Science.gov

Sample records for interactive virtual environment

  1. Intelligent Motion and Interaction Within Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor); Slater, Mel (Editor); Alexander, Thomas (Editor)

    2007-01-01

    What makes virtual actors and objects in virtual environments seem real? How can the illusion of their reality be supported? What sorts of training or user-interface applications benefit from realistic user-environment interactions? These are some of the central questions that designers of virtual environments face. To be sure simulation realism is not necessarily the major, or even a required goal, of a virtual environment intended to communicate specific information. But for some applications in entertainment, marketing, or aspects of vehicle simulation training, realism is essential. The following chapters will examine how a sense of truly interacting with dynamic, intelligent agents may arise in users of virtual environments. These chapters are based on presentations at the London conference on Intelligent Motion and Interaction within a Virtual Environments which was held at University College, London, U.K., 15-17 September 2003.

  2. Social Interaction Development through Immersive Virtual Environments

    ERIC Educational Resources Information Center

    Beach, Jason; Wendt, Jeremy

    2014-01-01

    The purpose of this pilot study was to determine if participants could improve their social interaction skills by participating in a virtual immersive environment. The participants used a developing virtual reality head-mounted display to engage themselves in a fully-immersive environment. While in the environment, participants had an opportunity…

  3. Human-Computer Interaction and Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    1995-01-01

    The proceedings of the Workshop on Human-Computer Interaction and Virtual Environments are presented along with a list of attendees. The objectives of the workshop were to assess the state-of-technology and level of maturity of several areas in human-computer interaction and to provide guidelines for focused future research leading to effective use of these facilities in the design/fabrication and operation of future high-performance engineering systems.

  4. An interactive virtual environment for finite element analysis

    SciTech Connect

    Bradshaw, S.; Canfield, T.; Kokinis, J.; Disz, T.

    1995-06-01

    Virtual environments (VE) provide a powerful human-computer interface that opens the door to exciting new methods of interaction with high-performance computing applications in several areas of research. The authors are interested in the use of virtual environments as a user interface to real-time simulations used in rapid prototyping procedures. Consequently, the authors are developing methods for coupling finite element models of complex mechanical systems with a VE interface for real-time interaction.

  5. Using Highly Interactive Virtual Environments for Safeguards Activities

    SciTech Connect

    Weil, Bradley S; Alcala, Benjamin S; Alcala, Scott; Eipeldauer, Mary D; Weil, Logan B

    2010-01-01

    Highly interactive virtual environment (HIVE) is a term that refers to interactive educational simulations, serious games and virtual worlds. Studies indicate that learning with the aid of interactive environments produces better retention and depth of knowledge by promoting improved trainee engagement and understanding. Virtual reality or three dimensional (3D) visualization is often used to promote the understanding of something when personal observation, photographs, drawings, and/or sketches are not possible or available. Subjects and situations, either real or hypothetical, can be developed using a 3D model. Models can be tailored to the audience allowing safeguards and security features to be demonstrated for educational purposes in addition to engineering evaluation and performance analysis. Oak Ridge National Laboratory (ORNL) has begun evaluating the feasibility of HIVEs for improving safeguards activities such as training, mission planning, and evaluating worker task performance. This paper will discuss the development workflow of HIVEs and present some recent examples.

  6. VIBE: A virtual biomolecular environment for interactive molecular modeling

    SciTech Connect

    Cruz-Neira, C.; Langley, R.; Bash, P.A.

    1996-12-31

    Virtual reality tightly coupled to high performance computing and communications ushers in a new era for the study of molecular recognition and the rational design of pharmaceutical compounds. We have created a Virtual Biomolecular Environment (VIBE), which consists of (1) massively parallel computing to simulate the physical and chemical properties of a molecular system, (2) the Cave Automatic Virtual Environment (CAVE) for immersive display and interaction with the molecular system, and (3) a high-speed network interface to exchange data between the simulation and the CAVE. VIBE enables molecular scientists to have a visual, auditory, and haptic experience with a chemical system, while simultaneously manipulating its physical properties by steering, in real-time, a simulation executed on a supercomputer. We demonstrate the characteristics of VIBE using an HIV protease-cyclic urea inhibitor complex. 22 refs., 4 figs.

  7. WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.

    PubMed

    Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh

    2015-04-01

    We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.

  8. WebIntera-Classroom: An Interaction-Aware Virtual Learning Environment for Augmenting Learning Interactions

    ERIC Educational Resources Information Center

    Chen, Jingjing; Xu, Jianliang; Tang, Tao; Chen, Rongchao

    2017-01-01

    Interaction is critical for successful teaching and learning in a virtual learning environment (VLE). This paper presents a web-based interaction-aware VLE--WebIntera-classroom--which aims to augment learning interactions by increasing the learner-to-content and learner-to-instructor interactions. We design a ubiquitous interactive interface that…

  9. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    ERIC Educational Resources Information Center

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-01-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment "StudentResearcher," which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum…

  10. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    ERIC Educational Resources Information Center

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-01-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment "StudentResearcher," which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum…

  11. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  12. Strategies for Increasing the Interactivity of Children's Synchronous Learning in Virtual Environments

    ERIC Educational Resources Information Center

    Katlianik, Ivan

    2013-01-01

    Enabling distant individuals to assemble in one virtual environment, synchronous distance learning appeals to researchers and practitioners alike because of its unique educational opportunities. One of the vital components of successful synchronous distance learning is interactivity. In virtual environments, interactivity is limited by the…

  13. Students' Collective Knowledge Construction in the Virtual Learning Environment ""ToLigado"--Your School Interactive Newspaper"

    ERIC Educational Resources Information Center

    Passarelli, Brasilina

    2008-01-01

    Introduction: The ToLigado Project--Your School Interactive Newspaper is an interactive virtual learning environment conceived, developed, implemented and supported by researchers at the School of the Future Research Laboratory of the University of Sao Paulo, Brazil. Method: This virtual learning environment aims to motivate trans-disciplinary…

  14. Using virtual menus in a virtual environment

    NASA Technical Reports Server (NTRS)

    Jacoby, Richard H.; Ellis, Stephen R.

    1992-01-01

    Virtual environment interfaces to computer programs in several diverse application areas are currently being developed. The users of virtual environments will require many different methods to interact with the environments and the objects in them. This paper reports on our use of virtual menus as a method of interacting with virtual environments. Several aspects of virtual environments make menu interactions different from interactions with conventional menus. We review the relevant aspects of conventional menus and virtual environments, in order to provide a frame of reference for the design of virtual menus. We discuss the features and interaction methodologies of two different versions of virtual menus which have been developed and used in our lab. We also examine the problems associated with our original version, and the enhancements incorporated into our current version.

  15. Transformed Social Interaction, Augmented Gaze, and Social Influence in Immersive Virtual Environments

    ERIC Educational Resources Information Center

    Bailenson, Jeremy N.; Beall, Andrew C.; Loomis, Jack; Blascovich, Jim; Turk, Matthew

    2005-01-01

    Immersive collaborative virtual environments (CVEs) are simulations in which geographically separated individuals interact in a shared, three-dimensional, digital space using immersive virtual environment technology. Unlike videoconference technology, which transmits direct video streams, immersive CVEs accurately track movements of interactants…

  16. An Interactive Virtual Environment for Learning Differential Leveling: Development and Initial Findings

    ERIC Educational Resources Information Center

    Dib, Hazar; Adamo-Villani, Nicoletta; Garver, Stephen

    2014-01-01

    We describe the design, development and initial evaluation of an interactive virtual environment whose objective is to help undergraduate students learn and review the concepts and practices of differential leveling. The virtual environment, which includes realistic terrains and leveling instruments that look, operate, and produce results…

  17. WebVR: an interactive web browser for virtual environments

    NASA Astrophysics Data System (ADS)

    Barsoum, Emad; Kuester, Falko

    2005-03-01

    The pervasive nature of web-based content has lead to the development of applications and user interfaces that port between a broad range of operating systems and databases, while providing intuitive access to static and time-varying information. However, the integration of this vast resource into virtual environments has remained elusive. In this paper we present an implementation of a 3D Web Browser (WebVR) that enables the user to search the internet for arbitrary information and to seamlessly augment this information into virtual environments. WebVR provides access to the standard data input and query mechanisms offered by conventional web browsers, with the difference that it generates active texture-skins of the web contents that can be mapped onto arbitrary surfaces within the environment. Once mapped, the corresponding texture functions as a fully integrated web-browser that will respond to traditional events such as the selection of links or text input. As a result, any surface within the environment can be turned into a web-enabled resource that provides access to user-definable data. In order to leverage from the continuous advancement of browser technology and to support both static as well as streamed content, WebVR uses ActiveX controls to extract the desired texture skin from industry strength browsers, providing a unique mechanism for data fusion and extensibility.

  18. Nomad devices for interactions in immersive virtual environments

    NASA Astrophysics Data System (ADS)

    George, Paul; Kemeny, Andras; Merienne, Frédéric; Chardonnet, Jean-Rémy; Thouvenin, Indira Mouttapa; Posselt, Javier; Icart, Emmanuel

    2013-03-01

    Renault is currently setting up a new CAVE™, a 5 rear-projected wall virtual reality room with a combined 3D resolution of 100 Mpixels, distributed over sixteen 4k projectors and two 2k projector as well as an additional 3D HD collaborative powerwall. Renault's CAVE™ aims at answering needs of the various vehicle conception steps [1]. Starting from vehicle Design, through the subsequent Engineering steps, Ergonomic evaluation and perceived quality control, Renault has built up a list of use-cases and carried out an early software evaluation in the four sided CAVE™ of Institute Image, called MOVE. One goal of the project is to study interactions in a CAVE™, especially with nomad devices such as IPhone or IPad to manipulate virtual objects and to develop visualization possibilities. Inspired by nomad devices current uses (multi-touch gestures, IPhone UI look'n'feel and AR applications), we have implemented an early feature set taking advantage of these popular input devices. In this paper, we present its performance through measurement data collected in our test platform, a 4-sided homemade low-cost virtual reality room, powered by ultra-short-range and standard HD home projectors.

  19. Realistic haptic rendering of interacting deformable objects in virtual environments.

    PubMed

    Duriez, Christian; Dubois, Frédéric; Kheddar, Abderrahmane; Andriot, Claude

    2006-01-01

    A new computer haptics algorithm to be used in general interactive manipulations of deformable virtual objects is presented. In multimodal interactive simulations, haptic feedback computation often comes from contact forces. Subsequently, the fidelity of haptic rendering depends significantly on contact space modeling. Contact and friction laws between deformable models are often simplified in up to date methods. They do not allow a "realistic" rendering of the subtleties of contact space physical phenomena (such as slip and stick effects due to friction or mechanical coupling between contacts). In this paper, we use Signorini's contact law and Coulomb's friction law as a computer haptics basis. Real-time performance is made possible thanks to a linearization of the behavior in the contact space, formulated as the so-called Delassus operator, and iteratively solved by a Gauss-Seidel type algorithm. Dynamic deformation uses corotational global formulation to obtain the Delassus operator in which the mass and stiffness ratio are dissociated from the simulation time step. This last point is crucial to keep stable haptic feedback. This global approach has been packaged, implemented, and tested. Stable and realistic 6D haptic feedback is demonstrated through a clipping task experiment.

  20. Construction of English-Chinese bilingual interaction environment in virtual space teleconferencing system

    NASA Astrophysics Data System (ADS)

    Ma, Hongmei; Qi, Yue; Wang, Ting; Chen, Huowang

    2003-04-01

    Virtual Space Teleconferencing System (VST), which based on video teleconferencing system, is a combination of Virtual Reality and several other techniques, such as Network Communication and Natural Language Processing. Participants appear in computer-generated virtual spaces as avatars in VST, and these avatars can locate, view, manipulate virtual objects, communicate with others face to face, so participants could share 'the same space' and do cooperative work. When participants use different kinds of natural language to communicate, language barrier would arise in interaction. So, besides the basic natural language processing, VST should provide translation service based on Machine Translation. First, this paper introduces the features of VST. Second, it describes the techniques of English-Chinese Bi-directional Machine Translation. Third, it analyzes the special requirements of English-Chinese bilingual interaction environment in VST. Finally it discusses the key issues of English-Chinese bilingual interaction environment and proposes a method of construction.

  1. Virtual interface environment workstations

    NASA Technical Reports Server (NTRS)

    Fisher, S. S.; Wenzel, E. M.; Coler, C.; Mcgreevy, M. W.

    1988-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed at NASA's Ames Research Center for use as a multipurpose interface environment. This Virtual Interface Environment Workstation (VIEW) system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, research scenarios, and research directions are described.

  2. Virtual interface environment workstations

    NASA Technical Reports Server (NTRS)

    Fisher, S. S.; Wenzel, E. M.; Coler, C.; Mcgreevy, M. W.

    1988-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed at NASA's Ames Research Center for use as a multipurpose interface environment. This Virtual Interface Environment Workstation (VIEW) system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, research scenarios, and research directions are described.

  3. Building interactive virtual environments for simulated training in medicine using VRML and Java/JavaScript.

    PubMed

    Korocsec, D; Holobar, A; Divjak, M; Zazula, D

    2005-12-01

    Medicine is a difficult thing to learn. Experimenting with real patients should not be the only option; simulation deserves a special attention here. Virtual Reality Modelling Language (VRML) as a tool for building virtual objects and scenes has a good record of educational applications in medicine, especially for static and animated visualisations of body parts and organs. However, to create computer simulations resembling situations in real environments the required level of interactivity and dynamics is difficult to achieve. In the present paper we describe some approaches and techniques which we used to push the limits of the current VRML technology further toward dynamic 3D representation of virtual environments (VEs). Our demonstration is based on the implementation of a virtual baby model, whose vital signs can be controlled from an external Java application. The main contributions of this work are: (a) outline and evaluation of the three-level VRML/Java implementation of the dynamic virtual environment, (b) proposal for a modified VRML Timesensor node, which greatly improves the overall control of system performance, and (c) architecture of the prototype distributed virtual environment for training in neonatal resuscitation comprising the interactive virtual newborn, active bedside monitor for vital signs and full 3D representation of the surgery room.

  4. Integrating Video-Capture Virtual Reality Technology into a Physically Interactive Learning Environment for English Learning

    ERIC Educational Resources Information Center

    Yang, Jie Chi; Chen, Chih Hung; Jeng, Ming Chang

    2010-01-01

    The aim of this study is to design and develop a Physically Interactive Learning Environment, the PILE system, by integrating video-capture virtual reality technology into a classroom. The system is designed for elementary school level English classes where students can interact with the system through physical movements. The system is designed to…

  5. Integrating Video-Capture Virtual Reality Technology into a Physically Interactive Learning Environment for English Learning

    ERIC Educational Resources Information Center

    Yang, Jie Chi; Chen, Chih Hung; Jeng, Ming Chang

    2010-01-01

    The aim of this study is to design and develop a Physically Interactive Learning Environment, the PILE system, by integrating video-capture virtual reality technology into a classroom. The system is designed for elementary school level English classes where students can interact with the system through physical movements. The system is designed to…

  6. SciEthics Interactive: Science and Ethics Learning in a Virtual Environment

    ERIC Educational Resources Information Center

    Nadolny, Larysa; Woolfrey, Joan; Pierlott, Matthew; Kahn, Seth

    2013-01-01

    Learning in immersive 3D environments allows students to collaborate, build, and interact with difficult course concepts. This case study examines the design and development of the TransGen Island within the SciEthics Interactive project, a National Science Foundation-funded, 3D virtual world emphasizing learning science content in the context of…

  7. SciEthics Interactive: Science and Ethics Learning in a Virtual Environment

    ERIC Educational Resources Information Center

    Nadolny, Larysa; Woolfrey, Joan; Pierlott, Matthew; Kahn, Seth

    2013-01-01

    Learning in immersive 3D environments allows students to collaborate, build, and interact with difficult course concepts. This case study examines the design and development of the TransGen Island within the SciEthics Interactive project, a National Science Foundation-funded, 3D virtual world emphasizing learning science content in the context of…

  8. An investigation into factors influencing immersion in interactive virtual reality environments.

    PubMed

    Bangay, S; Preston, L

    1998-01-01

    Two interactive virtual reality environments were used to identify factors that may affect, or be affected by, the degree of immersion in a virtual world. In particular, the level of stress in a "swimming with dolphins" simulation is measured, as is the degree of simulator sickness resulting form a virtual roller coaster. Analysis of the results indicates that a relationship between the degree of immersion and the following factors: excitement, comfort, quality and age. The following factors are found to depend on the degree of immersion: simulator sickness, control, excitement and desire to repeat the experience.

  9. Interaction Forms in Successful Collaborative Learning in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Vuopala, Essi; Hyvönen, Pirkko; Järvelä, Sanna

    2016-01-01

    Despite the numerous studies on social interaction in collaborative learning, little is known about interaction forms in successful computer-supported collaborative learning situations. The purpose of this study was to explore and understand student interaction in successful collaborative learning during a university course which was mediated by…

  10. Interaction Forms in Successful Collaborative Learning in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Vuopala, Essi; Hyvönen, Pirkko; Järvelä, Sanna

    2016-01-01

    Despite the numerous studies on social interaction in collaborative learning, little is known about interaction forms in successful computer-supported collaborative learning situations. The purpose of this study was to explore and understand student interaction in successful collaborative learning during a university course which was mediated by…

  11. Studying social interactions through immersive virtual environment technology: virtues, pitfalls, and future challenges

    PubMed Central

    Bombari, Dario; Schmid Mast, Marianne; Canadas, Elena; Bachmann, Manuel

    2015-01-01

    The goal of the present review is to explain how immersive virtual environment technology (IVET) can be used for the study of social interactions and how the use of virtual humans in immersive virtual environments can advance research and application in many different fields. Researchers studying individual differences in social interactions are typically interested in keeping the behavior and the appearance of the interaction partner constant across participants. With IVET researchers have full control over the interaction partners, can standardize them while still keeping the simulation realistic. Virtual simulations are valid: growing evidence shows that indeed studies conducted with IVET can replicate some well-known findings of social psychology. Moreover, IVET allows researchers to subtly manipulate characteristics of the environment (e.g., visual cues to prime participants) or of the social partner (e.g., his/her race) to investigate their influences on participants’ behavior and cognition. Furthermore, manipulations that would be difficult or impossible in real life (e.g., changing participants’ height) can be easily obtained with IVET. Beside the advantages for theoretical research, we explore the most recent training and clinical applications of IVET, its integration with other technologies (e.g., social sensing) and future challenges for researchers (e.g., making the communication between virtual humans and participants smoother). PMID:26157414

  12. Virtual selves, real relationships: an exploration of the context and role for social interactions in the emergence of self in virtual environments.

    PubMed

    Evans, Simon

    2012-12-01

    With the evolution of computer-mediated communication and the arrival of new virtual environments, there are potential implications for how the Self may be conceptualised. This paper considers these implications by examining the continuities and discontinuities between the Self in virtual and non-virtual environments, and contemporary and historical settings. Symbolic Interaction and Activity Theory approaches emphasise the Self as emerging in context, through Self-Other and Self-environment interactions in the minutiae of everyday life, but to some extent foreground physical rather than virtual interactions. Interactions in virtual environments are characterised by specific forms of embodiment and the experience of "presence", with avatars providing embodiment for interaction separate from the physical world and interaction with others being one of the determinants of presence. The complexion of Self-Other interactions in virtual environments is circumscribed by the characteristics of communications and relationships that occur in them, which are constrained by reduced social cues but overcome through the invention of techniques driven by the desire to socially interact. This paper highlights the role of symbolic mediation in the emergence of Self in virtual environments and posits that, while emergence of Self is interactive in nature, virtual environments are particular sites for a Self where the specific role of social interaction must be foregrounded.

  13. Affective Behavior and Nonverbal Interaction in Collaborative Virtual Environments

    ERIC Educational Resources Information Center

    Peña, Adriana; Rangel, Nora; Muñoz, Mirna; Mejia, Jezreel; Lara, Graciela

    2016-01-01

    While a person's internal state might not be easily inferred through an automatic computer system, within a group, people express themselves through their interaction with others. The group members' interaction can be then helpful to understand, to certain extent, its members' affective behavior in any case toward the task at hand. In this…

  14. Affective Behavior and Nonverbal Interaction in Collaborative Virtual Environments

    ERIC Educational Resources Information Center

    Peña, Adriana; Rangel, Nora; Muñoz, Mirna; Mejia, Jezreel; Lara, Graciela

    2016-01-01

    While a person's internal state might not be easily inferred through an automatic computer system, within a group, people express themselves through their interaction with others. The group members' interaction can be then helpful to understand, to certain extent, its members' affective behavior in any case toward the task at hand. In this…

  15. Improving Social Interactions in Virtual Learning Environments: Guidance on Spatial Factors for Online Teachers

    ERIC Educational Resources Information Center

    Hernandez-Serrano, Maria Jose; Gonzales-Sanchez, Margarita

    2011-01-01

    This paper reports on a project in which students' interactions with learning environments are investigated from the perspective of the spatial factors. Our research examines a significant dimension generated under the interrelationship between the subject and the virtual space, by establishing that spatial dimensions may determine the level of…

  16. Interactive Whiteboard and Virtual Learning Environment Combined: Effects on Mathematics Education

    ERIC Educational Resources Information Center

    Heemskerk, I.; Kuiper, E.; Meijer, J.

    2014-01-01

    This study reports on the effects of the combined use of an interactive whiteboard (IWB) and a virtual learning environment (VLE) on mathematics performance and motivation. Lessons taught with an IWB were made available on the VLE, so that they could be consulted regardless of time and place. Students' mathematics performance was monitored…

  17. Virtual interface environment

    NASA Technical Reports Server (NTRS)

    Fisher, Scott S.

    1986-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed for use as a multipurpose interface environment. The system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, application scenarios, and research directions are described.

  18. Adaptive mesh compression and transmission in Internet-based interactive walkthrough virtual environments

    NASA Astrophysics Data System (ADS)

    Yang, Sheng; Kuo, C.-C. Jay

    2002-07-01

    An Internet-based interactive walkthrough virtual environment is presented in this work to facilitate interactive streaming and browsing of 3D graphic models across the Internet. The models are compressed by the view-dependent progressive mesh compression algorithm to enable the decorrelation of partitions and finer granularity. Following the fundamental framework of mesh representation, an interactive protocol based on the real time streaming protocol (RTSP) is developed to enhance the interaction between the server and the client. Finally, the data of the virtual world is re-organized and transmitted according to the viewer's requests. Experimental results demonstrate that the proposed algorithm reduces the required transmission bandwidth, and provides an acceptable visual quality even at low bit rates.

  19. Analysis of the Role of Update Rate and System Latency in Interactive Virtual Acoustic Environments

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Ahumada, Albert (Technical Monitor); Schlickenmaier, Herbert (Technical Monitor); Johnson, Gerald (Technical Monitor); Frey, Mary Anne (Technical Monitor); Schneider, Victor S. (Technical Monitor)

    1997-01-01

    The ultimate goal of virtual acoustics is to simulate the complex acoustic field experienced by a listener freely moving around within an environment. This paper discusses some of the engineering constraints that may be faced during implementation and the perceptual consequences of these constraints. In particular, the perceptual impact of parameters like the update rate and overall system latency of interactive spatial audio systems is addressed.

  20. Customized Monitoring and Interaction Devices in Virtual Environments for Upper Limb Rehabilitation After Brain Injury.

    PubMed

    Ontiveros-Ravell, Julio; Molina, Fernando; Almenara-Masbernat, Maria; Soriano, Ignasi; Opisso, Eloy; Hernando, M Elena; Tormos, Josep Maria; Medina, Josep; Gómez, Enrique J

    2016-01-01

    This paper introduces a new approach for upper limb neurorehabilitation based on customized devices for monitoring and interacting with virtual environments. A proof-of-concept test involving eight patients at the Guttmann Neurorehabilitation Hospital shows patient's good acceptance and usability scores and demonstrates the technically feasibility of the devices. The final goal is to achieve a more personalized, monitored, intensive and ecological rehabilitation procedures for ABI patients.

  1. Using a Quest in a 3D Virtual Environment for Student Interaction and Vocabulary Acquisition in Foreign Language Learning

    ERIC Educational Resources Information Center

    Kastoudi, Denise

    2011-01-01

    The gaming and interactional nature of the virtual environment of Second Life offers opportunities for language learning beyond the traditional pedagogy. This study case examined the potential of 3D virtual quest games to enhance vocabulary acquisition through interaction, negotiation of meaning and noticing. Four adult students of English at…

  2. Distributed interactive virtual environments for collaborative experiential learning and training independent of distance over Internet2.

    PubMed

    Alverson, Dale C; Saiki, Stanley M; Jacobs, Joshua; Saland, Linda; Keep, Marcus F; Norenberg, Jeffrey; Baker, Rex; Nakatsu, Curtis; Kalishman, Summers; Lindberg, Marlene; Wax, Diane; Mowafi, Moad; Summers, Kenneth L; Holten, James R; Greenfield, John A; Aalseth, Edward; Nickles, David; Sherstyuk, Andrei; Haines, Karen; Caudell, Thomas P

    2004-01-01

    Medical knowledge and skills essential for tomorrow's healthcare professionals continue to change faster than ever before creating new demands in medical education. Project TOUCH (Telehealth Outreach for Unified Community Health) has been developing methods to enhance learning by coupling innovations in medical education with advanced technology in high performance computing and next generation Internet2 embedded in virtual reality environments (VRE), artificial intelligence and experiential active learning. Simulations have been used in education and training to allow learners to make mistakes safely in lieu of real-life situations, learn from those mistakes and ultimately improve performance by subsequent avoidance of those mistakes. Distributed virtual interactive environments are used over distance to enable learning and participation in dynamic, problem-based, clinical, artificial intelligence rules-based, virtual simulations. The virtual reality patient is programmed to dynamically change over time and respond to the manipulations by the learner. Participants are fully immersed within the VRE platform using a head-mounted display and tracker system. Navigation, locomotion and handling of objects are accomplished using a joy-wand. Distribution is managed via the Internet2 Access Grid using point-to-point or multi-casting connectivity through which the participants can interact. Medical students in Hawaii and New Mexico (NM) participated collaboratively in problem solving and managing of a simulated patient with a closed head injury in VRE; dividing tasks, handing off objects, and functioning as a team. Students stated that opportunities to make mistakes and repeat actions in the VRE were extremely helpful in learning specific principles. VRE created higher performance expectations and some anxiety among VRE users. VRE orientation was adequate but students needed time to adapt and practice in order to improve efficiency. This was also demonstrated successfully

  3. Virtual environment technology

    NASA Astrophysics Data System (ADS)

    Zeltzer, David L.

    1991-06-01

    Since the late 1960s and early 1970s researchers have been building novel display devices-- including head-mounted displays (HMDs)--and a variety of manual input devices, including force input and output. With the advent of powerful graphic workstations, and relatively inexpensive HMDs and glove-like input devices, however, interest in 'virtual environments' seems to be rising exponentially. In this paper the key components of a virtual environment-- autonomy, interaction and presence--are described. Autonomy is a qualitative measure of the capability of computational models to act and react to simulated events and stimuli. Interaction measures the degree of access to model parameters at runtime, ranging from batch processing with no interaction to comprehensive, real-time access to all model parameters. Presence is a rough measure of the number and fidelity of available sensory input and output channels. Work on representing and controlling synthetic autonomous agents for virtual environments will be briefly reviewed. Videotaped examples will be shown.

  4. Interactivity in the Online Learning Environment: A Study of Users of the North Carolina Virtual Public School

    ERIC Educational Resources Information Center

    Ingerham, Laura

    2012-01-01

    Recent studies of online learning environments reveal the importance of interaction within the virtual environment. Abrami, Bernard, Bures, Borokhovski, and Tamim (2011) identify and study 3 types of student interactions: student-content, student-teacher, and student-student. This article builds on this classification of interactions as it…

  5. The virtual environment display system

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1991-01-01

    Virtual environment technology is a display and control technology that can surround a person in an interactive computer generated or computer mediated virtual environment. It has evolved at NASA-Ames since 1984 to serve NASA's missions and goals. The exciting potential of this technology, sometimes called Virtual Reality, Artificial Reality, or Cyberspace, has been recognized recently by the popular media, industry, academia, and government organizations. Much research and development will be necessary to bring it to fruition.

  6. Brave New (Interactive) Worlds: A Review of the Design Affordances and Constraints of Two 3D Virtual Worlds as Interactive Learning Environments

    ERIC Educational Resources Information Center

    Dickey, Michele D.

    2005-01-01

    Three-dimensional virtual worlds are an emerging medium currently being used in both traditional classrooms and for distance education. Three-dimensional (3D) virtual worlds are a combination of desk-top interactive Virtual Reality within a chat environment. This analysis provides an overview of Active Worlds Educational Universe and Adobe…

  7. The Effects of Instructor-Avatar Immediacy in Second Life, an Immersive and Interactive Three-Dimensional Virtual Environment

    ERIC Educational Resources Information Center

    Lawless-Reljic, Sabine Karine

    2010-01-01

    Growing interest of educational institutions in desktop 3D graphic virtual environments for hybrid and distance education prompts questions on the efficacy of such tools. Virtual worlds, such as Second Life[R], enable computer-mediated immersion and interactions encompassing multimodal communication channels including audio, video, and text-.…

  8. Can simple interactions capture complex features of neural activity underlying behavior in a virtual reality environment?

    NASA Astrophysics Data System (ADS)

    Meshulam, Leenoy; Gauthier, Jeffrey; Brody, Carlos; Tank, David; Bialek, William

    The complex neural interactions which are abundant in most recordings of neural activity are relatively poorly understood. A prime example of such interactions can be found in the in vivo neural activity which underlies complex behaviors of mice, imaged in brain regions such as hippocampus and parietal cortex. Experimental techniques now allow us to accurately follow these neural interactions in the simultaneous activity of large neuronal populations of awake behaving animals. Here, we demonstrate that pairwise maximum entropy models can predict a surprising number of properties of the neural activity. The models, that are constrained with activity rates and interactions between pairs of neurons, are well fit to the activity `states' in the hippocampus and cortex of mice performing cognitive tasks while navigating in a virtual reality environment.

  9. Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments.

    PubMed

    Li, Min; Sareh, Sina; Xu, Guanghua; Ridzuan, Maisarah Binti; Luo, Shan; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2016-01-01

    This paper proposes a pseudo-haptic feedback method conveying simulated soft surface stiffness information through a visual interface. The method exploits a combination of two feedback techniques, namely visual feedback of soft surface deformation and control of the indenter avatar speed, to convey stiffness information of a simulated surface of a soft object in virtual environments. The proposed method was effective in distinguishing different sizes of virtual hard nodules integrated into the simulated soft bodies. To further improve the interactive experience, the approach was extended creating a multi-point pseudo-haptic feedback system. A comparison with regards to (a) nodule detection sensitivity and (b) elapsed time as performance indicators in hard nodule detection experiments to a tablet computer incorporating vibration feedback was conducted. The multi-point pseudo-haptic interaction is shown to be more time-efficient than the single-point pseudo-haptic interaction. It is noted that multi-point pseudo-haptic feedback performs similarly well when compared to a vibration-based feedback method based on both performance measures elapsed time and nodule detection sensitivity. This proves that the proposed method can be used to convey detailed haptic information for virtual environmental tasks, even subtle ones, using either a computer mouse or a pressure sensitive device as an input device. This pseudo-haptic feedback method provides an opportunity for low-cost simulation of objects with soft surfaces and hard inclusions, as, for example, occurring in ever more realistic video games with increasing emphasis on interaction with the physical environment and minimally invasive surgery in the form of soft tissue organs with embedded cancer nodules. Hence, the method can be used in many low-budget applications where haptic sensation is required, such as surgeon training or video games, either using desktop computers or portable devices, showing reasonably high

  10. Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments

    PubMed Central

    Sareh, Sina; Xu, Guanghua; Ridzuan, Maisarah Binti; Luo, Shan; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2016-01-01

    This paper proposes a pseudo-haptic feedback method conveying simulated soft surface stiffness information through a visual interface. The method exploits a combination of two feedback techniques, namely visual feedback of soft surface deformation and control of the indenter avatar speed, to convey stiffness information of a simulated surface of a soft object in virtual environments. The proposed method was effective in distinguishing different sizes of virtual hard nodules integrated into the simulated soft bodies. To further improve the interactive experience, the approach was extended creating a multi-point pseudo-haptic feedback system. A comparison with regards to (a) nodule detection sensitivity and (b) elapsed time as performance indicators in hard nodule detection experiments to a tablet computer incorporating vibration feedback was conducted. The multi-point pseudo-haptic interaction is shown to be more time-efficient than the single-point pseudo-haptic interaction. It is noted that multi-point pseudo-haptic feedback performs similarly well when compared to a vibration-based feedback method based on both performance measures elapsed time and nodule detection sensitivity. This proves that the proposed method can be used to convey detailed haptic information for virtual environmental tasks, even subtle ones, using either a computer mouse or a pressure sensitive device as an input device. This pseudo-haptic feedback method provides an opportunity for low-cost simulation of objects with soft surfaces and hard inclusions, as, for example, occurring in ever more realistic video games with increasing emphasis on interaction with the physical environment and minimally invasive surgery in the form of soft tissue organs with embedded cancer nodules. Hence, the method can be used in many low-budget applications where haptic sensation is required, such as surgeon training or video games, either using desktop computers or portable devices, showing reasonably high

  11. Performance-Driven Hybrid Full-Body Character Control for Navigation and Interaction in Virtual Environments

    NASA Astrophysics Data System (ADS)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-06-01

    This paper presents a hybrid character control interface that provides the ability to synthesize in real-time a variety of actions based on the user's performance capture. The proposed methodology enables three different performance interaction modules: the performance animation control that enables the direct mapping of the user's pose to the character, the motion controller that synthesizes the desired motion of the character based on an activity recognition methodology, and the hybrid control that lies within the performance animation and the motion controller. With the methodology presented, the user will have the freedom to interact within the virtual environment, as well as the ability to manipulate the character and to synthesize a variety of actions that cannot be performed directly by him/her, but which the system synthesizes. Therefore, the user is able to interact with the virtual environment in a more sophisticated fashion. This paper presents examples of different scenarios based on the three different full-body character control methodologies.

  12. A Model Supported Interactive Virtual Environment for Natural Resource Sharing in Environmental Education

    ERIC Educational Resources Information Center

    Barbalios, N.; Ioannidou, I.; Tzionas, P.; Paraskeuopoulos, S.

    2013-01-01

    This paper introduces a realistic 3D model supported virtual environment for environmental education, that highlights the importance of water resource sharing by focusing on the tragedy of the commons dilemma. The proposed virtual environment entails simulations that are controlled by a multi-agent simulation model of a real ecosystem consisting…

  13. A Model Supported Interactive Virtual Environment for Natural Resource Sharing in Environmental Education

    ERIC Educational Resources Information Center

    Barbalios, N.; Ioannidou, I.; Tzionas, P.; Paraskeuopoulos, S.

    2013-01-01

    This paper introduces a realistic 3D model supported virtual environment for environmental education, that highlights the importance of water resource sharing by focusing on the tragedy of the commons dilemma. The proposed virtual environment entails simulations that are controlled by a multi-agent simulation model of a real ecosystem consisting…

  14. Evaluation for the design of experience in virtual environments: modeling breakdown of interaction and illusion.

    PubMed

    Marsh, T; Wright, P; Smith, S

    2001-04-01

    New and emerging media technologies have the potential to induce a variety of experiences in users. In this paper, it is argued that the inducement of experience presupposes that users are absorbed in the illusion created by these media. Looking to another successful visual medium, film, this paper borrows from the techniques used in "shaping experience" to hold spectators' attention in the illusion of film, and identifies what breaks the illusion/experience for spectators. This paper focuses on one medium, virtual reality (VR), and advocates a transparent or "invisible style" of interaction. We argue that transparency keeps users in the "flow" of their activities and consequently enhances experience in users. Breakdown in activities breaks the experience and subsequently provides opportunities to identify and analyze potential causes of usability problems. Adopting activity theory, we devise a model of interaction with VR--through consciousness and activity--and introduce the concept of breakdown in illusion. From this, a model of effective interaction with VR is devised and the occurrence of breakdown in interaction and illusion is identified along a continuum of engagement. Evaluation guidelines for the design of experience are proposed and applied to usability problems detected in an empirical study of a head-mounted display (HMD) VR system. This study shows that the guidelines are effective in the evaluation of VR. Finally, we look at the potential experiences that may be induced in users and propose a way to evaluate user experience in virtual environments (VEs) and other new and emerging media.

  15. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  16. vPresent: A cloud based 3D virtual presentation environment for interactive product customization

    NASA Astrophysics Data System (ADS)

    Nan, Xiaoming; Guo, Fei; He, Yifeng; Guan, Ling

    2013-09-01

    In modern society, many companies offer product customization services to their customers. There are two major issues in providing customized products. First, product manufacturers need to effectively present their products to the customers who may be located in any geographical area. Second, customers need to be able to provide their feedbacks on the product in real-time. However, the traditional presentation approaches cannot effectively convey sufficient information for the product or efficiently adjust product design according to customers' real-time feedbacks. In order to address these issues, we propose vPresent , a cloud based 3D virtual presentation environment, in this paper. In vPresent, the product expert can show the 3D virtual product to the remote customers and dynamically customize the product based on customers' feedbacks, while customers can provide their opinions in real time when they are viewing a vivid 3D visualization of the product. Since the proposed vPresent is a cloud based system, the customers are able to access the customized virtual products from anywhere at any time, via desktop, laptop, or even smart phone. The proposed vPresent is expected to effectively deliver 3D visual information to customers and provide an interactive design platform for the development of customized products.

  17. Virtual Environments in Biology Teaching

    ERIC Educational Resources Information Center

    Mikropoulos, Tassos A.; Katsikis, Apostolos; Nikolou, Eugenia; Tsakalis, Panayiotis

    2003-01-01

    This article reports on the design, development and evaluation of an educational virtual environment for biology teaching. In particular it proposes a highly interactive three-dimensional synthetic environment involving certain learning tasks for the support of teaching plant cell biology and the process of photosynthesis. The environment has been…

  18. Virtual Environments in Biology Teaching

    ERIC Educational Resources Information Center

    Mikropoulos, Tassos A.; Katsikis, Apostolos; Nikolou, Eugenia; Tsakalis, Panayiotis

    2003-01-01

    This article reports on the design, development and evaluation of an educational virtual environment for biology teaching. In particular it proposes a highly interactive three-dimensional synthetic environment involving certain learning tasks for the support of teaching plant cell biology and the process of photosynthesis. The environment has been…

  19. iVFTs - immersive virtual field trips for interactive learning about Earth's environment.

    NASA Astrophysics Data System (ADS)

    Bruce, G.; Anbar, A. D.; Semken, S. C.; Summons, R. E.; Oliver, C.; Buxner, S.

    2014-12-01

    Innovations in immersive interactive technologies are changing the way students explore Earth and its environment. State-of-the-art hardware has given developers the tools needed to capture high-resolution spherical content, 360° panoramic video, giga-pixel imagery, and unique viewpoints via unmanned aerial vehicles as they explore remote and physically challenging regions of our planet. Advanced software enables integration of these data into seamless, dynamic, immersive, interactive, content-rich, and learner-driven virtual field explorations, experienced online via HTML5. These surpass conventional online exercises that use 2-D static imagery and enable the student to engage in these virtual environments that are more like games than like lectures. Grounded in the active learning of exploration, inquiry, and application of knowledge as it is acquired, users interact non-linearly in conjunction with an intelligent tutoring system (ITS). The integration of this system allows the educational experience to be adapted to each individual student as they interact within the program. Such explorations, which we term "immersive virtual field trips" (iVFTs), are being integrated into cyber-learning allowing science teachers to take students to scientifically significant but inaccessible environments. Our team and collaborators are producing a diverse suite of freely accessible, iVFTs to teach key concepts in geology, astrobiology, ecology, and anthropology. Topics include Early Life, Biodiversity, Impact craters, Photosynthesis, Geologic Time, Stratigraphy, Tectonics, Volcanism, Surface Processes, The Rise of Oxygen, Origin of Water, Early Civilizations, Early Multicellular Organisms, and Bioarcheology. These diverse topics allow students to experience field sites all over the world, including, Grand Canyon (USA), Flinders Ranges (Australia), Shark Bay (Australia), Rainforests (Panama), Teotihuacan (Mexico), Upheaval Dome (USA), Pilbara (Australia), Mid-Atlantic Ridge

  20. An interactive, stereoscopic virtual environment for medical imaging visualization, simulation and training

    NASA Astrophysics Data System (ADS)

    Krueger, Evan; Messier, Erik; Linte, Cristian A.; Diaz, Gabriel

    2017-03-01

    Recent advances in medical image acquisition allow for the reconstruction of anatomies with 3D, 4D, and 5D renderings. Nevertheless, standard anatomical and medical data visualization still relies heavily on the use of traditional 2D didactic tools (i.e., textbooks and slides), which restrict the presentation of image data to a 2D slice format. While these approaches have their merits beyond being cost effective and easy to disseminate, anatomy is inherently three-dimensional. By using 2D visualizations to illustrate more complex morphologies, important interactions between structures can be missed. In practice, such as in the planning and execution of surgical interventions, professionals require intricate knowledge of anatomical complexities, which can be more clearly communicated and understood through intuitive interaction with 3D volumetric datasets, such as those extracted from high-resolution CT or MRI scans. Open source, high quality, 3D medical imaging datasets are freely available, and with the emerging popularity of 3D display technologies, affordable and consistent 3D anatomical visualizations can be created. In this study we describe the design, implementation, and evaluation of one such interactive, stereoscopic visualization paradigm for human anatomy extracted from 3D medical images. A stereoscopic display was created by projecting the scene onto the lab floor using sequential frame stereo projection and viewed through active shutter glasses. By incorporating a PhaseSpace motion tracking system, a single viewer can navigate an augmented reality environment and directly manipulate virtual objects in 3D. While this paradigm is sufficiently versatile to enable a wide variety of applications in need of 3D visualization, we designed our study to work as an interactive game, which allows users to explore the anatomy of various organs and systems. In this study we describe the design, implementation, and evaluation of an interactive and stereoscopic

  1. Virtual Environments in Scientific Visualization

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Lisinski, T. A. (Technical Monitor)

    1994-01-01

    Virtual environment technology is a new way of approaching the interface between computers and humans. Emphasizing display and user control that conforms to the user's natural ways of perceiving and thinking about space, virtual environment technologies enhance the ability to perceive and interact with computer generated graphic information. This enhancement potentially has a major effect on the field of scientific visualization. Current examples of this technology include the Virtual Windtunnel being developed at NASA Ames Research Center. Other major institutions such as the National Center for Supercomputing Applications and SRI International are also exploring this technology. This talk will be describe several implementations of virtual environments for use in scientific visualization. Examples include the visualization of unsteady fluid flows (the virtual windtunnel), the visualization of geodesics in curved spacetime, surface manipulation, and examples developed at various laboratories.

  2. Virtual Environments in Scientific Visualization

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Lisinski, T. A. (Technical Monitor)

    1994-01-01

    Virtual environment technology is a new way of approaching the interface between computers and humans. Emphasizing display and user control that conforms to the user's natural ways of perceiving and thinking about space, virtual environment technologies enhance the ability to perceive and interact with computer generated graphic information. This enhancement potentially has a major effect on the field of scientific visualization. Current examples of this technology include the Virtual Windtunnel being developed at NASA Ames Research Center. Other major institutions such as the National Center for Supercomputing Applications and SRI International are also exploring this technology. This talk will be describe several implementations of virtual environments for use in scientific visualization. Examples include the visualization of unsteady fluid flows (the virtual windtunnel), the visualization of geodesics in curved spacetime, surface manipulation, and examples developed at various laboratories.

  3. Virtual Learning Environments.

    ERIC Educational Resources Information Center

    Follows, Scott B.

    1999-01-01

    Illustrates the possibilities and educational benefits of virtual learning environments (VLEs), based on experiences with "Thirst for Knowledge," a VLE that simulates the workplace of a major company. While working in this virtual office world, students walk through the building, attend meetings, read reports, receive e-mail, answer the telephone,…

  4. Virtual Learning Environments (VLEs) for Distance Language Learning: Shifting Tutor Roles in a Contested Space for Interaction

    ERIC Educational Resources Information Center

    Comas-Quinn, Anna; de los Arcos, Beatriz; Mardomingo, Raquel

    2012-01-01

    This article describes the rationale for pedagogical, technological and organisational choices in the design of a virtual learning environment (VLE) for an upper-intermediate Spanish course with regard to the roles of participants (tutors, moderators and learners). We report on findings from a preliminary evaluation of the interaction between the…

  5. A Proposed Treatment for Visual Field Loss caused by Traumatic Brain Injury using Interactive Visuotactile Virtual Environment

    NASA Astrophysics Data System (ADS)

    Farkas, Attila J.; Hajnal, Alen; Shiratuddin, Mohd F.; Szatmary, Gabriella

    In this paper, we propose a novel approach of using interactive virtual environment technology in Vision Restoration Therapy caused by Traumatic Brain Injury. We called the new system Interactive Visuotactile Virtual Environment and it holds a promise of expanding the scope of already existing rehabilitation techniques. Traditional vision rehabilitation methods are based on passive psychophysical training procedures, and can last up to six months before any modest improvements can be seen in patients. A highly immersive and interactive virtual environment will allow the patient to practice everyday activities such as object identification and object manipulation through the use 3D motion sensoring handheld devices such data glove or the Nintendo Wiimote. Employing both perceptual and action components in the training procedures holds the promise of more efficient sensorimotor rehabilitation. Increased stimulation of visual and sensorimotor areas of the brain should facilitate a comprehensive recovery of visuomotor function by exploiting the plasticity of the central nervous system. Integrated with a motion tracking system and an eye tracking device, the interactive virtual environment allows for the creation and manipulation of a wide variety of stimuli, as well as real-time recording of hand-, eye- and body movements and coordination. The goal of the project is to design a cost-effective and efficient vision restoration system.

  6. Digital Immersive Virtual Environments and Instructional Computing

    ERIC Educational Resources Information Center

    Blascovich, Jim; Beall, Andrew C.

    2010-01-01

    This article reviews theory and research relevant to the development of digital immersive virtual environment-based instructional computing systems. The review is organized within the context of a multidimensional model of social influence and interaction within virtual environments that models the interaction of four theoretical factors: theory…

  7. Digital Immersive Virtual Environments and Instructional Computing

    ERIC Educational Resources Information Center

    Blascovich, Jim; Beall, Andrew C.

    2010-01-01

    This article reviews theory and research relevant to the development of digital immersive virtual environment-based instructional computing systems. The review is organized within the context of a multidimensional model of social influence and interaction within virtual environments that models the interaction of four theoretical factors: theory…

  8. Spatial memories of virtual environments: how egocentric experience, intrinsic structure, and extrinsic structure interact.

    PubMed

    Kelly, Jonathan W; McNamara, Timothy P

    2008-04-01

    Previous research has uncovered three primary cues that influence spatial memory organization:egocentric experience, intrinsic structure (object defined), and extrinsic structure (environment defined). In the present experiments, we assessed the relative importance of these cues when all three were available during learning. Participants learned layouts from two perspectives in immersive virtual reality. In Experiment 1, axes defined by intrinsic and extrinsic structures were in conflict, and learning occurred from two perspectives, each aligned with either the intrinsic or the extrinsic structure. Spatial memories were organized around a reference direction selected from the first perspective, regardless of its alignment with intrinsic or extrinsic structures. In Experiment 2, axes defined by intrinsic and extrinsic structures were congruent, and spatial memories were organized around reference axes defined by those congruent structures, rather than by the initially experienced view. The findings are discussed in the context of spatial memory theory as it relates to real and virtual environments.

  9. A real-time interactive simulation framework for watershed decision making using numerical models and virtual environment

    NASA Astrophysics Data System (ADS)

    Zhang, ShangHong; Xia, ZhongXi; Wang, TaiWei

    2013-06-01

    Decision support systems based on a virtual environment (VE) are becoming a popular platform in watershed simulation and management. Simulation speed and data visualization is of great significance to decision making, especially in urgent events. Real-time interaction during the simulation process is also very important for dealing with different conditions and for making timely decisions. In this study, a VE-based real-time interactive simulation framework (VERTISF) is developed and applied to simulation and management of the Dujiangyan Project in China. In VERTISF development, a virtual reality platform and numerical models were hosted on different computers and connected by a network to improve simulation speed. Different types of numerical models were generalized in a unified architecture based on time step, and interactive control was realized by modifying model boundary conditions at each time step. The "instruction-response" method and data interpolation were used to synchronize virtual environment visualization and numerical model calculation. Implementation of the framework was based on modular software design; various computer languages can be used to develop the appropriate module. Since only slight modification was needed for current numerical model integration in the framework, VERTISF was easy to extend. Results showed that VERTISF could take full advantage of hardware development, and it was a simple and effective solution for complex watershed simulation.

  10. Investigations on the interactions between vision and locomotion using a treadmill virtual environment

    NASA Astrophysics Data System (ADS)

    Thompson, William B.; Creem-Regehr, Sarah H.; Mohler, Betty J.; Willemsen, Peter

    2005-03-01

    Treadmill-based virtual environments have the potential to allow near natural locomotion through large-scale simulated spaces. To be effective, such devices need to provide users with visual and biomechanical sensations of walking that are sufficiently accurate to evoke perception-action couplings comparable to those occurring in the real world. We are exploring this problem using a custom built, computer controlled treadmill with a 6' by 10' walking surface, coupled to computer graphics presented on wide field-of-view back projection screens. The system has the added feature of being able to apply forces to the user to simulate walking on slopes and the effects of changes in walking speed. We have demonstrated the effectiveness of this system by showing that the perceptual-motor calibration of human locomotion in the real world can be altered by prior walking on the treadmill virtual environment when the visual flow associated with self-motion is mismatched relative to biomechanical walking speed. The perceptual-motor coupling that we have achieved is sufficient to allow investigation of a number of open questions, including the effect of walking on slopes on the visual estimation of slant and visual influences on gait and walking speed.

  11. On the effect of free vs. restricted interaction during the exploration of virtual environments.

    PubMed

    Conradi, Jessica; Alexander, Thomas

    2012-01-01

    Exploration of a Virtual Environment (VE) might vary as well in applied technology as in the conceptual design. A conceptual difference of exploring style and navigation type relates to the degree of freedom a user possesses. It ranges from completely unrestricted to completely restricted navigation. To assess the impact of different exploration styles, an experiment was carried out. Four different styles were compared in a large-scale VE. The navigation of the participants was either free or restricted in various levels concerning motion and viewing direction. During the exploration, the participants memorized the location of flags, which represented special events at these locations. The participant's task was to memorize position and color of the flags. Subsequently, they marked the positions and colors of the flags in a map of the scene. The performance in this task was captured, as well as data about their amount of experienced simulator sickness and subjective workload. Additionally, balancing tests were administered to investigate in an objective measurement of simulator sickness. Each condition showed the same achievement in the memorizing task and the subjective workload. Furthermore, the measured high variance in simulator sickness symptoms overrode other effects. In the balancing tests a basic influence of exposure with VE was found. However, subsequent interviews with the participants showed that the personal impression of the efficiency of exploration method was highly individual. By finding and matching exploration methods to individual persons, benefit by using Virtual environments could be enhanced.

  12. Changing learning with new interactive and media-rich instruction environments: virtual labs case study report.

    PubMed

    Huang, Camillan

    2003-01-01

    Technology has created a new dimension for visual teaching and learning with web-delivered interactive media. The Virtual Labs Project has embraced this technology with instructional design and evaluation methodologies behind the simPHYSIO suite of simulation-based, online interactive teaching modules in physiology for the Stanford students. In addition, simPHYSIO provides the convenience of anytime web-access and a modular structure that allows for personalization and customization of the learning material. This innovative tool provides a solid delivery and pedagogical backbone that can be applied to developing an interactive simulation-based training tool for the use and management of the Picture Archiving and Communication System (PACS) image information system. The disparity in the knowledge between health and IT professionals can be bridged by providing convenient modular teaching tools to fill the gaps in knowledge. An innovative teaching method in the whole PACS is deemed necessary for its successful implementation and operation since it has become widely distributed with many interfaces, components, and customizations. This paper will discuss the techniques for developing an interactive-based teaching tool, a case study of its implementation, and a perspective for applying this approach to an online PACS training tool.

  13. Collaborative virtual environments art exhibition

    NASA Astrophysics Data System (ADS)

    Dolinsky, Margaret; Anstey, Josephine; Pape, Dave E.; Aguilera, Julieta C.; Kostis, Helen-Nicole; Tsoupikova, Daria

    2005-03-01

    This panel presentation will exhibit artwork developed in CAVEs and discuss how art methodologies enhance the science of VR through collaboration, interaction and aesthetics. Artists and scientists work alongside one another to expand scientific research and artistic expression and are motivated by exhibiting collaborative virtual environments. Looking towards the arts, such as painting and sculpture, computer graphics captures a visual tradition. Virtual reality expands this tradition to not only what we face, but to what surrounds us and even what responds to our body and its gestures. Art making that once was isolated to the static frame and an optimal point of view is now out and about, in fully immersive mode within CAVEs. Art knowledge is a guide to how the aesthetics of 2D and 3D worlds affect, transform, and influence the social, intellectual and physical condition of the human body through attention to psychology, spiritual thinking, education, and cognition. The psychological interacts with the physical in the virtual in such a way that each facilitates, enhances and extends the other, culminating in a "go together" world. Attention to sharing art experience across high-speed networks introduces a dimension of liveliness and aliveness when we "become virtual" in real time with others.

  14. A hardware and software architecture to deal with multimodal and collaborative interactions in multiuser virtual reality environments

    NASA Astrophysics Data System (ADS)

    Martin, P.; Tseu, A.; Férey, N.; Touraine, D.; Bourdot, P.

    2014-02-01

    Most advanced immersive devices provide collaborative environment within several users have their distinct head-tracked stereoscopic point of view. Combining with common used interactive features such as voice and gesture recognition, 3D mouse, haptic feedback, and spatialized audio rendering, these environments should faithfully reproduce a real context. However, even if many studies have been carried out on multimodal systems, we are far to definitively solve the issue of multimodal fusion, which consists in merging multimodal events coming from users and devices, into interpretable commands performed by the application. Multimodality and collaboration was often studied separately, despite of the fact that these two aspects share interesting similarities. We discuss how we address this problem, thought the design and implementation of a supervisor that is able to deal with both multimodal fusion and collaborative aspects. The aim of this supervisor is to ensure the merge of user's input from virtual reality devices in order to control immersive multi-user applications. We deal with this problem according to a practical point of view, because the main requirements of this supervisor was defined according to a industrial task proposed by our automotive partner, that as to be performed with multimodal and collaborative interactions in a co-located multi-user environment. In this task, two co-located workers of a virtual assembly chain has to cooperate to insert a seat into the bodywork of a car, using haptic devices to feel collision and to manipulate objects, combining speech recognition and two hands gesture recognition as multimodal instructions. Besides the architectural aspect of this supervisor, we described how we ensure the modularity of our solution that could apply on different virtual reality platforms, interactive contexts and virtual contents. A virtual context observer included in this supervisor in was especially designed to be independent to the

  15. Implementation and integration of a counterbalanced CRT-based stereoscopic display for interactive viewpoint control in virtual-environment applications

    NASA Astrophysics Data System (ADS)

    McDowall, Ian E.; Bolas, Mark T.; Pieper, Steven D.; Fisher, Scott S.; Humphries, Jim

    1990-09-01

    This paper describes the implementation and integration of the Ames counterbalanced CRT-based stereoscopic viewer (CCSV). The CCSV was developed as a supplementary viewing device for the Virtual Interface Environment Workstation project at NASA Ames in order to provide higher resolution than is currently possible with LCD based head-mounted viewers. The CCSV is currently used as the viewing device for a biomechanical CAD environment which we feel is typical of the applications for which the CCSV is appropriate. The CCSV also interfaces to a remote stereo camera platform. The CCSV hardware consists of a counterbalanced kinematic linkage, dual-CRT based stereoscopic viewer with wide angle optics, video electronics box, dedicated microprocessor system monitoring joint angles in the linkage, host computer interpreting the sensor values and running the application which renders right and left views for the viewer's CRTs. CCSV software includes code resident on the microprocessor system, host computer device drivers to communicate with the microprocessor, a kinematic module to compute viewer position and orientation from sensor values, graphics routines to change the viewing geometry to match viewer optics and movements, and an interface to the application. As a viewing device, the CCSV approach is particularly well suited to applications in which 1) the user moves back and forth between virtual environment viewing and desk work, 2) high resolution views of the virtual environment are required or 3) the viewing device is to be shared among collaborators in a group setting. To capitalize on these strengths, planned improvements for future CCSVs include: defining an appropriate motion envelope for desk top applications, improving the feel of the kinematics within that envelope, improving realism of the display by adding color and increasing the spatial resolution, reducing lag, and developing interaction metaphors within the 3D environment.

  16. The effect of user's perceived presence and promotion focus on usability for interacting in virtual environments.

    PubMed

    Sun, Huey-Min; Li, Shang-Phone; Zhu, Yu-Qian; Hsiao, Bo

    2015-09-01

    Technological advance in human-computer interaction has attracted increasing research attention, especially in the field of virtual reality (VR). Prior research has focused on examining the effects of VR on various outcomes, for example, learning and health. However, which factors affect the final outcomes? That is, what kind of VR system design will achieve higher usability? This question remains largely. Furthermore, when we look at VR system deployment from a human-computer interaction (HCI) lens, does user's attitude play a role in achieving the final outcome? This study aims to understand the effect of immersion and involvement, as well as users' regulatory focus on usability for a somatosensory VR learning system. This study hypothesized that regulatory focus and presence can effectively enhance user's perceived usability. Survey data from 78 students in Taiwan indicated that promotion focus is positively related to user's perceived efficiency, whereas involvement and promotion focus are positively related to user's perceived effectiveness. Promotion focus also predicts user satisfaction and overall usability perception.

  17. Virtual environment architecture for rapid application development

    NASA Technical Reports Server (NTRS)

    Grinstein, Georges G.; Southard, David A.; Lee, J. P.

    1993-01-01

    We describe the MITRE Virtual Environment Architecture (VEA), a product of nearly two years of investigations and prototypes of virtual environment technology. This paper discusses the requirements for rapid prototyping, and an architecture we are developing to support virtual environment construction. VEA supports rapid application development by providing a variety of pre-built modules that can be reconfigured for each application session. The modules supply interfaces for several types of interactive I/O devices, in addition to large-screen or head-mounted displays.

  18. Guided exploration in virtual environments

    NASA Astrophysics Data System (ADS)

    Beckhaus, Steffi; Eckel, Gerhard; Strothotte, Thomas

    2001-06-01

    We describe an application supporting alternating interaction and animation for the purpose of exploration in a surround- screen projection-based virtual reality system. The exploration of an environment is a highly interactive and dynamic process in which the presentation of objects of interest can give the user guidance while exploring the scene. Previous systems for automatic presentation of models or scenes need either cinematographic rules, direct human interaction, framesets or precalculation (e.g. precalculation of paths to a predefined goal). We report on the development of a system that can deal with rapidly changing user interest in objects of a scene or model as well as with dynamic models and changes of the camera position introduced interactively by the user. It is implemented as a potential-field based camera data generating system. In this paper we describe the implementation of our approach in a virtual art museum on the CyberStage, our surround-screen projection-based stereoscopic display. The paradigm of guided exploration is introduced describing the freedom of the user to explore the museum autonomously. At the same time, if requested by the user, guided exploration provides just-in-time navigational support. The user controls this support by specifying the current field of interest in high-level search criteria. We also present an informal user study evaluating this approach.

  19. Shared virtual environments for aerospace training

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen; Voss, Mark

    1994-01-01

    Virtual environments have the potential to significantly enhance the training of NASA astronauts and ground-based personnel for a variety of activities. A critical requirement is the need to share virtual environments, in real or near real time, between remote sites. It has been hypothesized that the training of international astronaut crews could be done more cheaply and effectively by utilizing such shared virtual environments in the early stages of mission preparation. The Software Technology Branch at NASA's Johnson Space Center has developed the capability for multiple users to simultaneously share the same virtual environment. Each user generates the graphics needed to create the virtual environment. All changes of object position and state are communicated to all users so that each virtual environment maintains its 'currency.' Examples of these shared environments will be discussed and plans for the utilization of the Department of Defense's Distributed Interactive Simulation (DIS) protocols for shared virtual environments will be presented. Finally, the impact of this technology on training and education in general will be explored.

  20. Shared virtual environments for aerospace training

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen; Voss, Mark

    1994-01-01

    Virtual environments have the potential to significantly enhance the training of NASA astronauts and ground-based personnel for a variety of activities. A critical requirement is the need to share virtual environments, in real or near real time, between remote sites. It has been hypothesized that the training of international astronaut crews could be done more cheaply and effectively by utilizing such shared virtual environments in the early stages of mission preparation. The Software Technology Branch at NASA's Johnson Space Center has developed the capability for multiple users to simultaneously share the same virtual environment. Each user generates the graphics needed to create the virtual environment. All changes of object position and state are communicated to all users so that each virtual environment maintains its 'currency.' Examples of these shared environments will be discussed and plans for the utilization of the Department of Defense's Distributed Interactive Simulation (DIS) protocols for shared virtual environments will be presented. Finally, the impact of this technology on training and education in general will be explored.

  1. STALK : an interactive virtual molecular docking system.

    SciTech Connect

    Levine, D.; Facello, M.; Hallstrom, P.; Reeder, G.; Walenz, B.; Stevens, F.; Univ. of Illinois

    1997-04-01

    Several recent technologies-genetic algorithms, parallel and distributed computing, virtual reality, and high-speed networking-underlie a new approach to the computational study of how biomolecules interact or 'dock' together. With the Stalk system, a user in a virtual reality environment can interact with a genetic algorithm running on a parallel computer to help in the search for likely geometric configurations.

  2. Virtual environment tactile system

    DOEpatents

    Renzi, Ronald

    1996-01-01

    A method for providing a realistic sense of touch in virtual reality by means of programmable actuator assemblies is disclosed. Each tactile actuator assembly consists of a number of individual actuators whose movement is controlled by a computer and associated drive electronics. When an actuator is energized, the rare earth magnet and the associated contactor, incorporated within the actuator, are set in motion by the opposing electromagnetic field of a surrounding coil. The magnet pushes the contactor forward to contact the skin resulting in the sensation of touch. When the electromagnetic field is turned off, the rare earth magnet and the contactor return to their neutral positions due to the magnetic equilibrium caused by the interaction with the ferrous outer sleeve. The small size and flexible nature of the actuator assemblies permit incorporation into a glove, boot or body suit. The actuator has additional applications, such as, for example, as an accelerometer, an actuator for precisely controlled actuations or to simulate the sensation of braille letters.

  3. Virtual environment tactile system

    DOEpatents

    Renzi, R.

    1996-12-10

    A method for providing a realistic sense of touch in virtual reality by means of programmable actuator assemblies is disclosed. Each tactile actuator assembly consists of a number of individual actuators whose movement is controlled by a computer and associated drive electronics. When an actuator is energized, the rare earth magnet and the associated contactor, incorporated within the actuator, are set in motion by the opposing electromagnetic field of a surrounding coil. The magnet pushes the contactor forward to contact the skin resulting in the sensation of touch. When the electromagnetic field is turned off, the rare earth magnet and the contactor return to their neutral positions due to the magnetic equilibrium caused by the interaction with the ferrous outer sleeve. The small size and flexible nature of the actuator assemblies permit incorporation into a glove, boot or body suit. The actuator has additional applications, such as, for example, as an accelerometer, an actuator for precisely controlled actuations or to simulate the sensation of braille letters. 28 figs.

  4. Designing Interactive and Collaborative Learning Tasks in a 3-D Virtual Environment

    ERIC Educational Resources Information Center

    Berns, Anke; Palomo-Duarte, Manuel; Fernández, David Camacho

    2012-01-01

    The aim of our study is to explore several possibilities to use virtual worlds (VWs) and game-applications with learners of the A1 level (CEFR) of German as a foreign language. Our interest focuses especially on designing those learning tools which increase firstly, learner motivation towards online-learning and secondly, enhance autonomous…

  5. Information Virtulization in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Virtual Environments provide a natural setting for a wide range of information visualization applications, particularly wlieit the information to be visualized is defined on a three-dimensional domain (Bryson, 1996). This chapter provides an overview of the issues that arise when designing and implementing an information visualization application in a virtual environment. Many design issues that arise, such as, e.g., issues of display, user tracking are common to any application of virtual environments. In this chapter we focus on those issues that are special to information visualization applications, as issues of wider concern are addressed elsewhere in this book.

  6. Development of a system based on 3D vision, interactive virtual environments, ergonometric signals and a humanoid for stroke rehabilitation.

    PubMed

    Ibarra Zannatha, Juan Manuel; Tamayo, Alejandro Justo Malo; Sánchez, Angel David Gómez; Delgado, Jorge Enrique Lavín; Cheu, Luis Eduardo Rodríguez; Arévalo, Wilson Alexander Sierra

    2013-11-01

    This paper presents a stroke rehabilitation (SR) system for the upper limbs, developed as an interactive virtual environment (IVE) based on a commercial 3D vision system (a Microsoft Kinect), a humanoid robot (an Aldebaran's Nao), and devices producing ergonometric signals. In one environment, the rehabilitation routines, developed by specialists, are presented to the patient simultaneously by the humanoid and an avatar inside the IVE. The patient follows the rehabilitation task, while his avatar copies his gestures that are captured by the Kinect 3D vision system. The information of the patient movements, together with the signals obtained from the ergonometric measurement devices, is used also to supervise and to evaluate the rehabilitation progress. The IVE can also present an RGB image of the patient. In another environment, that uses the same base elements, four game routines--Touch the balls 1 and 2, Simon says, and Follow the point--are used for rehabilitation. These environments are designed to create a positive influence in the rehabilitation process, reduce costs, and engage the patient.

  7. Virtual Environments Overview

    DTIC Science & Technology

    2009-04-01

    Urbanek, M., Chang, F ., & Merget, D . (2007). “The unbearable likeness of being digital: The persistence of nonverbal social norms in online virtual...digital form. McQuail, D (2000) McQuail’s Mass Communication Theory (4th edition), Sage, London, pp. 16-34. 5 2. AFFORDANCES OF VIRTUAL...It cannot be repeated too often that R& D  for the analytic community is not just, or even  primarily, about technical tools.  It is about training and

  8. Virtual Learning Environments.

    ERIC Educational Resources Information Center

    Madjidi, Farzin; Hughes, H. Woodrow; Johnson, Ruth N.; Cary, Kim

    Focusing on online learning opportunities in higher education, this paper reviews the various tools of virtual learning and electronic synchronous and asynchronous communication, discusses their strengths and weaknesses, presents strategies for their best use, and warns against potential pitfalls. Implementation issues, including cost and training…

  9. Sharing visualization experiences among remote virtual environments

    SciTech Connect

    Disz, T.L.; Papka, M.E.; Pellegrino, M.; Stevens, R.

    1995-12-31

    Virtual reality has become an increasingly familiar part of the science of visualization and communication of information. This, combined with the increase in connectivity of remote sites via high-speed networks, allows for the development of a collaborative distributed virtual environment. Such an environment enables the development of supercomputer simulations with virtual reality visualizations that can be displayed at multiple sites, with each site interacting, viewing, and communicating about the results being discovered. The early results of an experimental collaborative virtual reality environment are discussed in this paper. The issues that need to be addressed in the implementation, as well as preliminary results are covered. Also provided are a discussion of plans and a generalized application programmers interface for CAVE to CAVE will be provided.

  10. Integrated VR platform for 3D and image-based models: a step toward interactive image-based virtual environments

    NASA Astrophysics Data System (ADS)

    Yoon, Jayoung; Kim, Gerard J.

    2003-04-01

    Traditionally, three dimension models have been used for building virtual worlds, and a data structure called the "scene graph" is often employed to organize these 3D objects in the virtual space. On the other hand, image-based rendering has recently been suggested as a probable alternative VR platform for its photo-realism, however, due to limited interactivity, it has only been used for simple navigation systems. To combine the merits of these two approaches to object/scene representations, this paper proposes for a scene graph structure in which both 3D models and various image-based scenes/objects can be defined, traversed, and rendered together. In fact, as suggested by Shade et al., these different representations can be used as different LOD's for a given object. For instance, an object might be rendered using a 3D model at close range, a billboard at an intermediate range, and as part of an environment map at far range. The ultimate objective of this mixed platform is to breath more interactivity into the image based rendered VE's by employing 3D models as well. There are several technical challenges in devising such a platform: designing scene graph nodes for various types of image based techniques, establishing criteria for LOD/representation selection, handling their transitions, implementing appropriate interaction schemes, and correctly rendering the overall scene. Currently, we have extended the scene graph structure of the Sense8's WorldToolKit, to accommodate new node types for environment maps billboards, moving textures and sprites, "Tour-into-the-Picture" structure, and view interpolated objects. As for choosing the right LOD level, the usual viewing distance and image space criteria are used, however, the switching between the image and 3D model occurs at a distance from the user where the user starts to perceive the object's internal depth. Also, during interaction, regardless of the viewing distance, a 3D representation would be used, it if

  11. Initial Assessment of Human Performance Using the Gaiter Interaction Technique to Control Locomotion in Fully Immersive Virtual Environments

    DTIC Science & Technology

    2007-11-02

    and control the posture of the body should support the user’s inter- action with the virtual world. Skills and actions, such as aiming a rifle and...3 Our general approach to interaction technique design is based on principles derived from an under- standing of human perception and motor control...the stride length and cadence of virtual steps. Since Gaiter uses only the legs and pelvis , it does not interfere with actions performed by other

  12. Non-Native Speaker Interaction Management Strategies in a Network-Based Virtual Environment

    ERIC Educational Resources Information Center

    Peterson, Mark

    2008-01-01

    This article investigates the dyad-based communication of two groups of non-native speakers (NNSs) of English involved in real time interaction in a type of text-based computer-mediated communication (CMC) tool known as a MOO. The object of this semester long study was to examine the ways in which the subjects managed their L2 interaction during…

  13. Non-Native Speaker Interaction Management Strategies in a Network-Based Virtual Environment

    ERIC Educational Resources Information Center

    Peterson, Mark

    2008-01-01

    This article investigates the dyad-based communication of two groups of non-native speakers (NNSs) of English involved in real time interaction in a type of text-based computer-mediated communication (CMC) tool known as a MOO. The object of this semester long study was to examine the ways in which the subjects managed their L2 interaction during…

  14. Distributed virtual environment for emergency medical training

    NASA Astrophysics Data System (ADS)

    Stytz, Martin R.; Banks, Sheila B.; Garcia, Brian W.; Godsell-Stytz, Gayl M.

    1997-07-01

    In many professions where individuals must work in a team in a high stress environment to accomplish a time-critical task, individual and team performance can benefit from joint training using distributed virtual environments (DVEs). One professional field that lacks but needs a high-fidelity team training environment is the field of emergency medicine. Currently, emergency department (ED) medical personnel train by using words to create a metal picture of a situation for the physician and staff, who then cooperate to solve the problems portrayed by the word picture. The need in emergency medicine for realistic virtual team training is critical because ED staff typically encounter rarely occurring but life threatening situations only once in their careers and because ED teams currently have no realistic environment in which to practice their team skills. The resulting lack of experience and teamwork makes diagnosis and treatment more difficult. Virtual environment based training has the potential to redress these shortfalls. The objective of our research is to develop a state-of-the-art virtual environment for emergency medicine team training. The virtual emergency room (VER) allows ED physicians and medical staff to realistically prepare for emergency medical situations by performing triage, diagnosis, and treatment on virtual patients within an environment that provides them with the tools they require and the team environment they need to realistically perform these three tasks. There are several issues that must be addressed before this vision is realized. The key issues deal with distribution of computations; the doctor and staff interface to the virtual patient and ED equipment; the accurate simulation of individual patient organs' response to injury, medication, and treatment; and an accurate modeling of the symptoms and appearance of the patient while maintaining a real-time interaction capability. Our ongoing work addresses all of these issues. In this

  15. Guidelines for developing distributed virtual environment applications

    NASA Astrophysics Data System (ADS)

    Stytz, Martin R.; Banks, Sheila B.

    1998-08-01

    We have conducted a variety of projects that served to investigate the limits of virtual environments and distributed virtual environment (DVE) technology for the military and medical professions. The projects include an application that allows the user to interactively explore a high-fidelity, dynamic scale model of the Solar System and a high-fidelity, photorealistic, rapidly reconfigurable aircraft simulator. Additional projects are a project for observing, analyzing, and understanding the activity in a military distributed virtual environment, a project to develop a distributed threat simulator for training Air Force pilots, a virtual spaceplane to determine user interface requirements for a planned military spaceplane system, and an automated wingman for use in supplementing or replacing human-controlled systems in a DVE. The last two projects are a virtual environment user interface framework; and a project for training hospital emergency department personnel. In the process of designing and assembling the DVE applications in support of these projects, we have developed rules of thumb and insights into assembling DVE applications and the environment itself. In this paper, we open with a brief review of the applications that were the source for our insights and then present the lessons learned as a result of these projects. The lessons we have learned fall primarily into five areas. These areas are requirements development, software architecture, human-computer interaction, graphical database modeling, and construction of computer-generated forces.

  16. Teacher Communication Preferred over Peer Interaction: Student Satisfaction with Different Tools in a Virtual Learning Environment

    ERIC Educational Resources Information Center

    Small, Felicity; Dowell, David; Simmons, Peter

    2012-01-01

    Purpose: Teachers have access to a growing range of online tools to support course delivery, but which ones are valued by students? Expectations and satisfaction are important constructs in the delivery of a service product, and how these constructs operate in a service environment, such as education where the student can also take on the role of…

  17. Teacher Communication Preferred over Peer Interaction: Student Satisfaction with Different Tools in a Virtual Learning Environment

    ERIC Educational Resources Information Center

    Small, Felicity; Dowell, David; Simmons, Peter

    2012-01-01

    Purpose: Teachers have access to a growing range of online tools to support course delivery, but which ones are valued by students? Expectations and satisfaction are important constructs in the delivery of a service product, and how these constructs operate in a service environment, such as education where the student can also take on the role of…

  18. The Digichaint Interactive Game as a Virtual Learning Environment for Irish

    ERIC Educational Resources Information Center

    Ní Chiaráin, Neasa; Ní Chasaide, Ailbhe

    2016-01-01

    Although Text-To-Speech (TTS) synthesis has been little used in Computer-Assisted Language Learning (CALL), it is ripe for deployment, particularly for minority and endangered languages, where learners have little access to native speaker models and where few genuinely interactive and engaging teaching/learning materials are available. These…

  19. The Synergetic Effect of Learning Styles on the Interaction between Virtual Environments and the Enhancement of Spatial Thinking

    ERIC Educational Resources Information Center

    Hauptman, Hanoch; Cohen, Arie

    2011-01-01

    Students have difficulty learning 3D geometry; spatial thinking is an important aspect of the learning processes in this academic area. In light of the unique features of virtual environments and the influence of metacognitive processes (e.g., self-regulating questions) on the teaching of mathematics, we assumed that a combination of…

  20. The Synergetic Effect of Learning Styles on the Interaction between Virtual Environments and the Enhancement of Spatial Thinking

    ERIC Educational Resources Information Center

    Hauptman, Hanoch; Cohen, Arie

    2011-01-01

    Students have difficulty learning 3D geometry; spatial thinking is an important aspect of the learning processes in this academic area. In light of the unique features of virtual environments and the influence of metacognitive processes (e.g., self-regulating questions) on the teaching of mathematics, we assumed that a combination of…

  1. A Virtual Environment for Satellite Modeling and Orbital Analysis in a Distributed Interactive Simulation

    DTIC Science & Technology

    1993-12-01

    center of mass to the center of the earth. Interactive modification of the heading or pitch components of satellite orientation is not factored in to... satellite orientation and orientation by simulating thruster-firing activities. Both systems accept actual satellite telemetry for propagating models in the...model by applying rigid body dynamics. Model satellite sensor capabilities to determine FOV. Process actual satellite orientation data. _ __ Incorporate

  2. Use of a three-dimensional virtual environment to teach drug-receptor interactions.

    PubMed

    Richardson, Alan; Bracegirdle, Luke; McLachlan, Sarah I H; Chapman, Stephen R

    2013-02-12

    Objective. To determine whether using 3-dimensional (3D) technology to teach pharmacy students about the molecular basis of the interactions between drugs and their targets is more effective than traditional lecture using 2-dimensional (2D) graphics.Design. Second-year students enrolled in a 4-year masters of pharmacy program in the United Kingdom were randomly assigned to attend either a 3D or 2D presentation on 3 drug targets, the β-adrenoceptor, the Na(+)-K(+) ATPase, and the nicotinic acetylcholine receptor.Assessment. A test was administered to assess the ability of both groups of students to solve problems that required analysis of molecular interactions in 3D space. The group that participated in the 3D teaching presentation performed significantly better on the test than the group who attended the traditional lecture with 2D graphics. A questionnaire was also administered to solicit students' perceptions about the 3D experience. The majority of students enjoyed the 3D session and agreed that the experience increased their enthusiasm for the course.Conclusions. Viewing a 3D presentation of drug-receptor interactions improved student learning compared to learning from a traditional lecture and 2D graphics.

  3. On Mediation in Virtual Learning Environments.

    ERIC Educational Resources Information Center

    Davies, Larry; Hassan, W. Shukry

    2001-01-01

    Discusses concepts of mediation and focuses on the importance of implementing comprehensive virtual learning environments. Topics include education and technology as they relate to cultural change, social institutions, the Internet and computer-mediated communication, software design and human-computer interaction, the use of MOOs, and language.…

  4. On Mediation in Virtual Learning Environments.

    ERIC Educational Resources Information Center

    Davies, Larry; Hassan, W. Shukry

    2001-01-01

    Discusses concepts of mediation and focuses on the importance of implementing comprehensive virtual learning environments. Topics include education and technology as they relate to cultural change, social institutions, the Internet and computer-mediated communication, software design and human-computer interaction, the use of MOOs, and language.…

  5. Stroke Rehabilitation using Virtual Environments

    PubMed Central

    Fu, Michael J.; Knutson, Jayme; Chae, John

    2015-01-01

    Synopsis This review covers the rationale, mechanisms, and availability of commercially available virtual environment-based interventions for stroke rehabilitation. It describes interventions for motor, speech, cognitive, and sensory dysfunction. Also discussed are the important features and mechanisms that allow virtual environments to facilitate motor relearning. A common challenge facing the field is inability to translate success in small trials to efficacy in larger populations. The heterogeneity of stroke pathophysiology has been blamed and experts advocate for the study of multimodal approaches. Therefore, this article also introduces a framework to help define new therapy combinations that may be necessary to address stroke heterogeneity. PMID:26522910

  6. Measuring latency in virtual environments.

    PubMed

    Friston, Sebastian; Steed, Anthony

    2014-04-01

    Latency of interactive computer systems is a product of the processing, transport and synchronisation delays inherent to the components that create them. In a virtual environment (VE) system, latency is known to be detrimental to a user's sense of immersion, physical performance and comfort level. Accurately measuring the latency of a VE system for study or optimisation, is not straightforward. A number of authors have developed techniques for characterising latency, which have become progressively more accessible and easier to use. In this paper, we characterise these techniques. We describe a simple mechanical simulator designed to simulate a VE with various amounts of latency that can be finely controlled (to within 3ms). We develop a new latency measurement technique called Automated Frame Counting to assist in assessing latency using high speed video (to within 1ms). We use the mechanical simulator to measure the accuracy of Steed's and Di Luca's measurement techniques, proposing improvements where they may be made. We use the methods to measure latency of a number of interactive systems that may be of interest to the VE engineer, with a significant level of confidence. All techniques were found to be highly capable however Steed's Method is both accurate and easy to use without requiring specialised hardware.

  7. Virtually ostracized: studying ostracism in immersive virtual environments.

    PubMed

    Kassner, Matthew P; Wesselmann, Eric D; Law, Alvin Ty; Williams, Kipling D

    2012-08-01

    Electronic-based communication (such as Immersive Virtual Environments; IVEs) may offer new ways of satisfying the need for social connection, but they also provide ways this need can be thwarted. Ostracism, being ignored and excluded, is a common social experience that threatens fundamental human needs (i.e., belonging, control, self-esteem, and meaningful existence). Previous ostracism research has made use of a variety of paradigms, including minimal electronic-based interactions (e.g., Cyberball) and communication (e.g., chatrooms and Short Message Services). These paradigms, however, lack the mundane realism that many IVEs now offer. Further, IVE paradigms designed to measure ostracism may allow researchers to test more nuanced hypotheses about the effects of ostracism. We created an IVE in which ostracism could be manipulated experimentally, emulating a previously validated minimal ostracism paradigm. We found that participants who were ostracized in this IVE experienced the same negative effects demonstrated in other ostracism paradigms, providing, to our knowledge, the first evidence of the negative effects of ostracism in virtual environments. Though further research directly exploring these effects in online virtual environments is needed, this research suggests that individuals encountering ostracism in other virtual environments (such as massively multiplayer online role playing games; MMORPGs) may experience negative effects similar to those of being ostracized in real life. This possibility may have serious implications for individuals who are marginalized in their real life and turn to IVEs to satisfy their need for social connection.

  8. Implementation and integration of a counterbalanced CRT-based stereoscopic display for interactive viewpoint control in virtual environment applications

    NASA Technical Reports Server (NTRS)

    Mcdowall, I. E.; Bolas, M.; Pieper, S.; Fisher, S. S.; Humphries, J.

    1990-01-01

    The NASA-Ames Counterbalanced CRT-based Stereoscopic Viewer (CCSV), which is being used as a viewing device for biomechanical CAD environments, is uniquely suited for applications in which the user frequently moves between desk work and virtual environment viewing, or in which high resolution views of the virtual environment are required, or in which the viewing device must be shared among collaborators in a group setting. The CCSV hardware encompasses a dual-CRT-based stereoscopic viewer with wide-angle optics, a video electronics box, a dedicated microprocessor system monitoring joint angles in the linkage, and a host computer interpreting sensor values and running the application which renders the right and left views for reader CRTs.

  9. Implementation and integration of a counterbalanced CRT-based stereoscopic display for interactive viewpoint control in virtual environment applications

    NASA Technical Reports Server (NTRS)

    Mcdowall, I. E.; Bolas, M.; Pieper, S.; Fisher, S. S.; Humphries, J.

    1990-01-01

    The NASA-Ames Counterbalanced CRT-based Stereoscopic Viewer (CCSV), which is being used as a viewing device for biomechanical CAD environments, is uniquely suited for applications in which the user frequently moves between desk work and virtual environment viewing, or in which high resolution views of the virtual environment are required, or in which the viewing device must be shared among collaborators in a group setting. The CCSV hardware encompasses a dual-CRT-based stereoscopic viewer with wide-angle optics, a video electronics box, a dedicated microprocessor system monitoring joint angles in the linkage, and a host computer interpreting sensor values and running the application which renders the right and left views for reader CRTs.

  10. Visualizing vascular structures in virtual environments

    NASA Astrophysics Data System (ADS)

    Wischgoll, Thomas

    2013-01-01

    In order to learn more about the cause of coronary heart diseases and develop diagnostic tools, the extraction and visualization of vascular structures from volumetric scans for further analysis is an important step. By determining a geometric representation of the vasculature, the geometry can be inspected and additional quantitative data calculated and incorporated into the visualization of the vasculature. To provide a more user-friendly visualization tool, virtual environment paradigms can be utilized. This paper describes techniques for interactive rendering of large-scale vascular structures within virtual environments. This can be applied to almost any virtual environment configuration, such as CAVE-type displays. Specifically, the tools presented in this paper were tested on a Barco I-Space and a large 62x108 inch passive projection screen with a Kinect sensor for user tracking.

  11. Risk Analysis Virtual ENvironment

    SciTech Connect

    2014-02-10

    RAVEN has 3 major functionalities: 1. Provides a Graphical User Interface for the pre- and post-processing of the RELAP-7 input and output. 2. Provides the capability to model nuclear power plants control logic for the RELAP-7 code and dynamic control of the accident scenario evolution. This capability is based on a software structure that realizes a direct connection between the RELAP-7 solver engine (MOOSE) and a python environment where the variables describing the plant status are accessible in a scripting environment. RAVEN support the generation of the probabilistic scenario control by supplying a wide range of probability and cumulative distribution functions and their inverse functions. 3. Provides a general environment to perform probability risk analysis for RELAP-7, RELAP-5 and any generic MOOSE based applications. The probabilistic analysis is performed by sampling the input space of the coupled code parameters and it is enhanced by using modern artificial intelligence algorithms that accelerate the identification of the areas of major risk (in the input parameter space). This environment also provides a graphical visualization capability to analyze the outcomes. Among other approaches, the classical Monte Carlo and Latin Hypercube sampling algorithms are available. For the acceleration of the convergence of the sampling methodologies, Support Vector Machines, Bayesian regression, and collocation stochastic polynomials chaos are implemented. The same methodologies here described could be used to solve optimization and uncertainties propagation problems using the RAVEN framework.

  12. Virtual interface environment

    NASA Technical Reports Server (NTRS)

    Fisher, Scott S.

    1988-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture is under development for use as a multipurpose interface environment. Initial applications of the system are in telerobotics, data-management and human factors research. System configuration and research directions are described.

  13. Virtual Control Systems Environment (VCSE)

    SciTech Connect

    Atkins, Will

    2012-10-08

    Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.

  14. Quality in virtual education environments

    ERIC Educational Resources Information Center

    Barbera, Elena

    2004-01-01

    The emergence of the Internet has changed the way we teach and learn. This paper provides a general overview of the state of the quality of virtual education environments. First of all, some problems with the quality criteria applied in this field and the need to develop quality seals are presented. Likewise, the dimensions and subdimensions of an…

  15. Cognitive Styles and Virtual Environments.

    ERIC Educational Resources Information Center

    Ford, Nigel

    2000-01-01

    Discussion of navigation through virtual information environments focuses on the need for robust user models that take into account individual differences. Considers Pask's information processing styles and strategies; deep (transformational) and surface (reproductive) learning; field dependence/independence; divergent/convergent thinking;…

  16. Virtual Control Systems Environment (VCSE)

    ScienceCinema

    Atkins, Will

    2016-07-12

    Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.

  17. Quality in virtual education environments

    ERIC Educational Resources Information Center

    Barbera, Elena

    2004-01-01

    The emergence of the Internet has changed the way we teach and learn. This paper provides a general overview of the state of the quality of virtual education environments. First of all, some problems with the quality criteria applied in this field and the need to develop quality seals are presented. Likewise, the dimensions and subdimensions of an…

  18. Design Synthesis in a Virtual Environment

    DTIC Science & Technology

    2001-01-01

    Conference Pittsburgh, Pennsylvania, September 9-12, 2001 DETC2001/CIE21267 DESIGN SYNTHESIS IN A VIRTUAL ENVIRONMENT Douglas Maxwell** Louisiana Tech...University PO Box 10348 Ruston, LA 71272 Keywords: virtual reality, design synthesis , immersive environments, CAD...which design synthesis is accomplished in a stereoscopic or immersive environment is called the Design Synthesis Virtual Environment or DSVE

  19. Foreign language learning in immersive virtual environments

    NASA Astrophysics Data System (ADS)

    Chang, Benjamin; Sheldon, Lee; Si, Mei; Hand, Anton

    2012-03-01

    Virtual reality has long been used for training simulations in fields from medicine to welding to vehicular operation, but simulations involving more complex cognitive skills present new design challenges. Foreign language learning, for example, is increasingly vital in the global economy, but computer-assisted education is still in its early stages. Immersive virtual reality is a promising avenue for language learning as a way of dynamically creating believable scenes for conversational training and role-play simulation. Visual immersion alone, however, only provides a starting point. We suggest that the addition of social interactions and motivated engagement through narrative gameplay can lead to truly effective language learning in virtual environments. In this paper, we describe the development of a novel application for teaching Mandarin using CAVE-like VR, physical props, human actors and intelligent virtual agents, all within a semester-long multiplayer mystery game. Students travel (virtually) to China on a class field trip, which soon becomes complicated with intrigue and mystery surrounding the lost manuscript of an early Chinese literary classic. Virtual reality environments such as the Forbidden City and a Beijing teahouse provide the setting for learning language, cultural traditions, and social customs, as well as the discovery of clues through conversation in Mandarin with characters in the game.

  20. Ambient clumsiness in virtual environments

    NASA Astrophysics Data System (ADS)

    Ruzanka, Silvia; Behar, Katherine

    2010-01-01

    A fundamental pursuit of Virtual Reality is the experience of a seamless connection between the user's body and actions within the simulation. Virtual worlds often mediate the relationship between the physical and virtual body through creating an idealized representation of the self in an idealized space. This paper argues that the very ubiquity of the medium of virtual environments, such as the massively popular Second Life, has now made them mundane, and that idealized representations are no longer appropriate. In our artwork we introduce the attribute of clumsiness to Second Life by creating and distributing scripts that cause users' avatars to exhibit unpredictable stumbling, tripping, and momentary poor coordination, thus subtly and unexpectedly intervening with, rather than amplifying, a user's intent. These behaviors are publicly distributed, and manifest only occasionally - rather than intentional, conscious actions, they are involuntary and ambient. We suggest that the physical human body is itself an imperfect interface, and that the continued blurring of distinctions between the physical body and virtual representations calls for the introduction of these mundane, clumsy elements.

  1. a Hand-Free Solution for the Interaction in AN Immersive Virtual Environment: the Case of the Agora of Segesta

    NASA Astrophysics Data System (ADS)

    Olivito, R.; Taccola, E.; Albertini, N.

    2015-02-01

    The paper illustrates the project of an interdisciplinary team composed of archaeologists and researchers of the Scuola Normale Superiore and the University of Pisa. The synergy between these Centres has recently allowed for a more articulated 3D simulation of the agora of Segesta. Here, the archaeological excavations have brought to light the remains of a huge public building (stoa) of the Late-Hellenistic Period. Computer graphics and image-based modeling have been used to monitor, document and record the different phases of the excavation activity (layers, findings, wall structures) and to create a 3D model of the whole site. In order to increase as much as possible the level of interaction, all the models can be managed by an application specially designed for an immersive virtual environment (CAVE-like system). By using hands tracking sensor (Leap) in a non-standard way, the application allows for a completely hand-free interaction with the simulation of the agora of Segesta and the different phases of the fieldwork activities. More specifically, the operator can use simple hand gestures to activate a natural interface, scroll and visualize the perfectly overlapped models of the archaeological layers, pop up the models of single meaningful objects discovered during the excavation, and obtain all the relative metadata (stored in a dedicated server) which are visualizable on external devices (e.g. tablets or monitors) without further wearable devices. All these functions are contextualized within the whole simulation of the agora, so that it is possible to verify old interpretations and enhance new ones in real-time, simulating within the CAVE the whole archaeological investigation, going over the different phases of the excavation in a more rapid way, getting information which could have been ignored during the fieldwork, and verifying, even ex-post, issues not correctly documented during the fieldwork. The opportunity to physically interact with the 3D model

  2. Aerospace applications of virtual environment technology.

    PubMed

    Loftin, R B

    1996-11-01

    The uses of virtual environment technology in the space program are examined with emphasis on training for the Hubble Space Telescope Repair and Maintenance Mission in 1993. Project ScienceSpace at the Virtual Environment Technology Lab is discussed.

  3. Computer Assisted Virtual Environment - CAVE

    ScienceCinema

    Erickson, Phillip; Podgorney, Robert; Weingartner, Shawn; Whiting, Eric

    2016-07-12

    Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

  4. Computer Assisted Virtual Environment - CAVE

    SciTech Connect

    Erickson, Phillip; Podgorney, Robert; Weingartner, Shawn; Whiting, Eric

    2014-01-14

    Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

  5. Entertainment Technology and Military Virtual Environments

    DTIC Science & Technology

    2001-03-01

    numbers of entities and have latency problems when it training world will be digital cinema , the convergence of comes to closely coupled interactions...Industry is driving the technology that could revolutionize both the world of home gaming advances needed for military virtual reality systems. as well as...their hands could theoretically create current problems of military simulation, particularly its real- world environments, with living breathing lack of

  6. Virtual Environments for Data Preservation

    NASA Astrophysics Data System (ADS)

    Beckmann, Volker

    Data preservation in a wider sense includes also the ability to analyse data of past experiments. Because operation systems, such as Linux and Windows, are evolving rapidly, software packages can be outdated and not usable anymore already a few years after they have been written. Creating an image of the operation system is a way to be able to launch the analysis software on a computing infrastructure independent on the local operation system used. At the same time, virtualization also allows to launch the same software in collaborations across several institutes with very different computing infrastructure. At the François Arago Centre of the APC in Paris we provide user support for virtualization and computing environment access to the scientific community

  7. Virtual reality: immersive hepatic surgery educational environment.

    PubMed

    Silverstein, Jonathan C; Dech, Fred; Edison, Marcia; Jurek, Peter; Helton, W Scott; Espat, N Joseph

    2002-08-01

    Understanding the spatial relationships among the liver segments, and intrahepatic portal and hepatic veins is essential for surgical treatment of liver diseases. Teleimmersive virtual reality enables improved visualization over conventional media because it supports stereo vision, viewer-centered perspective, large angles of view, and interactivity with remote locations. We report a successful pilot study teaching hepatic surgical principles using teleimmersion. We developed a teleimmersive environment for teaching with biomedical models including virtual models of the liver segments and portal and hepatic veins. Using the environment, 1 instructor gave a workshop to 6 senior general surgery residents at 2 physical locations. A 24-question (36-point) examination was administered before and after the workshop. The workshop produced significant improvements in the mean test scores between the pretests and posttests (17.67 to 23.67, P <.02). We found no differences between residents who were with the instructor and those at the remote location. Six-month delayed testing demonstrated complete retention of new knowledge. The teleimmersive environment enabled surgeons to overcome some of the barriers to teaching complex surgical anatomic principles. Using teleimmersive environments, surgical educators and trainees can interact from locations worldwide using virtual anatomic information to achieve their educational goals.

  8. Influence of the Perspectives on the Movement of One-Leg Lifting in an Interactive-Visual Virtual Environment: A Pilot Study

    PubMed Central

    2016-01-01

    Background Numerous studies have confirmed the feasibility of active video games for clinical rehabilitation. To maximize training effectiveness, a personal program is necessary; however, little evidence is available to guide individualized game design for rehabilitation. This study assessed the perspectives and kinematic and temporal parameters of a participant’s postural control in an interactive-visual virtual environment. Methods Twenty-four healthy participants performed one-leg standing by leg lifting when a posture frame appeared either in a first- or third-person perspective of a virtual environment. A foot force plate was used to detect the displacement of the center of pressure. A three-way mixed factor design was applied, where the perspective was the between-participant factor, and the leg-lifting times (0.7 and 2.7 seconds) and leg-lifting angles (30°and 90°) were the within-participant factors. The reaction time, accuracy of the movement, and ability to shift weight were the dependent variables. Results Regarding the reaction time and accuracy of the movement, there were no significant main effects of the perspective, leg-lifting time, or angle. For the ability to shift weight, however, both the perspective and time exerted significant main effects, F(1,22) = 6.429 and F(1,22) = 13.978, respectively. Conclusions Participants could shift their weight more effectively in the third-person perspective of the virtual environment. The results can serve as a reference for future designs of interactive-visual virtual environment as applied to rehabilitation. PMID:27649536

  9. Brain Activity on Navigation in Virtual Environments.

    ERIC Educational Resources Information Center

    Mikropoulos, Tassos A.

    2001-01-01

    Assessed the cognitive processing that takes place in virtual environments by measuring electrical brain activity using Fast Fourier Transform analysis. University students performed the same task in a real and a virtual environment, and eye movement measurements showed that all subjects were more attentive when navigating in the virtual world.…

  10. New approaches to virtual environment surgery

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Twombly, A.; Lee, A. W.; Cheng, R.; Senger, S.

    1999-01-01

    This research focused on two main problems: 1) low cost, high fidelity stereoscopic imaging of complex tissues and organs; and 2) virtual cutting of tissue. A further objective was to develop these images and virtual tissue cutting methods for use in a telemedicine project that would connect remote sites using the Next Generation Internet. For goal one we used a CT scan of a human heart, a desktop PC with an OpenGL graphics accelerator card, and LCD stereoscopic glasses. Use of multiresolution meshes ranging from approximately 1,000,000 to 20,000 polygons speeded interactive rendering rates enormously while retaining general topography of the dataset. For goal two, we used a CT scan of an infant skull with premature closure of the right coronal suture, a Silicon Graphics Onyx workstation, a Fakespace Immersive WorkBench and CrystalEyes LCD glasses. The high fidelity mesh of the skull was reduced from one million to 50,000 polygons. The cut path was automatically calculated as the shortest distance along the mesh between a small number of hand selected vertices. The region outlined by the cut path was then separated from the skull and translated/rotated to assume a new position. The results indicate that widespread high fidelity imaging in virtual environment is possible using ordinary PC capabilities if appropriate mesh reduction methods are employed. The software cutting tool is applicable to heart and other organs for surgery planning, for training surgeons in a virtual environment, and for telemedicine purposes.

  11. New approaches to virtual environment surgery

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Twombly, A.; Lee, A. W.; Cheng, R.; Senger, S.

    1999-01-01

    This research focused on two main problems: 1) low cost, high fidelity stereoscopic imaging of complex tissues and organs; and 2) virtual cutting of tissue. A further objective was to develop these images and virtual tissue cutting methods for use in a telemedicine project that would connect remote sites using the Next Generation Internet. For goal one we used a CT scan of a human heart, a desktop PC with an OpenGL graphics accelerator card, and LCD stereoscopic glasses. Use of multiresolution meshes ranging from approximately 1,000,000 to 20,000 polygons speeded interactive rendering rates enormously while retaining general topography of the dataset. For goal two, we used a CT scan of an infant skull with premature closure of the right coronal suture, a Silicon Graphics Onyx workstation, a Fakespace Immersive WorkBench and CrystalEyes LCD glasses. The high fidelity mesh of the skull was reduced from one million to 50,000 polygons. The cut path was automatically calculated as the shortest distance along the mesh between a small number of hand selected vertices. The region outlined by the cut path was then separated from the skull and translated/rotated to assume a new position. The results indicate that widespread high fidelity imaging in virtual environment is possible using ordinary PC capabilities if appropriate mesh reduction methods are employed. The software cutting tool is applicable to heart and other organs for surgery planning, for training surgeons in a virtual environment, and for telemedicine purposes.

  12. Virtual VMASC: A 3D Game Environment

    NASA Technical Reports Server (NTRS)

    Manepalli, Suchitra; Shen, Yuzhong; Garcia, Hector M.; Lawsure, Kaleen

    2010-01-01

    The advantages of creating interactive 3D simulations that allow viewing, exploring, and interacting with land improvements, such as buildings, in digital form are manifold and range from allowing individuals from anywhere in the world to explore those virtual land improvements online, to training military personnel in dealing with war-time environments, and to making those land improvements available in virtual worlds such as Second Life. While we haven't fully explored the true potential of such simulations, we have identified a requirement within our organization to use simulations like those to replace our front-desk personnel and allow visitors to query, naVigate, and communicate virtually with various entities within the building. We implemented the Virtual VMASC 3D simulation of the Virginia Modeling Analysis and Simulation Center (VMASC) office building to not only meet our front-desk requirement but also to evaluate the effort required in designing such a simulation and, thereby, leverage the experience we gained in future projects of this kind. This paper describes the goals we set for our implementation, the software approach taken, the modeling contribution made, and the technologies used such as XNA Game Studio, .NET framework, Autodesk software packages, and, finally, the applicability of our implementation on a variety of architectures including Xbox 360 and PC. This paper also summarizes the result of our evaluation and the lessons learned from our effort.

  13. A virtual therapeutic environment with user projective agents.

    PubMed

    Ookita, S Y; Tokuda, H

    2001-02-01

    Today, we see the Internet as more than just an information infrastructure, but a socializing place and a safe outlet of inner feelings. Many personalities develop aside from real world life due to its anonymous environment. Virtual world interactions are bringing about new psychological illnesses ranging from netaddiction to technostress, as well as online personality disorders and conflicts in multiple identities that exist in the virtual world. Presently, there are no standard therapy models for the virtual environment. There are very few therapeutic environments, or tools especially made for virtual therapeutic environments. The goal of our research is to provide the therapy model and middleware tools for psychologists to use in virtual therapeutic environments. We propose the Cyber Therapy Model, and Projective Agents, a tool used in the therapeutic environment. To evaluate the effectiveness of the tool, we created a prototype system, called the Virtual Group Counseling System, which is a therapeutic environment that allows the user to participate in group counseling through the eyes of their Projective Agent. Projective Agents inherit the user's personality traits. During the virtual group counseling, the user's Projective Agent interacts and collaborates to recover and increase their psychological growth. The prototype system provides a simulation environment where psychologists can adjust the parameters and customize their own simulation environment. The model and tool is a first attempt toward simulating online personalities that may exist only online, and provide data for observation.

  14. Declarative Knowledge Acquisition in Immersive Virtual Learning Environments

    ERIC Educational Resources Information Center

    Webster, Rustin

    2016-01-01

    The author investigated the interaction effect of immersive virtual reality (VR) in the classroom. The objective of the project was to develop and provide a low-cost, scalable, and portable VR system containing purposely designed and developed immersive virtual learning environments for the US Army. The purpose of the mixed design experiment was…

  15. Declarative Knowledge Acquisition in Immersive Virtual Learning Environments

    ERIC Educational Resources Information Center

    Webster, Rustin

    2016-01-01

    The author investigated the interaction effect of immersive virtual reality (VR) in the classroom. The objective of the project was to develop and provide a low-cost, scalable, and portable VR system containing purposely designed and developed immersive virtual learning environments for the US Army. The purpose of the mixed design experiment was…

  16. Active Learning through the Use of Virtual Environments

    ERIC Educational Resources Information Center

    Mayrose, James

    2012-01-01

    Immersive Virtual Reality (VR) has seen explosive growth over the last decade. Immersive VR attempts to give users the sensation of being fully immersed in a synthetic environment by providing them with 3D hardware, and allowing them to interact with objects in virtual worlds. The technology is extremely effective for learning and exploration, and…

  17. Benchmarking Database Performance in a Virtual Environment

    NASA Astrophysics Data System (ADS)

    Bose, Sharada; Mishra, Priti; Sethuraman, Priya; Taheri, Reza

    Data center consolidation, for power and space conservation, has driven the steady development and adoption of virtualization technologies. This in turn has lead to customer demands for better metrics to compare virtualization technologies. The technology industry has responded with standardized methods and measures for benchmarking hardware and software performance with virtualization. This paper compares the virtualization technologies available today and existing benchmarks to measure them. We describe some real-life data center scenarios that are not addressed by current benchmarks and highlight the need for virtualization workloads that incorporate database-heavy computing needs. We present data from experiments running existing TPC database workloads in a virtualized environment and demonstrate that virtualization technologies are available today to meet the demands of the most resource-intensive database application. We conclude with ideas to the TPC for a benchmark that can effectively measure database performance in a virtual environment.

  18. Environmental simulation within a virtual environment

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Claramunt, Christophe

    Visualization has been an integral part of environmental simulation to facilitate comprehension of complex environmental processes. Traditionally, data analysis and visualization are often considered and performed as post-processing steps after a simulation has been run. Despite the advantage of these approaches, any user interaction with the model computation is often not allowed. This paper introduces an alternative approach to exploring an environmental model, TOPMODEL, where the model-supported simulation process can be visualized, controlled and tuned through interactive steering in a 3D virtual environment. This virtual environment can run on a WEB browser and is developed using the component software technology, which allows users to assemble modeling and visualization components with flexibility. The 3D visualization of the model is accomplished by Java/VRML interaction through the External Authoring Interface (EAI). The interaction through process steering enables users to experiment with model computation and observe the model behavior through dynamic 3D graphics, thereby enhancing investigation of the dynamic environmental process. The performance of the Java/VRML approach has also been examined through the comparison with the Java 3D and the conventional 2D approaches.

  19. A Virtual Geant4 Environment

    NASA Astrophysics Data System (ADS)

    Iwai, Go

    2015-12-01

    We describe the development of an environment for Geant4 consisting of an application and data that provide users with a more efficient way to access Geant4 applications without having to download and build the software locally. The environment is platform neutral and offers the users near-real time performance. In addition, the environment consists of data and Geant4 libraries built using low-level virtual machine (LLVM) tools which can produce bitcode that can be embedded in HTML and accessed via a browser. The bitcode is downloaded to the local machine via the browser and can then be configured by the user. This approach provides a way of minimising the risk of leaking potentially sensitive data used to construct the Geant4 model and application in the medical domain for treatment planning. We describe several applications that have used this approach and compare their performance with that of native applications. We also describe potential user communities that could benefit from this approach.

  20. Virtual Cities as a Collaborative Educational Environment

    NASA Astrophysics Data System (ADS)

    Müller, Daniel Nehme; de Oliveira, Otto Lopes Braitback; Remião, Joelma Adriana Abrão; Silveira, Paloma Dias; Martins, Márcio André Rodrigues; Axt, Margarete

    The CIVITAS (Virtual Cities with Technologies for Learning and Simulating) project presents a research, teaching and extension approach directed to the construction of cities imagined by students in the first years of elementary school, with an emphasis to the fourth grade. The teacher ventures on a deviation from the official curriculum proposed to reflect upon the invention of cities along with the children. Within this context, the game Città is introduced as an environment that allows the creation of digital real/virtual/imagined cities, and enables different forms of interaction among the students through networked computers. The cooperative situations, made possible by the access to the game, are tools for teachers and students to think about the information that operate as general rules and words of order with the invention of the city/knowledge.

  1. Headphone and Head-Mounted Visual Displays for Virtual Environments

    NASA Technical Reports Server (NTRS)

    Begault, Duran R.; Ellis, Stephen R.; Wenzel, Elizabeth M.; Trejo, Leonard J. (Technical Monitor)

    1998-01-01

    A realistic auditory environment can contribute to both the overall subjective sense of presence in a virtual display, and to a quantitative metric predicting human performance. Here, the role of audio in a virtual display and the importance of auditory-visual interaction are examined. Conjectures are proposed regarding the effectiveness of audio compared to visual information for creating a sensation of immersion, the frame of reference within a virtual display, and the compensation of visual fidelity by supplying auditory information. Future areas of research are outlined for improving simulations of virtual visual and acoustic spaces. This paper will describe some of the intersensory phenomena that arise during operator interaction within combined visual and auditory virtual environments. Conjectures regarding audio-visual interaction will be proposed.

  2. Sonic intelligence as a virtual therapeutic environment.

    PubMed

    Tarnanas, Ioannis; Adam, Dimitrios

    2003-06-01

    This paper reports on the results of a research project, on comparing one virtual collaborative environment with a first-person visual immersion (first-perspective interaction) and a second one where the user interacts through a sound-kinetic virtual representation of himself (avatar), as a stress-coping environment in real-life situations. Recent developments in coping research are proposing a shift from a trait-oriented approach of coping to a more situation-specific treatment. We defined as real-life situation a target-oriented situation that demands a complex coping skills inventory of high self-efficacy and internal or external "locus of control" strategies. The participants were 90 normal adults with healthy or impaired coping skills, 25-40 years of age, randomly spread across two groups. There was the same number of participants across groups and gender balance within groups. All two groups went through two phases. In Phase I, Solo, one participant was assessed using a three-stage assessment inspired by the transactional stress theory of Lazarus and the stress inoculation theory of Meichenbaum. In Phase I, each participant was given a coping skills measurement within the time course of various hypothetical stressful encounters performed in two different conditions and a control group. In Condition A, the participant was given a virtual stress assessment scenario relative to a first-person perspective (VRFP). In Condition B, the participant was given a virtual stress assessment scenario relative to a behaviorally realistic motion controlled avatar with sonic feedback (VRSA). In Condition C, the No Treatment Condition (NTC), the participant received just an interview. In Phase II, all three groups were mixed and exercised the same tasks but with two participants in pairs. The results showed that the VRSA group performed notably better in terms of cognitive appraisals, emotions and attributions than the other two groups in Phase I (VRSA, 92%; VRFP, 85%; NTC, 34

  3. Virtual Environment TBI Screen (VETS)

    DTIC Science & Technology

    2014-10-01

    recovery of service members to pre-injury health. The research plan involves a novel combination of virtual reality technology with intensive...injury (TBI), Blast-induced TBI, concussion, balance assessment, virtual reality , field-deployable, novel technology 16. SECURITY CLASSIFICATION OF... Virtual Reality , diagnosis, rehabilitation, field-deployable PROJECT SUMMARY: This section of the report shall describe the research

  4. SkinExplorer: a new high-tech platform to interact inside the skin by immersive virtual 3D cutaneous environment.

    PubMed

    Vazquez-Duchêne, M D; Kraemer, P; Saugnier, N; Levy, B; Mine, S; Jeanmaire, C; Freis, O; Pauly, G; Rathjens, A

    2013-02-01

    The confocal laser scanning microscope allows performing acquisition of several histological sections with precise visual morphological landmarks and their reconstruction. A powerful and modern confocal microscope enables to quickly reconstruct virtual 3D models. The main goal was to develop a new platform to reconstruct complex mosaic serial data, interact with it in an immersive 3D environment, and give to the observers a feeling of 'presence' inside the skin. We have developed novel methods that transform the data into alternative representation, well-suited to explore cutaneous structures in detail and to observe fields of data from different points of view. This new way of data reconstruction in volume requires optimization of intensities, automatic matching algorithms and depth alignment. The new platform - SkinExplorer evolves as a 3D exploration prototype. This technology provides an immersive virtual environment to explore cutaneous microstructures. Several serial histological sections can be matched by stacks, aligned in depth by sections and merged together to be visualized as a whole. All these time-consuming steps have been dramatically speed-up using rapid image processing. The advantages of using virtual reality technologies such as the ones used in the SkinExplorer platform are automatic matching, precise alignment, better data perception, lower memory requirement, and higher quantity of simultaneously displayed data. This platform can render volumetric data and isosurfaces, separately or both at the same time. Lighting and depth perception are enhanced using 'Sphere Mapping', 'Ambient Occlusion', and 'Halo' methods when displaying iso-surfacic volume models with high complexity depth. The assets of the platform are to interpret complex three-dimensional data, to observe and explore 3D virtual models, and to show effects of cosmetic treatments. © 2013 John Wiley & Sons A/S.

  5. Virtual environments for nuclear power plant design

    SciTech Connect

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W.

    1996-03-01

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

  6. Simple force feedback for small virtual environments

    NASA Astrophysics Data System (ADS)

    Schiefele, Jens; Albert, Oliver; van Lier, Volker; Huschka, Carsten

    1998-08-01

    In today's civil flight training simulators only the cockpit and all its interaction devices exist as physical mockups. All other elements such as flight behavior, motion, sound, and the visual system are virtual. As an extension to this approach `Virtual Flight Simulation' tries to subsidize the cockpit mockup by a 3D computer generated image. The complete cockpit including the exterior view is displayed on a Head Mounted Display (HMD), a BOOM, or a Cave Animated Virtual Environment. In most applications a dataglove or virtual pointers are used as input devices. A basic problem of such a Virtual Cockpit simulation is missing force feedback. A pilot cannot touch and feel buttons, knobs, dials, etc. he tries to manipulate. As a result, it is very difficult to generate realistic inputs into VC systems. `Seating Bucks' are used in automotive industry to overcome the problem of missing force feedback. Only a seat, steering wheel, pedal, stick shift, and radio panel are physically available. All other geometry is virtual and therefore untouchable but visible in the output device. In extension to this concept a `Seating Buck' for commercial transport aircraft cockpits was developed. Pilot seat, side stick, pedals, thrust-levers, and flaps lever are physically available. All other panels are simulated by simple flat plastic panels. They are located at the same location as their real counterparts only lacking the real input devices. A pilot sees the entire photorealistic cockpit in a HMD as 3D geometry but can only touch the physical parts and plastic panels. In order to determine task performance with the developed Seating Buck, a test series was conducted. Users press buttons, adapt dials, and turn knobs. In a first test, a complete virtual environment was used. The second setting had a plastic panel replacing all input devices. Finally, as cross reference the participants had to repeat the test with a complete physical mockup of the input devices. All panels and

  7. Sense of presence and anxiety during virtual social interactions between a human and virtual humans

    PubMed Central

    Brinkman, Willem-Paul; Hartanto, Dwi; Emmelkamp, Paul M.G.

    2014-01-01

    Virtual reality exposure therapy (VRET) has been shown to be effective in treatment of anxiety disorders. Yet, there is lack of research on the extent to which interaction between the individual and virtual humans can be successfully implanted to increase levels of anxiety for therapeutic purposes. This proof-of-concept pilot study aimed at examining levels of the sense of presence and anxiety during exposure to virtual environments involving social interaction with virtual humans and using different virtual reality displays. A non-clinical sample of 38 participants was randomly assigned to either a head-mounted display (HMD) with motion tracker and sterescopic view condition or a one-screen projection-based virtual reality display condition. Participants in both conditions engaged in free speech dialogues with virtual humans controlled by research assistants. It was hypothesized that exposure to virtual social interactions will elicit moderate levels of sense of presence and anxiety in both groups. Further it was expected that participants in the HMD condition will report higher scores of sense of presence and anxiety than participants in the one-screen projection-based display condition. Results revealed that in both conditions virtual social interactions were associated with moderate levels of sense of presence and anxiety. Additionally, participants in the HMD condition reported significantly higher levels of presence than those in the one-screen projection-based display condition (p = .001). However, contrary to the expectations neither the average level of anxiety nor the highest level of anxiety during exposure to social virtual environments differed between the groups (p = .97 and p = .75, respectively). The findings suggest that virtual social interactions can be successfully applied in VRET to enhance sense of presence and anxiety. Furthermore, our results indicate that one-screen projection-based displays can successfully activate levels of anxiety in

  8. A Virtual Mission Operations Center: Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system

  9. A Virtual Mission Operations Center: Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system

  10. Visual search in virtual environments

    NASA Astrophysics Data System (ADS)

    Stark, Lawrence W.; Ezumi, Koji; Nguyen, Tho; Paul, R.; Tharp, Gregory K.; Yamashita, H. I.

    1992-08-01

    A key task in virtual environments is visual search. To obtain quantitative measures of human performance and documentation of visual search strategies, we have used three experimental arrangements--eye, head, and mouse control of viewing windows--by exploiting various combinations of helmet-mounted-displays, graphics workstations, and eye movement tracking facilities. We contrast two different categories of viewing strategies: one, for 2D pictures with large numbers of targets and clutter scattered randomly; the other for quasi-natural 3D scenes with targets and non-targets placed in realistic, sensible positions. Different searching behaviors emerge from these contrasting search conditions, reflecting different visual and perceptual modes. A regular 'searchpattern' is a systematic, repetitive, idiosyncratic sequence of movements carrying the eye to cover the entire 2D scene. Irregular 'searchpatterns' take advantages of wide windows and the wide human visual lobe; here, hierarchical detection and recognition is performed with the appropriate capabilities of the 'two visual systems'. The 'searchpath', also efficient, repetitive and idiosyncratic, provides only a small set of fixations to check continually the smaller number of targets in the naturalistic 3D scene; likely, searchpaths are driven by top-down spatial models. If the viewed object is known and able to be named, then an hypothesized, top-down cognitive model drives active looking in the 'scanpath' mode, again continually checking important subfeatures of the object. Spatial models for searchpaths may be primitive predecessors, in the evolutionary history of animals, of cognitive models for scanpaths.

  11. Height effects in real and virtual environments.

    PubMed

    Simeonov, Peter I; Hsiao, Hongwei; Dotson, Brian W; Ammons, Douglas E

    2005-01-01

    The study compared human perceptions of height, danger, and anxiety, as well as skin conductance and heart rate responses and postural instability effects, in real and virtual height environments. The 24 participants (12 men, 12 women), whose average age was 23.6 years, performed "lean-over-the-railing" and standing tasks on real and comparable virtual balconies, using a surround-screen virtual reality (SSVR) system. The results indicate that the virtual display of elevation provided realistic perceptual experience and induced some physiological responses and postural instability effects comparable to those found in a real environment. It appears that a simulation of elevated work environment in a SSVR system, although with reduced visual fidelity, is a valid tool for safety research. Potential applications of this study include the design of virtual environments that will help in safe evaluation of human performance at elevation, identification of risk factors leading to fall incidents, and assessment of new fall prevention strategies.

  12. Creating virtual environments over the Internet

    NASA Astrophysics Data System (ADS)

    Chen, Tom; Ricardo, Sendra; Young, Peter; Anderson, David; Yu, Jiang; Nagata, Shojiro

    1998-04-01

    Using Java as the implementation language and the Netscape Communicator package, a client/server environment is established to allow requests from client stations to download the selected virtual environment to be run on the client. Various security measures, such as certification, are included in the environment to ensure proper transfer of files and data packets. Once the operations in the downloaded virtual environment are completed, the environment automatically cleans up the experiment site of the client. This paper discusses the results on our experiments using this client/server environment and the experiences we had in implementing this environment.

  13. Virtual agents in a simulated virtual training environment

    NASA Technical Reports Server (NTRS)

    Achorn, Brett; Badler, Norman L.

    1993-01-01

    A drawback to live-action training simulations is the need to gather a large group of participants in order to train a few individuals. One solution to this difficulty is the use of computer-controlled agents in a virtual training environment. This allows a human participant to be replaced by a virtual, or simulated, agent when only limited responses are needed. Each agent possesses a specified set of behaviors and is capable of limited autonomous action in response to its environment or the direction of a human trainee. The paper describes these agents in the context of a simulated hostage rescue training session, involving two human rescuers assisted by three virtual (computer-controlled) agents and opposed by three other virtual agents.

  14. Virtual environments from panoramic images

    NASA Astrophysics Data System (ADS)

    Chapman, David P.; Deacon, Andrew

    1998-12-01

    A number of recent projects have demonstrated the utility of Internet-enabled image databases for the documentation of complex, inaccessible and potentially hazardous environments typically encountered in the petrochemical and nuclear industries. Unfortunately machine vision and image processing techniques have not, to date, enabled the automatic extraction geometrical data from such images and thus 3D CAD modeling remains an expensive and laborious manual activity. Recent developments in panoramic image capture and presentation offer an alternative intermediate deliverable which, in turn, offers some of the benefits of a 3D model at a fraction of the cost. Panoramic image display tools such as Apple's QuickTime VR (QTVR) and Live Spaces RealVR provide compelling and accessible digital representations of the real world and justifiably claim to 'put the reality in Virtual Reality.' This paper will demonstrate how such technologies can be customized, extended and linked to facility management systems delivered over a corporate intra-net to enable end users to become familiar with remote sites and extract simple dimensional data. In addition strategies for the integration of such images with documents gathered from 2D or 3D CAD and Process and Instrumentation Diagrams (P&IDs) will be described as will techniques for precise 'As-Built' modeling using the calibrated images from which panoramas have been derived and the use of textures from these images to increase the realism of rendered scenes. A number of case studies relating to both nuclear and process engineering will demonstrate the extent to which such solution are scaleable in order to deal with the very large volumes of image data required to fully document the large, complex facilities typical of these industry sectors.

  15. Virtual environments for scene of crime reconstruction and analysis

    NASA Astrophysics Data System (ADS)

    Howard, Toby L. J.; Murta, Alan D.; Gibson, Simon

    2000-02-01

    This paper describes research conducted in collaboration with Greater Manchester Police (UK), to evalute the utility of Virtual Environments for scene of crime analysis, forensic investigation, and law enforcement briefing and training. We present an illustrated case study of the construction of a high-fidelity virtual environment, intended to match a particular real-life crime scene as closely as possible. We describe and evaluate the combination of several approaches including: the use of the Manchester Scene Description Language for constructing complex geometrical models; the application of a radiosity rendering algorithm with several novel features based on human perceptual consideration; texture extraction from forensic photography; and experiments with interactive walkthroughs and large-screen stereoscopic display of the virtual environment implemented using the MAVERIK system. We also discuss the potential applications of Virtual Environment techniques in the Law Enforcement and Forensic communities.

  16. Methods and systems relating to an augmented virtuality environment

    DOEpatents

    Nielsen, Curtis W; Anderson, Matthew O; McKay, Mark D; Wadsworth, Derek C; Boyce, Jodie R; Hruska, Ryan C; Koudelka, John A; Whetten, Jonathan; Bruemmer, David J

    2014-05-20

    Systems and methods relating to an augmented virtuality system are disclosed. A method of operating an augmented virtuality system may comprise displaying imagery of a real-world environment in an operating picture. The method may further include displaying a plurality of virtual icons in the operating picture representing at least some assets of a plurality of assets positioned in the real-world environment. Additionally, the method may include displaying at least one virtual item in the operating picture representing data sensed by one or more of the assets of the plurality of assets and remotely controlling at least one asset of the plurality of assets by interacting with a virtual icon associated with the at least one asset.

  17. Considerations for Designing Instructional Virtual Environments.

    ERIC Educational Resources Information Center

    Dennen, Vanessa Paz; Branch, Robert C.

    Virtual reality is an immersive, interactive medium that manipulates the senses in order provide users with simulated experiences in computer-generated worlds. The visual design of virtual reality is an important issue, but literature has tended to stress the medium's instructional potential rather than setting forth a protocol for designing…

  18. Virtual environment for lower-extremities training.

    PubMed

    Koritnik, Tomaz; Bajd, Tadej; Munih, Marko

    2008-02-01

    This study proposed virtual reality (VR) as a modality of lower-extremities training. A kinematic model of a human body and a corresponding virtual figure were developed, in order to visualize the movements of the subject in a real-time virtual environment on a large display, which represented a virtual mirror. An optical system with active markers was used to assess the movements of a training subject. A preliminary investigation was conducted with a group of healthy male subjects, who performed the stepping-in-place test by tracking the movements of the reference virtual figure, which represented a virtual instructor. Both figures were shown in the virtual mirror at the same time from the desired angle of view. Four stepping tasks featuring different cadences and hip angles were performed, with difficulty levels ranging from easy to demanding. The results obtained included basic kinematic and temporal parameters, which provided quantitative measures of a subject's adaptation to the virtual training environment, and thereby justifying the feasibility of the virtual mirror as a useful system in lower-extremities training applications.

  19. Surveillance and Datenschutz in Virtual Environments

    NASA Astrophysics Data System (ADS)

    Cikic, Sabine; Lehmann-Grube, Fritz; Sablatnig, Jan

    Virtual environments are becoming more and more accepted, and part of the everyday online experience for many users. This offers new potential for both surveillance and data mining. Some of the techniques used are discussed in this paper.

  20. IFR flight simulation in a distributed virtual environment

    NASA Astrophysics Data System (ADS)

    Schiefele, Jens; Albert, Oliver; Doerr, Kai Uwe

    1998-08-01

    For some of today's simulations very expensive, heavy and large equipment is needed. Examples are driving, shipping, and flight simulators with huge and expensive visual and motion systems. In order to reduce cost, immersive `Virtual Simulation' becomes very attractive. Head Mounted Displays or Computer Animated Virtual Environments, Datagloves, and cheap `Seating Bucks' are used to generate a stereoscopic virtual environment for a trainee. Such systems are already in use for caterpillar, submarine, and F15-fighter simulation. In our approach we partially simulate an Airbus A340 cockpit. All interaction devices such as side stick, pedals, thrust-levers, knobs, buttons, and dials are modeled as 3D geometry. All other parts and surfaces are formed by images (textures). Some devices are physically available such as sidesticks, pedals, and thrust-levers. All others are replaced by plastic panels to generate a forced feedback for the pilots. A simplified outside visual is available to generate immersive flight simulations. A virtual Primary Flight display, Navigation display, and a virtual stereoscopic Head Up Display are used in a first approach. These virtual displays show basic information necessary to perform a controlled flight and allow basic performance analysis with the system. All parts such as physical input devices, virtual input devices, flight mechanics, traffic, and rendering run in a distributed environment on different high end graphics work stations. The `Virtual Cockpit' can logically replace an also available conventional cockpit mockup in the flight simulation.

  1. Controlling Social Stress in Virtual Reality Environments

    PubMed Central

    Hartanto, Dwi; Kampmann, Isabel L.; Morina, Nexhmedin; Emmelkamp, Paul G. M.; Neerincx, Mark A.; Brinkman, Willem-Paul

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive) between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6) = 0.91, p = 0.002; r(6) = 0.76, p = 0.028 and r(6) = −0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes. PMID:24671006

  2. Controlling social stress in virtual reality environments.

    PubMed

    Hartanto, Dwi; Kampmann, Isabel L; Morina, Nexhmedin; Emmelkamp, Paul G M; Neerincx, Mark A; Brinkman, Willem-Paul

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive) between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6) = 0.91, p = 0.002; r(6) = 0.76, p = 0.028 and r(6) = -0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes.

  3. Ontological implications of being in immersive virtual environments

    NASA Astrophysics Data System (ADS)

    Morie, Jacquelyn F.

    2008-02-01

    The idea of Virtual Reality once conjured up visions of new territories to explore, and expectations of awaiting worlds of wonder. VR has matured to become a practical tool for therapy, medicine and commercial interests, yet artists, in particular, continue to expand the possibilities for the medium. Artistic virtual environments created over the past two decades probe the phenomenological nature of these virtual environments. When we inhabit a fully immersive virtual environment, we have entered into a new form of Being. Not only does our body continue to exist in the real, physical world, we are also embodied within the virtual by means of technology that translates our bodied actions into interactions with the virtual environment. Very few states in human existence allow this bifurcation of our Being, where we can exist simultaneously in two spaces at once, with the possible exception of meta-physical states such as shamanistic trance and out-of-body experiences. This paper discusses the nature of this simultaneous Being, how we enter the virtual space, what forms of persona we can don there, what forms of spaces we can inhabit, and what type of wondrous experiences we can both hope for and expect.

  4. Using virtual environment to aid teleoperation

    NASA Astrophysics Data System (ADS)

    Zeng, Jianchao; Yang, Yudong; Xu, Guang-you

    1995-12-01

    In such application of VR to teleoperation, the most important thing is to keep the virtual environment consistent with the real environment as most of the operating time. If this can be ensured, a good part of practical teleoperation can be performed in an automatic way. Following this idea, we have developed a model-based dynamic calibration algorithm for the consistency of the two environments. First, model of the real environment is created by moving a camera through the environment. We use multi-position-based stereo vision technique. In the process of rehearsal, path is planned by the operator for a specific task. In such case, places that have complex structures for teleoperation such as turning corners, narrow spaces, etc. are defined as key positions by the operator, where local landmarks are set for later dynamic calibration. During practical teleoperation, the robot moves through the planned paths for all the areas except the selected key positions. At key positions, 3D positions of the robot are calibrated by matching features of the landmarks in the images and their corresponding features in the models interactively. Errors detected between the virtual and real environments are recorded to amend the planned path for the coming robot movements. When the robot is approaching near the target, it will be difficult for the operator to determine accurate position of the target in teleoperation. We propose and implement a marker-based algorithm for automatic location of the target at such case. Preliminary experiments have been carried out using a setup consisting of a 4 DOF movable platform, a camera and a laser gun mounted on the platform. Several small cubes are used as landmarks and placed in a room-like environment with several polyhedrons as obstacles. The target is a laser-light-receiver placed inside a small hole on a planar surface of arbitrary pose. The task is to shoot a laser beam from the laser gun into the receiver. The experimental result was

  5. Examining Interactivity in Synchronous Virtual Classrooms

    ERIC Educational Resources Information Center

    Martin, Florence; Parker, Michele A.; Deale, Deborah F.

    2012-01-01

    Interaction is crucial to student satisfaction in online courses. Adding synchronous components (virtual classroom technologies) to online courses can facilitate interaction. In this study, interaction within a synchronous virtual classroom was investigated by surveying 21 graduate students in an instructional technology program in the…

  6. ComputerApplications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Centerr (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provided general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  7. ComputerApplications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Center (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability providedgeneral visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.

  8. Computer Applications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  9. Computer Applications and Virtual Environments (CAVE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).

  10. The Virtual Pelvic Floor, a tele-immersive educational environment.

    PubMed Central

    Pearl, R. K.; Evenhouse, R.; Rasmussen, M.; Dech, F.; Silverstein, J. C.; Prokasy, S.; Panko, W. B.

    1999-01-01

    This paper describes the development of the Virtual Pelvic Floor, a new method of teaching the complex anatomy of the pelvic region utilizing virtual reality and advanced networking technology. Virtual reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereo vision, viewer-centered perspective, large angles of view, and interactivity. Two or more ImmersaDesk systems, drafting table format virtual reality displays, are networked together providing an environment where teacher and students share a high quality three-dimensional anatomical model, and are able to converse, see each other, and to point in three dimensions to indicate areas of interest. This project was realized by the teamwork of surgeons, medical artists and sculptors, computer scientists, and computer visualization experts. It demonstrates the future of virtual reality for surgical education and applications for the Next Generation Internet. Images Figure 1 Figure 2 Figure 3 PMID:10566378

  11. The Virtual Pelvic Floor, a tele-immersive educational environment.

    PubMed

    Pearl, R K; Evenhouse, R; Rasmussen, M; Dech, F; Silverstein, J C; Prokasy, S; Panko, W B

    1999-01-01

    This paper describes the development of the Virtual Pelvic Floor, a new method of teaching the complex anatomy of the pelvic region utilizing virtual reality and advanced networking technology. Virtual reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereo vision, viewer-centered perspective, large angles of view, and interactivity. Two or more ImmersaDesk systems, drafting table format virtual reality displays, are networked together providing an environment where teacher and students share a high quality three-dimensional anatomical model, and are able to converse, see each other, and to point in three dimensions to indicate areas of interest. This project was realized by the teamwork of surgeons, medical artists and sculptors, computer scientists, and computer visualization experts. It demonstrates the future of virtual reality for surgical education and applications for the Next Generation Internet.

  12. Virtual Representations in 3D Learning Environments

    ERIC Educational Resources Information Center

    Shonfeld, Miri; Kritz, Miki

    2013-01-01

    This research explores the extent to which virtual worlds can serve as online collaborative learning environments for students by increasing social presence and engagement. 3D environments enable learning, which simulates face-to-face encounters while retaining the advantages of online learning. Students in Education departments created avatars…

  13. Virtual Reality Training Environments: Contexts and Concerns.

    ERIC Educational Resources Information Center

    Harmon, Stephen W.; Kenney, Patrick J.

    1994-01-01

    Discusses the contexts where virtual reality (VR) training environments might be appropriate; examines the advantages and disadvantages of VR as a training technology; and presents a case study of a VR training environment used at the NASA Johnson Space Center in preparation for the repair of the Hubble Space Telescope. (AEF)

  14. Virtual Reality Training Environments: Contexts and Concerns.

    ERIC Educational Resources Information Center

    Harmon, Stephen W.; Kenney, Patrick J.

    1994-01-01

    Discusses the contexts where virtual reality (VR) training environments might be appropriate; examines the advantages and disadvantages of VR as a training technology; and presents a case study of a VR training environment used at the NASA Johnson Space Center in preparation for the repair of the Hubble Space Telescope. (AEF)

  15. Fidelity Optimization in Distributed Virtual Environments

    DTIC Science & Technology

    2000-06-01

    user experience possible. This dissertation shows that is possible to increase the scalability of distributed virtual environments (DVEs), in a tractable fashion, through a novel application of optimization techniques. Fidelity is maximized by utilizing the given display and network capacity in an optimal fashion, individually tuned for multiple users, in a manner most appropriate to a specific DVE application. This optimization is accomplished using the QUICK framework for managing the display and request of representations for virtual objects. Ratings of representation

  16. Altering User Movement Behaviour in Virtual Environments.

    PubMed

    Simeone, Adalberto L; Mavridou, Ifigeneia; Powell, Wendy

    2017-04-01

    In immersive Virtual Reality systems, users tend to move in a Virtual Environment as they would in an analogous physical environment. In this work, we investigated how user behaviour is affected when the Virtual Environment differs from the physical space. We created two sets of four environments each, plus a virtual replica of the physical environment as a baseline. The first focused on aesthetic discrepancies, such as a water surface in place of solid ground. The second focused on mixing immaterial objects together with those paired to tangible objects. For example, barring an area with walls or obstacles. We designed a study where participants had to reach three waypoints laid out in such a way to prompt a decision on which path to follow based on the conflict between the mismatching visual stimuli and their awareness of the real layout of the room. We analysed their performances to determine whether their trajectories were altered significantly from the shortest route. Our results indicate that participants altered their trajectories in presence of surfaces representing higher walking difficulty (for example, water instead of grass). However, when the graphical appearance was found to be ambiguous, there was no significant trajectory alteration. The environments mixing immaterial with physical objects had the most impact on trajectories with a mean deviation from the shortest route of 60 cm against the 37 cm of environments with aesthetic alterations. The co-existance of paired and unpaired virtual objects was reported to support the idea that all objects participants saw were backed by physical props. From these results and our observations, we derive guidelines on how to alter user movement behaviour in Virtual Environments.

  17. Virtual reality environments for post-stroke arm rehabilitation.

    PubMed

    Subramanian, Sandeep; Knaut, Luiz A; Beaudoin, Christian; McFadyen, Bradford J; Feldman, Anatol G; Levin, Mindy F

    2007-06-22

    Optimal practice and feedback elements are essential requirements for maximal motor recovery in patients with motor deficits due to central nervous system lesions. A virtual environment (VE) was created that incorporates practice and feedback elements necessary for maximal motor recovery. It permits varied and challenging practice in a motivating environment that provides salient feedback. The VE gives the user knowledge of results feedback about motor behavior and knowledge of performance feedback about the quality of pointing movements made in a virtual elevator. Movement distances are related to length of body segments. We describe an immersive and interactive experimental protocol developed in a virtual reality environment using the CAREN system. The VE can be used as a training environment for the upper limb in patients with motor impairments.

  18. Virtual Environments: Issues and Opportunities for Researching Inclusive Educational Practices

    NASA Astrophysics Data System (ADS)

    Sheehy, Kieron

    This chapter argues that virtual environments offer new research areas for those concerned with inclusive education. Further, it proposes that they also present opportunities for developing increasingly inclusive research processes. This chapter considers how researchers might approach researching some of these affordances. It discusses the relationship between specific features of inclusive pedagogy, derived from an international systematic literature review, and the affordances of different forms of virtual characters and environments. Examples are drawn from research in Second LifeTM (SL), virtual tutors and augmented reality. In doing this, the chapter challenges a simplistic notion of isolated physical and virtual worlds and, in the context of inclusion, between the practice of research and the research topic itself. There are a growing number of virtual worlds in which identified educational activities are taking place, or whose activities are being noted for their educational merit. These encompasses non-themed worlds such as SL and Active Worlds, game based worlds such as World of Warcraft and Runescape, and even Club Penguin, a themed virtual where younger players interact through a variety of Penguin themed environments and activities. It has been argued that these spaces, outside traditional education, are able to offer pedagogical insights (Twining 2009) i.e. that these global virtual communities have been identified as being useful as creative educational environments (Delwiche 2006; Sheehy 2009). This chapter will explore how researchers might use these spaces to investigative and create inclusive educational experiences for learners. In order to do this the chapter considers three interrelated issues: What is inclusive education?; How might inclusive education influence virtual world research? And, what might inclusive education look like in virtual worlds?

  19. Physical environment virtualization for human activities recognition

    NASA Astrophysics Data System (ADS)

    Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2015-05-01

    Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.

  20. What Are the Learning Affordances of 3-D Virtual Environments?

    ERIC Educational Resources Information Center

    Dalgarno, Barney; Lee, Mark J. W.

    2010-01-01

    This article explores the potential learning benefits of three-dimensional (3-D) virtual learning environments (VLEs). Drawing on published research spanning two decades, it identifies a set of unique characteristics of 3-D VLEs, which includes aspects of their representational fidelity and aspects of the learner-computer interactivity they…

  1. Virtual Environment Training: Auxiliary Machinery Room (AMR) Watchstation Trainer.

    ERIC Educational Resources Information Center

    Hriber, Dennis C.; And Others

    1993-01-01

    Describes a project implemented at Newport News Shipbuilding that used Virtual Environment Training to improve the performance of submarine crewmen. Highlights include development of the Auxiliary Machine Room (AMR) Watchstation Trainer; Digital Video Interactive (DVI); screen layout; test design and evaluation; user reactions; authoring language;…

  2. Virtual Environment Training: Auxiliary Machinery Room (AMR) Watchstation Trainer.

    ERIC Educational Resources Information Center

    Hriber, Dennis C.; And Others

    1993-01-01

    Describes a project implemented at Newport News Shipbuilding that used Virtual Environment Training to improve the performance of submarine crewmen. Highlights include development of the Auxiliary Machine Room (AMR) Watchstation Trainer; Digital Video Interactive (DVI); screen layout; test design and evaluation; user reactions; authoring language;…

  3. Extended pie menus for immersive virtual environments.

    PubMed

    Gebhardt, Sascha; Pick, Sebastian; Leithold, Franziska; Hentschel, Bernd; Kuhlen, Torsten

    2013-04-01

    Pie menus are a well-known technique for interacting with 2D environments and so far a large body of research documents their usage and optimizations. Yet, comparatively little research has been done on the usability of pie menus in immersive virtual environments (IVEs). In this paper we reduce this gap by presenting an implementation and evaluation of an extended hierarchical pie menu system for IVEs that can be operated with a six-degrees-of-freedom input device. Following an iterative development process, we first developed and evaluated a basic hierarchical pie menu system. To better understand how pie menus should be operated in IVEs, we tested this system in a pilot user study with 24 participants and focus on item selection. Regarding the results of the study, the system was tweaked and elements like check boxes, sliders, and color map editors were added to provide extended functionality. An expert review with five experts was performed with the extended pie menus being integrated into an existing VR application to identify potential design issues. Overall results indicated high performance and efficient design.

  4. Emergency Response Virtual Environment for Safe Schools

    NASA Technical Reports Server (NTRS)

    Wasfy, Ayman; Walker, Teresa

    2008-01-01

    An intelligent emergency response virtual environment (ERVE) that provides emergency first responders, response planners, and managers with situational awareness as well as training and support for safe schools is presented. ERVE incorporates an intelligent agent facility for guiding and assisting the user in the context of the emergency response operations. Response information folders capture key information about the school. The system enables interactive 3D visualization of schools and academic campuses, including the terrain and the buildings' exteriors and interiors in an easy to use Web..based interface. ERVE incorporates live camera and sensors feeds and can be integrated with other simulations such as chemical plume simulation. The system is integrated with a Geographical Information System (GIS) to enable situational awareness of emergency events and assessment of their effect on schools in a geographic area. ERVE can also be integrated with emergency text messaging notification systems. Using ERVE, it is now possible to address safe schools' emergency management needs with a scaleable, seamlessly integrated and fully interactive intelligent and visually compelling solution.

  5. Studying chemical reactivity in a virtual environment.

    PubMed

    Haag, Moritz P; Reiher, Markus

    2014-01-01

    Chemical reactivity of a set of reactants is determined by its potential (electronic) energy (hyper)surface. The high dimensionality of this surface renders it difficult to efficiently explore reactivity in a large reactive system. Exhaustive sampling techniques and search algorithms are not straightforward to employ as it is not clear which explored path will eventually produce the minimum energy path of a reaction passing through a transition structure. Here, the chemist's intuition would be of invaluable help, but it cannot be easily exploited because (1) no intuitive and direct tool for the scientist to manipulate molecular structures is currently available and because (2) quantum chemical calculations are inherently expensive in terms of computational effort. In this work, we elaborate on how the chemist can be reintroduced into the exploratory process within a virtual environment that provides immediate feedback and intuitive tools to manipulate a reactive system. We work out in detail how this immersion should take place. We provide an analysis of modern semi-empirical methods which already today are candidates for the interactive study of chemical reactivity. Implications of manual structure manipulations for their physical meaning and chemical relevance are carefully analysed in order to provide sound theoretical foundations for the interpretation of the interactive reactivity exploration.

  6. The Ames Virtual Environment Workstation: Implementation issues and requirements

    NASA Technical Reports Server (NTRS)

    Fisher, Scott S.; Jacoby, R.; Bryson, S.; Stone, P.; Mcdowall, I.; Bolas, M.; Dasaro, D.; Wenzel, Elizabeth M.; Coler, C.; Kerr, D.

    1991-01-01

    This presentation describes recent developments in the implementation of a virtual environment workstation in the Aerospace Human Factors Research Division of NASA's Ames Research Center. Introductory discussions are presented on the primary research objectives and applications of the system and on the system's current hardware and software configuration. Principle attention is then focused on unique issues and problems encountered in the workstation's development with emphasis on its ability to meet original design specifications for computational graphics performance and for associated human factors requirements necessary to provide compelling sense of presence and efficient interaction in the virtual environment.

  7. The ALIVE Project: Astronomy Learning in Immersive Virtual Environments

    NASA Astrophysics Data System (ADS)

    Yu, K. C.; Sahami, K.; Denn, G.

    2008-06-01

    The Astronomy Learning in Immersive Virtual Environments (ALIVE) project seeks to discover learning modes and optimal teaching strategies using immersive virtual environments (VEs). VEs are computer-generated, three-dimensional environments that can be navigated to provide multiple perspectives. Immersive VEs provide the additional benefit of surrounding a viewer with the simulated reality. ALIVE evaluates the incorporation of an interactive, real-time ``virtual universe'' into formal college astronomy education. In the experiment, pre-course, post-course, and curriculum tests will be used to determine the efficacy of immersive visualizations presented in a digital planetarium versus the same visual simulations in the non-immersive setting of a normal classroom, as well as a control case using traditional classroom multimedia. To normalize for inter-instructor variability, each ALIVE instructor will teach at least one of each class in each of the three test groups.

  8. Constraint, Intelligence, and Control Hierarchy in Virtual Environments. Chapter 1

    NASA Technical Reports Server (NTRS)

    Sheridan, Thomas B.

    2007-01-01

    This paper seeks to deal directly with the question of what makes virtual actors and objects that are experienced in virtual environments seem real. (The term virtual reality, while more common in public usage, is an oxymoron; therefore virtual environment is the preferred term in this paper). Reality is difficult topic, treated for centuries in those sub-fields of philosophy called ontology- "of or relating to being or existence" and epistemology- "the study of the method and grounds of knowledge, especially with reference to its limits and validity" (both from Webster s, 1965). Advances in recent decades in the technologies of computers, sensors and graphics software have permitted human users to feel present or experience immersion in computer-generated virtual environments. This has motivated a keen interest in probing this phenomenon of presence and immersion not only philosophically but also psychologically and physiologically in terms of the parameters of the senses and sensory stimulation that correlate with the experience (Ellis, 1991). The pages of the journal Presence: Teleoperators and Virtual Environments have seen much discussion of what makes virtual environments seem real (see, e.g., Slater, 1999; Slater et al. 1994; Sheridan, 1992, 2000). Stephen Ellis, when organizing the meeting that motivated this paper, suggested to invited authors that "We may adopt as an organizing principle for the meeting that the genesis of apparently intelligent interaction arises from an upwelling of constraints determined by a hierarchy of lower levels of behavioral interaction. "My first reaction was "huh?" and my second was "yeah, that seems to make sense." Accordingly the paper seeks to explain from the author s viewpoint, why Ellis s hypothesis makes sense. What is the connection of "presence" or "immersion" of an observer in a virtual environment, to "constraints" and what types of constraints. What of "intelligent interaction," and is it the intelligence of the

  9. Using SOLO to Evaluate an Educational Virtual Environment in a Technology Education Setting

    ERIC Educational Resources Information Center

    Padiotis, Ioannis; Mikropoulos, Tassos A.

    2010-01-01

    The present research investigates the contribution of an interactive educational virtual environment on milk pasteurization to the learning outcomes of 40 students in a technical secondary school using SOLO taxonomy. After the interaction with the virtual environment the majority of the students moved to higher hierarchical levels of understanding…

  10. Using SOLO to Evaluate an Educational Virtual Environment in a Technology Education Setting

    ERIC Educational Resources Information Center

    Padiotis, Ioannis; Mikropoulos, Tassos A.

    2010-01-01

    The present research investigates the contribution of an interactive educational virtual environment on milk pasteurization to the learning outcomes of 40 students in a technical secondary school using SOLO taxonomy. After the interaction with the virtual environment the majority of the students moved to higher hierarchical levels of understanding…

  11. Elearn: A Collaborative Educational Virtual Environment.

    ERIC Educational Resources Information Center

    Michailidou, Anna; Economides, Anastasios A.

    Virtual Learning Environments (VLEs) that support collaboration are one of the new technologies that have attracted great interest. VLEs are learning management software systems composed of computer-mediated communication software and online methods of delivering course material. This paper presents ELearn, a collaborative VLE for teaching…

  12. Acquiring Distance Knowledge in Virtual Environments

    DTIC Science & Technology

    2001-03-01

    UNCLASSIFIED 17-1 Acquiring Distance Knowledge in Virtual Environments Prof. Dr. Edgar Heineken ’ & Frank P. Schulte 2 Gerhard Mercator University LotharstraBe 65...by means of a head-tracked HMD SFor contact with Prof. Heineken : Heineken (a)uni-duisburg.de: tel. +49 203 379 2541, fax +49 203 379 1846 2 For contact

  13. Ophthalmic microsurgical robot and associated virtual environment.

    PubMed

    Hunter, I W; Jones, L A; Sagar, M A; Lafontaine, S R; Hunter, P J

    1995-03-01

    An ophthalmic virtual environment has been developed as part of a teleoperated microsurgical robot built to perform surgery on the eye. The virtual environment is unique in that it incorporates a detailed continuum model of the anatomical structures of the eye, its mechanics and optical properties, together with a less detailed geometric-mechanical model of the face. In addition to providing a realistic visual display of the eye being operated on, the virtual environment simulates tissue properties during manipulation and cutting and the forces involved are determined by solving a mechanical finite element model of the tissue. These forces are then fed back to the operator via a force reflecting master and so the surgeon can experience both the visual and mechanical sensations associated with performing surgery. The virtual environment can be used to enhance the images produced by the camera on the microsurgical slave robot during surgery and as a surgical simulator in which it replaces these images with computer graphics generated from the eye model.

  14. Elearn: A Collaborative Educational Virtual Environment.

    ERIC Educational Resources Information Center

    Michailidou, Anna; Economides, Anastasios A.

    Virtual Learning Environments (VLEs) that support collaboration are one of the new technologies that have attracted great interest. VLEs are learning management software systems composed of computer-mediated communication software and online methods of delivering course material. This paper presents ELearn, a collaborative VLE for teaching…

  15. Virtual environments for telerobotic shared control

    NASA Technical Reports Server (NTRS)

    Christensen, Brian K.

    1994-01-01

    The use of a virtual environment to bring about telerobotic shared control is discussed. A knowledge base, referred to as the World Model, is used to aid the system in its decision making. Information from the World Model is displayed visually in order to aid the human side of human-computer interface.

  16. Using Immersive Virtual Environments for Certification

    NASA Technical Reports Server (NTRS)

    Lutz, R.; Cruz-Neira, C.

    1998-01-01

    Immersive virtual environments (VEs) technology has matured to the point where it can be utilized as a scientific and engineering problem solving tool. In particular, VEs are starting to be used to design and evaluate safety-critical systems that involve human operators, such as flight and driving simulators, complex machinery training, and emergency rescue strategies.

  17. Middle School Students in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Wyatt, Erin Drankwalter

    2010-01-01

    This ethnographic study examined middle school students engaged in a virtual learning environment used in concert with face-to-face instruction in order to complete a collaborative research project. Thirty-eight students from three eighth grade classes participated in this study where data were collected through observation of student work within…

  18. Virtual Tour Environment of Cuba's National School of Art

    NASA Astrophysics Data System (ADS)

    Napolitano, R. K.; Douglas, I. P.; Garlock, M. E.; Glisic, B.

    2017-08-01

    Innovative technologies have enabled new opportunities for collecting, analyzing, and sharing information about cultural heritage sites. Through a combination of two of these technologies, spherical imaging and virtual tour environment, we preliminarily documented one of Cuba's National Schools of Art, the National Ballet School.The Ballet School is one of the five National Art Schools built in Havana, Cuba after the revolution. Due to changes in the political climate, construction was halted on the schools before completion. The Ballet School in particular was partially completed but never used for the intended purpose. Over the years, the surrounding vegetation and environment have started to overtake the buildings; damages such as missing bricks, corroded rebar, and broken tie bars can be seen. We created a virtual tour through the Ballet School which highlights key satellite classrooms and the main domed performance spaces. Scenes of the virtual tour were captured utilizing the Ricoh Theta S spherical imaging camera and processed with Kolor Panotour virtual environment software. Different forms of data can be included in this environment in order to provide a user with pertinent information. Image galleries, hyperlinks to websites, videos, PDFs, and links to databases can be embedded within the scene and interacted with by a user. By including this information within the virtual tour, a user can better understand how the site was constructed as well as the existing types of damage. The results of this work are recommendations for how a site can be preliminarily documented and information can be initially organized and shared.

  19. Tasks for Easily Modifiable Virtual Environments

    ERIC Educational Resources Information Center

    Swier, Robert

    2014-01-01

    Recent studies of learner interaction in virtual worlds have tended to select basic tasks involving open-ended communication. There is evidence that such tasks are supportive of language acquisition, however it may also be beneficial to consider more complex tasks. Research in task-based learning has identified features such as non-linguistic…

  20. Telearch - Integrated visual simulation environment for collaborative virtual archaeology.

    NASA Astrophysics Data System (ADS)

    Kurillo, Gregorij; Forte, Maurizio

    Archaeologists collect vast amounts of digital data around the world; however, they lack tools for integration and collaborative interaction to support reconstruction and interpretation process. TeleArch software is aimed to integrate different data sources and provide real-time interaction tools for remote collaboration of geographically distributed scholars inside a shared virtual environment. The framework also includes audio, 2D and 3D video streaming technology to facilitate remote presence of users. In this paper, we present several experimental case studies to demonstrate the integration and interaction with 3D models and geographical information system (GIS) data in this collaborative environment.

  1. Pictorial communication in virtual and real environments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor)

    1991-01-01

    Papers about the communication between human users and machines in real and synthetic environments are presented. Individual topics addressed include: pictorial communication, distortions in memory for visual displays, cartography and map displays, efficiency of graphical perception, volumetric visualization of 3D data, spatial displays to increase pilot situational awareness, teleoperation of land vehicles, computer graphics system for visualizing spacecraft in orbit, visual display aid for orbital maneuvering, multiaxis control in telemanipulation and vehicle guidance, visual enhancements in pick-and-place tasks, target axis effects under transformed visual-motor mappings, adapting to variable prismatic displacement. Also discussed are: spatial vision within egocentric and exocentric frames of reference, sensory conflict in motion sickness, interactions of form and orientation, perception of geometrical structure from congruence, prediction of three-dimensionality across continuous surfaces, effects of viewpoint in the virtual space of pictures, visual slant underestimation, spatial constraints of stereopsis in video displays, stereoscopic stance perception, paradoxical monocular stereopsis and perspective vergence. (No individual items are abstracted in this volume)

  2. Pictorial communication in virtual and real environments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor)

    1991-01-01

    Papers about the communication between human users and machines in real and synthetic environments are presented. Individual topics addressed include: pictorial communication, distortions in memory for visual displays, cartography and map displays, efficiency of graphical perception, volumetric visualization of 3D data, spatial displays to increase pilot situational awareness, teleoperation of land vehicles, computer graphics system for visualizing spacecraft in orbit, visual display aid for orbital maneuvering, multiaxis control in telemanipulation and vehicle guidance, visual enhancements in pick-and-place tasks, target axis effects under transformed visual-motor mappings, adapting to variable prismatic displacement. Also discussed are: spatial vision within egocentric and exocentric frames of reference, sensory conflict in motion sickness, interactions of form and orientation, perception of geometrical structure from congruence, prediction of three-dimensionality across continuous surfaces, effects of viewpoint in the virtual space of pictures, visual slant underestimation, spatial constraints of stereopsis in video displays, stereoscopic stance perception, paradoxical monocular stereopsis and perspective vergence. (No individual items are abstracted in this volume)

  3. Measuring Knowledge Acquisition in 3D Virtual Learning Environments.

    PubMed

    Nunes, Eunice P dos Santos; Roque, Licínio G; Nunes, Fatima de Lourdes dos Santos

    2016-01-01

    Virtual environments can contribute to the effective learning of various subjects for people of all ages. Consequently, they assist in reducing the cost of maintaining physical structures of teaching, such as laboratories and classrooms. However, the measurement of how learners acquire knowledge in such environments is still incipient in the literature. This article presents a method to evaluate the knowledge acquisition in 3D virtual learning environments (3D VLEs) by using the learner's interactions in the VLE. Three experiments were conducted that demonstrate the viability of using this method and its computational implementation. The results suggest that it is possible to automatically assess learning in predetermined contexts and that some types of user interactions in 3D VLEs are correlated with the user's learning differential.

  4. Proposals for Future Virtual Environment Software Platforms

    NASA Astrophysics Data System (ADS)

    Steed, Anthony

    The past two decades have seen the development of a plethora of software solutions to support virtual environments. Many very capable software platforms, toolkits and libraries have been built, but the rate of development of new software continues to increase. There is very significant functional replication amongst these software, and there are few possibilities to migrate anything other than simple content from one piece of software to another. In this chapter we discuss why there are so many software solutions for virtual environments. We make some suggestions to software developers that might facilitate code re-use at the platform building stage, with the aim of moving towards platforms that support content re-use.

  5. Virtual Environment Training on Mobile Devices

    DTIC Science & Technology

    2013-09-01

    Modeling, virtual environments and simulation MSAT Multi-purpose supporting arms trainer MTO Message to observer MVC Model-view-controller O&M...V. SYSTEM DEVELOPMENT A. BACKGROUND Examining SAT-M through the lens of the model-view-controller ( MVC ) design pattern was the first step in...CFF VEs, primarily ObserverSim. 1. Model-View-Controller MVC assigns the software objects that make up a program “one of three roles: model, view, or

  6. An acoustic interface for triggering actions in virtual environments

    NASA Astrophysics Data System (ADS)

    Li, Yinlin; Groenegress, Christoph; Denzinger, Jochen; Strauss, Wolfgang; Fleischmann, Monika

    2004-03-01

    Currently one of the main research issues in Human Computer Interaction (HCI) is to develop more intuitive, multimodal and natural interfaces. Among them, the interface for triggering simple actions or selecting objects in virtual environments (VEs) is one of the concerned areas. In this paper we describe an acoustic interface which uses finger snap or hand clap sounds as the input command to initiate events for VE applications. We developed a sophisticated algorithm based on the wavelet transform and neural network techniques, which separate the environment noise from the snap and clap sound. The acoustic interface could be integrated with other interfaces like optical tracking systems to provide a more natural, easy-to-use, efficient and boyd-centered multimodal interaction for virtual reality applications.

  7. Evolution-based Virtual Content Insertion with Visually Virtual Interactions in Videos

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Hu; Wu, Ja-Ling

    With the development of content-based multimedia analysis, virtual content insertion has been widely used and studied for video enrichment and multimedia advertising. However, how to automatically insert a user-selected virtual content into personal videos in a less-intrusive manner, with an attractive representation, is a challenging problem. In this chapter, we present an evolution-based virtual content insertion system which can insert virtual contents into videos with evolved animations according to predefined behaviors emulating the characteristics of evolutionary biology. The videos are considered not only as carriers of message conveyed by the virtual content but also as the environment in which the lifelike virtual contents live. Thus, the inserted virtual content will be affected by the videos to trigger a series of artificial evolutions and evolve its appearances and behaviors while interacting with video contents. By inserting virtual contents into videos through the system, users can easily create entertaining storylines and turn their personal videos into visually appealing ones. In addition, it would bring a new opportunity to increase the advertising revenue for video assets of the media industry and online video-sharing websites.

  8. Design of Virtual Environments for the Comprehension of Planetary Phenomena Based on Students' Ideas.

    ERIC Educational Resources Information Center

    Bakas, Christos; Mikropoulos, Tassos A.

    2003-01-01

    Explains the design and development of an educational virtual environment to support the teaching of planetary phenomena, particularly the movements of Earth and the sun, day and night cycle, and change of seasons. Uses an interactive, three-dimensional (3D) virtual environment. Initial results show that the majority of students enthused about…

  9. Design of Virtual Environments for the Comprehension of Planetary Phenomena Based on Students' Ideas.

    ERIC Educational Resources Information Center

    Bakas, Christos; Mikropoulos, Tassos A.

    2003-01-01

    Explains the design and development of an educational virtual environment to support the teaching of planetary phenomena, particularly the movements of Earth and the sun, day and night cycle, and change of seasons. Uses an interactive, three-dimensional (3D) virtual environment. Initial results show that the majority of students enthused about…

  10. An Examination of Usability of a Virtual Environment for Students Enrolled in a College of Agriculture

    ERIC Educational Resources Information Center

    Murphrey, Theresa Pesl; Rutherford, Tracy A.; Doerfert, David L.; Edgar, Leslie D.; Edgar, Don W.

    2014-01-01

    Educational technology continues to expand with multi-user virtual environments (e.g., Second Life™) being the latest technology. Understanding a virtual environment's usability can enhance educational planning and effective use. Usability includes the interaction quality between an individual and the item being assessed. The purpose was to assess…

  11. Development of Web-based Virtual Training Environment for Machining

    NASA Astrophysics Data System (ADS)

    Yang, Zhixin; Wong, S. F.

    2010-05-01

    With the booming in the manufacturing sector of shoe, garments and toy, etc. in pearl region, training the usage of various facilities and design the facility layout become crucial for the success of industry companies. There is evidence that the use of virtual training may provide benefits in improving the effect of learning and reducing risk in the physical work environment. This paper proposed an advanced web-based training environment that could demonstrate the usage of a CNC machine in terms of working condition and parameters selection. The developed virtual environment could provide training at junior level and advanced level. Junior level training is to explain machining knowledge including safety factors, machine parameters (ex. material, speed, feed rate). Advanced level training enables interactive programming of NG coding and effect simulation. Operation sequence was used to assist the user to choose the appropriate machining condition. Several case studies were also carried out with animation of milling and turning operations.

  12. Collaborative virtual reality environments for computational science and design.

    SciTech Connect

    Papka, M. E.

    1998-02-17

    The authors are developing a networked, multi-user, virtual-reality-based collaborative environment coupled to one or more petaFLOPs computers, enabling the interactive simulation of 10{sup 9} atom systems. The purpose of this work is to explore the requirements for this coupling. Through the design, development, and testing of such systems, they hope to gain knowledge that allows computational scientists to discover and analyze their results more quickly and in a more intuitive manner.

  13. Interactive and automated application of virtual microscopy.

    PubMed

    Kayser, Klaus; Görtler, Jürgen; Borkenfeld, Stephan; Kayser, Gian

    2011-03-30

    Virtual microscopy can be applied in an interactive and an automated manner. Interactive application is performed in close association to conventional microscopy. It includes image standardization suitable to the performance of an individual pathologist such as image colorization, white color balance, or individual adjusted brightness. The steering commands have to include selection of wanted magnification, easy navigation, notification, and simple measurements (distances, areas). The display of the histological image should be adjusted to the physical limits of the human eye, which are determined by a view angle of approximately 35 seconds. A more sophisticated performance should include acoustic commands that replace the corresponding visual commands. Automated virtual microscopy includes so-called microscopy assistants which can be defined similar to the developed assistants in computer based editing systems (Microsoft Word, etc.). These include an automated image standardization and correction algorithms that excludes images of poor quality (for example uni-colored or out-of-focus images), an automated selection of the most appropriate field of view, an automated selection of the best magnification, and finally proposals of the most probable diagnosis. A quality control of the final diagnosis, and feedback to the laboratory determine the proposed system. The already developed tools of such a system are described in detail, as well as the results of first trials. In order to enhance the speed of such a system, and to allow further user-independent development a distributed implementation probably based upon Grid technology seems to be appropriate. The advantages of such a system as well as the present pathology environment and its expectations will be discussed in detail.

  14. Virtual environment application with partial gravity simulation

    NASA Technical Reports Server (NTRS)

    Ray, David M.; Vanchau, Michael N.

    1994-01-01

    To support manned missions to the surface of Mars and missions requiring manipulation of payloads and locomotion in space, a training facility is required to simulate the conditions of both partial and microgravity. A partial gravity simulator (Pogo) which uses pneumatic suspension is being studied for use in virtual reality training. Pogo maintains a constant partial gravity simulation with a variation of simulated body force between 2.2 and 10 percent, depending on the type of locomotion inputs. this paper is based on the concept and application of a virtual environment system with Pogo including a head-mounted display and glove. The reality engine consists of a high end SGI workstation and PC's which drive Pogo's sensors and data acquisition hardware used for tracking and control. The tracking system is a hybrid of magnetic and optical trackers integrated for this application.

  15. Exploring Learning through Audience Interaction in Virtual Reality Dome Theaters

    NASA Astrophysics Data System (ADS)

    Apostolellis, Panagiotis; Daradoumis, Thanasis

    Informal learning in public spaces like museums, science centers and planetariums is increasingly popular during the last years. Recent advancements in large-scale displays allowed contemporary technology-enhanced museums to get equipped with digital domes, some with real-time capabilities like Virtual Reality systems. By conducting extensive literature review we have come to the conclusion that little to no research has been carried out on the leaning outcomes that the combination of VR and audience interaction can provide in the immersive environments of dome theaters. Thus, we propose that audience collaboration in immersive virtual reality environments presents a promising approach to support effective learning in groups of school aged children.

  16. Scripting human animations in a virtual environment

    NASA Technical Reports Server (NTRS)

    Goldsby, Michael E.; Pandya, Abhilash K.; Maida, James C.

    1994-01-01

    The current deficiencies of virtual environment (VE) are well known: annoying lag time in drawing the current view, drastically simplified environments to reduce that time lag, low resolution and narrow field of view. Animation scripting is an application of VE technology which can be carried out successfully despite these deficiencies. The final product is a smoothly moving high resolution animation displaying detailed models. In this system, the user is represented by a human computer model with the same body proportions. Using magnetic tracking, the motions of the model's upper torso, head and arms are controlled by the user's movements (18 degrees of freedom). The model's lower torso and global position and orientation are controlled by a spaceball and keypad (12 degrees of freedom). Using this system human motion scripts can be extracted from the user's movements while immersed in a simplified virtual environment. Recorded data is used to define key frames; motion is interpolated between them and post processing adds a more detailed environment. The result is a considerable savings in time and a much more natural-looking movement of a human figure in a smooth and seamless animation.

  17. Dynamic shared state maintenance in distributed virtual environments

    NASA Astrophysics Data System (ADS)

    Hamza-Lup, Felix George

    Advances in computer networks and rendering systems facilitate the creation of distributed collaborative environments in which the distribution of information at remote locations allows efficient communication. Particularly challenging are distributed interactive Virtual Environments (VE) that allow knowledge sharing through 3D information. The purpose of this work is to address the problem of latency in distributed interactive VE and to develop a conceptual model for consistency maintenance in these environments based on the participant interaction model. An area that needs to be explored is the relationship between the dynamic shared state and the interaction with the virtual entities present in the shared scene. Mixed Reality (MR) and VR environments must bring the human participant interaction into the loop through a wide range of electronic motion sensors, and haptic devices. Part of the work presented here defines a novel criterion for categorization of distributed interactive VE and introduces, as well as analyzes, an adaptive synchronization algorithm for consistency maintenance in such environments. As part of the work, a distributed interactive Augmented Reality (AR) testbed and the algorithm implementation details are presented. Currently the testbed is part of several research efforts at the Optical Diagnostics and Applications Laboratory including 3D visualization applications using custom built head-mounted displays (HMDs) with optical motion tracking and a medical training prototype for endotracheal intubation and medical prognostics. An objective method using quaternion calculus is applied for the algorithm assessment. In spite of significant network latency, results show that the dynamic shared state can be maintained consistent at multiple remotely located sites. In further consideration of the latency problems and in the light of the current trends in interactive distributed VE applications, we propose a hybrid distributed system architecture for

  18. SHARED VIRTUAL ENVIRONMENTS FOR COLLECTIVE TRAINING

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen

    2000-01-01

    Historically NASA has trained teams of astronauts by bringing them to the Johnson Space Center in Houston to undergo generic training, followed by mission-specific training. This latter training begins after a crew has been selected for a mission (perhaps two years before the launch of that mission). While some Space Shuttle flights have included an astronaut from a foreign country, the International Space Station will be consistently crewed by teams comprised of astronauts from two or more of the partner nations. The cost of training these international teams continues to grow in both monetary and personal terms. Thus, NASA has been seeking alternative training approaches for the International Space Station program. Since 1994 we have been developing, testing, and refining shared virtual environments for astronaut team training, including the use of virtual environments for use while in or in transit to the task location. In parallel with this effort, we have also been preparing applications for training teams of military personnel engaged in peacekeeping missions. This paper will describe the applications developed to date, some of the technological challenges that have been overcome in their development, and the research performed to guide the development and to measure the efficacy of these shared environments as training tools.

  19. VERDEX: A virtual environment demonstrator for remote driving applications

    NASA Technical Reports Server (NTRS)

    Stone, Robert J.

    1991-01-01

    One of the key areas of the National Advanced Robotics Centre's enabling technologies research program is that of the human system interface, phase 1 of which started in July 1989 and is currently addressing the potential of virtual environments to permit intuitive and natural interactions between a human operator and a remote robotic vehicle. The aim of the first 12 months of this program (to September, 1990) is to develop a virtual human-interface demonstrator for use later as a test bed for human factors experimentation. This presentation will describe the current state of development of the test bed, and will outline some human factors issues and problems for more general discussion. In brief, the virtual telepresence system for remote driving has been designed to take the following form. The human operator will be provided with a helmet-mounted stereo display assembly, facilities for speech recognition and synthesis (using the Marconi Macrospeak system), and a VPL DataGlove Model 2 unit. The vehicle to be used for the purposes of remote driving is a Cybermotion Navmaster K2A system, which will be equipped with a stereo camera and microphone pair, mounted on a motorized high-speed pan-and-tilt head incorporating a closed-loop laser ranging sensor for camera convergence control (currently under contractual development). It will be possible to relay information to and from the vehicle and sensory system via an umbilical or RF link. The aim is to develop an interactive audio-visual display system capable of presenting combined stereo TV pictures and virtual graphics windows, the latter featuring control representations appropriate for vehicle driving and interaction using a graphical 'hand,' slaved to the flex and tracking sensors of the DataGlove and an additional helmet-mounted Polhemus IsoTrack sensor. Developments planned for the virtual environment test bed include transfer of operator control between remote driving and remote manipulation, dexterous end

  20. Evaluation of navigation interfaces in virtual environments

    NASA Astrophysics Data System (ADS)

    Mestre, Daniel R.

    2014-02-01

    When users are immersed in cave-like virtual reality systems, navigational interfaces have to be used when the size of the virtual environment becomes larger than the physical extent of the cave floor. However, using navigation interfaces, physically static users experience self-motion (visually-induced vection). As a consequence, sensorial incoherence between vision (indicating self-motion) and other proprioceptive inputs (indicating immobility) can make them feel dizzy and disoriented. We tested, in two experimental studies, different locomotion interfaces. The objective was twofold: testing spatial learning and cybersickness. In a first experiment, using first-person navigation with a flystick ®, we tested the effect of sensorial aids, a spatialized sound or guiding arrows on the ground, attracting the user toward the goal of the navigation task. Results revealed that sensorial aids tended to impact negatively spatial learning. Moreover, subjects reported significant levels of cybersickness. In a second experiment, we tested whether such negative effects could be due to poorly controlled rotational motion during simulated self-motion. Subjects used a gamepad, in which rotational and translational displacements were independently controlled by two joysticks. Furthermore, we tested first- versus third-person navigation. No significant difference was observed between these two conditions. Overall, cybersickness tended to be lower, as compared to experiment 1, but the difference was not significant. Future research should evaluate further the hypothesis of the role of passively perceived optical flow in cybersickness, but manipulating the virtual environment'sperrot structure. It also seems that video-gaming experience might be involved in the user's sensitivity to cybersickness.

  1. Web-based Virtual Research Environments

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Allan, Robert J.

    Computer-based research plays an increasingly important role around the world today. While more and more people are benefiting from research projects, they are not all well supported by advanced information and communication technologies (ICT). Information technologies have gradually been adopted by researchers, for example through digital library services, computational, and data grids, but most researchers still rely heavily on "traditional" technologies such as e-mail and telephone as their principal collaboration tools. In this chapter, we will share our recent experiences in the area of Web-based virtual research environments (VREs), which aim to provide researchers with a pervasive collaborative working environment enabling them to work together more efficiently in their daily activities to solve research "grand challenges." We first give some background and current status of VREs and then illustrate our experience in several VRE-related projects. Finally, we discuss the future of VREs and summarize the chapter.

  2. Portable virtual environment generator: InterFACE

    NASA Astrophysics Data System (ADS)

    Frerichs, David J.

    1994-04-01

    The relationship between people and computers is currently undergoing a rapid transformation. What was once an inert, complex tool is becoming a natural extension of the user. In order to complete the transformation, the computer must become functionally transparent to the user. Ubiquitous computing holds promise toward this end but has severe limitations in terms of installation and upgrade costs. Virtual environment technology provides a viable alternative, if properly implemented, by seamlessly integrating the user's senses with the growing global information network. This paper is an overview of the InterFACE project at Future Vision Technologies, Inc. InterFACE is a new type of computing device which merges portable computing, wireless communications, synthetic environments and telepresence into a wearable package. The technology is introduced in contrast to existing systems in terms of form, flexibility and ease of use and thereby a framework for market justification is formed. The evolution of the system is also described and major application types are detailed.

  3. Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    NASA Technical Reports Server (NTRS)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.

  4. What is Reciprocal Understanding in Virtual Interaction?

    ERIC Educational Resources Information Center

    Byman, Arja; Jarvela, Sanna; Hakkinen, Paivi

    2005-01-01

    The aim of this study is to investigate what is reciprocal understanding in virtual web-based interaction and what does it consist of. The context of this study was an international web-based pre-service teacher education (N=116) course. The study is based on an idea of shared cognition and reciprocal understanding, in particular. It is assumed…

  5. Virtual Ethnography: Interactive Interviewing Online as Method

    ERIC Educational Resources Information Center

    Crichton, Susan; Kinash, Shelley

    2003-01-01

    Recognizing the power of the Internet to connect people, regardless of place or time, we explore the notion of a virtual form of ethnography, suggesting online, textual interactive interviews are worthy of research consideration. This paper reports on three research projects, drawing examples from almost ten years in the evolution of Internet…

  6. What is Reciprocal Understanding in Virtual Interaction?

    ERIC Educational Resources Information Center

    Byman, Arja; Jarvela, Sanna; Hakkinen, Paivi

    2005-01-01

    The aim of this study is to investigate what is reciprocal understanding in virtual web-based interaction and what does it consist of. The context of this study was an international web-based pre-service teacher education (N=116) course. The study is based on an idea of shared cognition and reciprocal understanding, in particular. It is assumed…

  7. Increasing accessibility to the blind of virtual environments, using a virtual mobility aid based on the "EyeCane": feasibility study.

    PubMed

    Maidenbaum, Shachar; Levy-Tzedek, Shelly; Chebat, Daniel-Robert; Amedi, Amir

    2013-01-01

    Virtual worlds and environments are becoming an increasingly central part of our lives, yet they are still far from accessible to the blind. This is especially unfortunate as such environments hold great potential for them for uses such as social interaction, online education and especially for use with familiarizing the visually impaired user with a real environment virtually from the comfort and safety of his own home before visiting it in the real world. We have implemented a simple algorithm to improve this situation using single-point depth information, enabling the blind to use a virtual cane, modeled on the "EyeCane" electronic travel aid, within any virtual environment with minimal pre-processing. Use of the Virtual-EyeCane, enables this experience to potentially be later used in real world environments with identical stimuli to those from the virtual environment. We show the fast-learned practical use of this algorithm for navigation in simple environments.

  8. Preserving access to ALEPH computing environment via virtual machines

    NASA Astrophysics Data System (ADS)

    Coscetti, Simone; Boccali, Tommaso; Maggi, Marcello; Arezzini, Silvia

    2014-06-01

    The ALEPH Collaboration [1] took data at the LEP (CERN) electron-positron collider in the period 1989-2000, producing more than 300 scientific papers. While most of the Collaboration activities stopped in the last years, the data collected still has physics potential, with new theoretical models emerging, which ask checks with data at the Z and WW production energies. An attempt to revive and preserve the ALEPH Computing Environment is presented; the aim is not only the preservation of the data files (usually called bit preservation), but of the full environment a physicist would need to perform brand new analyses. Technically, a Virtual Machine approach has been chosen, using the VirtualBox platform. Concerning simulated events, the full chain from event generators to physics plots is possible, and reprocessing of data events is also functioning. Interactive tools like the DALI event display can be used on both data and simulated events. The Virtual Machine approach is suited for both interactive usage, and for massive computing using Cloud like approaches.

  9. Rescaling of perceived space transfers across virtual environments.

    PubMed

    Siegel, Zachary D; Kelly, Jonathan W; Cherep, Lucia A

    2017-10-01

    Research over the past 20 years has consistently shown that egocentric distance is underperceived in virtual environments (VEs) compared with real environments. In 2 experiments, judgments of object distance (Experiment 1) and object size (Experiment 2) improved after a brief period of walking through the VE with continuous visual feedback. Whereas improvement of blind-walking distance judgments could be attributable to recalibration of walking, improvement in perceived size is considered evidence for rescaling of perceived space, whereby perceived size and distance increased after walking interaction. Furthermore, improvements in judged distance and size transferred to a new VE. Distance judgments, but not size judgments, continued to improve after additional walking interaction in the new VE. These results have theoretical implications regarding the effects of walking interaction on perceived space, and practical implications regarding methods of improving perceived distance in VEs. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Human Machine Interfaces for Teleoperators and Virtual Environments Conference

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In a teleoperator system the human operator senses, moves within, and operates upon a remote or hazardous environment by means of a slave mechanism (a mechanism often referred to as a teleoperator). In a virtual environment system the interactive human machine interface is retained but the slave mechanism and its environment are replaced by a computer simulation. Video is replaced by computer graphics. The auditory and force sensations imparted to the human operator are similarly computer generated. In contrast to a teleoperator system, where the purpose is to extend the operator's sensorimotor system in a manner that facilitates exploration and manipulation of the physical environment, in a virtual environment system, the purpose is to train, inform, alter, or study the human operator to modify the state of the computer and the information environment. A major application in which the human operator is the target is that of flight simulation. Although flight simulators have been around for more than a decade, they had little impact outside aviation presumably because the application was so specialized and so expensive.

  11. Kinematic/Dynamic Characteristics for Visual and Kinesthetic Virtual Environments

    NASA Technical Reports Server (NTRS)

    Bortolussi, Michael R. (Compiler); Adelstein, B. D.; Gold, Miriam

    1996-01-01

    Work was carried out on two topics of principal importance to current progress in virtual environment research at NASA Ames and elsewhere. The first topic was directed at maximizing the temporal dynamic response of visually presented Virtual Environments (VEs) through reorganization and optimization of system hardware and software. The final results of this portion of the work was a VE system in the Advanced Display and Spatial Perception Laboratory at NASA Ames capable of updating at 60 Hz (the maximum hardware refresh rate) with latencies approaching 30 msec. In the course of achieving this system performance, specialized hardware and software tools for measurement of VE latency and analytic models correlating update rate and latency for different system configurations were developed. The second area of activity was the preliminary development and analysis of a novel kinematic architecture for three Degree Of Freedom (DOF) haptic interfaces--devices that provide force feedback for manipulative interaction with virtual and remote environments. An invention disclosure was filed on this work and a patent application is being pursued by NASA Ames. Activities in these two areas are expanded upon below.

  12. Latency and User Performance in Virtual Environments and Augmented Reality

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    2009-01-01

    System rendering latency has been recognized by senior researchers, such as Professor Fredrick Brooks of UNC (Turing Award 1999), as a major factor limiting the realism and utility of head-referenced displays systems. Latency has been shown to reduce the user's sense of immersion within a virtual environment, disturb user interaction with virtual objects, and to contribute to motion sickness during some simulation tasks. Latency, however, is not just an issue for external display systems since finite nerve conduction rates and variation in transduction times in the human body's sensors also pose problems for latency management within the nervous system. Some of the phenomena arising from the brain's handling of sensory asynchrony due to latency will be discussed as a prelude to consideration of the effects of latency in interactive displays. The causes and consequences of the erroneous movement that appears in displays due to latency will be illustrated with examples of the user performance impact provided by several experiments. These experiments will review the generality of user sensitivity to latency when users judge either object or environment stability. Hardware and signal processing countermeasures will also be discussed. In particular the tuning of a simple extrapolative predictive filter not using a dynamic movement model will be presented. Results show that it is possible to adjust this filter so that the appearance of some latencies may be hidden without the introduction of perceptual artifacts such as overshoot. Several examples of the effects of user performance will be illustrated by three-dimensional tracking and tracing tasks executed in virtual environments. These experiments demonstrate classic phenomena known from work on manual control and show the need for very responsive systems if they are indented to support precise manipulation. The practical benefits of removing interfering latencies from interactive systems will be emphasized with some

  13. Measurement Tools for the Immersive Visualization Environment: Steps Toward the Virtual Laboratory

    PubMed Central

    Hagedorn, John G.; Dunkers, Joy P.; Satterfield, Steven G.; Peskin, Adele P.; Kelso, John T.; Terrill, Judith E.

    2007-01-01

    This paper describes a set of tools for performing measurements of objects in a virtual reality based immersive visualization environment. These tools enable the use of the immersive environment as an instrument for extracting quantitative information from data representations that hitherto had be used solely for qualitative examination. We provide, within the virtual environment, ways for the user to analyze and interact with the quantitative data generated. We describe results generated by these methods to obtain dimensional descriptors of tissue engineered medical products. We regard this toolbox as our first step in the implementation of a virtual measurement laboratory within an immersive visualization environment. PMID:27110469

  14. Natural Interaction Metaphors for Functional Validations of Virtual Car Models.

    PubMed

    Moehring, Mathias; Froehlich, Bernd

    2011-09-01

    Natural Interaction in virtual environments is a key requirement for the virtual validation of functional aspects in automotive product development processes. Natural Interaction is the metaphor people encounter in reality: the direct manipulation of objects by their hands. To enable this kind of Natural Interaction, we propose a pseudophysical metaphor that is both plausible enough to provide realistic interaction and robust enough to meet the needs of industrial applications. Our analysis of the most common types of objects in typical automotive scenarios guided the development of a set of refined grasping heuristics to support robust finger-based interaction of multiple hands and users. The objects' behavior in reaction to the users' finger motions is based on pseudophysical simulations, which also take various types of constrained objects into account. In dealing with real-world scenarios, we had to introduce the concept of Normal Proxies, which extend objects with appropriate normals for improved grasp detection and grasp stability. An expert review revealed that our interaction metaphors allow for an intuitive and reliable assessment of several functionalities of objects found in a car interior. Follow-up user studies showed that overall task performance and usability are similar for CAVE and HMD environments. For larger objects and more gross manipulation, using the CAVE without employing a virtual hand representation is preferred, but for more fine-grained manipulation and smaller objects, the HMD turns out to be beneficial.

  15. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    ERIC Educational Resources Information Center

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  16. A Multi-User Virtual Environment for Building and Assessing Higher Order Inquiry Skills in Science

    ERIC Educational Resources Information Center

    Ketelhut, Diane Jass; Nelson, Brian C.; Clarke, Jody; Dede, Chris

    2010-01-01

    This study investigated novel pedagogies for helping teachers infuse inquiry into a standards-based science curriculum. Using a multi-user virtual environment (MUVE) as a pedagogical vehicle, teams of middle-school students collaboratively solved problems around disease in a virtual town called River City. The students interacted with "avatars" of…

  17. Exploring "Magic Cottage": A Virtual Reality Environment for Stimulating Children's Imaginative Writing

    ERIC Educational Resources Information Center

    Patera, Marianne; Draper, Steve; Naef, Martin

    2008-01-01

    This paper presents an exploratory study that created a virtual reality environment (VRE) to stimulate motivation and creativity in imaginative writing at primary school level. The main aim of the study was to investigate if an interactive, semi-immersive virtual reality world could increase motivation and stimulate pupils' imagination in the…

  18. Collaborative Virtual Environments as Means to Increase the Level of Intersubjectivity in a Distributed Cognition System

    ERIC Educational Resources Information Center

    Ligorio, M. Beatrice; Cesareni, Donatella; Schwartz, Neil

    2008-01-01

    Virtual environments are able to extend the space of interaction beyond the classroom. In order to analyze how distributed cognition functions in such an extended space, we suggest focusing on the architecture of intersubjectivity. The Euroland project--a virtual land created and populated by seven classrooms supported by a team of…

  19. Civic Participation among Seventh-Grade Social Studies Students in Multi-User Virtual Environments

    ERIC Educational Resources Information Center

    Zieger, Laura; Farber, Matthew

    2012-01-01

    Technological advances on the Internet now enable students to develop participation skills in virtual worlds. Similar to controlling a character in a video game, multi-user virtual environments, or MUVEs, allow participants to interact with others in synchronous, online settings. The authors of this study created a link between MUVEs and…

  20. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    ERIC Educational Resources Information Center

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  1. Civic Participation among Seventh-Grade Social Studies Students in Multi-User Virtual Environments

    ERIC Educational Resources Information Center

    Zieger, Laura; Farber, Matthew

    2012-01-01

    Technological advances on the Internet now enable students to develop participation skills in virtual worlds. Similar to controlling a character in a video game, multi-user virtual environments, or MUVEs, allow participants to interact with others in synchronous, online settings. The authors of this study created a link between MUVEs and…

  2. A Multi-User Virtual Environment for Building and Assessing Higher Order Inquiry Skills in Science

    ERIC Educational Resources Information Center

    Ketelhut, Diane Jass; Nelson, Brian C.; Clarke, Jody; Dede, Chris

    2010-01-01

    This study investigated novel pedagogies for helping teachers infuse inquiry into a standards-based science curriculum. Using a multi-user virtual environment (MUVE) as a pedagogical vehicle, teams of middle-school students collaboratively solved problems around disease in a virtual town called River City. The students interacted with "avatars" of…

  3. Utility of virtual reality environments to examine physiological reactivity and subjective distress in adults who stutter.

    PubMed

    Brundage, Shelley B; Brinton, James M; Hancock, Adrienne B

    2016-12-01

    Virtual reality environments (VREs) allow for immersion in speaking environments that mimic real-life interactions while maintaining researcher control. VREs have been used successfully to engender arousal in other disorders. The purpose of this study was to investigate the utility of virtual reality environments to examine physiological reactivity and subjective ratings of distress in persons who stutter (PWS). Subjective and objective measures of arousal were collected from 10PWS during four-minute speeches to a virtual audience and to a virtual empty room. Stuttering frequency and physiological measures (skin conductance level and heart rate) did not differ across speaking conditions, but subjective ratings of distress were significantly higher in the virtual audience condition compared to the virtual empty room. VREs have utility in elevating subjective ratings of distress in PWS. VREs have the potential to be useful tools for practicing treatment targets in a safe, controlled, and systematic manner. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Virtualization, virtual environments, and content-based retrieval of three-dimensional information for cultural applications

    NASA Astrophysics Data System (ADS)

    Paquet, Eric; Peters, Shawn; Beraldin, J. A.; Valzano, Virginia; Bandiera, Adriana

    2003-01-01

    The present paper proposes a virtual environment for visualizing virtualized cultural and historical sites. The proposed environment is based on a distributed asynchronous architecture and supports stereo vision and tiled wall display. The system is mobile and can run from two laptops. This virtual environment addresses the problems of intellectual property protection and multimedia information retrieval through encryptation and content-based management respectively. Experimental results with a fully textured 3D model of the Crypt of Santa Cristina in Italy are presented, evaluating the performances of the proposed virtual environment.

  5. Olfactory Stimuli Increase Presence in Virtual Environments

    PubMed Central

    Munyan, Benson G.; Neer, Sandra M.; Beidel, Deborah C.; Jentsch, Florian

    2016-01-01

    Background Exposure therapy (EXP) is the most empirically supported treatment for anxiety and trauma-related disorders. EXP consists of repeated exposure to a feared object or situation in the absence of the feared outcome in order to extinguish associated anxiety. Key to the success of EXP is the need to present the feared object/event/situation in as much detail and utilizing as many sensory modalities as possible, in order to augment the sense of presence during exposure sessions. Various technologies used to augment the exposure therapy process by presenting multi-sensory cues (e.g., sights, smells, sounds). Studies have shown that scents can elicit emotionally charged memories, but no prior research has examined the effect of olfactory stimuli upon the patient’s sense of presence during simulated exposure tasks. Methods 60 adult participants navigated a mildly anxiety-producing virtual environment (VE) similar to those used in the treatment of anxiety disorders. Participants had no autobiographical memory associated with the VE. State anxiety, Presence ratings, and electrodermal (EDA) activity were collected throughout the experiment. Results Utilizing a Bonferroni corrected Linear Mixed Model, our results showed statistically significant relationships between olfactory stimuli and presence as assessed by both the Igroup Presence Questionnaire (IPQ: R2 = 0.85, (F(3,52) = 6.625, p = 0.0007) and a single item visual-analogue scale (R2 = 0.85, (F(3,52) = 5.382, p = 0.0027). State anxiety was unaffected by the presence or absence of olfactory cues. EDA was unaffected by experimental condition. Conclusion Olfactory stimuli increase presence in virtual environments that approximate those typical in exposure therapy, but did not increase EDA. Additionally, once administered, the removal of scents resulted in a disproportionate decrease in presence. Implications for incorporating the use of scents to increase the efficacy of exposure therapy is discussed. PMID

  6. Enhancing L2 Interaction in Avatar-Based Virtual Worlds: Student Teachers' Perceptions

    ERIC Educational Resources Information Center

    Tseng, Jun-Jie; Tsai, Ya-Hsun; Chao, Rih-Chang

    2013-01-01

    Three-dimensional (3-D) multi-user virtual environments (3-D MUVEs) have been used to provide language learners with realistic scenarios in which verbal and non-verbal interactions are simulated. However, little is known of the underlying factors that shape interaction in avatar-based virtual worlds. This study examined the perceptions of 38…

  7. Enhancing L2 Interaction in Avatar-Based Virtual Worlds: Student Teachers' Perceptions

    ERIC Educational Resources Information Center

    Tseng, Jun-Jie; Tsai, Ya-Hsun; Chao, Rih-Chang

    2013-01-01

    Three-dimensional (3-D) multi-user virtual environments (3-D MUVEs) have been used to provide language learners with realistic scenarios in which verbal and non-verbal interactions are simulated. However, little is known of the underlying factors that shape interaction in avatar-based virtual worlds. This study examined the perceptions of 38…

  8. Command & Control in Virtual Environments: Designing a Virtual Environment for Experimentation

    DTIC Science & Technology

    2010-06-01

    code to all this addition. That said, the Python scripting language is supported by Teleplace, which would allow developers to recreate the scripted...Measurements Measurements of dependent variables vary, but many follow variations of a two-factor the scheme (Leweling & Nissen, 2007). For instance...develop a “ pattern language” of virtual environment design. “A pattern is an instruction, which shows how this spatial configuration can be used

  9. Virtually supportive: A feasibility pilot study of an online support group for dementia caregivers in a 3D virtual environment

    PubMed Central

    O’Connor, Mary-Frances; Arizmendi, Brian J.; Kaszniak, Alfred W.

    2014-01-01

    Caregiver support groups effectively reduce stress from caring for someone with dementia. These same demands can prevent participation in a group. The present feasibility study investigated a virtual online caregiver support group to bring the support group into the home. While online groups have been shown to be helpful, submissions to a message board (vs. live conversation) can feel impersonal. By using avatars, participants interacted via real-time chat in a virtual environment in an 8-week support group. Data indicated lower levels of perceived stress, depression and loneliness across participants. Importantly, satisfaction reports also indicate that caregivers overcame the barriers to participation, and had a strong sense of the group’s presence. This study provides the framework for an accessible and low cost online support group for a dementia caregiver. The study demonstrates the feasibility of interactive group in a virtual environment for engaging members in meaningful interaction. PMID:24984911

  10. Virtually supportive: a feasibility pilot study of an online support group for dementia caregivers in a 3D virtual environment.

    PubMed

    O'Connor, Mary-Frances; Arizmendi, Brian J; Kaszniak, Alfred W

    2014-08-01

    Caregiver support groups effectively reduce stress from caring for someone with dementia. These same demands can prevent participation in a group. The present feasibility study investigated a virtual online caregiver support group to bring the support group into the home. While online groups have been shown to be helpful, submissions to a message board (vs. live conversation) can feel impersonal. By using avatars, participants interacted via real-time chat in a virtual environment in an 8-week support group. Data indicated lower levels of perceived stress, depression and loneliness across participants. Importantly, satisfaction reports also indicate that caregivers overcame the barriers to participation, and had a strong sense of the group's presence. This study provides the framework for an accessible and low cost online support group for a dementia caregiver. The study demonstrates the feasibility of interactive group in a virtual environment for engaging members in meaningful interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Virtual environment display for a 3D audio room simulation

    NASA Technical Reports Server (NTRS)

    Chapin, William L.; Foster, Scott H.

    1992-01-01

    The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.

  12. Virtual environment display for a 3D audio room simulation

    NASA Technical Reports Server (NTRS)

    Chapin, William L.; Foster, Scott H.

    1992-01-01

    The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.

  13. Temporal Issues in the Design of Virtual Learning Environments.

    ERIC Educational Resources Information Center

    Bergeron, Bryan; Obeid, Jihad

    1995-01-01

    Describes design methods used to influence user perception of time in virtual learning environments. Examines the use of temporal cues in medical education and clinical competence testing. Finds that user perceptions of time affects user acceptance, ease of use, and the level of realism of a virtual learning environment. Contains 51 references.…

  14. Virtual Environments Supporting Learning and Communication in Special Needs Education

    ERIC Educational Resources Information Center

    Cobb, Sue V. G.

    2007-01-01

    Virtual reality (VR) describes a set of technologies that allow users to explore and experience 3-dimensional computer-generated "worlds" or "environments." These virtual environments can contain representations of real or imaginary objects on a small or large scale (from modeling of molecular structures to buildings, streets, and scenery of a…

  15. Full Immersive Virtual Environment Cave[TM] in Chemistry Education

    ERIC Educational Resources Information Center

    Limniou, M.; Roberts, D.; Papadopoulos, N.

    2008-01-01

    By comparing two-dimensional (2D) chemical animations designed for computer's desktop with three-dimensional (3D) chemical animations designed for the full immersive virtual reality environment CAVE[TM] we studied how virtual reality environments could raise student's interest and motivation for learning. By using the 3ds max[TM], we can visualize…

  16. The Doubtful Guest? A Virtual Research Environment for Education

    ERIC Educational Resources Information Center

    Laterza, Vito; Carmichael, Patrick; Procter, Richard

    2007-01-01

    In this paper the authors describe a novel "Virtual Research Environment" (VRE) based on the Sakai Virtual Collaboration Environment and designed to support education research. This VRE has been used for the past two years by projects of the UK Economic and Social Research Council's Teaching and Learning Research Programme, 10 of which…

  17. The Influence of Virtual Learning Environments in Students' Performance

    ERIC Educational Resources Information Center

    Alves, Paulo; Miranda, Luísa; Morais, Carlos

    2017-01-01

    This paper focuses mainly on the relation between the use of a virtual learning environment (VLE) and students' performance. Therefore, virtual learning environments are characterised and a study is presented emphasising the frequency of access to a VLE and its relation with the students' performance from a public higher education institution…

  18. Learning in 3D Virtual Environments: Collaboration and Knowledge Spirals

    ERIC Educational Resources Information Center

    Burton, Brian G.; Martin, Barbara N.

    2010-01-01

    The purpose of this case study was to determine if learning occurred within a 3D virtual learning environment by determining if elements of collaboration and Nonaka and Takeuchi's (1995) knowledge spiral were present. A key portion of this research was the creation of a Virtual Learning Environment. This 3D VLE utilized the Torque Game Engine…

  19. Virtual Environments Supporting Learning and Communication in Special Needs Education

    ERIC Educational Resources Information Center

    Cobb, Sue V. G.

    2007-01-01

    Virtual reality (VR) describes a set of technologies that allow users to explore and experience 3-dimensional computer-generated "worlds" or "environments." These virtual environments can contain representations of real or imaginary objects on a small or large scale (from modeling of molecular structures to buildings, streets, and scenery of a…

  20. Full Immersive Virtual Environment Cave[TM] in Chemistry Education

    ERIC Educational Resources Information Center

    Limniou, M.; Roberts, D.; Papadopoulos, N.

    2008-01-01

    By comparing two-dimensional (2D) chemical animations designed for computer's desktop with three-dimensional (3D) chemical animations designed for the full immersive virtual reality environment CAVE[TM] we studied how virtual reality environments could raise student's interest and motivation for learning. By using the 3ds max[TM], we can visualize…

  1. The Doubtful Guest? A Virtual Research Environment for Education

    ERIC Educational Resources Information Center

    Laterza, Vito; Carmichael, Patrick; Procter, Richard

    2007-01-01

    In this paper the authors describe a novel "Virtual Research Environment" (VRE) based on the Sakai Virtual Collaboration Environment and designed to support education research. This VRE has been used for the past two years by projects of the UK Economic and Social Research Council's Teaching and Learning Research Programme, 10 of which…

  2. Learning in 3D Virtual Environments: Collaboration and Knowledge Spirals

    ERIC Educational Resources Information Center

    Burton, Brian G.; Martin, Barbara N.

    2010-01-01

    The purpose of this case study was to determine if learning occurred within a 3D virtual learning environment by determining if elements of collaboration and Nonaka and Takeuchi's (1995) knowledge spiral were present. A key portion of this research was the creation of a Virtual Learning Environment. This 3D VLE utilized the Torque Game Engine…

  3. The Impact of Emotional Arousal on Learning in Virtual Environments

    DTIC Science & Technology

    2002-09-01

    positive impact on human learning. The purpose of this thesis was to investigate the impact of emotional arousal on learning in virtual environments. An...reason that emotional arousal (in moderation) may also have a positive impact on human learning. The purpose of this thesis was to investigate the...1 A. TRAINING IN VIRTUAL ENVIRONMENTS.................. 2 B. HUMAN MEMORY AND EMOTION ......................... 6 C

  4. Design Characteristics of Virtual Learning Environments: State of Research

    ERIC Educational Resources Information Center

    Mueller, Daniel; Strohmeier, Stefan

    2011-01-01

    Virtual learning environments constitute current information systems' category for electronically supported training and development in (higher) education(al) and vocational training settings. Frequently expected advantages of using virtual learning environments refer, for instance, to the efficiency, individuality, ubiquity, timeliness and…

  5. Virtual performer: single camera 3D measuring system for interaction in virtual space

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Taneji, Shoto

    2006-10-01

    The authors developed interaction media systems in the 3D virtual space. In these systems, the musician virtually plays an instrument like the theremin in the virtual space or the performer plays a show using the virtual character such as a puppet. This interactive virtual media system consists of the image capture, measuring performer's position, detecting and recognizing motions and synthesizing video image using the personal computer. In this paper, we propose some applications of interaction media systems; a virtual musical instrument and superimposing CG character. Moreover, this paper describes the measuring method of the positions of the performer, his/her head and both eyes using a single camera.

  6. Virtual Manipulatives on the Interactive Whiteboard: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Mildenhall, Paula; Swan, Paul; Northcote, Maria; Marshall, Linda

    2008-01-01

    As part of the project titled "Hands-On Heads-On: The Effective Use of Manipulatives Both Virtual and Physical" being undertaken at Edith Cowan University, there was an investigation into the use of virtual manipulatives and the interactive whiteboard (IWB). Virtual manipulatives may be defined as a virtual representation of a physical…

  7. Immersive, interactive virtual field trips promote learning

    NASA Astrophysics Data System (ADS)

    Bruce, G.; Mead, C.; Buxner, S.; Taylor, W.; Semken, S. C.; Anbar, A. D.; Sundstrom, J.

    2016-12-01

    We are assessing the educational effectiveness of a new type of immersive virtual field trip (iVFT) that we are developing, grounded in active, inquiry-based learning, and accessible via web browsers. To this end, we collected data from five high school AP biology classes (n = 153) that were assigned an iVFT lesson focused on life and environment during the Ediacaran time period, 550 million years ago. Students explore a series of fossil beds using high resolution imagery and video acquired during a field expedition to the Nilpena site in the Flinders Ranges, South Australia. They first encounter an immersive spherical image, which orients them to the area. Then, they identify fossils in the iVFT, using a dichotomous key. Finally, they explore an interactive simulation of this ancient ecosystem. The average time spent on the experience was approximately two hours. The learning objective is for students to be able to describe the Ediacaran ecosystem preserved in the rocks at Nilpena. To assess this outcome, we administered identical pre- and post-lesson quizzes to students. Results showed a statistically significant improvement on the six-item quiz with a normalized gain of 0.96 (pre-lesson mean: 2.4, post-lesson mean: 5.9, p < .001). All but three students demonstrated an increase in score or maintained a perfect score. The pre-lesson scores are close to what would be expected from guessing, so these results represent a substantial growth in understanding. These findings encourage the use of iVFT-based learning experiences in education (an evolving suite is publicly available at http://vft.asu.edu). In the future, we will explore in more detail which aspects of the experience provide greatest educational benefit, and the effectiveness in teaching scientific reasoning skills in addition to content knowledge. To answer these questions, we will supplement content-based questions with mixed-methods data including interviews.

  8. Affordable virtual environments: building a virtual beach for clinical use.

    PubMed

    Sherstyuk, Andrei; Aschwanden, Christoph; Saiki, Stanley

    2005-01-01

    Virtual Reality has been used for clinical application for about 10 years and has proved to be an effective tool for treating various disorders. In this paper, we want to share our experience in building a 3D, motion tracked, immersive VR system for pain treatment and biofeedback research.

  9. Virtual Exploitation Environment Demonstration for Atmospheric Missions

    NASA Astrophysics Data System (ADS)

    Natali, Stefano; Mantovani, Simone; Hirtl, Marcus; Santillan, Daniel; Triebnig, Gerhard; Fehr, Thorsten; Lopes, Cristiano

    2017-04-01

    -operational environment, the "Virtual Exploitation Environment Demonstration for Atmospheric Missions" (VEEDAM) aims at maintaining, running and evolving the platform, demonstrating e.g. the possibility to perform massive processing over heterogeneous data sources. This work presents the VEEDAM concepts, provides pre-operational examples, stressing on the interoperability achievable exposing standardized data access and processing services (e.g. making accessible data and processing resources from different VREs). [1] TAMP platform landing page http://vtpip.zamg.ac.at/ [2] TAMP introductory video https://www.youtube.com/watch?v=xWiy8h1oXQY

  10. Virtual Research Environments for Natural Hazard Modelling

    NASA Astrophysics Data System (ADS)

    Napier, Hazel; Aldridge, Tim

    2017-04-01

    The Natural Hazards Partnership (NHP) is a group of 17 collaborating public sector organisations providing a mechanism for co-ordinated advice to government and agencies responsible for civil contingency and emergency response during natural hazard events. The NHP has set up a Hazard Impact Model (HIM) group tasked with modelling the impact of a range of UK hazards with the aim of delivery of consistent hazard and impact information. The HIM group consists of 7 partners initially concentrating on modelling the socio-economic impact of 3 key hazards - surface water flooding, land instability and high winds. HIM group partners share scientific expertise and data within their specific areas of interest including hydrological modelling, meteorology, engineering geology, GIS, data delivery, and modelling of socio-economic impacts. Activity within the NHP relies on effective collaboration between partners distributed across the UK. The NHP are acting as a use case study for a new Virtual Research Environment (VRE) being developed by the EVER-EST project (European Virtual Environment for Research - Earth Science Themes: a solution). The VRE is allowing the NHP to explore novel ways of cooperation including improved capabilities for e-collaboration, e-research, automation of processes and e-learning. Collaboration tools are complemented by the adoption of Research Objects, semantically rich aggregations of resources enabling the creation of uniquely identified digital artefacts resulting in reusable science and research. Application of the Research Object concept to HIM development facilitates collaboration, by encapsulating scientific knowledge in a shareable format that can be easily shared and used by partners working on the same model but within their areas of expertise. This paper describes the application of the VRE to the NHP use case study. It outlines the challenges associated with distributed partnership working and how they are being addressed in the VRE. A case

  11. Perception of Graphical Virtual Environments by Blind Users via Sensory Substitution.

    PubMed

    Maidenbaum, Shachar; Buchs, Galit; Abboud, Sami; Lavi-Rotbain, Ori; Amedi, Amir

    2016-01-01

    Graphical virtual environments are currently far from accessible to blind users as their content is mostly visual. This is especially unfortunate as these environments hold great potential for this population for purposes such as safe orientation, education, and entertainment. Previous tools have increased accessibility but there is still a long way to go. Visual-to-audio Sensory-Substitution-Devices (SSDs) can increase accessibility generically by sonifying on-screen content regardless of the specific environment and offer increased accessibility without the use of expensive dedicated peripherals like electrode/vibrator arrays. Using SSDs virtually utilizes similar skills as when using them in the real world, enabling both training on the device and training on environments virtually before real-world visits. This could enable more complex, standardized and autonomous SSD training and new insights into multisensory interaction and the visually-deprived brain. However, whether congenitally blind users, who have never experienced virtual environments, will be able to use this information for successful perception and interaction within them is currently unclear.We tested this using the EyeMusic SSD, which conveys whole-scene visual information, to perform virtual tasks otherwise impossible without vision. Congenitally blind users had to navigate virtual environments and find doors, differentiate between them based on their features (Experiment1:task1) and surroundings (Experiment1:task2) and walk through them; these tasks were accomplished with a 95% and 97% success rate, respectively. We further explored the reactions of congenitally blind users during their first interaction with a more complex virtual environment than in the previous tasks-walking down a virtual street, recognizing different features of houses and trees, navigating to cross-walks, etc. Users reacted enthusiastically and reported feeling immersed within the environment. They highlighted the

  12. Perception of Graphical Virtual Environments by Blind Users via Sensory Substitution

    PubMed Central

    Maidenbaum, Shachar; Buchs, Galit; Abboud, Sami; Lavi-Rotbain, Ori; Amedi, Amir

    2016-01-01

    Graphical virtual environments are currently far from accessible to blind users as their content is mostly visual. This is especially unfortunate as these environments hold great potential for this population for purposes such as safe orientation, education, and entertainment. Previous tools have increased accessibility but there is still a long way to go. Visual-to-audio Sensory-Substitution-Devices (SSDs) can increase accessibility generically by sonifying on-screen content regardless of the specific environment and offer increased accessibility without the use of expensive dedicated peripherals like electrode/vibrator arrays. Using SSDs virtually utilizes similar skills as when using them in the real world, enabling both training on the device and training on environments virtually before real-world visits. This could enable more complex, standardized and autonomous SSD training and new insights into multisensory interaction and the visually-deprived brain. However, whether congenitally blind users, who have never experienced virtual environments, will be able to use this information for successful perception and interaction within them is currently unclear.We tested this using the EyeMusic SSD, which conveys whole-scene visual information, to perform virtual tasks otherwise impossible without vision. Congenitally blind users had to navigate virtual environments and find doors, differentiate between them based on their features (Experiment1:task1) and surroundings (Experiment1:task2) and walk through them; these tasks were accomplished with a 95% and 97% success rate, respectively. We further explored the reactions of congenitally blind users during their first interaction with a more complex virtual environment than in the previous tasks–walking down a virtual street, recognizing different features of houses and trees, navigating to cross-walks, etc. Users reacted enthusiastically and reported feeling immersed within the environment. They highlighted the

  13. A Virtual Science Data Environment for Carbon Dioxide Observations

    NASA Astrophysics Data System (ADS)

    Verma, R.; Goodale, C. E.; Hart, A. F.; Law, E.; Crichton, D. J.; Mattmann, C. A.; Gunson, M. R.; Braverman, A. J.; Nguyen, H. M.; Eldering, A.; Castano, R.; Osterman, G. B.

    2011-12-01

    Climate science data are often distributed cross-institutionally and made available using heterogeneous interfaces. With respect to observational carbon-dioxide (CO2) records, these data span across national as well as international institutions and are typically distributed using a variety of data standards. Such an arrangement can yield challenges from a research perspective, as users often need to independently aggregate datasets as well as address the issue of data quality. To tackle this dispersion and heterogeneity of data, we have developed the CO2 Virtual Science Data Environment - a comprehensive approach to virtually integrating CO2 data and metadata from multiple missions and providing a suite of computational services that facilitate analysis, comparison, and transformation of that data. The Virtual Science Environment provides climate scientists with a unified web-based destination for discovering relevant observational data in context, and supports a growing range of online tools and services for analyzing and transforming the available data to suit individual research needs. It includes web-based tools to geographically and interactively search for CO2 observations collected from multiple airborne, space, as well as terrestrial platforms. Moreover, the data analysis services it provides over the Internet, including offering techniques such as bias estimation and spatial re-gridding, move computation closer to the data and reduce the complexity of performing these operations repeatedly and at scale. The key to enabling these services, as well as consolidating the disparate data into a unified resource, has been to focus on leveraging metadata descriptors as the foundation of our data environment. This metadata-centric architecture, which leverages the Dublin Core standard, forgoes the need to replicate remote datasets locally. Instead, the system relies upon an extensive, metadata-rich virtual data catalog allowing on-demand browsing and retrieval of

  14. The CAVE (TM) automatic virtual environment: Characteristics and applications

    NASA Technical Reports Server (NTRS)

    Kenyon, Robert V.

    1995-01-01

    Virtual reality may best be defined as the wide-field presentation of computer-generated, multi-sensory information that tracks a user in real time. In addition to the more well-known modes of virtual reality -- head-mounted displays and boom-mounted displays -- the Electronic Visualization Laboratory at the University of Illinois at Chicago recently introduced a third mode: a room constructed from large screens on which the graphics are projected on to three walls and the floor. The CAVE is a multi-person, room sized, high resolution, 3D video and audio environment. Graphics are rear projected in stereo onto three walls and the floor, and viewed with stereo glasses. As a viewer wearing a location sensor moves within its display boundaries, the correct perspective and stereo projections of the environment are updated, and the image moves with and surrounds the viewer. The other viewers in the CAVE are like passengers in a bus, along for the ride. 'CAVE,' the name selected for the virtual reality theater, is both a recursive acronym (Cave Automatic Virtual Environment) and a reference to 'The Simile of the Cave' found in Plato's 'Republic,' in which the philosopher explores the ideas of perception, reality, and illusion. Plato used the analogy of a person facing the back of a cave alive with shadows that are his/her only basis for ideas of what real objects are. Rather than having evolved from video games or flight simulation, the CAVE has its motivation rooted in scientific visualization and the SIGGRAPH 92 Showcase effort. The CAVE was designed to be a useful tool for scientific visualization. The Showcase event was an experiment; the Showcase chair and committee advocated an environment for computational scientists to interactively present their research at a major professional conference in a one-to-many format on high-end workstations attached to large projection screens. The CAVE was developed as a 'virtual reality theater' with scientific content and

  15. Real and virtual explorations of the environment and interactive tracking of movable objects for the blind on the basis of tactile-acoustical maps and 3D environment models.

    PubMed

    Hub, Andreas; Hartter, Tim; Kombrink, Stefan; Ertl, Thomas

    2008-01-01

    PURPOSE.: This study describes the development of a multi-functional assistant system for the blind which combines localisation, real and virtual navigation within modelled environments and the identification and tracking of fixed and movable objects. The approximate position of buildings is determined with a global positioning sensor (GPS), then the user establishes exact position at a specific landmark, like a door. This location initialises indoor navigation, based on an inertial sensor, a step recognition algorithm and map. Tracking of movable objects is provided by another inertial sensor and a head-mounted stereo camera, combined with 3D environmental models. This study developed an algorithm based on shape and colour to identify objects and used a common face detection algorithm to inform the user of the presence and position of others. The system allows blind people to determine their position with approximately 1 metre accuracy. Virtual exploration of the environment can be accomplished by moving one's finger on a touch screen of a small portable tablet PC. The name of rooms, building features and hazards, modelled objects and their positions are presented acoustically or in Braille. Given adequate environmental models, this system offers blind people the opportunity to navigate independently and safely, even within unknown environments. Additionally, the system facilitates education and rehabilitation by providing, in several languages, object names, features and relative positions.

  16. Navigation for the Blind through Audio-Based Virtual Environments.

    PubMed

    Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi

    2010-01-01

    We present the design, development and an initial study changes and adaptations related to navigation that take place in the brain, by incorporating an Audio-Based Environments Simulator (AbES) within a neuroimaging environment. This virtual environment enables a blind user to navigate through a virtual representation of a real space in order to train his/her orientation and mobility skills. Our initial results suggest that this kind of virtual environment could be highly efficient as a testing, training and rehabilitation platform for learning and navigation.

  17. Site remediation in a virtual environment

    SciTech Connect

    Bethel, W.; Jacobsen, J.; Holland, P.

    1994-01-01

    We describe the process used in combining an existing computer simulation with both Virtual Reality (VR) input and output devices, and conventional visualization tools, so as to make the simulation easier to use and the results easier to understand. VR input technology facilitates direct user manipulation of three dimensional simulation parameters. Commercially available visualization tools provide a flexible environment for representing abstract scientific data. VR output technology provides a more flexible and convincing way to view the visualization results than is afforded in contemporary visualization software. The desired goal of this process is a prototype system that minimizes man-machine interface barriers, as well as enhanced control over the simulation itself, so as to maximize the use of scientific judgement and intuition. In environmental remediation, the goal is to clean up contaminants either by removing them or rendering them non-toxic. A computer model simulates water or chemical flooding to mobilize and extract hydrocarbon contaminants from a volume of saturated soil/rock. Several wells are drilled in the vicinity of the contaminant, water and/or chemicals are injected into some of the wells, and fluid containing the mobilized hydrocarbons is pumped out of the remaining wells. The user is tasked with finding well locations and pumping rates that maximize recovery of the contaminants while minimizing drilling and pumping costs to clean up the site of interest.

  18. Multimedia virtualized environment for shoulder pain rehabilitation

    PubMed Central

    Chen, Chih-Chen

    2016-01-01

    [Purpose] Researchers imported games and virtual reality training to help participants train their shoulders in a relaxed environment. [Subjects and Methods] This study included the use of Kinect somatosensory device with Unity software to develop 3-dimensional situational games. The data collected from this training process can be uploaded via the Internet to a cloud or server for participants to perform self-inspection. The data can be a reference for the medical staff to assess training effectiveness for those with impairments and plan patient rehabilitation courses. [Results] In the training activities, 8 subjects with normal shoulder function demonstrated that the system has good stability and reproducibility. Six subjects with impaired shoulder underwent 6 weeks of training. During the third week of training, average performance stabilized. The t-test comparing 1–2 weeks to 3–4 weeks and 5–6 weeks showed significant differences. [Conclusion] Using games as training methods improved patient concentration, interest in participation and allowed patients to forget about their body discomfort. The equipment utilized in this study is inexpensive, easy to obtain, and the system is easy to install. People can perform simple self-training both at home or in the office. PMID:27190481

  19. Multimedia virtualized environment for shoulder pain rehabilitation.

    PubMed

    Chen, Chih-Chen

    2016-04-01

    [Purpose] Researchers imported games and virtual reality training to help participants train their shoulders in a relaxed environment. [Subjects and Methods] This study included the use of Kinect somatosensory device with Unity software to develop 3-dimensional situational games. The data collected from this training process can be uploaded via the Internet to a cloud or server for participants to perform self-inspection. The data can be a reference for the medical staff to assess training effectiveness for those with impairments and plan patient rehabilitation courses. [Results] In the training activities, 8 subjects with normal shoulder function demonstrated that the system has good stability and reproducibility. Six subjects with impaired shoulder underwent 6 weeks of training. During the third week of training, average performance stabilized. The t-test comparing 1-2 weeks to 3-4 weeks and 5-6 weeks showed significant differences. [Conclusion] Using games as training methods improved patient concentration, interest in participation and allowed patients to forget about their body discomfort. The equipment utilized in this study is inexpensive, easy to obtain, and the system is easy to install. People can perform simple self-training both at home or in the office.

  20. Virtual Reality: A New Learning Environment.

    ERIC Educational Resources Information Center

    Ferrington, Gary; Loge, Kenneth

    1992-01-01

    Discusses virtual reality (VR) technology and its possible uses in military training, medical education, industrial design and development, the media industry, and education. Three primary applications of VR in the learning process--visualization, simulation, and construction of virtual worlds--are described, and pedagogical and moral issues are…

  1. Virtual Energetic Particle Observatory for the Heliospheric Data Environment

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Armstrong, T. P.; Hill, M. E.; Lal, N.; McGuire, R. E.; McKibben, R. B.; Narock, T. W.; Szabo, A.; Tranquille, C.

    2007-01-01

    The heliosphere is pervaded by interplanetary energetic particles, traditionally also called cosmic rays, from solar, internal heliospheric, and galactic sources. The particles species of interest to heliophysics extend from plasma energies to the GeV energies of galactic cosmic rays still measurably affected by heliospheric modulation and the still higher energies contributing to atmospheric ionization. The NASA and international Heliospheric Network of operational and legacy spacecraft measures interplanetary fluxes of these particles. Spatial coverage extends from the inner heliosphere and geospace to the heliosheath boundary region now being traversed by Voyager 1 and soon by Voyager 2. Science objectives include investigation of solar flare and coronal mass ejection events, acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. The Virtual Energetic Particle Observatory (VEPO) will improve access and usability of selected spacecraft and sub-orbital NASA heliospheric energetic particle data sets as a newly approved effort within the evolving heliophysics virtual observatory environment. In this presentation, we will describe current VEPO science requirements, our initial priorities and an overview of our strategy to implement VEPO rapidly and at minimal cost by working within the high-level framework of the Virtual Heliospheric Observatory (VHO). VEPO will also leverage existing data services of NASA's Space Physics Data Facility and other existing capabilities of the U.S. and international heliospheric research communities.

  2. Virtual Energetic Particle Observatory for the Heliospheric Data Environment

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Armstrong, T. P.; Hill, M. E.; Lal, N.; McGuire, R. E.; McKibben, R. B.; Narock, T. W.; Szabo, A.; Tranquille, C.

    2007-01-01

    The heliosphere is pervaded by interplanetary energetic particles, traditionally also called cosmic rays, from solar, internal heliospheric, and galactic sources. The particles species of interest to heliophysics extend from plasma energies to the GeV energies of galactic cosmic rays still measurably affected by heliospheric modulation and the still higher energies contributing to atmospheric ionization. The NASA and international Heliospheric Network of operational and legacy spacecraft measures interplanetary fluxes of these particles. Spatial coverage extends from the inner heliosphere and geospace to the heliosheath boundary region now being traversed by Voyager 1 and soon by Voyager 2. Science objectives include investigation of solar flare and coronal mass ejection events, acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. The Virtual Energetic Particle Observatory (VEPO) will improve access and usability of selected spacecraft and sub-orbital NASA heliospheric energetic particle data sets as a newly approved effort within the evolving heliophysics virtual observatory environment. In this presentation, we will describe current VEPO science requirements, our initial priorities and an overview of our strategy to implement VEPO rapidly and at minimal cost by working within the high-level framework of the Virtual Heliospheric Observatory (VHO). VEPO will also leverage existing data services of NASA's Space Physics Data Facility and other existing capabilities of the U.S. and international heliospheric research communities.

  3. Cognitive Aspects of Collaboration in 3d Virtual Environments

    NASA Astrophysics Data System (ADS)

    Juřík, V.; Herman, L.; Kubíček, P.; Stachoň, Z.; Šašinka, Č.

    2016-06-01

    Human-computer interaction has entered the 3D era. The most important models representing spatial information — maps — are transferred into 3D versions regarding the specific content to be displayed. Virtual worlds (VW) become promising area of interest because of possibility to dynamically modify content and multi-user cooperation when solving tasks regardless to physical presence. They can be used for sharing and elaborating information via virtual images or avatars. Attractiveness of VWs is emphasized also by possibility to measure operators' actions and complex strategies. Collaboration in 3D environments is the crucial issue in many areas where the visualizations are important for the group cooperation. Within the specific 3D user interface the operators' ability to manipulate the displayed content is explored regarding such phenomena as situation awareness, cognitive workload and human error. For such purpose, the VWs offer a great number of tools for measuring the operators' responses as recording virtual movement or spots of interest in the visual field. Study focuses on the methodological issues of measuring the usability of 3D VWs and comparing them with the existing principles of 2D maps. We explore operators' strategies to reach and interpret information regarding the specific type of visualization and different level of immersion.

  4. The feasibility and acceptability of virtual environments in the treatment of childhood social anxiety disorder.

    PubMed

    Sarver, Nina Wong; Beidel, Deborah C; Spitalnick, Josh S

    2014-01-01

    Two significant challenges for the dissemination of social skills training programs are the need to assure generalizability and provide sufficient practice opportunities. In the case of social anxiety disorder, virtual environments may provide one strategy to address these issues. This study evaluated the utility of an interactive virtual school environment for the treatment of social anxiety disorder in preadolescent children. Eleven children with a primary diagnosis of social anxiety disorder between 8 to 12 years old participated in this initial feasibility trial. All children were treated with Social Effectiveness Therapy for Children, an empirically supported treatment for children with social anxiety disorder. However, the in vivo peer generalization sessions and standard parent-assisted homework assignments were substituted by practice in a virtual environment. Overall, the virtual environment programs were acceptable, feasible, and credible treatment components. Both children and clinicians were satisfied with using the virtual environment technology, and children believed it was a high-quality program overall. In addition, parents were satisfied with the virtual environment augmented treatment and indicated that they would recommend the program to family and friends. Findings indicate that the virtual environments are viewed as acceptable and credible by potential recipients. Furthermore, they are easy to implement by even novice users and appear to be useful adjunctive elements for the treatment of childhood social anxiety disorder.

  5. The feasibility and acceptability of virtual environments in the treatment of childhood social anxiety disorder

    PubMed Central

    Wong, Nina; Beidel, Deborah C.; Spitalnick, Josh

    2013-01-01

    Objective Two significant challenges for the dissemination of social skills training programs are the need to assure generalizability and provide sufficient practice opportunities. In the case of social anxiety disorder, virtual environments may provide one strategy to address these issues. This study evaluated the utility of an interactive virtual school environment for the treatment of social anxiety disorder in preadolescent children. Method Eleven children with a primary diagnosis of social anxiety disorder between 8 to 12 years old participated in this initial feasibility trial. All children were treated with Social Effectiveness Therapy for Children, an empirically supported treatment for children with social anxiety disorder. However, the in vivo peer generalization sessions and standard parent-assisted homework assignments were substituted by practice in a virtual environment. Results Overall, the virtual environment programs were acceptable, feasible, and credible treatment components. Both children and clinicians were satisfied with using the virtual environment technology, and children believed it was a high quality program overall. Additionally, parents were satisfied with the virtual environment augmented treatment and indicated that they would recommend the program to family and friends. Conclusion Virtual environments are viewed as acceptable and credible by potential recipients. Furthermore, they are easy to implement by even novice users and appear to be useful adjunctive elements for the treatment of childhood social anxiety disorder. PMID:24144182

  6. Future Evolution of Virtual Worlds as Communication Environments

    NASA Astrophysics Data System (ADS)

    Prisco, Giulio

    Extensive experience creating locations and activities inside virtual worlds provides the basis for contemplating their future. Users of virtual worlds are diverse in their goals for these online environments; for example, immersionists want them to be alternative realities disconnected from real life, whereas augmentationists want them to be communication media supporting real-life activities. As the technology improves, the diversity of virtual worlds will increase along with their significance. Many will incorporate more advanced virtual reality, or serve as major media for long-distance collaboration, or become the venues for futurist social movements. Key issues are how people can create their own virtual worlds, travel across worlds, and experience a variety of multimedia immersive environments. This chapter concludes by noting the view among some computer scientists that future technologies will permit uploading human personalities to artificial intelligence avatars, thereby enhancing human beings and rendering the virtual worlds entirely real.

  7. Identification of metaphors for virtual environment training systems.

    PubMed

    Stanney, Kay M; Chen, Jui Lin; Wedell, Branka; Breaux, Robert

    2003-01-15

    The objective of this effort was to develop potential metaphors for assisting wayfinding and navigation in current virtual environment (VE) training systems. Although VE purports a number of advantages over traditional, full-scale simulator training devices (deployability, footprint, cost, maintainability, scalability, networking), little design guidance exists beyond individual instantiations with specific platforms. A review of metaphors commonly incorporated into human-computer interactive systems indicated that existing metaphors have largely been used as orientation aids, mainly in the form of guided navigational assistance, with some position guidance. Advanced metaphor design concepts were identified that would not only provide trainees with a useful orienting framework but also enhance visual access and help differentiate an environment. The effectiveness of these concepts to aid navigation and wayfinding in VEs must be empirically validated.

  8. A specification of 3D manipulation in virtual environments

    NASA Technical Reports Server (NTRS)

    Su, S. Augustine; Furuta, Richard

    1994-01-01

    In this paper we discuss the modeling of three basic kinds of 3-D manipulations in the context of a logical hand device and our virtual panel architecture. The logical hand device is a useful software abstraction representing hands in virtual environments. The virtual panel architecture is the 3-D component of the 2-D window systems. Both of the abstractions are intended to form the foundation for adaptable 3-D manipulation.

  9. Two implementations of shared virtual space environments.

    SciTech Connect

    Disz, T. L.

    1998-01-13

    While many issues in the area of virtual reality (VR) research have been addressed in recent years, the constant leaps forward in technology continue to push the field forward. VR research no longer is focused only on computer graphics, but instead has become even more interdisciplinary, combining the fields of networking, distributed computing, and even artificial intelligence. In this article we discuss some of the issues associated with distributed, collaborative virtual reality, as well as lessons learned during the development of two distributed virtual reality applications.

  10. COMPLEX CONDITIONAL CONTROL BY PIGEONS IN A CONTINUOUS VIRTUAL ENVIRONMENT

    PubMed Central

    Qadri, Muhammad A. J.; Reid, Sean; Cook, Robert G.

    2016-01-01

    We tested two pigeons in a continuously streaming digital environment. Using animation software that constantly presented a dynamic, three-dimensional (3D) environment, the animals were tested with a conditional object identification task. The correct object at a given time depended on the virtual context currently streaming in front of the pigeon. Pigeons were required to accurately peck correct target objects in the environment for food reward, while suppressing any pecks to intermixed distractor objects which delayed the next object’s presentation. Experiment 1 established that the pigeons’ discrimination of two objects could be controlled by the surface material of the digital terrain. Experiment 2 established that the pigeons’ discrimination of four objects could be conjunctively controlled by both the surface material and topography of the streaming environment. These experiments indicate that pigeons can simultaneously process and use at least two context cues from a streaming environment to control their identification behavior of passing objects. These results add to the promise of testing interactive digital environments with animals to advance our understanding of cognition and behavior. PMID:26781058

  11. Complex conditional control by pigeons in a continuous virtual environment.

    PubMed

    Qadri, Muhammad A J; Reid, Sean; Cook, Robert G

    2016-01-01

    We tested two pigeons in a continuously streaming digital environment. Using animation software that constantly presented a dynamic, three-dimensional (3D) environment, the animals were tested with a conditional object identification task. The correct object at a given time depended on the virtual context currently streaming in front of the pigeon. Pigeons were required to accurately peck correct target objects in the environment for food reward, while suppressing any pecks to intermixed distractor objects which delayed the next object's presentation. Experiment 1 established that the pigeons' discrimination of two objects could be controlled by the surface material of the digital terrain. Experiment 2 established that the pigeons' discrimination of four objects could be conjunctively controlled by both the surface material and topography of the streaming environment. These experiments indicate that pigeons can simultaneously process and use at least two context cues from a streaming environment to control their identification behavior of passing objects. These results add to the promise of testing interactive digital environments with animals to advance our understanding of cognition and behavior.

  12. Nature and origins of virtual environments - A bibliographical essay

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.

    1991-01-01

    Virtual environments presented via head-mounted, computer-driven displays provide a new media for communication. They may be analyzed by considering: (1) what may be meant by an environment; (2) what is meant by the process of virtualization; and (3) some aspects of human performance that constrain environmental design. Their origins are traced from previous work in vehicle simulation and multimedia research. Pointers are provided to key technical references, in the dispersed, archival literature, that are relevant to the development and evaluation of virtual-environment interface systems.

  13. Nature and origins of virtual environments - A bibliographical essay

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.

    1991-01-01

    Virtual environments presented via head-mounted, computer-driven displays provide a new media for communication. They may be analyzed by considering: (1) what may be meant by an environment; (2) what is meant by the process of virtualization; and (3) some aspects of human performance that constrain environmental design. Their origins are traced from previous work in vehicle simulation and multimedia research. Pointers are provided to key technical references, in the dispersed, archival literature, that are relevant to the development and evaluation of virtual-environment interface systems.

  14. Is a dark virtual environment scary?

    PubMed

    Toet, Alexander; van Welie, Marloes; Houtkamp, Joske

    2009-08-01

    This study investigated the effects of nighttime lighting conditions and stress on the affective appraisal of a virtual environment (VE). The effective application of VEs in emotionally intense simulations requires precise control over their characteristics that affect the user's emotions and behavior. It is known that humans have an innate fear of darkness, which increases after exposure to stress and extrapolates to ecologically valid (immersive) VEs. This study investigated if the simulated level of illumination determines the affective appraisal of a VE, particularly after stress. Participants explored either a daytime or a nighttime version of a VE, after performing either an acute psychosocial stress task (Trier Social Stress Test, or TSST) or a relaxing control task. The affective qualities of the VE were appraised through the Russel and Pratt semantic questionnaire on the valence and arousal dimensions. Distress was assessed through free salivary cortisol, the state self-report scale from the Spielberger State-Trait Anxiety Inventory (STAI), and heart rate. In addition, memory for scenic details was tested through a yes-no recognition test. Free salivary cortisol levels, heart rates, and scores on the STAI all indicate that participants who were subjected to the stress task indeed showed signs of distress, whereas participants in the control group showed no signs of stress. The results of the semantic questionnaire and the recognition test showed no significant overall effect of time-of-day conditions on the affective appraisal of the VE or on the recognition of its details, even after prior stress. The experiences of users exploring the VE were not affected by the simulated lighting conditions, even after acute prior stress. Thus, lowering the illumination level in a desktop VE is not sufficient to elicit anxiety. Hence, desktop VE representations are different from immersive VE representations in this respect. This finding has implications for desktop VE

  15. Pedagogical Intercultural Practice of Teachers in Virtual Environments

    ERIC Educational Resources Information Center

    Barreto, Carmen Ricardo; Haydar, Jorge Mizzuno

    2016-01-01

    This study presents some of the results of the project "Training and Development of Intercultural Competency of Teachers in Virtual Environments", carried out in ten Colombian Caribbean higher education institutions (HEI) offering virtual programs. It was performed in three steps: 1-diagnosis, 2-training, and 3-analysis of the…

  16. Designing a Virtual-Reality-Based, Gamelike Math Learning Environment

    ERIC Educational Resources Information Center

    Xu, Xinhao; Ke, Fengfeng

    2016-01-01

    This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…

  17. Spatial Integration under Contextual Control in a Virtual Environment

    ERIC Educational Resources Information Center

    Molet, Mikael; Gambet, Boris; Bugallo, Mehdi; Miller, Ralph R.

    2012-01-01

    The role of context was examined in the selection and integration of independently learned spatial relationships. Using a dynamic 3D virtual environment, participants learned one spatial relationship between landmarks A and B which was established in one virtual context (e.g., A is left of B) and a different spatial relationship which was…

  18. Game-Like Language Learning in 3-D Virtual Environments

    ERIC Educational Resources Information Center

    Berns, Anke; Gonzalez-Pardo, Antonio; Camacho, David

    2013-01-01

    This paper presents our recent experiences with the design of game-like applications in 3-D virtual environments as well as its impact on student motivation and learning. Therefore our paper starts with a brief analysis of the motivational aspects of videogames and virtual worlds (VWs). We then go on to explore the possible benefits of both in the…

  19. Designing a Virtual-Reality-Based, Gamelike Math Learning Environment

    ERIC Educational Resources Information Center

    Xu, Xinhao; Ke, Fengfeng

    2016-01-01

    This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…

  20. Spatial Integration under Contextual Control in a Virtual Environment

    ERIC Educational Resources Information Center

    Molet, Mikael; Gambet, Boris; Bugallo, Mehdi; Miller, Ralph R.

    2012-01-01

    The role of context was examined in the selection and integration of independently learned spatial relationships. Using a dynamic 3D virtual environment, participants learned one spatial relationship between landmarks A and B which was established in one virtual context (e.g., A is left of B) and a different spatial relationship which was…

  1. Game-Like Language Learning in 3-D Virtual Environments

    ERIC Educational Resources Information Center

    Berns, Anke; Gonzalez-Pardo, Antonio; Camacho, David

    2013-01-01

    This paper presents our recent experiences with the design of game-like applications in 3-D virtual environments as well as its impact on student motivation and learning. Therefore our paper starts with a brief analysis of the motivational aspects of videogames and virtual worlds (VWs). We then go on to explore the possible benefits of both in the…

  2. Virtual Worlds; Real Learning: Design Principles for Engaging Immersive Environments

    NASA Technical Reports Server (NTRS)

    Wu (u. Sjarpm)

    2012-01-01

    The EMDT master's program at Full Sail University embarked on a small project to use a virtual environment to teach graduate students. The property used for this project has evolved our several iterations and has yielded some basic design principles and pedagogy for virtual spaces. As a result, students are emerging from the program with a better grasp of future possibilities.

  3. Ecological validity of virtual environments to assess human navigation ability

    PubMed Central

    van der Ham, Ineke J. M.; Faber, Annemarie M. E.; Venselaar, Matthijs; van Kreveld, Marc J.; Löffler, Maarten

    2015-01-01

    Route memory is frequently assessed in virtual environments. These environments can be presented in a fully controlled manner and are easy to use. Yet they lack the physical involvement that participants have when navigating real environments. For some aspects of route memory this may result in reduced performance in virtual environments. We assessed route memory performance in four different environments: real, virtual, virtual with directional information (compass), and hybrid. In the hybrid environment, participants walked the route outside on an open field, while all route information (i.e., path, landmarks) was shown simultaneously on a handheld tablet computer. Results indicate that performance in the real life environment was better than in the virtual conditions for tasks relying on survey knowledge, like pointing to start and end point, and map drawing. Performance in the hybrid condition however, hardly differed from real life performance. Performance in the virtual environment did not benefit from directional information. Given these findings, the hybrid condition may offer the best of both worlds: the performance level is comparable to that of real life for route memory, yet it offers full control of visual input during route learning. PMID:26074831

  4. Diabetes Self-management Training in a Virtual Environment.

    PubMed

    Reagan, Louise; Pereira, Katherine; Jefferson, Vanessa; Evans Kreider, Kathryn; Totten, Susan; D'Eramo Melkus, Gail; Johnson, Constance; Vorderstrasse, Allison

    2017-08-01

    Diabetes self-management training (DSMT) improves diabetes health outcomes. However, low numbers of patients receive DSMT. Using virtual environments (VEs) for DSMT is an innovative approach to removing barriers for patients. The purpose of this paper is to describe the experience of health professionals and diabetes educators establishing and teaching DSMT in a VE, Diabetes LIVE© (Learning in Virtual Environments), and the implications for future use of VEs in DSMT. It was found that providing DSMT in a VE preserves real-time interaction between patients and educators. To facilitate ongoing patient learning and engagement, the DSMT curriculum was expanded beyond the core content as "Above and Beyond" topics. Using a VE for DSMT presents challenges and opportunities. Challenges include overcoming technological barriers and improving comfort levels to orient educators and patients to the functionality of the VE. Opportunities include overcoming barriers to reaching patients, particularly given the diabetes epidemic and relatively small number of diabetes educators. Using a VE also affords a simulated community for experiential learning. VEs may become powerful tools for diabetes and other health educators to reach patients. Ongoing education and support are vital to successful self-management of chronic disease.

  5. Toward real-time interactive virtual prototyping of mechanical systems: Experiences coupling virtual reality with finite element analysis

    SciTech Connect

    Canfield, T.; Disz, T.; Papka, M.; Stevens, R.

    1996-11-01

    Virtual prototyping involves a synthesis of engineering methodology and immersive, three-dimensional visualization technology. Ideally, this is a process in which computational models are used in place of physical models in the development of a new product or design concept. If used successfully, virtual prototyping can lead to more rapid product design and development. Software is currently being developed that will enable virtual prototyping of mechanical systems in the CAVE (CAVE Automatic Virtual Environment) at Argonne National Laboratory. This software has two principal components: (1) fast simulation software, FIFEA (Fast Implicit Finite Element Analysis), for analyzing mechanical systems and (2) virtual reality display software for visualizing results and allowing user interaction. This paper discusses various issues related to the coupling of finite element software to the CAVE display system.

  6. Creating Interactive Virtual Humans: Some Assembly Required

    DTIC Science & Technology

    2002-08-01

    the synthetic environment. For example, Mr. Bubb of Zoesis Studios (see Figure 5) is tightly responsive to unpredictable and con- tinuous changes in...other alterna- tives is an important open problem in vir- tual human research. The future of androids remains to be seen, but realistic interactive...computer.org/intelligent 61 Figure 5. Mr. Bubb is an interactive character developed by Zoesis Studios that reacts continously to the user’s social interactions

  7. Preparation and presentation of cultural content in virtual environment

    NASA Astrophysics Data System (ADS)

    Zara, Jiri

    2003-01-01

    The paper presents a web-based application for preparation and presentation of various two and three dimensional cultural showpieces in a virtual environment. Specific task modules built on a common database provide tools for designing spatial models of a real or a fully virtual gallery, exhibit management, arrangement of exhibits within the virtual space, and final web presentation using standard VRML browser and Java applet. The whole application serves for different kinds of users gallery owners, artists, and visitors. A use of virtual reality paradigms for image presentation purposes is discussed here, too.

  8. Virtual interactive simulation and inspection tool (VISIT) Modeling sensor networks in a virtual city

    SciTech Connect

    Moore, D. M.

    2004-01-01

    The U.S. government is currently investigating the deployment of radiation sensor systems to protect cities against nuclear and radiological threats. Due to the high cost of installing such systems, there is a need to analyze the effectiveness of a variety of sensor configurations in detecting such threats before installing such systems in the field. The Virtual Interactive Simulation and Inspection Tool (VISIT) is a computer program developed for various virtual-reality applications in national security programs, and is presently being adapted to test the efficacy of a variety of sensor configurations in a virtual urban environment. The value of a particular sensor configuration will be assessed by running virtual exercises in which a threat team will choose a radiological device and route to a target and a detection team will specify the locations and types of sensors to be placed in the city to attempt detection of the threat prior to it reaching its target. This paper will discuss the VISIT package, its proposed application, and lessons learned from modeling done to date.

  9. Investigating Learners' Attitudes toward Virtual Reality Learning Environments: Based on a Constructivist Approach

    ERIC Educational Resources Information Center

    Huang, Hsiu-Mei; Rauch, Ulrich; Liaw, Shu-Sheng

    2010-01-01

    The use of animation and multimedia for learning is now further extended by the provision of entire Virtual Reality Learning Environments (VRLE). This highlights a shift in Web-based learning from a conventional multimedia to a more immersive, interactive, intuitive and exciting VR learning environment. VRLEs simulate the real world through the…

  10. Investigating Learners' Attitudes toward Virtual Reality Learning Environments: Based on a Constructivist Approach

    ERIC Educational Resources Information Center

    Huang, Hsiu-Mei; Rauch, Ulrich; Liaw, Shu-Sheng

    2010-01-01

    The use of animation and multimedia for learning is now further extended by the provision of entire Virtual Reality Learning Environments (VRLE). This highlights a shift in Web-based learning from a conventional multimedia to a more immersive, interactive, intuitive and exciting VR learning environment. VRLEs simulate the real world through the…

  11. HPVZ: A High Performance Virtual Computing Environment for Super Computers

    NASA Astrophysics Data System (ADS)

    Lu, Kai; Chi, Wanqing; Liu, Yongpeng; Tang, Hongwei

    Because of the features of isolation, security and consolidation, virtual machine technology is widely used in data center for server consolidation, which can support different operating systems or different isolated applications running on a single server. Besides this usage scenario on server systems, there are other scenarios that require more performance, isolation and security than consolidation. Such scenarios include HPC and Cluster for scientific computing. Because of the particularity of system architectures and usage requirements, existing virtual machine techniques cannot be used in HPC directly. Aiming to provide the features of architecture and requirements for HPC, we present a virtual machine technique for HPC system named High Performance Virtual Zone(HPVZ). HPVZ technique is the first complete solution for virtualization of HPC systems, and can provide users an isolated and secure running environment based on the structure of the HPC system. The evaluation shows that the HPVZ technique is the most cost-effective for HPC, compared to other virtual machine techniques.

  12. Human Machine Interfaces for Teleoperators and Virtual Environments

    NASA Technical Reports Server (NTRS)

    Durlach, Nathaniel I. (Compiler); Sheridan, Thomas B. (Compiler); Ellis, Stephen R. (Compiler)

    1991-01-01

    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models.

  13. Designing user models in a virtual cave environment

    SciTech Connect

    Brown-VanHoozer, S.; Hudson, R.; Gokhale, N.

    1995-12-31

    In this paper, the results of a first study into the use of virtual reality for human factor studies and design of simple and complex models of control systems, components, and processes are described. The objective was to design a model in a virtual environment that would reflect more characteristics of the user`s mental model of a system and fewer of the designer`s. The technology of a CAVE{trademark} virtual environment and the methodology of Neuro Linguistic Programming were employed in this study.

  14. Lost in Interaction in IMS Learning Design Runtime Environments

    ERIC Educational Resources Information Center

    Derntl, Michael; Neumann, Susanne; Oberhuemer, Petra

    2014-01-01

    Educators are exploiting the advantages of advanced web-based collaboration technologies and massive online interactions. Interactions between learners and human or nonhuman resources therefore play an increasingly important pedagogical role, and the way these interactions are expressed in the user interface of virtual learning environments is…

  15. Lost in Interaction in IMS Learning Design Runtime Environments

    ERIC Educational Resources Information Center

    Derntl, Michael; Neumann, Susanne; Oberhuemer, Petra

    2014-01-01

    Educators are exploiting the advantages of advanced web-based collaboration technologies and massive online interactions. Interactions between learners and human or nonhuman resources therefore play an increasingly important pedagogical role, and the way these interactions are expressed in the user interface of virtual learning environments is…

  16. Virtual Environments for Mathematics and Geometry Education

    ERIC Educational Resources Information Center

    Kaufmann, Hannes

    2009-01-01

    Since ancient times mathematicians and geometricians have used visualisations to describe, discuss, study and teach mathematics. In mathematics education, visualisations are still used whenever possible to support teaching, to inspire students and feed their need to actually see abstract mathematical facts. In our times, virtual reality presents a…

  17. Intelligent Tutors in Immersive Virtual Environments

    ERIC Educational Resources Information Center

    Yan, Peng; Slator, Brian M.; Vender, Bradley; Jin, Wei; Kariluoma, Matti; Borchert, Otto; Hokanson, Guy; Aggarwal, Vaibhav; Cosmano, Bob; Cox, Kathleen T.; Pilch, André; Marry, Andrew

    2013-01-01

    Research into virtual role-based learning has progressed over the past decade. Modern issues include gauging the difficulty of designing a goal system capable of meeting the requirements of students with different knowledge levels, and the reasonability and possibility of taking advantage of the well-designed formula and techniques served in other…

  18. Training through Telematics in Virtual Environment.

    ERIC Educational Resources Information Center

    Sharma, C. B.

    1997-01-01

    Defines telematics and argues that India should exploit telematics resources for training. Describes training through telematics and virtual means, as well as a redefinition of the notion of training. Discusses the cost factor and its influence on policy at different levels. (AEF)

  19. Skill training in multimodal virtual environments.

    PubMed

    Gopher, Daniel

    2012-01-01

    Multimodal, immersive, virtual reality (VR) techniques open new perspectives for perceptual-motor skill trainers. They also introduce new risks and dangers. This paper describes the benefits and pitfalls of multimodal training and the cognitive building blocks of a multimodal, VR training simulators.

  20. Ensuring Quality in a Virtual Reference Environment

    ERIC Educational Resources Information Center

    Barbier, Pat; Ward, Joyce

    2004-01-01

    Soon after AskALibrarian, Florida's Statewide Virtual Reference Desk, began to offer Chat Reference to the public in 2003, a Quality Assurance Workgroup was established to ensure that the service patrons received would be friendly, accurate, and adequate. To make certain that best practices were used in answering the real time questions, two…

  1. Ensuring Quality in a Virtual Reference Environment

    ERIC Educational Resources Information Center

    Barbier, Pat; Ward, Joyce

    2004-01-01

    Soon after AskALibrarian, Florida's Statewide Virtual Reference Desk, began to offer Chat Reference to the public in 2003, a Quality Assurance Workgroup was established to ensure that the service patrons received would be friendly, accurate, and adequate. To make certain that best practices were used in answering the real time questions, two…

  2. Virtual Environment Design for Low/Zero Visibility Tower Tools

    NASA Technical Reports Server (NTRS)

    Reisman, Ron; Farouk, Ahmed; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    This paper describes prototype software for three-dimensional display of aircraft movement based on realtime radar and other Air Traffic Control (ATC) information. This prototype can be used to develop operational tools for controllers in ATC Towers who cannot view aircraft in low or zero visibility (LZV) weather conditions. The controller could also use the software to arbitrarily reposition his virtual eyepoint to overcome physical obstructions or increase situation awareness. The LZV Tower tool prototype consists of server and client components. The server interfaces to operational ATC radar and communications systems, sending processed data to a client process written in java. This client process runs under Netscape Communicator to provide an interactive perspective display of aircraft in the airport environment. Prototype VRML airport models were derived from 3-D databases used in FAA-certified high fidelity flight-simulators. The web-based design offers potential efficiency increases and decreased costs in the development and deployment of operational LZV Tower tools.

  3. Virtual Environment Design for Low/Zero Visibility Tower Tools

    NASA Technical Reports Server (NTRS)

    Reisman, Ron; Farouk, Ahmed; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    This paper describes prototype software for three-dimensional display of aircraft movement based on realtime radar and other Air Traffic Control (ATC) information. This prototype can be used to develop operational tools for controllers in ATC Towers who cannot view aircraft in low or zero visibility (LZV) weather conditions. The controller could also use the software to arbitrarily reposition his virtual eyepoint to overcome physical obstructions or increase situation awareness. The LZV Tower tool prototype consists of server and client components. The server interfaces to operational ATC radar and communications systems, sending processed data to a client process written in java. This client process runs under Netscape Communicator to provide an interactive perspective display of aircraft in the airport environment. Prototype VRML airport models were derived from 3-D databases used in FAA-certified high fidelity flight-simulators. The web-based design offers potential efficiency increases and decreased costs in the development and deployment of operational LZV Tower tools.

  4. MAT3D: a virtual reality modeling language environment for the teaching and learning of mathematics.

    PubMed

    Pasqualotti, Adriano; dal Sasso Freitas, Carla Maria

    2002-10-01

    Virtual Reality Modeling Language (VRML) is an independent platform language that allows the creation of nonimmersive virtual environments (VEs) and their use through the Internet. In these VEs, the viewer may navigate and interact with virtual objects, moving around and visualizing them from different angles. Students can benefit from this technology, because it permits them access to objects, which describe the topics covered in their studies in addition to oral and written information. In this work, we investigate the aspects involved in the use of VEs in teaching and learning and propose a conceptual model, called MAT3D, as a learning environment that can be used for the teaching and learning of mathematics. A case study is also presented, in which students use a virtual environment modeled in VRML. Data resulting from this study is analyzed statistically to evaluate the impact of this prototype when applied to the actual teaching and learning of mathematics.

  5. A workout for virtual bodybuilders (design issues for embodiment in multi-actor virtual environments)

    NASA Technical Reports Server (NTRS)

    Benford, Steve; Bowers, John; Fahlen, Lennart E.; Greenhalgh, Chris; Snowdon, Dave

    1994-01-01

    This paper explores the issue of user embodiment within collaborative virtual environments. By user embodiment we mean the provision of users with appropriate body images so as to represent them to others and also to themselves. By collaborative virtual environments we mean multi-user virtual reality systems which support cooperative work (although we argue that the results of our exploration may also be applied to other kinds of collaborative systems). The main part of the paper identifies a list of embodiment design issues including: presence, location, identity, activity, availability, history of activity, viewpoint, action point, gesture, facial expression, voluntary versus involuntary expression, degree of presence, reflecting capabilities, manipulating the user's view of others, representation across multiple media, autonomous and distributed body parts, truthfulness and efficiency. Following this, we show how these issues are reflected in our own DIVE and MASSIVE prototype collaborative virtual environments.

  6. Pain modulation during drives through cold and hot virtual environments.

    PubMed

    Mühlberger, Andreas; Wieser, Matthias J; Kenntner-Mabiala, Ramona; Pauli, Paul; Wiederhold, Brenda K

    2007-08-01

    Evidence exists that virtual worlds reduce pain perception by providing distraction. However, there is no experimental study to show that the type of world used in virtual reality (VR) distraction influences pain perception. Therefore, we investigated whether pain triggered by heat or cold stimuli is modulated by "warm "or "cold " virtual environments and whether virtual worlds reduce pain perception more than does static picture presentation. We expected that cold worlds would reduce pain perception from heat stimuli, while warm environments would reduce pain perception from cold stimuli. Additionally, both virtual worlds should reduce pain perception in general. Heat and cold pain stimuli thresholds were assessed outside VR in 48 volunteers in a balanced crossover design. Participants completed three 4-minute assessment periods: virtual "walks " through (1) a winter and (2) an autumn landscape and static exposure to (3) a neutral landscape. During each period, five heat stimuli or three cold stimuli were delivered via a thermode on the participant's arm, and affective and sensory pain perceptions were rated. Then the thermode was changed to the other arm, and the procedure was repeated with the opposite pain stimuli (heat or cold). We found that both warm and cold virtual environments reduced pain intensity and unpleasantness for heat and cold pain stimuli when compared to the control condition. Since participants wore a head-mounted display (HMD) in both the control condition and VR, we concluded that the distracting value of virtual environments is not explained solely by excluding perception of the real world. Although VR reduced pain unpleasantness, we found no difference in efficacy between the types of virtual world used for each pain stimulus.

  7. Interaction Design and Usability of Learning Spaces in 3D Multi-user Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Minocha, Shailey; Reeves, Ahmad John

    Three-dimensional virtual worlds are multimedia, simulated environments, often managed over the Web, which users can 'inhabit' and interact via their own graphical, self-representations known as 'avatars'. 3D virtual worlds are being used in many applications: education/training, gaming, social networking, marketing and commerce. Second Life is the most widely used 3D virtual world in education. However, problems associated with usability, navigation and way finding in 3D virtual worlds may impact on student learning and engagement. Based on empirical investigations of learning spaces in Second Life, this paper presents design guidelines to improve the usability and ease of navigation in 3D spaces. Methods of data collection include semi-structured interviews with Second Life students, educators and designers. The findings have revealed that design principles from the fields of urban planning, Human- Computer Interaction, Web usability, geography and psychology can influence the design of spaces in 3D multi-user virtual environments.

  8. Communicating Situation Awareness in Virtual Environments

    DTIC Science & Technology

    1994-08-01

    Seattle, "The Treatment of Akinesia Using Virtual Images." Ph.D. M.E., In Progress, University of Washington, Seattle. Geoffrey M. Silverton (Research...hitl.washington.edu Robert G. Futamura UW / HITL futamura@u.washington.edu Jerry Prothero UW / HITL prothero@hitl.washington.edu Geoffrey Silverton UW / HITL geoffs...Glenna Satalich Navigating and wayfinding in VR Geoff Silverton HITLab Testbed specifications Ryoko Williamson Exploring the effect of information

  9. Clandestine Message Passing in Virtual Environments

    DTIC Science & Technology

    2008-09-01

    Xbox 360 and PlayStation 3 as managerial software to set up person to person matches for any one of the hundreds of titles. The business world has... accounts are free; each additional account costs money. Virtual land can be purchased for a monthly fee. Recently, IBM reverse engineered their VE...million units sold worldwide up to and including the month of June 2008, the Nintendo Wii has outsold both the Xbox (19 million units) and PlayStation 3

  10. Review of Virtual Environment Interface Technology.

    DTIC Science & Technology

    1996-03-01

    instances they are essential cues for accurate task performance. For example, Begault (1992) discusses research conducted at NASA Ames Research Center...discussed by Begault (1992), although two sound sources—one at right 60° azimuth, 0° elevation and another at the mirror image position of 120° azimuth, 0...traffic collision avoidance systems ( Begault , 1993), localization in virtual acoustic displays (Wenzel, 1992), multi-channel spatial auditory displays

  11. Cognitive Virtualization: Combining Cognitive Models and Virtual Environments

    SciTech Connect

    Tuan Q. Tran; David I. Gertman; Donald D. Dudenhoeffer; Ronald L. Boring; Alan R. Mecham

    2007-08-01

    3D manikins are often used in visualizations to model human activity in complex settings. Manikins assist in developing understanding of human actions, movements and routines in a variety of different environments representing new conceptual designs. One such environment is a nuclear power plant control room, here they have the potential to be used to simulate more precise ergonomic assessments of human work stations. Next generation control rooms will pose numerous challenges for system designers. The manikin modeling approach by itself, however, may be insufficient for dealing with the desired technical advancements and challenges of next generation automated systems. Uncertainty regarding effective staffing levels; and the potential for negative human performance consequences in the presence of advanced automated systems (e.g., reduced vigilance, poor situation awareness, mistrust or blind faith in automation, higher information load and increased complexity) call for further research. Baseline assessment of novel control room equipment(s) and configurations needs to be conducted. These design uncertainties can be reduced through complementary analysis that merges ergonomic manikin models with models of higher cognitive functions, such as attention, memory, decision-making, and problem-solving. This paper will discuss recent advancements in merging a theoretical-driven cognitive modeling framework within a 3D visualization modeling tool to evaluate of next generation control room human factors and ergonomic assessment. Though this discussion primary focuses on control room design, the application for such a merger between 3D visualization and cognitive modeling can be extended to various areas of focus such as training and scenario planning.

  12. Navigating abstract virtual environment: an eeg study.

    PubMed

    Hakak, Alireza Mahdizadeh; Bhattacharya, Joydeep; Biloria, Nimish; de Kleijn, Roy; Shah-Mohammadi, Fanak

    2016-12-01

    Perceptions of different environments are different for different people. An abstract designed environment, with a degree of freedom from any visual reference in the physical world requests a completely different perception than a fully or semi-designed environment that has some correlation with the physical world. Maximal evidence on the manner in which the human brain is involved/operates in dealing with such novel perception comes from neuropsychology. Harnessing the tools and techniques involved in the domain of neuropsychology, the paper presents nee evidence on the role of pre-central gyrus in the perception of abstract spatial environments. In order to do so, the research team developed three different categories of designed environment with different characteristics: (1) Abstract environment, (2) Semi-designed environment, (3) Fully designed environment, as experimental sample environments. Perception of Fully-designed and semi-designed environments is almost the same, [maybe] since the brain can find a correlation between designed environments and already experienced physical world. In addition to this, the response to questionnaires accompanied with a list of buzzwords that have been provided after the experiments, also describe the characteristics of the chosen sample environments. Additionally, these results confirm the suitability of continuous electroencephalography (EEG) for studying Perception from the perspective of architectural environments.

  13. Virtual learning object and environment: a concept analysis.

    PubMed

    Salvador, Pétala Tuani Candido de Oliveira; Bezerril, Manacés Dos Santos; Mariz, Camila Maria Santos; Fernandes, Maria Isabel Domingues; Martins, José Carlos Amado; Santos, Viviane Euzébia Pereira

    2017-01-01

    To analyze the concept of virtual learning object and environment according to Rodgers' evolutionary perspective. Descriptive study with a mixed approach, based on the stages proposed by Rodgers in his concept analysis method. Data collection occurred in August 2015 with the search of dissertations and theses in the Bank of Theses of the Coordination for the Improvement of Higher Education Personnel. Quantitative data were analyzed based on simple descriptive statistics and the concepts through lexicographic analysis with support of the IRAMUTEQ software. The sample was made up of 161 studies. The concept of "virtual learning environment" was presented in 99 (61.5%) studies, whereas the concept of "virtual learning object" was presented in only 15 (9.3%) studies. A virtual learning environment includes several and different types of virtual learning objects in a common pedagogical context. Analisar o conceito de objeto e de ambiente virtual de aprendizagem na perspectiva evolucionária de Rodgers. Estudo descritivo, de abordagem mista, realizado a partir das etapas propostas por Rodgers em seu modelo de análise conceitual. A coleta de dados ocorreu em agosto de 2015 com a busca de dissertações e teses no Banco de Teses e Dissertações da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Os dados quantitativos foram analisados a partir de estatística descritiva simples e os conceitos pela análise lexicográfica com suporte do IRAMUTEQ. A amostra é constituída de 161 estudos. O conceito de "ambiente virtual de aprendizagem" foi apresentado em 99 (61,5%) estudos, enquanto o de "objeto virtual de aprendizagem" em apenas 15 (9,3%). Concluiu-se que um ambiente virtual de aprendizagem reúne vários e diferentes tipos de objetos virtuais de aprendizagem em um contexto pedagógico comum.

  14. Usability Issues of an Augmented Virtuality Environment for Design

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyu; Chen, Irene Rui

    This paper presents a usability evaluation of an Augmented Virtuality (AV)-based system dedicated for design. The philosophy behind the concept of the system is discussed based on the dimensions of transportation and artificiality in shared-space technologies. This system is introduced as a method that allows users to experience the real remote environment without the need of physically visiting the actual place. Such experience is realized by using AV technology to enrich the virtual counterparts of the place with captured real images from the real environment. The combination of the physicality reality and virtual reality provides key landmarks or features of the to-be-visited place, live video streams of the remote participants, and 3D virtual design geometry. The focus of this paper describes the implementation and a usability evaluation of the system in its current state and also discusses the limitations, issues and challenges of this AV system.

  15. VERS: a virtual environment for reconstructive surgery planning

    NASA Astrophysics Data System (ADS)

    Montgomery, Kevin N.

    1997-05-01

    The virtual environment for reconstructive surgery (VERS) project at the NASA Ames Biocomputation Center is applying virtual reality technology to aid surgeons in planning surgeries. We are working with a craniofacial surgeon at Stanford to assemble and visualize the bone structure of patients requiring reconstructive surgery either through developmental abnormalities or trauma. This project is an extension of our previous work in 3D reconstruction, mesh generation, and immersive visualization. The current VR system, consisting of an SGI Onyx RE2, FakeSpace BOOM and ImmersiveWorkbench, Virtual Technologies CyberGlove and Ascension Technologies tracker, is currently in development and has already been used to visualize defects preoperatively. In the near future it will be used to more fully plan the surgery and compute the projected result to soft tissue structure. This paper presents the work in progress and details the production of a high-performance, collaborative, and networked virtual environment.

  16. Accident response -- X-ray to virtual environment

    SciTech Connect

    Hefele, J.; Stupin, D.; Kelley, T.; Sheats, M.; Tsai, C.

    1999-03-01

    The Engineering Sciences and Applications (ESA) Division of Los Alamos National Laboratory (LANL) has been working to develop a process to extract topographical information from digital x-ray data for modeling in a Computer Aided Design (CAD) environment and translation into a virtual environment. The application for this process is the evolution of a field deployable tool for use by the Accident Response Group (ARG) at the Laboratory. The authors have used both CT Scan and radiography data in their process development. The data is translated into a format recognizable by Pro/ENGINEER{trademark} and then into a virtual environment that can be operated on by dVISE{trademark}. They have successfully taken both CT Scan and radiograph data of single components and created solid and virtual environment models for interrogation.

  17. Using Desktop Virtual Environments To Investigate the Role of Landmarks.

    ERIC Educational Resources Information Center

    Jansen-Osmann, Petra

    2002-01-01

    Discusses research in spatial cognition that uses computer-simulated three dimensional environments and evaluates the use of virtual desktop environments by replicating an experiment which was formerly done in a laboratory or real world setting. Investigates the role of landmarks when acquiring route knowledge in a system of paths. (Author/LRW)

  18. From GUI to Gallery: A Study of Online Virtual Environments.

    ERIC Educational Resources Information Center

    Guynup, Stephen Lawrence

    This paper began as an attempt to clarify and classify the development of Web3D environments from 1995 to the present. In that process, important facts came to light. A large proportion of these sites were virtual galleries and museums. Second, these same environments covered a wide array of architectural interpretations and represented some of…

  19. Utilizing Virtual and Personal Learning Environments for Optimal Learning

    ERIC Educational Resources Information Center

    Terry, Krista, Ed.; Cheney, Amy, Ed.

    2016-01-01

    The integration of emerging technologies in higher education presents a new set of challenges and opportunities for educators. With a growing need for customized lesson plans in online education, educators are rethinking the design and development of their learning environments. "Utilizing Virtual and Personal Learning Environments for…

  20. Utilizing Virtual and Personal Learning Environments for Optimal Learning

    ERIC Educational Resources Information Center

    Terry, Krista, Ed.; Cheney, Amy, Ed.

    2016-01-01

    The integration of emerging technologies in higher education presents a new set of challenges and opportunities for educators. With a growing need for customized lesson plans in online education, educators are rethinking the design and development of their learning environments. "Utilizing Virtual and Personal Learning Environments for…

  1. Virtual building environments (VBE) - Applying information modeling to buildings

    SciTech Connect

    Bazjanac, Vladimir

    2004-06-21

    A Virtual Building Environment (VBE) is a ''place'' where building industry project staffs can get help in creating Building Information Models (BIM) and in the use of virtual buildings. It consists of a group of industry software that is operated by industry experts who are also experts in the use of that software. The purpose of a VBE is to facilitate expert use of appropriate software applications in conjunction with each other to efficiently support multidisciplinary work. This paper defines BIM and virtual buildings, and describes VBE objectives, set-up and characteristics of operation. It informs about the VBE Initiative and the benefits from a couple of early VBE projects.

  2. Cultural Influences on Virtual Reality Environment Response Behavior

    DTIC Science & Technology

    2005-08-01

    AND SUBTITLE 5. FUNDING NUMBERS Cultural Influences on Virtual Reality Environment Response Behavior C DAADI 9-03-C-0065 6. AUTHOR(S) Mark Wiederhold...M.D., Ph.D., FACP 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER The Virtual Reality Medical Center 6160...participants’ physiology?39 Discussion 40 Summary 42 Future Plans 42 Itemized Man-Hours and Costs 42 Contract Deliveries Status 42 Report Preparer 42

  3. Virtual Collaborative Simulation Environment for Integrated Product and Process Development

    NASA Technical Reports Server (NTRS)

    Gulli, Michael A.

    1997-01-01

    Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.

  4. Virtual Collaborative Simulation Environment for Integrated Product and Process Development

    NASA Technical Reports Server (NTRS)

    Gulli, Michael A.

    1997-01-01

    Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.

  5. Modeling Dynamic Perceptual Attention in Complex Virtual Environments

    DTIC Science & Technology

    2005-01-01

    Modeling Dynamic Perceptual Attention in Complex Virtual Environments Youngjun Kim, Martin van Velsen and Randall W. Hill, Jr. Institute for...Youngjun Kim, Martin van Velsen and Randall W. Hill, Jr. the human realm. Spatial cognition and especially spatial attention has allowed humans to make...At any point in time, the virtual human must recognize which object is the most salient among those 4 Youngjun Kim, Martin van Velsen and

  6. Visual landmarks facilitate rodent spatial navigation in virtual reality environments

    PubMed Central

    Youngstrom, Isaac A.; Strowbridge, Ben W.

    2012-01-01

    Because many different sensory modalities contribute to spatial learning in rodents, it has been difficult to determine whether spatial navigation can be guided solely by visual cues. Rodents moving within physical environments with visual cues engage a variety of nonvisual sensory systems that cannot be easily inhibited without lesioning brain areas. Virtual reality offers a unique approach to ask whether visual landmark cues alone are sufficient to improve performance in a spatial task. We found that mice could learn to navigate between two water reward locations along a virtual bidirectional linear track using a spherical treadmill. Mice exposed to a virtual environment with vivid visual cues rendered on a single monitor increased their performance over a 3-d training regimen. Training significantly increased the percentage of time avatars controlled by the mice spent near reward locations in probe trials without water rewards. Neither improvement during training or spatial learning for reward locations occurred with mice operating a virtual environment without vivid landmarks or with mice deprived of all visual feedback. Mice operating the vivid environment developed stereotyped avatar turning behaviors when alternating between reward zones that were positively correlated with their performance on the probe trial. These results suggest that mice are able to learn to navigate to specific locations using only visual cues presented within a virtual environment rendered on a single computer monitor. PMID:22345484

  7. Virtual Planetary Analysis Environment for Remote Science

    NASA Technical Reports Server (NTRS)

    Keely, Leslie; Beyer, Ross; Edwards. Laurence; Lees, David

    2009-01-01

    All of the data for NASA's current planetary missions and most data for field experiments are collected via orbiting spacecraft, aircraft, and robotic explorers. Mission scientists are unable to employ traditional field methods when operating remotely. We have developed a virtual exploration tool for remote sites with data analysis capabilities that extend human perception quantitatively and qualitatively. Scientists and mission engineers can use it to explore a realistic representation of a remote site. It also provides software tools to "touch" and "measure" remote sites with an immediacy that boosts scientific productivity and is essential for mission operations.

  8. Petroleum reservoir simulation in a virtual environment

    SciTech Connect

    Jacobsen, J.S.; Bethel, E.W.; Datta-Gupta, A.; Holland, P.J.

    1995-12-31

    In this paper, the authors describe an approach to combining a reservoir simulation with 3-D visualization and virtual reality technology. Their prototype VR/visualization system minimizes human-machine interface barriers and provides enhanced control over the simulation, thereby maximizing scientific judgment and use of intuition. They illustrate the practical advantage of using the VR/visualization prototype system in reservoir engineering by visualizing the results of a waterflood in an oil field with a three-dimensional, spatially correlated heterogeneous permeability field.

  9. Modal test optimization using VETO (Virtual Environment for Test Optimization)

    SciTech Connect

    Klenke, S.E.; Reese, G.M.; Schoof, L.A.; Shierling, C.L.

    1995-12-01

    We present a software environment integrating analysis and test based models to support optimal modal test design through a Virtual Environment for Test Optimization (VETO). The VETO assists analysis and test engineers in maximizing the value of each modal test. It is particularly advantageous for structural dynamics model reconciliation applications. The VETO enables an engineer to interact with a finite element model of a test object to optimally place sensors and exciters and to investigate the selection of-data acquisition parameters needed to conduct a complete modal survey. Additionally, the user can evaluate the use of different types of instrumentation such as filters, amplifiers and transducers for which models are available in the VETO. The dynamic response of most of the virtual instruments (including the device under test) are modeled in the state space domain. Design of modal excitation levels and appropriate test instrumentation are facilitated by the VETO`s ability to simulate such features as unmeasured external inputs, A/D quantization effects, and electronic noise. Measures of the quality of the experimental design, including the Modal Assurance Criterion, and the Normal Mode indicator Function are available. The VETO also integrates tools such as Effective Independence and minamac to assist in selection of optimal sensor locations. The software is designed about three distinct modules: (1) a main controller and GUI written in C++, (2) a visualization model, taken from FEAVR, running under AVS, and (3) a state space model and time integration module, built in SIMULINK. These modules are designed to run as separate processes on interconnected machines. MATLAB`s external interface library is used to provide transparent, bidirectional communication between the controlling program and the computational engine where all the time integration is performed.

  10. Virtual Golden Foods Corporation: Generic Skills in a Virtual Crisis Environment (A Pilot Study)

    ERIC Educational Resources Information Center

    Godat, Meredith

    2007-01-01

    Workplace learning in a crisis-rich environment is often difficult if not impossible to integrate into programs so that students are able to experience and apply crisis management practices and principles. This study presents the results of a pilot project that examined the effective use of a virtual reality (VR) environment as a tool to teach…

  11. Virtual Golden Foods Corporation: Generic Skills in a Virtual Crisis Environment (A Pilot Study)

    ERIC Educational Resources Information Center

    Godat, Meredith

    2007-01-01

    Workplace learning in a crisis-rich environment is often difficult if not impossible to integrate into programs so that students are able to experience and apply crisis management practices and principles. This study presents the results of a pilot project that examined the effective use of a virtual reality (VR) environment as a tool to teach…

  12. Virtual Interactive Suturing for the Fundamentals of Laparoscopic Surgery (FLS).

    PubMed

    Qi, Di; Panneerselvam, Karthikeyan; Ahn, Woojin; Arikatla, Venkata; Enquobahrie, Andinet; De, Suvranu

    2017-09-22

    Suturing with intracorporeal knot-tying is one of the five tasks of the Fundamentals of Laparoscopic Surgery (FLS), which is a pre-requisite for board certification in general surgery. This task involves placing a short suture through two marks in a penrose drain and then tying a double-throw knot followed by two single-throw knots using two needle graspers operated by both hands. A virtual basic laparoscopic skill trainer (VBLaST(©)) is being developed to represent the virtual versions of the FLS tasks, including automated, real time performance measurement and feedback. In this paper, we present the development of a VBLaST suturing simulator (VBLaST-SS(©)). Developing such a simulator involves solving multiple challenges associated with fast collision detection, response and force feedback. In this paper, we present a novel projection-intersection based knot detection method, which can identify the validity of different types of knots at haptic update rates. A simple and robust edge-edge based collision detection algorithm is introduced to support interactive knot tying and needle insertion operations. A bimanual hardware interface integrates actual surgical instruments with haptic devices enabling not only interactive rendering of force feedback but also realistic sensation of needle grasping, which realizes an immersive surgical suturing environment. Experiments on performing the FLS intracorporeal suturing task show that the simulator is able to run on a standard personal computer at interactive rates. VBLaST-SS(©) is a computer-based interactive virtual simulation system for FLS intracorporeal knot-tying suturing task that can provide real-time objective assessment for the user's performance. Copyright © 2017. Published by Elsevier Inc.

  13. EEVEE: the Empathy-Enhancing Virtual Evolving Environment

    PubMed Central

    Jackson, Philip L.; Michon, Pierre-Emmanuel; Geslin, Erik; Carignan, Maxime; Beaudoin, Danny

    2015-01-01

    Empathy is a multifaceted emotional and mental faculty that is often found to be affected in a great number of psychopathologies, such as schizophrenia, yet it remains very difficult to measure in an ecological context. The challenge stems partly from the complexity and fluidity of this social process, but also from its covert nature. One powerful tool to enhance experimental control over such dynamic social interactions has been the use of avatars in virtual reality (VR); information about an individual in such an interaction can be collected through the analysis of his or her neurophysiological and behavioral responses. We have developed a unique platform, the Empathy-Enhancing Virtual Evolving Environment (EEVEE), which is built around three main components: (1) different avatars capable of expressing feelings and emotions at various levels based on the Facial Action Coding System (FACS); (2) systems for measuring the physiological responses of the observer (heart and respiration rate, skin conductance, gaze and eye movements, facial expression); and (3) a multimodal interface linking the avatar's behavior to the observer's neurophysiological response. In this article, we provide a detailed description of the components of this innovative platform and validation data from the first phases of development. Our data show that healthy adults can discriminate different negative emotions, including pain, expressed by avatars at varying intensities. We also provide evidence that masking part of an avatar's face (top or bottom half) does not prevent the detection of different levels of pain. This innovative and flexible platform provides a unique tool to study and even modulate empathy in a comprehensive and ecological manner in various populations, notably individuals suffering from neurological or psychiatric disorders. PMID:25805983

  14. The virtual windtunnel: Visualizing modern CFD datasets with a virtual environment

    NASA Technical Reports Server (NTRS)

    Bryson, Steve

    1993-01-01

    This paper describes work in progress on a virtual environment designed for the visualization of pre-computed fluid flows. The overall problems involved in the visualization of fluid flow are summarized, including computational, data management, and interface issues. Requirements for a flow visualization are summarized. Many aspects of the implementation of the virtual windtunnel were uniquely determined by these requirements. The user interface is described in detail.

  15. Virtual Baby Used as a Virtual Environment for Patients with Severe Dementia

    DTIC Science & Technology

    2007-11-02

    virtual environments ( VE ); however, few studies have been performed in the fields of clinical rehabilitation. In cancer treatment, a VE helps eliminate...the patient’s pain and motivates patients to train with a ligament type ergometer [1]. When the patient walks, the landscape in the VE changes in... VEs are very effective with assistive walkers and horse-riding simulators. The use of toy robots as virtual pets has also been introduced in

  16. Navigating mazes in a virtual environment

    NASA Astrophysics Data System (ADS)

    Browse, Roger A.; Skillicorn, David B.; Middleman, Darren

    2003-06-01

    In this research we are concerned with computer interfaces with which subjects navigate through maze simulations which are essentially buildings, with corridors and intersections, such as frequently encountered in computer games and simulations. We wish to determine if virtual reality interfaces introduce a performance enhancement that might be expected for display configurations which mimic natural perceptual experiences. We have experimented primarily with two display conditions for presentation of and navigation through the mazes. Subjects either view the maze on a desktop computer monitor, turning and moving within the maze with the mouse in a way that is similar to the configurations used in most first-person role playing computer games, or they viewed the maze from a standing position with a head-mounted display, being free to direct the view of the maze through body and head movements, and using the depression of a mouse button to effect movement in the direction that they were facing. Head-tracking was required for this latter condition. As expected there are striking individual differences in subjects" abilities to learn to traverse the mazes. Across a variety of maze configuration parameters which significantly do influence performance, the results indicate that the virtual reality enhancements have no effect subjects' ability to learn the mazes, either as route knowledge or as cognitive maps.

  17. A virtual reality environment for patient data visualization and endoscopic surgical planning.

    PubMed

    Foo, Jung-Leng; Lobe, Thom; Winer, Eliot

    2009-04-01

    Visualizing patient data in a three-dimensional (3D) representation can be an effective surgical planning tool.As medical imaging technologies improve with faster and higher resolution scans, the use of virtual reality for interacting with medical images adds another level of realism to a 3D representation. The software framework presented in this paper is designed to load and display any DICOM/PACS-compatible 3D image data for visualization and interaction in an immersive virtual environment. In "examiner" mode, the surgeon can interact with a 3D virtual model of the patient by using an intuitive set of controls designed to allow slicing, coloring,and windowing of the image to show different tissue densities and enhance important structures. In the simulated"endoscopic camera" mode, the surgeon can see through the point of view of a virtual endoscopic camera to navigate inside the patient. These tools allow the surgeon to perform virtual endoscopy on any suitable structure.The software is highly scalable, as it can be used on a single desktop computer to a cluster of computers in an immersive multiprojection virtual environment. By wearing a pair of stereo glasses, a surgeon becomes immersed within the model itself, thus providing a sense of realism, as if the surgeon is "inside" the patient.

  18. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  19. DHM simulation in virtual environments: a case-study on control room design.

    PubMed

    Zamberlan, M; Santos, V; Streit, P; Oliveira, J; Cury, R; Negri, T; Pastura, F; Guimarães, C; Cid, G

    2012-01-01

    This paper will present the workflow developed for the application of serious games in the design of complex cooperative work settings. The project was based on ergonomic studies and development of a control room among participative design process. Our main concerns were the 3D human virtual representation acquired from 3D scanning, human interaction, workspace layout and equipment designed considering ergonomics standards. Using Unity3D platform to design the virtual environment, the virtual human model can be controlled by users on dynamic scenario in order to evaluate the new work settings and simulate work activities. The results obtained showed that this virtual technology can drastically change the design process by improving the level of interaction between final users and, managers and human factors team.

  20. Interaction in a Blended Environment for English Language Learning

    ERIC Educational Resources Information Center

    Romero Archila, Yuranny Marcela

    2014-01-01

    The purpose of this research was to identify the types of interaction that emerged not only in a Virtual Learning Environment (VLE) but also in face-to-face settings. The study also assessed the impact of the different kinds of interactions in terms of language learning. This is a qualitative case study that took place in a private Colombian…

  1. Supporting natural prehension in virtual environments

    NASA Astrophysics Data System (ADS)

    Plooy, Annaliese M.; Wann, John P.

    2000-05-01

    Depth and distance judgements were compared under monocular, motion parallax and binocular viewing conditions using a telepresence system. Participants viewed the virtual objects via a modified Wheatstone stereoscope. A camera pair relayed images of real objects to the LCD displays within the stereoscope. The entire viewing apparatus was mounted on a linear stage thus allowing parallax movement to be driven by lateral head motion of the observer. In the monocular and motion parallax conditions, the same image was presented to both eyes and convergence was set to approximately mid- target distance. In the binocular condition, the cameras and displays were configured to preserve the appropriate convergence and disparity information. The participants' task was to reach and 'grasp' the object seen within the stereoscope. Reach distance and grasp aperture were recorded via a magnetic tracking device. Judgements were most accurate when stereo information was available. Surprisingly, motion parallax information did not seem to improve performance over that observed in the monocular condition.

  2. RoboLab and virtual environments

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  3. Object Creation and Human Factors Evaluation for Virtual Environments

    NASA Technical Reports Server (NTRS)

    Lindsey, Patricia F.

    1998-01-01

    The main objective of this project is to provide test objects for simulated environments utilized by the recently established Army/NASA Virtual Innovations Lab (ANVIL) at Marshall Space Flight Center, Huntsville, Al. The objective of the ANVIL lab is to provide virtual reality (VR) models and environments and to provide visualization and manipulation methods for the purpose of training and testing. Visualization equipment used in the ANVIL lab includes head-mounted and boom-mounted immersive virtual reality display devices. Objects in the environment are manipulated using data glove, hand controller, or mouse. These simulated objects are solid or surfaced three dimensional models. They may be viewed or manipulated from any location within the environment and may be viewed on-screen or via immersive VR. The objects are created using various CAD modeling packages and are converted into the virtual environment using dVise. This enables the object or environment to be viewed from any angle or distance for training or testing purposes.

  4. OpenSim-Supported Virtual Learning Environment: Transformative Content Representation, Facilitation, and Learning Activities

    ERIC Educational Resources Information Center

    Kim, Heesung; Ke, Fengfeng

    2016-01-01

    The pedagogical and design considerations for the use of a virtual reality (VR) learning environment are important for prospective and current teachers. However, empirical research investigating how preservice teachers interact with transformative content representation, facilitation, and learning activities in a VR educational simulation is still…

  5. Using Learning Analytics to Identify Medical Student Misconceptions in an Online Virtual Patient Environment

    ERIC Educational Resources Information Center

    Poitras, Eric G.; Naismith, Laura M.; Doleck, Tenzin; Lajoie, Susanne P.

    2016-01-01

    This study aimed to identify misconceptions in medical student knowledge by mining user interactions in the MedU online learning environment. Data from 13000 attempts at a single virtual patient case were extracted from the MedU MySQL database. A subgroup discovery method was applied to identify patterns in learner-generated annotations and…

  6. Why Some Teachers Easily Learn to Use a New Virtual Learning Environment: A Technology Acceptance Perspective

    ERIC Educational Resources Information Center

    Rienties, Bart; Giesbers, Bas; Lygo-Baker, Simon; Ma, Hoi Wah Serena; Rees, Roger

    2016-01-01

    After a decade of virtual learning environments (VLEs) in higher education, many teachers still use only a minimum of its affordances. This study looked at how academic staff interacted with a new and unknown VLE in order to understand how technology acceptance and support materials influence (perceived and actual) task performance. In an…

  7. The Development of a Web-Based Virtual Environment for Teaching Qualitative Analysis of Structures

    ERIC Educational Resources Information Center

    O'Dwyer, D. W.; Logan-Phelan, T. M.; O'Neill, E. A.

    2007-01-01

    The current paper describes the design and development of a qualitative analysis course and an interactive web-based teaching and assessment tool called VSE (virtual structural environment). The widespread reliance on structural analysis programs requires engineers to be able to verify computer output by carrying out qualitative analyses.…

  8. Evaluation of Learning Efficiency and Efficacy in a Multi-User Virtual Environment

    ERIC Educational Resources Information Center

    Hearrington, Doug

    2011-01-01

    This study evaluated the multi-user virtual environment (MUVE) known as Second Life, integrated with Moodle and SLOODLE technologies, as an exploratory course delivery platform and for its ability to enable teachers to meet elements of NETS.T. Graduate student participants (N = 17) interacted, constructed simulated schools, and attended classes…

  9. Development of Social Mediation and Emotional Regulation in Virtual Learning Environment Research

    ERIC Educational Resources Information Center

    Lehtonen, Miika; Page, Tom; Miloseva, Lence; Thorsteinsson, Gisli

    2008-01-01

    This paper puts forward a series of theoretical underpinnings and design considerations for embodying emotional and aesthetic aspects of virtual (reality) and learning environment (VLEs) in support of ubiquitous teaching, studying and learning. The authors assert that a VLE should be considered as an interactive and sensation-producing affordances…

  10. Reconceptualising Culture in Virtual Learning Environments: From an "Essentialist" to a "Negotiated" Perspective

    ERIC Educational Resources Information Center

    Goodfellow, Robin; Hewling, Anne

    2005-01-01

    The notion of "culture" as an essential attribute of individuals and groups, owed to national or ethnic background, is critiqued in this article as unhelpful to the project of understanding how diverse participants in virtual learning environments (VLEs) individually and jointly construct a culture of interaction. An alternative…

  11. Guiding Exploration through Three-Dimensional Virtual Environments: A Cognitive Load Reduction Approach

    ERIC Educational Resources Information Center

    Chen, Chwen Jen; Fauzy Wan Ismail, Wan Mohd

    2008-01-01

    The real-time interactive nature of three-dimensional virtual environments (VEs) makes this technology very appropriate for exploratory learning purposes. However, many studies have shown that the exploration process may cause cognitive overload that affects the learning of domain knowledge. This article reports a quasi-experimental study that…

  12. Measuring Flow Experience in an Immersive Virtual Environment for Collaborative Learning

    ERIC Educational Resources Information Center

    van Schaik, P.; Martin, S.; Vallance, M.

    2012-01-01

    In contexts other than immersive virtual environments, theoretical and empirical work has identified flow experience as a major factor in learning and human-computer interaction. Flow is defined as a "holistic sensation that people feel when they act with total involvement". We applied the concept of flow to modeling the experience of…

  13. Why Some Teachers Easily Learn to Use a New Virtual Learning Environment: A Technology Acceptance Perspective

    ERIC Educational Resources Information Center

    Rienties, Bart; Giesbers, Bas; Lygo-Baker, Simon; Ma, Hoi Wah Serena; Rees, Roger

    2016-01-01

    After a decade of virtual learning environments (VLEs) in higher education, many teachers still use only a minimum of its affordances. This study looked at how academic staff interacted with a new and unknown VLE in order to understand how technology acceptance and support materials influence (perceived and actual) task performance. In an…

  14. What Do Context Aware Electronic Alerts from Virtual Learning Environments Tell Us about User Time & Location?

    ERIC Educational Resources Information Center

    Crane, Laura; Benachour, Phillip

    2013-01-01

    The paper describes the analysis of user location and time stamp information automatically logged when students receive and interact with electronic updates from the University's virtual learning environment. The electronic updates are sent to students' mobile devices using RSS feeds. The mobile reception of such information can be received in…

  15. Children's Perception of Gap Affordances: Bicycling Across Traffic-Filled Intersections in an Immersive Virtual Environment

    ERIC Educational Resources Information Center

    Plumert, Jodie M.; Kearney, Joseph K.; Cremer, James F.

    2004-01-01

    This study examined gap choices and crossing behavior in children and adults using an immersive, interactive bicycling simulator. Ten- and 12-year-olds and adults rode a bicycle mounted on a stationary trainer through a virtual environment consisting of a street with 6 intersections. Participants faced continuous cross traffic traveling at 25mph…

  16. The Development of a Web-Based Virtual Environment for Teaching Qualitative Analysis of Structures

    ERIC Educational Resources Information Center

    O'Dwyer, D. W.; Logan-Phelan, T. M.; O'Neill, E. A.

    2007-01-01

    The current paper describes the design and development of a qualitative analysis course and an interactive web-based teaching and assessment tool called VSE (virtual structural environment). The widespread reliance on structural analysis programs requires engineers to be able to verify computer output by carrying out qualitative analyses.…

  17. Measuring Flow Experience in an Immersive Virtual Environment for Collaborative Learning

    ERIC Educational Resources Information Center

    van Schaik, P.; Martin, S.; Vallance, M.

    2012-01-01

    In contexts other than immersive virtual environments, theoretical and empirical work has identified flow experience as a major factor in learning and human-computer interaction. Flow is defined as a "holistic sensation that people feel when they act with total involvement". We applied the concept of flow to modeling the experience of…

  18. Emergent Reflective Dialogue among Preservice Teachers Mediated through a Virtual Learning Environment

    ERIC Educational Resources Information Center

    Khourey-Bowers, Claudia

    2005-01-01

    This descriptive study addressed the role of virtual learning environments in fostering reflective thought among preservice teachers through dialogic interaction. Preservice teachers tend to view teaching as a formulaic application of theory and strategies. When challenged with making decisions in novel settings, they are often unable to apply…

  19. OpenSim-Supported Virtual Learning Environment: Transformative Content Representation, Facilitation, and Learning Activities

    ERIC Educational Resources Information Center

    Kim, Heesung; Ke, Fengfeng

    2016-01-01

    The pedagogical and design considerations for the use of a virtual reality (VR) learning environment are important for prospective and current teachers. However, empirical research investigating how preservice teachers interact with transformative content representation, facilitation, and learning activities in a VR educational simulation is still…

  20. Computer Algebra, Virtual Learning Environment and Meaningful Learning: Is It Possible?

    ERIC Educational Resources Information Center

    Abar, Celina A. A. P.; Barbosa, Lisbete Madsen

    2011-01-01

    A major challenge faced by teachers nowadays relates to the usage of proper educational technology to achieve a true and meaningful learning experience involving time for reflection. Teachers constantly seek new ways to improve instruction, but in virtual learning environments they often find themselves in a new role, interacting in a dynamic…

  1. Academic Library Services in Virtual Worlds: An Examination of the Potential for Library Services in Immersive Environments

    ERIC Educational Resources Information Center

    Ryan, Jenna; Porter, Marjorie; Miller, Rebecca

    2010-01-01

    Current literature on libraries is abundant with articles about the uses and the potential of new interactive communication technology, including Web 2.0 tools. Recently, the advent and use of virtual worlds have received top billing in these works. Many library institutions are exploring these virtual environments; this exploration and the…

  2. Academic Library Services in Virtual Worlds: An Examination of the Potential for Library Services in Immersive Environments

    ERIC Educational Resources Information Center

    Ryan, Jenna; Porter, Marjorie; Miller, Rebecca

    2010-01-01

    Current literature on libraries is abundant with articles about the uses and the potential of new interactive communication technology, including Web 2.0 tools. Recently, the advent and use of virtual worlds have received top billing in these works. Many library institutions are exploring these virtual environments; this exploration and the…

  3. A Study of the Relationship of Communication Technology Configurations in Virtual Research Environments and Effectiveness of Collaborative Research

    ERIC Educational Resources Information Center

    Ahmed, Iftekhar

    2009-01-01

    Virtual Research Environments (VRE) are electronic meeting places for interaction among scientists created by combining software tools and computer networking. Virtual teams are enjoying increased importance in the conduct of scientific research because of the rising cost of traditional scientific scholarly communication, the growing importance of…

  4. Spatial considerations for instructional development in a virtual environment

    NASA Technical Reports Server (NTRS)

    Mccarthy, Laurie; Pontecorvo, Michael; Grant, Frances; Stiles, Randy

    1993-01-01

    In this paper we discuss spatial considerations for instructional development in a virtual environment. For both the instructional developer and the student, the important spatial criteria are perspective, orientation, scale, level of visual detail, and granularity of simulation. Developing a representation that allows an instructional developer to specify spatial criteria and enables intelligent agents to reason about a given instructional problem is of paramount importance to the success of instruction delivered in a virtual environment, especially one that supports dynamic exploration or spans more than one scale of operation.

  5. An Interactive, Physics-Based Unmanned Ground Vehicle Simulator Leveraging Open Source Gaming Technology: Progress in the Development and Application of the Virtual Autonomous Navigation Environment (VANE) Desktop

    DTIC Science & Technology

    2009-01-01

    markedly. Ad-hoc methods have given way to robust design methodologies, mechanical drawings to three dimensional CAD representations, hardware-focused...resource for sensor data visualization. 2.1.2.2 Controls For maximum flexibility, ANVEL is designed to use swappable “Controller Interfaces ” to provide...multibody structures, and offers various interaction models. It was designed for real time simulation and gaming, and thus is optimized for fast execution

  6. Usability Studies In Virtual And Traditional Computer Aided Design Environments For Spatial Awareness

    DTIC Science & Technology

    2017-08-08

    Benchmark; Virtual Reality ; Virtual Environments; Competitive Comparison INTRODUCTION his paper is an extension of the work done by Satter (2005) on...Usability Studies In Virtual And Traditional Computer Aided Design Environments For Spatial Awareness Dr. Syed Adeel Ahmed, Xavier University of... virtual environment with wand interfaces compared directly with a workstation non-stereoscopic traditional CAD interface with keyboard and mouse. In

  7. Usability Studies in Virtual and Traditional Computer Aided Design Environments for Fault Identification

    DTIC Science & Technology

    2017-08-08

    Benchmark; Virtual Reality ; Virtual Environments; Competitive Comparison INTRODUCTION his paper is an extension of the work done by Satter...Usability Studies In Virtual And Traditional Computer Aided Design Environments For Fault Identification Dr. Syed Adeel Ahmed, Xavier University... virtual environment with wand interfaces compared directly with a workstation non-stereoscopic traditional CAD interface with keyboard and mouse. In

  8. Predicting Innovation Acceptance by Simulation in Virtual Environments (Theoretical Foundations)

    NASA Astrophysics Data System (ADS)

    León, Noel; Duran, Roberto; Aguayo, Humberto; Flores, Myrna

    This paper extends the current development of a methodology for Computer Aided Innovation. It begins with a presentation of concepts related to the perceived capabilities of virtual environments in the Innovation Cycle. The main premise establishes that it is possible to predict the acceptance of a new product in a specific market, by releasing an early prototype in a virtual scenario to quantify its general reception and to receive early feedback from potential customers. The paper continues to focus this research on a synergistic extension of techniques that have their origins in optimization and innovation disciplines. TRIZ (Theory of Inventive Problem Solving), extends the generation of variants with Evolutionary Algorithms (EA) and finally to present the designer and the intended customer, creative and innovative alternatives. All of this developed on a virtual software interface (Virtual World). The work continues with a general description of the project as a step forward to improve the overall strategy.

  9. Building virtual reality fMRI paradigms: a framework for presenting immersive virtual environments.

    PubMed

    Mueller, Charles; Luehrs, Michael; Baecke, Sebastian; Adolf, Daniela; Luetzkendorf, Ralf; Luchtmann, Michael; Bernarding, Johannes

    2012-08-15

    The advantage of using a virtual reality (VR) paradigm in fMRI is the possibility to interact with highly realistic environments. This extends the functions of standard fMRI paradigms, where the volunteer usually has a passive role, for example, watching a simple movie paradigm without any stimulus interactions. From that point of view the combined usage of VR and real-time fMRI offers great potential to identify underlying cognitive mechanisms such as spatial navigation, attention, semantic and episodic memory, as well as neurofeedback paradigms. However, the design and the implementation of a VR stimulus paradigm as well as the integration into an existing MR scanner framework are very complex processes. To support the modeling and usage of VR stimuli we developed and implemented a VR stimulus application based on C++. This software allows the fast and easy presentation of VR environments for fMRI studies without any additional expert knowledge. Furthermore, it provides for the reception of real-time data analysis values a bidirectional communication interface. In addition, the internal plugin interface enables users to extend the functionality of the software with custom programmed C++ plugins. The VR stimulus framework was tested in several performance tests and a spatial navigation study. According to the post-experimental interview, all subjects described immersive experiences and a high attentional load inside the artifical environment. Results from other VR spatial memory studies confirm the neuronal activation that was detected in parahippocampal areas, cuneus, and occipital regions. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Cybersickness Following Repeated Exposure to DOME and HMD Virtual Environments

    NASA Technical Reports Server (NTRS)

    Taylor, Laura C.; Harm, Deborah L.; Kennedy, Robert S.; Reschke, Millard F.; Loftin, R. Bowen

    2011-01-01

    Virtual environments (VE) offer unique training opportunities, including training astronauts to preadapt them to the novel sensory conditions of microgravity. However, one unresolved issue with VE use is the occurrence of cybersickness during and following exposure to VE systems. Most individuals adapt and become less ill with repeated interaction with VEs. The goal of this investigation was to compare motion sickness symptoms (MSS) produced by dome and head-mounted (HMD) displays and to examine the effects of repeated exposures on MSS. Sixty-one subjects participated in the study. Three experimental sessions were performed each separated by one day. The subjects performed a navigation and pick and place task in either a dome or HMD VE. MSS were measured using a Simulator Sickness Questionnaire before, immediately after, and at 1, 2, 4 and 6 hours following exposure to the VEs. MSS data were normalized by calculating the natural log of each score and an analysis of variance was performed. We observed significant main effects for day and time and a significant day by time interaction for total sickness and for each of the subscales, nausea, oculomotor and disorientation. However, there was no significant main effect for device. In conclusion, subjects reported a large increase in MSS immediately following exposure to both the HMD and dome, followed by a rapid recovery across time. Sickness severity also decreased over days, which suggests that subjects become dual-adapted over time making VE training a viable pre-flight countermeasure for space motion sickness.

  11. Dissociation of past and present experience in problem solving using a virtual environment.

    PubMed

    Sturz, Bradley R; Bodily, Kent D; Katz, Jeffrey S

    2009-02-01

    An interactive 3D desktop virtual environment task was created to investigate learning mechanisms in human problem solving. Participants were assessed for previous video game experience, divided into two groups (Training and Control), and matched for gender and experience. The Training group learned specific skills within the virtual environment before being presented a problem. The Control group was presented the problem only. Completion time was faster for the Training group and was affected by level of previous video game experience. Results indicated problem solving was a function of specific and general experience and demonstrated a method for dissociating these two facets of experience.

  12. A Physics-driven Neural Networks-based Simulation System (PhyNNeSS) for multimodal interactive virtual environments involving nonlinear deformable objects.

    PubMed

    De, Suvranu; Deo, Dhannanjay; Sankaranarayanan, Ganesh; Arikatla, Venkata S

    2011-08-01

    BACKGROUND: While an update rate of 30 Hz is considered adequate for real time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is one of the most challenging tasks in the development of real time simulation systems. While some specialized solutions exist, there is no general solution for arbitrary nonlinearities. METHODS: In this work we present PhyNNeSS - a Physics-driven Neural Networks-based Simulation System - to address this long-standing technical challenge. The first step is an off-line pre-computation step in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. In the next step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function network (RBFN). During real-time computation, these neural networks are used to reconstruct the deformation fields as well as the interaction forces. RESULTS: We present realistic simulation examples from interactive surgical simulation with real time force feedback. As an example, we have developed a deformable human stomach model and a Penrose-drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box. CONCLUSIONS: A unique computational modeling system has been developed that is capable of simulating the response of nonlinear deformable objects in real time. The method distinguishes itself from previous efforts in that a systematic physics-based pre-computational step allows training of neural networks which may be used in real time simulations. We show, through careful error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software Framework for Multimodal

  13. Interactive graphical model building using telepresence and virtual reality

    SciTech Connect

    Cooke, C.; Stansfield, S.

    1993-10-01

    This paper presents a prototype system developed at Sandia National Laboratories to create and verify computer-generated graphical models of remote physical environments. The goal of the system is to create an interface between an operator and a computer vision system so that graphical models can be created interactively. Virtual reality and telepresence are used to allow interaction between the operator, computer, and remote environment. A stereo view of the remote environment is produced by two CCD cameras. The cameras are mounted on a three degree-of-freedom platform which is slaved to a mechanically-tracked, stereoscopic viewing device. This gives the operator a sense of immersion in the physical environment. The stereo video is enhanced by overlaying the graphical model onto it. Overlay of the graphical model onto the stereo video allows visual verification of graphical models. Creation of a graphical model is accomplished by allowing the operator to assist the computer in modeling. The operator controls a 3-D cursor to mark objects to be modeled. The computer then automatically extracts positional and geometric information about the object and creates the graphical model.

  14. Scenario-Based Spoken Interaction with Virtual Agents

    ERIC Educational Resources Information Center

    Morton, Hazel; Jack, Mervyn A.

    2005-01-01

    This paper describes a CALL approach which integrates software for speaker independent continuous speech recognition with embodied virtual agents and virtual worlds to create an immersive environment in which learners can converse in the target language in contextualised scenarios. The result is a self-access learning package: SPELL (Spoken…

  15. Scenario-Based Spoken Interaction with Virtual Agents

    ERIC Educational Resources Information Center

    Morton, Hazel; Jack, Mervyn A.

    2005-01-01

    This paper describes a CALL approach which integrates software for speaker independent continuous speech recognition with embodied virtual agents and virtual worlds to create an immersive environment in which learners can converse in the target language in contextualised scenarios. The result is a self-access learning package: SPELL (Spoken…

  16. My Ideal City (mic): Virtual Environments to Design the Future Town

    NASA Astrophysics Data System (ADS)

    Borgherini, M.; Garbin, E.

    2011-09-01

    MIC is an EU funded project to explore the use of shared virtual environments as part of a public discussion on the issues of building the city of the future. An interactive exploration of four european cities - in the digital city models were translated urban places, family problems and citizens wishes - is a chance to see them in different ways and from different points of view, to imagine new scenarios to overcome barriers and stereotypes no longer effective. This paper describes the process from data to visualization of virtual cities and, in detail, the project of two interactive digital model (Trento and Lisbon).

  17. Generic robotic kinematic generator for virtual environment interfaces

    NASA Astrophysics Data System (ADS)

    Flueckiger, Lorenzo; Piguet, Laurent; Baur, Charles

    1996-12-01

    The expansion of robotic systems' performance, as well as the need for such machines to work in complex environments (hazardous, small, distant, etc.), involves the need for user interfaces which permit efficient teleoperation. Virtual Reality based interfaces provide the user with a new method for robot task planning and control: he or she can define tasks in a very intuitive way by interacting with a 3D computer generated representation of the world, which is continuously updated thanks to multiple sensors fusion and analysis. The Swiss Federal Institute of Technology has successfully tested different kinds of teleoperations. In the early 90s, a transatlantic teleoperation of a conventional robot manipulator with a vision feedback system to update the virtual world was achieved. This approach was then extended to perform teleoperation of several mobile robots (Khepera, Koala) as well as to control microrobots used for microsystems' assembly in the micrometer range. One of the problems encountered with such an approach is the necessity to program a specific kinematic algorithm for each kind of manipulator. To provide a more general solution, we started a project aiming at the design of a 'kinematic generator' (CINEGEN) for the simulation of generic serial and parallel mechanical chains. With CINEGEN, each manipulator is defined with an ascii file description and its attached graphics files; inserting a new manipulator simply requires a new description file, and none of the existing tools require modification. To have a real time behavior, we have chosen a numerical method based on the pseudo-Jacobian method to generate the inverse kinematics of the robot. The results obtained with an object-oriented implementation on a graphic workstation are presented in this paper.

  18. Interactive virtual simulation using a 3D computer graphics model for microvascular decompression surgery.

    PubMed

    Oishi, Makoto; Fukuda, Masafumi; Hiraishi, Tetsuya; Yajima, Naoki; Sato, Yosuke; Fujii, Yukihiko

    2012-09-01

    interactive virtual simulation using a 3D computer graphics model provided a realistic environment for performing virtual simulations prior to MVD surgery and enabled us to ascertain complex microsurgical anatomy.

  19. Utilization of virtual learning environments in the allied health professions.

    PubMed

    Butina, Michelle; Brooks, Donna; Dominguez, Paul J; Mahon, Gwendolyn M

    2013-01-01

    Multiple technology based tools have been used to enhance skill development in allied health education, which now includes virtual learning environments. The purpose of this study was to explore whether, and how, this latest instructional technology is being adapted in allied health education. An online survey was circulated to all Association of Schools of Allied Health Professions (ASAHP) member institutions and focused on three broad areas of virtual learning environments: the uses of, the perceived pros and cons of, and the outcomes of utilizing them. Results show 40% (17 of 42) of the respondent use some form of the technology. The use of virtual learning technology in other healthcare professions (e.g., medicine) demonstrates the potential benefits to allied health education.

  20. Perceiving interpersonally-mediated risk in virtual environments

    PubMed Central

    Portnoy, David B.; Smoak, Natalie D.; Marsh, Kerry L.

    2009-01-01

    Using virtual reality (VR) to examine risky behavior that is mediated by interpersonal contact, such as agreeing to have sex, drink, or smoke with someone, offers particular promise and challenges. Social contextual stimuli that might trigger impulsive responses can be carefully controlled in virtual environments (VE), and yet manipulations of risk might be implausible to participants if they do not feel sufficiently immersed in the environment. The current study examined whether individuals can display adequate evidence of presence in a VE that involved potential interpersonally-induced risk: meeting a potential dating partner. Results offered some evidence for the potential of VR for the study of such interpersonal risk situations. Participants’ reaction to the scenario and risk-associated responses to the situation suggested that the embodied nature of virtual reality override the reality of the risk’s impossibility, allowing participants to experience adequate situational embedding, or presence. PMID:20228871

  1. Game controller modification for fMRI hyperscanning experiments in a cooperative virtual reality environment

    PubMed Central

    Trees, Jason; Snider, Joseph; Falahpour, Maryam; Guo, Nick; Lu, Kun; Johnson, Douglas C.; Poizner, Howard; Liu, Thomas T.

    2014-01-01

    Hyperscanning, an emerging technique in which data from multiple interacting subjects’ brains are simultaneously recorded, has become an increasingly popular way to address complex topics, such as “theory of mind.” However, most previous fMRI hyperscanning experiments have been limited to abstract social interactions (e.g. phone conversations). Our new method utilizes a virtual reality (VR) environment used for military training, Virtual Battlespace 2 (VBS2), to create realistic avatar-avatar interactions and cooperative tasks. To control the virtual avatar, subjects use a MRI compatible Playstation 3 game controller, modified by removing all extraneous metal components and replacing any necessary ones with 3D printed plastic models. Control of both scanners’ operation is initiated by a VBS2 plugin to sync scanner time to the known time within the VR environment. Our modifications include:•Modification of game controller to be MRI compatible.•Design of VBS2 virtual environment for cooperative interactions.•Syncing two MRI machines for simultaneous recording. PMID:26150964

  2. Human Interfaces In Teleoperations And Virtual Environments

    NASA Technical Reports Server (NTRS)

    Durlach, Nathaniel I.; Sheridan, Thomas B.; Ellis, Stephen R.

    1995-01-01

    Conference report contains compilation of papers relating to interactions between humans and machines from perspectives of telepresence and sensorimotor adaptation, measurement and evaluation of performance, and design principles and predictive models. Topics discussed include neural networks, sensory technology, display, and feedback controls. Covers state of art of remote sensing and control by humans for space or other operations.

  3. Educational Visualizations in 3D Collaborative Virtual Environments: A Methodology

    ERIC Educational Resources Information Center

    Fominykh, Mikhail; Prasolova-Forland, Ekaterina

    2012-01-01

    Purpose: Collaborative virtual environments (CVEs) have become increasingly popular in educational settings and the role of 3D content is becoming more and more important. Still, there are many challenges in this area, such as lack of empirical studies that provide design for educational activities in 3D CVEs and lack of norms of how to support…

  4. Teacher Practice in Multi User Virtual Environments: A Fourth Space

    ERIC Educational Resources Information Center

    Calandra, Brendan; Puvirajah, Anton

    2014-01-01

    Practicing teaching is an important aspect of teacher education, however, its implementation can be limited due to the constraints and risks related to practicing in actual schools. There is evidence in the literature of Multi User Virtual Environments (MUVEs) being used as spaces for training, especially in fields where the costs associated with…

  5. Individual Differences in a Spatial-Semantic Virtual Environment.

    ERIC Educational Resources Information Center

    Chen, Chaomei

    2000-01-01

    Presents two empirical case studies concerning the role of individual differences in searching through a spatial-semantic virtual environment. Discusses information visualization in information systems; cognitive factors, including associative memory, spatial ability, and visual memory; user satisfaction; and cognitive abilities and search…

  6. EXPLORING ENVIRONMENTAL DATA IN A HIGHLY IMMERSIVE VIRTUAL REALITY ENVIRONMENT

    EPA Science Inventory

    Geography inherently fills a 3D space and yet we struggle with displaying geography using, primaarily, 2D display devices. Virtual environments offer a more realistically-dimensioned display space and this is being realized in the expanding area of research on 3D Geographic Infor...

  7. Language Learning in Virtual Reality Environments: Past, Present, and Future

    ERIC Educational Resources Information Center

    Lin, Tsun-Ju; Lan, Yu-Ju

    2015-01-01

    This study investigated the research trends in language learning in a virtual reality environment by conducting a content analysis of findings published in the literature from 2004 to 2013 in four top ranked computer-assisted language learning journals: "Language Learning & Technology," "CALICO Journal," "Computer…

  8. Individual Differences in a Spatial-Semantic Virtual Environment.

    ERIC Educational Resources Information Center

    Chen, Chaomei

    2000-01-01

    Presents two empirical case studies concerning the role of individual differences in searching through a spatial-semantic virtual environment. Discusses information visualization in information systems; cognitive factors, including associative memory, spatial ability, and visual memory; user satisfaction; and cognitive abilities and search…

  9. Applicability of Virtual Environments as C4ISR Displays

    DTIC Science & Technology

    2006-06-01

    simulator sickness questionnaire (ssq): A method for quantifying simulator sickness. International Journal of Aviation Psychology, 3(3):203ff. Ergonomie ...Displays Thomas Alexander FGAN - Research Institute for Communication, Information Processing, and Ergonomics Wachtberg, Germany Ergonomie und...Führungssysteme FORSCHUNGSINSTITUT FÜR KOMMUNIKATION, INFORMATIONSVERARBEITUNG UND ERGONOMIE 1 FGAN Applicability of Virtual Environments as C4ISR Displays

  10. Personalized Messages That Promote Science Learning in Virtual Environments

    ERIC Educational Resources Information Center

    Moreno, Roxana; Mayer, Richard E.

    2004-01-01

    College students learned how to design the roots, stem, and leaves of plants to survive in five different virtual reality environments through an agent-based multimedia educational game. For each student, the agent used personalized speech (e.g., including I and you) or nonpersonalized speech (e.g., 3rd-person monologue), and the game was…

  11. PGDnet: A New Problem-Solving Virtual Learning Environment

    ERIC Educational Resources Information Center

    Gomez, Emilio; Rodriguez-Marciel, Cristina

    2012-01-01

    The purpose of this paper was to provide information about the virtual learning environment known as PGDnet (the Spanish acronym for "Plataforma de Gestion Docente" or Educational Management Platform in English), which was developed by the innovative education group at the Technical University of Madrid known as "Nuevas metodologias…

  12. Teaching Social Skills in a Virtual Environment: An Exploratory Study

    ERIC Educational Resources Information Center

    Baker, Jason; Parks-Savage, Agatha; Rehfuss, Mark

    2009-01-01

    This article reports on an exploratory study which examines the use of virtual environment technology as a tool to teach elementary school children social skills. Small group interventions were assessed to determine how the participants were measurably different on 7 different dependent variables: problem behaviors, academic competence,…

  13. Online Teacher Development: Collaborating in a Virtual Learning Environment

    ERIC Educational Resources Information Center

    Ernest, Pauline; Guitert Catasús, Montse; Hampel, Regine; Heiser, Sarah; Hopkins, Joseph; Murphy, Linda; Stickler, Ursula

    2013-01-01

    Over recent years, educational institutions have been making increasing use of virtual environments to set up collaborative activities for learners. While it is recognized that teachers play an important role in facilitating learner collaboration online, they may not have the necessary skills to do so successfully. Thus, a small-scale professional…

  14. Virtual Environment Interpersonal Trust Scale: Validity and Reliability Study

    ERIC Educational Resources Information Center

    Usta, Ertugrul

    2012-01-01

    The purpose of this study is in the process of interpersonal communication in virtual environments is available from the trust problem is to develop a measurement tool. Trust in the process of distance education today, and has been a factor to be investigated. People, who take distance education course, they could may remain within the process…

  15. Avatars Go to Class: A Virtual Environment Soil Science Activity

    ERIC Educational Resources Information Center

    Mamo, M.; Namuth-Covert, D.; Guru, A.; Nugent, G.; Phillips, L.; Sandall, L.; Kettler, T.; McCallister, D.

    2011-01-01

    Web 2.0 technology is expanding rapidly from social and gaming uses into the educational applications. Specifically, the multi-user virtual environment (MUVE), such as SecondLife, allows educators to fill the gap of first-hand experience by creating simulated realistic evolving problems/games. In a pilot study, a team of educators at the…

  16. Multiple Intelligences in Virtual and Traditional Skill Instructional Learning Environments

    ERIC Educational Resources Information Center

    McKethan, Robert; Rabinowitz, Erik; Kernodle, Michael W.

    2010-01-01

    The purpose of this investigation was to examine (a) how Multiple Intelligence (MI) strengths correlate to learning in virtual and traditional environments and (b) the effectiveness of learning with and without an authority figure in attendance. Participants (N=69) were randomly assigned to four groups, administered the Multiple Intelligences…

  17. Optimal Experience in Virtual Environments among College Level Developmental Readers

    ERIC Educational Resources Information Center

    Burgess, Melissa L.; Ice, Phil

    2011-01-01

    In this study, we examined optimal experience and the antecedents of flow as reported by college-level developmental reading students using "Second Life", a multi-user virtual environment. In an educational context, "Second Life" provided a space for demonstrating 21st century skills including communication, collaboration, problem-solving, and…

  18. Virtual Learning Environments in Teacher Education: A Journal, a Journey

    ERIC Educational Resources Information Center

    Clarke, Linda

    2013-01-01

    Virtual Learning Environments (VLEs) in teacher education have a short history which is little longer than that of this journal. Twenty years ago they were the province of early adopters only and limited to email and, more unusually, asynchronous conferencing. Today, VLEs are widespread and mainstream, sophisticated and officially sanctioned…

  19. The Future Role of Librarians in the Virtual Library Environment.

    ERIC Educational Resources Information Center

    Burke, Liz

    2002-01-01

    Considers the role of librarians in a virtual library environment. Highlights include providing intellectual access to information in any format; evaluating available sources of information; organizing information; ensuring the preservation of information; providing specialized staff to help meet information needs; and the economic impact of…

  20. DELIVERing Library Resources to the Virtual Learning Environment

    ERIC Educational Resources Information Center

    Secker, Jane

    2005-01-01

    Purpose: Examines a project to integrate digital libraries and virtual learning environments (VLE) focusing on requirements for online reading list systems. Design/methodology/approach: Conducted a user needs analysis using interviews and focus groups and evaluated three reading or resource list management systems. Findings: Provides a technical…

  1. PGDnet: A New Problem-Solving Virtual Learning Environment

    ERIC Educational Resources Information Center

    Gomez, Emilio; Rodriguez-Marciel, Cristina

    2012-01-01

    The purpose of this paper was to provide information about the virtual learning environment known as PGDnet (the Spanish acronym for "Plataforma de Gestion Docente" or Educational Management Platform in English), which was developed by the innovative education group at the Technical University of Madrid known as "Nuevas metodologias…

  2. Cognitive Presence and Effect of Immersion in Virtual Learning Environment

    ERIC Educational Resources Information Center

    Katernyak, Ihor; Loboda, Viktoriya

    2016-01-01

    This paper presents the approach to successful application of two knowledge management techniques--community of practice and eLearning, in order to create and manage a competence-developing virtual learning environment. It explains how "4A" model of involving practitioners in eLearning process (through attention, actualization,…

  3. Measuring Performance of Virtual Learning Environment System in Higher Education

    ERIC Educational Resources Information Center

    Ho, William; Higson, Helen E.; Dey, Prasanta K.; Xu, Xiaowei; Bahsoon, Rami

    2009-01-01

    Purpose: The purpose of this paper is to measure the performance of commercial virtual learning environment (VLE) systems, which helps the decision makers to select the appropriate system for their institutions. Design/methodology/approach: This paper develops an integrated multiple criteria decision making approach, which combines the analytic…

  4. Can Virtual Environments Enhance the Learning of Historical Chronology?

    ERIC Educational Resources Information Center

    Foreman, Nigel; Boyd-Davis, Stephen; Moar, Magnus; Korallo, Liliya; Chappell, Emma

    2008-01-01

    Historical time and chronological sequence are usually conveyed to pupils via the presentation of semantic information on printed worksheets, events being rote-memorised according to date. We explored the use of virtual environments in which successive historical events were depicted as "places" in time-space, encountered sequentially in…

  5. Educational Visualizations in 3D Collaborative Virtual Environments: A Methodology

    ERIC Educational Resources Information Center

    Fominykh, Mikhail; Prasolova-Forland, Ekaterina

    2012-01-01

    Purpose: Collaborative virtual environments (CVEs) have become increasingly popular in educational settings and the role of 3D content is becoming more and more important. Still, there are many challenges in this area, such as lack of empirical studies that provide design for educational activities in 3D CVEs and lack of norms of how to support…

  6. Suitability of a Virtual Learning Environment for Higher Education

    ERIC Educational Resources Information Center

    Koskela, Marileena; Kiltti, Piia; Vilpola, Inka; Tervonen, Janne

    2005-01-01

    The number of virtual learning environments (VLEs) is increasing. Already a few case studies claim that VLEs are more effective as a learning method than traditional lecturing. Many of these case studies are in the area of information and communication technology (ICT). Therefore, the good learning results are not surprising. The aim of this paper…

  7. Designing Assessments and Assessing Designs in Virtual Educational Environments

    ERIC Educational Resources Information Center

    Hickey, Daniel T.; Ingram-Goble, Adam A.; Jameson, Ellen M.

    2009-01-01

    This study used innovative assessment practices to obtain and document broad learning outcomes for a 15-hour game-based curriculum in Quest Atlantis, a multi-user virtual environment that supports school-based participation in socio scientific inquiry in ecological sciences. Design-based methods were used to refine and align the enactment of…

  8. Avatars Go to Class: A Virtual Environment Soil Science Activity

    ERIC Educational Resources Information Center

    Mamo, M.; Namuth-Covert, D.; Guru, A.; Nugent, G.; Phillips, L.; Sandall, L.; Kettler, T.; McCallister, D.

    2011-01-01

    Web 2.0 technology is expanding rapidly from social and gaming uses into the educational applications. Specifically, the multi-user virtual environment (MUVE), such as SecondLife, allows educators to fill the gap of first-hand experience by creating simulated realistic evolving problems/games. In a pilot study, a team of educators at the…

  9. Identifying Different Registers of Digital Literacy in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Knutsson, Ola; Blasjo, Mona.; Hallsten, Stina; Karlstrom, Petter

    2012-01-01

    In this paper social semiotics, and systemic functional linguistics in particular, are used in order to identify registers of digital literacy in the use of virtual learning environments. The framework of social semiotics provides means to systemize and discuss digital literacy as a linguistic and semiotic issue. The following research question…

  10. The Influence of Advice in a Virtual Learning Environment

    ERIC Educational Resources Information Center

    Pulford, Briony D.

    2011-01-01

    The influence of asynchronous discussion in a virtual learning environment, Blackboard, on subsequent coursework grades was examined with 166 psychology students to determine whether asking questions of the tutor online, and/or reading the questions and the given advice, influenced the grades on the report they were writing. A repeated-measures…

  11. Wayfinding Behaviour in Down Syndrome: A Study with Virtual Environments

    ERIC Educational Resources Information Center

    Courbois, Yannick; Farran, Emily K.; Lemahieu, Axelle; Blades, Mark; Mengue-Topio, Hursula; Sockeel, Pascal

    2013-01-01

    The aim of this study was to assess wayfinding abilities in individuals with Down syndrome (DS). The ability to learn routes though a virtual environment (VE) and to make a novel shortcut between two locations was assessed in individuals with DS (N = 10) and control participants individually matched on mental age (MA) or chronological age (CA).…

  12. Language Learning in Virtual Reality Environments: Past, Present, and Future

    ERIC Educational Resources Information Center

    Lin, Tsun-Ju; Lan, Yu-Ju

    2015-01-01

    This study investigated the research trends in language learning in a virtual reality environment by conducting a content analysis of findings published in the literature from 2004 to 2013 in four top ranked computer-assisted language learning journals: "Language Learning & Technology," "CALICO Journal," "Computer…

  13. EXPLORING ENVIRONMENTAL DATA IN A HIGHLY IMMERSIVE VIRTUAL REALITY ENVIRONMENT

    EPA Science Inventory

    Geography inherently fills a 3D space and yet we struggle with displaying geography using, primaarily, 2D display devices. Virtual environments offer a more realistically-dimensioned display space and this is being realized in the expanding area of research on 3D Geographic Infor...

  14. Teacher Practice in Multi User Virtual Environments: A Fourth Space

    ERIC Educational Resources Information Center

    Calandra, Brendan; Puvirajah, Anton

    2014-01-01

    Practicing teaching is an important aspect of teacher education, however, its implementation can be limited due to the constraints and risks related to practicing in actual schools. There is evidence in the literature of Multi User Virtual Environments (MUVEs) being used as spaces for training, especially in fields where the costs associated with…

  15. Virtual Learning Environments in Teacher Education: A Journal, a Journey

    ERIC Educational Resources Information Center

    Clarke, Linda

    2013-01-01

    Virtual Learning Environments (VLEs) in teacher education have a short history which is little longer than that of this journal. Twenty years ago they were the province of early adopters only and limited to email and, more unusually, asynchronous conferencing. Today, VLEs are widespread and mainstream, sophisticated and officially sanctioned…

  16. Identifying Different Registers of Digital Literacy in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Knutsson, Ola; Blasjo, Mona.; Hallsten, Stina; Karlstrom, Petter

    2012-01-01

    In this paper social semiotics, and systemic functional linguistics in particular, are used in order to identify registers of digital literacy in the use of virtual learning environments. The framework of social semiotics provides means to systemize and discuss digital literacy as a linguistic and semiotic issue. The following research question…

  17. Design Characteristics of Virtual Learning Environments: An Expert Study

    ERIC Educational Resources Information Center

    Mueller, Daniel; Strohmeier, Stefan

    2010-01-01

    Virtual learning environments (VLE) constitute the current information systems' (IS) category for electronically supported corporate training and development. Frequently supposed advantages of using VLE refer, for instance, to the efficiency, individuality, ubiquity, timeliness and task orientation of learning. However, a crucial precondition of…

  18. Live Virtual Constructive Distributed Test Environment Characterization Report

    NASA Technical Reports Server (NTRS)

    Murphy, Jim; Kim, Sam K.

    2013-01-01

    This report documents message latencies observed over various Live, Virtual, Constructive, (LVC) simulation environment configurations designed to emulate possible system architectures for the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project integrated tests. For each configuration, four scenarios with progressively increasing air traffic loads were used to determine system throughput and bandwidth impacts on message latency.

  19. Creating a Virtual Learning Environment for Gifted and Talented Learners

    ERIC Educational Resources Information Center

    Mulrine, Christopher F.

    2007-01-01

    This article illustrates how teachers can infuse best practices from both gifted and talented education and information technology to benefit gifted and talented students through the creation of a virtual classroom learning environment. The author has used this assignment in an assistive technology course as an assignment for teacher preparation…

  20. The Potential and Uniqueness of Virtual Environments for Education

    ERIC Educational Resources Information Center

    Bennett, Leslie A.

    2008-01-01

    Virtual environments (VEs) are growing in popularity among educators and have unique potential for online learning. This paper describes the unique characteristics of VEs that make them an effective venue for online learning due to increased environmental presence. Unique characteristics of VEs include nature of visual stimuli, control of the…

  1. Minimizing Input-to-Output Latency in Virtual Environment

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard D.; Ellis, Stephen R.; Hill, Michael I.

    2009-01-01

    A method and apparatus were developed to minimize latency (time delay ) in virtual environment (VE) and other discrete- time computer-base d systems that require real-time display in response to sensor input s. Latency in such systems is due to the sum of the finite time requi red for information processing and communication within and between sensors, software, and displays.

  2. Avatars, Pedagogical Agents, and Virtual Environments: Social Learning Systems Online

    ERIC Educational Resources Information Center

    Ausburn, Lynna J.; Martens, Jon; Dotterer, Gary; Calhoun, Pat

    2009-01-01

    This paper presents a review of literature that introduces major concepts and issues in using avatars and pedagogical agents in first- and second-person virtual environments (VEs) for learning online. In these VEs, avatars and pedagogical agents represent self and other learners/participants or serve as personal learning "guides". The…

  3. Personalized Virtual Learning Environment from the Detection of Learning Styles

    ERIC Educational Resources Information Center

    Martínez Cartas, M. L.; Cruz Pérez, N.; Deliche Quesada, D.; Mateo Quero, S.

    2013-01-01

    Through the previous detection of existing learning styles in a classroom, a Virtual Learning Environment (VLE) has been designed for students of several Engineering degrees, using the Learning Management System (LMS) utilized in the University of Jaen, ILIAS. Learning styles of three different Knowledge Areas; Chemical Engineering, Materials…

  4. The Future Role of Librarians in the Virtual Library Environment.

    ERIC Educational Resources Information Center

    Burke, Liz

    2002-01-01

    Considers the role of librarians in a virtual library environment. Highlights include providing intellectual access to information in any format; evaluating available sources of information; organizing information; ensuring the preservation of information; providing specialized staff to help meet information needs; and the economic impact of…

  5. Online Teacher Development: Collaborating in a Virtual Learning Environment

    ERIC Educational Resources Information Center

    Ernest, Pauline; Guitert Catasús, Montse; Hampel, Regine; Heiser, Sarah; Hopkins, Joseph; Murphy, Linda; Stickler, Ursula

    2013-01-01

    Over recent years, educational institutions have been making increasing use of virtual environments to set up collaborative activities for learners. While it is recognized that teachers play an important role in facilitating learner collaboration online, they may not have the necessary skills to do so successfully. Thus, a small-scale professional…

  6. Designing for Real-World Scientific Inquiry in Virtual Environments

    ERIC Educational Resources Information Center

    Ketelhut, Diane Jass; Nelson, Brian C.

    2010-01-01

    Background: Most policy doctrines promote the use of scientific inquiry in the K-12 classroom, but good inquiry is hard to implement, particularly for schools with fiscal and safety constraints and for teachers struggling with understanding how to do so. Purpose: In this paper, we present the design of a multi-user virtual environment (MUVE)…

  7. Can Virtual Environments Enhance the Learning of Historical Chronology?

    ERIC Educational Resources Information Center

    Foreman, Nigel; Boyd-Davis, Stephen; Moar, Magnus; Korallo, Liliya; Chappell, Emma

    2008-01-01

    Historical time and chronological sequence are usually conveyed to pupils via the presentation of semantic information on printed worksheets, events being rote-memorised according to date. We explored the use of virtual environments in which successive historical events were depicted as "places" in time-space, encountered sequentially in…

  8. Wayfinding Behaviour in Down Syndrome: A Study with Virtual Environments

    ERIC Educational Resources Information Center

    Courbois, Yannick; Farran, Emily K.; Lemahieu, Axelle; Blades, Mark; Mengue-Topio, Hursula; Sockeel, Pascal

    2013-01-01

    The aim of this study was to assess wayfinding abilities in individuals with Down syndrome (DS). The ability to learn routes though a virtual environment (VE) and to make a novel shortcut between two locations was assessed in individuals with DS (N = 10) and control participants individually matched on mental age (MA) or chronological age (CA).…

  9. Multiple Intelligences in Virtual and Traditional Skill Instructional Learning Environments

    ERIC Educational Resources Information Center

    McKethan, Robert; Rabinowitz, Erik; Kernodle, Michael W.

    2010-01-01

    The purpose of this investigation was to examine (a) how Multiple Intelligence (MI) strengths correlate to learning in virtual and traditional environments and (b) the effectiveness of learning with and without an authority figure in attendance. Participants (N=69) were randomly assigned to four groups, administered the Multiple Intelligences…

  10. Virtual Environments and Autism: A Developmental Psychopathological Approach

    ERIC Educational Resources Information Center

    Rajendran, G.

    2013-01-01

    Individuals with autism spectrum disorders supposedly have an affinity with information and communication technology (ICT), making it an ideally suited media for this population. Virtual environments (VEs)--both two-dimensional and immersive--represent a particular kind of ICT that might be of special benefit. Specifically, this paper discusses…

  11. Measuring Performance of Virtual Learning Environment System in Higher Education

    ERIC Educational Resources Information Center

    Ho, William; Higson, Helen E.; Dey, Prasanta K.; Xu, Xiaowei; Bahsoon, Rami

    2009-01-01

    Purpose: The purpose of this paper is to measure the performance of commercial virtual learning environment (VLE) systems, which helps the decision makers to select the appropriate system for their institutions. Design/methodology/approach: This paper develops an integrated multiple criteria decision making approach, which combines the analytic…

  12. An Analysis of Students' Preparation for the Virtual Learning Environment.

    ERIC Educational Resources Information Center

    Lee, Joseph; Hong, Ng Lai; Ling, Ng Lai

    2001-01-01

    Describes a study conducted at a private college in Malaysia that identified factors that helped learners successfully use information and communication technology in a virtual learning environment. Topics include skills and attitudes of students; awareness of information available on the Internet; access to the Internet; and perceived…

  13. Designing Assessments and Assessing Designs in Virtual Educational Environments

    ERIC Educational Resources Information Center

    Hickey, Daniel T.; Ingram-Goble, Adam A.; Jameson, Ellen M.

    2009-01-01

    This study used innovative assessment practices to obtain and document broad learning outcomes for a 15-hour game-based curriculum in Quest Atlantis, a multi-user virtual environment that supports school-based participation in socio scientific inquiry in ecological sciences. Design-based methods were used to refine and align the enactment of…

  14. Designing for Real-World Scientific Inquiry in Virtual Environments

    ERIC Educational Resources Information Center

    Ketelhut, Diane Jass; Nelson, Brian C.

    2010-01-01

    Background: Most policy doctrines promote the use of scientific inquiry in the K-12 classroom, but good inquiry is hard to implement, particularly for schools with fiscal and safety constraints and for teachers struggling with understanding how to do so. Purpose: In this paper, we present the design of a multi-user virtual environment (MUVE)…

  15. Predicting Virtual Learning Environment Adoption: A Case Study

    ERIC Educational Resources Information Center

    Penjor, Sonam; Zander, Pär-Ola

    2016-01-01

    This study investigates the significance of Rogers' Diffusion of Innovations (DOI) theory with regard to the use of a Virtual Learning Environment (VLE) at the Royal University of Bhutan (RUB). The focus is on different adoption types and characteristics of users. Rogers' DOI theory is applied to investigate the influence of five predictors…

  16. Learning Objects and Virtual Learning Environments Technical Evaluation Criteria

    ERIC Educational Resources Information Center

    Kurilovas, Eugenijus; Dagiene, Valentina

    2009-01-01

    The main scientific problems investigated in this article deal with technical evaluation of quality attributes of the main components of e-Learning systems (referred here as DLEs--Digital Libraries of Educational Resources and Services), i.e., Learning Objects (LOs) and Virtual Learning Environments (VLEs). The main research object of the work is…

  17. Virtual Environments and Autism: A Developmental Psychopathological Approach

    ERIC Educational Resources Information Center

    Rajendran, G.

    2013-01-01

    Individuals with autism spectrum disorders supposedly have an affinity with information and communication technology (ICT), making it an ideally suited media for this population. Virtual environments (VEs)--both two-dimensional and immersive--represent a particular kind of ICT that might be of special benefit. Specifically, this paper discusses…

  18. A Virtual Environment System for the Comparison of Dome and HMD Systems

    NASA Technical Reports Server (NTRS)

    Chen, Jian; Harm, Deboran L.; Loftin, R. Bowen; Lin, Ching-yao; Leiss, Ernst L.

    2002-01-01

    For effective astronaut training applications, choosing the right display devices to present images is crucial. In order to assess what devices are appropriate, it is important to design a successful virtual environment for a comparison study of the display devices. We present a comprehensive system for the comparison of Dome and head-mounted display (HMD) systems. In particular, we address interactions techniques and playback environments.

  19. Simulation of Physical Experiments in Immersive Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  20. Dismounted Infantry Decision Skills Assessment in the Virtual Training Environment

    DTIC Science & Technology

    2005-03-01

    AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Subject Matter EPOC and Contracting Officer’s...environment technologies like ViSSA have the potential to provide the Army with a training capability to meet these demands to optimize human...in preparing dismounted forces for decision-making in urban operations, using the strengths of virtual environment technologies . The U.S. Army is

  1. Baseline Establishment Using Virtual Environment Traumatic Brain Injury Screen (VETS)

    DTIC Science & Technology

    2015-06-01

    treating brain injuries is utilizing 16 an effective screening technique to target treatment for those individuals who need it most. Requirements for an...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS BASELINE ESTABLISHMENT USING VIRTUAL ENVIRONMENT TRAUMATIC BRAIN INJURY SCREEN (VETS) by Casey...ENVIRONMENT TRAUMATIC BRAIN INJURY SCREEN (VETS) 5. FUNDING NUMBERS 6. AUTHOR(S) Casey G. DeMunck 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  2. A comparison of older adults' subjective experience with virtual and real environments during dynamic balance activities

    PubMed Central

    Proffitt, Rachel; Lange, Belinda; Chen, Christina; Winstein, Carolee

    2014-01-01

    The purpose of this study was to explore the subjective experience of older adults interacting with both virtual and real environments. Thirty healthy older adults engaged with real and virtual tasks of similar motor demands: reaching to a target in standing and stepping stance. Immersive tendencies and absorption scales were administered before the session. Game engagement and experience questionnaires were completed after each task, followed by a semi-structured interview at the end of the testing session. Data were analyzed respectively using paired t-tests and grounded theory methodology. Participants preferred the virtual task over the real task. They also reported an increase in presence and absorption with the virtual task, describing an external focus of attention. Findings will be used to inform future development of appropriate game-based balance training applications that could be embedded in the home or community settings as part of evidence-based fall prevention programs. PMID:24334299

  3. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    NASA Technical Reports Server (NTRS)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  4. Augmented reality and photogrammetry: A synergy to visualize physical and virtual city environments

    NASA Astrophysics Data System (ADS)

    Portalés, Cristina; Lerma, José Luis; Navarro, Santiago

    2010-01-01

    Close-range photogrammetry is based on the acquisition of imagery to make accurate measurements and, eventually, three-dimensional (3D) photo-realistic models. These models are a photogrammetric product per se. They are usually integrated into virtual reality scenarios where additional data such as sound, text or video can be introduced, leading to multimedia virtual environments. These environments allow users both to navigate and interact on different platforms such as desktop PCs, laptops and small hand-held devices (mobile phones or PDAs). In very recent years, a new technology derived from virtual reality has emerged: Augmented Reality (AR), which is based on mixing real and virtual environments to boost human interactions and real-life navigations. The synergy of AR and photogrammetry opens up new possibilities in the field of 3D data visualization, navigation and interaction far beyond the traditional static navigation and interaction in front of a computer screen. In this paper we introduce a low-cost outdoor mobile AR application to integrate buildings of different urban spaces. High-accuracy 3D photo-models derived from close-range photogrammetry are integrated in real (physical) urban worlds. The augmented environment that is presented herein requires for visualization a see-through video head mounted display (HMD), whereas user's movement navigation is achieved in the real world with the help of an inertial navigation sensor. After introducing the basics of AR technology, the paper will deal with real-time orientation and tracking in combined physical and virtual city environments, merging close-range photogrammetry and AR. There are, however, some software and complex issues, which are discussed in the paper.

  5. Rehabilitation Program Integrating Virtual Environment to Improve Orientation and Mobility Skills for People Who Are Blind

    PubMed Central

    Lahav, Orly; Schloerb, David W.; Srinivasan, Mandayam A.

    2014-01-01

    This paper presents the integration of a virtual environment (BlindAid) in an orientation and mobility rehabilitation program as a training aid for people who are blind. BlindAid allows the users to interact with different virtual structures and objects through auditory and haptic feedback. This research explores if and how use of the BlindAid in conjunction with a rehabilitation program can help people who are blind train themselves in familiar and unfamiliar spaces. The study, focused on nine participants who were congenitally, adventitiously, and newly blind, during their orientation and mobility rehabilitation program at the Carroll Center for the Blind (Newton, Massachusetts, USA). The research was implemented using virtual environment (VE) exploration tasks and orientation tasks in virtual environments and real spaces. The methodology encompassed both qualitative and quantitative methods, including interviews, a questionnaire, videotape recording, and user computer logs. The results demonstrated that the BlindAid training gave participants additional time to explore the virtual environment systematically. Secondly, it helped elucidate several issues concerning the potential strengths of the BlindAid system as a training aid for orientation and mobility for both adults and teenagers who are congenitally, adventitiously, and newly blind. PMID:25284952

  6. Genome Island: A Virtual Science Environment in Second Life

    ERIC Educational Resources Information Center

    Clark, Mary Anne

    2009-01-01

    Mary Anne CLark describes the organization and uses of Genome Island, a virtual laboratory complex constructed in Second Life. Genome Island was created for teaching genetics to university undergraduates but also provides a public space where anyone interested in genetics can spend a few minutes, or a few hours, interacting with genetic…

  7. Genome Island: A Virtual Science Environment in Second Life

    ERIC Educational Resources Information Center

    Clark, Mary Anne

    2009-01-01

    Mary Anne CLark describes the organization and uses of Genome Island, a virtual laboratory complex constructed in Second Life. Genome Island was created for teaching genetics to university undergraduates but also provides a public space where anyone interested in genetics can spend a few minutes, or a few hours, interacting with genetic…

  8. Future Mission Data Environment: Virtualizing Access to Solar Physics Data

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph

    2004-01-01

    Several virtual observatory efforts, currently in development, have the potential to change the way we identify and access the data we use to solve problems in solar physics. The Virtual Solar Observatory (VSO) seeks to simplify the identification and access processes in as "light-weight" a way as possible, in order to provide such services to solar physicists, their data assimilation models, and their colleagues in related fields. We describe the design of the VSO, the data services currently available, and concepts of the solar-terrestrial data environment five years in the future.

  9. Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; McCrea, Andrew C.

    2009-01-01

    The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.

  10. Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; McCrea, Andrew C.

    2010-01-01

    The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.

  11. Motion sickness and proprioceptive aftereffects following virtual environment exposure

    NASA Technical Reports Server (NTRS)

    Stanney, K. M.; Kennedy, R. S.; Drexler, J. M.; Harm, D. L.

    1999-01-01

    To study the potential aftereffects of virtual environments (VE), tests of visually guided behavior and felt limb position (pointing with eyes open and closed) along with self-reports of motion sickness-like discomfort were administered before and after 30 min exposure of 34 subjects. When post- discomfort was compared to a pre-baseline, the participants reported more sickness afterward (p < 0.03). The change in felt limb position resulted in subjects pointing higher (p < 0.038) and slightly to the left, although the latter difference was not statistically significant (p = 0.08). When findings from a second study using a different VE system were compared, they essentially replicated the results of the first study with higher sickness afterward (p < 0.001) and post- pointing errors were also up (p < 0.001) and to the left (p < 0.001). While alternative explanations (e.g. learning, fatigue, boredom, habituation, etc.) of these outcomes cannot be ruled out, the consistency of the post- effects on felt limb position changes in the two VE implies that these recalibrations may linger once interaction with the VE has concluded, rendering users potentially physiologically maladapted for the real world when they return. This suggests there may be safety concerns following VE exposures until pre-exposure functioning has been regained. The results of this study emphasize the need for developing and using objective measures of post-VE exposure aftereffects in order to systematically determine under what conditions these effects may occur.

  12. Characterizing subdural EEG electrode grids in a virtual realistic environment

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke J.; Hoekema, R.; van Rijen, P. C.; van Veelen, C. W. M.; Viergever, Max A.

    2000-04-01

    When the focus of epilepsy is so deep that skin EEG electrodes do not give enough accuracy in calculating the position of the focus, it may be decided to surgically implant EEG electrodes inside the patient's head. To localize these electrodes, a high resolution CT scan is made of the patients' head. As manual tracking of the electrodes slice by slice is confusing and erroneous, a virtual reality environment has been created to give the radiologist a view from inside the patient's skull. With the help of a high quality but fast volume renderer, the radiologist can get an overview of electrode grids and can interactively characterize the grid contacts of interest;. For the localization of the contracts, we compared manual placement, center of gravity and Gaussian template matching. It appeared that the grid contacts could be characterized with an accuracy of 0.5 mm, that manual positioning and template matching with a Gaussian with flexible sizes clearly outperformed center of gravity and template matching with an isotropic Gaussian. The reason is that although the contacts are clearly visible in a CT, their small dimensions, and proximity to skull and metal wires, makes them more difficult to characterize fully automatically than commonly expected.

  13. Cyber entertainment system using an immersive networked virtual environment

    NASA Astrophysics Data System (ADS)

    Ihara, Masayuki; Honda, Shinkuro; Kobayashi, Minoru; Ishibashi, Satoshi

    2002-05-01

    Authors are examining a cyber entertainment system that applies IPT (Immersive Projection Technology) displays to the entertainment field. This system enables users who are in remote locations to communicate with each other so that they feel as if they are together. Moreover, the system enables those users to experience a high degree of presence, this is due to provision of stereoscopic vision as well as a haptic interface and stereo sound. This paper introduces this system from the viewpoint of space sharing across the network and elucidates its operation using the theme of golf. The system is developed by integrating avatar control, an I/O device, communication links, virtual interaction, mixed reality, and physical simulations. Pairs of these environments are connected across the network. This allows the two players to experience competition. An avatar of each player is displayed by the other player's IPT display in the remote location and is driven by only two magnetic sensors. That is, in the proposed system, users don't need to wear any data suit with a lot of sensors and they are able to play golf without any encumbrance.

  14. [The virtual environment of a research group: the tutors' perspective].

    PubMed

    Prado, Cláudia; Casteli, Christiane Pereira Martins; Lopes, Tania Oliveira; Kobayashi, Rika M; Peres, Heloísa Helena Ciqueto; Leite, Maria Madalena Januário

    2012-02-01

    The Grupo de Estudos e Pesquisas de Tecnologia da Informação nos Processos de Trabalho em Enfermagem (Study and Research Group for Information Technology in the Nursing Working Processes, GEPETE) has the purpose of producing and socializing knowledge in information technology and health and nursing communication, making associations with research groups in this field and promoting student participation. This study was performed by the group tutors with the objective to report on the development of the virtual learning environment (VLE) and the tutors' experience as mediators of a research group using the Moodle platform. To do this, a VLE was developed and pedagogical mediation was performed following the theme of mentoring. An initial diagnosis was made of the difficulties in using this technology in interaction and communication, which permitted the proposal of continuing to use the platform as a resource to support research activities, offer lead researchers the mechanisms to socialize projects and offer the possibility of giving advice at a distance.

  15. Motion sickness and proprioceptive aftereffects following virtual environment exposure

    NASA Technical Reports Server (NTRS)

    Stanney, K. M.; Kennedy, R. S.; Drexler, J. M.; Harm, D. L.

    1999-01-01

    To study the potential aftereffects of virtual environments (VE), tests of visually guided behavior and felt limb position (pointing with eyes open and closed) along with self-reports of motion sickness-like discomfort were administered before and after 30 min exposure of 34 subjects. When post- discomfort was compared to a pre-baseline, the participants reported more sickness afterward (p < 0.03). The change in felt limb position resulted in subjects pointing higher (p < 0.038) and slightly to the left, although the latter difference was not statistically significant (p = 0.08). When findings from a second study using a different VE system were compared, they essentially replicated the results of the first study with higher sickness afterward (p < 0.001) and post- pointing errors were also up (p < 0.001) and to the left (p < 0.001). While alternative explanations (e.g. learning, fatigue, boredom, habituation, etc.) of these outcomes cannot be ruled out, the consistency of the post- effects on felt limb position changes in the two VE implies that these recalibrations may linger once interaction with the VE has concluded, rendering users potentially physiologically maladapted for the real world when they return. This suggests there may be safety concerns following VE exposures until pre-exposure functioning has been regained. The results of this study emphasize the need for developing and using objective measures of post-VE exposure aftereffects in order to systematically determine under what conditions these effects may occur.

  16. BIM based virtual environment for fire emergency evacuation.

    PubMed

    Wang, Bin; Li, Haijiang; Rezgui, Yacine; Bradley, Alex; Ong, Hoang N

    2014-01-01

    Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management.

  17. BIM Based Virtual Environment for Fire Emergency Evacuation

    PubMed Central

    Rezgui, Yacine; Ong, Hoang N.

    2014-01-01

    Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management. PMID:25197704

  18. Instructional Design Practices in the Design and Development of Digital Humanities Virtual Environments (DH-VEs)

    ERIC Educational Resources Information Center

    Kelly, Valerie Hunter

    2011-01-01

    Virtual environments, virtual worlds, simulations, 3D models are loaded with potential, promise, and problems. While learning in virtual settings is still being researched, instructional designers are challenged as to which instructional design practices are best suited for virtual environments (VEs). The problem is there is a lack of a conceptual…

  19. Using Virtual Reality Environment to Improve Joint Attention Associated with Pervasive Developmental Disorder

    ERIC Educational Resources Information Center

    Cheng, Yufang; Huang, Ruowen

    2012-01-01

    The focus of this study is using data glove to practice Joint attention skill in virtual reality environment for people with pervasive developmental disorder (PDD). The virtual reality environment provides a safe environment for PDD people. Especially, when they made errors during practice in virtual reality environment, there is no suffering or…

  20. Using Virtual Reality Environment to Improve Joint Attention Associated with Pervasive Developmental Disorder

    ERIC Educational Resources Information Center

    Cheng, Yufang; Huang, Ruowen

    2012-01-01

    The focus of this study is using data glove to practice Joint attention skill in virtual reality environment for people with pervasive developmental disorder (PDD). The virtual reality environment provides a safe environment for PDD people. Especially, when they made errors during practice in virtual reality environment, there is no suffering or…

  1. Virtual reality and claustrophobia: multiple components therapy involving game editor virtual environments exposure.

    PubMed

    Malbos, E; Mestre, D R; Note, I D; Gellato, C

    2008-12-01

    The effectiveness of a multiple components therapy regarding claustrophobia and involving virtual reality (VR) will be demonstrated through a trial which immersed six claustrophobic patients in multiple context-graded enclosed virtual environments (VE) using affordable VR apparatus and software. The results of the questionnaires and behavior tests exhibited a significant reduction in fear towards the enclosed space and quality of life improvement. Such gains were maintained at 6-month follow-up. Presence score indicated the patients felt immersed and present inside the game editor VE.

  2. A Process Study of the Development of Virtual Research Environments

    NASA Astrophysics Data System (ADS)

    Ahmed, I.; Cooper, K.; McGrath, R.; Griego, G.; Poole, M. S.; Hanisch, R. J.

    2014-05-01

    In recent years, cyberinfrastructures have been deployed to create virtual research environments (VREs) - such as the Virtual Astronomical Observatory (VAO) - to enhance the quality and speed of scientific research, and to foster global scientific communities. Our study utilizes process methodology to study the evolution of VREs. This approach focuses on a series of events that bring about or lead to some outcome, and attempts to specify the generative mechanism that could produce the event series. This paper briefly outlines our approach and describes initial results of a case study of the VAO, one of the participating VREs. The case study is based on interviews with seven individuals participating in the VAO, and analysis of project documents and online resources. These sources are hand tagged to identify events related to the thematic tracks, to yield a narrative of the project. Results demonstrate the event series of an organization through traditional methods augmented by virtual sources.

  3. Dual Surgical Navigation Using Augmented and Virtual Environment Techniques

    NASA Astrophysics Data System (ADS)

    Kim, Sungmin; Hong, Jaesung; Joung, Sanghyun; Yamada, Atsushi; Matsumoto, Nozomu; Kim, Sun I.; Kim, Young Soo; Hashizume, Makoto

    2011-04-01

    To obtain additional depth and visual information in endoscopic surgery, a dual surgical navigation system using virtual reality (VR) and augmented reality (AR) techniques complementarily was developed. A VR environment was constructed in the default 3-D view of the navigation software and an AR environment was developed as a plug-in module. The spatial relationships among the target organ, endoscope, and surgical tools were visualized, and the visual information superimposing invisible organs on the endoscopic images was supplied using the AR environment. Phantom experiments and preliminary clinical application showed promising results for surgical navigation.

  4. From planes to brains: parallels between military development of virtual reality environments and virtual neurological surgery.

    PubMed

    Schmitt, Paul J; Agarwal, Nitin; Prestigiacomo, Charles J

    2012-01-01

    Military explorations of the practical role of simulators have served as a driving force for much of the virtual reality technology that we have today. The evolution of 3-dimensional and virtual environments from the early flight simulators used during World War II to the sophisticated training simulators in the modern military followed a path that virtual surgical and neurosurgical devices have already begun to parallel. By understanding the evolution of military simulators as well as comparing and contrasting that evolution with current and future surgical simulators, it may be possible to expedite the development of appropriate devices and establish their validity as effective training tools. As such, this article presents a historical perspective examining the progression of neurosurgical simulators, the establishment of effective and appropriate curricula for using them, and the contributions that the military has made during the ongoing maturation of this exciting treatment and training modality. Copyright © 2012. Published by Elsevier Inc.

  5. Multimodal interaction in real and virtual concert halls

    NASA Astrophysics Data System (ADS)

    Larsson, Pontus; Västfjäll, Daniel; Kleiner, Mendel

    2004-05-01

    Recently, researchers within the field of room acoustics have shown an increased interest for the understanding of how different modalities, especially vision and audition, interact in the concert hall experience. Computer auralization and virtual reality technology have brought means to efficiently study such auditory-visual interaction phenomena in concert halls. However, an important question to address is to what extent the results from such studies agree with real, unmediated situations. In this paper, we discuss some of the auditory-visual cross-modal effects discovered in previous experiments, and an account of cross-modal phenomena in room acoustic perception is proposed. Moreover, the importance of measuring simulation fidelity when performing cross-modal experiments in virtual concert halls is discussed. The conclusions are that one can expect auditory-visual interaction effects to occur in both real and virtual rooms, but that simulation fidelity might affect the results when performing experiments in virtual conditions.

  6. Assessment of radiation awareness training in immersive virtual environments

    NASA Astrophysics Data System (ADS)

    Whisker, Vaughn E., III

    The prospect of new nuclear power plant orders in the near future and the graying of the current workforce create a need to train new personnel faster and better. Immersive virtual reality (VR) may offer a solution to the training challenge. VR technology presented in a CAVE Automatic Virtual Environment (CAVE) provides a high-fidelity, one-to-one scale environment where areas of the power plant can be recreated and virtual radiation environments can be simulated, making it possible to safely expose workers to virtual radiation in the context of the actual work environment. The use of virtual reality for training is supported by many educational theories; constructivism and discovery learning, in particular. Educational theory describes the importance of matching the training to the task. Plant access training and radiation worker training, common forms of training in the nuclear industry, rely on computer-based training methods in most cases, which effectively transfer declarative knowledge, but are poor at transferring skills. If an activity were to be added, the training would provide personnel with the opportunity to develop skills and apply their knowledge so they could be more effective when working in the radiation environment. An experiment was developed to test immersive virtual reality's suitability for training radiation awareness. Using a mixed methodology of quantitative and qualitative measures, the subjects' performances before and after training were assessed. First, subjects completed a pre-test to measure their knowledge prior to completing any training. Next they completed unsupervised computer-based training, which consisted of a PowerPoint presentation and a PDF document. After completing a brief orientation activity in the virtual environment, one group of participants received supplemental radiation awareness training in a simulated radiation environment presented in the CAVE, while a second group, the control group, moved directly to the

  7. A virtual control room with an embedded, interactive nuclear reactor simulator

    SciTech Connect

    Markidis, S.; Rizwan, U.

    2006-07-01

    The use of virtual nuclear control room can be an effective and powerful tool for training personnel working in the nuclear power plants. Operators could experience and simulate the functioning of the plant, even in critical situations, without being in a real power plant or running any risk. 3D models can be exported to Virtual Reality formats and then displayed in the Virtual Reality environment providing an immersive 3D experience. However, two major limitations of this approach are that 3D models exhibit static textures, and they are not fully interactive and therefore cannot be used effectively in training personnel. In this paper we first describe a possible solution for embedding the output of a computer application in a 3D virtual scene, coupling real-world applications and VR systems. The VR system reported here grabs the output of an application running on an X server; creates a texture with the output and then displays it on a screen or a wall in the virtual reality environment. We then propose a simple model for providing interaction between the user in the VR system and the running simulator. This approach is based on the use of internet-based application that can be commanded by a laptop or tablet-pc added to the virtual environment. (authors)

  8. Finite element visualization in the cave virtual reality environment

    SciTech Connect

    Plaskacz, E.J.; Kuhn, M.A.

    1996-03-01

    Through the use of the post-processing software, Virtual Reality visualization (VRviz), and the Cave Automatic Virtual Environment (CAVE), finite element representations can be viewed as they would be in real life. VRviz is a program written in ANSI C to translate the mathematical results generated by finite element analysis programs into a virtual representation. This virtual representation is projected into the CAVE environment and the results are animated. The animation is fully controllable. A user is able to translate the image, rotate about any axis and scale the image at any time. The user is also able to freeze the animation at any time step and control the image update rate. This allows the user to navigate around, or even inside, the image in order to effectively analyze possible failure points and redesign as necessary. Through the use of the CAVE and the real life image that is being produced by VRviz, engineers are able to save considerable time, money, and effort in the design process.

  9. Designing Assessments and Assessing Designs in Virtual Educational Environments

    NASA Astrophysics Data System (ADS)

    Hickey, Daniel T.; Ingram-Goble, Adam A.; Jameson, Ellen M.

    2009-04-01

    This study used innovative assessment practices to obtain and document broad learning outcomes for a 15-hour game-based curriculum in Quest Atlantis, a multi-user virtual environment that supports school-based participation in socio scientific inquiry in ecological sciences. Design-based methods were used to refine and align the enactment of virtual narrative and scientific investigations to a challenging problem solving assessment and indirectly to achievement test items that were independent of the curriculum. In study one, one-sixth grade teacher used the curriculum in two of his classes and obtained larger gains in understanding and achievement than his two other classes, which used an expository text to learn the same concepts and skills. Further treatment refinements were carried out, and two forms of virtual formative feedback were introduced. In study two, the same teacher used the curriculum in all four of his classes; the revised curriculum resulted in even larger gains in understanding and achievement. Gains averaged 1.1 SD and 0.4 SD, respectively, with greater gains shown for students who engaged more with formative feedback. Principles for assessing designs and designing assessments in virtual environments are presented.

  10. Distributed collaborative environments for virtual capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2003-09-01

    Distributed collaboration is an emerging technology that will significantly change how decisions are made in the 21st century. Collaboration involves two or more geographically dispersed individuals working together to share and exchange data, information, knowledge, and actions. The marriage of information, collaboration, and simulation technologies provides the decision maker with a collaborative virtual environment for planning and decision support. This paper reviews research that is focusing on the applying open standards agent-based framework with integrated modeling and simulation to a new Air Force initiative in capability-based planning and the ability to implement it in a distributed virtual environment. Virtual Capability Planning effort will provide decision-quality knowledge for Air Force resource allocation and investment planning including examining proposed capabilities and cost of alternative approaches, the impact of technologies, identification of primary risk drivers, and creation of executable acquisition strategies. The transformed Air Force business processes are enabled by iterative use of constructive and virtual modeling, simulation, and analysis together with information technology. These tools are applied collaboratively via a technical framework by all the affected stakeholders - warfighter, laboratory, product center, logistics center, test center, and primary contractor.

  11. Adding Automatic Evaluation to Interactive Virtual Labs

    ERIC Educational Resources Information Center

    Farias, Gonzalo; Muñoz de la Peña, David; Gómez-Estern, Fabio; De la Torre, Luis; Sánchez, Carlos; Dormido, Sebastián

    2016-01-01

    Automatic evaluation is a challenging field that has been addressed by the academic community in order to reduce the assessment workload. In this work we present a new element for the authoring tool Easy Java Simulations (EJS). This element, which is named automatic evaluation element (AEE), provides automatic evaluation to virtual and remote…

  12. Adding Automatic Evaluation to Interactive Virtual Labs

    ERIC Educational Resources Information Center

    Farias, Gonzalo; Muñoz de la Peña, David; Gómez-Estern, Fabio; De la Torre, Luis; Sánchez, Carlos; Dormido, Sebastián

    2016-01-01

    Automatic evaluation is a challenging field that has been addressed by the academic community in order to reduce the assessment workload. In this work we present a new element for the authoring tool Easy Java Simulations (EJS). This element, which is named automatic evaluation element (AEE), provides automatic evaluation to virtual and remote…

  13. Human agency beliefs influence behaviour during virtual social interactions.

    PubMed

    Caruana, Nathan; Spirou, Dean; Brock, Jon

    2017-01-01

    In recent years, with the emergence of relatively inexpensive and accessible virtual reality technologies, it is now possible to deliver compelling and realistic simulations of human-to-human interaction. Neuroimaging studies have shown that, when participants believe they are interacting via a virtual interface with another human agent, they show different patterns of brain activity compared to when they know that their virtual partner is computer-controlled. The suggestion is that users adopt an "intentional stance" by attributing mental states to their virtual partner. However, it remains unclear how beliefs in the agency of a virtual partner influence participants' behaviour and subjective experience of the interaction. We investigated this issue in the context of a cooperative "joint attention" game in which participants interacted via an eye tracker with a virtual onscreen partner, directing each other's eye gaze to different screen locations. Half of the participants were correctly informed that their partner was controlled by a computer algorithm ("Computer" condition). The other half were misled into believing that the virtual character was controlled by a second participant in another room ("Human" condition). Those in the "Human" condition were slower to make eye contact with their partner and more likely to try and guide their partner before they had established mutual eye contact than participants in the "Computer" condition. They also responded more rapidly when their partner was guiding them, although the same effect was also found for a control condition in which they responded to an arrow cue. Results confirm the influence of human agency beliefs on behaviour in this virtual social interaction context. They further suggest that researchers and developers attempting to simulate social interactions should consider the impact of agency beliefs on user experience in other social contexts, and their effect on the achievement of the application's goals.

  14. Human agency beliefs influence behaviour during virtual social interactions

    PubMed Central

    Brock, Jon

    2017-01-01

    In recent years, with the emergence of relatively inexpensive and accessible virtual reality technologies, it is now possible to deliver compelling and realistic simulations of human-to-human interaction. Neuroimaging studies have shown that, when participants believe they are interacting via a virtual interface with another human agent, they show different patterns of brain activity compared to when they know that their virtual partner is computer-controlled. The suggestion is that users adopt an “intentional stance” by attributing mental states to their virtual partner. However, it remains unclear how beliefs in the agency of a virtual partner influence participants’ behaviour and subjective experience of the interaction. We investigated this issue in the context of a cooperative “joint attention” game in which participants interacted via an eye tracker with a virtual onscreen partner, directing each other’s eye gaze to different screen locations. Half of the participants were correctly informed that their partner was controlled by a computer algorithm (“Computer” condition). The other half were misled into believing that the virtual character was controlled by a second participant in another room (“Human” condition). Those in the “Human” condition were slower to make eye contact with their partner and more likely to try and guide their partner before they had established mutual eye contact than participants in the “Computer” condition. They also responded more rapidly when their partner was guiding them, although the same effect was also found for a control condition in which they responded to an arrow cue. Results confirm the influence of human agency beliefs on behaviour in this virtual social interaction context. They further suggest that researchers and developers attempting to simulate social interactions should consider the impact of agency beliefs on user experience in other social contexts, and their effect on the achievement

  15. ICCE/ICCAI 2000 Full & Short Papers (Interactive Learning Environments).

    ERIC Educational Resources Information Center

    2000

    This document contains the full and short papers on interactive learning environments from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction) covering the following topics: a CAL system for appreciation of 3D shapes by surface development; a constructivist virtual physics…

  16. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Adel Sarofim; Connie Senior

    2004-12-22

    In this report is described the work effort to develop and demonstrate a software framework to support advanced process simulations to evaluate the performance of advanced power systems. Integrated into the framework are a broad range of models, analysis tools, and visualization methods that can be used for the plant evaluation. The framework provides a tightly integrated problem-solving environment, with plug-and-play functionality, and includes a hierarchy of models, ranging from fast running process models to detailed reacting CFD models. The framework places no inherent limitations on the type of physics that can be modeled, numerical techniques, or programming languages used to implement the equipment models, or the type or amount of data that can be exchanged between models. Tools are provided to analyze simulation results at multiple levels of detail, ranging from simple tabular outputs to advanced solution visualization methods. All models and tools communicate in a seamless manner. The framework can be coupled to other software frameworks that provide different modeling capabilities. Three software frameworks were developed during the course of the project. The first framework focused on simulating the performance of the DOE Low Emissions Boiler System Proof of Concept facility, an advanced pulverized-coal combustion-based power plant. The second framework targeted simulating the performance of an Integrated coal Gasification Combined Cycle - Fuel Cell Turbine (IGCC-FCT) plant configuration. The coal gasifier models included both CFD and process models for the commercially dominant systems. Interfacing models to the framework was performed using VES-Open, and tests were performed to demonstrate interfacing CAPE-Open compliant models to the framework. The IGCC-FCT framework was subsequently extended to support Virtual Engineering concepts in which plant configurations can be constructed and interrogated in a three-dimensional, user-centered, interactive

  17. Workshop Report on Virtual Worlds and Immersive Environments

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephanie R.; Cowan-Sharp, Jessy; Dodson, Karen E.; Damer, Bruce; Ketner, Bob

    2009-01-01

    The workshop revolved around three framing ideas or scenarios about the evolution of virtual environments: 1. Remote exploration: The ability to create high fidelity environments rendered from external data or models such that exploration, design and analysis that is truly interoperable with the physical world can take place within them. 2. We all get to go: The ability to engage anyone in being a part of or contributing to an experience (such as a space mission), no matter their training or location. It is the creation of a new paradigm for education, outreach, and the conduct of science in society that is truly participatory. 3. Become the data: A vision of a future where boundaries between the physical and the virtual have ceased to be meaningful. What would this future look like? Is this plausible? Is it desirable? Why and why not?

  18. Workshop Report on Virtual Worlds and Immersive Environments

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephanie R.; Cowan-Sharp, Jessy; Dodson, Karen E.; Damer, Bruce; Ketner, Bob

    2009-01-01

    The workshop revolved around three framing ideas or scenarios about the evolution of virtual environments: 1. Remote exploration: The ability to create high fidelity environments rendered from external data or models such that exploration, design and analysis that is truly interoperable with the physical world can take place within them. 2. We all get to go: The ability to engage anyone in being a part of or contributing to an experience (such as a space mission), no matter their training or location. It is the creation of a new paradigm for education, outreach, and the conduct of science in society that is truly participatory. 3. Become the data: A vision of a future where boundaries between the physical and the virtual have ceased to be meaningful. What would this future look like? Is this plausible? Is it desirable? Why and why not?

  19. Ambient Intelligence in Multimeda and Virtual Reality Environments for the rehabilitation

    NASA Astrophysics Data System (ADS)

    Benko, Attila; Cecilia, Sik Lanyi

    This chapter presents a general overview about the use of multimedia and virtual reality in rehabilitation and assistive and preventive healthcare. This chapter deals with multimedia, virtual reality applications based AI intended for use by medical doctors, nurses, special teachers and further interested persons. It describes methods how multimedia and virtual reality is able to assist their work. These include the areas how multimedia and virtual reality can help the patients everyday life and their rehabilitation. In the second part of the chapter we present the Virtual Therapy Room (VTR) a realized application for aphasic patients that was created for practicing communication and expressing emotions in a group therapy setting. The VTR shows a room that contains a virtual therapist and four virtual patients (avatars). The avatars are utilizing their knowledge base in order to answer the questions of the user providing an AI environment for the rehabilitation. The user of the VTR is the aphasic patient who has to solve the exercises. The picture that is relevant for the actual task appears on the virtual blackboard. Patient answers questions of the virtual therapist. Questions are about pictures describing an activity or an object in different levels. Patient can ask an avatar for answer. If the avatar knows the answer the avatars emotion changes to happy instead of sad. The avatar expresses its emotions in different dimensions. Its behavior, face-mimic, voice-tone and response also changes. The emotion system can be described as a deterministic finite automaton where places are emotion-states and the transition function of the automaton is derived from the input-response reaction of an avatar. Natural language processing techniques were also implemented in order to establish highquality human-computer interface windows for each of the avatars. Aphasic patients are able to interact with avatars via these interfaces. At the end of the chapter we visualize the

  20. A Practical Guide, with Theoretical Underpinnings, for Creating Effective Virtual Reality Learning Environments

    ERIC Educational Resources Information Center

    O'Connor, Eileen A.; Domingo, Jelia

    2017-01-01

    With the advent of open source virtual environments, the associated cost reductions, and the more flexible options, avatar-based virtual reality environments are within reach of educators. By using and repurposing readily available virtual environments, instructors can bring engaging, community-building, and immersive learning opportunities to…