., rate adapting poisson, latent Dirichlet allocation, probabilistic latent semantic indexing, and so on) and offers a promising solution to book recommendation, author recommendation, and visualization.
A novel scene management technology for complex virtual battlefield environment
NASA Astrophysics Data System (ADS)
Sheng, Changchong; Jiang, Libing; Tang, Bo; Tang, Xiaoan
2018-04-01
The efficient scene management of virtual environment is an important research content of computer real-time visualization, which has a decisive influence on the efficiency of drawing. However, Traditional scene management methods do not suitable for complex virtual battlefield environments, this paper combines the advantages of traditional scene graph technology and spatial data structure method, using the idea of management and rendering separation, a loose object-oriented scene graph structure is established to manage the entity model data in the scene, and the performance-based quad-tree structure is created for traversing and rendering. In addition, the collaborative update relationship between the above two structural trees is designed to achieve efficient scene management. Compared with the previous scene management method, this method is more efficient and meets the needs of real-time visualization.
Software tool for data mining and its applications
NASA Astrophysics Data System (ADS)
Yang, Jie; Ye, Chenzhou; Chen, Nianyi
2002-03-01
A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.
Beyond Control Panels: Direct Manipulation for Visual Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; Bradel, Lauren; North, Chris
2013-07-19
Information Visualization strives to provide visual representations through which users can think about and gain insight into information. By leveraging the visual and cognitive systems of humans, complex relationships and phenomena occurring within datasets can be uncovered by exploring information visually. Interaction metaphors for such visualizations are designed to enable users direct control over the filters, queries, and other parameters controlling how the data is visually represented. Through the evolution of information visualization, more complex mathematical and data analytic models are being used to visualize relationships and patterns in data – creating the field of Visual Analytics. However, the expectationsmore » for how users interact with these visualizations has remained largely unchanged – focused primarily on the direct manipulation of parameters of the underlying mathematical models. In this article we present an opportunity to evolve the methodology for user interaction from the direct manipulation of parameters through visual control panels, to interactions designed specifically for visual analytic systems. Instead of focusing on traditional direct manipulation of mathematical parameters, the evolution of the field can be realized through direct manipulation within the visual representation – where users can not only gain insight, but also interact. This article describes future directions and research challenges that fundamentally change the meaning of direct manipulation with regards to visual analytics, advancing the Science of Interaction.« less
Undergraduate Students’ Difficulties in Reading and Constructing Phylogenetic Tree
NASA Astrophysics Data System (ADS)
Sa'adah, S.; Tapilouw, F. S.; Hidayat, T.
2017-02-01
Representation is a very important communication tool to communicate scientific concepts. Biologists produce phylogenetic representation to express their understanding of evolutionary relationships. The phylogenetic tree is visual representation depict a hypothesis about the evolutionary relationship and widely used in the biological sciences. Phylogenetic tree currently growing for many disciplines in biology. Consequently, learning about phylogenetic tree become an important part of biological education and an interesting area for biology education research. However, research showed many students often struggle with interpreting the information that phylogenetic trees depict. The purpose of this study was to investigate undergraduate students’ difficulties in reading and constructing a phylogenetic tree. The method of this study is a descriptive method. In this study, we used questionnaires, interviews, multiple choice and open-ended questions, reflective journals and observations. The findings showed students experiencing difficulties, especially in constructing a phylogenetic tree. The students’ responds indicated that main reasons for difficulties in constructing a phylogenetic tree are difficult to placing taxa in a phylogenetic tree based on the data provided so that the phylogenetic tree constructed does not describe the actual evolutionary relationship (incorrect relatedness). Students also have difficulties in determining the sister group, character synapomorphy, autapomorphy from data provided (character table) and comparing among phylogenetic tree. According to them building the phylogenetic tree is more difficult than reading the phylogenetic tree. Finding this studies provide information to undergraduate instructor and students to overcome learning difficulties of reading and constructing phylogenetic tree.
Fichtner, Andreas; Forrester, David I.; Härdtle, Werner; Sturm, Knut; von Oheimb, Goddert
2015-01-01
The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services. PMID:25803035
Fichtner, Andreas; Forrester, David I; Härdtle, Werner; Sturm, Knut; von Oheimb, Goddert
2015-01-01
The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services.
Record of the Solar Activity and of Other Geophysical Phenomenons in Tree Ring
NASA Astrophysics Data System (ADS)
Rigozo, Nivaor Rodolfo
1999-01-01
Tree ring studies are usually used to determine or verify climatic factors which prevail in a given place or region and may cause tree ring width variations. Few studies are dedicated to the geophysical phenomena which may underlie these tree ring width variations. In order to look for periodicities which may be associated to the solar activity and/or to other geophysical phenomena which may influence tree ring growth, a new interactive image analysis method to measure tree ring width was developed and is presented here. This method makes use of a computer and a high resolution flatbed scanner; a program was also developed in Interactive Data Language (IDL 5.0) to study ring digitized images and transform them into time series. The main advantage of this method is the tree ring image interactive analysis without needing complex and high cost instrumentation. Thirty-nine samples were collected: 12 from Concordia - S. C., 9 from Canela - R. S., 14 from Sao Francisco de Paula - R. S., one from Nova Petropolis - R. S., 2 from Sao Martinho da Serra - R. S. e one from Chile. Fit functions are applied to ring width time series to obtain the best long time range trend (growth rate of every tree) curves and are eliminated through a standardization process that gives the tree ring index time series from which is performed spectral analysis by maximum entropy method and iterative regression. The results obtained show periodicities close to 11 yr, 22 yr Hale solar cycles and 5.5 yr for all sampling locations 52 yr and Gleissberg cycles for Concordia - S. C. and Chile samples. El Nino events were also observed with periods around 4 e 7 yr.
Trotter, R. Talbot; Cobb, Neil S.; Whitham, Thomas G.
2002-01-01
To understand climate change, dendrochronologists have used tree ring analyses to reconstruct past climates, as well as ecological processes such as herbivore population dynamics. Such reconstructions, however, have been hindered by a lack of experiments that separate the influences of confounding impacts on tree rings, such as herbivores and the interactions of multiple factors. Our long-term experiments with scale insects on resistant and susceptible pines demonstrate three major points that are important to the application of this commonly used tool. (i) Herbivory reduced tree ring growth by 25–35%. (ii) The impact on ring growth distorted climate reconstruction, resulting in the overestimation of past moisture levels by more than 2-fold. Our data suggest that, if distortion because of herbivory has been a problem in previous reconstructions, estimates of the magnitude of recent climate changes are likely to be conservative. (iii) Our studies support a detectible plant resistance × herbivore × climate interaction in the tree ring record. Because resistance and susceptibility to herbivory are known to be genetically based in many systems, the potential exists to incorporate plant genetics into the field of dendrochronology, where it may be used to screen distortions from the tree ring record. PMID:12110729
Benktesh D. Sharma; Jingxin Wang; Gary Miller
2008-01-01
Tree spatial patterns were characterized for a 75-year-old mixed hardwood forest dominated by northern red oak, chestnut oak, red maple and yellow-poplar. All trees ≥5 inches diameter at breast height (d.b.h.) were measured for diameter, total height, crown height, and crown width along with their locations in the field over an area of 8 acres. The spatial...
Reconstructing the spatial pattern of trees from routine stand examination measurements
Hanus, M.L.; Hann, D.W.; Marshall, D.D.
1998-01-01
Reconstruction of the spatial pattern of trees is important for the accurate visual display of unmapped stands. The proposed process for generating the spatial pattern is a nonsimple sequential inhibition process, with the inhibition zone proportionate to the scaled maximum crown width of an open-grown tree of the same species and same diameter at breast height as the subject tree. The results of this coordinate generation procedure are compared with mapped stem data from nine natural stands of Douglas-fir at two ages by the use of a transformed Ripley's K(d) function. The results of this comparison indicate that the proposed method, based on complete tree lists, successfully replicated the spatial patterns of the trees in all nine stands at both ages and over the range of distances examined. On the basis of these findings and the procedure's ability to model effects through time, the nonsimple sequential inhibition process has been chosen to generate tree coordinates in the VIZ4ST computer program for displaying forest stand structure in naturally regenerated young Douglas-fir stands. For. Sci.
Tree Cover Mapping Tool—Documentation and user manual
Cotillon, Suzanne E.; Mathis, Melissa L.
2016-06-02
The Tree Cover Mapping (TCM) tool was developed by scientists at the U.S. Geological Survey Earth Resources Observation and Science Center to allow a user to quickly map tree cover density over large areas using visual interpretation of high resolution imagery within a geographic information system interface. The TCM tool uses a systematic sample grid to produce maps of tree cover. The TCM tool allows the user to define sampling parameters to estimate tree cover within each sample unit. This mapping method generated the first on-farm tree cover maps of vast regions of Niger and Burkina Faso. The approach contributes to implementing integrated landscape management to scale up re-greening and restore degraded land in the drylands of Africa. The TCM tool is easy to operate, practical, and can be adapted to many other applications such as crop mapping, settlements mapping, or other features. This user manual provides step-by-step instructions for installing and using the tool, and creating tree cover maps. Familiarity with ArcMap tools and concepts is helpful for using the tool.
Mutualism between tree shrews and pitcher plants: perspectives and avenues for future research.
Clarke, Charles; Moran, Jonathan A; Chin, Lijin
2010-10-01
Three species of Nepenthes pitcher plants from Borneo engage in a mutualistic interaction with mountain tree shrews, the basis of which is the exchange of nutritional resources. The plants produce modified "toilet pitchers" that produce copious amounts of exudates, the latter serving as a food source for tree shrews. The exudates are only accessible to the tree shrews when they position their hindquarters over the pitcher orifice. Tree shrews mark valuable resources with faeces and regularly defecate into the pitchers when they visit them to feed. Faeces represent a valuable source of nitrogen for these Nepenthes species, but there are many facets of the mutualism that are yet to be investigated. These include, but are not limited to, seasonal variation in exudate production rates by the plants, behavioral ecology of visiting tree shrews, and the mechanism by which the plants signal to tree shrews that their pitchers represent a food source. Further research into this extraordinary animal-plant interaction is required to gain a better understanding of the benefits to the participating species. © 2010 Landes Bioscience
Mokany, Karel; McMurtrie, Ross E; Atwell, Brian J; Keith, Heather
2003-10-01
In native stands of Eucalyptus delegatensis R. T. Baker, sapwood area (As) to foliage area (Af) ratios (As:Af) decreased as tree height increased, contradicting the common interpretation of the Pipe Model Theory as well as the generally observed trend of increasing As:Af ratios with tree height. To clarify this relationship, we estimated sapwood hydraulic conductivity theoretically based on measurements of sapwood vessel diameters and Poiseuille's law for fluid flow through pipes. Despite the observed decrease in As:Af ratios with tree height, leaf specific conductivity increased with total tree height, largely as a result of an increase in the specific conductivity of sapwood. This observation supports the proposition that the stem's ability to supply foliage with water must increase as trees grow taller, to compensate for the increased hydraulic path length. The results presented here highlight the importance of measuring sapwood hydraulic conductivity in analyses of sapwood-foliage interactions, and suggest that measurements of sapwood hydraulic conductivity may help to resolve conflicting observations of how As:Af ratios change as trees grow taller.
Tree damage from skyline logging in a western larch/Douglas-fir stand
Robert E. Benson; Michael J. Gonsior
1981-01-01
Damage to shelterwood leave trees and to understory trees in shelterwood and clearcut logging units logged with skyline yarders was measured, and related to stand conditions, harvesting specifications, and yarding system-terrain interactions. About 23 percent of the marked leave trees in the shelterwood units were killed in logging, and about 10 percent had moderate to...
Vivanco, Lucía; Rascovan, Nicolás; Austin, Amy T
2018-01-01
Plant-microbial interactions in the litter layer represent one of the most relevant interactions for biogeochemical cycling as litter decomposition is a key first step in carbon and nitrogen turnover. However, our understanding of these interactions in the litter layer remains elusive. In an old-growth mixed Nothofagus forest in Patagonia, we studied the effects of single tree species identity and the mixture of three tree species on the fungal and bacterial composition in the litter layer. We also evaluated the effects of nitrogen (N) addition on these plant-microbial interactions. In addition, we compared the magnitude of stimulation of litter decomposition due to home field advantage (HFA, decomposition occurs more rapidly when litter is placed beneath the plant species from which it had been derived than beneath a different plant species) and N addition that we previously demonstrated in this same forest, and used microbial information to interpret these results. Tree species identity had a strong and significant effect on the composition of fungal communities but not on the bacterial community of the litter layer. The microbial composition of the litter layer under the tree species mixture show an averaged contribution of each single tree species. N addition did not erase the plant species footprint on the fungal community, and neither altered the bacterial community. N addition stimulated litter decomposition as much as HFA for certain tree species, but the mechanisms behind N and HFA stimulation may have differed. Our results suggest that stimulation of decomposition from N addition might have occurred due to increased microbial activity without large changes in microbial community composition, while HFA may have resulted principally from plant species' effects on the litter fungal community. Together, our results suggest that plant-microbial interactions can be an unconsidered driver of litter decomposition in temperate forests.
Garzon-Lopez, Carol X; Ballesteros-Mejia, Liliana; Ordoñez, Alejandro; Bohlman, Stephanie A; Olff, Han; Jansen, Patrick A
2015-08-01
The coexistence of numerous tree species in tropical forests is commonly explained by negative dependence of recruitment on the conspecific seed and tree density due to specialist natural enemies that attack seeds and seedlings ('Janzen-Connell' effects). Less known is whether guilds of shared seed predators can induce a negative dependence of recruitment on the density of different species of the same plant functional group. We studied 54 plots in tropical forest on Barro Colorado Island, Panama, with contrasting mature tree densities of three coexisting large seeded tree species with shared seed predators. Levels of seed predation were far better explained by incorporating seed densities of all three focal species than by conspecific seed density alone. Both positive and negative density dependencies were observed for different species combinations. Thus, indirect interactions via shared seed predators can either promote or reduce the coexistence of different plant functional groups in tropical forest. © 2015 John Wiley & Sons Ltd/CNRS.
Polakova, Katerina; Mocikova, Ingrid; Purova, Dana; Tucek, Pavel; Novak, Pavel; Novotna, Katerina; Izak, Niko; Bielik, Radoslav; Zboril, Radek; Miroslav, Herman
2016-12-01
Magnetic resonance cholangiopancreatography (MRCP) is often used for imaging of the biliary tree and is required by surgeons before liver transplantation. Advanced liver cirrhosis and ascites in patients however present diagnostic problems for MRCP. The aim of this study was to find out if the use of our negative per-oral contrast agent containing superparamagnetic iron oxide nanoparticles (SPIO) in MRCP is helpful for imaging of hepatobiliary tree in patients with liver cirrhosis. Forty patients with liver cirrhosis were examined on a 1.5 T MR unit using standard MRCP protocol. Twenty patients (group A) underwent MRCP after administration of per-oral SPIO contrast agent 30 min before examination. In group B, twenty patients were examined without per-oral bowel preparation. Ascites was present in eleven patients from group A and in thirteen patients in group B. Four radiologists analyzed MR images for visibility and delineation of the biliary tree. χ 2 tests were used for comparison of the visibility of intrahepatic and extrahepatic biliary ducts in patients with and without ascites. Better extrahepatic biliary duct visualization and visibility of extraluminal pathologies in patients with ascites was proved after administration of SPIO contrast agent. No statistically significant difference between group A and B was found for visualization of extrahepatic biliary ducts in patients without ascites. Delineation of intrahepatic biliary ducts was independent on bowel preparation. Application of our negative per-oral SPIO contrast agent before MRCP improves the visualization of extrahepatic biliary ducts in patients with ascites which is helpful during the liver surgery, mainly in liver transplantation.
Jon Sweeney; Jessica Price; Wayne MacKay; Bob Guscott; Peter de Groot; Jerzy Gutowski
2007-01-01
The brown spruce longhorn beetle, Tetropium fuscum (F.) (Coleoptera: Cerambycidae), (BSLB) native to northern and central Europe, has been the focus of a containment and eradication program by the Canadian Food Inspection Agency in the city of Halifax, Nova Scotia, since May 2000. Surveys are conducted using host volatile-baited traps and visual...
Albert (Bud) Mayfield; Cavell Brownie
2013-01-01
The redbay ambrosia beetle (Syleborus glabratus Eichhoff) is an invasive pest and vector of the pathogen that causes laurel wilt disease in Lauraceous tree species in the eastern United States. This insect uses olfactory cues during host finding, but use of visual cues by X. Glabratus has not been previously investigated and may help explain diameter...
Correlation Based Target Location and Identification
1992-12-01
Research Daugman (7) cites research on the mammalian visual nervous system (retina, lateral geniculate , and primary visual cortex) as motivation for...brains, they can still sort slides into natural categories such as people, trees, and bodies of water, a capability that humans do easily. As such...critical neurobiological variables of a given neuron’s orientation and spatial frequency preference, the tuning bandwidths for these variables, the
Interaction Junk: User Interaction-Based Evaluation of Visual Analytic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; North, Chris
2012-10-14
With the growing need for visualization to aid users in understanding large, complex datasets, the ability for users to interact and explore these datasets is critical. As visual analytic systems have advanced to leverage powerful computational models and data analytics capabilities, the modes by which users engage and interact with the information are limited. Often, users are taxed with directly manipulating parameters of these models through traditional GUIs (e.g., using sliders to directly manipulate the value of a parameter). However, the purpose of user interaction in visual analytic systems is to enable visual data exploration – where users can focusmore » on their task, as opposed to the tool or system. As a result, users can engage freely in data exploration and decision-making, for the purpose of gaining insight. In this position paper, we discuss how evaluating visual analytic systems can be approached through user interaction analysis, where the goal is to minimize the cognitive translation between the visual metaphor and the mode of interaction (i.e., reducing the “Interactionjunk”). We motivate this concept through a discussion of traditional GUIs used in visual analytics for direct manipulation of model parameters, and the importance of designing interactions the support visual data exploration.« less
Wolfe, C R
2001-02-01
Analogy and metaphor are figurative forms of communication that help people integrate new information with prior knowledge to facilitate comprehension and appropriate inferences. The novelty and versatility of the Web place cognitive burdens on learners that can be overcome through the use of analogies and metaphors. This paper explores three uses of figurative communication as design elements in Web-based learning environments, and provides empirical illustrations of each. First, extended analogies can be used as the basis of cover stories that create an analogy between the learner's position and a hypothetical situation. The Dragonfly Web pages make extensive use of analogous cover stories in the design of interactive decision-making games. Feedback from visitors, patterns of usage, and external reviews provide evidence of effectiveness. A second approach is visual analogies based on the principles of ecological psychology. An empirical example suggests that visual analogies are most effective when there is a one-to-one correspondence between the base and visual target analogs. The use of learner-generated analogies is a third approach. Data from an offline study with undergraduate science students are presented indicating that generating analogies are associated with significant improvements in the ability to place events in natural history on a time line. It is concluded that cyberspace itself might form the basis of the next guiding metaphor of mind.
Chapter 20: geographic variability in growth of forest trees
Robert Z. Callaham
1962-01-01
Tree growth, like all plant characters, is a product of the interaction of genes and environment; however, the genes, environment, and interaction are not the same for every individual of a species. Genes exert master control over the plant's growth mechanisms. They control mechanisms for responding to environment and for utilizing environment in growth. Usually...
Tree-mediated interactions between the jack pine budworm and a mountain pine beetle fungal
Nadir Erbilgin; Jessie Colgan
2012-01-01
Coniferous trees deploy a combination of constitutive (pre-existing) and induced (post-invasion) structural and biochemical defenses against invaders. Induced responses can also alter host suitability for other organisms sharing the same host, which may result in indirect, plant-mediated, interactions between different species of attacking organisms. Current range and...
Branch: an interactive, web-based tool for testing hypotheses and developing predictive models.
Gangavarapu, Karthik; Babji, Vyshakh; Meißner, Tobias; Su, Andrew I; Good, Benjamin M
2016-07-01
Branch is a web application that provides users with the ability to interact directly with large biomedical datasets. The interaction is mediated through a collaborative graphical user interface for building and evaluating decision trees. These trees can be used to compose and test sophisticated hypotheses and to develop predictive models. Decision trees are built and evaluated based on a library of imported datasets and can be stored in a collective area for sharing and re-use. Branch is hosted at http://biobranch.org/ and the open source code is available at http://bitbucket.org/sulab/biobranch/ asu@scripps.edu or bgood@scripps.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Mhatre, Natasha; Pollack, Gerald; Mason, Andrew
2016-04-01
Tree cricket males produce tonal songs, used for mate attraction and male-male interactions. Active mechanics tunes hearing to conspecific song frequency. However, tree cricket song frequency increases with temperature, presenting a problem for tuned listeners. We show that the actively amplified frequency increases with temperature, thus shifting mechanical and neuronal auditory tuning to maintain a match with conspecific song frequency. Active auditory processes are known from several taxa, but their adaptive function has rarely been demonstrated. We show that tree crickets harness active processes to ensure that auditory tuning remains matched to conspecific song frequency, despite changing environmental conditions and signal characteristics. Adaptive tuning allows tree crickets to selectively detect potential mates or rivals over large distances and is likely to bestow a strong selective advantage by reducing mate-finding effort and facilitating intermale interactions. © 2016 The Author(s).
An Exploratory Study of Interactivity in Visualization Tools: "Flow" of Interaction
ERIC Educational Resources Information Center
Liang, Hai-Ning; Parsons, Paul C.; Wu, Hsien-Chi; Sedig, Kamran
2010-01-01
This paper deals with the design of interactivity in visualization tools. There are several factors that can be used to guide the analysis and design of the interactivity of these tools. One such factor is flow, which is concerned with the duration of interaction with visual representations of information--interaction being the actions performed…
Tálamo, Andrés; Barchuk, Alicia H; Garibaldi, Lucas A; Trucco, Carlos E; Cardozo, Silvana; Mohr, Federico
2015-07-01
Successful persistence of dry forests depends on tree regeneration, which depends on a balance of complex biotic interactions. In particular, the relative importance and interactive effects of shrubs and herbivores on tree regeneration are unclear. In a manipulative study, we investigated if thornless shrubs have a direct net effect, an indirect positive effect mediated by livestock, and/or an indirect negative effect mediated by small vertebrates on tree regeneration of two key species of Chaco forest (Argentina). In a spatial association study, we also explored the existence of net positive interactions from thorny and thornless shrubs. The number of Schinopsis lorentzii seedlings was highest under artificial shade with native herbivores and livestock excluded. Even excluding livestock, no seedlings were found with natural conditions (native herbivores present with natural shade or direct sunlight) at the end of the experiment. Surprisingly, seedling recruitment was not enhanced under thornless shrubs, because there was a complementary positive effect of shade and interference. Moreover, thornless shrubs had neither positive nor negative effects on regeneration of S. lorentzii. Regeneration of Aspidosperma quebracho-blanco was minimal in all treatments. In agreement with the experiment, spatial distributions of saplings of both tree species were independent of thornless shrubs, but positively associated with thorny shrubs. Our results suggest that in general thornless shrubs may have a negligible effect and thorny shrubs a net positive effect on tree regeneration in dry forests. These findings provide a conceptual framework for testing the impact of biotic interactions on seedling recruitment in other dry forests.
The dynamics of strangling among forest trees.
Okamoto, Kenichi W
2015-11-07
Strangler trees germinate and grow on other trees, eventually enveloping and potentially even girdling their hosts. This allows them to mitigate fitness costs otherwise incurred by germinating and competing with other trees on the forest floor, as well as minimize risks associated with host tree-fall. If stranglers can themselves host other strangler trees, they may not even seem to need non-stranglers to persist. Yet despite their high fitness potential, strangler trees neither dominate the communities in which they occur nor is the strategy particularly common outside of figs (genus Ficus). Here we analyze how dynamic interactions between strangling and non-strangling trees can shape the adaptive landscape for strangling mutants and mutant trees that have lost the ability to strangle. We find a threshold which strangler germination rates must exceed for selection to favor the evolution of strangling, regardless of how effectively hemiepiphytic stranglers may subsequently replace their hosts. This condition describes the magnitude of the phenotypic displacement in the ability to germinate on other trees necessary for invasion by a mutant tree that could potentially strangle its host following establishment as an epiphyte. We show how the relative abilities of strangling and non-strangling trees to occupy empty sites can govern whether strangling is an evolutionarily stable strategy, and obtain the conditions for strangler coexistence with non-stranglers. We then elucidate when the evolution of strangling can disrupt stable coexistence between commensal epiphytic ancestors and their non-strangling host trees. This allows us to highlight parallels between the invasion fitness of strangler trees arising from commensalist ancestors, and cases where strangling can arise in concert with the evolution of hemiepiphytism among free-standing ancestors. Finally, we discuss how our results can inform the evolutionary ecology of antagonistic interactions more generally. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.
2010-01-01
New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.
Effects of visual and verbal interaction on unintentional interpersonal coordination.
Richardson, Michael J; Marsh, Kerry L; Schmidt, R C
2005-02-01
Previous research has demonstrated that people's movements can become unintentionally coordinated during interpersonal interaction. The current study sought to uncover the degree to which visual and verbal (conversation) interaction constrains and organizes the rhythmic limb movements of coactors. Two experiments were conducted in which pairs of participants completed an interpersonal puzzle task while swinging handheld pendulums with instructions that minimized intentional coordination but facilitated either visual or verbal interaction. Cross-spectral analysis revealed a higher degree of coordination for conditions in which the pairs were visually coupled. In contrast, verbal interaction alone was not found to provide a sufficient medium for unintentional coordination to occur, nor did it enhance the unintentional coordination that emerged during visual interaction. The results raise questions concerning differences between visual and verbal informational linkages during interaction and how these differences may affect interpersonal movement production and its coordination.
Tree species exhibit complex patterns of distribution in bottomland hardwood forests
Luben D Dimov; Jim L Chambers; Brian R. Lockhart
2013-01-01
& Context Understanding tree interactions requires an insight into their spatial distribution. & Aims We looked for presence and extent of tree intraspecific spatial point pattern (random, aggregated, or overdispersed) and interspecific spatial point pattern (independent, aggregated, or segregated). & Methods We established twelve 0.64-ha plots in natural...
Interactive Learning System "VisMis" for Scientific Visualization Course
ERIC Educational Resources Information Center
Zhu, Xiaoming; Sun, Bo; Luo, Yanlin
2018-01-01
Now visualization courses have been taught at universities around the world. Keeping students motivated and actively engaged in this course can be a challenging task. In this paper we introduce our developed interactive learning system called VisMis (Visualization and Multi-modal Interaction System) for postgraduate scientific visualization course…
Data-Parallel Algorithm for Contour Tree Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sewell, Christopher Meyer; Ahrens, James Paul; Carr, Hamish
2017-01-19
The goal of this project is to develop algorithms for additional visualization and analysis filters in order to expand the functionality of the VTK-m toolkit to support less critical but commonly used operators.
Visualizing blood vessel trees in three dimensions: clinical applications
NASA Astrophysics Data System (ADS)
Bullitt, Elizabeth; Aylward, Stephen
2005-04-01
A connected network of blood vessels surrounds and permeates almost every organ of the human body. The ability to define detailed blood vessel trees enables a variety of clinical applications. This paper discusses four such applications and some of the visualization challenges inherent to each. Guidance of endovascular surgery: 3D vessel trees offer important information unavailable by traditional x-ray projection views. How best to combine the 2- and 3D image information is unknown. Planning/guidance of tumor surgery: During tumor resection it is critical to know which blood vessels can be interrupted safely and which cannot. Providing efficient, clear information to the surgeon together with measures of uncertainty in both segmentation and registration can be a complex problem. Vessel-based registration: Vessel-based registration allows pre-and intraoperative images to be registered rapidly. The approach both provides a potential solution to a difficult clinical dilemma and offers a variety of visualization opportunities. Diagnosis/staging of disease: Almost every disease affects blood vessel morphology. The statistical analysis of vessel shape may thus prove to be an important tool in the noninvasive analysis of disease. A plethora of information is available that must be presented meaningfully to the clinician. As medical image analysis methods increase in sophistication, an increasing amount of useful information of varying types will become available to the clinician. New methods must be developed to present a potentially bewildering amount of complex data to individuals who are often accustomed to viewing only tissue slices or flat projection views.
Validating automatic semantic annotation of anatomy in DICOM CT images
NASA Astrophysics Data System (ADS)
Pathak, Sayan D.; Criminisi, Antonio; Shotton, Jamie; White, Steve; Robertson, Duncan; Sparks, Bobbi; Munasinghe, Indeera; Siddiqui, Khan
2011-03-01
In the current health-care environment, the time available for physicians to browse patients' scans is shrinking due to the rapid increase in the sheer number of images. This is further aggravated by mounting pressure to become more productive in the face of decreasing reimbursement. Hence, there is an urgent need to deliver technology which enables faster and effortless navigation through sub-volume image visualizations. Annotating image regions with semantic labels such as those derived from the RADLEX ontology can vastly enhance image navigation and sub-volume visualization. This paper uses random regression forests for efficient, automatic detection and localization of anatomical structures within DICOM 3D CT scans. A regression forest is a collection of decision trees which are trained to achieve direct mapping from voxels to organ location and size in a single pass. This paper focuses on comparing automated labeling with expert-annotated ground-truth results on a database of 50 highly variable CT scans. Initial investigations show that regression forest derived localization errors are smaller and more robust than those achieved by state-of-the-art global registration approaches. The simplicity of the algorithm's context-rich visual features yield typical runtimes of less than 10 seconds for a 5123 voxel DICOM CT series on a single-threaded, single-core machine running multiple trees; each tree taking less than a second. Furthermore, qualitative evaluation demonstrates that using the detected organs' locations as index into the image volume improves the efficiency of the navigational workflow in all the CT studies.
Modeling and visualizing cell type switching.
Ghaffarizadeh, Ahmadreza; Podgorski, Gregory J; Flann, Nicholas S
2014-01-01
Understanding cellular differentiation is critical in explaining development and for taming diseases such as cancer. Differentiation is conventionally represented using bifurcating lineage trees. However, these lineage trees cannot readily capture or quantify all the types of transitions now known to occur between cell types, including transdifferentiation or differentiation off standard paths. This work introduces a new analysis and visualization technique that is capable of representing all possible transitions between cell states compactly, quantitatively, and intuitively. This method considers the regulatory network of transcription factors that control cell type determination and then performs an analysis of network dynamics to identify stable expression profiles and the potential cell types that they represent. A visualization tool called CellDiff3D creates an intuitive three-dimensional graph that shows the overall direction and probability of transitions between all pairs of cell types within a lineage. In this study, the influence of gene expression noise and mutational changes during myeloid cell differentiation are presented as a demonstration of the CellDiff3D technique, a new approach to quantify and envision all possible cell state transitions in any lineage network.
Housing Shortages in Urban Regions: Aggressive Interactions at Tree Hollows in Forest Remnants
Davis, Adrian; Major, Richard E.; Taylor, Charlotte E.
2013-01-01
Urbanisation typically results in a reduction of hollow-bearing trees and an increase in the density of particularly species, potentially resulting in an increased level of competition as cavity-nesting species compete for a limited resource. To improve understanding of hollow usage between urban cavity-nesting species in Australia, particularly parrots, we investigated how the hollow-using assemblage, visitation rate, diversity and number of interactions varied between hollows within urban remnant forest and continuous forest. Motion-activated video cameras were installed, via roped access to the canopy, and hollow usage was monitored at 61 hollows over a two-year period. Tree hollows within urban remnants had a significantly different assemblage of visitors to those in continuous forest as well as a higher rate of visitation than hollows within continuous forest, with the rainbow lorikeet making significantly more visitations than any other taxa. Hollows within urban remnants were characterised by significantly higher usage rates and significantly more aggressive interactions than hollows within continuous forest, with parrots responsible for almost all interactions. Within urban remnants, high rates of hollow visitation and both interspecific and intraspecific interactions observed at tree hollows suggest the number of available optimal hollows may be limiting. Understanding the usage of urban remnant hollows by wildlife, as well as the role of parrots as a potential flagship for the conservation of tree-hollows, is vital to prevent a decrease in the diversity of urban fauna, particularly as other less competitive species risk being outcompeted by abundant native species. PMID:23555657
Tingstad, Lise; Olsen, Siri Lie; Klanderud, Kari; Vandvik, Vigdis; Ohlson, Mikael
2015-10-01
Seedling recruitment is a critical life history stage for trees, and successful recruitment is tightly linked to both abiotic factors and biotic interactions. In order to better understand how tree species' distributions may change in response to anticipated climate change, more knowledge of the effects of complex climate and biotic interactions is needed. We conducted a seed-sowing experiment to investigate how temperature, precipitation and biotic interactions impact recruitment of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings in southern Norway. Seeds were sown into intact vegetation and experimentally created gaps. To study the combined effects of temperature and precipitation, the experiment was replicated across 12 sites, spanning a natural climate gradient from boreal to alpine and from sub-continental to oceanic. Seedling emergence and survival were assessed 12 and 16 months after sowing, respectively, and above-ground biomass and height were determined at the end of the experiment. Interestingly, very few seedlings were detected in the boreal sites, and the highest number of seedlings emerged and established in the alpine sites, indicating that low temperature did not limit seedling recruitment. Site precipitation had an overall positive effect on seedling recruitment, especially at intermediate precipitation levels. Seedling emergence, establishment and biomass were higher in gap plots compared to intact vegetation at all temperature levels. These results suggest that biotic interactions in the form of competition may be more important than temperature as a limiting factor for tree seedling recruitment in the sub- and low-alpine zone of southern Norway.
Analyzing and synthesizing phylogenies using tree alignment graphs.
Smith, Stephen A; Brown, Joseph W; Hinchliff, Cody E
2013-01-01
Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe.
Analyzing and Synthesizing Phylogenies Using Tree Alignment Graphs
Smith, Stephen A.; Brown, Joseph W.; Hinchliff, Cody E.
2013-01-01
Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe. PMID:24086118
1. We investigated the potential of cross-scale interactions to affect the outcome of density reduction in a large-scale silvicultural experiment. 2. We measured tree growth and intrinsic water-use efficiency (iWUE) based on stable carbon isotopes (13C) to investigate the...
Modeling transcriptional networks regulating secondary growth and wood formation in forest trees
Lijun Liu; Vladimir Filkov; Andrew Groover
2013-01-01
The complex interactions among the genes that underlie a biological process can be modeled and presented as a transcriptional network, in which genes (nodes) and their interactions (edges) are shown in a graphical form similar to a wiring diagram. A large number of genes have been identified that are expressed during the radial woody growth of tree stems (secondary...
Use of Automatic Interaction Detector in Monitoring Faculty Salaries. AIR 1983 Annual Forum Paper.
ERIC Educational Resources Information Center
Cohen, Margaret E.
A university's use of the Automatic Interaction Detector (AID) to monitor faculty salary data is described. The first step consists of examining a tree diagram and summary table produced by AID. The tree is used to identify the characteristics of faculty at different salary levels. The table is used to determine the explanatory power of the…
Yu Liang; Matthew J. Duveneck; Eric J. Gustafson; Josep M. Serra-Diaz; Jonathan R. Thompson
2018-01-01
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change,...
OpenGL in Multi-User Web-Based Applications
NASA Astrophysics Data System (ADS)
Szostek, K.; Piórkowski, A.
In this article construction and potential of OpenGL multi-user web-based application are presented. The most common technologies like: .NET ASP, Java and Mono were used with specific OpenGL libraries to visualize tree-dimensional medical data. The most important conclusion of this work is that server side applications can easily take advantage of fast GPU and produce efficient results of advanced computation just like the visualization.
WebScope: A New Tool for Fusion Data Analysis and Visualization
NASA Astrophysics Data System (ADS)
Yang, Fei; Dang, Ningning; Xiao, Bingjia
2010-04-01
A visualization tool was developed through a web browser based on Java applets embedded into HTML pages, in order to provide a world access to the EAST experimental data. It can display data from various trees in different servers in a single panel. With WebScope, it is easier to make a comparison between different data sources and perform a simple calculation over different data sources.
NASA Astrophysics Data System (ADS)
Corenblit, Dov; Garófano-Gómez, Virginia; González, Eduardo; Hortobágyi, Borbála; Julien, Frédéric; Lambs, Luc; Otto, Thierry; Roussel, Erwan; Steiger, Johannes; Tabacchi, Eric; Till-Bottraud, Irène
2018-03-01
Within riparian corridors, Salicaceae trees and shrubs affect hydrogeomorphic processes and lead to the formation of wooded fluvial landforms. These trees form dense stands and enhance plant anchorage, as grouped plants are less prone to be uprooted than free-standing individuals. This also enhances their role as ecosystem engineers through the trapping of sediment, organic matter, and nutrients. The landform formation caused by these wooded biogeomorphic landforms probably represents a positive niche construction, which ultimately leads, through facilitative processes, to an improved capacity of the individual trees to survive, exploit resources, and reach sexual maturity in the interval between destructive floods. The facilitative effects of riparian vegetation are well established; however, the nature and intensity of biotic interactions among trees of the same species forming dense woody stands and constructing the niche remain unclear. Our hypothesis is that the niche construction process also comprises more direct intraspecific interactions, such as cooperation or altruism. Our aim in this paper is to propose an original theoretical framework for positive intraspecific interactions among riparian Salicaceae species operating from establishment to sexual maturity. Within this framework, we speculate that (i) positive intraspecific interactions among trees are maximized in dynamic river reaches; (ii) during establishment, intraspecific facilitation (or helping) occurs among trees and this leads to the maintenance of a dense stand that improves survival and growth because saplings protect each other from shear stress and scour; (iii) in addition to the improved capacity to trap mineral and organic matter, individuals that constitute the dense stand can cooperate to mutually support a mycorrhizal network that will connect plants, soil, and groundwater and influence nutrient transfer, cycling, and storage within the shared constructed niche; (iv) during post-establishment, roots form functional grafts between neighbouring trees to increase biomechanical and physiological anchorage as well as nutrient acquisition and exchange; and (v) these stands remain dense on alluvial bars until a threshold of landform construction and hydrogeomorphic disconnection is reached. At this last stage, intraspecific competition for resources (light and nutrients) increases, inducing a density reduction in the aerial stand (i.e., self-thinning), but root systems of altruistic individuals could remain functional via root grafting. Finally, we suggest new methodological perspectives for testing our hypotheses related to the occurrence of positive intraspecific interactions among Salicaceae trees in fluvial landform and niche construction through in situ and ex situ experiments.
NASA Astrophysics Data System (ADS)
Grams, Thorsten
2017-04-01
Understanding biotic interactions among tree species with their microbial associates under drought will be crucial for silviculture in meeting ecological challenges of the future. This contribution gives an overview on a project integrating a throughfall-exclusion experiment (TEE) on adult trees with a natural precipitation gradient (PGR) in central European forests. Focus is on drought affecting species interaction above and belowground, including associated ectomycorrhizal (ECM) communities. Study objects are pure and mixed forests dominated by adult European beech and Norway spruce trees (c. 70-years old). At the throughfall-exclusion experiment (TEE), trees are readily accessible via scaffolding and canopy crane (Kranzberg Forest, southern Germany). Effects of experimentally induced, repeated summer drought are assessed with roughly 100 trees assigned to a total of 12 plots (Kranzberg forest ROOF experiment, kroof.wzw.tum.de). The summer drought treatment started in 2014 and was repeated in 2015 and 2106. The focus on species interaction is intensified by a parallel study along a natural precipitation gradient with plot triplets of monocultures and mixed cultures of European beech and Norway spruce at each of the five study sites. Complementary resource use, effects of competitive vs. facilitation and related changes in ECM communities are exemplified for the two tree species of contrasting foliage (i.e. deciduous vs. evergreen) and stomatal sensitivity to drought (i.e. an-isohydric vs. isohydric behavior). At the TEE site, precipitation throughfall was completely excluded from early spring to late fall (i.e. March to November), resulting in pre-dawn leaf water potentials of both beech and spruce as low as -2.5 MPa. Despite significant reductions in growth and rate of photosynthesis by up to 80% under drought, NSC budget of trees was hardly affected. Moreover, phloem functionality, tested as phloem transport velocity through 13C-labeling of recent photoassimilates, remained unaffected. The link between photosynthesis and stem cellulose (DBH) was assessed based on natural abundance of delta13C and delta18O. Under drought, mixing of recent photoassimilates with older carbohydrates during phloem transport significantly affected isotopic signatures of transported sucrose, diminishing the impact of drought. A quantitative relationship of this mixing effect (i.e. uncoupling of photosynthetic fractionation at the leaf level and isotopic signatures in stem cellulose) was established. Belowground, a distinct decline in fine root biomass, in particular in spruce, was observed. Along that line, repeated summer drought affected species composition of associated ECM fungi in both species. In particular, changes of ECM exploration types (i.e. contact/short-distance vs. long distance) may be related to C shortage of trees. Along the natural precipitation gradient (PGR), basal area increment of tree stems (DBH) was related to 13C discrimination in tree rings. Carbon isotope signatures proved to be a more sensible indicator of tree responses to drought that BAI. Sensitivity of trees was significantly affected by growth conditions, i.e. growth in mono- vs. mixed culture. Higher drought resistance was displayed by spruce on drier sites (i.e. habituation effect) and, conversely, by beech on moist sites, in particular when grown in mixture with spruce.
Sargeant, Tobias; Laperrière, David; Ismail, Houssam; Boucher, Geneviève; Rozendaal, Marieke; Lavallée, Vincent-Philippe; Ashton-Beaucage, Dariel; Wilhelm, Brian; Hébert, Josée; Hilton, Douglas J.
2017-01-01
Abstract Genome-wide transcriptome profiling has enabled non-supervised classification of tumours, revealing different sub-groups characterized by specific gene expression features. However, the biological significance of these subtypes remains for the most part unclear. We describe herein an interactive platform, Minimum Spanning Trees Inferred Clustering (MiSTIC), that integrates the direct visualization and comparison of the gene correlation structure between datasets, the analysis of the molecular causes underlying co-variations in gene expression in cancer samples, and the clinical annotation of tumour sets defined by the combined expression of selected biomarkers. We have used MiSTIC to highlight the roles of specific transcription factors in breast cancer subtype specification, to compare the aspects of tumour heterogeneity targeted by different prognostic signatures, and to highlight biomarker interactions in AML. A version of MiSTIC preloaded with datasets described herein can be accessed through a public web server (http://mistic.iric.ca); in addition, the MiSTIC software package can be obtained (github.com/iric-soft/MiSTIC) for local use with personalized datasets. PMID:28472340
Design preferences and cognitive styles: experimentation by automated website synthesis.
Leung, Siu-Wai; Lee, John; Johnson, Chris; Robertson, David
2012-06-29
This article aims to demonstrate computational synthesis of Web-based experiments in undertaking experimentation on relationships among the participants' design preference, rationale, and cognitive test performance. The exemplified experiments were computationally synthesised, including the websites as materials, experiment protocols as methods, and cognitive tests as protocol modules. This work also exemplifies the use of a website synthesiser as an essential instrument enabling the participants to explore different possible designs, which were generated on the fly, before selection of preferred designs. The participants were given interactive tree and table generators so that they could explore some different ways of presenting causality information in tables and trees as the visualisation formats. The participants gave their preference ratings for the available designs, as well as their rationale (criteria) for their design decisions. The participants were also asked to take four cognitive tests, which focus on the aspects of visualisation and analogy-making. The relationships among preference ratings, rationale, and the results of cognitive tests were analysed by conservative non-parametric statistics including Wilcoxon test, Krustal-Wallis test, and Kendall correlation. In the test, 41 of the total 64 participants preferred graphical (tree-form) to tabular presentation. Despite the popular preference for graphical presentation, the given tabular presentation was generally rated to be easier than graphical presentation to interpret, especially by those who were scored lower in the visualization and analogy-making tests. This piece of evidence helps generate a hypothesis that design preferences are related to specific cognitive abilities. Without the use of computational synthesis, the experiment setup and scientific results would be impractical to obtain.
Estimating tree species diversity in the savannah using NDVI and woody canopy cover
NASA Astrophysics Data System (ADS)
Madonsela, Sabelo; Cho, Moses Azong; Ramoelo, Abel; Mutanga, Onisimo; Naidoo, Laven
2018-04-01
Remote sensing applications in biodiversity research often rely on the establishment of relationships between spectral information from the image and tree species diversity measured in the field. Most studies have used normalized difference vegetation index (NDVI) to estimate tree species diversity on the basis that it is sensitive to primary productivity which defines spatial variation in plant diversity. The NDVI signal is influenced by photosynthetically active vegetation which, in the savannah, includes woody canopy foliage and grasses. The question is whether the relationship between NDVI and tree species diversity in the savanna depends on the woody cover percentage. This study explored the relationship between woody canopy cover (WCC) and tree species diversity in the savannah woodland of southern Africa and also investigated whether there is a significant interaction between seasonal NDVI and WCC in the factorial model when estimating tree species diversity. To fulfil our aim, we followed stratified random sampling approach and surveyed tree species in 68 plots of 90 m × 90 m across the study area. Within each plot, all trees with diameter at breast height of >10 cm were sampled and Shannon index - a common measure of species diversity which considers both species richness and abundance - was used to quantify tree species diversity. We then extracted WCC in each plot from existing fractional woody cover product produced from Synthetic Aperture Radar (SAR) data. Factorial regression model was used to determine the interaction effect between NDVI and WCC when estimating tree species diversity. Results from regression analysis showed that (i) WCC has a highly significant relationship with tree species diversity (r2 = 0.21; p < 0.01), (ii) the interaction between the NDVI and WCC is not significant, however, the factorial model significantly reduced the error of prediction (RMSE = 0.47, p < 0.05) compared to NDVI (RMSE = 0.49) or WCC (RMSE = 0.49) model during the senescence period. The result justifies our assertion that combining NDVI with WCC will be optimal for biodiversity estimation during the senescence period.
Undergraduate Students’ Initial Ability in Understanding Phylogenetic Tree
NASA Astrophysics Data System (ADS)
Sa'adah, S.; Hidayat, T.; Sudargo, Fransisca
2017-04-01
The Phylogenetic tree is a visual representation depicts a hypothesis about the evolutionary relationship among taxa. Evolutionary experts use this representation to evaluate the evidence for evolution. The phylogenetic tree is currently growing for many disciplines in biology. Consequently, learning about the phylogenetic tree has become an important part of biological education and an interesting area of biology education research. Skill to understanding and reasoning of the phylogenetic tree, (called tree thinking) is an important skill for biology students. However, research showed many students have difficulty in interpreting, constructing, and comparing among the phylogenetic tree, as well as experiencing a misconception in the understanding of the phylogenetic tree. Students are often not taught how to reason about evolutionary relationship depicted in the diagram. Students are also not provided with information about the underlying theory and process of phylogenetic. This study aims to investigate the initial ability of undergraduate students in understanding and reasoning of the phylogenetic tree. The research method is the descriptive method. Students are given multiple choice questions and an essay that representative by tree thinking elements. Each correct answer made percentages. Each student is also given questionnaires. The results showed that the undergraduate students’ initial ability in understanding and reasoning phylogenetic tree is low. Many students are not able to answer questions about the phylogenetic tree. Only 19 % undergraduate student who answered correctly on indicator evaluate the evolutionary relationship among taxa, 25% undergraduate student who answered correctly on indicator applying concepts of the clade, 17% undergraduate student who answered correctly on indicator determines the character evolution, and only a few undergraduate student who can construct the phylogenetic tree.
The Minnesota Tree Improvement Cooperative
Andrew David
2002-01-01
As the director of the Minnesota Tree Improvement Cooperative (MTIC) based in Cloquet, Minnesota, I would like to tell you a little about our strategy for creating improved seed, and how individual nurseries or nursery associations can interact with tree improvement programs to the benefit of both parties. MTIC is approximately 15 miles west of Duluth, at the...
USDA-ARS?s Scientific Manuscript database
Objective: To examine the risk factors of developing functional decline and make probabilistic predictions by using a tree-based method that allows higher order polynomials and interactions of the risk factors. Methods: The conditional inference tree analysis, a data mining approach, was used to con...
Trees: A Book of Resource Ideas for the Teacher
ERIC Educational Resources Information Center
Smit, Nel, Comp.; And Others
The objective of this book is to provide background information and possible teaching approaches to enable teachers to tackle the study of trees confidently. The book should help students to: (1) gain awareness, sensitivity, and basic understanding of trees and their interactions with the plants and animals in their environment; (2) cultivate…
ERIC Educational Resources Information Center
Rubino, Darrin L.; Hanson, Deborah
2009-01-01
The circles and patterns in a tree's stem tell a story, but that story can be a mystery. Interpreting the story of tree rings provides a way to heighten the natural curiosity of students and help them gain insight into the interaction of elements in the environment. It also represents a wonderful opportunity to incorporate the nature of science.…
Northeastern Forest Experiment Station
1973-01-01
This booklet outlines what happens most of the time as decay develops in a living tree. The drawings are designed to give an accurate general presentation of the decay process by focusing only on the major portions of an extremely complex process that involves the interactions among microorganisms, environmental factors, and the tree. The better we understand these...
Tasting the Tree of Life: Development of a Collaborative, Cross-Campus, Science Outreach Meal Event.
Clement, Wendy L; Elliott, Kathryn T; Cordova-Hoyos, Okxana; Distefano, Isabel; Kearns, Kate; Kumar, Raagni; Leto, Ashley; Tumaliuan, Janis; Franchetti, Lauren; Kulesza, Evelyn; Tineo, Nicole; Mendes, Patrice; Roth, Karen; Osborn, Jeffrey M
2018-01-01
Communicating about science with the public can present a number of challenges, from participation to engagement to impact. In an effort to broadly communicate messages regarding biodiversity, evolution, and tree-thinking with the campus community at The College of New Jersey (TCNJ), a public, primarily undergraduate institution, we created a campus-wide, science-themed meal, "Tasting the Tree of Life: Exploring Biodiversity through Cuisine." We created nine meals that incorporated 149 species/ingredients across the Tree of Life. Each meal illustrated a scientific message communicated through interactions with undergraduate biology students, informational signs, and an interactive website. To promote tree-thinking, we reconstructed a phylogeny of all 149 ingredients. In total, 3,262 people attended the meal, and evaluations indicated that participants left with greater appreciation for the biodiversity and evolutionary relatedness of their food. A keynote lecture and a coordinated social media campaign enhanced the scientific messages, and media coverage extended the reach of this event. "Tasting the Tree of Life" highlights the potential of cuisine as a valuable science communication tool.
Three-dimensional murine airway segmentation in micro-CT images
NASA Astrophysics Data System (ADS)
Shi, Lijun; Thiesse, Jacqueline; McLennan, Geoffrey; Hoffman, Eric A.; Reinhardt, Joseph M.
2007-03-01
Thoracic imaging for small animals has emerged as an important tool for monitoring pulmonary disease progression and therapy response in genetically engineered animals. Micro-CT is becoming the standard thoracic imaging modality in small animal imaging because it can produce high-resolution images of the lung parenchyma, vasculature, and airways. Segmentation, measurement, and visualization of the airway tree is an important step in pulmonary image analysis. However, manual analysis of the airway tree in micro-CT images can be extremely time-consuming since a typical dataset is usually on the order of several gigabytes in size. Automated and semi-automated tools for micro-CT airway analysis are desirable. In this paper, we propose an automatic airway segmentation method for in vivo micro-CT images of the murine lung and validate our method by comparing the automatic results to manual tracing. Our method is based primarily on grayscale morphology. The results show good visual matches between manually segmented and automatically segmented trees. The average true positive volume fraction compared to manual analysis is 91.61%. The overall runtime for the automatic method is on the order of 30 minutes per volume compared to several hours to a few days for manual analysis.
NASA Astrophysics Data System (ADS)
Nashrulloh, Maulana Malik; Kurniawan, Nia; Rahardi, Brian
2017-11-01
The increasing availability of genetic sequence data associated with explicit geographic and environment (including biotic and abiotic components) information offers new opportunities to study the processes that shape biodiversity and its patterns. Developing phylogeography reconstruction, by integrating phylogenetic and biogeographic knowledge, provides richer and deeper visualization and information on diversification events than ever before. Geographical information systems such as QGIS provide an environment for spatial modeling, analysis, and dissemination by which phylogenetic models can be explicitly linked with their associated spatial data, and subsequently, they will be integrated with other related georeferenced datasets describing the biotic and abiotic environment. We are introducing PHYLOGEOrec, a QGIS plugin for building spatial phylogeographic reconstructions constructed from phylogenetic tree and geographical information data based on QGIS2threejs. By using PHYLOGEOrec, researchers can integrate existing phylogeny and geographical information data, resulting in three-dimensional geographic visualizations of phylogenetic trees in the Keyhole Markup Language (KML) format. Such formats can be overlaid on a map using QGIS and finally, spatially viewed in QGIS by means of a QGIS2threejs engine for further analysis. KML can also be viewed in reputable geobrowsers with KML-support (i.e., Google Earth).
Lifemap: Exploring the Entire Tree of Life.
de Vienne, Damien M
2016-12-01
The Tree of Life (ToL) is meant to be a unique representation of the evolutionary relationships between all species on earth. Huge efforts are made to assemble such a large tree, helped by the decrease of sequencing costs and improved methods to reconstruct and combine phylogenies, but no tool exists today to explore the ToL in its entirety in a satisfying manner. By combining methods used in modern cartography, such as OpenStreetMap, with a new way of representing tree-like structures, I created Lifemap, a tool allowing the exploration of a complete representation of the ToL (between 800,000 and 2.2 million species depending on the data source) in a zoomable interface. A server version of Lifemap also allows users to visualize their own trees. This should help researchers in ecology and evolutionary biology in their everyday work, but may also permit the diffusion to a broader audience of our current knowledge of the evolutionary relationships linking all organisms.
Riginos, Corinna; Young, Truman P
2007-10-01
Plant-plant interactions can be a complex mixture of positive and negative interactions, with the net outcome depending on abiotic and community contexts. In savanna systems, the effects of large herbivores on tree-grass interactions have rarely been studied experimentally, though these herbivores are major players in these systems. In African savannas, trees often become more abundant under heavy cattle grazing but less abundant in wildlife preserves. Woody encroachment where cattle have replaced wild herbivores may be caused by a shift in the competitive balance between trees and grasses. Here we report the results of an experiment designed to quantify the positive, negative, and net effects of grasses, wild herbivores, and cattle on Acacia saplings in a Kenyan savanna. Acacia drepanolobium saplings under four long-term herbivore regimes (wild herbivores, cattle, cattle + wild herbivores, and no large herbivores) were cleared of surrounding grass or left with the surrounding grass intact. After two years, grass-removal saplings exhibited 86% more browse damage than control saplings, suggesting that grass benefited saplings by protecting them from herbivory. However, the negative effect of grass on saplings was far greater; grass-removal trees accrued more than twice the total stem length of control trees. Where wild herbivores were present, saplings were browsed more and produced more new stem growth. Thus, the net effect of wild herbivores was positive, possibly due to the indirect effects of lower competitor tree density in areas accessible to elephants. Additionally, colonization of saplings by symbiotic ants tracked growth patterns, and colonized saplings experienced lower rates of browse damage. These results suggest that savanna tree growth and woody encroachment cannot be predicted by grass cover or herbivore type alone. Rather, tree growth appears to depend on a variety of factors that may be acting together or antagonistically at different stages of the tree's life cycle.
Mating behavior as a possible cause of bat fatalities at wind turbines
Cryan, Paul M.
2008-01-01
Bats are killed by wind turbines in North America and Europe in large numbers, yet a satisfactory explanation for this phenomenon remains elusive. Most bat fatalities at turbines thus far occur during late summer and autumn and involve species that roost in trees. In this commentary I draw on existing literature to illustrate how previous behavioral observations of the affected species might help explain these fatalities. I hypothesize that tree bats collide with turbines while engaging in mating behaviors that center on the tallest trees in a landscape, and that such behaviors stem from 2 different mating systems (resource defense polygyny and lekking). Bats use vision to move across landscapes and might react to the visual stimulus of turbines as they do to tall trees. This scenario has serious conservation and management implications. If mating bats are drawn to turbines, wind energy facilities may act as population sinks and risk may be hard to assess before turbines are built. Researchers could observe bat behavior and experimentally manipulate trees, turbines, or other tall structures to test the hypothesis that tree bats mate at the tallest trees. If this hypothesis is supported, management actions aimed at decreasing the attractiveness of turbines to tree bats may help alleviate the problem.
Application of Frameworks in the Analysis and (Re)design of Interactive Visual Learning Tools
ERIC Educational Resources Information Center
Liang, Hai-Ning; Sedig, Kamran
2009-01-01
Interactive visual learning tools (IVLTs) are software environments that encode and display information visually and allow learners to interact with the visual information. This article examines the application and utility of frameworks in the analysis and design of IVLTs at the micro level. Frameworks play an important role in any design. They…
2017-04-01
ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH (VISRIDER) PROGRAM TASK 6: POINT CLOUD...To) OCT 2013 – SEP 2014 4. TITLE AND SUBTITLE ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH...various point cloud visualization techniques for viewing large scale LiDAR datasets. Evaluate their potential use for thick client desktop platforms
Integrated web visualizations for protein-protein interaction databases.
Jeanquartier, Fleur; Jean-Quartier, Claire; Holzinger, Andreas
2015-06-16
Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. We selected M=10 out of N=53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015. Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.
Suggested Interactivity: Seeking Perceived Affordances for Information Visualization.
Boy, Jeremy; Eveillard, Louis; Detienne, Françoise; Fekete, Jean-Daniel
2016-01-01
In this article, we investigate methods for suggesting the interactivity of online visualizations embedded with text. We first assess the need for such methods by conducting three initial experiments on Amazon's Mechanical Turk. We then present a design space for Suggested Interactivity (i. e., visual cues used as perceived affordances-SI), based on a survey of 382 HTML5 and visualization websites. Finally, we assess the effectiveness of three SI cues we designed for suggesting the interactivity of bar charts embedded with text. Our results show that only one cue (SI3) was successful in inciting participants to interact with the visualizations, and we hypothesize this is because this particular cue provided feedforward.
Steppe, Kathy; von der Crone, Jonas S; De Pauw, Dirk J W
2016-01-01
TreeWatch.net is an initiative that has been developed to watch trees grow and function in real-time. It is a water- and carbon-monitoring and modeling network, in which high-quality measurements of sap flow and stem diameter variation are collected on individual trees. Automated data processing using a cloud service enables instant visualization of water movement and radial stem growth. This can be used to demonstrate the sensitivity of trees to changing weather conditions, such as drought, heat waves, or heavy rain showers. But TreeWatch.net's true innovation lies in its use of these high-precision harmonized data to also parameterize process-based tree models in real-time, which makes displaying the much-needed mechanisms underlying tree responses to climate change possible. Continuous simulation of turgor to describe growth processes and long-term time series of hydraulic resistance to assess drought-vulnerability in real-time are only a few of the opportunities our approach offers. TreeWatch.net has been developed with the view to be complementary to existing forest monitoring networks and with the aim to contribute to existing dynamic global vegetation models. It provides high-quality data and real-time simulations in order to advance research on the impact of climate change on the biological response of trees and forests. Besides its application in natural forests to answer climate-change related scientific and political questions, we also envision a broader societal application of TreeWatch.net by selecting trees in nature reserves, public areas, cities, university areas, schoolyards, and parks to teach youngsters and create public awareness on the effects of changing weather conditions on trees and forests in this era of climate change.
Mirroring co-evolving trees in the light of their topologies.
Hajirasouliha, Iman; Schönhuth, Alexander; de Juan, David; Valencia, Alfonso; Sahinalp, S Cenk
2012-05-01
Determining the interaction partners among protein/domain families poses hard computational problems, in particular in the presence of paralogous proteins. Available approaches aim to identify interaction partners among protein/domain families through maximizing the similarity between trimmed versions of their phylogenetic trees. Since maximization of any natural similarity score is computationally difficult, many approaches employ heuristics to evaluate the distance matrices corresponding to the tree topologies in question. In this article, we devise an efficient deterministic algorithm which directly maximizes the similarity between two leaf labeled trees with edge lengths, obtaining a score-optimal alignment of the two trees in question. Our algorithm is significantly faster than those methods based on distance matrix comparison: 1 min on a single processor versus 730 h on a supercomputer. Furthermore, we outperform the current state-of-the-art exhaustive search approach in terms of precision, while incurring acceptable losses in recall. A C implementation of the method demonstrated in this article is available at http://compbio.cs.sfu.ca/mirrort.htm
Goring, Simon J; Williams, John W
2017-04-01
Contemporary forest inventory data are widely used to understand environmental controls on tree species distributions and to construct models to project forest responses to climate change, but the stability and representativeness of contemporary tree-climate relationships are poorly understood. We show that tree-climate relationships for 15 tree genera in the upper Midwestern US have significantly altered over the last two centuries due to historical land-use and climate change. Realised niches have shifted towards higher minimum temperatures and higher rainfall. A new attribution method implicates both historical climate change and land-use in these shifts, with the relative importance varying among genera and climate variables. Most climate/land-use interactions are compounding, in which historical land-use reinforces shifts in species-climate relationships toward wetter distributions, or confounding, in which land-use complicates shifts towards warmer distributions. Compounding interactions imply that contemporary-based models of species distributions may underestimate species resilience to climate change. © 2017 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Wood, Jeffrey D.; Knapp, Benjamin O.; Muzika, Rose-Marie; Stambaugh, Michael C.; Gu, Lianhong
2018-01-01
Forests are expected to become more vulnerable to drought-induced tree mortality owing to rising temperatures and changing precipitation patterns that amplify drought lethality. There is a crucial knowledge gap regarding drought-pathogen interactions and their effects on tree mortality. The objectives of this research were to examine whether stand dynamics and ‘background’ mortality rates were affected by a severe drought in 2012; and to evaluate the importance of drought-pathogen interactions within the context of a mortality event that killed 10.0% and 26.5% of white (Quercus alba L.) and black (Q. velutina Lam.) oak stems, respectively, in a single year. We synthesized (i) forest inventory data (24 years), (ii) 11 years of ecosystem flux data with supporting biological data including predawn leaf water potential and annual forest inventories, (iii) tree-ring analyses of individual white oaks that were alive and ones that died in 2013, and (iv) documentation of a pathogen infection. This forest displayed stand dynamics consistent with expected patterns of decreasing tree density and increasing basal area. Continued basal area growth outpaced mortality implying a net accumulation of live biomass, which was supported by eddy covariance ecosystem carbon flux observations. Individual white and black oaks that died in 2013 displayed historically lower growth with the majority of dead trees exhibiting Biscogniauxia cankers. Our observations point to the importance of event-based oak mortality and that drought-Biscogniauxia interactions are important in shaping oak stand dynamics in this region. Although forest function has not been significantly impaired, these drought-pathogen interactions could amplify mortality under future climate conditions and thus warrant further investigation.
Wood, Jeffrey D.; Knapp, Benjamin O.; Muzika, Rose-Marie; ...
2017-10-20
Forests are expected to become more vulnerable to drought-induced tree mortality owing to rising temperatures and changing precipitation patterns that amplify drought lethality. There is a crucial knowledge gap regarding drought–pathogen interactions and their effects on tree mortality. The objectives of this research were to examine whether stand dynamics and 'background' mortality rates were affected by a severe drought in 2012; and to evaluate the importance of drought–pathogen interactions within the context of a mortality event that killed 10.0% and 26.5% of white (Quercus alba L.) and black (Q. velutina Lam.) oak stems, respectively, in a single year. We synthesizedmore » (i) forest inventory data (24 years), (ii) 11 years of ecosystem flux data with supporting biological data including predawn leaf water potential and annual forest inventories, (iii) tree-ring analyses of individual white oaks that were alive and ones that died in 2013, and (iv) documentation of a pathogen infection. This forest displayed stand dynamics consistent with expected patterns of decreasing tree density and increasing basal area. Continued basal area growth outpaced mortality implying a net accumulation of live biomass, which was supported by eddy covariance ecosystem carbon flux observations. Individual white and black oaks that died in 2013 displayed historically lower growth with the majority of dead trees exhibiting Biscogniauxia cankers. Our observations point to the importance of event-based oak mortality and that drought–Biscogniauxia interactions are important in shaping oak stand dynamics in this region. Although forest function has not been significantly impaired, these drought–pathogen interactions could amplify mortality under future climate conditions and thus warrant further investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Jeffrey D.; Knapp, Benjamin O.; Muzika, Rose-Marie
Forests are expected to become more vulnerable to drought-induced tree mortality owing to rising temperatures and changing precipitation patterns that amplify drought lethality. There is a crucial knowledge gap regarding drought–pathogen interactions and their effects on tree mortality. The objectives of this research were to examine whether stand dynamics and 'background' mortality rates were affected by a severe drought in 2012; and to evaluate the importance of drought–pathogen interactions within the context of a mortality event that killed 10.0% and 26.5% of white (Quercus alba L.) and black (Q. velutina Lam.) oak stems, respectively, in a single year. We synthesizedmore » (i) forest inventory data (24 years), (ii) 11 years of ecosystem flux data with supporting biological data including predawn leaf water potential and annual forest inventories, (iii) tree-ring analyses of individual white oaks that were alive and ones that died in 2013, and (iv) documentation of a pathogen infection. This forest displayed stand dynamics consistent with expected patterns of decreasing tree density and increasing basal area. Continued basal area growth outpaced mortality implying a net accumulation of live biomass, which was supported by eddy covariance ecosystem carbon flux observations. Individual white and black oaks that died in 2013 displayed historically lower growth with the majority of dead trees exhibiting Biscogniauxia cankers. Our observations point to the importance of event-based oak mortality and that drought–Biscogniauxia interactions are important in shaping oak stand dynamics in this region. Although forest function has not been significantly impaired, these drought–pathogen interactions could amplify mortality under future climate conditions and thus warrant further investigation.« less
Multiple kernel learning in protein-protein interaction extraction from biomedical literature.
Yang, Zhihao; Tang, Nan; Zhang, Xiao; Lin, Hongfei; Li, Yanpeng; Yang, Zhiwei
2011-03-01
Knowledge about protein-protein interactions (PPIs) unveils the molecular mechanisms of biological processes. The volume and content of published biomedical literature on protein interactions is expanding rapidly, making it increasingly difficult for interaction database administrators, responsible for content input and maintenance to detect and manually update protein interaction information. The objective of this work is to develop an effective approach to automatic extraction of PPI information from biomedical literature. We present a weighted multiple kernel learning-based approach for automatic PPI extraction from biomedical literature. The approach combines the following kernels: feature-based, tree, graph and part-of-speech (POS) path. In particular, we extend the shortest path-enclosed tree (SPT) and dependency path tree to capture richer contextual information. Our experimental results show that the combination of SPT and dependency path tree extensions contributes to the improvement of performance by almost 0.7 percentage units in F-score and 2 percentage units in area under the receiver operating characteristics curve (AUC). Combining two or more appropriately weighed individual will further improve the performance. Both on the individual corpus and cross-corpus evaluation our combined kernel can achieve state-of-the-art performance with respect to comparable evaluations, with 64.41% F-score and 88.46% AUC on the AImed corpus. As different kernels calculate the similarity between two sentences from different aspects. Our combined kernel can reduce the risk of missing important features. More specifically, we use a weighted linear combination of individual kernels instead of assigning the same weight to each individual kernel, thus allowing the introduction of each kernel to incrementally contribute to the performance improvement. In addition, SPT and dependency path tree extensions can improve the performance by including richer context information. Copyright © 2010 Elsevier B.V. All rights reserved.
FluReF, an automated flu virus reassortment finder based on phylogenetic trees.
Yurovsky, Alisa; Moret, Bernard M E
2011-01-01
Reassortments are events in the evolution of the genome of influenza (flu), whereby segments of the genome are exchanged between different strains. As reassortments have been implicated in major human pandemics of the last century, their identification has become a health priority. While such identification can be done "by hand" on a small dataset, researchers and health authorities are building up enormous databases of genomic sequences for every flu strain, so that it is imperative to develop automated identification methods. However, current methods are limited to pairwise segment comparisons. We present FluReF, a fully automated flu virus reassortment finder. FluReF is inspired by the visual approach to reassortment identification and uses the reconstructed phylogenetic trees of the individual segments and of the full genome. We also present a simple flu evolution simulator, based on the current, source-sink, hypothesis for flu cycles. On synthetic datasets produced by our simulator, FluReF, tuned for a 0% false positive rate, yielded false negative rates of less than 10%. FluReF corroborated two new reassortments identified by visual analysis of 75 Human H3N2 New York flu strains from 2005-2008 and gave partial verification of reassortments found using another bioinformatics method. FluReF finds reassortments by a bottom-up search of the full-genome and segment-based phylogenetic trees for candidate clades--groups of one or more sampled viruses that are separated from the other variants from the same season. Candidate clades in each tree are tested to guarantee confidence values, using the lengths of key edges as well as other tree parameters; clades with reassortments must have validated incongruencies among segment trees. FluReF demonstrates robustness of prediction for geographically and temporally expanded datasets, and is not limited to finding reassortments with previously collected sequences. The complete source code is available from http://lcbb.epfl.ch/software.html.
Acoustic characteristics of Dynastid beetle stridulations
USDA-ARS?s Scientific Manuscript database
Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae: Dynastinae) causes economically important damage to ornamental and commercial coconut palm trees in the western Pacific region that could be mitigated significantly by early detection and treatment. Adults are difficult to detect visually, however...
Rashid, Mahbub; Khan, Nayma; Jones, Belinda
2016-01-01
This study compared physical and visual accessibilities and their associations with staff perception and interaction behaviors in 2 intensive care units (ICUs) with open-plan and racetrack layouts. For the study, physical and visual accessibilities were measured using the spatial analysis techniques of Space Syntax. Data on staff perception were collected from 81 clinicians using a questionnaire survey. The locations of 2233 interactions, and the location and length of another 339 interactions in these units were collected using systematic field observation techniques. According to the study, physical and visual accessibilities were different in the 2 ICUs, and clinicians' primary workspaces were physically and visually more accessible in the open-plan ICU. Physical and visual accessibilities affected how well clinicians' knew their peers and where their peers were located in these units. Physical and visual accessibilities also affected clinicians' perception of interaction and communication and of teamwork and collaboration in these units. Additionally, physical and visual accessibilities showed significant positive associations with interaction behaviors in these units, with the open-plan ICU showing stronger associations. However, physical accessibilities were less important than visual accessibilities in relation to interaction behaviors in these ICUs. The implications of these findings for ICU design are discussed.
Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses
Neher, Richard A.; Bedford, Trevor; Daniels, Rodney S.; Shraiman, Boris I.
2016-01-01
Human seasonal influenza viruses evolve rapidly, enabling the virus population to evade immunity and reinfect previously infected individuals. Antigenic properties are largely determined by the surface glycoprotein hemagglutinin (HA), and amino acid substitutions at exposed epitope sites in HA mediate loss of recognition by antibodies. Here, we show that antigenic differences measured through serological assay data are well described by a sum of antigenic changes along the path connecting viruses in a phylogenetic tree. This mapping onto the tree allows prediction of antigenicity from HA sequence data alone. The mapping can further be used to make predictions about the makeup of the future A(H3N2) seasonal influenza virus population, and we compare predictions between models with serological and sequence data. To make timely model output readily available, we developed a web browser-based application that visualizes antigenic data on a continuously updated phylogeny. PMID:26951657
The Unique Challenges of Conserving Large Old Trees.
Lindenmayer, David B; Laurance, William F
2016-06-01
Large old trees play numerous critical ecological roles. They are susceptible to a plethora of interacting threats, in part because the attributes that confer a competitive advantage in intact ecosystems make them maladapted to rapidly changing, human-modified environments. Conserving large old trees will require surmounting a number of unresolved challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tree mortality from drought, insects, and their interactions in a changing climate
William R. L. Anderegg; Jeffrey A. Hicke; Rosie A. Fisher; Craig D. Allen; Juliann Aukema; Barbara Bentz; Sharon Hood; Jeremy W. Lichstein; Alison K. Macalady; Nate McDowell; Yude Pan; Kenneth Raffa; Anna Sala; John D. Shaw; Nathan L. Stephenson; Christina Tague; Melanie Zeppel
2015-01-01
Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for...
Seedling survival and growth of three forest tree species: The role of spatial heterogeneity
Brian Beckage; James S. Clark
2003-01-01
Spatial heterogeneity in microenvironments may provide unique regeneration niches for trees and may promote forest diversity. We examined how heterogeneity in understory cover, mineral nutrients, and moisture and their interactions with canopy gaps contribute to the coexistence of three common, co-occuring tree species. We measured survival and height growth of 1080...
Dendrochemistry of multiple releases of chlorinated solvents at a former industrial site
Jean Christophe Balouet; Joel G. Burken; Frank Karg; Don Vroblesky; Kevin T. Smith; Håkan Grudd; Anders Rindby; François Beaujard; Michel Chalot
2012-01-01
Trees can take up and assimilate contaminants from soil, subsurface, and groundwater. Contaminants in the transpiration stream can become bound or incorporated into the annual rings formed in trees of the temperate zones. The chemical analysis of precisely dated tree rings, called dendrochemistry, can be used to interpret past plant interactions with contaminants. This...
Kevin M. Potter; Christopher W. Woodall
2014-01-01
Biodiversity conveys numerous functional benefits to forested ecosystems, including community stability and resilience. In the context of managing forests for climate change mitigation/adaptation, maximizing and/or maintaining aboveground biomass will require understanding the interactions between tree biodiversity, site productivity, and the stocking of live trees....
Homeowner interactions with residential trees in urban areas
Jana Dilley; Kathleen L. Wolf
2013-01-01
Urban forests are a critical element in sustainable urban areas because of the many environmental, economic, and social benefits that city trees provide. In order to increase canopy cover in urban areas, residential homeowners, who collectively own the majority of the land in most cities, need to engage in planting and retaining trees on their properties. This...
Growth response of black walnut to interplanted trees
Richard C. Schlesinger; Robert D. Williams
1984-01-01
Analyses of black walnut tree diameters 13 years after planting showed that interplanting autumn-olive, black locust, and European alder increased walnut tree growtb, but only at certain locations. Interplanting autumn-olive resulted in increases of 56 to 351% at four of five locations and all species resulted in doubled walnut growth on an upland site. The interaction...
The Tree of Knowledge Project: Organic Designs as Virtual Learning Spaces
ERIC Educational Resources Information Center
Gui, Dean A. F.; AuYeung, Gigi
2013-01-01
The virtual Department of English at the Hong Kong Polytechnic University, also known as the Tree of Knowledge, is a project premised upon using ecology and organic forms to promote language learning in Second Life (SL). Inspired by Salmon's (2010) Tree of Learning concept this study examines how an interactive ecological environment--in this…
Motor-visual neurons and action recognition in social interactions.
de la Rosa, Stephan; Bülthoff, Heinrich H
2014-04-01
Cook et al. suggest that motor-visual neurons originate from associative learning. This suggestion has interesting implications for the processing of socially relevant visual information in social interactions. Here, we discuss two aspects of the associative learning account that seem to have particular relevance for visual recognition of social information in social interactions - namely, context-specific and contingency based learning.
Understanding plant-to-plant interactions for soil resources in multilayered Iberian dehesas
NASA Astrophysics Data System (ADS)
Moreno, G.; Rolo, V.; Cubera, E.; López-Díaz, L.
2009-04-01
Iberian dehesa is usually defined as two-layered silvopastoral system, where native grasses cohabit with a scattered widely-space tree layer. In the last two decades, an intense debate has been developed on the sustainability of this simplified type of dehesa. While some authors argue that that the forest cycle has been disrupted in most dehesas, where the lack of regeneration is an inherent problem to their exploitation, other authors have showed that dehesa degradation is easily reversible if certain abandonment is periodically exerted. The coexistence of two-layered plots with multilayered plots (encroached open woodlands) and mono-layered plots (either closed forest or mono-pasture/monocrops) has been a common feature of dehesas, as result of a systematic combination of agricultural, pastoral, and forestry uses. Different structures of vegetation depend on land use, giving a mosaic at both estate and landscape scales. These mosaic-type systems allow finding several scenarios of plant-to-plant interactions, mostly at belowground level. A key issue for sustainable management of oak woodland is to understand the complexity of the plant-to-plant relationships and their consequences in the ecosystem functioning in terms of productivity and stability. The competitive abilities of component systems are modified by the environment conditions. Dehesas, as most savanna systems, exhibit a low rainfall with high variability within and between years as well as a high evaporative demand during the summer. Indeed, water availability is one of the major ecological factors influencing either natural savannas or man-made open woodlands. Although most of the available studies have focused different aspects of the mature tree-grass interactions, we also present here some recent results on tree-tree, tree-shrub, shrub-seedling and seedling-grass interactions, explained mostly in terms of competition for soil water and nutrients. Trees can modify the soil and microclimate environment much more than understorey usually can, but tree characteristics often confer them a clear competitive advantage and they can strongly out-compete understorey. The net balance of positive-negative interactions varies with the age of trees: while the balance can favor grasses face to seedlings, the contrary can be expected when tree grows. Similarly, while shrubs could favor seedling recruitment, shrubs could affect negatively tree growth and productivity. These changes should be taken into account for defining dehesa structure and determining management practices in order to optimize the use of physical and chemical resources that are spatially and temporally patchy. From our results, it is described how generally holm-oak trees favor understorey forage production through a direct positive effect of shade and improved soil fertility (facilitation). The rooting system together the slow-growing attitude of many oak species could determine a low competitive potential of oaks with herbaceous layer. Its low competitiveness together with its capacity to thrive in poor soils make oaks genre very suitable for long-term agroforestry systems in Iberian Peninsula. However, although a certain complementary uses of soil resources seems occur for trees and native grasses (very distinct root system profile), the potential benefit of trees has a small actual facilitative effect because the competitive use of soil water by trees overrides its positive effects, especially under semi-arid conditions. As consequence, the net balance of trees on pasture yield is very variably with situations where pasture yield is widely increased in the vicinity of the trees and others where the contrary is found. Tree clearance practiced in dehesas affects positively the development of the understory pasture, but also the single tree functions which take advantage of the low tree density characteristic of dehesas. Tree roots access water through a large volume of soil resources (especially water) unused by pasture layer. As a consequence, lower stand density is, better tree water status, grow and acorn production is. This dependence of tree functioning of tree density is increase with the intensity of summer drought. Although oak seedlings have physiological adaptations to overcome pasture competition during summer drought, effort made by farmers to favor pasture yield could play some negative role for oak seedling establishment. By contrast, dehesa shrub encroachment has been shown as a way to increase dramatically the rate of oak seedling recruitment. Apart of a better protection against herbivores and the preferential acorn dispersal towards shrubs, different Mediterranean shrubs seem to play multiple positive effects on microclimate and soil that favor trees seedling establishment (nurse shrubs). Nevertheless, the nurse effect of shrubs is shown to be a species-specific phenomenon. Although dehesa shrubs compete with trees for soil resources stronger than herbaceous plants do, the nutritional and hydric status of mature trees is not substantially affected. Hence, dehesa encroachment can be recommended as mechanism to favor dehesa sustainability without compromising the short term productivity of trees. Nevertheless, these findings should not be generalized and further studies focusing specific combination of tree-shrubs species will be needed. These studies should consider a better knowledge of the root system of different shrub species.
Toward the modeling of mucus draining from the human lung: role of the geometry of the airway tree
NASA Astrophysics Data System (ADS)
Mauroy, Benjamin; Fausser, Christian; Pelca, Dominique; Merckx, Jacques; Flaud, Patrice
2011-10-01
Mucociliary clearance and cough are the two main natural mucus draining methods in the bronchial tree. If they are affected by a pathology, they can become insufficient or even ineffective, then therapeutic draining of mucus plays a critical role to keep mucus levels in the lungs acceptable. The manipulations of physical therapists are known to be very efficient clinically but they are mostly empirical since the biophysical mechanisms involved in these manipulations have never been studied. We develop in this work a model of mucus clearance in idealized rigid human bronchial trees and focus our study on the interaction between (1) tree geometry, (2) mucus physical properties and (3) amplitude of flow rate in the tree. The mucus is considered as a Bingham fluid (gel-like) which is moved upward in the tree thanks to its viscous interaction with air flow. Our studies point out the important roles played both by the geometry and by the physical properties of mucus (yield stress and viscosity). More particularly, the yield stress has to be overcome to make mucus flow. Air flow rate and yield stress determine the maximal possible mucus thickness in each branch of the tree at equilibrium. This forms a specific distribution of mucus in the tree whose characteristics are strongly related to the multi-scaled structure of the tree. The behavior of any mucus distribution is then dependent on this distribution. Finally, our results indicate that increasing air flow rates ought to be more efficient to drain mucus out of the bronchial tree while minimizing patient discomfort.
Griffen, Blaine D; Riley, Megan E; Cannizzo, Zachary J; Feller, Ilka C
2017-10-01
Ecosystem engineers alter environments by creating, modifying or destroying habitats. The indirect impacts of ecosystem engineering on trophic interactions should depend on the combination of the spatial distribution of engineered structures and the foraging behaviour of consumers that use these structures as refuges. In this study, we assessed the indirect effects of ecosystem engineering by a wood-boring beetle in a neotropical mangrove forest system. We identified herbivory patterns in a dwarf mangrove forest on the archipelago of Twin Cays, Belize. Past wood-boring activity impacted more than one-third of trees through the creation of tree holes that are now used, presumably as predation or thermal refuge, by the herbivorous mangrove tree crab Aratus pisonii. The presence of these refuges had a significant impact on plant-animal interactions; herbivory was more than fivefold higher on trees influenced by tree holes relative to those that were completely isolated from these refuges. Additionally, herbivory decreased exponentially with increasing distance from tree holes. We use individual-based simulation modelling to demonstrate that the creation of these herbivory patterns depends on a combination of the use of engineered tree holes for refuge by tree crabs, and the use of two behaviour patterns in this species-site fidelity to a "home tree," and more frequent foraging near their home tree. We demonstrate that understanding the spatial distribution of herbivory in this system depends on combining both the use of ecosystem engineering structures with individual behavioural patterns of herbivores. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Staab, Michael; Fornoff, Felix; Klein, Alexandra-Maria; Blüthgen, Nico
2017-09-01
Extrafloral nectaries (EFNs) allow plants to engage in mutualisms with ants, preventing herbivory in exchange for food. EFNs occur scattered throughout the plant phylogeny and likely evolved independent from herbivore-created wounds subsequently visited by ants collecting leaked sap. Records of wound-feeding ants are, however, anecdotal. By surveying 38,000 trees from 40 species, we conducted the first quantitative ecological study of this overlooked behavior. Ant-wound interactions were widespread (0.5% of tree individuals) and occurred on 23 tree species. Interaction networks were opportunistic, closely resembling ant-EFN networks. Fagaceae, a family lacking EFNs, was strongly overrepresented. For Fagaceae, ant occurrence at wounds correlated with species-level leaf damage, potentially indicating that wounds may attract mutualistic ants, which supports the hypothesis of ant-tended wounds as precursors of ant-EFN mutualisms. Given that herbivore wounds are common, wound sap as a steadily available food source might further help to explain the overwhelming abundance of ants in (sub)tropical forest canopies.
Why do trees die? Characterizing the drivers of background tree mortality.
Das, Adrian J; Stephenson, Nathan L; Davis, Kristin P
2016-10-01
The drivers of background tree mortality rates-the typical low rates of tree mortality found in forests in the absence of acute stresses like drought-are central to our understanding of forest dynamics, the effects of ongoing environmental changes on forests, and the causes and consequences of geographical gradients in the nature and strength of biotic interactions. To shed light on factors contributing to background tree mortality, we analyzed detailed pathological data from 200,668 tree-years of observation and 3,729 individual tree deaths, recorded over a 13-yr period in a network of old-growth forest plots in California's Sierra Nevada mountain range. We found that: (1) Biotic mortality factors (mostly insects and pathogens) dominated (58%), particularly in larger trees (86%). Bark beetles were the most prevalent (40%), even though there were no outbreaks during the study period; in contrast, the contribution of defoliators was negligible. (2) Relative occurrences of broad classes of mortality factors (biotic, 58%; suppression, 51%; and mechanical, 25%) are similar among tree taxa, but may vary with tree size and growth rate. (3) We found little evidence of distinct groups of mortality factors that predictably occur together on trees. Our results have at least three sets of implications. First, rather than being driven by abiotic factors such as lightning or windstorms, the "ambient" or "random" background mortality that many forest models presume to be independent of tree growth rate is instead dominated by biotic agents of tree mortality, with potentially critical implications for forecasting future mortality. Mechanistic models of background mortality, even for healthy, rapidly growing trees, must therefore include the insects and pathogens that kill trees. Second, the biotic agents of tree mortality, instead of occurring in a few predictable combinations, may generally act opportunistically and with a relatively large degree of independence from one another. Finally, beyond the current emphasis on folivory and leaf defenses, studies of broad-scale gradients in the nature and strength of biotic interactions should also include biotic attacks on, and defenses of, tree stems and roots. © 2016 by the Ecological Society of America.
Why do trees die? Characterizing the drivers of background tree mortality
Das, Adrian J.; Stephenson, Nathan L.; Davis, Kristin P.
2016-01-01
The drivers of background tree mortality rates—the typical low rates of tree mortality found in forests in the absence of acute stresses like drought—are central to our understanding of forest dynamics, the effects of ongoing environmental changes on forests, and the causes and consequences of geographical gradients in the nature and strength of biotic interactions. To shed light on factors contributing to background tree mortality, we analyzed detailed pathological data from 200,668 tree-years of observation and 3,729 individual tree deaths, recorded over a 13-yr period in a network of old-growth forest plots in California's Sierra Nevada mountain range. We found that: (1) Biotic mortality factors (mostly insects and pathogens) dominated (58%), particularly in larger trees (86%). Bark beetles were the most prevalent (40%), even though there were no outbreaks during the study period; in contrast, the contribution of defoliators was negligible. (2) Relative occurrences of broad classes of mortality factors (biotic, 58%; suppression, 51%; and mechanical, 25%) are similar among tree taxa, but may vary with tree size and growth rate. (3) We found little evidence of distinct groups of mortality factors that predictably occur together on trees. Our results have at least three sets of implications. First, rather than being driven by abiotic factors such as lightning or windstorms, the “ambient” or “random” background mortality that many forest models presume to be independent of tree growth rate is instead dominated by biotic agents of tree mortality, with potentially critical implications for forecasting future mortality. Mechanistic models of background mortality, even for healthy, rapidly growing trees, must therefore include the insects and pathogens that kill trees. Second, the biotic agents of tree mortality, instead of occurring in a few predictable combinations, may generally act opportunistically and with a relatively large degree of independence from one another. Finally, beyond the current emphasis on folivory and leaf defenses, studies of broad-scale gradients in the nature and strength of biotic interactions should also include biotic attacks on, and defenses of, tree stems and roots.
Minocha, R.; Shortle, W.C.; Lawrence, G.B.; David, M.B.; Minocha, S.C.
1997-01-01
Forest trees are constantly exposed to various types of natural and anthropogenic stressors. A major long-term goal of our research is to develop a set of early physiological and biochemical markers of stress in trees before the appearance of visual symptoms. Six red spruce (Picea rubens Sarg.) stands from the northeastern United States were selected for collection of soil and foliage samples. All of the chosen sites had soil solution pH values below 4.0 in the Oa horizon but varied in their geochemistry. Some of these sites were apparently under some form of environmental stress as indicated by a large number of dead and dying red spruce trees. Samples of soil and needles (from apparently healthy red spruce trees) were collected from these sites four times during a two-year period. The needles were analyzed for perchloric acid-soluble polyamines and exchangeable inorganic ions. Soil and soil solution samples from the Oa and B horizons were analyzed for their exchange chemistry. The data showed a strong positive correlation between Ca and Mg concentrations in the needles and in the Oa horizon of the soil. However, needles from trees growing on relatively Ca-rich soils with a low exchangeable Al concentration and a low Al:Ca soil solution ratio had significantly lower concentrations of putrescine and spermidine than those growing on Ca-poor soils with a high exchangeable Al concentration and a high Al:Ca soil solution in the Oa horizon. The magnitude of this change was several fold higher for putrescine concentrations than for spermidine concentrations. Neither putrescine nor spermidine were correlated with soil solution Ca, Mg, and Al concentrations in the B horizon. The putrescine concentrations of the needles always correlated significantly with exchangeable Al (r2=0.73, p???0.05) and still solution Al:Ca ratios (r2=0.91, p???0.01) of the Oa horizon. This suggests that in conjunction with soil chemistry, putrescine and/or spermidine may be used as a potential early indicator of Al stress before the appearance of visual symptoms in red spruce trees.
Kenneth J. Ruzicka; Klaus J. Puettmann; J. Renée Brooks
2017-01-01
Summary1. We investigated the potential of cross-scale interactions to affect the outcome of density reduction in a large-scale silvicultural experiment to better understand options for managing forests under climate change. 2. We measured tree growth and intrinsic water-use efficiency (iWUE) based on stable carbon isotopes (δ...
NASA Astrophysics Data System (ADS)
Hember, R. A.; Kurz, W. A.; Coops, N. C.
2017-12-01
Several studies indicate that climate change has increased rates of tree mortality, adversely affecting timber supply and carbon storage in western North American boreal forests. Statistical models of tree mortality can play a complimentary role in detecting and diagnosing forest change. Yet, such models struggle to address real-world complexity, including expectations that hydrological vulnerability arises from both drought stress and excess-water stress, and that these effects vary by species, tree size, and competitive status. Here, we describe models that predict annual probability of tree mortality (Pm) of common boreal tree species based on tree height (H), biomass of larger trees (BLT), soil water content (W), reference evapotranspiration (E), and two-way interactions. We show that interactions among H and hydrological variables are consistently significant. Vulnerability to extreme droughts consistently increases as H approaches maximum observed values of each species, while some species additionally show increasing vulnerability at low H. Some species additionally show increasing vulnerability to low W under high BLT, or increasing drought vulnerability under low BLT. These results suggest that vulnerability of trees to increasingly severe droughts depends on the hydraulic efficiency, competitive status, and microclimate of individual trees. Static simulations of Pm across a 1-km grid (i.e., with time-independent inputs of H, BLT, and species composition) indicate complex spatial patterns in the time trends during 1965-2014 and a mean change in Pm of 42 %. Lastly, we discuss how the size-dependence of hydrological vulnerability, in concert with increasingly severe drought events, may shape future responses of stand-level biomass production to continued warming and increasing carbon dioxide concentration in the region.
Introduced species and management of a Nothofagus/Austrocedrus forest.
Simberloff, Daniel; Relva, Maria Andrea; Nunez, Martin
2003-02-01
Isla Victoria (Nahuel Huapi National Park, Argentina), a large island dominated by native Nothofagus and Austrocedrus forest, has old plantations of many introduced tree species, some of which are famed invaders of native ecosystems elsewhere. There are also large populations of introduced deer and shrubs that may interact in a complex way with the introduced trees, as well as a recently arrived population of wild boar. Long-standing concern that the introduced trees will invade and transform native forest may be unwarranted, as there is little evidence of progressive invasion, even close to the plantations, despite over 50 years of opportunity. Introduced and native shrubs allow scattered introduced trees to achieve substantial size in abandoned pastures, but in almost all areas neither the trees nor the shrubs appear to be spreading beyond these sites. These shrub communities may be stable rather than successional, but the technology for restoring them to native forest is uncertain and probably currently impractical. Any attempt to remove the exotic tree seedlings and saplings from native forest would probably create the very conditions that would favor colonization by exotic plants rather than native trees, while simply clear-cutting the plantations would be unlikely to lead to regeneration of Nothofagus or Austrocedrus. The key to maintaining native forest is preventing catastrophic fire, as several introduced trees and shrubs would be favored over native dominant trees in recolonization. Deer undoubtedly interact with both native and introduced trees and shrubs, but their net effect on native forest is not yet clear, and specific management of deer beyond the current hunting by staff is unwarranted, at least if preventing tree invasion is the goal. The steep terrain and shallow soil make the recently arrived boar a grave threat to the native forest. Eradication is probably feasible and should be attempted quickly.
Experimenter's Laboratory for Visualized Interactive Science
NASA Technical Reports Server (NTRS)
Hansen, Elaine R.; Rodier, Daniel R.; Klemp, Marjorie K.
1994-01-01
ELVIS (Experimenter's Laboratory for Visualized Interactive Science) is an interactive visualization environment that enables scientists, students, and educators to visualize and analyze large, complex, and diverse sets of scientific data. It accomplishes this by presenting the data sets as 2-D, 3-D, color, stereo, and graphic images with movable and multiple light sources combined with displays of solid-surface, contours, wire-frame, and transparency. By simultaneously rendering diverse data sets acquired from multiple sources, formats, and resolutions and by interacting with the data through an intuitive, direct-manipulation interface, ELVIS provides an interactive and responsive environment for exploratory data analysis.
Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B
2016-01-01
Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931
Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B
2016-09-06
Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.
Coronal Mass Ejection Data Clustering and Visualization of Decision Trees
NASA Astrophysics Data System (ADS)
Ma, Ruizhe; Angryk, Rafal A.; Riley, Pete; Filali Boubrahimi, Soukaina
2018-05-01
Coronal mass ejections (CMEs) can be categorized as either “magnetic clouds” (MCs) or non-MCs. Features such as a large magnetic field, low plasma-beta, and low proton temperature suggest that a CME event is also an MC event; however, so far there is neither a definitive method nor an automatic process to distinguish the two. Human labeling is time-consuming, and results can fluctuate owing to the imprecise definition of such events. In this study, we approach the problem of MC and non-MC distinction from a time series data analysis perspective and show how clustering can shed some light on this problem. Although many algorithms exist for traditional data clustering in the Euclidean space, they are not well suited for time series data. Problems such as inadequate distance measure, inaccurate cluster center description, and lack of intuitive cluster representations need to be addressed for effective time series clustering. Our data analysis in this work is twofold: clustering and visualization. For clustering we compared the results from the popular hierarchical agglomerative clustering technique to a distance density clustering heuristic we developed previously for time series data clustering. In both cases, dynamic time warping will be used for similarity measure. For classification as well as visualization, we use decision trees to aggregate single-dimensional clustering results to form a multidimensional time series decision tree, with averaged time series to present each decision. In this study, we achieved modest accuracy and, more importantly, an intuitive interpretation of how different parameters contribute to an MC event.
Local biotic adaptation of trees and shrubs to plant neighbors
Grady, Kevin C.; Wood, Troy E.; Kolb, Thomas E.; Hersch-Green, Erika; Shuster, Stephen M.; Gehring, Catherine A.; Hart, Stephen C.; Allan, Gerard J.; Whitham, Thomas G.
2017-01-01
Natural selection as a result of plant–plant interactions can lead to local biotic adaptation. This may occur where species frequently interact and compete intensely for resources limiting growth, survival, and reproduction. Selection is demonstrated by comparing a genotype interacting with con- or hetero-specific sympatric neighbor genotypes with a shared site-level history (derived from the same source location), to the same genotype interacting with foreign neighbor genotypes (from different sources). Better genotype performance in sympatric than allopatric neighborhoods provides evidence of local biotic adaptation. This pattern might be explained by selection to avoid competition by shifting resource niches (differentiation) or by interactions benefitting one or more members (facilitation). We tested for local biotic adaptation among two riparian trees, Populus fremontii and Salix gooddingii, and the shrub Salix exigua by transplanting replicated genotypes from multiple source locations to a 17 000 tree common garden with sympatric and allopatric treatments along the Colorado River in California. Three major patterns were observed: 1) across species, 62 of 88 genotypes grew faster with sympatric neighbors than allopatric neighbors; 2) these growth rates, on an individual tree basis, were 44, 15 and 33% higher in sympatric than allopatric treatments for P. fremontii, S. exigua and S. gooddingii, respectively, and; 3) survivorship was higher in sympatric treatments for P. fremontiiand S. exigua. These results support the view that fitness of foundation species supporting diverse communities and dominating ecosystem processes is determined by adaptive interactions among multiple plant species with the outcome that performance depends on the genetic identity of plant neighbors. The occurrence of evolution in a plant-community context for trees and shrubs builds on ecological evolutionary research that has demonstrated co-evolution among herbaceous taxa, and evolution of native species during exotic plants invasion, and taken together, refutes the concept that plant communities are always random associations.
Interactive Visualization of Dependencies
ERIC Educational Resources Information Center
Moreno, Camilo Arango; Bischof, Walter F.; Hoover, H. James
2012-01-01
We present an interactive tool for browsing course requisites as a case study of dependency visualization. This tool uses multiple interactive visualizations to allow the user to explore the dependencies between courses. A usability study revealed that the proposed browser provides significant advantages over traditional methods, in terms of…
Loss of functional diversity and network modularity in introduced plant–fungal symbioses
Cooper, Jerry A.; Bufford, Jennifer L.; Hulme, Philip E.; Bates, Scott T.
2017-01-01
The introduction of alien plants into a new range can result in the loss of co-evolved symbiotic organisms, such as mycorrhizal fungi, that are essential for normal plant physiological functions. Prior studies of mycorrhizal associations in alien plants have tended to focus on individual plant species on a case-by-case basis. This approach limits broad scale understanding of functional shifts and changes in interaction network structure that may occur following introduction. Here we use two extensive datasets of plant–fungal interactions derived from fungal sporocarp observations and recorded plant hosts in two island archipelago nations: New Zealand (NZ) and the United Kingdom (UK). We found that the NZ dataset shows a lower functional diversity of fungal hyphal foraging strategies in mycorrhiza of alien when compared with native trees. Across species this resulted in fungal foraging strategies associated with alien trees being much more variable in functional composition compared with native trees, which had a strikingly similar functional composition. The UK data showed no functional difference in fungal associates of alien and native plant genera. Notwithstanding this, both the NZ and UK data showed a substantial difference in interaction network structure of alien trees compared with native trees. In both cases, fungal associates of native trees showed strong modularity, while fungal associates of alien trees generally integrated into a single large module. The results suggest a lower functional diversity (in one dataset) and a simplification of network structure (in both) as a result of introduction, potentially driven by either limited symbiont co-introductions or disruption of habitat as a driver of specificity due to nursery conditions, planting, or plant edaphic-niche expansion. Recognizing these shifts in function and network structure has important implications for plant invasions and facilitation of secondary invasions via shared mutualist populations. PMID:28039116
Query2Question: Translating Visualization Interaction into Natural Language.
Nafari, Maryam; Weaver, Chris
2015-06-01
Richly interactive visualization tools are increasingly popular for data exploration and analysis in a wide variety of domains. Existing systems and techniques for recording provenance of interaction focus either on comprehensive automated recording of low-level interaction events or on idiosyncratic manual transcription of high-level analysis activities. In this paper, we present the architecture and translation design of a query-to-question (Q2Q) system that automatically records user interactions and presents them semantically using natural language (written English). Q2Q takes advantage of domain knowledge and uses natural language generation (NLG) techniques to translate and transcribe a progression of interactive visualization states into a visual log of styled text that complements and effectively extends the functionality of visualization tools. We present Q2Q as a means to support a cross-examination process in which questions rather than interactions are the focus of analytic reasoning and action. We describe the architecture and implementation of the Q2Q system, discuss key design factors and variations that effect question generation, and present several visualizations that incorporate Q2Q for analysis in a variety of knowledge domains.
Creating silvopastures: some considerations when planting trees in pastures
John Fike; Adam Downing; John Munsell; Gregory E. Frey; Kelly Mercier; Gabriel Pent; Chris Teutsch; J.B. Daniel; Jason Fisher; Miller Adams; Todd Groh
2017-01-01
 Silvopastures â integrated tree-forage-livestock production systems â have the potential to boost farm resource use and income. These systems take advantage of the beneficial interactions...
SPV: a JavaScript Signaling Pathway Visualizer.
Calderone, Alberto; Cesareni, Gianni
2018-03-24
The visualization of molecular interactions annotated in web resources is useful to offer to users such information in a clear intuitive layout. These interactions are frequently represented as binary interactions that are laid out in free space where, different entities, cellular compartments and interaction types are hardly distinguishable. SPV (Signaling Pathway Visualizer) is a free open source JavaScript library which offers a series of pre-defined elements, compartments and interaction types meant to facilitate the representation of signaling pathways consisting of causal interactions without neglecting simple protein-protein interaction networks. freely available under Apache version 2 license; Source code: https://github.com/Sinnefa/SPV_Signaling_Pathway_Visualizer_v1.0. Language: JavaScript; Web technology: Scalable Vector Graphics; Libraries: D3.js. sinnefa@gmail.com.
Chiesa, S; Galati, D; Schmidt, S
2015-11-01
Social and emotional development of infants and young children is largely based on the communicative interaction with their mother, or principal caretaker (Trevarthen ). The main modalities implied in this early communication are voice, facial expressions and gaze (Stern ). This study aims at analysing early mother-child interactions in the case of visually impaired mothers who do not have access to their children's gaze and facial expressions. Spontaneous play interactions between seven visually impaired mothers and their sighted children aged between 6 months and 3 years were filmed. These dyads were compared with a control group of sighted mothers and children analysing four modalities of communication and interaction regulation: gaze, physical contacts, verbal productions and facial expressions. The visually impaired mothers' facial expressions differed from the ones of sighted mothers mainly with respect to forehead movements, leading to an impoverishment of conveyed meaning. Regarding the other communicative modalities, results suggest that visually impaired mothers and their children use compensatory strategies to guaranty harmonic interaction despite the mother's impairment: whereas gaze results the main factor of interaction regulation in sighted dyads, physical contacts and verbal productions assume a prevalent role in dyads with visually impaired mothers. Moreover, visually impaired mother's children seem to be able to differentiate between their mother and sighted interaction partners, adapting differential modes of communication. The results of this study show that, in spite of the obvious differences in the modes of communication, visual impairment does not prevent a harmonious interaction with the child. © 2015 John Wiley & Sons Ltd.
Ochoa, David; García-Gutiérrez, Ponciano; Juan, David; Valencia, Alfonso; Pazos, Florencio
2013-01-27
A widespread family of methods for studying and predicting protein interactions using sequence information is based on co-evolution, quantified as similarity of phylogenetic trees. Part of the co-evolution observed between interacting proteins could be due to co-adaptation caused by inter-protein contacts. In this case, the co-evolution is expected to be more evident when evaluated on the surface of the proteins or the internal layers close to it. In this work we study the effect of incorporating information on predicted solvent accessibility to three methods for predicting protein interactions based on similarity of phylogenetic trees. We evaluate the performance of these methods in predicting different types of protein associations when trees based on positions with different characteristics of predicted accessibility are used as input. We found that predicted accessibility improves the results of two recent versions of the mirrortree methodology in predicting direct binary physical interactions, while it neither improves these methods, nor the original mirrortree method, in predicting other types of interactions. That improvement comes at no cost in terms of applicability since accessibility can be predicted for any sequence. We also found that predictions of protein-protein interactions are improved when multiple sequence alignments with a richer representation of sequences (including paralogs) are incorporated in the accessibility prediction.
TSEMA: interactive prediction of protein pairings between interacting families
Izarzugaza, José M. G.; Juan, David; Pons, Carles; Ranea, Juan A. G.; Valencia, Alfonso; Pazos, Florencio
2006-01-01
An entire family of methodologies for predicting protein interactions is based on the observed fact that families of interacting proteins tend to have similar phylogenetic trees due to co-evolution. One application of this concept is the prediction of the mapping between the members of two interacting protein families (which protein within one family interacts with which protein within the other). The idea is that the real mapping would be the one maximizing the similarity between the trees. Since the exhaustive exploration of all possible mappings is not feasible for large families, current approaches use heuristic techniques which do not ensure the best solution to be found. This is why it is important to check the results proposed by heuristic techniques and to manually explore other solutions. Here we present TSEMA, the server for efficient mapping assessment. This system calculates an initial mapping between two families of proteins based on a Monte Carlo approach and allows the user to interactively modify it based on performance figures and/or specific biological knowledge. All the explored mappings are graphically shown over a representation of the phylogenetic trees. The system is freely available at . Standalone versions of the software behind the interface are available upon request from the authors. PMID:16845017
ERIC Educational Resources Information Center
Gao, Tao; Gao, Zaifeng; Li, Jie; Sun, Zhongqiang; Shen, Mowei
2011-01-01
Mainstream theories of visual perception assume that visual working memory (VWM) is critical for integrating online perceptual information and constructing coherent visual experiences in changing environments. Given the dynamic interaction between online perception and VWM, we propose that how visual information is processed during visual…
Poirot, Jordan; De Luna, Paolo; Rainer, Gregor
2016-04-01
We comprehensively characterize spiking and visual evoked potential (VEP) activity in tree shrew V1 and V2 using Cartesian, hyperbolic, and polar gratings. Neural selectivity to structure of Cartesian gratings was higher than other grating classes in both visual areas. From V1 to V2, structure selectivity of spiking activity increased, whereas corresponding VEP values tended to decrease, suggesting that single-neuron coding of Cartesian grating attributes improved while the cortical columnar organization of these neurons became less precise from V1 to V2. We observed that neurons in V2 generally exhibited similar selectivity for polar and Cartesian gratings, suggesting that structure of polar-like stimuli might be encoded as early as in V2. This hypothesis is supported by the preference shift from V1 to V2 toward polar gratings of higher spatial frequency, consistent with the notion that V2 neurons encode visual scene borders and contours. Neural sensitivity to modulations of polarity of hyperbolic gratings was highest among all grating classes and closely related to the visual receptive field (RF) organization of ON- and OFF-dominated subregions. We show that spatial RF reconstructions depend strongly on grating class, suggesting that intracortical contributions to RF structure are strongest for Cartesian and polar gratings. Hyperbolic gratings tend to recruit least cortical elaboration such that the RF maps are similar to those generated by sparse noise, which most closely approximate feedforward inputs. Our findings complement previous literature in primates, rodents, and carnivores and highlight novel aspects of shape representation and coding occurring in mammalian early visual cortex. Copyright © 2016 the American Physiological Society.
Harold S.J. Zald; Thomas A. Spies; Manuela Huso; Demetrios Gatziolis
2012-01-01
Tree invasions have been documented throughout Northern Hemisphere high elevation meadows, as well as globally in many grass and forb-dominated ecosystems. Tree invasions are often associated with large-scale changes in climate or disturbance regimes, but are fundamentally driven by regeneration processes influenced by interactions between climatic, topographic, and...
Martin Wilmking; Glenn P. Juday; Valerie A. Barber; Harold S.J. Zald
2004-01-01
Northern and high-latitude alpine treelines are generally thought to be limited by available warmth. Most studies of tree-growth-climate interaction at treeline as well as climate reconstructions using dendrochronology report positive growth response of treeline trees to warmer temperatures. However, population-wide responses of treeline trees to climate remain largely...
Suzanne Boyden; Rebecca Montgomery; Peter B. Reich; Brian J. Palik
2012-01-01
Forest ecosystem processes depend on local interactions that are modified by the spatial pattern of trees and resources. Effects of resource supplies on processes such as regeneration are increasingly well understood, yet we have few tools to compare resource heterogeneity among forests that differ in structural complexity. We used a neighborhood approach to examine...
Levesque, Mathieu; Andreu-Hayles, Laia; Pederson, Neil
2017-04-10
Dynamic global vegetation models (DGVM) exhibit high uncertainty about how climate change, elevated atmospheric CO 2 (atm. CO 2 ) concentration, and atmospheric pollutants will impact carbon sequestration in forested ecosystems. Although the individual roles of these environmental factors on tree growth are understood, analyses examining their simultaneous effects are lacking. We used tree-ring isotopic data and structural equation modeling to examine the concurrent and interacting effects of water availability, atm. CO 2 concentration, and SO 4 and nitrogen deposition on two broadleaf tree species in a temperate mesic forest in the northeastern US. Water availability was the strongest driver of gas exchange and tree growth. Wetter conditions since the 1980s have enhanced stomatal conductance, photosynthetic assimilation rates and, to a lesser extent, tree radial growth. Increased water availability seemingly overrides responses to reduced acid deposition, CO 2 fertilization, and nitrogen deposition. Our results indicate that water availability as a driver of ecosystem productivity in mesic temperate forests is not adequately represented in DGVMs, while CO 2 fertilization is likely overrepresented. This study emphasizes the importance to simultaneously consider interacting climatic and biogeochemical drivers when assessing forest responses to global environmental changes.
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-01-01
This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs. PMID:25587878
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-11-26
This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs.
Sonnay, Sarah; Poirot, Jordan; Just, Nathalie; Clerc, Anne-Catherine; Gruetter, Rolf; Rainer, Gregor; Duarte, João M N
2018-03-01
Astrocytes play an important role in glutamatergic neurotransmission, namely by clearing synaptic glutamate and converting it into glutamine that is transferred back to neurons. The rate of this glutamate-glutamine cycle (V NT ) has been proposed to couple to that of glucose utilization and of neuronal tricarboxylic acid (TCA) cycle. In this study, we tested the hypothesis that glutamatergic neurotransmission is also coupled to the TCA cycle rate in astrocytes. For that we investigated energy metabolism by means of magnetic resonance spectroscopy (MRS) in the primary visual cortex of tree shrews (Tupaia belangeri) under light isoflurane anesthesia at rest and during continuous visual stimulation. After identifying the activated cortical volume by blood oxygenation level-dependent functional magnetic resonance imaging, 1 H MRS was performed to measure stimulation-induced variations in metabolite concentrations. Relative to baseline, stimulation of cortical activity for 20 min caused a reduction of glucose concentration by -0.34 ± 0.09 µmol/g (p < 0.001), as well as a -9% ± 1% decrease of the ratio of phosphocreatine-to-creatine (p < 0.05). Then 13 C MRS during [1,6- 13 C]glucose infusion was employed to measure fluxes of energy metabolism. Stimulation of glutamatergic activity, as indicated by a 20% increase of V NT , resulted in increased TCA cycle rates in neurons by 12% ( VTCAn, p < 0.001) and in astrocytes by 24% ( VTCAg, p = 0.007). We further observed linear relationships between V NT and both VTCAn and VTCAg. Altogether, these results suggest that in the tree shrew primary visual cortex glutamatergic neurotransmission is linked to overall glucose oxidation and to mitochondrial metabolism in both neurons and astrocytes. © 2017 Wiley Periodicals, Inc.
Introduction in IND and recursive partitioning
NASA Technical Reports Server (NTRS)
Buntine, Wray; Caruana, Rich
1991-01-01
This manual describes the IND package for learning tree classifiers from data. The package is an integrated C and C shell re-implementation of tree learning routines such as CART, C4, and various MDL and Bayesian variations. The package includes routines for experiment control, interactive operation, and analysis of tree building. The manual introduces the system and its many options, gives a basic review of tree learning, contains a guide to the literature and a glossary, and lists the manual pages for the routines and instructions on installation.
Visual exploration and analysis of human-robot interaction rules
NASA Astrophysics Data System (ADS)
Zhang, Hui; Boyles, Michael J.
2013-01-01
We present a novel interaction paradigm for the visual exploration, manipulation and analysis of human-robot interaction (HRI) rules; our development is implemented using a visual programming interface and exploits key techniques drawn from both information visualization and visual data mining to facilitate the interaction design and knowledge discovery process. HRI is often concerned with manipulations of multi-modal signals, events, and commands that form various kinds of interaction rules. Depicting, manipulating and sharing such design-level information is a compelling challenge. Furthermore, the closed loop between HRI programming and knowledge discovery from empirical data is a relatively long cycle. This, in turn, makes design-level verification nearly impossible to perform in an earlier phase. In our work, we exploit a drag-and-drop user interface and visual languages to support depicting responsive behaviors from social participants when they interact with their partners. For our principal test case of gaze-contingent HRI interfaces, this permits us to program and debug the robots' responsive behaviors through a graphical data-flow chart editor. We exploit additional program manipulation interfaces to provide still further improvement to our programming experience: by simulating the interaction dynamics between a human and a robot behavior model, we allow the researchers to generate, trace and study the perception-action dynamics with a social interaction simulation to verify and refine their designs. Finally, we extend our visual manipulation environment with a visual data-mining tool that allows the user to investigate interesting phenomena such as joint attention and sequential behavioral patterns from multiple multi-modal data streams. We have created instances of HRI interfaces to evaluate and refine our development paradigm. As far as we are aware, this paper reports the first program manipulation paradigm that integrates visual programming interfaces, information visualization, and visual data mining methods to facilitate designing, comprehending, and evaluating HRI interfaces.
Gomez, Doris; Richardson, Christina; Lengagne, Thierry; Plenet, Sandrine; Joly, Pierre; Léna, Jean-Paul; Théry, Marc
2009-01-01
Nocturnal frog species rely extensively on vocalization for reproduction. But recent studies provide evidence for an important, though long overlooked, role of visual communication. In many species, calling males exhibit a conspicuous pulsing vocal sac, a signal bearing visually important dynamic components. Here, we investigate female preference for male vocal sac coloration—a question hitherto unexplored—and male colour pattern in the European tree frog (Hyla arborea). Under nocturnal conditions, we conducted two-choice experiments involving video playbacks of calling males with identical calls and showing various naturally encountered colour signals, differing in their chromatic and brightness components. We adjusted video colours to match the frogs' visual perception, a crucial aspect not considered in previous experiments. Females prefer males with a colourful sac and a pronounced flank stripe. Both signals probably enhance male conspicuousness and facilitate detection and localization by females. This study provides the first experimental evidence of a preference for specific vocal sac spectral properties in a nocturnal anuran species. Vocal sac coloration is based on carotenoids and may convey information about male quality worthwhile for females to assess. The informative content of the flank stripe remains to be demonstrated. PMID:19324736
Blom, Mozes P K
2015-08-05
Recently developed molecular methods enable geneticists to target and sequence thousands of orthologous loci and infer evolutionary relationships across the tree of life. Large numbers of genetic markers benefit species tree inference but visual inspection of alignment quality, as traditionally conducted, is challenging with thousands of loci. Furthermore, due to the impracticality of repeated visual inspection with alternative filtering criteria, the potential consequences of using datasets with different degrees of missing data remain nominally explored in most empirical phylogenomic studies. In this short communication, I describe a flexible high-throughput pipeline designed to assess alignment quality and filter exonic sequence data for subsequent inference. The stringency criteria for alignment quality and missing data can be adapted based on the expected level of sequence divergence. Each alignment is automatically evaluated based on the stringency criteria specified, significantly reducing the number of alignments that require visual inspection. By developing a rapid method for alignment filtering and quality assessment, the consistency of phylogenetic estimation based on exonic sequence alignments can be further explored across distinct inference methods, while accounting for different degrees of missing data.
Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H
2014-11-19
Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.
Iron deficiency enhances bioactive phenolics in lemon juice.
Mellisho, Carmen D; González-Barrio, Rocío; Ferreres, Federico; Ortuño, María F; Conejero, Wenceslao; Torrecillas, Arturo; García-Mina, José M; Medina, Sonia; Gil-Izquierdo, Angel
2011-09-01
This study was designed to describe the phenolic status of lemon juice obtained from fruits of lemon trees differing in iron (Fe) nutritional status. Three types of Fe(III) compound were used in the experiment, namely a synthetic chelate and two complexes derived from natural polymers of humic and lignine nature. All three Fe(III) compounds were able to improve the Fe nutritional status of lemon trees, though to different degrees. This Fe(III) compound effect led to changes in the polyphenol content of lemon juice. Total phenolics were decreased (∼33% average decrease) and, in particular, flavanones, flavones and flavonols were affected similarly. Iron-deficient trees showed higher phenolic contents than Fe(III) compound-treated trees, though Fe deficiency had negative effects on the yield and visual quality of fruits. However, from a human nutritional point of view and owing to the health-beneficial properties of their bioavailable phenolic compounds, the nutritional quality of fruits of Fe-deficient lemon trees in terms of phenolics was higher than that of fruits of Fe(III) compound-treated lemon trees. Moreover, diosmetin-6,8-di-C-glucoside in lemon juice can be used as a marker for correction of Fe deficiency in lemon trees. Copyright © 2011 Society of Chemical Industry.
Interactive Visualization of Assessment Data: The Software Package Mondrian
ERIC Educational Resources Information Center
Unlu, Ali; Sargin, Anatol
2009-01-01
Mondrian is state-of-the-art statistical data visualization software featuring modern interactive visualization techniques for a wide range of data types. This article reviews the capabilities, functionality, and interactive properties of this software package. Key features of Mondrian are illustrated with data from the Programme for International…
Phylogeny mandalas for illustrating the Tree of Life.
Hasegawa, Masami
2017-12-01
A circular phylogeny with photos or drawings of species is named a phylogeny mandala. This is one of the ways for illustrating the Tree of Life, and is suitable to show visually how the biodiversity has developed in the course of evolution as clarified by the molecular phylogenetics. To demonstrate the recent progress of molecular phylogenetics, six phylogeny mandalas for various taxonomic groups of life were presented; i.e., (1) Eukaryota, (2) Metazoa, (3) Hexapoda, (4) Tetrapoda, (5) Eutheria, and (6) Primates. Copyright © 2016 Elsevier Inc. All rights reserved.
Catton, H.A.; St., George; Remphrey, W.R.
2007-01-01
Winnipeg, Manitoba, Canada, has a large, indigenous population of bur oak (Quercus macrocarpa Michx.). In the 1980s, many of these trees were showing signs of decline, a disease caused by a complex of abiotic and secondary biotic stressing agents. Potential causal factors were investigated by comparing various aspects of 120 bur oaks visually rated as healthy or declined based on crown dieback levels. The results indicated that many selected bur oak trees predated surrounding urban development and that declined trees were significantly older with more severe stem wounds and competition from surrounding trees than healthy specimens. Average annual growth ring widths of healthy and declined trees were similar in the early part of the 20th century. However, decline actually began decades before symptoms were noticed, coinciding with a period of in tense city-wide urban development, as growth of declined trees was slower than that of healthy trees beginning sporadically in the 1940s and consistently from 1974 to 2001. During the early years of decline, the year-by-year separation in ring width between the two categories was significantly positively related to precipitation levels. This suggested that in wet years, declined trees may have been surrounded by unfavorable water-logged soils, possibly as a result of natural drainage patterns being impeded by urban development. ?? 2007 International Society of Arboriculture.
Optimal Path Planning Program for Autonomous Speed Sprayer in Orchard Using Order-Picking Algorithm
NASA Astrophysics Data System (ADS)
Park, T. S.; Park, S. J.; Hwang, K. Y.; Cho, S. I.
This study was conducted to develop a software program which computes optimal path for autonomous navigation in orchard, especially for speed sprayer. Possibilities of autonomous navigation in orchard were shown by other researches which have minimized distance error between planned path and performed path. But, research of planning an optimal path for speed sprayer in orchard is hardly founded. In this study, a digital map and a database for orchard which contains GPS coordinate information (coordinates of trees and boundary of orchard) and entity information (heights and widths of trees, radius of main stem of trees, disease of trees) was designed. An orderpicking algorithm which has been used for management of warehouse was used to calculate optimum path based on the digital map. Database for digital map was created by using Microsoft Access and graphic interface for database was made by using Microsoft Visual C++ 6.0. It was possible to search and display information about boundary of an orchard, locations of trees, daily plan for scattering chemicals and plan optimal path on different orchard based on digital map, on each circumstance (starting speed sprayer in different location, scattering chemicals for only selected trees).
Rootstock Effects on Pistachio Trees Grown in Verticillium dahliae-Infested Soil.
Epstein, L; Beede, R; Kaur, S; Ferguson, L
2004-04-01
ABSTRACT In a field trial in soil infested with Verticillium dahliae, we compared the yield, growth, incidence of symptoms of Verticillium wilt, and mortality of two interspecific hybrid pistachio tree rootstocks (UCBI and PGII) with the standard rootstocks: the V. dahliae-resistant and susceptible Pistacia integerrima and P. atlantica, respectively. After 10 years, the trees were destructively sampled for V. dahliae in the xylem at the graft union. The results indicate that trees on the (P. atlantica 'KAC' x P. integerrima) hybrid UCBI rootstock grew and yielded as well as those on P. integerrima. Trees on the hybrid PGII yielded the least. Analysis of variance and log-linear models indicate that in soil infested with V. dahliae, three associations significantly affect pistachio nut yield. Rootstock affects scion vigor and extent of infection. Third, the extent of infection and scion vigor are inversely associated. Although trees on the P. integerrima rootstock had the highest ratings in a visual assessment of vigor, 65% were infected with V. dahliae in the trunk in the graft region compared with 73% in P. atlantica and 25% in UCBI. Thus, P. integerrima and UCBI have at least one different mechanism for resistance to V. dahliae.
Prevalence and Persistence of Misconceptions in Tree Thinking.
Kummer, Tyler A; Whipple, Clinton J; Jensen, Jamie L
2016-12-01
Darwin described evolution as "descent with modification." Descent, however, is not an explicit focus of most evolution instruction and often leaves deeply held misconceptions to dominate student understanding of common ancestry and species relatedness. Evolutionary trees are ways of visually depicting descent by illustrating the relationships between species and groups of species. The ability to properly interpret and use evolutionary trees has become known as "tree thinking." We used a 20-question assessment to measure misconceptions in tree thinking and compare the proportion of students who hold these misconceptions in an introductory biology course with students in two higher-level courses including a senior level biology course. We found that misconceptions related to reading the graphic ( reading the tips and node counting ) were variably influenced across time with reading the tips decreasing and node counting increasing in prevalence. On the other hand, misconceptions related to the fundamental underpinnings of evolutionary theory ( ladder thinking and similarity equals relatedness ) proved resistant to change during a typical undergraduate study of biology. A possible new misconception relating to the length of the branches in an evolutionary tree is described. Understanding the prevalence and persistence of misconceptions informs educators as to which misconceptions should be targeted in their courses.
Selection of organisms for the co-evolution-based study of protein interactions.
Herman, Dorota; Ochoa, David; Juan, David; Lopez, Daniel; Valencia, Alfonso; Pazos, Florencio
2011-09-12
The prediction and study of protein interactions and functional relationships based on similarity of phylogenetic trees, exemplified by the mirrortree and related methodologies, is being widely used. Although dependence between the performance of these methods and the set of organisms used to build the trees was suspected, so far nobody assessed it in an exhaustive way, and, in general, previous works used as many organisms as possible. In this work we asses the effect of using different sets of organism (chosen according with various phylogenetic criteria) on the performance of this methodology in detecting protein interactions of different nature. We show that the performance of three mirrortree-related methodologies depends on the set of organisms used for building the trees, and it is not always directly related to the number of organisms in a simple way. Certain subsets of organisms seem to be more suitable for the predictions of certain types of interactions. This relationship between type of interaction and optimal set of organism for detecting them makes sense in the light of the phylogenetic distribution of the organisms and the nature of the interactions. In order to obtain an optimal performance when predicting protein interactions, it is recommended to use different sets of organisms depending on the available computational resources and data, as well as the type of interactions of interest.
Selection of organisms for the co-evolution-based study of protein interactions
2011-01-01
Background The prediction and study of protein interactions and functional relationships based on similarity of phylogenetic trees, exemplified by the mirrortree and related methodologies, is being widely used. Although dependence between the performance of these methods and the set of organisms used to build the trees was suspected, so far nobody assessed it in an exhaustive way, and, in general, previous works used as many organisms as possible. In this work we asses the effect of using different sets of organism (chosen according with various phylogenetic criteria) on the performance of this methodology in detecting protein interactions of different nature. Results We show that the performance of three mirrortree-related methodologies depends on the set of organisms used for building the trees, and it is not always directly related to the number of organisms in a simple way. Certain subsets of organisms seem to be more suitable for the predictions of certain types of interactions. This relationship between type of interaction and optimal set of organism for detecting them makes sense in the light of the phylogenetic distribution of the organisms and the nature of the interactions. Conclusions In order to obtain an optimal performance when predicting protein interactions, it is recommended to use different sets of organisms depending on the available computational resources and data, as well as the type of interactions of interest. PMID:21910884
Barone, Pascal; Chambaudie, Laure; Strelnikov, Kuzma; Fraysse, Bernard; Marx, Mathieu; Belin, Pascal; Deguine, Olivier
2016-10-01
Due to signal distortion, speech comprehension in cochlear-implanted (CI) patients relies strongly on visual information, a compensatory strategy supported by important cortical crossmodal reorganisations. Though crossmodal interactions are evident for speech processing, it is unclear whether a visual influence is observed in CI patients during non-linguistic visual-auditory processing, such as face-voice interactions, which are important in social communication. We analyse and compare visual-auditory interactions in CI patients and normal-hearing subjects (NHS) at equivalent auditory performance levels. Proficient CI patients and NHS performed a voice-gender categorisation in the visual-auditory modality from a morphing-generated voice continuum between male and female speakers, while ignoring the presentation of a male or female visual face. Our data show that during the face-voice interaction, CI deaf patients are strongly influenced by visual information when performing an auditory gender categorisation task, in spite of maximum recovery of auditory speech. No such effect is observed in NHS, even in situations of CI simulation. Our hypothesis is that the functional crossmodal reorganisation that occurs in deafness could influence nonverbal processing, such as face-voice interaction; this is important for patient internal supramodal representation. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Mirel, Barbara
2001-01-01
Conducts a scenario-based usability test with 10 data analysts using visual querying (visually analyzing data with interactive graphics). Details a range of difficulties found in visual selection that, at times, gave rise to inaccurate selections, invalid conclusions, and misguided decisions. Argues that support for visual selection must be built…
Sexual segregation in foraging giraffe
NASA Astrophysics Data System (ADS)
Mramba, Rosemary Peter; Mahenya, Obeid; Siyaya, Annetjie; Mathisen, Karen Marie; Andreassen, Harry Peter; Skarpe, Christina
2017-02-01
Sexual segregation in giraffe is known to vary between savannas. In this study, we compared sexual segregation in giraffe in one nutrient-rich savanna, the Serengeti National Park, one nutrient-poor, Mikumi National Park, and one medium rich savanna, Arusha National Park, (from here on referred to just by name) based on effects of sexual size dimorphism and related hypotheses. Data were collected in the wet and dry seasons, by driving road transects and making visual observations of browsing giraffe. Additional data were collected from literature (plant chemistry; mammal communities). There was a noticeable difference in browsing by females and males and in browsing between the three savannas. Females browsed a higher diversity of tree species in Serengeti whereas males browsed a higher diversity in Arusha, while the diversity of species browsed in Mikumi was high and about the same in both sexes. Females selected for high concentrations of nitrogen and low concentrations of tannins and phenolics compared to males in Serengeti but selection in Mikumi was more complex. Males browsed higher in the canopy than females in all sites, but the browsing height was generally higher in Serengeti than Mikumi and Arusha. Season had an effect on the browsing height independent of sex in Mikumi, where giraffes browsed higher in the dry season compared to the wet season. Males spent more time browsing per tree compared to females in all three sites; however, browsing time in Mikumi was also affected by season, where giraffes had longer browsing bouts in the wet season compared to the dry season. We suggest that sexual differences in forage requirement and in foraging interacts with differences in tree chemistry and in competing herbivore communities between nutrient rich and nutrient poor savanna in shaping the sexual segregation.
Applying Pragmatics Principles for Interaction with Visual Analytics.
Hoque, Enamul; Setlur, Vidya; Tory, Melanie; Dykeman, Isaac
2018-01-01
Interactive visual data analysis is most productive when users can focus on answering the questions they have about their data, rather than focusing on how to operate the interface to the analysis tool. One viable approach to engaging users in interactive conversations with their data is a natural language interface to visualizations. These interfaces have the potential to be both more expressive and more accessible than other interaction paradigms. We explore how principles from language pragmatics can be applied to the flow of visual analytical conversations, using natural language as an input modality. We evaluate the effectiveness of pragmatics support in our system Evizeon, and present design considerations for conversation interfaces to visual analytics tools.
phyloXML: XML for evolutionary biology and comparative genomics
Han, Mira V; Zmasek, Christian M
2009-01-01
Background Evolutionary trees are central to a wide range of biological studies. In many of these studies, tree nodes and branches need to be associated (or annotated) with various attributes. For example, in studies concerned with organismal relationships, tree nodes are associated with taxonomic names, whereas tree branches have lengths and oftentimes support values. Gene trees used in comparative genomics or phylogenomics are usually annotated with taxonomic information, genome-related data, such as gene names and functional annotations, as well as events such as gene duplications, speciations, or exon shufflings, combined with information related to the evolutionary tree itself. The data standards currently used for evolutionary trees have limited capacities to incorporate such annotations of different data types. Results We developed a XML language, named phyloXML, for describing evolutionary trees, as well as various associated data items. PhyloXML provides elements for commonly used items, such as branch lengths, support values, taxonomic names, and gene names and identifiers. By using "property" elements, phyloXML can be adapted to novel and unforeseen use cases. We also developed various software tools for reading, writing, conversion, and visualization of phyloXML formatted data. Conclusion PhyloXML is an XML language defined by a complete schema in XSD that allows storing and exchanging the structures of evolutionary trees as well as associated data. More information about phyloXML itself, the XSD schema, as well as tools implementing and supporting phyloXML, is available at . PMID:19860910
Spiral CT scanning technique in the detection of aspiration of LEGO foreign bodies.
Applegate, K E; Dardinger, J T; Lieber, M L; Herts, B R; Davros, W J; Obuchowski, N A; Maneker, A
2001-12-01
Radiolucent foreign bodies (FBs) such as plastic objects and toys remain difficult to identify on conventional radiographs of the neck and chest. Children may present with a variety of respiratory complaints, which may or may not be due to a FB. To determine whether radiolucent FBs such as plastic LEGOs and peanuts can be seen in the tracheobronchial tree or esophagus using low-dose spiral CT, and, if visible, to determine the optimal CT imaging technique. Multiple spiral sequences were performed while varying the CT parameters and the presence and location of FBs in either the trachea or the esophagus first on a neck phantom and then a cadaver. Sequences were rated by three radiologists blinded to the presence of a FB using a single scoring system. The LEGO was well visualized in the trachea by all three readers (both lung and soft-tissue windowing: combined sensitivity 89 %, combined specificity 89 %) and to a lesser extent in the esophagus (combined sensitivity 31 %, combined specificity 100 %). The peanut was not well visualized (combined sensitivity < 35 %). The optimal technique for visualizing the LEGO was 120 kV, 90 mA, 3-mm collimation, 0.75 s/revolution, and 2.0 pitch. This allowed for coverage of the cadaver tracheobronchial tree (approximately 11 cm) in about 18 s. Although statistical power was low for detecting significant differences, all three readers noted higher average confidence ratings with lung windowing among 18 LEGO-in-trachea scans. Rapid, low-dose spiral CT may be used to visualize LEGO FBs in the airway or esophagus. Peanuts were not well visualized.
Zhu, Ying
2016-01-01
Individual neurons in several sensory systems receive synaptic inputs organized according to subcellular topographic maps, yet the fine structure of this topographic organization and its relation to dendritic morphology have not been studied in detail. Subcellular topography is expected to play a role in dendritic integration, particularly when dendrites are extended and active. The lobula giant movement detector (LGMD) neuron in the locust visual system is known to receive topographic excitatory inputs on part of its dendritic tree. The LGMD responds preferentially to objects approaching on a collision course and is thought to implement several interesting dendritic computations. To study the fine retinotopic mapping of visual inputs onto the excitatory dendrites of the LGMD, we designed a custom microscope allowing visual stimulation at the native sampling resolution of the locust compound eye while simultaneously performing two-photon calcium imaging on excitatory dendrites. We show that the LGMD receives a distributed, fine retinotopic projection from the eye facets and that adjacent facets activate overlapping portions of the same dendritic branches. We also demonstrate that adjacent retinal inputs most likely make independent synapses on the excitatory dendrites of the LGMD. Finally, we show that the fine topographic mapping can be studied using dynamic visual stimuli. Our results reveal the detailed structure of the dendritic input originating from individual facets on the eye and their relation to that of adjacent facets. The mapping of visual space onto the LGMD's dendrites is expected to have implications for dendritic computation. PMID:27009157
Extended GTST-MLD for aerospace system safety analysis.
Guo, Chiming; Gong, Shiyu; Tan, Lin; Guo, Bo
2012-06-01
The hazards caused by complex interactions in the aerospace system have become a problem that urgently needs to be settled. This article introduces a method for aerospace system hazard interaction identification based on extended GTST-MLD (goal tree-success tree-master logic diagram) during the design stage. GTST-MLD is a functional modeling framework with a simple architecture. Ontology is used to extend the ability of system interaction description in GTST-MLD by adding the system design knowledge and the past accident experience. From the level of functionality and equipment, respectively, this approach can help the technician detect potential hazard interactions. Finally, a case is used to show the method. © 2011 Society for Risk Analysis.
Cushman, J Hall; Compton, Stephen G; Zachariades, Costas; Ware, Anthony B; Nefdt, Rory J C; Rashbrook, Vanessa K
1998-09-01
Although species pairs and assemblages often occur across geographic regions, ecologists know very little about the outcome of their interactions on such large spatial scales. Here, we assess the geographic distribution and taxonomic diversity of a positive interaction involving ant-tended homopterans and fig trees in the genus Ficus. Previous experimental studies at a few locations in South Africa indicated that Ficus sur indirectly benefited from the presence of a homopteran (Hilda patruelis) because it attracted ants (primarily Pheidole megacephala) that reduced the effects of both pre-dispersal ovule gallers and parasitoids of pollinating wasps. Based on this work, we evaluated three conditions that must be met in order to support the hypothesis that this indirect interaction involves many fig species and occurs throughout much of southern Africa and Madagascar. Data on 429 trees distributed among five countries indicated that 20 of 38 Ficus species, and 46% of all trees sampled, had ants on their figs. Members of the Sycomorus subgenus were significantly more likely to attract ants than those in the Urostigma subgenus, and ant-colonization levels on these species were significantly greater than for Urostigma species. On average, each ant-occupied F.sur tree had 37% of its fig crop colonized by ants, whereas the value was 24% for other Ficus species. H. patruelis was the most common source for attracting ants, although figs were also attacked by a range of other ant-tended homopterans. P. megacephala was significantly more common on figs than other ant species, being present on 58% of sampled trees. Ant densities commonly exceeded 4.5 per fig, which a field experiment indicated was sufficient to provide protection from ovule gallers and parasitoids of pollinators. Forty-nine percent of all colonized F. sur trees sampled had ant densities equal to or greater than 4.5 per fig, whereas this value was 23% for other Ficus species. We conclude that there is considerable evidence to suggest that this indirect interaction occurs across four southern African countries and Madagascar, and involves many Ficus species.
The process and utility of classification and regression tree methodology in nursing research
Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda
2014-01-01
Aim This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Background Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Design Discussion paper. Data sources English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984–2013. Discussion Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Implications for Nursing Research Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Conclusion Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. PMID:24237048
The process and utility of classification and regression tree methodology in nursing research.
Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda
2014-06-01
This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Discussion paper. English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984-2013. Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. © 2013 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.
Does Seeing Ice Really Feel Cold? Visual-Thermal Interaction under an Illusory Body-Ownership
Kanaya, Shoko; Matsushima, Yuka; Yokosawa, Kazuhiko
2012-01-01
Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed. PMID:23144814
Does seeing ice really feel cold? Visual-thermal interaction under an illusory body-ownership.
Kanaya, Shoko; Matsushima, Yuka; Yokosawa, Kazuhiko
2012-01-01
Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed.
J.M. Rice; C.B. Halpern; J.A. Antos; J.A. Jones
2012-01-01
Tree invasions of grasslands are occurring globally, with profound consequences for ecosystem structure and function. We explore the spatio-temporal dynamics of tree invasion of a montane meadow in the Cascade Mountains of Oregon, where meadow loss is a conservation concern. We examine the early stages of invasion, where extrinsic and intrinsic processes can be clearly...
Brian J. Kopper; Kier D. Klepzig; Kenneth F. Raffa
2004-01-01
Efforts to describe the complex relationships between bark beetles and the ophiostomatoid (stain) fungi they transport have largely resulted in a dichotomous classification. These symbioses have been viewed as either mutualistic (i.e., fungi help bark beetles colonize living trees by overcoming tree defenses or by providing nutrients after colonization in return for...
Jenny C. Staeben; Brian Sullivan; John T. Nowak; Kamal J.K. Gandhi
2015-01-01
Multi-trophic interactions between pine bark beetles, their host trees, and predators are mediated in part by volatile terpenes in host tree oleoresin that can influence aggregation and/or host finding by both prey and predator species. The southern pine beetle, Dendroctonus frontalis Zimmermann, mass-attacks pine trees in response to its aggregation pheromone combined...
Sheel Bansal; Till Jochum; David A. Wardle; Marie-Charlotte Nilsson
2014-01-01
Fire has an important role for regeneration of many boreal forest tree species, and this includes both wildfire and prescribed burning following clear-cutting. Depending on the severity, fire can have a variety of effects on above- and belowground properties that impact tree seedling establishment. Very little is known about the impacts of ground fire severity on post-...
Beyond Flory theory: Distribution functions for interacting lattice trees
NASA Astrophysics Data System (ADS)
Rosa, Angelo; Everaers, Ralf
2017-01-01
While Flory theories [J. Isaacson and T. C. Lubensky, J. Physique Lett. 41, 469 (1980), 10.1051/jphyslet:019800041019046900; M. Daoud and J. F. Joanny, J. Physique 42, 1359 (1981), 10.1051/jphys:0198100420100135900; A. M. Gutin et al., Macromolecules 26, 1293 (1993), 10.1021/ma00058a016] provide an extremely useful framework for understanding the behavior of interacting, randomly branching polymers, the approach is inherently limited. Here we use a combination of scaling arguments and computer simulations to go beyond a Gaussian description. We analyze distribution functions for a wide variety of quantities characterizing the tree connectivities and conformations for the four different statistical ensembles, which we have studied numerically in [A. Rosa and R. Everaers, J. Phys. A: Math. Theor. 49, 345001 (2016), 10.1088/1751-8113/49/34/345001 and J. Chem. Phys. 145, 164906 (2016), 10.1063/1.4965827]: (a) ideal randomly branching polymers, (b) 2 d and 3 d melts of interacting randomly branching polymers, (c) 3 d self-avoiding trees with annealed connectivity, and (d) 3 d self-avoiding trees with quenched ideal connectivity. In particular, we investigate the distributions (i) pN(n ) of the weight, n , of branches cut from trees of mass N by severing randomly chosen bonds; (ii) pN(l ) of the contour distances, l , between monomers; (iii) pN(r ⃗) of spatial distances, r ⃗, between monomers, and (iv) pN(r ⃗|l ) of the end-to-end distance of paths of length l . Data for different tree sizes superimpose, when expressed as functions of suitably rescaled observables x ⃗=r ⃗/√{
Kimuyu, Duncan M; Sensenig, Ryan L; Riginos, Corinna; Veblen, Kari E; Young, Truman P
2014-06-01
Despite the importance of fire and herbivory in structuring savanna systems, few replicated experiments have examined the interactive effects of herbivory and fire on plant dynamics. In addition, the effects of fire on associated ant-tree mutualisms have been largely unexplored. We carried out small controlled burns in each of 18 herbivore treatment plots of the Kenya Long-term Exclosure Experiment (KLEE), where experimentally excluding elephants has resulted in 42% greater tree densities. The KLEE design includes six different herbivore treatments that allowed us to examine how different combinations of megaherbivore wildlife, mesoherbivore wildlife, and cattle affect fire temperatures and subsequent loss of ant symbionts from Acacia trees. Before burning, we quantified herbaceous fuel loads and plant community composition. We tagged all trees, measured their height and basal diameter, and identified the resident ant species on each. We recorded weather conditions during the burns and used ceramic tiles painted with fire-sensitive paints to estimate fire temperatures at different heights and in different microsites (under vs. between trees). Across all treatments, fire temperatures were highest at 0-50 cm off the ground and hotter in the grass under trees than in the grassy areas between trees. Plots with more trees burned hotter than plots with fewer trees, perhaps because of greater fine woody debris. Plots grazed by wildlife and by cattle prior to burning had lower herbaceous fuel loads and experienced lower burn temperatures than ungrazed plots. Many trees lost their ant colonies during the burns. Ant survivorship differed by ant species and at the plot level was positively associated with previous herbivory (and lower fire temperatures). Across all treatments, ant colonies on taller trees were more likely to survive, but even some of the tallest trees lost their ant colonies. Our study marks a significant step in understanding the mechanisms that underlie the interactions between fire and herbivory in savanna ecosystems.
Zamora, Regino; Matías, Luis
2014-01-01
In this study, we analize the functional influence of animals on the plants they interact with in a mediterranean mountain. We hypothesise that seed dispersers, seed predators, and browsers can act as biotic filters for plant communities. We analyse the combined effects of mutualistic (seed dispersal) and antagonistic (seed predation, herbivory) animal interactions in a mosaic landscape of Mediterranean mountains, basing our results on observational and experimental field. Most of the dispersed seeds came from tree species, whereas the population of saplings was composed predominantly of zoochorous shrub species. Seed predators preferentially consumed seeds from tree species, whereas seeds from the dominant fleshy-fruited shrubs had a higher probability of escaping these predators. The same pattern was repeated among the different landscape units by browsers, since they browsed selectively and far more intensely on tree-species saplings than on the surrounding shrubs. In synthesis, our work identifies the major biotic processes that appear to be favoring a community dominated by shrubs versus trees because seed dispersers, predators, and herbivores together favored shrub dispersal and establishment versus trees. PMID:25233342
Frelich, Lee E; Peterson, Rolf O; Dovčiak, Martin; Reich, Peter B; Vucetich, John A; Eisenhauer, Nico
2012-11-05
As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems.
Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar
2017-01-01
Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems. PMID:29099838
Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar
2017-01-01
Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems.
Molecular recognition of emerald ash borer infestation using leaf spray mass spectrometry.
Falcone, Caitlin E; Cooks, R Graham
2016-06-15
The introduction of the emerald ash borer (Agrilus planipennis) (EAB) from Asia to Michigan, USA, in the 1990s caused the widespread death of ash trees in two Canadian provinces and 24 US states. The three current methods for the detection of emerald ash borer infestation, visual surveys, tree girdling and artificial traps, can be unreliable, and there is clearly a need for a rapid, dependable technique for the detection of emerald ash borer infestation. Leaf spray, an ambient ionization method for mass spectrometry (MS), gives direct chemical information on a leaf sample by applying a high voltage to a naturally or artificially sharply pointed leaf piece causing ions to be generated directly from the leaf tip for MS analysis. Leaflets from 23 healthy and EAB-infested ash trees were analyzed by leaf spray mass spectrometry in an attempt to distinguish healthy and EAB-infested ash trees. In negative ion mode, healthy ash trees showed an increased abundance of ions m/z 455.5, 471.5 and 487.5, and ash trees infested with the EAB displayed an increased abundance of ions m/z 181 and 217. The identities of the chemical discriminators ursolic acid and oleanolic acid in healthy ash trees, and six-carbon sugar alcohols in infested ash trees, were determined by tandem mass spectrometry and confirmed with standards. This preliminary study suggests that leaf spray mass spectrometry of ash tree leaflets provides a potential tool for the early detection of ash tree infestation by the emerald ash borer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Ryall, Krista L; Fidgen, Jeffrey G; Turgeon, Jean J
2011-06-01
The emerald ash borer, Agrilus planipennis Fairmaire, is an exotic invasive insect causing extensive mortality to ash trees, Fraxinus spp., in Canada and the United States. Detection of incipient populations of this pest is difficult because of its cryptic life stages and a multiyear time lag between initial attack and the appearance of signs or symptoms of infestation. We sampled branches from open-grown urban ash trees to develop a sample unit suitable for detecting low density A. planipennis infestation before any signs or symptoms are evident. The sample unit that maximized detection rates consisted of one 50-cm-long piece from the base of a branch ≥6 cm diameter in the midcrown. The optimal sample size was two such branches per tree. This sampling method detected ≈75% of asymptomatic trees known to be infested by using more intensive sampling and ≈3 times more trees than sampling one-fourth of the circumference of the trunk at breast height. The method is less conspicuous and esthetically damaging to a tree than the removal of bark from the main stem or the use of trap trees, and could be incorporated into routine sanitation or maintenance of city-owned trees to identify and delineate infested areas. This research indicates that branch sampling greatly reduces false negatives associated with visual surveys and window sampling at breast height. Detection of A. planipennis-infested asymptomatic trees through branch sampling in urban centers would provide landowners and urban foresters with more time to develop and implement management tactics.
NASA Astrophysics Data System (ADS)
Carrara, J.; Walter, C. A.; Govindarajulu, R.; Hawkins, J.; Brzostek, E. R.
2017-12-01
Nitrogen (N) deposition has enhanced the ability of trees to capture atmospheric carbon (C). The effect of elevated N on belowground C cycling, however, is variable and response mechanisms are largely unknown. Recent research has highlighted distinct differences between ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees in the strength of root-microbial interactions. In particular, ECM trees send more C to rhizosphere microbes to stimulate enzyme activity and nutrient mobilization than AM trees, which primarily rely on saprotrophic microbes to mobilize N. As such, we hypothesized that N fertilization would weaken root-microbial interactions and soil decomposition in ECM stands more than in AM stands. To test this hypothesis, we measured root-microbial interactions in ECM and AM plots in two long-term N fertilization studies, the Fernow Experimental Forest, WV and Bear Brook Watershed, ME. We found that N fertilization led to declines in plant C allocation belowground to fine root biomass, branching, and root exudation in ECM stands to a greater extent than in AM stands. As ECM roots are tightly coupled to the soil microbiome through energy and nutrient exchange, reductions in belowground C allocation were mirrored by shifts in microbial community composition and reductions in fungal gene expression. These shifts were accompanied by larger reductions in fungal-derived lignolytic and hydrolytic enzyme activity in ECM stands than in AM stands. In contrast, as the AM soil microbiome is less reliant on trees for C and are more adapted to high inorganic nutrient environments, the soil metagenome and transcriptome were more resilient to decreases in belowground C allocation. Collectively, our results indicate the N fertilization decoupled root-microbial interactions by reducing belowground carbon allocation in ECM stands. Thus, N fertilization may reduce soil turnover and increase soil C storage to a greater extent in forests dominated by ECM than AM trees.
Headphone and Head-Mounted Visual Displays for Virtual Environments
NASA Technical Reports Server (NTRS)
Begault, Duran R.; Ellis, Stephen R.; Wenzel, Elizabeth M.; Trejo, Leonard J. (Technical Monitor)
1998-01-01
A realistic auditory environment can contribute to both the overall subjective sense of presence in a virtual display, and to a quantitative metric predicting human performance. Here, the role of audio in a virtual display and the importance of auditory-visual interaction are examined. Conjectures are proposed regarding the effectiveness of audio compared to visual information for creating a sensation of immersion, the frame of reference within a virtual display, and the compensation of visual fidelity by supplying auditory information. Future areas of research are outlined for improving simulations of virtual visual and acoustic spaces. This paper will describe some of the intersensory phenomena that arise during operator interaction within combined visual and auditory virtual environments. Conjectures regarding audio-visual interaction will be proposed.
NASA Astrophysics Data System (ADS)
Collins, Luke; Penman, Trent; Ximenes, Fabiano; Bradstock, Ross
2015-04-01
The sequestration of carbon has been identified as an important strategy to mitigate the effects of climate change. Fuel reduction burning and timber harvesting are two common co-occurring management practices within forests. Frequent burning and timber harvesting may alter forest carbon pools through the removal and redistribution of biomass and demographic and structural changes to tree communities. Synergistic and antagonistic interactions between frequent burning and harvesting are likely to occur, adding further complexity to the management of forest carbon stocks. Research aimed at understanding the interactive effects of frequent fire and timber harvesting on carbon biomass is lacking. This study utilised data from two long term (25 - 30 years) manipulative burning experiments conducted in southern Australia in temperate eucalypt forests dominated by resprouting canopy species. Specifically we examined the effect of fire frequency and harvesting on (i) total biomass of above ground carbon pools and (ii) demographic and structural characteristics of live trees. We also investigated some of the mechanisms driving these changes. Frequent burning reduced carbon biomass by up to 20% in the live tree carbon pool. Significant interactions occurred between fire and harvesting, whereby the reduction in biomass of trees >20 cm diameter breast height (DBH) was amplified by increased fire frequency. The biomass of trees <20 cm DBH increased with harvesting intensity in frequently burnt areas, but was unaffected by harvesting intensity in areas experiencing low fire frequency. Biomass of standing and fallen coarse woody debris was relatively unaffected by logging and fire frequency. Fire and harvesting significantly altered stand structure over the study period. Comparison of pre-treatment conditions to current conditions revealed that logged sites had a significantly greater increase in the number of small trees (<40 cm DBH) than unlogged sites. Logged sites showed a significant decrease in the number of large trees (>60 cm DBH) over the study period, while unlogged sites showed an increase. Frequently burnt logged sites showed the greatest reduction in large trees, presumably due to increased fire related mortality and collapse. Analysis of tree survival and growth data suggest that mortality rate is increased and growth rate reduced in frequently burnt areas compared to unburnt areas. Our findings suggest that future shifts towards more frequent fire (both prescribed fire and wildfire) could potentially lead to broad scale reductions in carbon sequestration in temperate forests and woodlands dominated by resprouting canopy species. Reductions in carbon sequestration associated with frequent burning will potentially be amplified in intensively harvested landscapes.
Classification tree for the assessment of sedentary lifestyle among hypertensive.
Castelo Guedes Martins, Larissa; Venícios de Oliveira Lopes, Marcos; Gomes Guedes, Nirla; Paixão de Menezes, Angélica; de Oliveira Farias, Odaleia; Alves Dos Santos, Naftale
2016-04-01
To develop a classification tree of clinical indicators for the correct prediction of the nursing diagnosis "Sedentary lifestyle" (SL) in people with high blood pressure (HTN). A cross-sectional study conducted in an outpatient care center specializing in high blood pressure and Mellitus diabetes located in northeastern Brazil. The sample consisted of 285 people between 19 and 59 years old diagnosed with high blood pressure and was applied an interview and physical examination, obtaining socio-demographic information, related factors and signs and symptoms that made the defining characteristics for the diagnosis under study. The tree was generated using the CHAID algorithm (Chi-square Automatic Interaction Detection). The construction of the decision tree allowed establishing the interactions between clinical indicators that facilitate a probabilistic analysis of multiple situations allowing quantify the probability of an individual presenting a sedentary lifestyle. The tree included the clinical indicator Choose daily routine without exercise as the first node. People with this indicator showed a probability of 0.88 of presenting the SL. The second node was composed of the indicator Does not perform physical activity during leisure, with 0.99 probability of presenting the SL with these two indicators. The predictive capacity of the tree was established at 69.5%. Decision trees help nurses who care HTN people in decision-making in assessing the characteristics that increase the probability of SL nursing diagnosis, optimizing the time for diagnostic inference.
Wind noise under a pine tree canopy.
Raspet, Richard; Webster, Jeremy
2015-02-01
It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.
PhyloExplorer: a web server to validate, explore and query phylogenetic trees
Ranwez, Vincent; Clairon, Nicolas; Delsuc, Frédéric; Pourali, Saeed; Auberval, Nicolas; Diser, Sorel; Berry, Vincent
2009-01-01
Background Many important problems in evolutionary biology require molecular phylogenies to be reconstructed. Phylogenetic trees must then be manipulated for subsequent inclusion in publications or analyses such as supertree inference and tree comparisons. However, no tool is currently available to facilitate the management of tree collections providing, for instance: standardisation of taxon names among trees with respect to a reference taxonomy; selection of relevant subsets of trees or sub-trees according to a taxonomic query; or simply computation of descriptive statistics on the collection. Moreover, although several databases of phylogenetic trees exist, there is currently no easy way to find trees that are both relevant and complementary to a given collection of trees. Results We propose a tool to facilitate assessment and management of phylogenetic tree collections. Given an input collection of rooted trees, PhyloExplorer provides facilities for obtaining statistics describing the collection, correcting invalid taxon names, extracting taxonomically relevant parts of the collection using a dedicated query language, and identifying related trees in the TreeBASE database. Conclusion PhyloExplorer is a simple and interactive website implemented through underlying Python libraries and MySQL databases. It is available at: and the source code can be downloaded from: . PMID:19450253
PIPE: a protein–protein interaction passage extraction module for BioCreative challenge
Chu, Chun-Han; Su, Yu-Chen; Chen, Chien Chin; Hsu, Wen-Lian
2016-01-01
Identifying the interactions between proteins mentioned in biomedical literatures is one of the frequently discussed topics of text mining in the life science field. In this article, we propose PIPE, an interaction pattern generation module used in the Collaborative Biocurator Assistant Task at BioCreative V (http://www.biocreative.org/) to capture frequent protein-protein interaction (PPI) patterns within text. We also present an interaction pattern tree (IPT) kernel method that integrates the PPI patterns with convolution tree kernel (CTK) to extract PPIs. Methods were evaluated on LLL, IEPA, HPRD50, AIMed and BioInfer corpora using cross-validation, cross-learning and cross-corpus evaluation. Empirical evaluations demonstrate that our method is effective and outperforms several well-known PPI extraction methods. Database URL: PMID:27524807
Yet More Visualized JAMSTEC Cruise and Dive Information
NASA Astrophysics Data System (ADS)
Tomiyama, T.; Hase, H.; Fukuda, K.; Saito, H.; Kayo, M.; Matsuda, S.; Azuma, S.
2014-12-01
Every year, JAMSTEC performs about a hundred of research cruises and numerous dive surveys using its research vessels and submersibles. JAMSTEC provides data and samples obtained during these cruises and dives to international users through a series of data sites on the Internet. The "DARWIN (http://www.godac.jamstec.go.jp/darwin/e)" data site disseminates cruise and dive information. On DARWIN, users can search interested cruises and dives with a combination search form or an interactive tree menu, and find lists of observation data as well as links to surrounding databases. Document catalog, physical sample databases, and visual archive of dive surveys (e. g. in http://www.godac.jamstec.go.jp/jmedia/portal/e) are directly accessible from the lists. In 2014, DARWIN experienced an update, which was arranged mainly for enabling on-demand data visualization. Using login users' functions, users can put listed data items into the virtual basket and then trim, plot and download the data. The visualization tools help users to quickly grasp the quality and characteristics of observation data. Meanwhile, JAMSTEC launched a new data site named "JDIVES (http://www.godac.jamstec.go.jp/jdives/e)" to visualize data and sample information obtained by dive surveys. JDIVES shows tracks of dive surveys on the "Google Earth Plugin" and diagrams of deep-sea environmental data such as temperature, salinity, and depth. Submersible camera images and links to associated databases are placed along the dive tracks. The JDVIES interface enables users to perform so-called virtual dive surveys, which can help users to understand local geometries of dive spots and geological settings of associated data and samples. It is not easy for individual researchers to organize a huge amount of information recovered from each cruise and dive. The improved visibility and accessibility of JAMSTEC databases are advantageous not only for second-hand users, but also for on-board researchers themselves.
Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau
Liang, Eryuan; Wang, Yafeng; Piao, Shilong; Lu, Xiaoming; Camarero, Jesús Julio; Zhu, Haifeng; Zhu, Liping; Ciais, Philippe; Peñuelas, Josep
2016-01-01
The alpine treeline is commonly regarded as being sensitive to climatic warming because regeneration and growth of trees at treeline generally are limited by low temperature. The alpine treelines of the Tibetan Plateau (TP) occur at the highest elevations (4,900 m above sea level) in the Northern Hemisphere. Ongoing climatic warming is expected to shift treelines upward. Studies of treeline dynamics at regional and local scales, however, have yielded conflicting results, indicating either unchanging treeline elevations or upward shifts. To reconcile this conflict, we reconstructed in detail a century of treeline structure and tree recruitment at sites along a climatic gradient of 4 °C and mean annual rainfall of 650 mm on the eastern TP. Species interactions interacted with effects of warming on treeline and could outweigh them. Densification of shrubs just above treeline inhibited tree establishment, and slowed upward movement of treelines on a time scale of decades. Interspecific interactions are major processes controlling treeline dynamics that may account for the absence of an upward shift at some TP treelines despite continued climatic warming. PMID:27044083
Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau.
Liang, Eryuan; Wang, Yafeng; Piao, Shilong; Lu, Xiaoming; Camarero, Jesús Julio; Zhu, Haifeng; Zhu, Liping; Ellison, Aaron M; Ciais, Philippe; Peñuelas, Josep
2016-04-19
The alpine treeline is commonly regarded as being sensitive to climatic warming because regeneration and growth of trees at treeline generally are limited by low temperature. The alpine treelines of the Tibetan Plateau (TP) occur at the highest elevations (4,900 m above sea level) in the Northern Hemisphere. Ongoing climatic warming is expected to shift treelines upward. Studies of treeline dynamics at regional and local scales, however, have yielded conflicting results, indicating either unchanging treeline elevations or upward shifts. To reconcile this conflict, we reconstructed in detail a century of treeline structure and tree recruitment at sites along a climatic gradient of 4 °C and mean annual rainfall of 650 mm on the eastern TP. Species interactions interacted with effects of warming on treeline and could outweigh them. Densification of shrubs just above treeline inhibited tree establishment, and slowed upward movement of treelines on a time scale of decades. Interspecific interactions are major processes controlling treeline dynamics that may account for the absence of an upward shift at some TP treelines despite continued climatic warming.
Dynamic Load Balancing Based on Constrained K-D Tree Decomposition for Parallel Particle Tracing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru
Particle tracing is a fundamental technique in flow field data visualization. In this work, we present a novel dynamic load balancing method for parallel particle tracing. Specifically, we employ a constrained k-d tree decomposition approach to dynamically redistribute tasks among processes. Each process is initially assigned a regularly partitioned block along with duplicated ghost layer under the memory limit. During particle tracing, the k-d tree decomposition is dynamically performed by constraining the cutting planes in the overlap range of duplicated data. This ensures that each process is reassigned particles as even as possible, and on the other hand the newmore » assigned particles for a process always locate in its block. Result shows good load balance and high efficiency of our method.« less
Modeling and evaluating user behavior in exploratory visual analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, Khairi; Johnson, Andrew E.; Papka, Michael E.
Empirical evaluation methods for visualizations have traditionally focused on assessing the outcome of the visual analytic process as opposed to characterizing how that process unfolds. There are only a handful of methods that can be used to systematically study how people use visualizations, making it difficult for researchers to capture and characterize the subtlety of cognitive and interaction behaviors users exhibit during visual analysis. To validate and improve visualization design, however, it is important for researchers to be able to assess and understand how users interact with visualization systems under realistic scenarios. This paper presents a methodology for modeling andmore » evaluating the behavior of users in exploratory visual analysis. We model visual exploration using a Markov chain process comprising transitions between mental, interaction, and computational states. These states and the transitions between them can be deduced from a variety of sources, including verbal transcripts, videos and audio recordings, and log files. This model enables the evaluator to characterize the cognitive and computational processes that are essential to insight acquisition in exploratory visual analysis, and reconstruct the dynamics of interaction between the user and the visualization system. We illustrate this model with two exemplar user studies, and demonstrate the qualitative and quantitative analytical tools it affords.« less
Introduction to IND and recursive partitioning, version 1.0
NASA Technical Reports Server (NTRS)
Buntine, Wray; Caruana, Rich
1991-01-01
This manual describes the IND package for learning tree classifiers from data. The package is an integrated C and C shell re-implementation of tree learning routines such as CART, C4, and various MDL and Bayesian variations. The package includes routines for experiment control, interactive operation, and analysis of tree building. The manual introduces the system and its many options, gives a basic review of tree learning, contains a guide to the literature and a glossary, lists the manual pages for the routines, and instructions on installation.
Uhlirova, Hana; Tian, Peifang; Kılıç, Kıvılcım; Thunemann, Martin; Sridhar, Vishnu B; Chmelik, Radim; Bartsch, Hauke; Dale, Anders M; Devor, Anna; Saisan, Payam A
2018-05-04
The importance of sharing experimental data in neuroscience grows with the amount and complexity of data acquired and various techniques used to obtain and process these data. However, the majority of experimental data, especially from individual studies of regular-sized laboratories never reach wider research community. A graphical user interface (GUI) engine called Neurovascular Network Explorer 2.0 (NNE 2.0) has been created as a tool for simple and low-cost sharing and exploring of vascular imaging data. NNE 2.0 interacts with a database containing optogenetically-evoked dilation/constriction time-courses of individual vessels measured in mice somatosensory cortex in vivo by 2-photon microscopy. NNE 2.0 enables selection and display of the time-courses based on different criteria (subject, branching order, cortical depth, vessel diameter, arteriolar tree) as well as simple mathematical manipulation (e.g. averaging, peak-normalization) and data export. It supports visualization of the vascular network in 3D and enables localization of the individual functional vessel diameter measurements within vascular trees. NNE 2.0, its source code, and the corresponding database are freely downloadable from UCSD Neurovascular Imaging Laboratory website 1 . The source code can be utilized by the users to explore the associated database or as a template for databasing and sharing their own experimental results provided the appropriate format.
Competition-interaction landscapes for the joint response of forests to climate change.
Clark, James S; Bell, David M; Kwit, Matthew C; Zhu, Kai
2014-06-01
The recent global increase in forest mortality episodes could not have been predicted from current vegetation models that are calibrated to regional climate data. Physiological studies show that mortality results from interactions between climate and competition at the individual scale. Models of forest response to climate do not include interactions because they are hard to estimate and require long-term observations on individual trees obtained at frequent (annual) intervals. Interactions involve multiple tree responses that can only be quantified if these responses are estimated as a joint distribution. A new approach provides estimates of climate–competition interactions in two critical ways, (i) among individuals, as a joint distribution of responses to combinations of inputs, such as resources and climate, and (ii) within individuals, due to allocation requirements that control outputs, such as demographic rates. Application to 20 years of data from climate and competition gradients shows that interactions control forest responses, and their omission from models leads to inaccurate predictions. Species most vulnerable to increasing aridity are not those that show the largest growth response to precipitation, but rather depend on interactions with the local resource environment. This first assessment of regional species vulnerability that is based on the scale at which climate operates, individual trees competing for carbon and water, supports predictions of potential savannification in the southeastern US.
Visual Design Guidelines for Improving Learning from Dynamic and Interactive Digital Text
ERIC Educational Resources Information Center
Jin, Sung-Hee
2013-01-01
Despite the dynamic and interactive features of digital text, the visual design guidelines for digital text are similar to those for printed text. The purpose of this study was to develop visual design guidelines for improving learning from dynamic and interactive digital text and to validate them by controlled testing. Two structure design…
ERIC Educational Resources Information Center
Keehner, Madeleine; Hegarty, Mary; Cohen, Cheryl; Khooshabeh, Peter; Montello, Daniel R.
2008-01-01
Three experiments examined the effects of interactive visualizations and spatial abilities on a task requiring participants to infer and draw cross sections of a three-dimensional (3D) object. The experiments manipulated whether participants could interactively control a virtual 3D visualization of the object while performing the task, and…
Lajnef, Tarek; Chaibi, Sahbi; Ruby, Perrine; Aguera, Pierre-Emmanuel; Eichenlaub, Jean-Baptiste; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim
2015-07-30
Sleep staging is a critical step in a range of electrophysiological signal processing pipelines used in clinical routine as well as in sleep research. Although the results currently achievable with automatic sleep staging methods are promising, there is need for improvement, especially given the time-consuming and tedious nature of visual sleep scoring. Here we propose a sleep staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. The performance of the method was evaluated using polysomnographic data from 15 subjects (electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) recordings). The decision tree, or dendrogram, was obtained using a hierarchical clustering technique and a wide range of time and frequency-domain features were extracted. Feature selection was carried out using forward sequential selection and classification was evaluated using k-fold cross-validation. The dendrogram-based SVM (DSVM) achieved mean specificity, sensitivity and overall accuracy of 0.92, 0.74 and 0.88 respectively, compared to expert visual scoring. Restricting DSVM classification to data where both experts' scoring was consistent (76.73% of the data) led to a mean specificity, sensitivity and overall accuracy of 0.94, 0.82 and 0.92 respectively. The DSVM framework outperforms classification with more standard multi-class "one-against-all" SVM and linear-discriminant analysis. The promising results of the proposed methodology suggest that it may be a valuable alternative to existing automatic methods and that it could accelerate visual scoring by providing a robust starting hypnogram that can be further fine-tuned by expert inspection. Copyright © 2015 Elsevier B.V. All rights reserved.
Delivering data reduction pipelines to science users
NASA Astrophysics Data System (ADS)
Freudling, Wolfram; Romaniello, Martino
2016-07-01
The European Southern Observatory has a long history of providing specialized data processing algorithms, called recipes, for most of its instruments. These recipes are used for both operational purposes at the observatory sites, and for data reduction by the scientists at their home institutions. The two applications require substantially different environments for running and controlling the recipes. In this papers, we describe the ESOReflex environment that is used for running recipes on the users' desktops. ESOReflex is a workflow driven data reduction environment. It allows intuitive representation, execution and modification of the data reduction workflow, and has facilities for inspection of and interaction with the data. It includes fully automatic data organization and visualization, interaction with recipes, and the exploration of the provenance tree of intermediate and final data products. ESOReflex uses a number of innovative concepts that have been described in Ref. 1. In October 2015, the complete system was released to the public. ESOReflex allows highly efficient data reduction, using its internal bookkeeping database to recognize and skip previously completed steps during repeated processing of the same or similar data sets. It has been widely adopted by the science community for the reduction of VLT data.
Lemieux, Sebastien; Sargeant, Tobias; Laperrière, David; Ismail, Houssam; Boucher, Geneviève; Rozendaal, Marieke; Lavallée, Vincent-Philippe; Ashton-Beaucage, Dariel; Wilhelm, Brian; Hébert, Josée; Hilton, Douglas J; Mader, Sylvie; Sauvageau, Guy
2017-07-27
Genome-wide transcriptome profiling has enabled non-supervised classification of tumours, revealing different sub-groups characterized by specific gene expression features. However, the biological significance of these subtypes remains for the most part unclear. We describe herein an interactive platform, Minimum Spanning Trees Inferred Clustering (MiSTIC), that integrates the direct visualization and comparison of the gene correlation structure between datasets, the analysis of the molecular causes underlying co-variations in gene expression in cancer samples, and the clinical annotation of tumour sets defined by the combined expression of selected biomarkers. We have used MiSTIC to highlight the roles of specific transcription factors in breast cancer subtype specification, to compare the aspects of tumour heterogeneity targeted by different prognostic signatures, and to highlight biomarker interactions in AML. A version of MiSTIC preloaded with datasets described herein can be accessed through a public web server (http://mistic.iric.ca); in addition, the MiSTIC software package can be obtained (github.com/iric-soft/MiSTIC) for local use with personalized datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Scientific Visualization of Radio Astronomy Data using Gesture Interaction
NASA Astrophysics Data System (ADS)
Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.
2015-09-01
MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.
Predicting rates of interspecific interaction from phylogenetic trees.
Nuismer, Scott L; Harmon, Luke J
2015-01-01
Integrating phylogenetic information can potentially improve our ability to explain species' traits, patterns of community assembly, the network structure of communities, and ecosystem function. In this study, we use mathematical models to explore the ecological and evolutionary factors that modulate the explanatory power of phylogenetic information for communities of species that interact within a single trophic level. We find that phylogenetic relationships among species can influence trait evolution and rates of interaction among species, but only under particular models of species interaction. For example, when interactions within communities are mediated by a mechanism of phenotype matching, phylogenetic trees make specific predictions about trait evolution and rates of interaction. In contrast, if interactions within a community depend on a mechanism of phenotype differences, phylogenetic information has little, if any, predictive power for trait evolution and interaction rate. Together, these results make clear and testable predictions for when and how evolutionary history is expected to influence contemporary rates of species interaction. © 2014 John Wiley & Sons Ltd/CNRS.
George E. Host; Harlan W. Stech; Kathryn E. Lenz; Kyle Roskoski; Richard Mather; Michael Donahue
2007-01-01
ECOPHYS is one of the early FSTM's that integrated plant physiological and tree architectural models to assess the relative importance of genetic traits in tree growth, and explore the growth response to interacting environmental stresses (Host et al 1999, Isebrands et al 1999, Martin et al 2001). This paper will describe extensions of the ECOPHYS individual tree...
Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.
Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S
2016-09-01
We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.
The interaction between freezing tolerance and phenology in temperate deciduous trees
Vitasse, Yann; Lenz, Armando; Körner, Christian
2014-01-01
Temperate climates are defined by distinct temperature seasonality with large and often unpredictable weather during any of the four seasons. To thrive in such climates, trees have to withstand a cold winter and the stochastic occurrence of freeze events during any time of the year. The physiological mechanisms trees adopt to escape, avoid, and tolerate freezing temperatures include a cold acclimation in autumn, a dormancy period during winter (leafless in deciduous trees), and the maintenance of a certain freezing tolerance during dehardening in early spring. The change from one phase to the next is mediated by complex interactions between temperature and photoperiod. This review aims at providing an overview of the interplay between phenology of leaves and species-specific freezing resistance. First, we address the long-term evolutionary responses that enabled temperate trees to tolerate certain low temperature extremes. We provide evidence that short term acclimation of freezing resistance plays a crucial role both in dormant and active buds, including re-acclimation to cold conditions following warm spells. This ability declines to almost zero during leaf emergence. Second, we show that the risk that native temperate trees encounter freeze injuries is low and is confined to spring and underline that this risk might be altered by climate warming depending on species-specific phenological responses to environmental cues. PMID:25346748
Kamphuis, C; Mollenhorst, H; Heesterbeek, J A P; Hogeveen, H
2010-08-01
The objective was to develop and validate a clinical mastitis (CM) detection model by means of decision-tree induction. For farmers milking with an automatic milking system (AMS), it is desirable that the detection model has a high level of sensitivity (Se), especially for more severe cases of CM, at a very high specificity (Sp). In addition, an alert for CM should be generated preferably at the quarter milking (QM) at which the CM infection is visible for the first time. Data were collected from 9 Dutch dairy herds milking automatically during a 2.5-yr period. Data included sensor data (electrical conductivity, color, and yield) at the QM level and visual observations of quarters with CM recorded by the farmers. Visual observations of quarters with CM were combined with sensor data of the most recent automatic milking recorded for that same quarter, within a 24-h time window before the visual assessment time. Sensor data of 3.5 million QM were collected, of which 348 QM were combined with a CM observation. Data were divided into a training set, including two-thirds of all data, and a test set. Cows in the training set were not included in the test set and vice versa. A decision-tree model was trained using only clear examples of healthy (n=24,717) or diseased (n=243) QM. The model was tested on 105 QM with CM and a random sample of 50,000 QM without CM. While keeping the Se at a level comparable to that of models currently used by AMS, the decision-tree model was able to decrease the number of false-positive alerts by more than 50%. At an Sp of 99%, 40% of the CM cases were detected. Sixty-four percent of the severe CM cases were detected and only 12.5% of the CM that were scored as watery milk. The Se increased considerably from 40% to 66.7% when the time window increased from less than 24h before the CM observation, to a time window from 24h before to 24h after the CM observation. Even at very wide time windows, however, it was impossible to reach an Se of 100%. This indicates the inability to detect all CM cases based on sensor data alone. Sensitivity levels varied largely when the decision tree was validated per herd. This trend was confirmed when decision trees were trained using data from 8 herds and tested on data from the ninth herd. This indicates that when using the decision tree as a generic CM detection model in practice, some herds will continue having difficulties in detecting CM using mastitis alert lists, whereas others will perform well. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bimolecular fluorescence complementation: visualization of molecular interactions in living cells.
Kerppola, Tom K
2008-01-01
A variety of experimental methods have been developed for the analysis of protein interactions. The majority of these methods either require disruption of the cells to detect molecular interactions or rely on indirect detection of the protein interaction. The bimolecular fluorescence complementation (BiFC) assay provides a direct approach for the visualization of molecular interactions in living cells and organisms. The BiFC approach is based on the facilitated association between two fragments of a fluorescent protein when the fragments are brought together by an interaction between proteins fused to the fragments. The BiFC approach has been used for visualization of interactions among a variety of structurally diverse interaction partners in many different cell types. It enables detection of transient complexes as well as complexes formed by a subpopulation of the interaction partners. It is essential to include negative controls in each experiment in which the interface between the interaction partners has been mutated or deleted. The BiFC assay has been adapted for simultaneous visualization of multiple protein complexes in the same cell and the competition for shared interaction partners. A ubiquitin-mediated fluorescence complementation assay has also been developed for visualization of the covalent modification of proteins by ubiquitin family peptides. These fluorescence complementation assays have a great potential to illuminate a variety of biological interactions in the future.
An enhanced Oct-tree data structure and operations for solid modeling
NASA Technical Reports Server (NTRS)
Fujimura, K.; Toriya, H.; Yamaguchi, K.; Kunii, T. L.
1984-01-01
Oct-trees are enhanced to increase the processing efficiency of geometric operations for interactive CAD use. Further enhancement is made to combine them with surface models for more precise boundary specification as needed by tool path generation in CAM applications.
Discovery of huanglongbing (HLB) pre-symptomatic Ribonucleic acid (RNA) biomarkers
USDA-ARS?s Scientific Manuscript database
Huanglongbing (HLB) is the most devastating citrus disease and is associated with vector-borne Liberibacter. Currently there is no cure for huanglongbing. Visual disease symptoms appear in only a few leaves months after initial Liberibacter exposure compromising disease management by tree removal. S...