Interactive Learning System "VisMis" for Scientific Visualization Course
ERIC Educational Resources Information Center
Zhu, Xiaoming; Sun, Bo; Luo, Yanlin
2018-01-01
Now visualization courses have been taught at universities around the world. Keeping students motivated and actively engaged in this course can be a challenging task. In this paper we introduce our developed interactive learning system called VisMis (Visualization and Multi-modal Interaction System) for postgraduate scientific visualization course…
Interaction Junk: User Interaction-Based Evaluation of Visual Analytic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; North, Chris
2012-10-14
With the growing need for visualization to aid users in understanding large, complex datasets, the ability for users to interact and explore these datasets is critical. As visual analytic systems have advanced to leverage powerful computational models and data analytics capabilities, the modes by which users engage and interact with the information are limited. Often, users are taxed with directly manipulating parameters of these models through traditional GUIs (e.g., using sliders to directly manipulate the value of a parameter). However, the purpose of user interaction in visual analytic systems is to enable visual data exploration – where users can focusmore » on their task, as opposed to the tool or system. As a result, users can engage freely in data exploration and decision-making, for the purpose of gaining insight. In this position paper, we discuss how evaluating visual analytic systems can be approached through user interaction analysis, where the goal is to minimize the cognitive translation between the visual metaphor and the mode of interaction (i.e., reducing the “Interactionjunk”). We motivate this concept through a discussion of traditional GUIs used in visual analytics for direct manipulation of model parameters, and the importance of designing interactions the support visual data exploration.« less
Query2Question: Translating Visualization Interaction into Natural Language.
Nafari, Maryam; Weaver, Chris
2015-06-01
Richly interactive visualization tools are increasingly popular for data exploration and analysis in a wide variety of domains. Existing systems and techniques for recording provenance of interaction focus either on comprehensive automated recording of low-level interaction events or on idiosyncratic manual transcription of high-level analysis activities. In this paper, we present the architecture and translation design of a query-to-question (Q2Q) system that automatically records user interactions and presents them semantically using natural language (written English). Q2Q takes advantage of domain knowledge and uses natural language generation (NLG) techniques to translate and transcribe a progression of interactive visualization states into a visual log of styled text that complements and effectively extends the functionality of visualization tools. We present Q2Q as a means to support a cross-examination process in which questions rather than interactions are the focus of analytic reasoning and action. We describe the architecture and implementation of the Q2Q system, discuss key design factors and variations that effect question generation, and present several visualizations that incorporate Q2Q for analysis in a variety of knowledge domains.
NASA Technical Reports Server (NTRS)
Berchem, J.; Raeder, J.; Walker, R. J.; Ashour-Abdalla, M.
1995-01-01
We report on the development of an interactive system for visualizing and analyzing numerical simulation results. This system is based on visualization modules which use the Application Visualization System (AVS) and the NCAR graphics packages. Examples from recent simulations are presented to illustrate how these modules can be used for displaying and manipulating simulation results to facilitate their comparison with phenomenological model results and observations.
Beyond Control Panels: Direct Manipulation for Visual Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; Bradel, Lauren; North, Chris
2013-07-19
Information Visualization strives to provide visual representations through which users can think about and gain insight into information. By leveraging the visual and cognitive systems of humans, complex relationships and phenomena occurring within datasets can be uncovered by exploring information visually. Interaction metaphors for such visualizations are designed to enable users direct control over the filters, queries, and other parameters controlling how the data is visually represented. Through the evolution of information visualization, more complex mathematical and data analytic models are being used to visualize relationships and patterns in data – creating the field of Visual Analytics. However, the expectationsmore » for how users interact with these visualizations has remained largely unchanged – focused primarily on the direct manipulation of parameters of the underlying mathematical models. In this article we present an opportunity to evolve the methodology for user interaction from the direct manipulation of parameters through visual control panels, to interactions designed specifically for visual analytic systems. Instead of focusing on traditional direct manipulation of mathematical parameters, the evolution of the field can be realized through direct manipulation within the visual representation – where users can not only gain insight, but also interact. This article describes future directions and research challenges that fundamentally change the meaning of direct manipulation with regards to visual analytics, advancing the Science of Interaction.« less
NASA Astrophysics Data System (ADS)
Demir, I.
2014-12-01
Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.
Wiebrands, Michael; Malajczuk, Chris J; Woods, Andrew J; Rohl, Andrew L; Mancera, Ricardo L
2018-06-21
Molecular graphics systems are visualization tools which, upon integration into a 3D immersive environment, provide a unique virtual reality experience for research and teaching of biomolecular structure, function and interactions. We have developed a molecular structure and dynamics application, the Molecular Dynamics Visualization tool, that uses the Unity game engine combined with large scale, multi-user, stereoscopic visualization systems to deliver an immersive display experience, particularly with a large cylindrical projection display. The application is structured to separate the biomolecular modeling and visualization systems. The biomolecular model loading and analysis system was developed as a stand-alone C# library and provides the foundation for the custom visualization system built in Unity. All visual models displayed within the tool are generated using Unity-based procedural mesh building routines. A 3D user interface was built to allow seamless dynamic interaction with the model while being viewed in 3D space. Biomolecular structure analysis and display capabilities are exemplified with a range of complex systems involving cell membranes, protein folding and lipid droplets.
How Information Visualization Systems Change Users' Understandings of Complex Data
ERIC Educational Resources Information Center
Allendoerfer, Kenneth Robert
2009-01-01
User-centered evaluations of information systems often focus on the usability of the system rather its usefulness. This study examined how a using an interactive knowledge-domain visualization (KDV) system affected users' understanding of a domain. Interactive KDVs allow users to create graphical representations of domains that depict important…
Protein-Protein Interaction Network and Gene Ontology
NASA Astrophysics Data System (ADS)
Choi, Yunkyu; Kim, Seok; Yi, Gwan-Su; Park, Jinah
Evolution of computer technologies makes it possible to access a large amount and various kinds of biological data via internet such as DNA sequences, proteomics data and information discovered about them. It is expected that the combination of various data could help researchers find further knowledge about them. Roles of a visualization system are to invoke human abilities to integrate information and to recognize certain patterns in the data. Thus, when the various kinds of data are examined and analyzed manually, an effective visualization system is an essential part. One instance of these integrated visualizations can be combination of protein-protein interaction (PPI) data and Gene Ontology (GO) which could help enhance the analysis of PPI network. We introduce a simple but comprehensive visualization system that integrates GO and PPI data where GO and PPI graphs are visualized side-by-side and supports quick reference functions between them. Furthermore, the proposed system provides several interactive visualization methods for efficiently analyzing the PPI network and GO directedacyclic- graph such as context-based browsing and common ancestors finding.
Scientific Visualization of Radio Astronomy Data using Gesture Interaction
NASA Astrophysics Data System (ADS)
Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.
2015-09-01
MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.
Real-time scalable visual analysis on mobile devices
NASA Astrophysics Data System (ADS)
Pattath, Avin; Ebert, David S.; May, Richard A.; Collins, Timothy F.; Pike, William
2008-02-01
Interactive visual presentation of information can help an analyst gain faster and better insight from data. When combined with situational or context information, visualization on mobile devices is invaluable to in-field responders and investigators. However, several challenges are posed by the form-factor of mobile devices in developing such systems. In this paper, we classify these challenges into two broad categories - issues in general mobile computing and issues specific to visual analysis on mobile devices. Using NetworkVis and Infostar as example systems, we illustrate some of the techniques that we employed to overcome many of the identified challenges. NetworkVis is an OpenVG-based real-time network monitoring and visualization system developed for Windows Mobile devices. Infostar is a flash-based interactive, real-time visualization application intended to provide attendees access to conference information. Linked time-synchronous visualization, stylus/button-based interactivity, vector graphics, overview-context techniques, details-on-demand and statistical information display are some of the highlights of these applications.
Visualization and Tracking of Parallel CFD Simulations
NASA Technical Reports Server (NTRS)
Vaziri, Arsi; Kremenetsky, Mark
1995-01-01
We describe a system for interactive visualization and tracking of a 3-D unsteady computational fluid dynamics (CFD) simulation on a parallel computer. CM/AVS, a distributed, parallel implementation of a visualization environment (AVS) runs on the CM-5 parallel supercomputer. A CFD solver is run as a CM/AVS module on the CM-5. Data communication between the solver, other parallel visualization modules, and a graphics workstation, which is running AVS, are handled by CM/AVS. Partitioning of the visualization task, between CM-5 and the workstation, can be done interactively in the visual programming environment provided by AVS. Flow solver parameters can also be altered by programmable interactive widgets. This system partially removes the requirement of storing large solution files at frequent time steps, a characteristic of the traditional 'simulate (yields) store (yields) visualize' post-processing approach.
NASA Astrophysics Data System (ADS)
Christensen, C.; Liu, S.; Scorzelli, G.; Lee, J. W.; Bremer, P. T.; Summa, B.; Pascucci, V.
2017-12-01
The creation, distribution, analysis, and visualization of large spatiotemporal datasets is a growing challenge for the study of climate and weather phenomena in which increasingly massive domains are utilized to resolve finer features, resulting in datasets that are simply too large to be effectively shared. Existing workflows typically consist of pipelines of independent processes that preclude many possible optimizations. As data sizes increase, these pipelines are difficult or impossible to execute interactively and instead simply run as large offline batch processes. Rather than limiting our conceptualization of such systems to pipelines (or dataflows), we propose a new model for interactive data analysis and visualization systems in which we comprehensively consider the processes involved from data inception through analysis and visualization in order to describe systems composed of these processes in a manner that facilitates interactive implementations of the entire system rather than of only a particular component. We demonstrate the application of this new model with the implementation of an interactive system that supports progressive execution of arbitrary user scripts for the analysis and visualization of massive, disparately located climate data ensembles. It is currently in operation as part of the Earth System Grid Federation server running at Lawrence Livermore National Lab, and accessible through both web-based and desktop clients. Our system facilitates interactive analysis and visualization of massive remote datasets up to petabytes in size, such as the 3.5 PB 7km NASA GEOS-5 Nature Run simulation, previously only possible offline or at reduced resolution. To support the community, we have enabled general distribution of our application using public frameworks including Docker and Anaconda.
Subramani, Suresh; Kalpana, Raja; Monickaraj, Pankaj Moses; Natarajan, Jeyakumar
2015-04-01
The knowledge on protein-protein interactions (PPI) and their related pathways are equally important to understand the biological functions of the living cell. Such information on human proteins is highly desirable to understand the mechanism of several diseases such as cancer, diabetes, and Alzheimer's disease. Because much of that information is buried in biomedical literature, an automated text mining system for visualizing human PPI and pathways is highly desirable. In this paper, we present HPIminer, a text mining system for visualizing human protein interactions and pathways from biomedical literature. HPIminer extracts human PPI information and PPI pairs from biomedical literature, and visualize their associated interactions, networks and pathways using two curated databases HPRD and KEGG. To our knowledge, HPIminer is the first system to build interaction networks from literature as well as curated databases. Further, the new interactions mined only from literature and not reported earlier in databases are highlighted as new. A comparative study with other similar tools shows that the resultant network is more informative and provides additional information on interacting proteins and their associated networks. Copyright © 2015 Elsevier Inc. All rights reserved.
Integrated web visualizations for protein-protein interaction databases.
Jeanquartier, Fleur; Jean-Quartier, Claire; Holzinger, Andreas
2015-06-16
Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. We selected M=10 out of N=53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015. Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Liu, I-Hsiung
1985-01-01
This Working Paper Series entry represents a collection of presentation visuals associated with the companion report entitled Natural Language Query System Design for Interactive Information Storage and Retrieval Systems, USL/DBMS NASA/RECON Working Paper Series report number DBMS.NASA/RECON-17.
Hu, Jian; Xu, Xiang-yang; Song, En-min; Tan, Hong-bao; Wang, Yi-ning
2009-09-01
To establish a new visual educational system of virtual reality for clinical dentistry based on world wide web (WWW) webpage in order to provide more three-dimensional multimedia resources to dental students and an online three-dimensional consulting system for patients. Based on computer graphics and three-dimensional webpage technologies, the software of 3Dsmax and Webmax were adopted in the system development. In the Windows environment, the architecture of whole system was established step by step, including three-dimensional model construction, three-dimensional scene setup, transplanting three-dimensional scene into webpage, reediting the virtual scene, realization of interactions within the webpage, initial test, and necessary adjustment. Five cases of three-dimensional interactive webpage for clinical dentistry were completed. The three-dimensional interactive webpage could be accessible through web browser on personal computer, and users could interact with the webpage through rotating, panning and zooming the virtual scene. It is technically feasible to implement the visual educational system of virtual reality for clinical dentistry based on WWW webpage. Information related to clinical dentistry can be transmitted properly, visually and interactively through three-dimensional webpage.
Rethinking Visual Analytics for Streaming Data Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouser, R. Jordan; Franklin, Lyndsey; Cook, Kris
In the age of data science, the use of interactive information visualization techniques has become increasingly ubiquitous. From online scientific journals to the New York Times graphics desk, the utility of interactive visualization for both storytelling and analysis has become ever more apparent. As these techniques have become more readily accessible, the appeal of combining interactive visualization with computational analysis continues to grow. Arising out of a need for scalable, human-driven analysis, primary objective of visual analytics systems is to capitalize on the complementary strengths of human and machine analysis, using interactive visualization as a medium for communication between themore » two. These systems leverage developments from the fields of information visualization, computer graphics, machine learning, and human-computer interaction to support insight generation in areas where purely computational analyses fall short. Over the past decade, visual analytics systems have generated remarkable advances in many historically challenging analytical contexts. These include areas such as modeling political systems [Crouser et al. 2012], detecting financial fraud [Chang et al. 2008], and cybersecurity [Harrison et al. 2012]. In each of these contexts, domain expertise and human intuition is a necessary component of the analysis. This intuition is essential to building trust in the analytical products, as well as supporting the translation of evidence into actionable insight. In addition, each of these examples also highlights the need for scalable analysis. In each case, it is infeasible for a human analyst to manually assess the raw information unaided, and the communication overhead to divide the task between a large number of analysts makes simple parallelism intractable. Regardless of the domain, visual analytics tools strive to optimize the allocation of human analytical resources, and to streamline the sensemaking process on data that is massive, complex, incomplete, and uncertain in scenarios requiring human judgment.« less
Modeling and evaluating user behavior in exploratory visual analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, Khairi; Johnson, Andrew E.; Papka, Michael E.
Empirical evaluation methods for visualizations have traditionally focused on assessing the outcome of the visual analytic process as opposed to characterizing how that process unfolds. There are only a handful of methods that can be used to systematically study how people use visualizations, making it difficult for researchers to capture and characterize the subtlety of cognitive and interaction behaviors users exhibit during visual analysis. To validate and improve visualization design, however, it is important for researchers to be able to assess and understand how users interact with visualization systems under realistic scenarios. This paper presents a methodology for modeling andmore » evaluating the behavior of users in exploratory visual analysis. We model visual exploration using a Markov chain process comprising transitions between mental, interaction, and computational states. These states and the transitions between them can be deduced from a variety of sources, including verbal transcripts, videos and audio recordings, and log files. This model enables the evaluator to characterize the cognitive and computational processes that are essential to insight acquisition in exploratory visual analysis, and reconstruct the dynamics of interaction between the user and the visualization system. We illustrate this model with two exemplar user studies, and demonstrate the qualitative and quantitative analytical tools it affords.« less
Mixed Initiative Visual Analytics Using Task-Driven Recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kristin A.; Cramer, Nicholas O.; Israel, David
2015-12-07
Visual data analysis is composed of a collection of cognitive actions and tasks to decompose, internalize, and recombine data to produce knowledge and insight. Visual analytic tools provide interactive visual interfaces to data to support tasks involved in discovery and sensemaking, including forming hypotheses, asking questions, and evaluating and organizing evidence. Myriad analytic models can be incorporated into visual analytic systems, at the cost of increasing complexity in the analytic discourse between user and system. Techniques exist to increase the usability of interacting with such analytic models, such as inferring data models from user interactions to steer the underlying modelsmore » of the system via semantic interaction, shielding users from having to do so explicitly. Such approaches are often also referred to as mixed-initiative systems. Researchers studying the sensemaking process have called for development of tools that facilitate analytic sensemaking through a combination of human and automated activities. However, design guidelines do not exist for mixed-initiative visual analytic systems to support iterative sensemaking. In this paper, we present a candidate set of design guidelines and introduce the Active Data Environment (ADE) prototype, a spatial workspace supporting the analytic process via task recommendations invoked by inferences on user interactions within the workspace. ADE recommends data and relationships based on a task model, enabling users to co-reason with the system about their data in a single, spatial workspace. This paper provides an illustrative use case, a technical description of ADE, and a discussion of the strengths and limitations of the approach.« less
A visualization system for CT based pulmonary fissure analysis
NASA Astrophysics Data System (ADS)
Pu, Jiantao; Zheng, Bin; Park, Sang Cheol
2009-02-01
In this study we describe a visualization system of pulmonary fissures depicted on CT images. The purpose is to provide clinicians with an intuitive perception of a patient's lung anatomy through an interactive examination of fissures, enhancing their understanding and accurate diagnosis of lung diseases. This system consists of four key components: (1) region-of-interest segmentation; (2) three-dimensional surface modeling; (3) fissure type classification; and (4) an interactive user interface, by which the extracted fissures are displayed flexibly in different space domains including image space, geometric space, and mixed space using simple toggling "on" and "off" operations. In this system, the different visualization modes allow users not only to examine the fissures themselves but also to analyze the relationship between fissures and their surrounding structures. In addition, the users can adjust thresholds interactively to visualize the fissure surface under different scanning and processing conditions. Such a visualization tool is expected to facilitate investigation of structures near the fissures and provide an efficient "visual aid" for other applications such as treatment planning and assessment of therapeutic efficacy as well as education of medical professionals.
VisFlow - Web-based Visualization Framework for Tabular Data with a Subset Flow Model.
Yu, Bowen; Silva, Claudio T
2017-01-01
Data flow systems allow the user to design a flow diagram that specifies the relations between system components which process, filter or visually present the data. Visualization systems may benefit from user-defined data flows as an analysis typically consists of rendering multiple plots on demand and performing different types of interactive queries across coordinated views. In this paper, we propose VisFlow, a web-based visualization framework for tabular data that employs a specific type of data flow model called the subset flow model. VisFlow focuses on interactive queries within the data flow, overcoming the limitation of interactivity from past computational data flow systems. In particular, VisFlow applies embedded visualizations and supports interactive selections, brushing and linking within a visualization-oriented data flow. The model requires all data transmitted by the flow to be a data item subset (i.e. groups of table rows) of some original input table, so that rendering properties can be assigned to the subset unambiguously for tracking and comparison. VisFlow features the analysis flexibility of a flow diagram, and at the same time reduces the diagram complexity and improves usability. We demonstrate the capability of VisFlow on two case studies with domain experts on real-world datasets showing that VisFlow is capable of accomplishing a considerable set of visualization and analysis tasks. The VisFlow system is available as open source on GitHub.
Vision in two cyprinid fish: implications for collective behavior
Moore, Bret A.; Tyrrell, Luke P.; Fernández-Juricic, Esteban
2015-01-01
Many species of fish rely on their visual systems to interact with conspecifics and these interactions can lead to collective behavior. Individual-based models have been used to predict collective interactions; however, these models generally make simplistic assumptions about the sensory systems that are applied without proper empirical testing to different species. This could limit our ability to predict (and test empirically) collective behavior in species with very different sensory requirements. In this study, we characterized components of the visual system in two species of cyprinid fish known to engage in visually dependent collective interactions (zebrafish Danio rerio and golden shiner Notemigonus crysoleucas) and derived quantitative predictions about the positioning of individuals within schools. We found that both species had relatively narrow binocular and blind fields and wide visual coverage. However, golden shiners had more visual coverage in the vertical plane (binocular field extending behind the head) and higher visual acuity than zebrafish. The centers of acute vision (areae) of both species projected in the fronto-dorsal region of the visual field, but those of the zebrafish projected more dorsally than those of the golden shiner. Based on this visual sensory information, we predicted that: (a) predator detection time could be increased by >1,000% in zebrafish and >100% in golden shiners with an increase in nearest neighbor distance, (b) zebrafish schools would have a higher roughness value (surface area/volume ratio) than those of golden shiners, (c) and that nearest neighbor distance would vary from 8 to 20 cm to visually resolve conspecific striping patterns in both species. Overall, considering between-species differences in the sensory system of species exhibiting collective behavior could change the predictions about the positioning of individuals in the group as well as the shape of the school, which can have implications for group cohesion. We suggest that more effort should be invested in assessing the role of the sensory system in shaping local interactions driving collective behavior. PMID:26290783
Lin, Hsien-Cheng; Chiu, Yu-Hsien; Chen, Yenming J; Wuang, Yee-Pay; Chen, Chiu-Ping; Wang, Chih-Chung; Huang, Chien-Ling; Wu, Tang-Meng; Ho, Wen-Hsien
2017-11-01
This study developed an interactive computer game-based visual perception learning system for special education children with developmental delay. To investigate whether perceived interactivity affects continued use of the system, this study developed a theoretical model of the process in which learners decide whether to continue using an interactive computer game-based visual perception learning system. The technology acceptance model, which considers perceived ease of use, perceived usefulness, and perceived playfulness, was extended by integrating perceived interaction (i.e., learner-instructor interaction and learner-system interaction) and then analyzing the effects of these perceptions on satisfaction and continued use. Data were collected from 150 participants (rehabilitation therapists, medical paraprofessionals, and parents of children with developmental delay) recruited from a single medical center in Taiwan. Structural equation modeling and partial-least-squares techniques were used to evaluate relationships within the model. The modeling results indicated that both perceived ease of use and perceived usefulness were positively associated with both learner-instructor interaction and learner-system interaction. However, perceived playfulness only had a positive association with learner-system interaction and not with learner-instructor interaction. Moreover, satisfaction was positively affected by perceived ease of use, perceived usefulness, and perceived playfulness. Thus, satisfaction positively affects continued use of the system. The data obtained by this study can be applied by researchers, designers of computer game-based learning systems, special education workers, and medical professionals. Copyright © 2017 Elsevier B.V. All rights reserved.
Bottoni, Paolo; Cinque, Luigi; De Marsico, Maria; Levialdi, Stefano; Panizzi, Emanuele
2006-06-01
This paper reports on the research activities performed by the Pictorial Computing Laboratory at the University of Rome, La Sapienza, during the last 5 years. Such work, essentially is based on the study of humancomputer interaction, spans from metamodels of interaction down to prototypes of interactive systems for both synchronous multimedia communication and groupwork, annotation systems for web pages, also encompassing theoretical and practical issues of visual languages and environments also including pattern recognition algorithms. Some applications are also considered like e-learning and collaborative work.
NASA Astrophysics Data System (ADS)
Bates, Lisa M.; Hanson, Dennis P.; Kall, Bruce A.; Meyer, Frederic B.; Robb, Richard A.
1998-06-01
An important clinical application of biomedical imaging and visualization techniques is provision of image guided neurosurgical planning and navigation techniques using interactive computer display systems in the operating room. Current systems provide interactive display of orthogonal images and 3D surface or volume renderings integrated with and guided by the location of a surgical probe. However, structures in the 'line-of-sight' path which lead to the surgical target cannot be directly visualized, presenting difficulty in obtaining full understanding of the 3D volumetric anatomic relationships necessary for effective neurosurgical navigation below the cortical surface. Complex vascular relationships and histologic boundaries like those found in artereovenous malformations (AVM's) also contribute to the difficulty in determining optimal approaches prior to actual surgical intervention. These difficulties demonstrate the need for interactive oblique imaging methods to provide 'line-of-sight' visualization. Capabilities for 'line-of- sight' interactive oblique sectioning are present in several current neurosurgical navigation systems. However, our implementation is novel, in that it utilizes a completely independent software toolkit, AVW (A Visualization Workshop) developed at the Mayo Biomedical Imaging Resource, integrated with a current neurosurgical navigation system, the COMPASS stereotactic system at Mayo Foundation. The toolkit is a comprehensive, C-callable imaging toolkit containing over 500 optimized imaging functions and structures. The powerful functionality and versatility of the AVW imaging toolkit provided facile integration and implementation of desired interactive oblique sectioning using a finite set of functions. The implementation of the AVW-based code resulted in higher-level functions for complete 'line-of-sight' visualization.
Audio-Visual Perception System for a Humanoid Robotic Head
Viciana-Abad, Raquel; Marfil, Rebeca; Perez-Lorenzo, Jose M.; Bandera, Juan P.; Romero-Garces, Adrian; Reche-Lopez, Pedro
2014-01-01
One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can be equipped. Besides, within the scope of interactive autonomous robots, there is a lack in terms of evaluating the benefits of audio-visual attention mechanisms, compared to only audio or visual approaches, in real scenarios. Most of the tests conducted have been within controlled environments, at short distances and/or with off-line performance measurements. With the goal of demonstrating the benefit of fusing sensory information with a Bayes inference for interactive robotics, this paper presents a system for localizing a person by processing visual and audio data. Moreover, the performance of this system is evaluated and compared via considering the technical limitations of unimodal systems. The experiments show the promise of the proposed approach for the proactive detection and tracking of speakers in a human-robot interactive framework. PMID:24878593
Vestibular-visual interactions in flight simulators
NASA Technical Reports Server (NTRS)
Clark, B.
1977-01-01
The following research work is reported: (1) vestibular-visual interactions; (2) flight management and crew system interactions; (3) peripheral cue utilization in simulation technology; (4) control of signs and symptoms of motion sickness; (5) auditory cue utilization in flight simulators, and (6) vestibular function: Animal experiments.
Applying Pragmatics Principles for Interaction with Visual Analytics.
Hoque, Enamul; Setlur, Vidya; Tory, Melanie; Dykeman, Isaac
2018-01-01
Interactive visual data analysis is most productive when users can focus on answering the questions they have about their data, rather than focusing on how to operate the interface to the analysis tool. One viable approach to engaging users in interactive conversations with their data is a natural language interface to visualizations. These interfaces have the potential to be both more expressive and more accessible than other interaction paradigms. We explore how principles from language pragmatics can be applied to the flow of visual analytical conversations, using natural language as an input modality. We evaluate the effectiveness of pragmatics support in our system Evizeon, and present design considerations for conversation interfaces to visual analytics tools.
Guerin, Scott A.; Robbins, Clifford A.; Gilmore, Adrian W.; Schacter, Daniel L.
2012-01-01
SUMMARY The interaction between episodic retrieval and visual attention is relatively unexplored. Given that systems mediating attention and episodic memory appear to be segregated, and perhaps even in competition, it is unclear how visual attention is recruited during episodic retrieval. We investigated the recruitment of visual attention during the suppression of gist-based false recognition, the tendency to falsely recognize items that are similar to previously encountered items. Recruitment of visual attention was associated with activity in the dorsal attention network. The inferior parietal lobule, often implicated in episodic retrieval, tracked veridical retrieval of perceptual detail and showed reduced activity during the engagement of visual attention, consistent with a competitive relationship with the dorsal attention network. These findings suggest that the contribution of the parietal cortex to interactions between visual attention and episodic retrieval entails distinct systems that contribute to different components of the task while also suppressing each other. PMID:22998879
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Christopher J; Ahrens, James P; Wang, Jun
2010-10-15
Petascale simulations compute at resolutions ranging into billions of cells and write terabytes of data for visualization and analysis. Interactive visuaUzation of this time series is a desired step before starting a new run. The I/O subsystem and associated network often are a significant impediment to interactive visualization of time-varying data; as they are not configured or provisioned to provide necessary I/O read rates. In this paper, we propose a new I/O library for visualization applications: VisIO. Visualization applications commonly use N-to-N reads within their parallel enabled readers which provides an incentive for a shared-nothing approach to I/O, similar tomore » other data-intensive approaches such as Hadoop. However, unlike other data-intensive applications, visualization requires: (1) interactive performance for large data volumes, (2) compatibility with MPI and POSIX file system semantics for compatibility with existing infrastructure, and (3) use of existing file formats and their stipulated data partitioning rules. VisIO, provides a mechanism for using a non-POSIX distributed file system to provide linear scaling of 110 bandwidth. In addition, we introduce a novel scheduling algorithm that helps to co-locate visualization processes on nodes with the requested data. Testing using VisIO integrated into Para View was conducted using the Hadoop Distributed File System (HDFS) on TACC's Longhorn cluster. A representative dataset, VPIC, across 128 nodes showed a 64.4% read performance improvement compared to the provided Lustre installation. Also tested, was a dataset representing a global ocean salinity simulation that showed a 51.4% improvement in read performance over Lustre when using our VisIO system. VisIO, provides powerful high-performance I/O services to visualization applications, allowing for interactive performance with ultra-scale, time-series data.« less
Dabek, Filip; Caban, Jesus J
2017-01-01
Despite the recent popularity of visual analytics focusing on big data, little is known about how to support users that use visualization techniques to explore multi-dimensional datasets and accomplish specific tasks. Our lack of models that can assist end-users during the data exploration process has made it challenging to learn from the user's interactive and analytical process. The ability to model how a user interacts with a specific visualization technique and what difficulties they face are paramount in supporting individuals with discovering new patterns within their complex datasets. This paper introduces the notion of visualization systems understanding and modeling user interactions with the intent of guiding a user through a task thereby enhancing visual data exploration. The challenges faced and the necessary future steps to take are discussed; and to provide a working example, a grammar-based model is presented that can learn from user interactions, determine the common patterns among a number of subjects using a K-Reversible algorithm, build a set of rules, and apply those rules in the form of suggestions to new users with the goal of guiding them along their visual analytic process. A formal evaluation study with 300 subjects was performed showing that our grammar-based model is effective at capturing the interactive process followed by users and that further research in this area has the potential to positively impact how users interact with a visualization system.
Interactive Particle Visualization
NASA Astrophysics Data System (ADS)
Gribble, Christiaan P.
Particle-based simulation methods are used to model a wide range of complex phenomena and to solve time-dependent problems of various scales. Effective visualizations of the resulting state will communicate subtle changes in the three-dimensional structure, spatial organization, and qualitative trends within a simulation as it evolves. This chapter discusses two approaches to interactive particle visualization that satisfy these goals: one targeting desktop systems equipped with programmable graphics hardware, and the other targeting moderately sized multicore systems using packet-based ray tracing.
Envision: An interactive system for the management and visualization of large geophysical data sets
NASA Technical Reports Server (NTRS)
Searight, K. R.; Wojtowicz, D. P.; Walsh, J. E.; Pathi, S.; Bowman, K. P.; Wilhelmson, R. B.
1995-01-01
Envision is a software project at the University of Illinois and Texas A&M, funded by NASA's Applied Information Systems Research Project. It provides researchers in the geophysical sciences convenient ways to manage, browse, and visualize large observed or model data sets. Envision integrates data management, analysis, and visualization of geophysical data in an interactive environment. It employs commonly used standards in data formats, operating systems, networking, and graphics. It also attempts, wherever possible, to integrate with existing scientific visualization and analysis software. Envision has an easy-to-use graphical interface, distributed process components, and an extensible design. It is a public domain package, freely available to the scientific community.
Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B
2016-01-01
Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931
Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B
2016-09-06
Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.
Using perceptual rules in interactive visualization
NASA Astrophysics Data System (ADS)
Rogowitz, Bernice E.; Treinish, Lloyd A.
1994-05-01
In visualization, data are represented as variations in grayscale, hue, shape, and texture. They can be mapped to lines, surfaces, and glyphs, and can be represented statically or in animation. In modem visualization systems, the choices for representing data seem unlimited. This is both a blessing and a curse, however, since the visual impression created by the visualization depends critically on which dimensions are selected for representing the data (Bertin, 1967; Tufte, 1983; Cleveland, 1991). In modem visualization systems, the user can interactively select many different mapping and representation operations, and can interactively select processing operations (e.g., applying a color map), realization operations (e.g., generating geometric structures such as contours or streamlines), and rendering operations (e.g., shading or ray-tracing). The user can, for example, map data to a color map, then apply contour lines, then shift the viewing angle, then change the color map again, etc. In many systems, the user can vary the choices for each operation, selecting, for example, particular color maps, contour characteristics, and shading techniques. The hope is that this process will eventually converge on a visual representation which expresses the structure of the data and effectively communicates its message in a way that meets the user's goals. Sometimes, however, it results in visual representations which are confusing, misleading, and garish.
NASA Astrophysics Data System (ADS)
Demir, I.
2015-12-01
Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.
MRIVIEW: An interactive computational tool for investigation of brain structure and function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranken, D.; George, J.
MRIVIEW is a software system which uses image processing and visualization to provide neuroscience researchers with an integrated environment for combining functional and anatomical information. Key features of the software include semi-automated segmentation of volumetric head data and an interactive coordinate reconciliation method which utilizes surface visualization. The current system is a precursor to a computational brain atlas. We describe features this atlas will incorporate, including methods under development for visualizing brain functional data obtained from several different research modalities.
DOT National Transportation Integrated Search
2009-12-01
The goals of integration should be: Supporting domain oriented data analysis through the use of : knowledge augmented visual analytics system. In this project, we focus on: : Providing interactive data exploration for bridge managements. : ...
Visual Analytics in Public Safety: Example Capabilities for Example Government Agencies
2011-10-01
is not limited to: the Police Records Information Management Environment for British Columbia (PRIME-BC), the Police Reporting and Occurrence System...and filtering for rapid identification of relevant documents - Graphical environment for visual evidence marshaling - Interactive linking and...analytical reasoning facilitated by interactive visual interfaces and integration with computational analytics. Indeed, a wide variety of technologies
The Application of Current User Interface Technology to Interactive Wargaming Systems.
1987-09-01
components is essential to the Macintosh interface. Apple states that "Consistent visual communication is very powerful in delivering complex messages...interface. A visual interface uses visual objects as the basis of communication. "A visual communication object is some combination S. of text and...graphics used for communication under a system of inter- pretation, or visual language." The benefit of visual communication is V 45 "When humans are faced
NASA Astrophysics Data System (ADS)
Stewart, J.; Hackathorn, E. J.; Joyce, J.; Smith, J. S.
2014-12-01
Within our community data volume is rapidly expanding. These data have limited value if one cannot interact or visualize the data in a timely manner. The scientific community needs the ability to dynamically visualize, analyze, and interact with these data along with other environmental data in real-time regardless of the physical location or data format. Within the National Oceanic Atmospheric Administration's (NOAA's), the Earth System Research Laboratory (ESRL) is actively developing the NOAA Earth Information System (NEIS). Previously, the NEIS team investigated methods of data discovery and interoperability. The recent focus shifted to high performance real-time visualization allowing NEIS to bring massive amounts of 4-D data, including output from weather forecast models as well as data from different observations (surface obs, upper air, etc...) in one place. Our server side architecture provides a real-time stream processing system which utilizes server based NVIDIA Graphical Processing Units (GPU's) for data processing, wavelet based compression, and other preparation techniques for visualization, allows NEIS to minimize the bandwidth and latency for data delivery to end-users. Client side, users interact with NEIS services through the visualization application developed at ESRL called TerraViz. Terraviz is developed using the Unity game engine and takes advantage of the GPU's allowing a user to interact with large data sets in real time that might not have been possible before. Through these technologies, the NEIS team has improved accessibility to 'Big Data' along with providing tools allowing novel visualization and seamless integration of data across time and space regardless of data size, physical location, or data format. These capabilities provide the ability to see the global interactions and their importance for weather prediction. Additionally, they allow greater access than currently exists helping to foster scientific collaboration and new ideas. This presentation will provide an update of the recent enhancements of the NEIS architecture and visualization capabilities, challenges faced, as well as ongoing research activities related to this project.
NASA Astrophysics Data System (ADS)
Krueger, Evan; Messier, Erik; Linte, Cristian A.; Diaz, Gabriel
2017-03-01
Recent advances in medical image acquisition allow for the reconstruction of anatomies with 3D, 4D, and 5D renderings. Nevertheless, standard anatomical and medical data visualization still relies heavily on the use of traditional 2D didactic tools (i.e., textbooks and slides), which restrict the presentation of image data to a 2D slice format. While these approaches have their merits beyond being cost effective and easy to disseminate, anatomy is inherently three-dimensional. By using 2D visualizations to illustrate more complex morphologies, important interactions between structures can be missed. In practice, such as in the planning and execution of surgical interventions, professionals require intricate knowledge of anatomical complexities, which can be more clearly communicated and understood through intuitive interaction with 3D volumetric datasets, such as those extracted from high-resolution CT or MRI scans. Open source, high quality, 3D medical imaging datasets are freely available, and with the emerging popularity of 3D display technologies, affordable and consistent 3D anatomical visualizations can be created. In this study we describe the design, implementation, and evaluation of one such interactive, stereoscopic visualization paradigm for human anatomy extracted from 3D medical images. A stereoscopic display was created by projecting the scene onto the lab floor using sequential frame stereo projection and viewed through active shutter glasses. By incorporating a PhaseSpace motion tracking system, a single viewer can navigate an augmented reality environment and directly manipulate virtual objects in 3D. While this paradigm is sufficiently versatile to enable a wide variety of applications in need of 3D visualization, we designed our study to work as an interactive game, which allows users to explore the anatomy of various organs and systems. In this study we describe the design, implementation, and evaluation of an interactive and stereoscopic visualization platform for exploring and understanding human anatomy. This system can present medical imaging data in three dimensions and allows for direct physical interaction and manipulation by the viewer. This should provide numerous benefits over traditional, 2D display and interaction modalities, and in our analysis, we aim to quantify and qualify users' visual and motor interactions with the virtual environment when employing this interactive display as a 3D didactic tool.
Interactive Exploration of Cosmological Dark-Matter Simulation Data.
Scherzinger, Aaron; Brix, Tobias; Drees, Dominik; Volker, Andreas; Radkov, Kiril; Santalidis, Niko; Fieguth, Alexander; Hinrichs, Klaus H
2017-01-01
The winning entry of the 2015 IEEE Scientific Visualization Contest, this article describes a visualization tool for cosmological data resulting from dark-matter simulations. The proposed system helps users explore all aspects of the data at once and receive more detailed information about structures of interest at any time. Moreover, novel methods for visualizing and interactively exploring dark-matter halo substructures are proposed.
A prototype system based on visual interactive SDM called VGC
NASA Astrophysics Data System (ADS)
Jia, Zelu; Liu, Yaolin; Liu, Yanfang
2009-10-01
In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. For spatial data mining of large data sets to be effective, it is also important to include humans in the data exploration process and combine their flexibility, creativity, and general knowledge with the enormous storage capacity and computational power of today's computers. Visual spatial data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the information and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper a visual interactive spatial data mining prototype system (visual geo-classify) based on VC++6.0 and MapObject2.0 are designed and developed, the basic algorithms of the spatial data mining is used decision tree and Bayesian networks, and data classify are used training and learning and the integration of the two to realize. The result indicates it's a practical and extensible visual interactive spatial data mining tool.
Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann
2011-01-01
During speech communication, visual information may interact with the auditory system at various processing stages. Most noteworthy, recent magnetoencephalography (MEG) data provided first evidence for early and preattentive phonetic/phonological encoding of the visual data stream--prior to its fusion with auditory phonological features [Hertrich, I., Mathiak, K., Lutzenberger, W., & Ackermann, H. Time course of early audiovisual interactions during speech and non-speech central-auditory processing: An MEG study. Journal of Cognitive Neuroscience, 21, 259-274, 2009]. Using functional magnetic resonance imaging, the present follow-up study aims to further elucidate the topographic distribution of visual-phonological operations and audiovisual (AV) interactions during speech perception. Ambiguous acoustic syllables--disambiguated to /pa/ or /ta/ by the visual channel (speaking face)--served as test materials, concomitant with various control conditions (nonspeech AV signals, visual-only and acoustic-only speech, and nonspeech stimuli). (i) Visual speech yielded an AV-subadditive activation of primary auditory cortex and the anterior superior temporal gyrus (STG), whereas the posterior STG responded both to speech and nonspeech motion. (ii) The inferior frontal and the fusiform gyrus of the right hemisphere showed a strong phonetic/phonological impact (differential effects of visual /pa/ vs. /ta/) upon hemodynamic activation during presentation of speaking faces. Taken together with the previous MEG data, these results point at a dual-pathway model of visual speech information processing: On the one hand, access to the auditory system via the anterior supratemporal “what" path may give rise to direct activation of "auditory objects." On the other hand, visual speech information seems to be represented in a right-hemisphere visual working memory, providing a potential basis for later interactions with auditory information such as the McGurk effect.
NASA Astrophysics Data System (ADS)
Demir, I.
2013-12-01
Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.
Neural network based visualization of collaborations in a citizen science project
NASA Astrophysics Data System (ADS)
Morais, Alessandra M. M.; Santos, Rafael D. C.; Raddick, M. Jordan
2014-05-01
Citizen science projects are those in which volunteers are asked to collaborate in scientific projects, usually by volunteering idle computer time for distributed data processing efforts or by actively labeling or classifying information - shapes of galaxies, whale sounds, historical records are all examples of citizen science projects in which users access a data collecting system to label or classify images and sounds. In order to be successful, a citizen science project must captivate users and keep them interested on the project and on the science behind it, increasing therefore the time the users spend collaborating with the project. Understanding behavior of citizen scientists and their interaction with the data collection systems may help increase the involvement of the users, categorize them accordingly to different parameters, facilitate their collaboration with the systems, design better user interfaces, and allow better planning and deployment of similar projects and systems. Users behavior can be actively monitored or derived from their interaction with the data collection systems. Records of the interactions can be analyzed using visualization techniques to identify patterns and outliers. In this paper we present some results on the visualization of more than 80 million interactions of almost 150 thousand users with the Galaxy Zoo I citizen science project. Visualization of the attributes extracted from their behaviors was done with a clustering neural network (the Self-Organizing Map) and a selection of icon- and pixel-based techniques. These techniques allows the visual identification of groups of similar behavior in several different ways.
A novel visualization model for web search results.
Nguyen, Tien N; Zhang, Jin
2006-01-01
This paper presents an interactive visualization system, named WebSearchViz, for visualizing the Web search results and acilitating users' navigation and exploration. The metaphor in our model is the solar system with its planets and asteroids revolving around the sun. Location, color, movement, and spatial distance of objects in the visual space are used to represent the semantic relationships between a query and relevant Web pages. Especially, the movement of objects and their speeds add a new dimension to the visual space, illustrating the degree of relevance among a query and Web search results in the context of users' subjects of interest. By interacting with the visual space, users are able to observe the semantic relevance between a query and a resulting Web page with respect to their subjects of interest, context information, or concern. Users' subjects of interest can be dynamically changed, redefined, added, or deleted from the visual space.
Linked exploratory visualizations for uncertain MR spectroscopy data
NASA Astrophysics Data System (ADS)
Feng, David; Kwock, Lester; Lee, Yueh; Taylor, Russell M., II
2010-01-01
We present a system for visualizing magnetic resonance spectroscopy (MRS) data sets. Using MRS, radiologists generate multiple 3D scalar fields of metabolite concentrations within the brain and compare them to anatomical magnetic resonance imaging. By understanding the relationship between metabolic makeup and anatomical structure, radiologists hope to better diagnose and treat tumors and lesions. Our system consists of three linked visualizations: a spatial glyph-based technique we call Scaled Data-Driven Spheres, a parallel coordinates visualization augmented to incorporate uncertainty in the data, and a slice plane for accurate data value extraction. The parallel coordinates visualization uses specialized brush interactions designed to help users identify nontrivial linear relationships between scalar fields. We describe two novel contributions to parallel coordinates visualizations: linear function brushing and new axis construction. Users have discovered significant relationships among metabolites and anatomy by linking interactions between the three visualizations.
Linked Exploratory Visualizations for Uncertain MR Spectroscopy Data
Feng, David; Kwock, Lester; Lee, Yueh; Taylor, Russell M.
2010-01-01
We present a system for visualizing magnetic resonance spectroscopy (MRS) data sets. Using MRS, radiologists generate multiple 3D scalar fields of metabolite concentrations within the brain and compare them to anatomical magnetic resonance imaging. By understanding the relationship between metabolic makeup and anatomical structure, radiologists hope to better diagnose and treat tumors and lesions. Our system consists of three linked visualizations: a spatial glyph-based technique we call Scaled Data-Driven Spheres, a parallel coordinates visualization augmented to incorporate uncertainty in the data, and a slice plane for accurate data value extraction. The parallel coordinates visualization uses specialized brush interactions designed to help users identify nontrivial linear relationships between scalar fields. We describe two novel contributions to parallel coordinates visualizations: linear function brushing and new axis construction. Users have discovered significant relationships among metabolites and anatomy by linking interactions between the three visualizations. PMID:21152337
Technical note: real-time web-based wireless visual guidance system for radiotherapy.
Lee, Danny; Kim, Siyong; Palta, Jatinder R; Kim, Taeho
2017-06-01
Describe a Web-based wireless visual guidance system that mitigates issues associated with hard-wired audio-visual aided patient interactive motion management systems that are cumbersome to use in routine clinical practice. Web-based wireless visual display duplicates an existing visual display of a respiratory-motion management system for visual guidance. The visual display of the existing system is sent to legacy Web clients over a private wireless network, thereby allowing a wireless setting for real-time visual guidance. In this study, active breathing coordinator (ABC) trace was used as an input for visual display, which captured and transmitted to Web clients. Virtual reality goggles require two (left and right eye view) images for visual display. We investigated the performance of Web-based wireless visual guidance by quantifying (1) the network latency of visual displays between an ABC computer display and Web clients of a laptop, an iPad mini 2 and an iPhone 6, and (2) the frame rate of visual display on the Web clients in frames per second (fps). The network latency of visual display between the ABC computer and Web clients was about 100 ms and the frame rate was 14.0 fps (laptop), 9.2 fps (iPad mini 2) and 11.2 fps (iPhone 6). In addition, visual display for virtual reality goggles was successfully shown on the iPhone 6 with 100 ms and 11.2 fps. A high network security was maintained by utilizing the private network configuration. This study demonstrated that a Web-based wireless visual guidance can be a promising technique for clinical motion management systems, which require real-time visual display of their outputs. Based on the results of this study, our approach has the potential to reduce clutter associated with wired-systems, reduce space requirements, and extend the use of medical devices from static usage to interactive and dynamic usage in a radiotherapy treatment vault.
Dynamic Interactions for Network Visualization and Simulation
2009-03-01
projects.htm, Site accessed January 5, 2009. 12. John S. Weir, Major, USAF, Mediated User-Simulator Interactive Command with Visualization ( MUSIC -V). Master’s...Computing Sciences in Colleges, December 2005). 14. Enrique Campos -Nanez, “nscript user manual,” Department of System Engineer- ing University of
Parallel Visualization Co-Processing of Overnight CFD Propulsion Applications
NASA Technical Reports Server (NTRS)
Edwards, David E.; Haimes, Robert
1999-01-01
An interactive visualization system pV3 is being developed for the investigation of advanced computational methodologies employing visualization and parallel processing for the extraction of information contained in large-scale transient engineering simulations. Visual techniques for extracting information from the data in terms of cutting planes, iso-surfaces, particle tracing and vector fields are included in this system. This paper discusses improvements to the pV3 system developed under NASA's Affordable High Performance Computing project.
Visualization of Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Gerald-Yamasaki, Michael; Hultquist, Jeff; Bryson, Steve; Kenwright, David; Lane, David; Walatka, Pamela; Clucas, Jean; Watson, Velvin; Lasinski, T. A. (Technical Monitor)
1995-01-01
Scientific visualization serves the dual purpose of exploration and exposition of the results of numerical simulations of fluid flow. Along with the basic visualization process which transforms source data into images, there are four additional components to a complete visualization system: Source Data Processing, User Interface and Control, Presentation, and Information Management. The requirements imposed by the desired mode of operation (i.e. real-time, interactive, or batch) and the source data have their effect on each of these visualization system components. The special requirements imposed by the wide variety and size of the source data provided by the numerical simulation of fluid flow presents an enormous challenge to the visualization system designer. We describe the visualization system components including specific visualization techniques and how the mode of operation and source data requirements effect the construction of computational fluid dynamics visualization systems.
Aging and the interaction of sensory cortical function and structure.
Peiffer, Ann M; Hugenschmidt, Christina E; Maldjian, Joseph A; Casanova, Ramon; Srikanth, Ryali; Hayasaka, Satoru; Burdette, Jonathan H; Kraft, Robert A; Laurienti, Paul J
2009-01-01
Even the healthiest older adults experience changes in cognitive and sensory function. Studies show that older adults have reduced neural responses to sensory information. However, it is well known that sensory systems do not act in isolation but function cooperatively to either enhance or suppress neural responses to individual environmental stimuli. Very little research has been dedicated to understanding how aging affects the interactions between sensory systems, especially cross-modal deactivations or the ability of one sensory system (e.g., audition) to suppress the neural responses in another sensory system cortex (e.g., vision). Such cross-modal interactions have been implicated in attentional shifts between sensory modalities and could account for increased distractibility in older adults. To assess age-related changes in cross-modal deactivations, functional MRI studies were performed in 61 adults between 18 and 80 years old during simple auditory and visual discrimination tasks. Results within visual cortex confirmed previous findings of decreased responses to visual stimuli for older adults. Age-related changes in the visual cortical response to auditory stimuli were, however, much more complex and suggested an alteration with age in the functional interactions between the senses. Ventral visual cortical regions exhibited cross-modal deactivations in younger but not older adults, whereas more dorsal aspects of visual cortex were suppressed in older but not younger adults. These differences in deactivation also remained after adjusting for age-related reductions in brain volume of sensory cortex. Thus, functional differences in cortical activity between older and younger adults cannot solely be accounted for by differences in gray matter volume. (c) 2007 Wiley-Liss, Inc.
Collaborative volume visualization with applications to underwater acoustic signal processing
NASA Astrophysics Data System (ADS)
Jarvis, Susan; Shane, Richard T.
2000-08-01
Distributed collaborative visualization systems represent a technology whose time has come. Researchers at the Fraunhofer Center for Research in Computer Graphics have been working in the areas of collaborative environments and high-end visualization systems for several years. The medical application. TeleInVivo, is an example of a system which marries visualization and collaboration. With TeleInvivo, users can exchange and collaboratively interact with volumetric data sets in geographically distributed locations. Since examination of many physical phenomena produce data that are naturally volumetric, the visualization frameworks used by TeleInVivo have been extended for non-medical applications. The system can now be made compatible with almost any dataset that can be expressed in terms of magnitudes within a 3D grid. Coupled with advances in telecommunications, telecollaborative visualization is now possible virtually anywhere. Expert data quality assurance and analysis can occur remotely and interactively without having to send all the experts into the field. Building upon this point-to-point concept of collaborative visualization, one can envision a larger pooling of resources to form a large overview of a region of interest from contributions of numerous distributed members.
OpinionSeer: interactive visualization of hotel customer feedback.
Wu, Yingcai; Wei, Furu; Liu, Shixia; Au, Norman; Cui, Weiwei; Zhou, Hong; Qu, Huamin
2010-01-01
The rapid development of Web technology has resulted in an increasing number of hotel customers sharing their opinions on the hotel services. Effective visual analysis of online customer opinions is needed, as it has a significant impact on building a successful business. In this paper, we present OpinionSeer, an interactive visualization system that could visually analyze a large collection of online hotel customer reviews. The system is built on a new visualization-centric opinion mining technique that considers uncertainty for faithfully modeling and analyzing customer opinions. A new visual representation is developed to convey customer opinions by augmenting well-established scatterplots and radial visualization. To provide multiple-level exploration, we introduce subjective logic to handle and organize subjective opinions with degrees of uncertainty. Several case studies illustrate the effectiveness and usefulness of OpinionSeer on analyzing relationships among multiple data dimensions and comparing opinions of different groups. Aside from data on hotel customer feedback, OpinionSeer could also be applied to visually analyze customer opinions on other products or services.
Visualization of protein interaction networks: problems and solutions
2013-01-01
Background Visualization concerns the representation of data visually and is an important task in scientific research. Protein-protein interactions (PPI) are discovered using either wet lab techniques, such mass spectrometry, or in silico predictions tools, resulting in large collections of interactions stored in specialized databases. The set of all interactions of an organism forms a protein-protein interaction network (PIN) and is an important tool for studying the behaviour of the cell machinery. Since graphic representation of PINs may highlight important substructures, e.g. protein complexes, visualization is more and more used to study the underlying graph structure of PINs. Although graphs are well known data structures, there are different open problems regarding PINs visualization: the high number of nodes and connections, the heterogeneity of nodes (proteins) and edges (interactions), the possibility to annotate proteins and interactions with biological information extracted by ontologies (e.g. Gene Ontology) that enriches the PINs with semantic information, but complicates their visualization. Methods In these last years many software tools for the visualization of PINs have been developed. Initially thought for visualization only, some of them have been successively enriched with new functions for PPI data management and PIN analysis. The paper analyzes the main software tools for PINs visualization considering four main criteria: (i) technology, i.e. availability/license of the software and supported OS (Operating System) platforms; (ii) interoperability, i.e. ability to import/export networks in various formats, ability to export data in a graphic format, extensibility of the system, e.g. through plug-ins; (iii) visualization, i.e. supported layout and rendering algorithms and availability of parallel implementation; (iv) analysis, i.e. availability of network analysis functions, such as clustering or mining of the graph, and the possibility to interact with external databases. Results Currently, many tools are available and it is not easy for the users choosing one of them. Some tools offer sophisticated 2D and 3D network visualization making available many layout algorithms, others tools are more data-oriented and support integration of interaction data coming from different sources and data annotation. Finally, some specialistic tools are dedicated to the analysis of pathways and cellular processes and are oriented toward systems biology studies, where the dynamic aspects of the processes being studied are central. Conclusion A current trend is the deployment of open, extensible visualization tools (e.g. Cytoscape), that may be incrementally enriched by the interactomics community with novel and more powerful functions for PIN analysis, through the development of plug-ins. On the other hand, another emerging trend regards the efficient and parallel implementation of the visualization engine that may provide high interactivity and near real-time response time, as in NAViGaTOR. From a technological point of view, open-source, free and extensible tools, like Cytoscape, guarantee a long term sustainability due to the largeness of the developers and users communities, and provide a great flexibility since new functions are continuously added by the developer community through new plug-ins, but the emerging parallel, often closed-source tools like NAViGaTOR, can offer near real-time response time also in the analysis of very huge PINs. PMID:23368786
Finding Waldo: Learning about Users from their Interactions.
Brown, Eli T; Ottley, Alvitta; Zhao, Helen; Quan Lin; Souvenir, Richard; Endert, Alex; Chang, Remco
2014-12-01
Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user's interactions with a system reflect a large amount of the user's reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user's task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, we conduct an experiment in which participants perform a visual search task, and apply well-known machine learning algorithms to three encodings of the users' interaction data. We achieve, depending on algorithm and encoding, between 62% and 83% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user's personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time: in one case 95% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed-initiative visual analytics systems.
Endogenous Biologically Inspired Art of Complex Systems.
Ji, Haru; Wakefield, Graham
2016-01-01
Since 2007, Graham Wakefield and Haru Ji have looked to nature for inspiration as they have created a series of "artificial natures," or interactive visualizations of biologically inspired complex systems that can evoke nature-like aesthetic experiences within mixed-reality art installations. This article describes how they have applied visualization, sonification, and interaction design in their work with artificial ecosystems and organisms using specific examples from their exhibited installations.
View-Dependent Streamline Deformation and Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Xin; Edwards, John; Chen, Chun-Ming
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual cluttering for visualizing 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures.more » Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.« less
Chronodes: Interactive Multifocus Exploration of Event Sequences
POLACK, PETER J.; CHEN, SHANG-TSE; KAHNG, MINSUK; DE BARBARO, KAYA; BASOLE, RAHUL; SHARMIN, MOUSHUMI; CHAU, DUEN HORNG
2018-01-01
The advent of mobile health (mHealth) technologies challenges the capabilities of current visualizations, interactive tools, and algorithms. We present Chronodes, an interactive system that unifies data mining and human-centric visualization techniques to support explorative analysis of longitudinal mHealth data. Chronodes extracts and visualizes frequent event sequences that reveal chronological patterns across multiple participant timelines of mHealth data. It then combines novel interaction and visualization techniques to enable multifocus event sequence analysis, which allows health researchers to interactively define, explore, and compare groups of participant behaviors using event sequence combinations. Through summarizing insights gained from a pilot study with 20 behavioral and biomedical health experts, we discuss Chronodes’s efficacy and potential impact in the mHealth domain. Ultimately, we outline important open challenges in mHealth, and offer recommendations and design guidelines for future research. PMID:29515937
TopicLens: Efficient Multi-Level Visual Topic Exploration of Large-Scale Document Collections.
Kim, Minjeong; Kang, Kyeongpil; Park, Deokgun; Choo, Jaegul; Elmqvist, Niklas
2017-01-01
Topic modeling, which reveals underlying topics of a document corpus, has been actively adopted in visual analytics for large-scale document collections. However, due to its significant processing time and non-interactive nature, topic modeling has so far not been tightly integrated into a visual analytics workflow. Instead, most such systems are limited to utilizing a fixed, initial set of topics. Motivated by this gap in the literature, we propose a novel interaction technique called TopicLens that allows a user to dynamically explore data through a lens interface where topic modeling and the corresponding 2D embedding are efficiently computed on the fly. To support this interaction in real time while maintaining view consistency, we propose a novel efficient topic modeling method and a semi-supervised 2D embedding algorithm. Our work is based on improving state-of-the-art methods such as nonnegative matrix factorization and t-distributed stochastic neighbor embedding. Furthermore, we have built a web-based visual analytics system integrated with TopicLens. We use this system to measure the performance and the visualization quality of our proposed methods. We provide several scenarios showcasing the capability of TopicLens using real-world datasets.
GODIVA2: interactive visualization of environmental data on the Web.
Blower, J D; Haines, K; Santokhee, A; Liu, C L
2009-03-13
GODIVA2 is a dynamic website that provides visual access to several terabytes of physically distributed, four-dimensional environmental data. It allows users to explore large datasets interactively without the need to install new software or download and understand complex data. Through the use of open international standards, GODIVA2 maintains a high level of interoperability with third-party systems, allowing diverse datasets to be mutually compared. Scientists can use the system to search for features in large datasets and to diagnose the output from numerical simulations and data processing algorithms. Data providers around Europe have adopted GODIVA2 as an INSPIRE-compliant dynamic quick-view system for providing visual access to their data.
SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications
Kalinin, Alexandr A.; Palanimalai, Selvam; Dinov, Ivo D.
2018-01-01
The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis. PMID:29630069
SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications.
Kalinin, Alexandr A; Palanimalai, Selvam; Dinov, Ivo D
2017-04-01
The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis.
Visualizing the process of interaction in a 3D environment
NASA Astrophysics Data System (ADS)
Vaidya, Vivek; Suryanarayanan, Srikanth; Krishnan, Kajoli; Mullick, Rakesh
2007-03-01
As the imaging modalities used in medicine transition to increasingly three-dimensional data the question of how best to interact with and analyze this data becomes ever more pressing. Immersive virtual reality systems seem to hold promise in tackling this, but how individuals learn and interact in these environments is not fully understood. Here we will attempt to show some methods in which user interaction in a virtual reality environment can be visualized and how this can allow us to gain greater insight into the process of interaction/learning in these systems. Also explored is the possibility of using this method to improve understanding and management of ergonomic issues within an interface.
Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop.
Legg, Philip A; Chung, David H S; Parry, Matthew L; Bown, Rhodri; Jones, Mark W; Griffiths, Iwan W; Chen, Min
2013-12-01
Traditional sketch-based image or video search systems rely on machine learning concepts as their core technology. However, in many applications, machine learning alone is impractical since videos may not be semantically annotated sufficiently, there may be a lack of suitable training data, and the search requirements of the user may frequently change for different tasks. In this work, we develop a visual analytics systems that overcomes the shortcomings of the traditional approach. We make use of a sketch-based interface to enable users to specify search requirement in a flexible manner without depending on semantic annotation. We employ active machine learning to train different analytical models for different types of search requirements. We use visualization to facilitate knowledge discovery at the different stages of visual analytics. This includes visualizing the parameter space of the trained model, visualizing the search space to support interactive browsing, visualizing candidature search results to support rapid interaction for active learning while minimizing watching videos, and visualizing aggregated information of the search results. We demonstrate the system for searching spatiotemporal attributes from sports video to identify key instances of the team and player performance.
Vestibular-visual interactions in flight simulators
NASA Technical Reports Server (NTRS)
Clark, B.
1977-01-01
All 139 research papers published under this ten-year program are listed. Experimental work was carried out at the Ames Research Center involving man's sensitivity to rotational acceleration, and psychophysical functioning of the semicircular canals; vestibular-visual interactions and effects of other sensory systems were studied in flight simulator environments. Experiments also dealt with the neurophysiological vestibular functions of animals, and flight management investigations of man-vehicle interactions.
The Visual Geophysical Exploration Environment: A Multi-dimensional Scientific Visualization
NASA Astrophysics Data System (ADS)
Pandya, R. E.; Domenico, B.; Murray, D.; Marlino, M. R.
2003-12-01
The Visual Geophysical Exploration Environment (VGEE) is an online learning environment designed to help undergraduate students understand fundamental Earth system science concepts. The guiding principle of the VGEE is the importance of hands-on interaction with scientific visualization and data. The VGEE consists of four elements: 1) an online, inquiry-based curriculum for guiding student exploration; 2) a suite of El Nino-related data sets adapted for student use; 3) a learner-centered interface to a scientific visualization tool; and 4) a set of concept models (interactive tools that help students understand fundamental scientific concepts). There are two key innovations featured in this interactive poster session. One is the integration of concept models and the visualization tool. Concept models are simple, interactive, Java-based illustrations of fundamental physical principles. We developed eight concept models and integrated them into the visualization tool to enable students to probe data. The ability to probe data using a concept model addresses the common problem of transfer: the difficulty students have in applying theoretical knowledge to everyday phenomenon. The other innovation is a visualization environment and data that are discoverable in digital libraries, and installed, configured, and used for investigations over the web. By collaborating with the Integrated Data Viewer developers, we were able to embed a web-launchable visualization tool and access to distributed data sets into the online curricula. The Thematic Real-time Environmental Data Distributed Services (THREDDS) project is working to provide catalogs of datasets that can be used in new VGEE curricula under development. By cataloging this curricula in the Digital Library for Earth System Education (DLESE), learners and educators can discover the data and visualization tool within a framework that guides their use.
An optimized web-based approach for collaborative stereoscopic medical visualization
Kaspar, Mathias; Parsad, Nigel M; Silverstein, Jonathan C
2013-01-01
Objective Medical visualization tools have traditionally been constrained to tethered imaging workstations or proprietary client viewers, typically part of hospital radiology systems. To improve accessibility to real-time, remote, interactive, stereoscopic visualization and to enable collaboration among multiple viewing locations, we developed an open source approach requiring only a standard web browser with no added client-side software. Materials and Methods Our collaborative, web-based, stereoscopic, visualization system, CoWebViz, has been used successfully for the past 2 years at the University of Chicago to teach immersive virtual anatomy classes. It is a server application that streams server-side visualization applications to client front-ends, comprised solely of a standard web browser with no added software. Results We describe optimization considerations, usability, and performance results, which make CoWebViz practical for broad clinical use. We clarify technical advances including: enhanced threaded architecture, optimized visualization distribution algorithms, a wide range of supported stereoscopic presentation technologies, and the salient theoretical and empirical network parameters that affect our web-based visualization approach. Discussion The implementations demonstrate usability and performance benefits of a simple web-based approach for complex clinical visualization scenarios. Using this approach overcomes technical challenges that require third-party web browser plug-ins, resulting in the most lightweight client. Conclusions Compared to special software and hardware deployments, unmodified web browsers enhance remote user accessibility to interactive medical visualization. Whereas local hardware and software deployments may provide better interactivity than remote applications, our implementation demonstrates that a simplified, stable, client approach using standard web browsers is sufficient for high quality three-dimensional, stereoscopic, collaborative and interactive visualization. PMID:23048008
Smelling directions: Olfaction modulates ambiguous visual motion perception
Kuang, Shenbing; Zhang, Tao
2014-01-01
Senses of smells are often accompanied by simultaneous visual sensations. Previous studies have documented enhanced olfactory performance with concurrent presence of congruent color- or shape- related visual cues, and facilitated visual object perception when congruent smells are simultaneously present. These visual object-olfaction interactions suggest the existences of couplings between the olfactory pathway and the visual ventral processing stream. However, it is not known if olfaction can modulate visual motion perception, a function that is related to the visual dorsal stream. We tested this possibility by examining the influence of olfactory cues on the perceptions of ambiguous visual motion signals. We showed that, after introducing an association between motion directions and olfactory cues, olfaction could indeed bias ambiguous visual motion perceptions. Our result that olfaction modulates visual motion processing adds to the current knowledge of cross-modal interactions and implies a possible functional linkage between the olfactory system and the visual dorsal pathway. PMID:25052162
Siakaluk, Paul D; Pexman, Penny M; Aguilera, Laura; Owen, William J; Sears, Christopher R
2008-01-01
We examined the effects of sensorimotor experience in two visual word recognition tasks. Body-object interaction (BOI) ratings were collected for a large set of words. These ratings assess perceptions of the ease with which a human body can physically interact with a word's referent. A set of high BOI words (e.g., mask) and a set of low BOI words (e.g., ship) were created, matched on imageability and concreteness. Facilitatory BOI effects were observed in lexical decision and phonological lexical decision tasks: responses were faster for high BOI words than for low BOI words. We discuss how our findings may be accounted for by (a) semantic feedback within the visual word recognition system, and (b) an embodied view of cognition (e.g., Barsalou's perceptual symbol systems theory), which proposes that semantic knowledge is grounded in sensorimotor interactions with the environment.
Energy Systems Integration News | Energy Systems Integration Facility |
NREL group of children in front of a 3D visualization screen. Students from the OpenWorld Learning group interact with a wind turbine wind velocity simulation at the 3D visualization lab at the
ERIC Educational Resources Information Center
Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann
2011-01-01
During speech communication, visual information may interact with the auditory system at various processing stages. Most noteworthy, recent magnetoencephalography (MEG) data provided first evidence for early and preattentive phonetic/phonological encoding of the visual data stream--prior to its fusion with auditory phonological features [Hertrich,…
Visualization and Interactivity in the Teaching of Chemistry to Science and Non-Science Students
ERIC Educational Resources Information Center
Venkataraman, Bhawani
2009-01-01
A series of interactive, instructional units have been developed that integrate computational molecular modelling and visualization to teach fundamental chemistry concepts and the relationship between the molecular and macro-scales. The units span the scale from atoms, small molecules to macromolecular systems, and introduce many of the concepts…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choo, Jaegul; Kim, Hannah; Clarkson, Edward
In this paper, we present an interactive visual information retrieval and recommendation system, called VisIRR, for large-scale document discovery. VisIRR effectively combines the paradigms of (1) a passive pull through query processes for retrieval and (2) an active push that recommends items of potential interest to users based on their preferences. Equipped with an efficient dynamic query interface against a large-scale corpus, VisIRR organizes the retrieved documents into high-level topics and visualizes them in a 2D space, representing the relationships among the topics along with their keyword summary. In addition, based on interactive personalized preference feedback with regard to documents,more » VisIRR provides document recommendations from the entire corpus, which are beyond the retrieved sets. Such recommended documents are visualized in the same space as the retrieved documents, so that users can seamlessly analyze both existing and newly recommended ones. This article presents novel computational methods, which make these integrated representations and fast interactions possible for a large-scale document corpus. We illustrate how the system works by providing detailed usage scenarios. Finally, we present preliminary user study results for evaluating the effectiveness of the system.« less
Choo, Jaegul; Kim, Hannah; Clarkson, Edward; ...
2018-01-31
In this paper, we present an interactive visual information retrieval and recommendation system, called VisIRR, for large-scale document discovery. VisIRR effectively combines the paradigms of (1) a passive pull through query processes for retrieval and (2) an active push that recommends items of potential interest to users based on their preferences. Equipped with an efficient dynamic query interface against a large-scale corpus, VisIRR organizes the retrieved documents into high-level topics and visualizes them in a 2D space, representing the relationships among the topics along with their keyword summary. In addition, based on interactive personalized preference feedback with regard to documents,more » VisIRR provides document recommendations from the entire corpus, which are beyond the retrieved sets. Such recommended documents are visualized in the same space as the retrieved documents, so that users can seamlessly analyze both existing and newly recommended ones. This article presents novel computational methods, which make these integrated representations and fast interactions possible for a large-scale document corpus. We illustrate how the system works by providing detailed usage scenarios. Finally, we present preliminary user study results for evaluating the effectiveness of the system.« less
Eye-movements and Voice as Interface Modalities to Computer Systems
NASA Astrophysics Data System (ADS)
Farid, Mohsen M.; Murtagh, Fionn D.
2003-03-01
We investigate the visual and vocal modalities of interaction with computer systems. We focus our attention on the integration of visual and vocal interface as possible replacement and/or additional modalities to enhance human-computer interaction. We present a new framework for employing eye gaze as a modality of interface. While voice commands, as means of interaction with computers, have been around for a number of years, integration of both the vocal interface and the visual interface, in terms of detecting user's eye movements through an eye-tracking device, is novel and promises to open the horizons for new applications where a hand-mouse interface provides little or no apparent support to the task to be accomplished. We present an array of applications to illustrate the new framework and eye-voice integration.
View-Dependent Streamline Deformation and Exploration
Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R.; Wong, Pak Chung
2016-01-01
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely. PMID:26600061
View-Dependent Streamline Deformation and Exploration.
Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R; Wong, Pak Chung
2016-07-01
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.
Interactive Games with an Assistive Robotic System for Hearing-Impaired Children.
Uluer, Pinar; Akalin, Neziha; Gurpinar, Cemal; Kose, Hatice
2017-01-01
This paper presents an assistive robotic system, which can recognize and express sign language words from a predefined set, within interactive games to communicate with and teach hearing-impaired children sign language. The robotic system uses audio, visual and tactile feedback for interaction with the children and the teacher/researcher.
Towards a Web-Enabled Geovisualization and Analytics Platform for the Energy and Water Nexus
NASA Astrophysics Data System (ADS)
Sanyal, J.; Chandola, V.; Sorokine, A.; Allen, M.; Berres, A.; Pang, H.; Karthik, R.; Nugent, P.; McManamay, R.; Stewart, R.; Bhaduri, B. L.
2017-12-01
Interactive data analytics are playing an increasingly vital role in the generation of new, critical insights regarding the complex dynamics of the energy/water nexus (EWN) and its interactions with climate variability and change. Integration of impacts, adaptation, and vulnerability (IAV) science with emerging, and increasingly critical, data science capabilities offers a promising potential to meet the needs of the EWN community. To enable the exploration of pertinent research questions, a web-based geospatial visualization platform is being built that integrates a data analysis toolbox with advanced data fusion and data visualization capabilities to create a knowledge discovery framework for the EWN. The system, when fully built out, will offer several geospatial visualization capabilities including statistical visual analytics, clustering, principal-component analysis, dynamic time warping, support uncertainty visualization and the exploration of data provenance, as well as support machine learning discoveries to render diverse types of geospatial data and facilitate interactive analysis. Key components in the system architecture includes NASA's WebWorldWind, the Globus toolkit, postgresql, as well as other custom built software modules.
Finding Waldo: Learning about Users from their Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Eli T.; Ottley, Alvitta; Zhao, Helen
Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user’s interactions with a system reflect a large amount of the user’s reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user’s task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, wemore » conduct an experiment in which participants perform a visual search task and we apply well-known machine learning algorithms to three encodings of the users interaction data. We achieve, depending on algorithm and encoding, between 62% and 96% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user’s personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time, in some cases, 82% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed- initiative visual analytics systems.« less
An interactive visualization tool for mobile objects
NASA Astrophysics Data System (ADS)
Kobayashi, Tetsuo
Recent advancements in mobile devices---such as Global Positioning System (GPS), cellular phones, car navigation system, and radio-frequency identification (RFID)---have greatly influenced the nature and volume of data about individual-based movement in space and time. Due to the prevalence of mobile devices, vast amounts of mobile objects data are being produced and stored in databases, overwhelming the capacity of traditional spatial analytical methods. There is a growing need for discovering unexpected patterns, trends, and relationships that are hidden in the massive mobile objects data. Geographic visualization (GVis) and knowledge discovery in databases (KDD) are two major research fields that are associated with knowledge discovery and construction. Their major research challenges are the integration of GVis and KDD, enhancing the ability to handle large volume mobile objects data, and high interactivity between the computer and users of GVis and KDD tools. This dissertation proposes a visualization toolkit to enable highly interactive visual data exploration for mobile objects datasets. Vector algebraic representation and online analytical processing (OLAP) are utilized for managing and querying the mobile object data to accomplish high interactivity of the visualization tool. In addition, reconstructing trajectories at user-defined levels of temporal granularity with time aggregation methods allows exploration of the individual objects at different levels of movement generality. At a given level of generality, individual paths can be combined into synthetic summary paths based on three similarity measures, namely, locational similarity, directional similarity, and geometric similarity functions. A visualization toolkit based on the space-time cube concept exploits these functionalities to create a user-interactive environment for exploring mobile objects data. Furthermore, the characteristics of visualized trajectories are exported to be utilized for data mining, which leads to the integration of GVis and KDD. Case studies using three movement datasets (personal travel data survey in Lexington, Kentucky, wild chicken movement data in Thailand, and self-tracking data in Utah) demonstrate the potential of the system to extract meaningful patterns from the otherwise difficult to comprehend collections of space-time trajectories.
Latent binocular function in amblyopia.
Chadnova, Eva; Reynaud, Alexandre; Clavagnier, Simon; Hess, Robert F
2017-11-01
Recently, psychophysical studies have shown that humans with amblyopia do have binocular function that is not normally revealed due to dominant suppressive interactions under normal viewing conditions. Here we use magnetoencephalography (MEG) combined with dichoptic visual stimulation to investigate the underlying binocular function in humans with amblyopia for stimuli that, because of their temporal properties, would be expected to bypass suppressive effects and to reveal any underlying binocular function. We recorded contrast response functions in visual cortical area V1 of amblyopes and normal observers using a steady state visually evoked responses (SSVER) protocol. We used stimuli that were frequency-tagged at 4Hz and 6Hz that allowed identification of the responses from each eye and were of a sufficiently high temporal frequency (>3Hz) to bypass suppression. To characterize binocular function, we compared dichoptic masking between the two eyes in normal and amblyopic participants as well as interocular phase differences in the two groups. We observed that the primary visual cortex responds less to the stimulation of the amblyopic eye compared to the fellow eye. The pattern of interaction in the amblyopic visual system however was not significantly different between the amblyopic and fellow eyes. However, the amblyopic suppressive interactions were lower than those observed in the binocular system of our normal observers. Furthermore, we identified an interocular processing delay of approximately 20ms in our amblyopic group. To conclude, when suppression is greatly reduced, such as the case with our stimulation above 3Hz, the amblyopic visual system exhibits a lack of binocular interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
A knowledge based system for scientific data visualization
NASA Technical Reports Server (NTRS)
Senay, Hikmet; Ignatius, Eve
1992-01-01
A knowledge-based system, called visualization tool assistant (VISTA), which was developed to assist scientists in the design of scientific data visualization techniques, is described. The system derives its knowledge from several sources which provide information about data characteristics, visualization primitives, and effective visual perception. The design methodology employed by the system is based on a sequence of transformations which decomposes a data set into a set of data partitions, maps this set of partitions to visualization primitives, and combines these primitives into a composite visualization technique design. Although the primary function of the system is to generate an effective visualization technique design for a given data set by using principles of visual perception the system also allows users to interactively modify the design, and renders the resulting image using a variety of rendering algorithms. The current version of the system primarily supports visualization techniques having applicability in earth and space sciences, although it may easily be extended to include other techniques useful in other disciplines such as computational fluid dynamics, finite-element analysis and medical imaging.
NASA Astrophysics Data System (ADS)
Christensen, C.; Summa, B.; Scorzelli, G.; Lee, J. W.; Venkat, A.; Bremer, P. T.; Pascucci, V.
2017-12-01
Massive datasets are becoming more common due to increasingly detailed simulations and higher resolution acquisition devices. Yet accessing and processing these huge data collections for scientific analysis is still a significant challenge. Solutions that rely on extensive data transfers are increasingly untenable and often impossible due to lack of sufficient storage at the client side as well as insufficient bandwidth to conduct such large transfers, that in some cases could entail petabytes of data. Large-scale remote computing resources can be useful, but utilizing such systems typically entails some form of offline batch processing with long delays, data replications, and substantial cost for any mistakes. Both types of workflows can severely limit the flexible exploration and rapid evaluation of new hypotheses that are crucial to the scientific process and thereby impede scientific discovery. In order to facilitate interactivity in both analysis and visualization of these massive data ensembles, we introduce a dynamic runtime system suitable for progressive computation and interactive visualization of arbitrarily large, disparately located spatiotemporal datasets. Our system includes an embedded domain-specific language (EDSL) that allows users to express a wide range of data analysis operations in a simple and abstract manner. The underlying runtime system transparently resolves issues such as remote data access and resampling while at the same time maintaining interactivity through progressive and interruptible processing. Computations involving large amounts of data can be performed remotely in an incremental fashion that dramatically reduces data movement, while the client receives updates progressively thereby remaining robust to fluctuating network latency or limited bandwidth. This system facilitates interactive, incremental analysis and visualization of massive remote datasets up to petabytes in size. Our system is now available for general use in the community through both docker and anaconda.
Cohn, Neil
2014-01-01
How do people make sense of the sequential images in visual narratives like comics? A growing literature of recent research has suggested that this comprehension involves the interaction of multiple systems: The creation of meaning across sequential images relies on a "narrative grammar" that packages conceptual information into categorical roles organized in hierarchic constituents. These images are encapsulated into panels arranged in the layout of a physical page. Finally, how panels frame information can impact both the narrative structure and page layout. Altogether, these systems operate in parallel to construct the Gestalt whole of comprehension of this visual language found in comics.
Interactions of Top-Down and Bottom-Up Mechanisms in Human Visual Cortex
McMains, Stephanie; Kastner, Sabine
2011-01-01
Multiple stimuli present in the visual field at the same time compete for neural representation by mutually suppressing their evoked activity throughout visual cortex, providing a neural correlate for the limited processing capacity of the visual system. Competitive interactions among stimuli can be counteracted by top-down, goal-directed mechanisms such as attention, and by bottom-up, stimulus-driven mechanisms. Because these two processes cooperate in everyday life to bias processing toward behaviorally relevant or particularly salient stimuli, it has proven difficult to study interactions between top-down and bottom-up mechanisms. Here, we used an experimental paradigm in which we first isolated the effects of a bottom-up influence on neural competition by parametrically varying the degree of perceptual grouping in displays that were not attended. Second, we probed the effects of directed attention on the competitive interactions induced with the parametric design. We found that the amount of attentional modulation varied linearly with the degree of competition left unresolved by bottom-up processes, such that attentional modulation was greatest when neural competition was little influenced by bottom-up mechanisms and smallest when competition was strongly influenced by bottom-up mechanisms. These findings suggest that the strength of attentional modulation in the visual system is constrained by the degree to which competitive interactions have been resolved by bottom-up processes related to the segmentation of scenes into candidate objects. PMID:21228167
Progressive Visual Analytics: User-Driven Visual Exploration of In-Progress Analytics.
Stolper, Charles D; Perer, Adam; Gotz, David
2014-12-01
As datasets grow and analytic algorithms become more complex, the typical workflow of analysts launching an analytic, waiting for it to complete, inspecting the results, and then re-Iaunching the computation with adjusted parameters is not realistic for many real-world tasks. This paper presents an alternative workflow, progressive visual analytics, which enables an analyst to inspect partial results of an algorithm as they become available and interact with the algorithm to prioritize subspaces of interest. Progressive visual analytics depends on adapting analytical algorithms to produce meaningful partial results and enable analyst intervention without sacrificing computational speed. The paradigm also depends on adapting information visualization techniques to incorporate the constantly refining results without overwhelming analysts and provide interactions to support an analyst directing the analytic. The contributions of this paper include: a description of the progressive visual analytics paradigm; design goals for both the algorithms and visualizations in progressive visual analytics systems; an example progressive visual analytics system (Progressive Insights) for analyzing common patterns in a collection of event sequences; and an evaluation of Progressive Insights and the progressive visual analytics paradigm by clinical researchers analyzing electronic medical records.
NASA Astrophysics Data System (ADS)
Porter, M.; Hill, M. C.; Pierce, S. A.; Gil, Y.; Pennington, D. D.
2017-12-01
DiscoverWater is a web-based visualization tool developed to enable the visual representation of data, and thus, aid scientific and societal understanding of hydrologic systems. Open data sources are coalesced to, for example, illustrate the impacts on streamflow of irrigation withdrawals. Scientists and stakeholders are informed through synchronized time-series data plots that correlate multiple spatiotemporal datasets and an interactive time-evolving map that provides a spatial analytical context. Together, these components elucidate trends so that the user can try to envision the relations between groundwater-surface water interactions, the impacts of pumping on these interactions, and the interplay of climate. Aligning data in this manner has the capacity for interdisciplinary knowledge discovery and motivates dialogue about system processes that we seek to enhance through qualitative features informed through quantitative models. DiscoverWater and its connection is demonstrated using two field cases. First, it is used to visualize data sets from the High Plains aquifer, where reservoir- and groundwater-supported irrigation has affected the Arkansas River in western Kansas. Second, data and model results from Barton Springs segment of the Edwards aquifer in Texas reveal the effects of regional pumping on this important urbanizing aquifer system. Identifying what is interesting about the data and the modeled system in the two different case studies is a step towards moving typically static visualization capabilities to an adaptive framework. Additionally, the dashboard interface incorporates both quantitative and qualitative information about distinctive case studies in a machine-readable form, such that a catalog of qualitative models can capture subject matter expertise alongside associated datasets. As the catalog is expanded to include other case studies, the collection has potential to establish a standard framework able to inform intelligent system reasoning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A
Interactive data visualization leverages human visual perception and cognition to improve the accuracy and effectiveness of data analysis. When combined with automated data analytics, data visualization systems orchestrate the strengths of humans with the computational power of machines to solve problems neither approach can manage in isolation. In the intelligent transportation system domain, such systems are necessary to support decision making in large and complex data streams. In this chapter, we provide an introduction to several key topics related to the design of data visualization systems. In addition to an overview of key techniques and strategies, we will describe practicalmore » design principles. The chapter is concluded with a detailed case study involving the design of a multivariate visualization tool.« less
Matisse: A Visual Analytics System for Exploring Emotion Trends in Social Media Text Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Drouhard, Margaret MEG G; Beaver, Justin M
Dynamically mining textual information streams to gain real-time situational awareness is especially challenging with social media systems where throughput and velocity properties push the limits of a static analytical approach. In this paper, we describe an interactive visual analytics system, called Matisse, that aids with the discovery and investigation of trends in streaming text. Matisse addresses the challenges inherent to text stream mining through the following technical contributions: (1) robust stream data management, (2) automated sentiment/emotion analytics, (3) interactive coordinated visualizations, and (4) a flexible drill-down interaction scheme that accesses multiple levels of detail. In addition to positive/negative sentiment prediction,more » Matisse provides fine-grained emotion classification based on Valence, Arousal, and Dominance dimensions and a novel machine learning process. Information from the sentiment/emotion analytics are fused with raw data and summary information to feed temporal, geospatial, term frequency, and scatterplot visualizations using a multi-scale, coordinated interaction model. After describing these techniques, we conclude with a practical case study focused on analyzing the Twitter sample stream during the week of the 2013 Boston Marathon bombings. The case study demonstrates the effectiveness of Matisse at providing guided situational awareness of significant trends in social media streams by orchestrating computational power and human cognition.« less
The Effect of User Characteristics on the Efficiency of Visual Querying
ERIC Educational Resources Information Center
Bak, Peter; Meyer, Joachim
2011-01-01
Information systems increasingly provide options for visually inspecting data during the process of information discovery and exploration. Little research has dealt so far with user interactions with these systems, and specifically with the effects of characteristics of the displayed data and the user on performance with such systems. The study…
Evaluating Combinations of Ranked Lists and Visualizations of Inter-Document Similarity.
ERIC Educational Resources Information Center
Allan, James; Leuski, Anton; Swan, Russell; Byrd, Donald
2001-01-01
Considers how ideas from document clustering can be used to improve retrieval accuracy of ranked lists in interactive systems and how to evaluate system effectiveness. Describes a TREC (Text Retrieval Conference) study that constructed and evaluated systems that present the user with ranked lists and a visualization of inter-document similarities.…
BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory
NASA Astrophysics Data System (ADS)
Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David
2017-02-01
Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, the calculation of scattered fields is extremely time-consuming on desktop systems and computationally challenging on task-parallel systems such as supercomputers and cluster systems. In addition, EM fields are high-dimensional, making them difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system.
Visual Sensitivity of Deepwater Fishes in Lake Superior
Harrington, Kelly A.; Hrabik, Thomas R.; Mensinger, Allen F.
2015-01-01
The predator-prey interactions in the offshore food web of Lake Superior have been well documented, but the sensory systems mediating these interactions remain unknown. The deepwater sculpin, (Myoxocephalus thompsoni), siscowet (Salvelinus namaycush siscowet), and kiyi (Coregonus kiyi) inhabit low light level environments. To investigate the potential role of vision in predator-prey interactions, electroretinography was used to determine visual sensitivity for each species. Spectral sensitivity curves revealed peak sensitivity at 525 nm for each species which closely corresponds to the prevalent downwelling light spectrum at depth. To determine if sufficient light was available to mediate predator-prey interactions, visual sensitivity was correlated with the intensity of downwelling light in Lake Superior to construct visual depth profiles for each species. Sufficient daytime irradiance exists for visual interactions to approximately 325 m for siscowet and kiyi and 355 m for the deepwater sculpin during summer months. Under full moon conditions, sufficient irradiance exists to elicit ERG response to light available at approximately 30 m for the siscowet and kiyi and 45 m for the deepwater sculpin. Visual interactions are therefore possible at the depths and times when these organisms overlap in the water column indicating that vision may play a far greater role at depth in deep freshwater lakes than had been previously documented. PMID:25646781
Applying a visual language for image processing as a graphical teaching tool in medical imaging
NASA Astrophysics Data System (ADS)
Birchman, James J.; Tanimoto, Steven L.; Rowberg, Alan H.; Choi, Hyung-Sik; Kim, Yongmin
1992-05-01
Typical user interaction in image processing is with command line entries, pull-down menus, or text menu selections from a list, and as such is not generally graphical in nature. Although applying these interactive methods to construct more sophisticated algorithms from a series of simple image processing steps may be clear to engineers and programmers, it may not be clear to clinicians. A solution to this problem is to implement a visual programming language using visual representations to express image processing algorithms. Visual representations promote a more natural and rapid understanding of image processing algorithms by providing more visual insight into what the algorithms do than the interactive methods mentioned above can provide. Individuals accustomed to dealing with images will be more likely to understand an algorithm that is represented visually. This is especially true of referring physicians, such as surgeons in an intensive care unit. With the increasing acceptance of picture archiving and communications system (PACS) workstations and the trend toward increasing clinical use of image processing, referring physicians will need to learn more sophisticated concepts than simply image access and display. If the procedures that they perform commonly, such as window width and window level adjustment and image enhancement using unsharp masking, are depicted visually in an interactive environment, it will be easier for them to learn and apply these concepts. The software described in this paper is a visual programming language for imaging processing which has been implemented on the NeXT computer using NeXTstep user interface development tools and other tools in an object-oriented environment. The concept is based upon the description of a visual language titled `Visualization of Vision Algorithms' (VIVA). Iconic representations of simple image processing steps are placed into a workbench screen and connected together into a dataflow path by the user. As the user creates and edits a dataflow path, more complex algorithms can be built on the screen. Once the algorithm is built, it can be executed, its results can be reviewed, and operator parameters can be interactively adjusted until an optimized output is produced. The optimized algorithm can then be saved and added to the system as a new operator. This system has been evaluated as a graphical teaching tool for window width and window level adjustment, image enhancement using unsharp masking, and other techniques.
Multivariate spatiotemporal visualizations for mobile devices in Flyover Country
NASA Astrophysics Data System (ADS)
Loeffler, S.; Thorn, R.; Myrbo, A.; Roth, R.; Goring, S. J.; Williams, J.
2017-12-01
Visualizing and interacting with complex multivariate and spatiotemporal datasets on mobile devices is challenging due to their smaller screens, reduced processing power, and limited data connectivity. Pollen data require visualizing pollen assemblages spatially, temporally, and across multiple taxa to understand plant community dynamics through time. Drawing from cartography, information visualization, and paleoecology, we have created new mobile-first visualization techniques that represent multiple taxa across many sites and enable user interaction. Using pollen datasets from the Neotoma Paleoecology Database as a case study, the visualization techniques allow ecological patterns and trends to be quickly understood on a mobile device compared to traditional pollen diagrams and maps. This flexible visualization system can be used for datasets beyond pollen, with the only requirements being point-based localities and multiple variables changing through time or depth.
Helbig, Carolin; Bilke, Lars; Bauer, Hans-Stefan; Böttinger, Michael; Kolditz, Olaf
2015-01-01
To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work. Instead of attempting to develop yet another new visualization system to fulfill all possible needs in this application domain, our approach is to provide a flexible workflow that combines different existing state-of-the-art visualization software components in order to hide the complexity of 3D data visualization tools from the end user. To complete the workflow and to enable the domain scientists to interactively visualize their data without advanced skills in 3D visualization systems, we developed a lightweight custom visualization application (MEVA - multifaceted environmental data visualization application) that supports the most relevant visualization and interaction techniques and can be easily deployed. Specifically, our workflow combines a variety of different data abstraction methods provided by a state-of-the-art 3D visualization application with the interaction and presentation features of a computer-games engine. Our customized application includes solutions for the analysis of multirun data, specifically with respect to data uncertainty and differences between simulation runs. In an iterative development process, our easy-to-use application was developed in close cooperation with meteorologists and visualization experts. The usability of the application has been validated with user tests. We report on how this application supports the users to prove and disprove existing hypotheses and discover new insights. In addition, the application has been used at public events to communicate research results.
Helbig, Carolin; Bilke, Lars; Bauer, Hans-Stefan; Böttinger, Michael; Kolditz, Olaf
2015-01-01
Background To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work. Methods and Results Instead of attempting to develop yet another new visualization system to fulfill all possible needs in this application domain, our approach is to provide a flexible workflow that combines different existing state-of-the-art visualization software components in order to hide the complexity of 3D data visualization tools from the end user. To complete the workflow and to enable the domain scientists to interactively visualize their data without advanced skills in 3D visualization systems, we developed a lightweight custom visualization application (MEVA - multifaceted environmental data visualization application) that supports the most relevant visualization and interaction techniques and can be easily deployed. Specifically, our workflow combines a variety of different data abstraction methods provided by a state-of-the-art 3D visualization application with the interaction and presentation features of a computer-games engine. Our customized application includes solutions for the analysis of multirun data, specifically with respect to data uncertainty and differences between simulation runs. In an iterative development process, our easy-to-use application was developed in close cooperation with meteorologists and visualization experts. The usability of the application has been validated with user tests. We report on how this application supports the users to prove and disprove existing hypotheses and discover new insights. In addition, the application has been used at public events to communicate research results. PMID:25915061
Systems and Methods for Data Visualization Using Three-Dimensional Displays
NASA Technical Reports Server (NTRS)
Davidoff, Scott (Inventor); Djorgovski, Stanislav G. (Inventor); Estrada, Vicente (Inventor); Donalek, Ciro (Inventor)
2017-01-01
Data visualization systems and methods for generating 3D visualizations of a multidimensional data space are described. In one embodiment a 3D data visualization application directs a processing system to: load a set of multidimensional data points into a visualization table; create representations of a set of 3D objects corresponding to the set of data points; receive mappings of data dimensions to visualization attributes; determine the visualization attributes of the set of 3D objects based upon the selected mappings of data dimensions to 3D object attributes; update a visibility dimension in the visualization table for each of the plurality of 3D object to reflect the visibility of each 3D object based upon the selected mappings of data dimensions to visualization attributes; and interactively render 3D data visualizations of the 3D objects within the virtual space from viewpoints determined based upon received user input.
NASA Astrophysics Data System (ADS)
Zhang, Weiru
2017-12-01
In medieval times, due to people’s reliance on belief, public space of Christianity came into being. With the rise of secularization, religion gradually turned into private belief, and accordingly public space returned to private space. In the 21st century, due to people’s reliance on intelligent devices, information-interactive public space emerges, and as information interaction is constantly constraining the visually impaired, public space regressed to the exclusive space of limited people[1]. Modernity is marked by technical rationality, but an ensuing basic problem lies in the separation between human action, ethics and public space. When technology fails to overcome obstacles for a particular group, the gap between the burgeoning intelligent phenomena and the increasing ratio of visually impaired is also expanding, ultimately resulting in a growing number of “blind spots” in information-interactive space. Technological innovation not only promotes the development of the information industry, but also promotes the rapid development of the transportation industry. Traffic patterns are diversifying and diverging nowadays, but it’s a fatal blow for people with visually disabilities, Because they still can only experience the most traditional mode of transportation, sometimes even not go out. How to guarantee their interactive accessibility in large urban public transport system right, currently, is a very important research direction.
Cohn, Neil
2014-01-01
How do people make sense of the sequential images in visual narratives like comics? A growing literature of recent research has suggested that this comprehension involves the interaction of multiple systems: The creation of meaning across sequential images relies on a “narrative grammar” that packages conceptual information into categorical roles organized in hierarchic constituents. These images are encapsulated into panels arranged in the layout of a physical page. Finally, how panels frame information can impact both the narrative structure and page layout. Altogether, these systems operate in parallel to construct the Gestalt whole of comprehension of this visual language found in comics. PMID:25071651
Visual Analytics of Surveillance Data on Foodborne Vibriosis, United States, 1973–2010
Sims, Jennifer N.; Isokpehi, Raphael D.; Cooper, Gabrielle A.; Bass, Michael P.; Brown, Shyretha D.; St John, Alison L.; Gulig, Paul A.; Cohly, Hari H.P.
2011-01-01
Foodborne illnesses caused by microbial and chemical contaminants in food are a substantial health burden worldwide. In 2007, human vibriosis (non-cholera Vibrio infections) became a notifiable disease in the United States. In addition, Vibrio species are among the 31 major known pathogens transmitted through food in the United States. Diverse surveillance systems for foodborne pathogens also track outbreaks, illnesses, hospitalization and deaths due to non-cholera vibrios. Considering the recognition of vibriosis as a notifiable disease in the United States and the availability of diverse surveillance systems, there is a need for the development of easily deployed visualization and analysis approaches that can combine diverse data sources in an interactive manner. Current efforts to address this need are still limited. Visual analytics is an iterative process conducted via visual interfaces that involves collecting information, data preprocessing, knowledge representation, interaction, and decision making. We have utilized public domain outbreak and surveillance data sources covering 1973 to 2010, as well as visual analytics software to demonstrate integrated and interactive visualizations of data on foodborne outbreaks and surveillance of Vibrio species. Through the data visualization, we were able to identify unique patterns and/or novel relationships within and across datasets regarding (i) causative agent; (ii) foodborne outbreaks and illness per state; (iii) location of infection; (iv) vehicle (food) of infection; (v) anatomical site of isolation of Vibrio species; (vi) patients and complications of vibriosis; (vii) incidence of laboratory-confirmed vibriosis and V. parahaemolyticus outbreaks. The additional use of emerging visual analytics approaches for interaction with data on vibriosis, including non-foodborne related disease, can guide disease control and prevention as well as ongoing outbreak investigations. PMID:22174586
Categorisation of visualisation methods to support the design of Human-Computer Interaction Systems.
Li, Katie; Tiwari, Ashutosh; Alcock, Jeffrey; Bermell-Garcia, Pablo
2016-07-01
During the design of Human-Computer Interaction (HCI) systems, the creation of visual artefacts forms an important part of design. On one hand producing a visual artefact has a number of advantages: it helps designers to externalise their thought and acts as a common language between different stakeholders. On the other hand, if an inappropriate visualisation method is employed it could hinder the design process. To support the design of HCI systems, this paper reviews the categorisation of visualisation methods used in HCI. A keyword search is conducted to identify a) current HCI design methods, b) approaches of selecting these methods. The resulting design methods are filtered to create a list of just visualisation methods. These are then categorised using the approaches identified in (b). As a result 23 HCI visualisation methods are identified and categorised in 5 selection approaches (The Recipient, Primary Purpose, Visual Archetype, Interaction Type, and The Design Process). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Görg, Carsten; Liu, Zhicheng; Kihm, Jaeyeon; Choo, Jaegul; Park, Haesun; Stasko, John
2013-10-01
Investigators across many disciplines and organizations must sift through large collections of text documents to understand and piece together information. Whether they are fighting crime, curing diseases, deciding what car to buy, or researching a new field, inevitably investigators will encounter text documents. Taking a visual analytics approach, we integrate multiple text analysis algorithms with a suite of interactive visualizations to provide a flexible and powerful environment that allows analysts to explore collections of documents while sensemaking. Our particular focus is on the process of integrating automated analyses with interactive visualizations in a smooth and fluid manner. We illustrate this integration through two example scenarios: an academic researcher examining InfoVis and VAST conference papers and a consumer exploring car reviews while pondering a purchase decision. Finally, we provide lessons learned toward the design and implementation of visual analytics systems for document exploration and understanding.
Pseudohaptic interaction with knot diagrams
NASA Astrophysics Data System (ADS)
Weng, Jianguang; Zhang, Hui
2012-07-01
To make progress in understanding knot theory, we need to interact with the projected representations of mathematical knots, which are continuous in three dimensions (3-D) but significantly interrupted in the projective images. One way to achieve such a goal is to design an interactive system that allows us to sketch two-dimensional (2-D) knot diagrams by taking advantage of a collision-sensing controller and explore their underlying smooth structures through a continuous motion. Recent advances of interaction techniques have been made that allow progress in this direction. Pseudohaptics that simulate haptic effects using pure visual feedback can be used to develop such an interactive system. We outline one such pseudohaptic knot diagram interface. Our interface derives from the familiar pencil-and-paper process of drawing 2-D knot diagrams and provides haptic-like sensations to facilitate the creation and exploration of knot diagrams. A centerpiece of the interaction model simulates a physically reactive mouse cursor, which is exploited to resolve the apparent conflict between the continuous structure of the actual smooth knot and the visual discontinuities in the knot diagram representation. Another value in exploiting pseudohaptics is that an acceleration (or deceleration) of the mouse cursor (or surface locator) can be used to indicate the slope of the curve (or surface) of which the projective image is being explored. By exploiting these additional visual cues, we proceed to a full-featured extension to a pseudohaptic four-dimensional (4-D) visualization system that simulates the continuous navigation on 4-D objects and allows us to sense the bumps and holes in the fourth dimension. Preliminary tests of the software show that main features of the interface overcome some expected perceptual limitations in our interaction with 2-D knot diagrams of 3-D knots and 3-D projective images of 4-D mathematical objects.
Planetary Surface Visualization and Analytics
NASA Astrophysics Data System (ADS)
Law, E. S.; Solar System Treks Team
2018-04-01
An introduction and update of the Solar System Treks Project which provides a suite of interactive visualization and analysis tools to enable users (engineers, scientists, public) to access large amounts of mapped planetary data products.
Visual Links: Discovery in Art and Science.
ERIC Educational Resources Information Center
Dake, Dennis M.
Some specific aspects of the process of discovery are explored as they are experienced in the visual arts and the physical sciences. Both fields use the same visual/brain processing system, and both disciplines share an imaginative and productive interest in the disciplined use of imagistic thinking. Many productive interactions between visual…
Learning Visual Design through Hypermedia: Pathways to Visual Literacy.
ERIC Educational Resources Information Center
Lockee, Barbara; Hergert, Tom
The interactive multimedia application described here attempts to provide learners and teachers with a common frame of reference for communicating about visual media. The system is based on a list of concepts related to composition, and illustrates those concepts with photographs, paintings, graphic designs, and motion picture scenes. The ability…
Multimedia Visualizer: An Animated, Object-Based OPAC.
ERIC Educational Resources Information Center
Lee, Newton S.
1991-01-01
Describes the Multimedia Visualizer, an online public access catalog (OPAC) that uses animated visualizations to make it more user friendly. Pictures of the system are shown that illustrate the interactive objects that patrons can access, including card catalog drawers, librarian desks, and bookshelves; and access to multimedia items is described.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, Kristin C; Brunhart-Lupo, Nicholas J; Bush, Brian W
We have developed a framework for the exploration, design, and planning of energy systems that combines interactive visualization with machine-learning based approximations of simulations through a general purpose dataflow API. Our system provides a visual inter- face allowing users to explore an ensemble of energy simulations representing a subset of the complex input parameter space, and spawn new simulations to 'fill in' input regions corresponding to new enegery system scenarios. Unfortunately, many energy simula- tions are far too slow to provide interactive responses. To support interactive feedback, we are developing reduced-form models via machine learning techniques, which provide statistically soundmore » esti- mates of the full simulations at a fraction of the computational cost and which are used as proxies for the full-form models. Fast com- putation and an agile dataflow enhance the engagement with energy simulations, and allow researchers to better allocate computational resources to capture informative relationships within the system and provide a low-cost method for validating and quality-checking large-scale modeling efforts.« less
Collaborative interactive visualization: exploratory concept
NASA Astrophysics Data System (ADS)
Mokhtari, Marielle; Lavigne, Valérie; Drolet, Frédéric
2015-05-01
Dealing with an ever increasing amount of data is a challenge that military intelligence analysts or team of analysts face day to day. Increased individual and collective comprehension goes through collaboration between people. Better is the collaboration, better will be the comprehension. Nowadays, various technologies support and enhance collaboration by allowing people to connect and collaborate in settings as varied as across mobile devices, over networked computers, display walls, tabletop surfaces, to name just a few. A powerful collaboration system includes traditional and multimodal visualization features to achieve effective human communication. Interactive visualization strengthens collaboration because this approach is conducive to incrementally building a mental assessment of the data meaning. The purpose of this paper is to present an overview of the envisioned collaboration architecture and the interactive visualization concepts underlying the Sensemaking Support System prototype developed to support analysts in the context of the Joint Intelligence Collection and Analysis Capability project at DRDC Valcartier. It presents the current version of the architecture, discusses future capabilities to help analyst(s) in the accomplishment of their tasks and finally recommends collaboration and visualization technologies allowing to go a step further both as individual and as a team.
de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares
2018-01-01
This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named “Get Coins,” through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user. PMID:29849549
Leite, Harlei Miguel de Arruda; de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares
2018-01-01
This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named "Get Coins," through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user.
Stepping Into Science Data: Data Visualization in Virtual Reality
NASA Astrophysics Data System (ADS)
Skolnik, S.
2017-12-01
Have you ever seen people get really excited about science data? Navteca, along with the Earth Science Technology Office (ESTO), within the Earth Science Division of NASA's Science Mission Directorate have been exploring virtual reality (VR) technology for the next generation of Earth science technology information systems. One of their first joint experiments was visualizing climate data from the Goddard Earth Observing System Model (GEOS) in VR, and the resulting visualizations greatly excited the scientific community. This presentation will share the value of VR for science, such as the capability of permitting the observer to interact with data rendered in real-time, make selections, and view volumetric data in an innovative way. Using interactive VR hardware (headset and controllers), the viewer steps into the data visualizations, physically moving through three-dimensional structures that are traditionally displayed as layers or slices, such as cloud and storm systems from NASA's Global Precipitation Measurement (GPM). Results from displaying this precipitation and cloud data show that there is interesting potential for scientific visualization, 3D/4D visualizations, and inter-disciplinary studies using VR. Additionally, VR visualizations can be leveraged as 360 content for scientific communication and outreach and VR can be used as a tool to engage policy and decision makers, as well as the public.
NASA Astrophysics Data System (ADS)
Russell, R. M.; Johnson, R. M.; Gardiner, E. S.; Bergman, J. J.; Genyuk, J.; Henderson, S.
2004-12-01
Interactive visualizations can be powerful tools for helping students, teachers, and the general public comprehend significant features in rich datasets and complex systems. Successful use of such visualizations requires viewers to have, or to acquire, adequate expertise in use of the relevant visualization tools. In many cases, the learning curve associated with competent use of such tools is too steep for casual users, such as members of the lay public browsing science outreach web sites or K-12 students and teachers trying to integrate such tools into their learning about geosciences. "Windows to the Universe" (http://www.windows.ucar.edu) is a large (roughly 6,000 web pages), well-established (first posted online in 1995), and popular (over 5 million visitor sessions and 40 million pages viewed per year) science education web site that covers a very broad range of Earth science and space science topics. The primary audience of the site consists of K-12 students and teachers and the general public. We have developed several interactive visualizations for use on the site in conjunction with text and still image reference materials. One major emphasis in the design of these interactives has been to ensure that casual users can quickly learn how to use the interactive features without becoming frustrated and departing before they were able to appreciate the visualizations displayed. We will demonstrate several of these "user-friendly" interactive visualizations and comment on the design philosophy we have employed in developing them.
Interactive Classroom Television Systems: Educational Impact on Partially Sighted Students.
ERIC Educational Resources Information Center
Bikson, T. K.; And Others
The report presents the results of an evaluation of the educational impact in two Los Angeles County, California, elementary schools, of Interactive Classroom Television Systems (ICTSs -- closed circuit systems that permit continuous two-way visual communication between teachers and partially sighted students and enable such students to make the…
Style grammars for interactive visualization of architecture.
Aliaga, Daniel G; Rosen, Paul A; Bekins, Daniel R
2007-01-01
Interactive visualization of architecture provides a way to quickly visualize existing or novel buildings and structures. Such applications require both fast rendering and an effortless input regimen for creating and changing architecture using high-level editing operations that automatically fill in the necessary details. Procedural modeling and synthesis is a powerful paradigm that yields high data amplification and can be coupled with fast-rendering techniques to quickly generate plausible details of a scene without much or any user interaction. Previously, forward generating procedural methods have been proposed where a procedure is explicitly created to generate particular content. In this paper, we present our work in inverse procedural modeling of buildings and describe how to use an extracted repertoire of building grammars to facilitate the visualization and quick modification of architectural structures and buildings. We demonstrate an interactive application where the user draws simple building blocks and, using our system, can automatically complete the building "in the style of" other buildings using view-dependent texture mapping or nonphotorealistic rendering techniques. Our system supports an arbitrary number of building grammars created from user subdivided building models and captured photographs. Using only edit, copy, and paste metaphors, the entire building styles can be altered and transferred from one building to another in a few operations, enhancing the ability to modify an existing architectural structure or to visualize a novel building in the style of the others.
Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction.
Black, David; Unger, Michael; Fischer, Nele; Kikinis, Ron; Hahn, Horst; Neumuth, Thomas; Glaser, Bernhard
2018-01-01
The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.
Semi-Immersive Virtual Turbine Engine Simulation System
NASA Astrophysics Data System (ADS)
Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea
2018-05-01
The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.
Visual analysis and exploration of complex corporate shareholder networks
NASA Astrophysics Data System (ADS)
Tekušová, Tatiana; Kohlhammer, Jörn
2008-01-01
The analysis of large corporate shareholder network structures is an important task in corporate governance, in financing, and in financial investment domains. In a modern economy, large structures of cross-corporation, cross-border shareholder relationships exist, forming complex networks. These networks are often difficult to analyze with traditional approaches. An efficient visualization of the networks helps to reveal the interdependent shareholding formations and the controlling patterns. In this paper, we propose an effective visualization tool that supports the financial analyst in understanding complex shareholding networks. We develop an interactive visual analysis system by combining state-of-the-art visualization technologies with economic analysis methods. Our system is capable to reveal patterns in large corporate shareholder networks, allows the visual identification of the ultimate shareholders, and supports the visual analysis of integrated cash flow and control rights. We apply our system on an extensive real-world database of shareholder relationships, showing its usefulness for effective visual analysis.
Public health nurse perceptions of Omaha System data visualization.
Lee, Seonah; Kim, Era; Monsen, Karen A
2015-10-01
Electronic health records (EHRs) provide many benefits related to the storage, deployment, and retrieval of large amounts of patient data. However, EHRs have not fully met the need to reuse data for decision making on follow-up care plans. Visualization offers new ways to present health data, especially in EHRs. Well-designed data visualization allows clinicians to communicate information efficiently and effectively, contributing to improved interpretation of clinical data and better patient care monitoring and decision making. Public health nurse (PHN) perceptions of Omaha System data visualization prototypes for use in EHRs have not been evaluated. To visualize PHN-generated Omaha System data and assess PHN perceptions regarding the visual validity, helpfulness, usefulness, and importance of the visualizations, including interactive functionality. Time-oriented visualization for problems and outcomes and Matrix visualization for problems and interventions were developed using PHN-generated Omaha System data to help PHNs consume data and plan care at the point of care. Eleven PHNs evaluated prototype visualizations. Overall PHNs response to visualizations was positive, and feedback for improvement was provided. This study demonstrated the potential for using visualization techniques within EHRs to summarize Omaha System patient data for clinicians. Further research is needed to improve and refine these visualizations and assess the potential to incorporate visualizations within clinical EHRs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Advanced Technology for Portable Personal Visualization.
1992-06-01
interactive radiosity . 6 Advanced Technology for Portable Personal Visualization Progress Report January-June 1992 9 2.5 Virtual-Environment Ultrasound...the system, with support for textures, model partitioning, more complex radiosity emitters, and the replacement of model parts with objects from our...model libraries. "* Add real-time, interactive radiosity to the display program on Pixel-Planes 5. "* Move the real-time model mesh-generation to the
Designing a Visual Factors-Based Screen Display Interface: The New Role of the Graphic Technologist.
ERIC Educational Resources Information Center
Faiola, Tony; DeBloois, Michael L.
1988-01-01
Discusses the role of the graphic technologist in preparing computer screen displays for interactive videodisc systems, and suggests screen design guidelines. Topics discussed include the grid system; typography; visual factors research; color; course mobility through branching and software menus; and a model of course integration. (22 references)…
Visual control of prey-capture flight in dragonflies.
Olberg, Robert M
2012-04-01
Interacting with a moving object poses a computational problem for an animal's nervous system. This problem has been elegantly solved by the dragonfly, a formidable visual predator on flying insects. The dragonfly computes an interception flight trajectory and steers to maintain it during its prey-pursuit flight. This review summarizes current knowledge about pursuit behavior and neurons thought to control interception in the dragonfly. When understood, this system has the potential for explaining how a small group of neurons can control complex interactions with moving objects. Copyright © 2011 Elsevier Ltd. All rights reserved.
Interactive access and management for four-dimensional environmental data sets using McIDAS
NASA Technical Reports Server (NTRS)
Hibbard, William L.; Tripoli, Gregory J.
1995-01-01
This grant has fundamentally changed the way that meteorologists look at the output of their atmospheric models, through the development and wide distribution of the Vis5D system. The Vis5D system is also gaining acceptance among oceanographers and atmospheric chemists. Vis5D gives these scientists an interactive three-dimensional movie of their very large data sets that they can use to understand physical mechanisms and to trace problems to their sources. This grant has also helped to define the future direction of scientific visualization through the development of the VisAD system and its lattice data model. The VisAD system can be used to interactively steer and visualize scientific computations. A key element of this capability is the flexibility of the system's data model to adapt to a wide variety of scientific data, including the integration of several forms of scientific metadata.
Three-dimensional user interfaces for scientific visualization
NASA Technical Reports Server (NTRS)
Vandam, Andries
1995-01-01
The main goal of this project is to develop novel and productive user interface techniques for creating and managing visualizations of computational fluid dynamics (CFD) datasets. We have implemented an application framework in which we can visualize computational fluid dynamics user interfaces. This UI technology allows users to interactively place visualization probes in a dataset and modify some of their parameters. We have also implemented a time-critical scheduling system which strives to maintain a constant frame-rate regardless of the number of visualization techniques. In the past year, we have published parts of this research at two conferences, the research annotation system at Visualization 1994, and the 3D user interface at UIST 1994. The real-time scheduling system has been submitted to SIGGRAPH 1995 conference. Copies of these documents are included with this report.
The attentive brain: insights from developmental cognitive neuroscience.
Amso, Dima; Scerif, Gaia
2015-10-01
Visual attention functions as a filter to select environmental information for learning and memory, making it the first step in the eventual cascade of thought and action systems. Here, we review studies of typical and atypical visual attention development and explain how they offer insights into the mechanisms of adult visual attention. We detail interactions between visual processing and visual attention, as well as the contribution of visual attention to memory. Finally, we discuss genetic mechanisms underlying attention disorders and how attention may be modified by training.
The Habitable Zone Gallery 2.0: The Online Exoplanet System Visualization Suite
NASA Astrophysics Data System (ADS)
Chandler, C. O.; Kane, S. R.; Gelino, D. M.
2017-11-01
The Habitable Zone Gallery 2.0 provides new and improved visualization and data analysis tools to the exoplanet habitability community and beyond. Modules include interactive habitable zone plotting and downloadable 3D animations.
GLO-STIX: Graph-Level Operations for Specifying Techniques and Interactive eXploration
Stolper, Charles D.; Kahng, Minsuk; Lin, Zhiyuan; Foerster, Florian; Goel, Aakash; Stasko, John; Chau, Duen Horng
2015-01-01
The field of graph visualization has produced a wealth of visualization techniques for accomplishing a variety of analysis tasks. Therefore analysts often rely on a suite of different techniques, and visual graph analysis application builders strive to provide this breadth of techniques. To provide a holistic model for specifying network visualization techniques (as opposed to considering each technique in isolation) we present the Graph-Level Operations (GLO) model. We describe a method for identifying GLOs and apply it to identify five classes of GLOs, which can be flexibly combined to re-create six canonical graph visualization techniques. We discuss advantages of the GLO model, including potentially discovering new, effective network visualization techniques and easing the engineering challenges of building multi-technique graph visualization applications. Finally, we implement the GLOs that we identified into the GLO-STIX prototype system that enables an analyst to interactively explore a graph by applying GLOs. PMID:26005315
Novel 3D/VR interactive environment for MD simulations, visualization and analysis.
Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P
2014-12-18
The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.
Smart unattended sensor networks with scene understanding capabilities
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2006-05-01
Unattended sensor systems are new technologies that are supposed to provide enhanced situation awareness to military and law enforcement agencies. A network of such sensors cannot be very effective in field conditions only if it can transmit visual information to human operators or alert them on motion. In the real field conditions, events may happen in many nodes of a network simultaneously. But the real number of control personnel is always limited, and attention of human operators can be simply attracted to particular network nodes, while more dangerous threat may be unnoticed at the same time in the other nodes. Sensor networks would be more effective if equipped with a system that is similar to human vision in its abilities to understand visual information. Human vision uses for that a rough but wide peripheral system that tracks motions and regions of interests, narrow but precise foveal vision that analyzes and recognizes objects in the center of selected region of interest, and visual intelligence that provides scene and object contexts and resolves ambiguity and uncertainty in the visual information. Biologically-inspired Network-Symbolic models convert image information into an 'understandable' Network-Symbolic format, which is similar to relational knowledge models. The equivalent of interaction between peripheral and foveal systems in the network-symbolic system is achieved via interaction between Visual and Object Buffers and the top-level knowledge system.
Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis
Doblack, Benjamin N.; Allis, Tim; Dávila, Lilian P.
2014-01-01
The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced. PMID:25549300
Imaging of the interaction of cancer cells and the lymphatic system.
Tran Cao, Hop S; McElroy, Michele; Kaushal, Sharmeela; Hoffman, Robert M; Bouvet, Michael
2011-09-10
A thorough understanding of the lymphatic system and its interaction with cancer cells is crucial to our ability to fight cancer metastasis. Efforts to study the lymphatic system had previously been limited by the inability to visualize the lymphatic system in vivo in real time. Fluorescence imaging can address these limitations and allow for visualization of lymphatic delivery and trafficking of cancer cells and potentially therapeutic agents as well. Here, we review recent articles in which antibody-fluorophore conjugates are used to label the lymphatic network and fluorescent proteins to label cancer cells in the evaluation of lymphatic delivery and imaging. Copyright © 2011 Elsevier B.V. All rights reserved.
Visual force feedback in laparoscopic training.
Horeman, Tim; Rodrigues, Sharon P; van den Dobbelsteen, John J; Jansen, Frank-Willem; Dankelman, Jenny
2012-01-01
To improve endoscopic surgical skills, an increasing number of surgical residents practice on box or virtual reality (VR) trainers. Current training is focused mainly on hand-eye coordination. Training methods that focus on applying the right amount of force are not yet available. The aim of this project is to develop a low-cost training system that measures the interaction force between tissue and instruments and displays a visual representation of the applied forces inside the camera image. This visual representation continuously informs the subject about the magnitude and the direction of applied forces. To show the potential of the developed training system, a pilot study was conducted in which six novices performed a needle-driving task in a box trainer with visual feedback of the force, and six novices performed the same task without visual feedback of the force. All subjects performed the training task five times and were subsequently tested in a post-test without visual feedback. The subjects who received visual feedback during training exerted on average 1.3 N (STD 0.6 N) to drive the needle through the tissue during the post-test. This value was considerably higher for the group that received no feedback (2.6 N, STD 0.9 N). The maximum interaction force during the post-test was noticeably lower for the feedback group (4.1 N, STD 1.1 N) compared with that of the control group (8.0 N, STD 3.3 N). The force-sensing training system provides us with the unique possibility to objectively assess tissue-handling skills in a laboratory setting. The real-time visualization of applied forces during training may facilitate acquisition of tissue-handling skills in complex laparoscopic tasks and could stimulate proficiency gain curves of trainees. However, larger randomized trials that also include other tasks are necessary to determine whether training with visual feedback about forces reduces the interaction force during laparoscopic surgery.
Level-2 Milestone 4797: Early Users on Max, Sequoia Visualization Cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cupps, Kim C.
This report documents the fact that an early user has run successfully on Max, the Sequoia visualization cluster, ASC L2 milestone 4797: Early Users on Sequoia Visualization System (Max), due December 31, 2013. The Max visualization and data analysis cluster will provide Sequoia users with compute cycles and an interactive option for data exploration and analysis. The system will be integrated in the first quarter of FY14 and the system is expected to be moved to the classified network by the second quarter of FY14. The goal of this milestone is to have early users running their visualization and datamore » analysis work on the Max cluster on the classified network.« less
Designing a visualization system for hydrological data
NASA Astrophysics Data System (ADS)
Fuhrmann, Sven
2000-02-01
The field of hydrology is, as any other scientific field, strongly affected by a massive technological evolution. The spread of modern information and communication technology within the last three decades has led to an increased collection, availability and use of spatial and temporal digital hydrological data. In a two-year research period a working group in Muenster applied and developed methods for the visualization of digital hydrological data and the documentation of hydrological models. A low-cost multimedial, hydrological visualization system (HydroVIS) for the Weser river catchment was developed. The research group designed HydroVIS under freeware constraints and tried to show what kind of multimedia visualization techniques can be effectively used with a nonprofit hydrological visualization system. The system's visual components include features such as electronic maps, temporal and nontemporal cartographic animations, the display of geologic profiles, interactive diagrams and hypertext, including photographs and tables.
Phased array performance evaluation with photoelastic visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginzel, Robert; Dao, Gavin
2014-02-18
New instrumentation and a widening range of phased array transducer options are affording the industry a greater potential. Visualization of the complex wave components using the photoelastic system can greatly enhance understanding of the generated signals. Diffraction, mode conversion and wave front interaction, together with beam forming for linear, sectorial and matrix arrays, will be viewed using the photoelastic system. Beam focus and steering performance will be shown with a range of embedded and surface targets within glass samples. This paper will present principles and sound field images using this visualization system.
iTTVis: Interactive Visualization of Table Tennis Data.
Wu, Yingcai; Lan, Ji; Shu, Xinhuan; Ji, Chenyang; Zhao, Kejian; Wang, Jiachen; Zhang, Hui
2018-01-01
The rapid development of information technology paved the way for the recording of fine-grained data, such as stroke techniques and stroke placements, during a table tennis match. This data recording creates opportunities to analyze and evaluate matches from new perspectives. Nevertheless, the increasingly complex data poses a significant challenge to make sense of and gain insights into. Analysts usually employ tedious and cumbersome methods which are limited to watching videos and reading statistical tables. However, existing sports visualization methods cannot be applied to visualizing table tennis competitions due to different competition rules and particular data attributes. In this work, we collaborate with data analysts to understand and characterize the sophisticated domain problem of analysis of table tennis data. We propose iTTVis, a novel interactive table tennis visualization system, which to our knowledge, is the first visual analysis system for analyzing and exploring table tennis data. iTTVis provides a holistic visualization of an entire match from three main perspectives, namely, time-oriented, statistical, and tactical analyses. The proposed system with several well-coordinated views not only supports correlation identification through statistics and pattern detection of tactics with a score timeline but also allows cross analysis to gain insights. Data analysts have obtained several new insights by using iTTVis. The effectiveness and usability of the proposed system are demonstrated with four case studies.
NASA Astrophysics Data System (ADS)
Liu, Shuai; Chen, Ge; Yao, Shifeng; Tian, Fenglin; Liu, Wei
2017-07-01
This paper presents a novel integrated marine visualization framework which focuses on processing, analyzing the multi-dimension spatiotemporal marine data in one workflow. Effective marine data visualization is needed in terms of extracting useful patterns, recognizing changes, and understanding physical processes in oceanography researches. However, the multi-source, multi-format, multi-dimension characteristics of marine data pose a challenge for interactive and feasible (timely) marine data analysis and visualization in one workflow. And, global multi-resolution virtual terrain environment is also needed to give oceanographers and the public a real geographic background reference and to help them to identify the geographical variation of ocean phenomena. This paper introduces a data integration and processing method to efficiently visualize and analyze the heterogeneous marine data. Based on the data we processed, several GPU-based visualization methods are explored to interactively demonstrate marine data. GPU-tessellated global terrain rendering using ETOPO1 data is realized and the video memory usage is controlled to ensure high efficiency. A modified ray-casting algorithm for the uneven multi-section Argo volume data is also presented and the transfer function is designed to analyze the 3D structure of ocean phenomena. Based on the framework we designed, an integrated visualization system is realized. The effectiveness and efficiency of the framework is demonstrated. This system is expected to make a significant contribution to the demonstration and understanding of marine physical process in a virtual global environment.
Cognitive processing in the primary visual cortex: from perception to memory.
Supèr, Hans
2002-01-01
The primary visual cortex is the first cortical area of the visual system that receives information from the external visual world. Based on the receptive field characteristics of the neurons in this area, it has been assumed that the primary visual cortex is a pure sensory area extracting basic elements of the visual scene. This information is then subsequently further processed upstream in the higher-order visual areas and provides us with perception and storage of the visual environment. However, recent findings show that such neural implementations are observed in the primary visual cortex. These neural correlates are expressed by the modulated activity of the late response of a neuron to a stimulus, and most likely depend on recurrent interactions between several areas of the visual system. This favors the concept of a distributed nature of visual processing in perceptual organization.
Dendroscope: An interactive viewer for large phylogenetic trees
Huson, Daniel H; Richter, Daniel C; Rausch, Christian; Dezulian, Tobias; Franz, Markus; Rupp, Regula
2007-01-01
Background Research in evolution requires software for visualizing and editing phylogenetic trees, for increasingly very large datasets, such as arise in expression analysis or metagenomics, for example. It would be desirable to have a program that provides these services in an effcient and user-friendly way, and that can be easily installed and run on all major operating systems. Although a large number of tree visualization tools are freely available, some as a part of more comprehensive analysis packages, all have drawbacks in one or more domains. They either lack some of the standard tree visualization techniques or basic graphics and editing features, or they are restricted to small trees containing only tens of thousands of taxa. Moreover, many programs are diffcult to install or are not available for all common operating systems. Results We have developed a new program, Dendroscope, for the interactive visualization and navigation of phylogenetic trees. The program provides all standard tree visualizations and is optimized to run interactively on trees containing hundreds of thousands of taxa. The program provides tree editing and graphics export capabilities. To support the inspection of large trees, Dendroscope offers a magnification tool. The software is written in Java 1.4 and installers are provided for Linux/Unix, MacOS X and Windows XP. Conclusion Dendroscope is a user-friendly program for visualizing and navigating phylogenetic trees, for both small and large datasets. PMID:18034891
ERIC Educational Resources Information Center
Schreiber, Alexander M.
2011-01-01
A challenging topic in undergraduate physiology courses is the complex interaction between the vertebrate endocrine system and the immune system. There are relatively few established and accessible laboratory exercises available to instructors to help their students gain a working understanding of these interactions. The present laboratory module…
Interactive Model-Centric Systems Engineering (IMCSE) Phase 5
2018-02-28
Conducting Program Team Launches ................................................................................................. 12 Informing Policy...research advances knowledge relevant to human interaction with models and model-generated information . Figure 1 highlights several questions the...stakeholders interact using models and model generated information ; facets of human interaction with visualizations and large data sets; and underlying
Understanding interfirm relationships in business ecosystems with interactive visualization.
Basole, Rahul C; Clear, Trustin; Hu, Mengdie; Mehrotra, Harshit; Stasko, John
2013-12-01
Business ecosystems are characterized by large, complex, and global networks of firms, often from many different market segments, all collaborating, partnering, and competing to create and deliver new products and services. Given the rapidly increasing scale, complexity, and rate of change of business ecosystems, as well as economic and competitive pressures, analysts are faced with the formidable task of quickly understanding the fundamental characteristics of these interfirm networks. Existing tools, however, are predominantly query- or list-centric with limited interactive, exploratory capabilities. Guided by a field study of corporate analysts, we have designed and implemented dotlink360, an interactive visualization system that provides capabilities to gain systemic insight into the compositional, temporal, and connective characteristics of business ecosystems. dotlink360 consists of novel, multiple connected views enabling the analyst to explore, discover, and understand interfirm networks for a focal firm, specific market segments or countries, and the entire business ecosystem. System evaluation by a small group of prototypical users shows supporting evidence of the benefits of our approach. This design study contributes to the relatively unexplored, but promising area of exploratory information visualization in market research and business strategy.
Reading impairment in schizophrenia: dysconnectivity within the visual system.
Vinckier, Fabien; Cohen, Laurent; Oppenheim, Catherine; Salvador, Alexandre; Picard, Hernan; Amado, Isabelle; Krebs, Marie-Odile; Gaillard, Raphaël
2014-01-01
Patients with schizophrenia suffer from perceptual visual deficits. It remains unclear whether those deficits result from an isolated impairment of a localized brain process or from a more diffuse long-range dysconnectivity within the visual system. We aimed to explore, with a reading paradigm, the functioning of both ventral and dorsal visual pathways and their interaction in schizophrenia. Patients with schizophrenia and control subjects were studied using event-related functional MRI (fMRI) while reading words that were progressively degraded through word rotation or letter spacing. Reading intact or minimally degraded single words involves mainly the ventral visual pathway. Conversely, reading in non-optimal conditions involves both the ventral and the dorsal pathway. The reading paradigm thus allowed us to study the functioning of both pathways and their interaction. Behaviourally, patients with schizophrenia were selectively impaired at reading highly degraded words. While fMRI activation level was not different between patients and controls, functional connectivity between the ventral and dorsal visual pathways increased with word degradation in control subjects, but not in patients. Moreover, there was a negative correlation between the patients' behavioural sensitivity to stimulus degradation and dorso-ventral connectivity. This study suggests that perceptual visual deficits in schizophrenia could be related to dysconnectivity between dorsal and ventral visual pathways. © 2013 Published by Elsevier Ltd.
SmartAdP: Visual Analytics of Large-scale Taxi Trajectories for Selecting Billboard Locations.
Liu, Dongyu; Weng, Di; Li, Yuhong; Bao, Jie; Zheng, Yu; Qu, Huamin; Wu, Yingcai
2017-01-01
The problem of formulating solutions immediately and comparing them rapidly for billboard placements has plagued advertising planners for a long time, owing to the lack of efficient tools for in-depth analyses to make informed decisions. In this study, we attempt to employ visual analytics that combines the state-of-the-art mining and visualization techniques to tackle this problem using large-scale GPS trajectory data. In particular, we present SmartAdP, an interactive visual analytics system that deals with the two major challenges including finding good solutions in a huge solution space and comparing the solutions in a visual and intuitive manner. An interactive framework that integrates a novel visualization-driven data mining model enables advertising planners to effectively and efficiently formulate good candidate solutions. In addition, we propose a set of coupled visualizations: a solution view with metaphor-based glyphs to visualize the correlation between different solutions; a location view to display billboard locations in a compact manner; and a ranking view to present multi-typed rankings of the solutions. This system has been demonstrated using case studies with a real-world dataset and domain-expert interviews. Our approach can be adapted for other location selection problems such as selecting locations of retail stores or restaurants using trajectory data.
Lai, Xin Jie Angela; Alexander, Jack; He, Ming Guang; Yang, Zhi Kuan; Suttle, Catherine
2012-07-01
Dichoptic visual stimulation may be achieved using shutter goggles and mirror systems. These methods vary in their feasibility for use in children. This study aims to investigate the feasibility of use of a simple trial frame-based system to evaluate interactions in children. Low contrast acuity, contrast sensitivity and alignment sensitivity were measured in the non-dominant eye of 10 normally-sighted children, 14 anisometropic children without amblyopia and 14 anisometropic amblyopic children (aged 5-11 years) using goggles and a trial frame apparatus (TFA). The dominant eye was either fully or partially occluded. The difference in visual functions in the non-dominant eye between the full and partial occlusion conditions was termed the 'interaction index'. Agreement between the TFA and goggles in terms of visual functions and interactions was assessed in anisometropic children with and without amblyopia using the Bland-Altman method and t-test. Training sessions allowed subjects to become accustomed to the systems and tasks. The duration of training, the number of breaks requested by subjects and their willingness to attend further experiments were recorded in 10 subjects from each group and were compared between groups and between systems. Both Bland-Altman and t-test methods indicated acceptable agreement between the TFA and goggles in visual function and interaction measures (p > 0.05), except for contrast sensitivity measured in anisometropic children without amblyopia (p = 0.042). For all subject groups, contrast sensitivity training was significantly longer using goggles than using the TFA (p ≤ 0.001). Significantly more breaks were requested in acuity and contrast sensitivity testing, when goggles were used than when the TFA was used (p < 0.045). Anisometropic children without amblyopia showed a significantly greater willingness to attend more experiments using the TFA than using goggles (p = 0.025). The TFA may be a useful tool in studies of interactions in amblyopes, particularly in studies of children's vision. © 2012 The Authors. Clinical and Experimental Optometry © 2012 Optometrists Association Australia.
Data Visualization and Animation Lab (DVAL) overview
NASA Technical Reports Server (NTRS)
Stacy, Kathy; Vonofenheim, Bill
1994-01-01
The general capabilities of the Langley Research Center Data Visualization and Animation Laboratory is described. These capabilities include digital image processing, 3-D interactive computer graphics, data visualization and analysis, video-rate acquisition and processing of video images, photo-realistic modeling and animation, video report generation, and color hardcopies. A specialized video image processing system is also discussed.
NASA Technical Reports Server (NTRS)
Young, L. R.
1976-01-01
Investigations for the improvement of flight simulators are reported. Topics include: visual cues in landing, comparison of linear and nonlinear washout filters using a model of the vestibular system, and visual vestibular interactions (yaw axis). An abstract is given for a thesis on the applications of human dynamic orientation models to motion simulation.
Towards a visual modeling approach to designing microelectromechanical system transducers
NASA Astrophysics Data System (ADS)
Dewey, Allen; Srinivasan, Vijay; Icoz, Evrim
1999-12-01
In this paper, we address initial design capture and system conceptualization of microelectromechanical system transducers based on visual modeling and design. Visual modeling frames the task of generating hardware description language (analog and digital) component models in a manner similar to the task of generating software programming language applications. A structured topological design strategy is employed, whereby microelectromechanical foundry cell libraries are utilized to facilitate the design process of exploring candidate cells (topologies), varying key aspects of the transduction for each topology, and determining which topology best satisfies design requirements. Coupled-energy microelectromechanical system characterizations at a circuit level of abstraction are presented that are based on branch constitutive relations and an overall system of simultaneous differential and algebraic equations. The resulting design methodology is called visual integrated-microelectromechanical VHDL-AMS interactive design (VHDL-AMS is visual hardware design language for analog and mixed signal).
ARIES: Enabling Visual Exploration and Organization of Art Image Collections.
Crissaff, Lhaylla; Wood Ruby, Louisa; Deutch, Samantha; DuBois, R Luke; Fekete, Jean-Daniel; Freire, Juliana; Silva, Claudio
2018-01-01
Art historians have traditionally used physical light boxes to prepare exhibits or curate collections. On a light box, they can place slides or printed images, move the images around at will, group them as desired, and visual-ly compare them. The transition to digital images has rendered this workflow obsolete. Now, art historians lack well-designed, unified interactive software tools that effectively support the operations they perform with physi-cal light boxes. To address this problem, we designed ARIES (ARt Image Exploration Space), an interactive image manipulation system that enables the exploration and organization of fine digital art. The system allows images to be compared in multiple ways, offering dynamic overlays analogous to a physical light box, and sup-porting advanced image comparisons and feature-matching functions, available through computational image processing. We demonstrate the effectiveness of our system to support art historians tasks through real use cases.
NASA Astrophysics Data System (ADS)
Hoteit, I.; Hollt, T.; Hadwiger, M.; Knio, O. M.; Gopalakrishnan, G.; Zhan, P.
2016-02-01
Ocean reanalyses and forecasts are nowadays generated by combining ensemble simulations with data assimilation techniques. Most of these techniques resample the ensemble members after each assimilation cycle. Tracking behavior over time, such as all possible paths of a particle in an ensemble vector field, becomes very difficult, as the number of combinations rises exponentially with the number of assimilation cycles. In general a single possible path is not of interest but only the probabilities that any point in space might be reached by a particle at some point in time. We present an approach using probability-weighted piecewise particle trajectories to allow for interactive probability mapping. This is achieved by binning the domain and splitting up the tracing process into the individual assimilation cycles, so that particles that fall into the same bin after a cycle can be treated as a single particle with a larger probability as input for the next cycle. As a result we loose the possibility to track individual particles, but can create probability maps for any desired seed at interactive rates. The technique is integrated in an interactive visualization system that enables the visual analysis of the particle traces side by side with other forecast variables, such as the sea surface height, and their corresponding behavior over time. By harnessing the power of modern graphics processing units (GPUs) for visualization as well as computation, our system allows the user to browse through the simulation ensembles in real-time, view specific parameter settings or simulation models and move between different spatial or temporal regions without delay. In addition our system provides advanced visualizations to highlight the uncertainty, or show the complete distribution of the simulations at user-defined positions over the complete time series of the domain.
3-D vision and figure-ground separation by visual cortex.
Grossberg, S
1994-01-01
A neural network theory of three-dimensional (3-D) vision, called FACADE theory, is described. The theory proposes a solution of the classical figure-ground problem for biological vision. It does so by suggesting how boundary representations and surface representations are formed within a boundary contour system (BCS) and a feature contour system (FCS). The BCS and FCS interact reciprocally to form 3-D boundary and surface representations that are mutually consistent. Their interactions generate 3-D percepts wherein occluding and occluded object parts are separated, completed, and grouped. The theory clarifies how preattentive processes of 3-D perception and figure-ground separation interact reciprocally with attentive processes of spatial localization, object recognition, and visual search. A new theory of stereopsis is proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and orientations are combined by context-sensitive filtering, competition, and cooperation to form coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-out, including: boundary contrast between spatially contiguous boundaries, whether due to scenic differences in luminance, color, spatial frequency, or disparity; partially ordered interactions from larger spatial scales and disparities to smaller scales and disparities; and surface filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D pop-out from a 2-D picture, Da Vinci stereopsis, 3-D neon color spreading, completion of partially occluded objects, and figure-ground reversals are analyzed. The BCS and FCS subsystems model aspects of how the two parvocellular cortical processing streams that join the lateral geniculate nucleus to prestriate cortical area V4 interact to generate a multiplexed representation of Form-And-Color-And-DEpth, or FACADE, within area V4. Area V4 is suggested to support figure-ground separation and to interact with cortical mechanisms of spatial attention, attentive object learning, and visual search. Adaptive resonance theory (ART) mechanisms model aspects of how prestriate visual cortex interacts reciprocally with a visual object recognition system in inferotemporal (IT) cortex for purposes of attentive object learning and categorization. Object attention mechanisms of the What cortical processing stream through IT cortex are distinguished from spatial attention mechanisms of the Where cortical processing stream through parietal cortex. Parvocellular BCS and FCS signals interact with the model What stream. Parvocellular FCS and magnocellular motion BCS signals interact with the model Where stream.(ABSTRACT TRUNCATED AT 400 WORDS)
The human mirror neuron system: A link between action observation and social skills
Pineda, Jaime A.; Ramachandran, Vilayanur S.
2007-01-01
The discovery of the mirror neuron system (MNS) has led researchers to speculate that this system evolved from an embodied visual recognition apparatus in monkey to a system critical for social skills in humans. It is accepted that the MNS is specialized for processing animate stimuli, although the degree to which social interaction modulates the firing of mirror neurons has not been investigated. In the current study, EEG mu wave suppression was used as an index of MNS activity. Data were collected while subjects viewed four videos: (1) Visual White Noise: baseline, (2) Non-interacting: three individuals tossed a ball up in the air to themselves, (3) Social Action, Spectator: three individuals tossed a ball to each other and (4) Social Action, Interactive: similar to video 3 except occasionally the ball would be thrown off the screen toward the viewer. The mu wave was modulated by the degree of social interaction, with the Non-interacting condition showing the least suppression, followed by the Social Action, Spectator condition and the Social Action, Interactive condition showing the most suppression. These data suggest that the human MNS is specialized not only for processing animate stimuli, but specifically stimuli with social relevance. PMID:18985120
Large Field Visualization with Demand-Driven Calculation
NASA Technical Reports Server (NTRS)
Moran, Patrick J.; Henze, Chris
1999-01-01
We present a system designed for the interactive definition and visualization of fields derived from large data sets: the Demand-Driven Visualizer (DDV). The system allows the user to write arbitrary expressions to define new fields, and then apply a variety of visualization techniques to the result. Expressions can include differential operators and numerous other built-in functions, ail of which are evaluated at specific field locations completely on demand. The payoff of following a demand-driven design philosophy throughout becomes particularly evident when working with large time-series data, where the costs of eager evaluation alternatives can be prohibitive.
NASA Astrophysics Data System (ADS)
Lahti, Paul M.; Motyka, Eric J.; Lancashire, Robert J.
2000-05-01
A straightforward procedure is described to combine computation of molecular vibrational modes using commonly available molecular modeling programs with visualization of the modes using advanced features of the MDL Information Systems Inc. Chime World Wide Web browser plug-in. Minor editing of experimental spectra that are stored in the JCAMP-DX format allows linkage of IR spectral frequency ranges to Chime molecular display windows. The spectra and animation files can be combined by Hypertext Markup Language programming to allow interactive linkage between experimental spectra and computationally generated vibrational displays. Both the spectra and the molecular displays can be interactively manipulated to allow the user maximum control of the objects being viewed. This procedure should be very valuable not only for aiding students through visual linkage of spectra and various vibrational animations, but also by assisting them in learning the advantages and limitations of computational chemistry by comparison to experiment.
A GIS-Enabled, Michigan-Specific, Hierarchical Groundwater Modeling and Visualization System
NASA Astrophysics Data System (ADS)
Liu, Q.; Li, S.; Mandle, R.; Simard, A.; Fisher, B.; Brown, E.; Ross, S.
2005-12-01
Efficient management of groundwater resources relies on a comprehensive database that represents the characteristics of the natural groundwater system as well as analysis and modeling tools to describe the impacts of decision alternatives. Many agencies in Michigan have spent several years compiling expensive and comprehensive surface water and groundwater inventories and other related spatial data that describe their respective areas of responsibility. However, most often this wealth of descriptive data has only been utilized for basic mapping purposes. The benefits from analyzing these data, using GIS analysis functions or externally developed analysis models or programs, has yet to be systematically realized. In this talk, we present a comprehensive software environment that allows Michigan groundwater resources managers and frontline professionals to make more effective use of the available data and improve their ability to manage and protect groundwater resources, address potential conflicts, design cleanup schemes, and prioritize investigation activities. In particular, we take advantage of the Interactive Ground Water (IGW) modeling system and convert it to a customized software environment specifically for analyzing, modeling, and visualizing the Michigan statewide groundwater database. The resulting Michigan IGW modeling system (IGW-M) is completely window-based, fully interactive, and seamlessly integrated with a GIS mapping engine. The system operates in real-time (on the fly) providing dynamic, hierarchical mapping, modeling, spatial analysis, and visualization. Specifically, IGW-M allows water resources and environmental professionals in Michigan to: * Access and utilize the extensive data from the statewide groundwater database, interactively manipulate GIS objects, and display and query the associated data and attributes; * Analyze and model the statewide groundwater database, interactively convert GIS objects into numerical model features, automatically extract data and attributes, and simulate unsteady groundwater flow and contaminant transport in response to water and land management decisions; * Visualize and map model simulations and predictions with data from the statewide groundwater database in a seamless interactive environment. IGW-M has the potential to significantly improve the productivity of Michigan groundwater management investigations. It changes the role of engineers and scientists in modeling and analyzing the statewide groundwater database from heavily physical to cognitive problem-solving and decision-making tasks. The seamless real-time integration, real-time visual interaction, and real-time processing capability allows a user to focus on critical management issues, conflicts, and constraints, to quickly and iteratively examine conceptual approximations, management and planning scenarios, and site characterization assumptions, to identify dominant processes, to evaluate data worth and sensitivity, and to guide further data-collection activities. We illustrate the power and effectiveness of the M-IGW modeling and visualization system with a real case study and a real-time, live demonstration.
NASA Technical Reports Server (NTRS)
Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.
1993-01-01
The Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, has developed a prototype interactive software system called the Spectral Image Processing System (SIPS) using IDL (the Interactive Data Language) on UNIX-based workstations. SIPS is designed to take advantage of the combination of high spectral resolution and spatial data presentation unique to imaging spectrometers. It streamlines analysis of these data by allowing scientists to rapidly interact with entire datasets. SIPS provides visualization tools for rapid exploratory analysis and numerical tools for quantitative modeling. The user interface is X-Windows-based, user friendly, and provides 'point and click' operation. SIPS is being used for multidisciplinary research concentrating on use of physically based analysis methods to enhance scientific results from imaging spectrometer data. The objective of this continuing effort is to develop operational techniques for quantitative analysis of imaging spectrometer data and to make them available to the scientific community prior to the launch of imaging spectrometer satellite systems such as the Earth Observing System (EOS) High Resolution Imaging Spectrometer (HIRIS).
High resolution renderings and interactive visualization of the 2006 Huntington Beach experiment
NASA Astrophysics Data System (ADS)
Im, T.; Nayak, A.; Keen, C.; Samilo, D.; Matthews, J.
2006-12-01
The Visualization Center at the Scripps Institution of Oceanography investigates innovative ways to represent graphically interactive 3D virtual landscapes and to produce high resolution, high quality renderings of Earth sciences data and the sensors and instruments used to collect the data . Among the Visualization Center's most recent work is the visualization of the Huntington Beach experiment, a study launched in July 2006 by the Southern California Ocean Observing System (http://www.sccoos.org/) to record and synthesize data of the Huntington Beach coastal region. Researchers and students at the Visualization Center created visual presentations that combine bathymetric data provided by SCCOOS with USGS aerial photography and with 3D polygonal models of sensors created in Maya into an interactive 3D scene using the Fledermaus suite of visualization tools (http://www.ivs3d.com). In addition, the Visualization Center has produced high definition (HD) animations of SCCOOS sensor instruments (e.g. REMUS, drifters, spray glider, nearshore mooring, OCSD/USGS mooring and CDIP mooring) using the Maya modeling and animation software and rendered over multiple nodes of the OptIPuter Visualization Cluster at Scripps. These visualizations are aimed at providing researchers with a broader context of sensor locations relative to geologic characteristics, to promote their use as an educational resource for informal education settings and increasing public awareness, and also as an aid for researchers' proposals and presentations. These visualizations are available for download on the Visualization Center website at http://siovizcenter.ucsd.edu/sccoos/hb2006.php.
Visual Debugging of Object-Oriented Systems With the Unified Modeling Language
2004-03-01
to be “the systematic and imaginative use of the technology of interactive computer graphics and the disciplines of graphic design , typography ... Graphics volume 23 no 6, pp893-901, 1999. [SHN98] Shneiderman, B. Designing the User Interface. Strategies for Effective Human-Computer Interaction...System Design Objectives ................................................................................ 44 3.3 System Architecture
Mining Data from Interactions with a Motivational-Aware Tutoring System Using Data Visualization
ERIC Educational Resources Information Center
Rebolledo-Mendez, Genaro; Du Boulay, Benedict; Luckin, Rosemary; Benitez-Guerrero, Edgard Ivan
2013-01-01
Tutoring systems are a common tool for delivering educational content and recent advances in this field include the detection of and reaction to learners' motivation. A data set derived from interactions in a tutoring system and its motivationally-aware variant provided opportunities to discover patterns of behavior in connection with motivational…
The 3D widgets for exploratory scientific visualization
NASA Technical Reports Server (NTRS)
Herndon, Kenneth P.; Meyer, Tom
1995-01-01
Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.
Visual and proprioceptive interaction in patients with bilateral vestibular loss☆
Cutfield, Nicholas J.; Scott, Gregory; Waldman, Adam D.; Sharp, David J.; Bronstein, Adolfo M.
2014-01-01
Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients. PMID:25061564
Visual and proprioceptive interaction in patients with bilateral vestibular loss.
Cutfield, Nicholas J; Scott, Gregory; Waldman, Adam D; Sharp, David J; Bronstein, Adolfo M
2014-01-01
Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients.
Meghdadi, Amir H; Irani, Pourang
2013-12-01
We propose a novel video visual analytics system for interactive exploration of surveillance video data. Our approach consists of providing analysts with various views of information related to moving objects in a video. To do this we first extract each object's movement path. We visualize each movement by (a) creating a single action shot image (a still image that coalesces multiple frames), (b) plotting its trajectory in a space-time cube and (c) displaying an overall timeline view of all the movements. The action shots provide a still view of the moving object while the path view presents movement properties such as speed and location. We also provide tools for spatial and temporal filtering based on regions of interest. This allows analysts to filter out large amounts of movement activities while the action shot representation summarizes the content of each movement. We incorporated this multi-part visual representation of moving objects in sViSIT, a tool to facilitate browsing through the video content by interactive querying and retrieval of data. Based on our interaction with security personnel who routinely interact with surveillance video data, we identified some of the most common tasks performed. This resulted in designing a user study to measure time-to-completion of the various tasks. These generally required searching for specific events of interest (targets) in videos. Fourteen different tasks were designed and a total of 120 min of surveillance video were recorded (indoor and outdoor locations recording movements of people and vehicles). The time-to-completion of these tasks were compared against a manual fast forward video browsing guided with movement detection. We demonstrate how our system can facilitate lengthy video exploration and significantly reduce browsing time to find events of interest. Reports from expert users identify positive aspects of our approach which we summarize in our recommendations for future video visual analytics systems.
Aesthetics, Usefulness and Performance in User--Search-Engine Interaction
ERIC Educational Resources Information Center
Katz, Adi
2010-01-01
Issues of visual appeal have become an integral part of designing interactive systems. Interface aesthetics may form users' attitudes towards computer applications and information technology. Aesthetics can affect user satisfaction, and influence their willingness to buy or adopt a system. This study follows previous studies that found that users…
Parallel Rendering of Large Time-Varying Volume Data
NASA Technical Reports Server (NTRS)
Garbutt, Alexander E.
2005-01-01
Interactive visualization of large time-varying 3D volume datasets has been and still is a great challenge to the modem computational world. It stretches the limits of the memory capacity, the disk space, the network bandwidth and the CPU speed of a conventional computer. In this SURF project, we propose to develop a parallel volume rendering program on SGI's Prism, a cluster computer equipped with state-of-the-art graphic hardware. The proposed program combines both parallel computing and hardware rendering in order to achieve an interactive rendering rate. We use 3D texture mapping and a hardware shader to implement 3D volume rendering on each workstation. We use SGI's VisServer to enable remote rendering using Prism's graphic hardware. And last, we will integrate this new program with ParVox, a parallel distributed visualization system developed at JPL. At the end of the project, we Will demonstrate remote interactive visualization using this new hardware volume renderer on JPL's Prism System using a time-varying dataset from selected JPL applications.
Coupled auralization and virtual video for immersive multimedia displays
NASA Astrophysics Data System (ADS)
Henderson, Paul D.; Torres, Rendell R.; Shimizu, Yasushi; Radke, Richard; Lonsway, Brian
2003-04-01
The implementation of maximally-immersive interactive multimedia in exhibit spaces requires not only the presentation of realistic visual imagery but also the creation of a perceptually accurate aural experience. While conventional implementations treat audio and video problems as essentially independent, this research seeks to couple the visual sensory information with dynamic auralization in order to enhance perceptual accuracy. An implemented system has been developed for integrating accurate auralizations with virtual video techniques for both interactive presentation and multi-way communication. The current system utilizes a multi-channel loudspeaker array and real-time signal processing techniques for synthesizing the direct sound, early reflections, and reverberant field excited by a moving sound source whose path may be interactively defined in real-time or derived from coupled video tracking data. In this implementation, any virtual acoustic environment may be synthesized and presented in a perceptually-accurate fashion to many participants over a large listening and viewing area. Subject tests support the hypothesis that the cross-modal coupling of aural and visual displays significantly affects perceptual localization accuracy.
Public Health Analysis Transport Optimization Model v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyeler, Walt; Finley, Patrick; Walser, Alex
PHANTOM models logistic functions of national public health systems. The system enables public health officials to visualize and coordinate options for public health surveillance, diagnosis, response and administration in an integrated analytical environment. Users may simulate and analyze system performance applying scenarios that represent current conditions or future contingencies what-if analyses of potential systemic improvements. Public health networks are visualized as interactive maps, with graphical displays of relevant system performance metrics as calculated by the simulation modeling components.
Scalable and Interactive Segmentation and Visualization of Neural Processes in EM Datasets
Jeong, Won-Ki; Beyer, Johanna; Hadwiger, Markus; Vazquez, Amelio; Pfister, Hanspeter; Whitaker, Ross T.
2011-01-01
Recent advances in scanning technology provide high resolution EM (Electron Microscopy) datasets that allow neuroscientists to reconstruct complex neural connections in a nervous system. However, due to the enormous size and complexity of the resulting data, segmentation and visualization of neural processes in EM data is usually a difficult and very time-consuming task. In this paper, we present NeuroTrace, a novel EM volume segmentation and visualization system that consists of two parts: a semi-automatic multiphase level set segmentation with 3D tracking for reconstruction of neural processes, and a specialized volume rendering approach for visualization of EM volumes. It employs view-dependent on-demand filtering and evaluation of a local histogram edge metric, as well as on-the-fly interpolation and ray-casting of implicit surfaces for segmented neural structures. Both methods are implemented on the GPU for interactive performance. NeuroTrace is designed to be scalable to large datasets and data-parallel hardware architectures. A comparison of NeuroTrace with a commonly used manual EM segmentation tool shows that our interactive workflow is faster and easier to use for the reconstruction of complex neural processes. PMID:19834227
Visualizing planetary data by using 3D engines
NASA Astrophysics Data System (ADS)
Elgner, S.; Adeli, S.; Gwinner, K.; Preusker, F.; Kersten, E.; Matz, K.-D.; Roatsch, T.; Jaumann, R.; Oberst, J.
2017-09-01
We examined 3D gaming engines for their usefulness in visualizing large planetary image data sets. These tools allow us to include recent developments in the field of computer graphics in our scientific visualization systems and present data products interactively and in higher quality than before. We started to set up the first applications which will take use of virtual reality (VR) equipment.
Touch influences perceived gloss
Adams, Wendy J.; Kerrigan, Iona S.; Graf, Erich W.
2016-01-01
Identifying an object’s material properties supports recognition and action planning: we grasp objects according to how heavy, hard or slippery we expect them to be. Visual cues to material qualities such as gloss have recently received attention, but how they interact with haptic (touch) information has been largely overlooked. Here, we show that touch modulates gloss perception: objects that feel slippery are perceived as glossier (more shiny).Participants explored virtual objects that varied in look and feel. A discrimination paradigm (Experiment 1) revealed that observers integrate visual gloss with haptic information. Observers could easily detect an increase in glossiness when it was paired with a decrease in friction. In contrast, increased glossiness coupled with decreased slipperiness produced a small perceptual change: the visual and haptic changes counteracted each other. Subjective ratings (Experiment 2) reflected a similar interaction – slippery objects were rated as glossier and vice versa. The sensory system treats visual gloss and haptic friction as correlated cues to surface material. Although friction is not a perfect predictor of gloss, the visual system appears to know and use a probabilistic relationship between these variables to bias perception – a sensible strategy given the ambiguity of visual clues to gloss. PMID:26915492
NASA Astrophysics Data System (ADS)
Rogowitz, Bernice E.; Matasci, Naim
2011-03-01
The explosion of online scientific data from experiments, simulations, and observations has given rise to an avalanche of algorithmic, visualization and imaging methods. There has also been enormous growth in the introduction of tools that provide interactive interfaces for exploring these data dynamically. Most systems, however, do not support the realtime exploration of patterns and relationships across tools and do not provide guidance on which colors, colormaps or visual metaphors will be most effective. In this paper, we introduce a general architecture for sharing metadata between applications and a "Metadata Mapper" component that allows the analyst to decide how metadata from one component should be represented in another, guided by perceptual rules. This system is designed to support "brushing [1]," in which highlighting a region of interest in one application automatically highlights corresponding values in another, allowing the scientist to develop insights from multiple sources. Our work builds on the component-based iPlant Cyberinfrastructure [2] and provides a general approach to supporting interactive, exploration across independent visualization and visual analysis components.
NASA Astrophysics Data System (ADS)
Sudra, Gunther; Speidel, Stefanie; Fritz, Dominik; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger
2007-03-01
Minimally invasive surgery is a highly complex medical discipline with various risks for surgeon and patient, but has also numerous advantages on patient-side. The surgeon has to adapt special operation-techniques and deal with difficulties like the complex hand-eye coordination, limited field of view and restricted mobility. To alleviate with these new problems, we propose to support the surgeon's spatial cognition by using augmented reality (AR) techniques to directly visualize virtual objects in the surgical site. In order to generate an intelligent support, it is necessary to have an intraoperative assistance system that recognizes the surgical skills during the intervention and provides context-aware assistance surgeon using AR techniques. With MEDIASSIST we bundle our research activities in the field of intraoperative intelligent support and visualization. Our experimental setup consists of a stereo endoscope, an optical tracking system and a head-mounted-display for 3D visualization. The framework will be used as platform for the development and evaluation of our research in the field of skill recognition and context-aware assistance generation. This includes methods for surgical skill analysis, skill classification, context interpretation as well as assistive visualization and interaction techniques. In this paper we present the objectives of MEDIASSIST and first results in the fields of skill analysis, visualization and multi-modal interaction. In detail we present a markerless instrument tracking for surgical skill analysis as well as visualization techniques and recognition of interaction gestures in an AR environment.
Towards a Comprehensive Computational Simulation System for Turbomachinery
NASA Technical Reports Server (NTRS)
Shih, Ming-Hsin
1994-01-01
The objective of this work is to develop algorithms associated with a comprehensive computational simulation system for turbomachinery flow fields. This development is accomplished in a modular fashion. These modules includes grid generation, visualization, network, simulation, toolbox, and flow modules. An interactive grid generation module is customized to facilitate the grid generation process associated with complicated turbomachinery configurations. With its user-friendly graphical user interface, the user may interactively manipulate the default settings to obtain a quality grid within a fraction of time that is usually required for building a grid about the same geometry with a general-purpose grid generation code. Non-Uniform Rational B-Spline formulations are utilized in the algorithm to maintain geometry fidelity while redistributing grid points on the solid surfaces. Bezier curve formulation is used to allow interactive construction of inner boundaries. It is also utilized to allow interactive point distribution. Cascade surfaces are transformed from three-dimensional surfaces of revolution into two-dimensional parametric planes for easy manipulation. Such a transformation allows these manipulated plane grids to be mapped to surfaces of revolution by any generatrix definition. A sophisticated visualization module is developed to al-low visualization for both grid and flow solution, steady or unsteady. A network module is built to allow data transferring in the heterogeneous environment. A flow module is integrated into this system, using an existing turbomachinery flow code. A simulation module is developed to combine the network, flow, and visualization module to achieve near real-time flow simulation about turbomachinery geometries. A toolbox module is developed to support the overall task. A batch version of the grid generation module is developed to allow portability and has been extended to allow dynamic grid generation for pitch changing turbomachinery configurations. Various applications with different characteristics are presented to demonstrate the success of this system.
VANLO - Interactive visual exploration of aligned biological networks
Brasch, Steffen; Linsen, Lars; Fuellen, Georg
2009-01-01
Background Protein-protein interaction (PPI) is fundamental to many biological processes. In the course of evolution, biological networks such as protein-protein interaction networks have developed. Biological networks of different species can be aligned by finding instances (e.g. proteins) with the same common ancestor in the evolutionary process, so-called orthologs. For a better understanding of the evolution of biological networks, such aligned networks have to be explored. Visualization can play a key role in making the various relationships transparent. Results We present a novel visualization system for aligned biological networks in 3D space that naturally embeds existing 2D layouts. In addition to displaying the intra-network connectivities, we also provide insight into how the individual networks relate to each other by placing aligned entities on top of each other in separate layers. We optimize the layout of the entire alignment graph in a global fashion that takes into account inter- as well as intra-network relationships. The layout algorithm includes a step of merging aligned networks into one graph, laying out the graph with respect to application-specific requirements, splitting the merged graph again into individual networks, and displaying the network alignment in layers. In addition to representing the data in a static way, we also provide different interaction techniques to explore the data with respect to application-specific tasks. Conclusion Our system provides an intuitive global understanding of aligned PPI networks and it allows the investigation of key biological questions. We evaluate our system by applying it to real-world examples documenting how our system can be used to investigate the data with respect to these key questions. Our tool VANLO (Visualization of Aligned Networks with Layout Optimization) can be accessed at . PMID:19821976
SLIDE - a web-based tool for interactive visualization of large-scale -omics data.
Ghosh, Soumita; Datta, Abhik; Tan, Kaisen; Choi, Hyungwon
2018-06-28
Data visualization is often regarded as a post hoc step for verifying statistically significant results in the analysis of high-throughput data sets. This common practice leaves a large amount of raw data behind, from which more information can be extracted. However, existing solutions do not provide capabilities to explore large-scale raw datasets using biologically sensible queries, nor do they allow user interaction based real-time customization of graphics. To address these drawbacks, we have designed an open-source, web-based tool called Systems-Level Interactive Data Exploration, or SLIDE to visualize large-scale -omics data interactively. SLIDE's interface makes it easier for scientists to explore quantitative expression data in multiple resolutions in a single screen. SLIDE is publicly available under BSD license both as an online version as well as a stand-alone version at https://github.com/soumitag/SLIDE. Supplementary Information are available at Bioinformatics online.
An integrated system for interactive continuous learning of categorical knowledge
NASA Astrophysics Data System (ADS)
Skočaj, Danijel; Vrečko, Alen; Mahnič, Marko; Janíček, Miroslav; Kruijff, Geert-Jan M.; Hanheide, Marc; Hawes, Nick; Wyatt, Jeremy L.; Keller, Thomas; Zhou, Kai; Zillich, Michael; Kristan, Matej
2016-09-01
This article presents an integrated robot system capable of interactive learning in dialogue with a human. Such a system needs to have several competencies and must be able to process different types of representations. In this article, we describe a collection of mechanisms that enable integration of heterogeneous competencies in a principled way. Central to our design is the creation of beliefs from visual and linguistic information, and the use of these beliefs for planning system behaviour to satisfy internal drives. The system is able to detect gaps in its knowledge and to plan and execute actions that provide information needed to fill these gaps. We propose a hierarchy of mechanisms which are capable of engaging in different kinds of learning interactions, e.g. those initiated by a tutor or by the system itself. We present the theory these mechanisms are build upon and an instantiation of this theory in the form of an integrated robot system. We demonstrate the operation of the system in the case of learning conceptual models of objects and their visual properties.
Visualization of volumetric seismic data
NASA Astrophysics Data System (ADS)
Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk
2015-04-01
Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.
MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.
Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik
2016-01-01
Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.
COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies
2017-01-01
COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages “maps” and “maptools” to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data. PMID:29083911
COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies.
Travin, Dmitrii; Popov, Iaroslav; Guler, Arzu Tugce; Medvedev, Dmitry; van der Plas-Duivesteijn, Suzanne; Varela, Monica; Kolder, Iris C R M; Meijer, Annemarie H; Spaink, Herman P; Palmblad, Magnus
2018-01-05
COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages "maps" and "maptools" to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data.
Audio-Visual Situational Awareness for General Aviation Pilots
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Lodha, Suresh K.; Clancy, Daniel (Technical Monitor)
2001-01-01
Weather is one of the major causes of general aviation accidents. Researchers are addressing this problem from various perspectives including improving meteorological forecasting techniques, collecting additional weather data automatically via on-board sensors and "flight" modems, and improving weather data dissemination and presentation. We approach the problem from the improved presentation perspective and propose weather visualization and interaction methods tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment (AWE), utilizes information visualization techniques, a direct manipulation graphical interface, and a speech-based interface to improve a pilot's situational awareness of relevant weather data. The system design is based on a user study and feedback from pilots.
Interactive Learning to Stimulate the Brain's Visual Center and to Enhance Memory Retention
ERIC Educational Resources Information Center
Yun, Yang H.; Allen, Philip A.; Chaumpanich, Kritsakorn; Xiao, Yingcai
2014-01-01
This short paper describes an ongoing NSF-funded project on enhancing science and engineering education using the latest technology. More specifically, the project aims at developing an interactive learning system with Microsoft Kinect™ and Unity3D game engine. This system promotes active, rather than passive, learning by employing embodied…
Effects of Web-Based Interactive Modules on Engineering Students' Learning Motivations
ERIC Educational Resources Information Center
Bai, Haiyan; Aman, Amjad; Xu, Yunjun; Orlovskaya, Nina; Zhou, Mingming
2016-01-01
The purpose of this study is to assess the impact of a newly developed modules, Interactive Web-Based Visualization Tools for Gluing Undergraduate Fuel Cell Systems Courses system (IGLU), on learning motivations of engineering students using two samples (n[subscript 1] = 144 and n[subscript 2] = 135) from senior engineering classes. The…
Wallace, Deanna L.
2017-01-01
The neuromodulator acetylcholine modulates spatial integration in visual cortex by altering the balance of inputs that generate neuronal receptive fields. These cholinergic effects may provide a neurobiological mechanism underlying the modulation of visual representations by visual spatial attention. However, the consequences of cholinergic enhancement on visuospatial perception in humans are unknown. We conducted two experiments to test whether enhancing cholinergic signaling selectively alters perceptual measures of visuospatial interactions in human subjects. In Experiment 1, a double-blind placebo-controlled pharmacology study, we measured how flanking distractors influenced detection of a small contrast decrement of a peripheral target, as a function of target-flanker distance. We found that cholinergic enhancement with the cholinesterase inhibitor donepezil improved target detection, and modeling suggested that this was mainly due to a narrowing of the extent of facilitatory perceptual spatial interactions. In Experiment 2, we tested whether these effects were selective to the cholinergic system or would also be observed following enhancements of related neuromodulators dopamine or norepinephrine. Unlike cholinergic enhancement, dopamine (bromocriptine) and norepinephrine (guanfacine) manipulations did not improve performance or systematically alter the spatial profile of perceptual interactions between targets and distractors. These findings reveal mechanisms by which cholinergic signaling influences visual spatial interactions in perception and improves processing of a visual target among distractors, effects that are notably similar to those of spatial selective attention. SIGNIFICANCE STATEMENT Acetylcholine influences how visual cortical neurons integrate signals across space, perhaps providing a neurobiological mechanism for the effects of visual selective attention. However, the influence of cholinergic enhancement on visuospatial perception remains unknown. Here we demonstrate that cholinergic enhancement improves detection of a target flanked by distractors, consistent with sharpened visuospatial perceptual representations. Furthermore, whereas most pharmacological studies focus on a single neurotransmitter, many neuromodulators can have related effects on cognition and perception. Thus, we also demonstrate that enhancing noradrenergic and dopaminergic systems does not systematically improve visuospatial perception or alter its tuning. Our results link visuospatial tuning effects of acetylcholine at the neuronal and perceptual levels and provide insights into the connection between cholinergic signaling and visual attention. PMID:28336568
Distributed and collaborative synthetic environments
NASA Technical Reports Server (NTRS)
Bajaj, Chandrajit L.; Bernardini, Fausto
1995-01-01
Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines.
1998-01-01
consisted of a videomicroscopy system and a tactile stimulator system. By using this setup, real-time images from the contact region as wvell as the... Videomicroscopy system . 4.3.2 Tactile stimulator svsteln . 4.3.3 Real-time imaging setup. 4.3.4 Active and passive touch experiments. 4.3.5...contact process is an important step. In this study, therefore, a videomicroscopy system was built’to visualize the contact re- gion of the fingerpad
An Immersive VR System for Sports Education
NASA Astrophysics Data System (ADS)
Song, Peng; Xu, Shuhong; Fong, Wee Teck; Chin, Ching Ling; Chua, Gim Guan; Huang, Zhiyong
The development of new technologies has undoubtedly promoted the advances of modern education, among which Virtual Reality (VR) technologies have made the education more visually accessible for students. However, classroom education has been the focus of VR applications whereas not much research has been done in promoting sports education using VR technologies. In this paper, an immersive VR system is designed and implemented to create a more intuitive and visual way of teaching tennis. A scalable system architecture is proposed in addition to the hardware setup layout, which can be used for various immersive interactive applications such as architecture walkthroughs, military training simulations, other sports game simulations, interactive theaters, and telepresent exhibitions. Realistic interaction experience is achieved through accurate and robust hybrid tracking technology, while the virtual human opponent is animated in real time using shader-based skin deformation. Potential future extensions are also discussed to improve the teaching/learning experience.
A taxonomy of visualization tasks for the analysis of biological pathway data.
Murray, Paul; McGee, Fintan; Forbes, Angus G
2017-02-15
Understanding complicated networks of interactions and chemical components is essential to solving contemporary problems in modern biology, especially in domains such as cancer and systems research. In these domains, biological pathway data is used to represent chains of interactions that occur within a given biological process. Visual representations can help researchers understand, interact with, and reason about these complex pathways in a number of ways. At the same time, these datasets offer unique challenges for visualization, due to their complexity and heterogeneity. Here, we present taxonomy of tasks that are regularly performed by researchers who work with biological pathway data. The generation of these tasks was done in conjunction with interviews with several domain experts in biology. These tasks require further classification than is provided by existing taxonomies. We also examine existing visualization techniques that support each task, and we discuss gaps in the existing visualization space revealed by our taxonomy. Our taxonomy is designed to support the development and design of future biological pathway visualization applications. We conclude by suggesting future research directions based on our taxonomy and motivated by the comments received by our domain experts.
Interactive SIGHT: textual access to simple bar charts
NASA Astrophysics Data System (ADS)
Demir, Seniz; Oliver, David; Schwartz, Edward; Elzer, Stephanie; Carberry, Sandra; Mccoy, Kathleen F.; Chester, Daniel
2010-12-01
Information graphics, such as bar charts and line graphs, are an important component of many articles from popular media. The majority of such graphics have an intention (a high-level message) to communicate to the graph viewer. Since the intended message of a graphic is often not repeated in the accompanying text, graphics together with the textual segments contribute to the overall purpose of an article and cannot be ignored. Unfortunately, these visual displays are provided in a format which is not readily accessible to everyone. For example, individuals with sight impairments who use screen readers to listen to documents have limited access to the graphics. This article presents a new accessibility tool, the Interactive SIGHT (Summarizing Information GrapHics Textually) system, that is intended to enable visually impaired users to access the knowledge that one would gain from viewing information graphics found on the web. The current system, which is implemented as a browser extension that works on simple bar charts, can be invoked by a user via a keystroke combination while navigating the web. Once launched, Interactive SIGHT first provides a brief summary that conveys the underlying intention of a bar chart along with the chart's most significant and salient features, and then produces history-aware follow-up responses to provide further information about the chart upon request from the user. We present two user studies that were conducted with sighted and visually impaired users to determine how effective the initial summary and follow-up responses are in conveying the informational content of bar charts, and to evaluate how easy it is to use the system interface. The evaluation results are promising and indicate that the system responses are well-structured and enable visually impaired users to answer key questions about bar charts in an easy-to-use manner. Post-experimental interviews revealed that visually impaired participants were very satisfied with the system offering different options to access the content of a chart to meet their specific needs and that they would use Interactive SIGHT if it was publicly available so as not to have to ignore graphics on the web. Being a language based assistive technology designed to compensate for the lack of sight, our work paves the road for a stronger acceptance of natural language interfaces to graph interpretation that we believe will be of great benefit to the visually impaired community.
Integrated genome browser: visual analytics platform for genomics.
Freese, Nowlan H; Norris, David C; Loraine, Ann E
2016-07-15
Genome browsers that support fast navigation through vast datasets and provide interactive visual analytics functions can help scientists achieve deeper insight into biological systems. Toward this end, we developed Integrated Genome Browser (IGB), a highly configurable, interactive and fast open source desktop genome browser. Here we describe multiple updates to IGB, including all-new capabilities to display and interact with data from high-throughput sequencing experiments. To demonstrate, we describe example visualizations and analyses of datasets from RNA-Seq, ChIP-Seq and bisulfite sequencing experiments. Understanding results from genome-scale experiments requires viewing the data in the context of reference genome annotations and other related datasets. To facilitate this, we enhanced IGB's ability to consume data from diverse sources, including Galaxy, Distributed Annotation and IGB-specific Quickload servers. To support future visualization needs as new genome-scale assays enter wide use, we transformed the IGB codebase into a modular, extensible platform for developers to create and deploy all-new visualizations of genomic data. IGB is open source and is freely available from http://bioviz.org/igb aloraine@uncc.edu. © The Author 2016. Published by Oxford University Press.
Visualization and interaction tools for aerial photograph mosaics
NASA Astrophysics Data System (ADS)
Fernandes, João Pedro; Fonseca, Alexandra; Pereira, Luís; Faria, Adriano; Figueira, Helder; Henriques, Inês; Garção, Rita; Câmara, António
1997-05-01
This paper describes the development of a digital spatial library based on mosaics of digital orthophotos, called Interactive Portugal, that will enable users both to retrieve geospatial information existing in the Portuguese National System for Geographic Information World Wide Web server, and to develop local databases connected to the main system. A set of navigation, interaction, and visualization tools are proposed and discussed. They include sketching, dynamic sketching, and navigation capabilities over the digital orthophotos mosaics. Main applications of this digital spatial library are pointed out and discussed, namely for education, professional, and tourism markets. Future developments are considered. These developments are related to user reactions, technological advancements, and projects that also aim at delivering and exploring digital imagery on the World Wide Web. Future capabilities for site selection and change detection are also considered.
Viewpoint Dependent Imaging: An Interactive Stereoscopic Display
NASA Astrophysics Data System (ADS)
Fisher, Scott
1983-04-01
Design and implementation of a viewpoint Dependent imaging system is described. The resultant display is an interactive, lifesize, stereoscopic image. that becomes a window into a three dimensional visual environment. As the user physically changes his viewpoint of the represented data in relation to the display surface, the image is continuously updated. The changing viewpoints are retrieved from a comprehensive, stereoscopic image array stored on computer controlled, optical videodisc and fluidly presented. in coordination with the viewer's, movements as detected by a body-tracking device. This imaging system is an attempt to more closely represent an observers interactive perceptual experience of the visual world by presenting sensory information cues not offered by traditional media technologies: binocular parallax, motion parallax, and motion perspective. Unlike holographic imaging, this display requires, relatively low bandwidth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean; Burtner, Edwin R.; Cook, Kristin A.
This course will introduce the field of Visual Analytics to HCI researchers and practitioners highlighting the contributions they can make to this field. Topics will include a definition of visual analytics along with examples of current systems, types of tasks and end users, issues in defining user requirements, design of visualizations and interactions, guidelines and heuristics, the current state of user-centered evaluations, and metrics for evaluation. We encourage designers, HCI researchers, and HCI practitioners to attend to learn how their skills can contribute to advancing the state of the art of visual analytics
3D Virtual Environment Used to Support Lighting System Management in a Building
NASA Astrophysics Data System (ADS)
Sampaio, A. Z.; Ferreira, M. M.; Rosário, D. P.
The main aim of the research project, which is in progress at the UTL, is to develop a virtual interactive model as a tool to support decision-making in the planning of construction maintenance and facilities management. The virtual model gives the capacity to allow the user to transmit, visually and interactively, information related to the components of a building, defined as a function of the time variable. In addition, the analysis of solutions for repair work/substitution and inherent cost are predicted, the results being obtained interactively and visualized in the virtual environment itself. The first component of the virtual prototype concerns the management of lamps in a lighting system. It was applied in a study case. The interactive application allows the examination of the physical model, visualizing, for each element modeled in 3D and linked to a database, the corresponding technical information concerned with the use of the material, calculated for different points in time during their life. The control of a lamp stock, the constant updating of lifetime information and the planning of periodical local inspections are attended on the prototype. This is an important mean of cooperation between collaborators involved in the building management.
Vision Systems with the Human in the Loop
NASA Astrophysics Data System (ADS)
Bauckhage, Christian; Hanheide, Marc; Wrede, Sebastian; Käster, Thomas; Pfeiffer, Michael; Sagerer, Gerhard
2005-12-01
The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed.
Design and validation of a method for evaluation of interocular interaction.
Lai, Xin Jie Angela; Alexander, Jack; Ho, Arthur; Yang, Zhikuan; He, Mingguang; Suttle, Catherine
2012-02-01
To design a simple viewing system allowing dichoptic masking, and to validate this system in adults and children with normal vision. A Trial Frame Apparatus (TFA) was designed to evaluate interocular interaction. This device consists of a trial frame, a 1 mm pinhole in front of the tested eye and a full or partial occluder in front of the non-tested eye. The difference in visual function in one eye between the full- and partial-occlusion conditions was termed the Interaction Index. In experiment 1, low-contrast acuity was measured in six adults using five types of partial occluder. Interaction Index was compared between these five, and the occluder showing the highest Index was used in experiment 2. In experiment 2, low-contrast acuity, contrast sensitivity, and alignment sensitivity were measured in the non-dominant eye of 45 subjects (15 older adults, 15 young adults, and 15 children), using the TFA and an existing well-validated device (shutter goggles) with full and partial occlusion of the dominant eye. These measurements were repeated on 11 subjects of each group using TFA in the partial-occlusion condition only. Repeatability of visual function measurements using TFA was assessed using the Bland-Altman method and agreement between TFA and goggles in terms of visual functions and interactions was assessed using the Bland-Altman method and t-test. In all three subject groups, the TFA showed a high level of repeatability in all visual function measurements. Contrast sensitivity was significantly poorer when measured using TFA than using goggles (p < 0.05). However, Interaction Index of all three visual functions showed acceptable agreement between TFA and goggles (p > 0.05). The TFA may provide an acceptable method for the study of some forms of dichoptic masking in populations where more complex devices (e.g., shutter goggles) cannot be used.
NASA Astrophysics Data System (ADS)
Kay, Paul A.; Robb, Richard A.; King, Bernard F.; Myers, R. P.; Camp, Jon J.
1995-04-01
Thousands of radical prostatectomies for prostate cancer are performed each year. Radical prostatectomy is a challenging procedure due to anatomical variability and the adjacency of critical structures, including the external urinary sphincter and neurovascular bundles that subserve erectile function. Because of this, there are significant risks of urinary incontinence and impotence following this procedure. Preoperative interaction with three-dimensional visualization of the important anatomical structures might allow the surgeon to understand important individual anatomical relationships of patients. Such understanding might decrease the rate of morbidities, especially for surgeons in training. Patient specific anatomic data can be obtained from preoperative 3D MRI diagnostic imaging examinations of the prostate gland utilizing endorectal coils and phased array multicoils. The volumes of the important structures can then be segmented using interactive image editing tools and then displayed using 3-D surface rendering algorithms on standard work stations. Anatomic relationships can be visualized using surface displays and 3-D colorwash and transparency to allow internal visualization of hidden structures. Preoperatively a surgeon and radiologist can interactively manipulate the 3-D visualizations. Important anatomical relationships can better be visualized and used to plan the surgery. Postoperatively the 3-D displays can be compared to actual surgical experience and pathologic data. Patients can then be followed to assess the incidence of morbidities. More advanced approaches to visualize these anatomical structures in support of surgical planning will be implemented on virtual reality (VR) display systems. Such realistic displays are `immersive,' and allow surgeons to simultaneously see and manipulate the anatomy, to plan the procedure and to rehearse it in a realistic way. Ultimately the VR systems will be implemented in the operating room (OR) to assist the surgeon in conducting the surgery. Such an implementation will bring to the OR all of the pre-surgical planning data and rehearsal experience in synchrony with the actual patient and operation to optimize the effectiveness and outcome of the procedure.
A pseudo-haptic knot diagram interface
NASA Astrophysics Data System (ADS)
Zhang, Hui; Weng, Jianguang; Hanson, Andrew J.
2011-01-01
To make progress in understanding knot theory, we will need to interact with the projected representations of mathematical knots which are of course continuous in 3D but significantly interrupted in the projective images. One way to achieve such a goal would be to design an interactive system that allows us to sketch 2D knot diagrams by taking advantage of a collision-sensing controller and explore their underlying smooth structures through a continuous motion. Recent advances of interaction techniques have been made that allow progress to be made in this direction. Pseudo-haptics that simulates haptic effects using pure visual feedback can be used to develop such an interactive system. This paper outlines one such pseudo-haptic knot diagram interface. Our interface derives from the familiar pencil-and-paper process of drawing 2D knot diagrams and provides haptic-like sensations to facilitate the creation and exploration of knot diagrams. A centerpiece of the interaction model simulates a "physically" reactive mouse cursor, which is exploited to resolve the apparent conflict between the continuous structure of the actual smooth knot and the visual discontinuities in the knot diagram representation. Another value in exploiting pseudo-haptics is that an acceleration (or deceleration) of the mouse cursor (or surface locator) can be used to indicate the slope of the curve (or surface) of whom the projective image is being explored. By exploiting these additional visual cues, we proceed to a full-featured extension to a pseudo-haptic 4D visualization system that simulates the continuous navigation on 4D objects and allows us to sense the bumps and holes in the fourth dimension. Preliminary tests of the software show that main features of the interface overcome some expected perceptual limitations in our interaction with 2D knot diagrams of 3D knots and 3D projective images of 4D mathematical objects.
Figure-ground organization and object recognition processes: an interactive account.
Vecera, S P; O'Reilly, R C
1998-04-01
Traditional bottom-up models of visual processing assume that figure-ground organization precedes object recognition. This assumption seems logically necessary: How can object recognition occur before a region is labeled as figure? However, some behavioral studies find that familiar regions are more likely to be labeled figure than less familiar regions, a problematic finding for bottom-up models. An interactive account is proposed in which figure-ground processes receive top-down input from object representations in a hierarchical system. A graded, interactive computational model is presented that accounts for behavioral results in which familiarity effects are found. The interactive model offers an alternative conception of visual processing to bottom-up models.
Developing Visualization Techniques for Semantics-based Information Networks
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Hall, David R.
2003-01-01
Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.
Virtual environment display for a 3D audio room simulation
NASA Technical Reports Server (NTRS)
Chapin, William L.; Foster, Scott H.
1992-01-01
The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.
A component-based software environment for visualizing large macromolecular assemblies.
Sanner, Michel F
2005-03-01
The interactive visualization of large biological assemblies poses a number of challenging problems, including the development of multiresolution representations and new interaction methods for navigating and analyzing these complex systems. An additional challenge is the development of flexible software environments that will facilitate the integration and interoperation of computational models and techniques from a wide variety of scientific disciplines. In this paper, we present a component-based software development strategy centered on the high-level, object-oriented, interpretive programming language: Python. We present several software components, discuss their integration, and describe some of their features that are relevant to the visualization of large molecular assemblies. Several examples are given to illustrate the interoperation of these software components and the integration of structural data from a variety of experimental sources. These examples illustrate how combining visual programming with component-based software development facilitates the rapid prototyping of novel visualization tools.
Sharpening of Hierarchical Visual Feature Representations of Blurred Images.
Abdelhack, Mohamed; Kamitani, Yukiyasu
2018-01-01
The robustness of the visual system lies in its ability to perceive degraded images. This is achieved through interacting bottom-up, recurrent, and top-down pathways that process the visual input in concordance with stored prior information. The interaction mechanism by which they integrate visual input and prior information is still enigmatic. We present a new approach using deep neural network (DNN) representation to reveal the effects of such integration on degraded visual inputs. We transformed measured human brain activity resulting from viewing blurred images to the hierarchical representation space derived from a feedforward DNN. Transformed representations were found to veer toward the original nonblurred image and away from the blurred stimulus image. This indicated deblurring or sharpening in the neural representation, and possibly in our perception. We anticipate these results will help unravel the interplay mechanism between bottom-up, recurrent, and top-down pathways, leading to more comprehensive models of vision.
A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas
Carmeli, Cristian; Lopez-Aguado, Laura; Schmidt, Kerstin E.; De Feo, Oscar; Innocenti, Giorgio M.
2007-01-01
Background The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization. PMID:18074012
LinkWinds: An Approach to Visual Data Analysis
NASA Technical Reports Server (NTRS)
Jacobson, Allan S.
1992-01-01
The Linked Windows Interactive Data System (LinkWinds) is a prototype visual data exploration and analysis system resulting from a NASA/JPL program of research into graphical methods for rapidly accessing, displaying and analyzing large multivariate multidisciplinary datasets. It is an integrated multi-application execution environment allowing the dynamic interconnection of multiple windows containing visual displays and/or controls through a data-linking paradigm. This paradigm, which results in a system much like a graphical spreadsheet, is not only a powerful method for organizing large amounts of data for analysis, but provides a highly intuitive, easy to learn user interface on top of the traditional graphical user interface.
Interhemispheric interaction expands attentional capacity in an auditory selective attention task.
Scalf, Paige E; Banich, Marie T; Erickson, Andrew B
2009-04-01
Previous work from our laboratory indicates that interhemispheric interaction (IHI) functionally increases the attentional capacity available to support performance on visual tasks (Banich in The asymmetrical brain, pp 261-302, 2003). Because manipulations of both computational complexity and selection demand alter the benefits of IHI to task performance, we argue that IHI may be a general strategy for meeting increases in attentional demand. Other researchers, however, have suggested that the apparent benefits of IHI to attentional capacity are an epiphenomenon of the organization of the visual system (Fecteau and Enns in Neuropsychologia 43:1412-1428, 2005; Marsolek et al. in Neuropsychologia 40:1983-1999, 2002). In the current experiment, we investigate whether IHI increases attentional capacity outside the visual system by manipulating the selection demands of an auditory temporal pattern-matching task. We find that IHI expands attentional capacity in the auditory system. This suggests that the benefits of requiring IHI derive from a functional increase in attentional capacity rather than the organization of a specific sensory modality.
Zhang, Lelin; Chi, Yu Mike; Edelstein, Eve; Schulze, Jurgen; Gramann, Klaus; Velasquez, Alvaro; Cauwenberghs, Gert; Macagno, Eduardo
2010-01-01
Wireless physiological/neurological monitoring in virtual reality (VR) offers a unique opportunity for unobtrusively quantifying human responses to precisely controlled and readily modulated VR representations of health care environments. Here we present such a wireless, light-weight head-mounted system for measuring electrooculogram (EOG) and electroencephalogram (EEG) activity in human subjects interacting with and navigating in the Calit2 StarCAVE, a five-sided immersive 3-D visualization VR environment. The system can be easily expanded to include other measurements, such as cardiac activity and galvanic skin responses. We demonstrate the capacity of the system to track focus of gaze in 3-D and report a novel calibration procedure for estimating eye movements from responses to the presentation of a set of dynamic visual cues in the StarCAVE. We discuss cyber and clinical applications that include a 3-D cursor for visual navigation in VR interactive environments, and the monitoring of neurological and ocular dysfunction in vision/attention disorders.
WebViz:A Web-based Collaborative Interactive Visualization System for large-Scale Data Sets
NASA Astrophysics Data System (ADS)
Yuen, D. A.; McArthur, E.; Weiss, R. M.; Zhou, J.; Yao, B.
2010-12-01
WebViz is a web-based application designed to conduct collaborative, interactive visualizations of large data sets for multiple users, allowing researchers situated all over the world to utilize the visualization services offered by the University of Minnesota’s Laboratory for Computational Sciences and Engineering (LCSE). This ongoing project has been built upon over the last 3 1/2 years .The motivation behind WebViz lies primarily with the need to parse through an increasing amount of data produced by the scientific community as a result of larger and faster multicore and massively parallel computers coming to the market, including the use of general purpose GPU computing. WebViz allows these large data sets to be visualized online by anyone with an account. The application allows users to save time and resources by visualizing data ‘on the fly’, wherever he or she may be located. By leveraging AJAX via the Google Web Toolkit (http://code.google.com/webtoolkit/), we are able to provide users with a remote, web portal to LCSE's (http://www.lcse.umn.edu) large-scale interactive visualization system already in place at the University of Minnesota. LCSE’s custom hierarchical volume rendering software provides high resolution visualizations on the order of 15 million pixels and has been employed for visualizing data primarily from simulations in astrophysics to geophysical fluid dynamics . In the current version of WebViz, we have implemented a highly extensible back-end framework built around HTTP "server push" technology. The web application is accessible via a variety of devices including netbooks, iPhones, and other web and javascript-enabled cell phones. Features in the current version include the ability for users to (1) securely login (2) launch multiple visualizations (3) conduct collaborative visualization sessions (4) delegate control aspects of a visualization to others and (5) engage in collaborative chats with other users within the user interface of the web application. These features are all in addition to a full range of essential visualization functions including 3-D camera and object orientation, position manipulation, time-stepping control, and custom color/alpha mapping.
NASA Astrophysics Data System (ADS)
Quinn, J. D.; Larour, E. Y.; Cheng, D. L. C.; Halkides, D. J.
2016-12-01
The Virtual Earth System Laboratory (VESL) is a Web-based tool, under development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. It contains features geared toward a range of applications, spanning research and outreach. It offers an intuitive user interface, in which model inputs are changed using sliders and other interactive components. Current capabilities include simulation of polar ice sheet responses to climate forcing, based on NASA's Ice Sheet System Model (ISSM). We believe that the visualization of data is most effective when tailored to the target audience, and that many of the best practices for modern Web design/development can be applied directly to the visualization of data: use of negative space, color schemes, typography, accessibility standards, tooltips, etc cetera. We present our prototype website, and invite input from potential users, including researchers, educators, and students.
Developing Visualization Support System for Teaching/Learning Database Normalization
ERIC Educational Resources Information Center
Folorunso, Olusegun; Akinwale, AdioTaofeek
2010-01-01
Purpose: In tertiary institution, some students find it hard to learn database design theory, in particular, database normalization. The purpose of this paper is to develop a visualization tool to give students an interactive hands-on experience in database normalization process. Design/methodology/approach: The model-view-controller architecture…
Sensitivity to synchronicity of biological motion in normal and amblyopic vision
Luu, Jennifer Y.; Levi, Dennis M.
2017-01-01
Amblyopia is a developmental disorder of spatial vision that results from abnormal early visual experience usually due to the presence of strabismus, anisometropia, or both strabismus and anisometropia. Amblyopia results in a range of visual deficits that cannot be corrected by optics because the deficits reflect neural abnormalities. Biological motion refers to the motion patterns of living organisms, and is normally displayed as points of lights positioned at the major joints of the body. In this experiment, our goal was twofold. We wished to examine whether the human visual system in people with amblyopia retained the higher-level processing capabilities to extract visual information from the synchronized actions of others, therefore retaining the ability to detect biological motion. Specifically, we wanted to determine if the synchronized interaction of two agents performing a dancing routine allowed the amblyopic observer to use the actions of one agent to predict the expected actions of a second agent. We also wished to establish whether synchronicity sensitivity (detection of synchronized versus desynchronized interactions) is impaired in amblyopic observers relative to normal observers. The two aims are differentiated in that the first aim looks at whether synchronized actions result in improved expected action predictions while the second aim quantitatively compares synchronicity sensitivity, or the ratio of desynchronized to synchronized detection sensitivities, to determine if there is a difference between normal and amblyopic observers. Our results show that the ability to detect biological motion requires more samples in both eyes of amblyopes than in normal control observers. The increased sample threshold is not the result of low-level losses but may reflect losses in feature integration due to undersampling in the amblyopic visual system. However, like normal observers, amblyopes are more sensitive to synchronized versus desynchronized interactions, indicating that higher-level processing of biological motion remains intact. We also found no impairment in synchronicity sensitivity in the amblyopic visual system relative to the normal visual system. Since there is no impairment in synchronicity sensitivity in either the nonamblyopic or amblyopic eye of amblyopes, our results suggest that the higher order processing of biological motion is intact. PMID:23474301
Distributed visualization framework architecture
NASA Astrophysics Data System (ADS)
Mishchenko, Oleg; Raman, Sundaresan; Crawfis, Roger
2010-01-01
An architecture for distributed and collaborative visualization is presented. The design goals of the system are to create a lightweight, easy to use and extensible framework for reasearch in scientific visualization. The system provides both single user and collaborative distributed environment. System architecture employs a client-server model. Visualization projects can be synchronously accessed and modified from different client machines. We present a set of visualization use cases that illustrate the flexibility of our system. The framework provides a rich set of reusable components for creating new applications. These components make heavy use of leading design patterns. All components are based on the functionality of a small set of interfaces. This allows new components to be integrated seamlessly with little to no effort. All user input and higher-level control functionality interface with proxy objects supporting a concrete implementation of these interfaces. These light-weight objects can be easily streamed across the web and even integrated with smart clients running on a user's cell phone. The back-end is supported by concrete implementations wherever needed (for instance for rendering). A middle-tier manages any communication and synchronization with the proxy objects. In addition to the data components, we have developed several first-class GUI components for visualization. These include a layer compositor editor, a programmable shader editor, a material editor and various drawable editors. These GUI components interact strictly with the interfaces. Access to the various entities in the system is provided by an AssetManager. The asset manager keeps track of all of the registered proxies and responds to queries on the overall system. This allows all user components to be populated automatically. Hence if a new component is added that supports the IMaterial interface, any instances of this can be used in the various GUI components that work with this interface. One of the main features is an interactive shader designer. This allows rapid prototyping of new visualization renderings that are shader-based and greatly accelerates the development and debug cycle.
Web-based Visual Analytics for Extreme Scale Climate Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Evans, Katherine J; Harney, John F
In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2013-12-01
As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools developed within the light of these challenges.
Teaching AI Search Algorithms in a Web-Based Educational System
ERIC Educational Resources Information Center
Grivokostopoulou, Foteini; Hatzilygeroudis, Ioannis
2013-01-01
In this paper, we present a way of teaching AI search algorithms in a web-based adaptive educational system. Teaching is based on interactive examples and exercises. Interactive examples, which use visualized animations to present AI search algorithms in a step-by-step way with explanations, are used to make learning more attractive. Practice…
A Second-Generation Interactive Classroom Television System for the Partially Sighted.
ERIC Educational Resources Information Center
Genensky, S. M.; And Others
The interactive classroom television system (ICTS) that is described permits partially sighted students and their teachers to be in continuous, two-way visual communication. It was implemented in Rowland Heights, California, as part of the second phase of a project aimed at evaluating how the ICTS helps in teaching basic skills to partially…
Visualizing the spinal neuronal dynamics of locomotion
NASA Astrophysics Data System (ADS)
Subramanian, Kalpathi R.; Bashor, D. P.; Miller, M. T.; Foster, J. A.
2004-06-01
Modern imaging and simulation techniques have enhanced system-level understanding of neural function. In this article, we present an application of interactive visualization to understanding neuronal dynamics causing locomotion of a single hip joint, based on pattern generator output of the spinal cord. Our earlier work visualized cell-level responses of multiple neuronal populations. However, the spatial relationships were abstract, making communication with colleagues difficult. We propose two approaches to overcome this: (1) building a 3D anatomical model of the spinal cord with neurons distributed inside, animated by the simulation and (2) adding limb movements predicted by neuronal activity. The new system was tested using a cat walking central pattern generator driving a pair of opposed spinal motoneuron pools. Output of opposing motoneuron pools was combined into a single metric, called "Net Neural Drive", which generated angular limb movement in proportion to its magnitude. Net neural drive constitutes a new description of limb movement control. The combination of spatial and temporal information in the visualizations elegantly conveys the neural activity of the output elements (motoneurons), as well as the resulting movement. The new system encompasses five biological levels of organization from ion channels to observed behavior. The system is easily scalable, and provides an efficient interactive platform for rapid hypothesis testing.
OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.
Zhou, Guangyan; Xia, Jianguo
2018-06-07
Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.
Bucci, Maria Pia; Nassibi, Naziha; Gerard, Christophe-Loic; Bui-Quoc, Emmanuel; Seassau, Magali
2012-01-01
Studies comparing binocular eye movements during reading and visual search in dyslexic children are, at our knowledge, inexistent. In the present study we examined ocular motor characteristics in dyslexic children versus two groups of non dyslexic children with chronological/reading age-matched. Binocular eye movements were recorded by an infrared system (mobileEBT®, e(ye)BRAIN) in twelve dyslexic children (mean age 11 years old) and a group of chronological age-matched (N = 9) and reading age-matched (N = 10) non dyslexic children. Two visual tasks were used: text reading and visual search. Independently of the task, the ocular motor behavior in dyslexic children is similar to those reported in reading age-matched non dyslexic children: many and longer fixations as well as poor quality of binocular coordination during and after the saccades. In contrast, chronological age-matched non dyslexic children showed a small number of fixations and short duration of fixations in reading task with respect to visual search task; furthermore their saccades were well yoked in both tasks. The atypical eye movement's patterns observed in dyslexic children suggest a deficiency in the visual attentional processing as well as an immaturity of the ocular motor saccade and vergence systems interaction. PMID:22438934
Fisher, Katie; Towler, John; Eimer, Martin
2016-01-08
It is frequently assumed that facial identity and facial expression are analysed in functionally and anatomically distinct streams within the core visual face processing system. To investigate whether expression and identity interact during the visual processing of faces, we employed a sequential matching procedure where participants compared either the identity or the expression of two successively presented faces, and ignored the other irrelevant dimension. Repetitions versus changes of facial identity and expression were varied independently across trials, and event-related potentials (ERPs) were recorded during task performance. Irrelevant facial identity and irrelevant expression both interfered with performance in the expression and identity matching tasks. These symmetrical interference effects show that neither identity nor expression can be selectively ignored during face matching, and suggest that they are not processed independently. N250r components to identity repetitions that reflect identity matching mechanisms in face-selective visual cortex were delayed and attenuated when there was an expression change, demonstrating that facial expression interferes with visual identity matching. These findings provide new evidence for interactions between facial identity and expression within the core visual processing system, and question the hypothesis that these two attributes are processed independently. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design and implementation of visualization methods for the CHANGES Spatial Decision Support System
NASA Astrophysics Data System (ADS)
Cristal, Irina; van Westen, Cees; Bakker, Wim; Greiving, Stefan
2014-05-01
The CHANGES Spatial Decision Support System (SDSS) is a web-based system aimed for risk assessment and the evaluation of optimal risk reduction alternatives at local level as a decision support tool in long-term natural risk management. The SDSS use multidimensional information, integrating thematic, spatial, temporal and documentary data. The role of visualization in this context becomes of vital importance for efficiently representing each dimension. This multidimensional aspect of the required for the system risk information, combined with the diversity of the end-users imposes the use of sophisticated visualization methods and tools. The key goal of the present work is to exploit efficiently the large amount of data in relation to the needs of the end-user, utilizing proper visualization techniques. Three main tasks have been accomplished for this purpose: categorization of the end-users, the definition of system's modules and the data definition. The graphical representation of the data and the visualization tools were designed to be relevant to the data type and the purpose of the analysis. Depending on the end-users category, each user should have access to different modules of the system and thus, to the proper visualization environment. The technologies used for the development of the visualization component combine the latest and most innovative open source JavaScript frameworks, such as OpenLayers 2.13.1, ExtJS 4 and GeoExt 2. Moreover, the model-view-controller (MVC) pattern is used in order to ensure flexibility of the system at the implementation level. Using the above technologies, the visualization techniques implemented so far offer interactive map navigation, querying and comparison tools. The map comparison tools are of great importance within the SDSS and include the following: swiping tool for comparison of different data of the same location; raster subtraction for comparison of the same phenomena varying in time; linked views for comparison of data from different locations and a time slider tool for monitoring changes in spatio-temporal data. All these techniques are part of the interactive interface of the system and make use of spatial and spatio-temporal data. Further significant aspects of the visualization component include conventional cartographic techniques and visualization of non-spatial data. The main expectation from the present work is to offer efficient visualization of risk-related data in order to facilitate the decision making process, which is the final purpose of the CHANGES SDSS. This work is part of the "CHANGES" project, funded by the European Community's 7th Framework Programme.
NASA Astrophysics Data System (ADS)
Le, Minh Tuan; Nguyen, Congdu; Yoon, Dae-Il; Jung, Eun Ku; Jia, Jie; Kim, Hae-Kwang
2007-12-01
In this paper, we propose a method of 3D graphics to video encoding and streaming that are embedded into a remote interactive 3D visualization system for rapidly representing a 3D scene on mobile devices without having to download it from the server. In particular, a 3D graphics to video framework is presented that increases the visual quality of regions of interest (ROI) of the video by performing more bit allocation to ROI during H.264 video encoding. The ROI are identified by projection 3D objects to a 2D plane during rasterization. The system offers users to navigate the 3D scene and interact with objects of interests for querying their descriptions. We developed an adaptive media streaming server that can provide an adaptive video stream in term of object-based quality to the client according to the user's preferences and the variation of network bandwidth. Results show that by doing ROI mode selection, PSNR of test sample slightly change while visual quality of objects increases evidently.
Image pattern recognition supporting interactive analysis and graphical visualization
NASA Technical Reports Server (NTRS)
Coggins, James M.
1992-01-01
Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Beaver, Justin M; BogenII, Paul L.
In this paper, we introduce a new visual analytics system, called Matisse, that allows exploration of global trends in textual information streams with specific application to social media platforms. Despite the potential for real-time situational awareness using these services, interactive analysis of such semi-structured textual information is a challenge due to the high-throughput and high-velocity properties. Matisse addresses these challenges through the following contributions: (1) robust stream data management, (2) automated sen- timent/emotion analytics, (3) inferential temporal, geospatial, and term-frequency visualizations, and (4) a flexible drill-down interaction scheme that progresses from macroscale to microscale views. In addition to describing thesemore » contributions, our work-in-progress paper concludes with a practical case study focused on the analysis of Twitter 1% sample stream information captured during the week of the Boston Marathon bombings.« less
Technique and cue selection for graphical presentation of generic hyperdimensional data
NASA Astrophysics Data System (ADS)
Howard, Lee M.; Burton, Robert P.
2013-12-01
Several presentation techniques have been created for visualization of data with more than three variables. Packages have been written, each of which implements a subset of these techniques. However, these packages generally fail to provide all the features needed by the user during the visualization process. Further, packages generally limit support for presentation techniques to a few techniques. A new package called Petrichor accommodates all necessary and useful features together in one system. Any presentation technique may be added easily through an extensible plugin system. Features are supported by a user interface that allows easy interaction with data. Annotations allow users to mark up visualizations and share information with others. By providing a hyperdimensional graphics package that easily accommodates presentation techniques and includes a complete set of features, including those that are rarely or never supported elsewhere, the user is provided with a tool that facilitates improved interaction with multivariate data to extract and disseminate information.
Intelligent Data Visualization for Cross-Checking Spacecraft System Diagnosis
NASA Technical Reports Server (NTRS)
Ong, James C.; Remolina, Emilio; Breeden, David; Stroozas, Brett A.; Mohammed, John L.
2012-01-01
Any reasoning system is fallible, so crew members and flight controllers must be able to cross-check automated diagnoses of spacecraft or habitat problems by considering alternate diagnoses and analyzing related evidence. Cross-checking improves diagnostic accuracy because people can apply information processing heuristics, pattern recognition techniques, and reasoning methods that the automated diagnostic system may not possess. Over time, cross-checking also enables crew members to become comfortable with how the diagnostic reasoning system performs, so the system can earn the crew s trust. We developed intelligent data visualization software that helps users cross-check automated diagnoses of system faults more effectively. The user interface displays scrollable arrays of timelines and time-series graphs, which are tightly integrated with an interactive, color-coded system schematic to show important spatial-temporal data patterns. Signal processing and rule-based diagnostic reasoning automatically identify alternate hypotheses and data patterns that support or rebut the original and alternate diagnoses. A color-coded matrix display summarizes the supporting or rebutting evidence for each diagnosis, and a drill-down capability enables crew members to quickly view graphs and timelines of the underlying data. This system demonstrates that modest amounts of diagnostic reasoning, combined with interactive, information-dense data visualizations, can accelerate system diagnosis and cross-checking.
ERIC Educational Resources Information Center
Sayre, Scott Alan
The purpose of this study was to develop and validate a computer-based system that would allow interactive video developers to integrate and manage the design components prior to production. These components of an interactive video (IVD) program include visual information in a variety of formats, audio information, and instructional techniques,…
NASA Astrophysics Data System (ADS)
West, Ruth G.; Margolis, Todd; Prudhomme, Andrew; Schulze, Jürgen P.; Mostafavi, Iman; Lewis, J. P.; Gossmann, Joachim; Singh, Rajvikram
2014-02-01
Scalable Metadata Environments (MDEs) are an artistic approach for designing immersive environments for large scale data exploration in which users interact with data by forming multiscale patterns that they alternatively disrupt and reform. Developed and prototyped as part of an art-science research collaboration, we define an MDE as a 4D virtual environment structured by quantitative and qualitative metadata describing multidimensional data collections. Entire data sets (e.g.10s of millions of records) can be visualized and sonified at multiple scales and at different levels of detail so they can be explored interactively in real-time within MDEs. They are designed to reflect similarities and differences in the underlying data or metadata such that patterns can be visually/aurally sorted in an exploratory fashion by an observer who is not familiar with the details of the mapping from data to visual, auditory or dynamic attributes. While many approaches for visual and auditory data mining exist, MDEs are distinct in that they utilize qualitative and quantitative data and metadata to construct multiple interrelated conceptual coordinate systems. These "regions" function as conceptual lattices for scalable auditory and visual representations within virtual environments computationally driven by multi-GPU CUDA-enabled fluid dyamics systems.
Oesterlein, Tobias Georg; Schmid, Jochen; Bauer, Silvio; Jadidi, Amir; Schmitt, Claus; Dössel, Olaf; Luik, Armin
2016-04-01
Progress in biomedical engineering has improved the hardware available for diagnosis and treatment of cardiac arrhythmias. But although huge amounts of intracardiac electrograms (EGMs) can be acquired during electrophysiological examinations, there is still a lack of software aiding diagnosis. The development of novel algorithms for the automated analysis of EGMs has proven difficult, due to the highly interdisciplinary nature of this task and hampered data access in clinical systems. Thus we developed a software platform, which allows rapid implementation of new algorithms, verification of their functionality and suitable visualization for discussion in the clinical environment. A software for visualization was developed in Qt5 and C++ utilizing the class library of VTK. The algorithms for signal analysis were implemented in MATLAB. Clinical data for analysis was exported from electroanatomical mapping systems. The visualization software KaPAVIE (Karlsruhe Platform for Analysis and Visualization of Intracardiac Electrograms) was implemented and tested on several clinical datasets. Both common and novel algorithms were implemented which address important clinical questions in diagnosis of different arrhythmias. It proved useful in discussions with clinicians due to its interactive and user-friendly design. Time after export from the clinical mapping system to visualization is below 5min. KaPAVIE(2) is a powerful platform for the development of novel algorithms in the clinical environment. Simultaneous and interactive visualization of measured EGM data and the results of analysis will aid diagnosis and help understanding the underlying mechanisms of complex arrhythmias like atrial fibrillation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Interactive Videodisc as a Component in a Multi-Method Approach to Anatomy and Physiology.
ERIC Educational Resources Information Center
Wheeler, Donald A.; Wheeler, Mary Jane
At Cuyahoga Community College (Ohio), computer-controlled interactive videodisc technology is being used as one of several instructional methods to teach anatomy and physiology. The system has the following features: audio-visual instruction, interaction with immediate feedback, self-pacing, fill-in-the-blank quizzes for testing total recall,…
Interactive Videoconference Supported Teaching in Undergraduate Nursing: A Case Study for ECG
ERIC Educational Resources Information Center
Celikkan, Ufuk; Senuzun, Fisun; Sari, Dilek; Sahin, Yasar Guneri
2013-01-01
This paper describes how interactive videoconference can benefit the Electrocardiography (ECG) skills of undergraduate nursing students. We have implemented a learning system that interactively transfers the visual and practical aspects of ECG from a nursing skills lab into a classroom where the theoretical part of the course is taught. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Adam T.; Yagnik, Gargey B.; Hohenstein, Jessica D.
Mass spectrometry imaging (MSI) is an emerging technology for high-resolution plant biology. It has been utilized to study plant–pest interactions, but limited to the surface interfaces. Here we expand the technology to explore the chemical interactions occurring inside the plant tissues. Two sample preparation methods, imprinting and fracturing, were developed and applied, for the first time, to visualize internal metabolites of leaves in matrix-assisted laser desorption ionization (MALDI)-MSI. This is also the first time nanoparticle-based ionization was implemented to ionize diterpenoid phytochemicals that were difficult to analyze with traditional organic matrices. The interactions between rice–bacterium and soybean–aphid were investigated asmore » two model systems to demonstrate the capability of high-resolution MSI based on MALDI. Localized molecular information on various plant- or pest-derived chemicals provided valuable insight for the molecular processes occurring during the plant–pest interactions. Basically, salicylic acid and isoflavone based resistance was visualized in the soybean–aphid system and antibiotic diterpenoids in rice–bacterium interactions.« less
Klein, Adam T.; Yagnik, Gargey B.; Hohenstein, Jessica D.; ...
2015-04-27
Mass spectrometry imaging (MSI) is an emerging technology for high-resolution plant biology. It has been utilized to study plant–pest interactions, but limited to the surface interfaces. Here we expand the technology to explore the chemical interactions occurring inside the plant tissues. Two sample preparation methods, imprinting and fracturing, were developed and applied, for the first time, to visualize internal metabolites of leaves in matrix-assisted laser desorption ionization (MALDI)-MSI. This is also the first time nanoparticle-based ionization was implemented to ionize diterpenoid phytochemicals that were difficult to analyze with traditional organic matrices. The interactions between rice–bacterium and soybean–aphid were investigated asmore » two model systems to demonstrate the capability of high-resolution MSI based on MALDI. Localized molecular information on various plant- or pest-derived chemicals provided valuable insight for the molecular processes occurring during the plant–pest interactions. Basically, salicylic acid and isoflavone based resistance was visualized in the soybean–aphid system and antibiotic diterpenoids in rice–bacterium interactions.« less
Interface Metaphors for Interactive Machine Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasper, Robert J.; Blaha, Leslie M.
To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be usedmore » in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.« less
Data Visualization and Analysis for Climate Studies using NASA Giovanni Online System
NASA Technical Reports Server (NTRS)
Rui, Hualan; Leptoukh, Gregory; Lloyd, Steven
2008-01-01
With many global earth observation systems and missions focused on climate systems and the associated large volumes of observational data available for exploring and explaining how climate is changing and why, there is an urgent need for climate services. Giovanni, the NASA GES DISC Interactive Online Visualization ANd ANalysis Infrastructure, is a simple to use yet powerful tool for analysing these data for research on global warming and climate change, as well as for applications to weather. air quality, agriculture, and water resources,
Lorentz microscopy sheds light on the role of dipolar interactions in magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Campanini, M.; Ciprian, R.; Bedogni, E.; Mega, A.; Chiesi, V.; Casoli, F.; de Julián Fernández, C.; Rotunno, E.; Rossi, F.; Secchi, A.; Bigi, F.; Salviati, G.; Magén, C.; Grillo, V.; Albertini, F.
2015-04-01
Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation states of the nanoparticles. Moreover, the presence of magnetic dipolar interactions can strongly affect the nanoparticle efficiency as a hyperthermic mediator. In this paper, we present a novel way to visualize and map the magnetic dipolar interactions in different kinds of nanoparticle aggregates by the use of Lorentz microscopy, an easy and reliable in-line electron holographic technique. By exploiting Lorentz microscopy, which is complementary to the magnetic measurements, it is possible to correlate the interaction degrees of magnetic nanoparticles with their magnetic behaviors. In particular, we demonstrate that Lorentz microscopy is successful in visualizing the magnetic configurations stabilized by dipolar interactions, thus paving the way to the comprehension of the power loss mechanisms for different nanoparticle aggregates.Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation states of the nanoparticles. Moreover, the presence of magnetic dipolar interactions can strongly affect the nanoparticle efficiency as a hyperthermic mediator. In this paper, we present a novel way to visualize and map the magnetic dipolar interactions in different kinds of nanoparticle aggregates by the use of Lorentz microscopy, an easy and reliable in-line electron holographic technique. By exploiting Lorentz microscopy, which is complementary to the magnetic measurements, it is possible to correlate the interaction degrees of magnetic nanoparticles with their magnetic behaviors. In particular, we demonstrate that Lorentz microscopy is successful in visualizing the magnetic configurations stabilized by dipolar interactions, thus paving the way to the comprehension of the power loss mechanisms for different nanoparticle aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00273g
Ashtari, Manzar; Zhang, Hui; Cook, Philip A.; Cyckowski, Laura L.; Shindler, Kenneth S.; Marshall, Kathleen A.; Aravand, Puya; Vossough, Arastoo; Gee, James C.; Maguire, Albert M.; Baker, Chris I.; Bennett, Jean
2015-01-01
Much of our knowledge of the mechanisms underlying plasticity in the visual cortex in response to visual impairment, vision restoration, and environmental interactions comes from animal studies. We evaluated human brain plasticity in a group of patients with Leber’s congenital amaurosis (LCA), who regained vision through gene therapy. Using non-invasive multimodal neuroimaging methods, we demonstrated that reversing blindness with gene therapy promoted long-term structural plasticity in the visual pathways emanating from the treated retina of LCA patients. The data revealed improvements and normalization along the visual fibers corresponding to the site of retinal injection of the gene therapy vector carrying the therapeutic gene in the treated eye compared to the visual pathway for the untreated eye of LCA patients. After gene therapy, the primary visual pathways (for example, geniculostriate fibers) in the treated retina were similar to those of sighted control subjects, whereas the primary visual pathways of the untreated retina continued to deteriorate. Our results suggest that visual experience, enhanced by gene therapy, may be responsible for the reorganization and maturation of synaptic connectivity in the visual pathways of the treated eye in LCA patients. The interactions between the eye and the brain enabled improved and sustained long-term visual function in patients with LCA after gene therapy. PMID:26180100
Huber, Timothy C; Krishnaraj, Arun; Monaghan, Dayna; Gaskin, Cree M
2018-05-18
Due to mandates from recent legislation, clinical decision support (CDS) software is being adopted by radiology practices across the country. This software provides imaging study decision support for referring providers at the point of order entry. CDS systems produce a large volume of data, providing opportunities for research and quality improvement. In order to better visualize and analyze trends in this data, an interactive data visualization dashboard was created using a commercially available data visualization platform. Following the integration of a commercially available clinical decision support product into the electronic health record, a dashboard was created using a commercially available data visualization platform (Tableau, Seattle, WA). Data generated by the CDS were exported from the data warehouse, where they were stored, into the platform. This allowed for real-time visualization of the data generated by the decision support software. The creation of the dashboard allowed the output from the CDS platform to be more easily analyzed and facilitated hypothesis generation. Integrating data visualization tools into clinical decision support tools allows for easier data analysis and can streamline research and quality improvement efforts.
Tangible interactive system for document browsing and visualisation of multimedia data
NASA Astrophysics Data System (ADS)
Rytsar, Yuriy; Voloshynovskiy, Sviatoslav; Koval, Oleksiy; Deguillaume, Frederic; Topak, Emre; Startchik, Sergei; Pun, Thierry
2006-01-01
In this paper we introduce and develop a framework for document interactive navigation in multimodal databases. First, we analyze the main open issues of existing multimodal interfaces and then discuss two applications that include interaction with documents in several human environments, i.e., the so-called smart rooms. Second, we propose a system set-up dedicated to the efficient navigation in the printed documents. This set-up is based on the fusion of data from several modalities that include images and text. Both modalities can be used as cover data for hidden indexes using data-hiding technologies as well as source data for robust visual hashing. The particularities of the proposed robust visual hashing are described in the paper. Finally, we address two practical applications of smart rooms for tourism and education and demonstrate the advantages of the proposed solution.
Real-time, interactive, visually updated simulator system for telepresence
NASA Technical Reports Server (NTRS)
Schebor, Frederick S.; Turney, Jerry L.; Marzwell, Neville I.
1991-01-01
Time delays and limited sensory feedback of remote telerobotic systems tend to disorient teleoperators and dramatically decrease the operator's performance. To remove the effects of time delays, key components were designed and developed of a prototype forward simulation subsystem, the Global-Local Environment Telerobotic Simulator (GLETS) that buffers the operator from the remote task. GLETS totally immerses an operator in a real-time, interactive, simulated, visually updated artificial environment of the remote telerobotic site. Using GLETS, the operator will, in effect, enter into a telerobotic virtual reality and can easily form a gestalt of the virtual 'local site' that matches the operator's normal interactions with the remote site. In addition to use in space based telerobotics, GLETS, due to its extendable architecture, can also be used in other teleoperational environments such as toxic material handling, construction, and undersea exploration.
2010-01-01
Background European robins, Erithacus rubecula, show two types of directional responses to the magnetic field: (1) compass orientation that is based on radical pair processes and lateralized in favor of the right eye and (2) so-called 'fixed direction' responses that originate in the magnetite-based receptors in the upper beak. Both responses are light-dependent. Lateralization of the 'fixed direction' responses would suggest an interaction between the two magnetoreception systems. Results Robins were tested with either the right or the left eye covered or with both eyes uncovered for their orientation under different light conditions. With 502 nm turquoise light, the birds showed normal compass orientation, whereas they displayed an easterly 'fixed direction' response under a combination of 502 nm turquoise with 590 nm yellow light. Monocularly right-eyed birds with their left eye covered were oriented just as they were binocularly as controls: under turquoise in their northerly migratory direction, under turquoise-and-yellow towards east. The response of monocularly left-eyed birds differed: under turquoise light, they were disoriented, reflecting a lateralization of the magnetic compass system in favor of the right eye, whereas they continued to head eastward under turquoise-and-yellow light. Conclusion 'Fixed direction' responses are not lateralized. Hence the interactions between the magnetite-receptors in the beak and the visual system do not seem to involve the magnetoreception system based on radical pair processes, but rather other, non-lateralized components of the visual system. PMID:20707905
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown-VanHoozer, S.A.
Most designers are not schooled in the area of human-interaction psychology and therefore tend to rely on the traditional ergonomic aspects of human factors when designing complex human-interactive workstations related to reactor operations. They do not take into account the differences in user information processing behavior and how these behaviors may affect individual and team performance when accessing visual displays or utilizing system models in process and control room areas. Unfortunately, by ignoring the importance of the integration of the user interface at the information process level, the result can be sub-optimization and inherently error- and failure-prone systems. Therefore, tomore » minimize or eliminate failures in human-interactive systems, it is essential that the designers understand how each user`s processing characteristics affects how the user gathers information, and how the user communicates the information to the designer and other users. A different type of approach in achieving this understanding is Neuro Linguistic Programming (NLP). The material presented in this paper is based on two studies involving the design of visual displays, NLP, and the user`s perspective model of a reactor system. The studies involve the methodology known as NLP, and its use in expanding design choices from the user`s ``model of the world,`` in the areas of virtual reality, workstation design, team structure, decision and learning style patterns, safety operations, pattern recognition, and much, much more.« less
Classroom Demonstration of the Visual Effects of Eye Diseases
Raphail, Ann-Marie; Bach, Emily C.; Hallock, Robert M.
2014-01-01
An understanding of the visual system is a fundamental aspect of many neuroscience and psychology courses. These classes often cover a variety of visual diseases that are correlated with the anatomy of the visual system, e.g., cataracts are caused by a clouding of the lens. Here, we describe an easy way to modify standard laboratory glasses/goggles to simulate the various perceptual deficits that accompany vision disorders such as astigmatism, cataracts, diabetic retinopathy, glaucoma, optic neuritis, posterior vitreous detachment, and retinitis pigmentosa. For example, when teaching about cataracts, students can put on glasses that mimic how severe cataracts affect one’s vision. Using the glasses will allow students to draw connections between the disorder, its perceptual deficits, and the underlying anatomy. We also discuss floaters in the eye and provide an easy method to allow students to detect their own floaters. Together, these demonstrations make for a more dynamic and interactive class on the visual system that will better link diseases of the eye to anatomy and perception, and allow undergraduate students to develop a better understanding of the visual system as a whole. PMID:24693262
Deep hierarchies in the primate visual cortex: what can we learn for computer vision?
Krüger, Norbert; Janssen, Peter; Kalkan, Sinan; Lappe, Markus; Leonardis, Ales; Piater, Justus; Rodríguez-Sánchez, Antonio J; Wiskott, Laurenz
2013-08-01
Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition, or vision-based navigation and manipulation. This paper reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer vision research. Organized for a computer vision audience, we present functional principles of the processing hierarchies present in the primate visual system considering recent discoveries in neurophysiology. The hierarchical processing in the primate visual system is characterized by a sequence of different levels of processing (on the order of 10) that constitute a deep hierarchy in contrast to the flat vision architectures predominantly used in today's mainstream computer vision. We hope that the functional description of the deep hierarchies realized in the primate visual system provides valuable insights for the design of computer vision algorithms, fostering increasingly productive interaction between biological and computer vision research.
Bastos, Andre M; Briggs, Farran; Alitto, Henry J; Mangun, George R; Usrey, W Martin
2014-05-28
Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex. Copyright © 2014 the authors 0270-6474/14/347639-06$15.00/0.
Visual information mining in remote sensing image archives
NASA Astrophysics Data System (ADS)
Pelizzari, Andrea; Descargues, Vincent; Datcu, Mihai P.
2002-01-01
The present article focuses on the development of interactive exploratory tools for visually mining the image content in large remote sensing archives. Two aspects are treated: the iconic visualization of the global information in the archive and the progressive visualization of the image details. The proposed methods are integrated in the Image Information Mining (I2M) system. The images and image structure in the I2M system are indexed based on a probabilistic approach. The resulting links are managed by a relational data base. Both the intrinsic complexity of the observed images and the diversity of user requests result in a great number of associations in the data base. Thus new tools have been designed to visualize, in iconic representation the relationships created during a query or information mining operation: the visualization of the query results positioned on the geographical map, quick-looks gallery, visualization of the measure of goodness of the query, visualization of the image space for statistical evaluation purposes. Additionally the I2M system is enhanced with progressive detail visualization in order to allow better access for operator inspection. I2M is a three-tier Java architecture and is optimized for the Internet.
A massively asynchronous, parallel brain.
Zeki, Semir
2015-05-19
Whether the visual brain uses a parallel or a serial, hierarchical, strategy to process visual signals, the end result appears to be that different attributes of the visual scene are perceived asynchronously--with colour leading form (orientation) by 40 ms and direction of motion by about 80 ms. Whatever the neural root of this asynchrony, it creates a problem that has not been properly addressed, namely how visual attributes that are perceived asynchronously over brief time windows after stimulus onset are bound together in the longer term to give us a unified experience of the visual world, in which all attributes are apparently seen in perfect registration. In this review, I suggest that there is no central neural clock in the (visual) brain that synchronizes the activity of different processing systems. More likely, activity in each of the parallel processing-perceptual systems of the visual brain is reset independently, making of the brain a massively asynchronous organ, just like the new generation of more efficient computers promise to be. Given the asynchronous operations of the brain, it is likely that the results of activities in the different processing-perceptual systems are not bound by physiological interactions between cells in the specialized visual areas, but post-perceptually, outside the visual brain.
An interactive web-based system using cloud for large-scale visual analytics
NASA Astrophysics Data System (ADS)
Kaseb, Ahmed S.; Berry, Everett; Rozolis, Erik; McNulty, Kyle; Bontrager, Seth; Koh, Youngsol; Lu, Yung-Hsiang; Delp, Edward J.
2015-03-01
Network cameras have been growing rapidly in recent years. Thousands of public network cameras provide tremendous amount of visual information about the environment. There is a need to analyze this valuable information for a better understanding of the world around us. This paper presents an interactive web-based system that enables users to execute image analysis and computer vision techniques on a large scale to analyze the data from more than 65,000 worldwide cameras. This paper focuses on how to use both the system's website and Application Programming Interface (API). Given a computer program that analyzes a single frame, the user needs to make only slight changes to the existing program and choose the cameras to analyze. The system handles the heterogeneity of the geographically distributed cameras, e.g. different brands, resolutions. The system allocates and manages Amazon EC2 and Windows Azure cloud resources to meet the analysis requirements.
Interactive access and management for four-dimensional environmental data sets using McIDAS
NASA Technical Reports Server (NTRS)
Hibbard, William L.; Tripoli, Gregory J.
1991-01-01
Significant accomplishments in the following areas are presented: (1) enhancements to the visualization of 5-D data sets (VIS-5D); (2) development of the visualization of global images (VIS-GI) application; (3) design of the Visualization for Algorithm Development (VIS-AD) System; and (4) numerical modeling applications. The focus of current research and future research plans is presented and the following topics are addressed: (1) further enhancements to VIS-5D; (2) generalization and enhancement of the VIS-GI application; (3) the implementation of the VIS-AD System; and (4) plans for modeling applications.
An interactive web application for the dissemination of human systems immunology data.
Speake, Cate; Presnell, Scott; Domico, Kelly; Zeitner, Brad; Bjork, Anna; Anderson, David; Mason, Michael J; Whalen, Elizabeth; Vargas, Olivia; Popov, Dimitry; Rinchai, Darawan; Jourde-Chiche, Noemie; Chiche, Laurent; Quinn, Charlie; Chaussabel, Damien
2015-06-19
Systems immunology approaches have proven invaluable in translational research settings. The current rate at which large-scale datasets are generated presents unique challenges and opportunities. Mining aggregates of these datasets could accelerate the pace of discovery, but new solutions are needed to integrate the heterogeneous data types with the contextual information that is necessary for interpretation. In addition, enabling tools and technologies facilitating investigators' interaction with large-scale datasets must be developed in order to promote insight and foster knowledge discovery. State of the art application programming was employed to develop an interactive web application for browsing and visualizing large and complex datasets. A collection of human immune transcriptome datasets were loaded alongside contextual information about the samples. We provide a resource enabling interactive query and navigation of transcriptome datasets relevant to human immunology research. Detailed information about studies and samples are displayed dynamically; if desired the associated data can be downloaded. Custom interactive visualizations of the data can be shared via email or social media. This application can be used to browse context-rich systems-scale data within and across systems immunology studies. This resource is publicly available online at [Gene Expression Browser Landing Page ( https://gxb.benaroyaresearch.org/dm3/landing.gsp )]. The source code is also available openly [Gene Expression Browser Source Code ( https://github.com/BenaroyaResearch/gxbrowser )]. We have developed a data browsing and visualization application capable of navigating increasingly large and complex datasets generated in the context of immunological studies. This intuitive tool ensures that, whether taken individually or as a whole, such datasets generated at great effort and expense remain interpretable and a ready source of insight for years to come.
Advanced in Visualization of 3D Time-Dependent CFD Solutions
NASA Technical Reports Server (NTRS)
Lane, David A.; Lasinski, T. A. (Technical Monitor)
1995-01-01
Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.
An evaluation-guided approach for effective data visualization on tablets
NASA Astrophysics Data System (ADS)
Games, Peter S.; Joshi, Alark
2015-01-01
There is a rising trend of data analysis and visualization tasks being performed on a tablet device. Apps with interactive data visualization capabilities are available for a wide variety of domains. We investigate whether users grasp how to effectively interpret and interact with visualizations. We conducted a detailed user evaluation to study the abilities of individuals with respect to analyzing data on a tablet through an interactive visualization app. Based upon the results of the user evaluation, we find that most subjects performed well at understanding and interacting with simple visualizations, specifically tables and line charts. A majority of the subjects struggled with identifying interactive widgets, recognizing interactive widgets with overloaded functionality, and understanding visualizations which do not display data for sorted attributes. Based on our study, we identify guidelines for designers and developers of mobile data visualization apps that include recommendations for effective data representation and interaction.
Integrating visualization and interaction research to improve scientific workflows.
Keefe, Daniel F
2010-01-01
Scientific-visualization research is, nearly by necessity, interdisciplinary. In addition to their collaborators in application domains (for example, cell biology), researchers regularly build on close ties with disciplines related to visualization, such as graphics, human-computer interaction, and cognitive science. One of these ties is the connection between visualization and interaction research. This isn't a new direction for scientific visualization (see the "Early Connections" sidebar). However, momentum recently seems to be increasing toward integrating visualization research (for example, effective visual presentation of data) with interaction research (for example, innovative interactive techniques that facilitate manipulating and exploring data). We see evidence of this trend in several places, including the visualization literature and conferences.
NASA Astrophysics Data System (ADS)
Farkas, Attila J.; Hajnal, Alen; Shiratuddin, Mohd F.; Szatmary, Gabriella
In this paper, we propose a novel approach of using interactive virtual environment technology in Vision Restoration Therapy caused by Traumatic Brain Injury. We called the new system Interactive Visuotactile Virtual Environment and it holds a promise of expanding the scope of already existing rehabilitation techniques. Traditional vision rehabilitation methods are based on passive psychophysical training procedures, and can last up to six months before any modest improvements can be seen in patients. A highly immersive and interactive virtual environment will allow the patient to practice everyday activities such as object identification and object manipulation through the use 3D motion sensoring handheld devices such data glove or the Nintendo Wiimote. Employing both perceptual and action components in the training procedures holds the promise of more efficient sensorimotor rehabilitation. Increased stimulation of visual and sensorimotor areas of the brain should facilitate a comprehensive recovery of visuomotor function by exploiting the plasticity of the central nervous system. Integrated with a motion tracking system and an eye tracking device, the interactive virtual environment allows for the creation and manipulation of a wide variety of stimuli, as well as real-time recording of hand-, eye- and body movements and coordination. The goal of the project is to design a cost-effective and efficient vision restoration system.
User's manual for Interactive Data Display System (IDDS)
NASA Technical Reports Server (NTRS)
Stegeman, James D.
1992-01-01
A computer graphics package for the visualization of three-dimensional flow in turbomachinery has been developed and tested. This graphics package, called IDDS (Interactive Data Display System), is able to 'unwrap' the volumetric data cone associated with a centrifugal compressor and display the results in an easy to understand two-dimensional manner. IDDS will provide the majority of the visualization and analysis capability for the ICE (Integrated CFD and Experiment) system. This document is intended to serve as a user's manual for IDDS in a stand-alone mode. Currently, IDDS is capable of plotting two- or three-dimensional simulation data, but work is under way to expand IDDS so that experimental data can be accepted, plotted, and compared with a simulation dataset of the actual hardware being tested.
Matsumiya, Kazumichi
2013-10-01
Current views on face perception assume that the visual system receives only visual facial signals. However, I show that the visual perception of faces is systematically biased by adaptation to a haptically explored face. Recently, face aftereffects (FAEs; the altered perception of faces after adaptation to a face) have been demonstrated not only in visual perception but also in haptic perception; therefore, I combined the two FAEs to examine whether the visual system receives face-related signals from the haptic modality. I found that adaptation to a haptically explored facial expression on a face mask produced a visual FAE for facial expression. This cross-modal FAE was not due to explicitly imaging a face, response bias, or adaptation to local features. Furthermore, FAEs transferred from vision to haptics. These results indicate that visual face processing depends on substrates adapted by haptic faces, which suggests that face processing relies on shared representation underlying cross-modal interactions.
Experimenter's laboratory for visualized interactive science
NASA Technical Reports Server (NTRS)
Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.
1992-01-01
The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.
Experimenter's laboratory for visualized interactive science
NASA Technical Reports Server (NTRS)
Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.
1993-01-01
The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperatable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color-shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.
Real-time Author Co-citation Mapping for Online Searching.
ERIC Educational Resources Information Center
Lin, Xia; White, Howard D.; Buzydlowski, Jan
2003-01-01
Describes the design and implementation of a prototype visualization system, AuthorLink, to enhance author searching. AuthorLink is based on author co-citation analysis and visualization mapping algorithms. AuthorLink produces interactive author maps in real time from a database of 1.26 million records supplied by the Institute for Scientific…
Salehi, Ali; Jimenez-Berni, Jose; Deery, David M; Palmer, Doug; Holland, Edward; Rozas-Larraondo, Pablo; Chapman, Scott C; Georgakopoulos, Dimitrios; Furbank, Robert T
2015-01-01
To our knowledge, there is no software or database solution that supports large volumes of biological time series sensor data efficiently and enables data visualization and analysis in real time. Existing solutions for managing data typically use unstructured file systems or relational databases. These systems are not designed to provide instantaneous response to user queries. Furthermore, they do not support rapid data analysis and visualization to enable interactive experiments. In large scale experiments, this behaviour slows research discovery, discourages the widespread sharing and reuse of data that could otherwise inform critical decisions in a timely manner and encourage effective collaboration between groups. In this paper we present SensorDB, a web based virtual laboratory that can manage large volumes of biological time series sensor data while supporting rapid data queries and real-time user interaction. SensorDB is sensor agnostic and uses web-based, state-of-the-art cloud and storage technologies to efficiently gather, analyse and visualize data. Collaboration and data sharing between different agencies and groups is thereby facilitated. SensorDB is available online at http://sensordb.csiro.au.
Urban Space Explorer: A Visual Analytics System for Urban Planning.
Karduni, Alireza; Cho, Isaac; Wessel, Ginette; Ribarsky, William; Sauda, Eric; Dou, Wenwen
2017-01-01
Understanding people's behavior is fundamental to many planning professions (including transportation, community development, economic development, and urban design) that rely on data about frequently traveled routes, places, and social and cultural practices. Based on the results of a practitioner survey, the authors designed Urban Space Explorer, a visual analytics system that utilizes mobile social media to enable interactive exploration of public-space-related activity along spatial, temporal, and semantic dimensions.
NASA Technical Reports Server (NTRS)
Biegel, Bryan A. (Technical Monitor); Sandstrom, Timothy A.; Henze, Chris; Levit, Creon
2003-01-01
This paper presents the hyperwall, a visualization cluster that uses coordinated visualizations for interactive exploration of multidimensional data and simulations. The system strongly leverages the human eye-brain system with a generous 7x7 array offlat panel LCD screens powered by a beowulf clustel: With each screen backed by a workstation class PC, graphic and compute intensive applications can be applied to a broad range of data. Navigational tools are presented that allow for investigation of high dimensional spaces.
Khomane, Kailas S; Bansal, Arvind K
2013-12-01
Markedly different mechanical behavior of powders of polymorphs, cocrystals, hydrate/anhydrate pairs, or structurally similar molecules has been attributed to the presence of active slip planes system in their crystal structures. Presence of slip planes in the crystal lattice allows easier slip under the applied compaction pressure. This allows greater plastic deformation of the powder and results into increased interparticulate bonding area and greater tensile strength of the compacts. Thus, based on this crystallographic feature, tableting performance of the active pharmaceutical ingredients can be predicted. Recently, we encountered a case where larger numbers of CH···O type interactions across the proposed slip planes hinder the slip and thus resist plastic deformation of the powder under the applied compaction pressure. Hence, attention must be given to these types of interactions while identifying slip planes by visualization method. Generally, slip planes are visualized as flat layers often strengthened by a two-dimensional hydrogen-bonding network within the layers or planes. No hydrogen bonding should exist between these layers to consider them as slip planes. Moreover, one should also check the presence of CH···O type interactions across these planes. Mercury software provides an option for visualization of these weak hydrogen bonding interactions. Hence, caution must be exercised while selecting appropriate solid form based on this crystallographic feature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Exploratory Climate Data Visualization and Analysis Using DV3D and UVCDAT
NASA Technical Reports Server (NTRS)
Maxwell, Thomas
2012-01-01
Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, NASA, in collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UVCOAT) consortium, is developing exploratory climate data analysis and visualization tools which provide data analysis capabilities for the Earth System Grid (ESG). This paper describes DV3D, a UV-COAT package that enables exploratory analysis of climate simulation and observation datasets. OV3D provides user-friendly interfaces for visualization and analysis of climate data at a level appropriate for scientists. It features workflow inte rfaces, interactive 40 data exploration, hyperwall and stereo visualization, automated provenance generation, and parallel task execution. DV30's integration with CDAT's climate data management system (COMS) and other climate data analysis tools provides a wide range of high performance climate data analysis operations. DV3D expands the scientists' toolbox by incorporating a suite of rich new exploratory visualization and analysis methods for addressing the complexity of climate datasets.
Placing Students at the Heart of the Iron Triangle and the Interaction Equivalence Theorem Models
ERIC Educational Resources Information Center
Lane, Andy
2014-01-01
A number of visual models have been proposed to help explain the interplay and interactions between specified components of higher education systems at different levels and to take account of emerging trends towards open education systems. At sector and institutional levels the notion of an iron triangle has been posited, linking firstly access,…
NASA Astrophysics Data System (ADS)
Lipsa, D.; Chaudhary, A.; Williams, D. N.; Doutriaux, C.; Jhaveri, S.
2017-12-01
Climate Data Analysis Tools (UV-CDAT, https://uvcdat.llnl.gov) is a data analysis and visualization software package developed at Lawrence Livermore National Laboratory and designed for climate scientists. Core components of UV-CDAT include: 1) Community Data Management System (CDMS) which provides I/O support and a data model for climate data;2) CDAT Utilities (GenUtil) that processes data using spatial and temporal averaging and statistic functions; and 3) Visualization Control System (VCS) for interactive visualization of the data. VCS is a Python visualization package primarily built for climate scientists, however, because of its generality and breadth of functionality, it can be a useful tool to other scientific applications. VCS provides 1D, 2D and 3D visualization functions such as scatter plot and line graphs for 1d data, boxfill, meshfill, isofill, isoline for 2d scalar data, vector glyphs and streamlines for 2d vector data and 3d_scalar and 3d_vector for 3d data. Specifically for climate data our plotting routines include projections, Skew-T plots and Taylor diagrams. While VCS provided a user-friendly API, the previous implementation of VCS relied on slow performing vector graphics (Cairo) backend which is suitable for smaller dataset and non-interactive graphics. LLNL and Kitware team has added a new backend to VCS that uses the Visualization Toolkit (VTK) as its visualization backend. VTK is one of the most popular open source, multi-platform scientific visualization library written in C++. Its use of OpenGL and pipeline processing architecture results in a high performant VCS library. Its multitude of available data formats and visualization algorithms results in easy adoption of new visualization methods and new data formats in VCS. In this presentation, we describe recent contributions to VCS that includes new visualization plots, continuous integration testing using Conda and CircleCI, tutorials and examples using Jupyter notebooks as well as upgrades that we are planning in the near future which will improve its ease of use and reliability and extend its capabilities.
High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL.
Stone, John E; Messmer, Peter; Sisneros, Robert; Schulten, Klaus
2016-05-01
Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications.
High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL
Stone, John E.; Messmer, Peter; Sisneros, Robert; Schulten, Klaus
2016-01-01
Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications. PMID:27747137
Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision.
Van Dromme, Ilse C; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter
2016-04-01
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.
Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision
Van Dromme, Ilse C.; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter
2016-01-01
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams. PMID:27082854
Simulating Visual Attention Allocation of Pilots in an Advanced Cockpit Environment
NASA Technical Reports Server (NTRS)
Frische, F.; Osterloh, J.-P.; Luedtke, A.
2011-01-01
This paper describes the results of experiments conducted with human line pilots and a cognitive pilot model during interaction with a new 40 Flight Management System (FMS). The aim of these experiments was to gather human pilot behavior data in order to calibrate the behavior of the model. Human behavior is mainly triggered by visual perception. Thus, the main aspect was to setup a profile of human pilots' visual attention allocation in a cockpit environment containing the new FMS. We first performed statistical analyses of eye tracker data and then compared our results to common results of familiar analyses in standard cockpit environments. The comparison has shown a significant influence of the new system on the visual performance of human pilots. Further on, analyses of the pilot models' visual performance have been performed. A comparison to human pilots' visual performance revealed important improvement potentials.
Metabolic rate and body size are linked with perception of temporal information☆
Healy, Kevin; McNally, Luke; Ruxton, Graeme D.; Cooper, Natalie; Jackson, Andrew L.
2013-01-01
Body size and metabolic rate both fundamentally constrain how species interact with their environment, and hence ultimately affect their niche. While many mechanisms leading to these constraints have been explored, their effects on the resolution at which temporal information is perceived have been largely overlooked. The visual system acts as a gateway to the dynamic environment and the relative resolution at which organisms are able to acquire and process visual information is likely to restrict their ability to interact with events around them. As both smaller size and higher metabolic rates should facilitate rapid behavioural responses, we hypothesized that these traits would favour perception of temporal change over finer timescales. Using critical flicker fusion frequency, the lowest frequency of flashing at which a flickering light source is perceived as constant, as a measure of the maximum rate of temporal information processing in the visual system, we carried out a phylogenetic comparative analysis of a wide range of vertebrates that supported this hypothesis. Our results have implications for the evolution of signalling systems and predator–prey interactions, and, combined with the strong influence that both body mass and metabolism have on a species' ecological niche, suggest that time perception may constitute an important and overlooked dimension of niche differentiation. PMID:24109147
Soares, Sandra C.; Maior, Rafael S.; Isbell, Lynne A.; Tomaz, Carlos; Nishijo, Hisao
2017-01-01
Primates are distinguished from other mammals by their heavy reliance on the visual sense, which occurred as a result of natural selection continually favoring those individuals whose visual systems were more responsive to challenges in the natural world. Here we describe two independent but also interrelated visual systems, one cortical and the other subcortical, both of which have been modified and expanded in primates for different functions. Available evidence suggests that while the cortical visual system mainly functions to give primates the ability to assess and adjust to fluid social and ecological environments, the subcortical visual system appears to function as a rapid detector and first responder when time is of the essence, i.e., when survival requires very quick action. We focus here on the subcortical visual system with a review of behavioral and neurophysiological evidence that demonstrates its sensitivity to particular, often emotionally charged, ecological and social stimuli, i.e., snakes and fearful and aggressive facial expressions in conspecifics. We also review the literature on subcortical involvement during another, less emotional, situation that requires rapid detection and response—visually guided reaching and grasping during locomotion—to further emphasize our argument that the subcortical visual system evolved as a rapid detector/first responder, a function that remains in place today. Finally, we argue that investigating deficits in this subcortical system may provide greater understanding of Parkinson's disease and Autism Spectrum disorders (ASD). PMID:28261046
Zhang, Baohong; Zhao, Shanrong; Neuhaus, Isaac
2018-05-03
We present a bioinformatics and systems biology visualization toolkit harmonizing real time interactive exploring and analyzing of big data, full-fledged customizing of look-n-feel, and producing multi-panel publication-ready figures in PDF format simultaneously. Source code and detailed user guides are available at http://canvasxpress.org, https://baohongz.github.io/canvasDesigner, and https://baohongz.github.io/canvasDesigner/demo_video.html. isaac.neuhaus@bms.com, baohong.zhang@pfizer.com, shanrong.zhao@pfizer.com. Supplementary materials are available at https://goo.gl/1uQygs.
Olechnovic, Kliment; Margelevicius, Mindaugas; Venclovas, Ceslovas
2011-03-01
We present Voroprot, an interactive cross-platform software tool that provides a unique set of capabilities for exploring geometric features of protein structure. Voroprot allows the construction and visualization of the Apollonius diagram (also known as the additively weighted Voronoi diagram), the Apollonius graph, protein alpha shapes, interatomic contact surfaces, solvent accessible surfaces, pockets and cavities inside protein structure. Voroprot is available for Windows, Linux and Mac OS X operating systems and can be downloaded from http://www.ibt.lt/bioinformatics/voroprot/.
Hanken, Taylor; Young, Sam; Smilowitz, Karen; Chiampas, George; Waskowski, David
2016-10-01
As one of the largest marathons worldwide, the Bank of America Chicago Marathon (BACCM; Chicago, Illinois USA) accumulates high volumes of data. Race organizers and engaged agencies need the ability to access specific data in real-time. This report details a data visualization system designed for the Chicago Marathon and establishes key principles for event management data visualization. The data visualization system allows for efficient data communication among the organizing agencies of Chicago endurance events. Agencies can observe the progress of the race throughout the day and obtain needed information, such as the number and location of runners on the course and current weather conditions. Implementation of the system can reduce time-consuming, face-to-face interactions between involved agencies by having key data streams in one location, streamlining communications with the purpose of improving race logistics, as well as medical preparedness and response. Hanken T , Young S , Smilowitz K , Chiampas G , Waskowski D . Developing a data visualization system for the Bank of America Chicago Marathon (Chicago, Illinois USA). Prehosp Disaster Med. 2016;31(5):572-577.
Piloting Systems Reset Path Integration Systems during Position Estimation
ERIC Educational Resources Information Center
Zhang, Lei; Mou, Weimin
2017-01-01
During locomotion, individuals can determine their positions with either idiothetic cues from movement (path integration systems) or visual landmarks (piloting systems). This project investigated how these 2 systems interact in determining humans' positions. In 2 experiments, participants studied the locations of 5 target objects and 1 single…
Dasgupta, Aritra; Lee, Joon-Yong; Wilson, Ryan; Lafrance, Robert A; Cramer, Nick; Cook, Kristin; Payne, Samuel
2017-01-01
Combining interactive visualization with automated analytical methods like statistics and data mining facilitates data-driven discovery. These visual analytic methods are beginning to be instantiated within mixed-initiative systems, where humans and machines collaboratively influence evidence-gathering and decision-making. But an open research question is that, when domain experts analyze their data, can they completely trust the outputs and operations on the machine-side? Visualization potentially leads to a transparent analysis process, but do domain experts always trust what they see? To address these questions, we present results from the design and evaluation of a mixed-initiative, visual analytics system for biologists, focusing on analyzing the relationships between familiarity of an analysis medium and domain experts' trust. We propose a trust-augmented design of the visual analytics system, that explicitly takes into account domain-specific tasks, conventions, and preferences. For evaluating the system, we present the results of a controlled user study with 34 biologists where we compare the variation of the level of trust across conventional and visual analytic mediums and explore the influence of familiarity and task complexity on trust. We find that despite being unfamiliar with a visual analytic medium, scientists seem to have an average level of trust that is comparable with the same in conventional analysis medium. In fact, for complex sense-making tasks, we find that the visual analytic system is able to inspire greater trust than other mediums. We summarize the implications of our findings with directions for future research on trustworthiness of visual analytic systems.
Role of the flocculus of the cerebellum in motor learning of the vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Highstein, S. M.
1998-01-01
Structure-function studies at the systems level are an effective method for understanding the relationship of the central nervous system to behavior. Motor learning or adaptation of the vestibulo-ocular reflex is a clear example wherein this approach has been productive. During a vestibulo-ocular reflex the brain converts a head velocity signal, transduced through the vestibular semicircular canals, into an eye movement command delivered to the extraocular muscles. If the viewed target remains on the fovea of the retina, the reflex is compensatory, and its gain, eye velocity/head velocity, is one. When the image of the viewed object slips across the retina, visual acuity decreases, and the gain of the reflex, which is no longer one, is plastically adapted or adjusted until retinal stability is restored. The anatomic substrate for this plasticity thus involves brain structures in which visual-vestibular interaction can potentially occur, as well as vestibular and visual sensory and oculomotor motor structures. Further, it has been known for many years that removal of the flocculus of the cerebellum permanently precludes further vestibulo-ocular reflex adaptation, demonstrating the involvement of the cerebellum in this behavior. Maekawa and Simpson (J Neurophysiol 1973;36: 649-66) discovered that one visual input to the flocculus involved the accessory optic system and the inferior olive. Ensuing work has demonstrated that the visual signals used to adapt the vestibulo-ocular reflex are transmitted by this accessory optic system to the flocculus and subsequently to brain stem structures involved in vestibulo-ocular reflex plasticity. Presently the inclusive list of anatomic sites involved in vestibulo-ocular reflex circuitry and its adaptive plasticity is small. Our laboratory continues to believe that this behavior should be caused by interactions within this small class of neurons. By studying each class of identified neuron and its interactions with others within the list, we hope to ultimately understand the mechanisms used by the brain in the expression of this behavior.
Teaching Human Poses Interactively to a Social Robot
Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A.
2013-01-01
The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics. PMID:24048336
Teaching human poses interactively to a social robot.
Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A
2013-09-17
The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics.
Visual phenomena induced by cosmic rays and accelerated particles
NASA Technical Reports Server (NTRS)
Tobias, C. A.; Budinger, T. F.; Leith, J. T.; Mamoon, A.; Chapman, P. K.
1972-01-01
Experiments, conducted at cyclotrons together with observations by Apollo astronauts, suggest with little doubt that cosmic nuclei interacting with the visual apparatus cause the phenomenon of light flashes seen on translunar and transearth coast over the past four Apollo missions. Other experiments with high and low energy neutrons and a helium ion beam suggest that slow protons and helium ions with a stopping power greater than 10 to the 8th power eV/gram sq cm can cause the phenomenon in the dark adapted eye. It was demonstrated that charged particles induced by neutrons and helium ions can stimulate the visual apparatus. Some approaches to understanding the long term mission effects of galactic cosmic nuclei interacting with man and his nervous system are outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, Anja, E-mail: hartmann@ipk-gatersleben.de; Schreiber, Falk; Martin-Luther-University Halle-Wittenberg, Halle
The characterization of biological systems with respect to their behavior and functionality based on versatile biochemical interactions is a major challenge. To understand these complex mechanisms at systems level modeling approaches are investigated. Different modeling formalisms allow metabolic models to be analyzed depending on the question to be solved, the biochemical knowledge and the availability of experimental data. Here, we describe a method for an integrative analysis of the structure and dynamics represented by qualitative and quantitative metabolic models. Using various formalisms, the metabolic model is analyzed from different perspectives. Determined structural and dynamic properties are visualized in the contextmore » of the metabolic model. Interaction techniques allow the exploration and visual analysis thereby leading to a broader understanding of the behavior and functionality of the underlying biological system. The System Biology Metabolic Model Framework (SBM{sup 2} – Framework) implements the developed method and, as an example, is applied for the integrative analysis of the crop plant potato.« less
Visual adaptation dominates bimodal visual-motor action adaptation
de la Rosa, Stephan; Ferstl, Ylva; Bülthoff, Heinrich H.
2016-01-01
A long standing debate revolves around the question whether visual action recognition primarily relies on visual or motor action information. Previous studies mainly examined the contribution of either visual or motor information to action recognition. Yet, the interaction of visual and motor action information is particularly important for understanding action recognition in social interactions, where humans often observe and execute actions at the same time. Here, we behaviourally examined the interaction of visual and motor action recognition processes when participants simultaneously observe and execute actions. We took advantage of behavioural action adaptation effects to investigate behavioural correlates of neural action recognition mechanisms. In line with previous results, we find that prolonged visual exposure (visual adaptation) and prolonged execution of the same action with closed eyes (non-visual motor adaptation) influence action recognition. However, when participants simultaneously adapted visually and motorically – akin to simultaneous execution and observation of actions in social interactions - adaptation effects were only modulated by visual but not motor adaptation. Action recognition, therefore, relies primarily on vision-based action recognition mechanisms in situations that require simultaneous action observation and execution, such as social interactions. The results suggest caution when associating social behaviour in social interactions with motor based information. PMID:27029781
Is visual image segmentation a bottom-up or an interactive process?
Vecera, S P; Farah, M J
1997-11-01
Visual image segmentation is the process by which the visual system groups features that are part of a single shape. Is image segmentation a bottom-up or an interactive process? In Experiments 1 and 2, we presented subjects with two overlapping shapes and asked them to determine whether two probed locations were on the same shape or on different shapes. The availability of top-down support was manipulated by presenting either upright or rotated letters. Subjects were fastest to respond when the shapes corresponded to familiar shapes--the upright letters. In Experiment 3, we used a variant of this segmentation task to rule out the possibility that subjects performed same/different judgments after segmentation and recognition of both letters. Finally, in Experiment 4, we ruled out the possibility that the advantage for upright letters was merely due to faster recognition of upright letters relative to rotated letters. The results suggested that the previous effects were not due to faster recognition of upright letters; stimulus familiarity influenced segmentation per se. The results are discussed in terms of an interactive model of visual image segmentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Song
CFD (Computational Fluid Dynamics) is a widely used technique in engineering design field. It uses mathematical methods to simulate and predict flow characteristics in a certain physical space. Since the numerical result of CFD computation is very hard to understand, VR (virtual reality) and data visualization techniques are introduced into CFD post-processing to improve the understandability and functionality of CFD computation. In many cases CFD datasets are very large (multi-gigabytes), and more and more interactions between user and the datasets are required. For the traditional VR application, the limitation of computing power is a major factor to prevent visualizing largemore » dataset effectively. This thesis presents a new system designing to speed up the traditional VR application by using parallel computing and distributed computing, and the idea of using hand held device to enhance the interaction between a user and VR CFD application as well. Techniques in different research areas including scientific visualization, parallel computing, distributed computing and graphical user interface designing are used in the development of the final system. As the result, the new system can flexibly be built on heterogeneous computing environment, dramatically shorten the computation time.« less
Fan, Zhencheng; Weng, Yitong; Chen, Guowen; Liao, Hongen
2017-07-01
Three-dimensional (3D) visualization of preoperative and intraoperative medical information becomes more and more important in minimally invasive surgery. We develop a 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display for surgeons to observe surgical target intuitively. The spatial information of regions of interest (ROIs) is captured by the mobile device and transferred to a server for further image processing. Triangular patches of intraoperative data with texture are calculated with a dimension-reduced triangulation algorithm and a projection-weighted mapping algorithm. A point cloud selection-based warm-start iterative closest point (ICP) algorithm is also developed for fusion of the reconstructed 3D intraoperative image and the preoperative image. The fusion images are rendered for 3D autostereoscopic display using integral videography (IV) technology. Moreover, 3D visualization of medical image corresponding to observer's viewing direction is updated automatically using mutual information registration method. Experimental results show that the spatial position error between the IV-based 3D autostereoscopic fusion image and the actual object was 0.38±0.92mm (n=5). The system can be utilized in telemedicine, operating education, surgical planning, navigation, etc. to acquire spatial information conveniently and display surgical information intuitively. Copyright © 2017 Elsevier Inc. All rights reserved.
He, Longjun; Ming, Xing; Liu, Qian
2014-04-01
With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. However, for direct interactive 3D visualization, which plays an important role in radiological diagnosis, the mobile device cannot provide a satisfactory quality of experience for radiologists. This paper developed a medical system that can get medical images from the picture archiving and communication system on the mobile device over the wireless network. In the proposed application, the mobile device got patient information and medical images through a proxy server connecting to the PACS server. Meanwhile, the proxy server integrated a range of 3D visualization techniques, including maximum intensity projection, multi-planar reconstruction and direct volume rendering, to providing shape, brightness, depth and location information generated from the original sectional images for radiologists. Furthermore, an algorithm that changes remote render parameters automatically to adapt to the network status was employed to improve the quality of experience. Finally, performance issues regarding the remote 3D visualization of the medical images over the wireless network of the proposed application were also discussed. The results demonstrated that this proposed medical application could provide a smooth interactive experience in the WLAN and 3G networks.
cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets
Le Muzic, Mathieu; Autin, Ludovic; Parulek, Julius; Viola, Ivan
2017-01-01
In this article we introduce cellVIEW, a new system to interactively visualize large biomolecular datasets on the atomic level. Our tool is unique and has been specifically designed to match the ambitions of our domain experts to model and interactively visualize structures comprised of several billions atom. The cellVIEW system integrates acceleration techniques to allow for real-time graphics performance of 60 Hz display rate on datasets representing large viruses and bacterial organisms. Inspired by the work of scientific illustrators, we propose a level-of-detail scheme which purpose is two-fold: accelerating the rendering and reducing visual clutter. The main part of our datasets is made out of macromolecules, but it also comprises nucleic acids strands which are stored as sets of control points. For that specific case, we extend our rendering method to support the dynamic generation of DNA strands directly on the GPU. It is noteworthy that our tool has been directly implemented inside a game engine. We chose to rely on a third party engine to reduce software development work-load and to make bleeding-edge graphics techniques more accessible to the end-users. To our knowledge cellVIEW is the only suitable solution for interactive visualization of large bimolecular landscapes on the atomic level and is freely available to use and extend. PMID:29291131
Effects of Visual Cues and Self-Explanation Prompts: Empirical Evidence in a Multimedia Environment
ERIC Educational Resources Information Center
Lin, Lijia; Atkinson, Robert K.; Savenye, Wilhelmina C.; Nelson, Brian C.
2016-01-01
The purpose of this study was to investigate the impacts of visual cues and different types of self-explanation prompts on learning, cognitive load, and intrinsic motivation in an interactive multimedia environment that was designed to deliver a computer-based lesson about the human cardiovascular system. A total of 126 college students were…
A Visual Analytics Approach for Station-Based Air Quality Data
Du, Yi; Ma, Cuixia; Wu, Chao; Xu, Xiaowei; Guo, Yike; Zhou, Yuanchun; Li, Jianhui
2016-01-01
With the deployment of multi-modality and large-scale sensor networks for monitoring air quality, we are now able to collect large and multi-dimensional spatio-temporal datasets. For these sensed data, we present a comprehensive visual analysis approach for air quality analysis. This approach integrates several visual methods, such as map-based views, calendar views, and trends views, to assist the analysis. Among those visual methods, map-based visual methods are used to display the locations of interest, and the calendar and the trends views are used to discover the linear and periodical patterns. The system also provides various interaction tools to combine the map-based visualization, trends view, calendar view and multi-dimensional view. In addition, we propose a self-adaptive calendar-based controller that can flexibly adapt the changes of data size and granularity in trends view. Such a visual analytics system would facilitate big-data analysis in real applications, especially for decision making support. PMID:28029117
A Visual Analytics Approach for Station-Based Air Quality Data.
Du, Yi; Ma, Cuixia; Wu, Chao; Xu, Xiaowei; Guo, Yike; Zhou, Yuanchun; Li, Jianhui
2016-12-24
With the deployment of multi-modality and large-scale sensor networks for monitoring air quality, we are now able to collect large and multi-dimensional spatio-temporal datasets. For these sensed data, we present a comprehensive visual analysis approach for air quality analysis. This approach integrates several visual methods, such as map-based views, calendar views, and trends views, to assist the analysis. Among those visual methods, map-based visual methods are used to display the locations of interest, and the calendar and the trends views are used to discover the linear and periodical patterns. The system also provides various interaction tools to combine the map-based visualization, trends view, calendar view and multi-dimensional view. In addition, we propose a self-adaptive calendar-based controller that can flexibly adapt the changes of data size and granularity in trends view. Such a visual analytics system would facilitate big-data analysis in real applications, especially for decision making support.
SSC San Diego Biennial Review 2003. Command and Control
2003-01-01
systems. IMAT systems use scientific visualizations, three- dimensional graphics, and animations to illustrate com- plex physical interactions in mission...Again, interactive animations are used to explain underlying concepts. For exam- ple, for principles of beamforming using a phased array, a three...solve complex problems. Experts type natural language text, use mouse clicks to provide hints for explanation generation, and use mouse clicks to
NASA Astrophysics Data System (ADS)
Whitford, Dennis J.
2002-05-01
This paper, the second of a two-part series, introduces undergraduate students to ocean wave forecasting using interactive computer-generated visualization and animation. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Fortunately, the introduction of computers in the geosciences provides a tool for addressing this problem. Computer-generated visualization and animation, accompanied by oral explanation, have been shown to be a pedagogical improvement to more traditional methods of instruction. Cartographic science and other disciplines using geographical information systems have been especially aggressive in pioneering the use of visualization and animation, whereas oceanography has not. This paper will focus on the teaching of ocean swell wave forecasting, often considered a difficult oceanographic topic due to the mathematics and physics required, as well as its interdependence on time and space. Several MATLAB ® software programs are described and offered to visualize and animate group speed, frequency dispersion, angular dispersion, propagation, and wave height forecasting of deep water ocean swell waves. Teachers may use these interactive visualizations and animations without requiring an extensive background in computer programming.
Ashtari, Manzar; Zhang, Hui; Cook, Philip A; Cyckowski, Laura L; Shindler, Kenneth S; Marshall, Kathleen A; Aravand, Puya; Vossough, Arastoo; Gee, James C; Maguire, Albert M; Baker, Chris I; Bennett, Jean
2015-07-15
Much of our knowledge of the mechanisms underlying plasticity in the visual cortex in response to visual impairment, vision restoration, and environmental interactions comes from animal studies. We evaluated human brain plasticity in a group of patients with Leber's congenital amaurosis (LCA), who regained vision through gene therapy. Using non-invasive multimodal neuroimaging methods, we demonstrated that reversing blindness with gene therapy promoted long-term structural plasticity in the visual pathways emanating from the treated retina of LCA patients. The data revealed improvements and normalization along the visual fibers corresponding to the site of retinal injection of the gene therapy vector carrying the therapeutic gene in the treated eye compared to the visual pathway for the untreated eye of LCA patients. After gene therapy, the primary visual pathways (for example, geniculostriate fibers) in the treated retina were similar to those of sighted control subjects, whereas the primary visual pathways of the untreated retina continued to deteriorate. Our results suggest that visual experience, enhanced by gene therapy, may be responsible for the reorganization and maturation of synaptic connectivity in the visual pathways of the treated eye in LCA patients. The interactions between the eye and the brain enabled improved and sustained long-term visual function in patients with LCA after gene therapy. Copyright © 2015, American Association for the Advancement of Science.
The Crisis of Distance Learning--A Dangerous Opportunity.
ERIC Educational Resources Information Center
Hughes, Abigail L.
Focusing on interactive television systems that provide both audio and visual online communication between and among all sites, this paper begins by describing and analyzing a sampling of data on existing programs. The characteristics of existing interactive television instructional programs are described, including course offerings (primarily…
NASA Astrophysics Data System (ADS)
Rahman, Md M.; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.
2015-03-01
This paper presents a novel approach to biomedical image retrieval by mapping image regions to local concepts and represent images in a weighted entropy-based concept feature space. The term concept refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist user in interactively select a Region-Of-Interest (ROI) and search for similar image ROIs. Further, a spatial verification step is used as a post-processing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval, is validated through experiments on a data set of 450 lung CT images extracted from journal articles from four different collections.
BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory
Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David
2017-01-01
Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution, and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, EM fields are high-dimensional, making them time-consuming to simulate, and difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system. PMID:29170738
Knowledge Interaction Design for Creative Knowledge Work
NASA Astrophysics Data System (ADS)
Nakakoji, Kumiyo; Yamamoto, Yasuhiro
This paper describes our approach for the development of application systems for creative knowledge work, particularly for early stages of information design tasks. Being a cognitive tool serving as a means of externalization, an application system affects how the user is engaged in the creative process through its visual interaction design. Knowledge interaction design described in this paper is a framework where a set of application systems for different information design domains are developed based on an interaction model, which is designed for a particular model of a thinking process. We have developed two sets of application systems using the knowledge interaction design framework: one includes systems for linear information design, such as writing, movie-editing, and video-analysis; the other includes systems for network information design, such as file-system navigation and hypertext authoring. Our experience shows that the resulting systems encourage users to follow a certain cognitive path through graceful user experience.
A visually guided collision warning system with a neuromorphic architecture.
Okuno, Hirotsugu; Yagi, Tetsuya
2008-12-01
We have designed a visually guided collision warning system with a neuromorphic architecture, employing an algorithm inspired by the visual nervous system of locusts. The system was implemented with mixed analog-digital integrated circuits consisting of an analog resistive network and field-programmable gate array (FPGA) circuits. The resistive network processes the interaction between the laterally spreading excitatory and inhibitory signals instantaneously, which is essential for real-time computation of collision avoidance with a low power consumption and a compact hardware. The system responded selectively to approaching objects of simulated movie images at close range. The system was, however, confronted with serious noise problems due to the vibratory ego-motion, when it was installed in a mobile miniature car. To overcome this problem, we developed the algorithm, which is also installable in FPGA circuits, in order for the system to respond robustly during the ego-motion.
ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.
Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y
2008-08-12
New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies.
Applying Open Source Game Engine for Building Visual Simulation Training System of Fire Fighting
NASA Astrophysics Data System (ADS)
Yuan, Diping; Jin, Xuesheng; Zhang, Jin; Han, Dong
There's a growing need for fire departments to adopt a safe and fair method of training to ensure that the firefighting commander is in a position to manage a fire incident. Visual simulation training systems, with their ability to replicate and interact with virtual fire scenarios through the use of computer graphics or VR, become an effective and efficient method for fire ground education. This paper describes the system architecture and functions of a visual simulated training system of fire fighting on oil storage, which adopting Delat3D, a open source game and simulation engine, to provide realistic 3D views. It presents that using open source technology provides not only the commercial-level 3D effects but also a great reduction of cost.
Geometric quantification of features in large flow fields.
Kendall, Wesley; Huang, Jian; Peterka, Tom
2012-01-01
Interactive exploration of flow features in large-scale 3D unsteady-flow data is one of the most challenging visualization problems today. To comprehensively explore the complex feature spaces in these datasets, a proposed system employs a scalable framework for investigating a multitude of characteristics from traced field lines. This capability supports the examination of various neighborhood-based geometric attributes in concert with other scalar quantities. Such an analysis wasn't previously possible because of the large computational overhead and I/O requirements. The system integrates visual analytics methods by letting users procedurally and interactively describe and extract high-level flow features. An exploration of various phenomena in a large global ocean-modeling simulation demonstrates the approach's generality and expressiveness as well as its efficacy.
Experiences with hypercube operating system instrumentation
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Rudolph, David C.
1989-01-01
The difficulties in conceptualizing the interactions among a large number of processors make it difficult both to identify the sources of inefficiencies and to determine how a parallel program could be made more efficient. This paper describes an instrumentation system that can trace the execution of distributed memory parallel programs by recording the occurrence of parallel program events. The resulting event traces can be used to compile summary statistics that provide a global view of program performance. In addition, visualization tools permit the graphic display of event traces. Visual presentation of performance data is particularly useful, indeed, necessary for large-scale parallel computers; the enormous volume of performance data mandates visual display.
mHealth Visual Discovery Dashboard.
Fang, Dezhi; Hohman, Fred; Polack, Peter; Sarker, Hillol; Kahng, Minsuk; Sharmin, Moushumi; al'Absi, Mustafa; Chau, Duen Horng
2017-09-01
We present Discovery Dashboard, a visual analytics system for exploring large volumes of time series data from mobile medical field studies. Discovery Dashboard offers interactive exploration tools and a data mining motif discovery algorithm to help researchers formulate hypotheses, discover trends and patterns, and ultimately gain a deeper understanding of their data. Discovery Dashboard emphasizes user freedom and flexibility during the data exploration process and enables researchers to do things previously challenging or impossible to do - in the web-browser and in real time. We demonstrate our system visualizing data from a mobile sensor study conducted at the University of Minnesota that included 52 participants who were trying to quit smoking.
mHealth Visual Discovery Dashboard
Fang, Dezhi; Hohman, Fred; Polack, Peter; Sarker, Hillol; Kahng, Minsuk; Sharmin, Moushumi; al'Absi, Mustafa; Chau, Duen Horng
2018-01-01
We present Discovery Dashboard, a visual analytics system for exploring large volumes of time series data from mobile medical field studies. Discovery Dashboard offers interactive exploration tools and a data mining motif discovery algorithm to help researchers formulate hypotheses, discover trends and patterns, and ultimately gain a deeper understanding of their data. Discovery Dashboard emphasizes user freedom and flexibility during the data exploration process and enables researchers to do things previously challenging or impossible to do — in the web-browser and in real time. We demonstrate our system visualizing data from a mobile sensor study conducted at the University of Minnesota that included 52 participants who were trying to quit smoking. PMID:29354812
FuryExplorer: visual-interactive exploration of horse motion capture data
NASA Astrophysics Data System (ADS)
Wilhelm, Nils; Vögele, Anna; Zsoldos, Rebeka; Licka, Theresia; Krüger, Björn; Bernard, Jürgen
2015-01-01
The analysis of equine motion has a long tradition in the past of mankind. Equine biomechanics aims at detecting characteristics of horses indicative of good performance. Especially, veterinary medicine gait analysis plays an important role in diagnostics and in the emerging research of long-term effects of athletic exercises. More recently, the incorporation of motion capture technology contributed to an easier and faster analysis, with a trend from mere observation of horses towards the analysis of multivariate time-oriented data. However, due to the novelty of this topic being raised within an interdisciplinary context, there is yet a lack of visual-interactive interfaces to facilitate time series data analysis and information discourse for the veterinary and biomechanics communities. In this design study, we bring visual analytics technology into the respective domains, which, to our best knowledge, was never approached before. Based on requirements developed in the domain characterization phase, we present a visual-interactive system for the exploration of horse motion data. The system provides multiple views which enable domain experts to explore frequent poses and motions, but also to drill down to interesting subsets, possibly containing unexpected patterns. We show the applicability of the system in two exploratory use cases, one on the comparison of different gait motions, and one on the analysis of lameness recovery. Finally, we present the results of a summative user study conducted in the environment of the domain experts. The overall outcome was a significant improvement in effectiveness and efficiency in the analytical workflow of the domain experts.
Interactive Visual Analysis within Dynamic Ocean Models
NASA Astrophysics Data System (ADS)
Butkiewicz, T.
2012-12-01
The many observation and simulation based ocean models available today can provide crucial insights for all fields of marine research and can serve as valuable references when planning data collection missions. However, the increasing size and complexity of these models makes leveraging their contents difficult for end users. Through a combination of data visualization techniques, interactive analysis tools, and new hardware technologies, the data within these models can be made more accessible to domain scientists. We present an interactive system that supports exploratory visual analysis within large-scale ocean flow models. The currents and eddies within the models are illustrated using effective, particle-based flow visualization techniques. Stereoscopic displays and rendering methods are employed to ensure that the user can correctly perceive the complex 3D structures of depth-dependent flow patterns. Interactive analysis tools are provided which allow the user to experiment through the introduction of their customizable virtual dye particles into the models to explore regions of interest. A multi-touch interface provides natural, efficient interaction, with custom multi-touch gestures simplifying the otherwise challenging tasks of navigating and positioning tools within a 3D environment. We demonstrate the potential applications of our visual analysis environment with two examples of real-world significance: Firstly, an example of using customized particles with physics-based behaviors to simulate pollutant release scenarios, including predicting the oil plume path for the 2010 Deepwater Horizon oil spill disaster. Secondly, an interactive tool for plotting and revising proposed autonomous underwater vehicle mission pathlines with respect to the surrounding flow patterns predicted by the model; as these survey vessels have extremely limited energy budgets, designing more efficient paths allows for greater survey areas.
JackIn Head: Immersive Visual Telepresence System with Omnidirectional Wearable Camera.
Kasahara, Shunichi; Nagai, Shohei; Rekimoto, Jun
2017-03-01
Sharing one's own immersive experience over the Internet is one of the ultimate goals of telepresence technology. In this paper, we present JackIn Head, a visual telepresence system featuring an omnidirectional wearable camera with image motion stabilization. Spherical omnidirectional video footage taken around the head of a local user is stabilized and then broadcast to others, allowing remote users to explore the immersive visual environment independently of the local user's head direction. We describe the system design of JackIn Head and report the evaluation results of real-time image stabilization and alleviation of cybersickness. Then, through an exploratory observation study, we investigate how individuals can remotely interact, communicate with, and assist each other with our system. We report our observation and analysis of inter-personal communication, demonstrating the effectiveness of our system in augmenting remote collaboration.
Porting the AVS/Express scientific visualization software to Cray XT4.
Leaver, George W; Turner, Martin J; Perrin, James S; Mummery, Paul M; Withers, Philip J
2011-08-28
Remote scientific visualization, where rendering services are provided by larger scale systems than are available on the desktop, is becoming increasingly important as dataset sizes increase beyond the capabilities of desktop workstations. Uptake of such services relies on access to suitable visualization applications and the ability to view the resulting visualization in a convenient form. We consider five rules from the e-Science community to meet these goals with the porting of a commercial visualization package to a large-scale system. The application uses message-passing interface (MPI) to distribute data among data processing and rendering processes. The use of MPI in such an interactive application is not compatible with restrictions imposed by the Cray system being considered. We present details, and performance analysis, of a new MPI proxy method that allows the application to run within the Cray environment yet still support MPI communication required by the application. Example use cases from materials science are considered.
A massively asynchronous, parallel brain
Zeki, Semir
2015-01-01
Whether the visual brain uses a parallel or a serial, hierarchical, strategy to process visual signals, the end result appears to be that different attributes of the visual scene are perceived asynchronously—with colour leading form (orientation) by 40 ms and direction of motion by about 80 ms. Whatever the neural root of this asynchrony, it creates a problem that has not been properly addressed, namely how visual attributes that are perceived asynchronously over brief time windows after stimulus onset are bound together in the longer term to give us a unified experience of the visual world, in which all attributes are apparently seen in perfect registration. In this review, I suggest that there is no central neural clock in the (visual) brain that synchronizes the activity of different processing systems. More likely, activity in each of the parallel processing-perceptual systems of the visual brain is reset independently, making of the brain a massively asynchronous organ, just like the new generation of more efficient computers promise to be. Given the asynchronous operations of the brain, it is likely that the results of activities in the different processing-perceptual systems are not bound by physiological interactions between cells in the specialized visual areas, but post-perceptually, outside the visual brain. PMID:25823871
Spatial Visualization in Introductory Geology Courses
NASA Astrophysics Data System (ADS)
Reynolds, S. J.
2004-12-01
Visualization is critical to solving most geologic problems, which involve events and processes across a broad range of space and time. Accordingly, spatial visualization is an essential part of undergraduate geology courses. In such courses, students learn to visualize three-dimensional topography from two-dimensional contour maps, to observe landscapes and extract clues about how that landscape formed, and to imagine the three-dimensional geometries of geologic structures and how these are expressed on the Earth's surface or on geologic maps. From such data, students reconstruct the geologic history of areas, trying to visualize the sequence of ancient events that formed a landscape. To understand the role of visualization in student learning, we developed numerous interactive QuickTime Virtual Reality animations to teach students the most important visualization skills and approaches. For topography, students can spin and tilt contour-draped, shaded-relief terrains, flood virtual landscapes with water, and slice into terrains to understand profiles. To explore 3D geometries of geologic structures, they interact with virtual blocks that can be spun, sliced into, faulted, and made partially transparent to reveal internal structures. They can tilt planes to see how they interact with topography, and spin and tilt geologic maps draped over digital topography. The GeoWall system allows students to see some of these materials in true stereo. We used various assessments to research the effectiveness of these materials and to document visualization strategies students use. Our research indicates that, compared to control groups, students using such materials improve more in their geologic visualization abilities and in their general visualization abilities as measured by a standard spatial visualization test. Also, females achieve greater gains, improving their general visualization abilities to the same level as males. Misconceptions that students carry obstruct learning, but are largely undocumented. Many students, for example, cannot visualize that the landscape in which rock layers were deposited was different than the landscape in which the rocks are exposed today, even in the Grand Canyon.
How virtual reality works: illusions of vision in "real" and virtual environments
NASA Astrophysics Data System (ADS)
Stark, Lawrence W.
1995-04-01
Visual illusions abound in normal vision--illusions of clarity and completeness, of continuity in time and space, of presence and vivacity--and are part and parcel of the visual world inwhich we live. These illusions are discussed in terms of the human visual system, with its high- resolution fovea, moved from point to point in the visual scene by rapid saccadic eye movements (EMs). This sampling of visual information is supplemented by a low-resolution, wide peripheral field of view, especially sensitive to motion. Cognitive-spatial models controlling perception, imagery, and 'seeing,' also control the EMs that shift the fovea in the Scanpath mode. These illusions provide for presence, the sense off being within an environment. They equally well lead to 'Telepresence,' the sense of being within a virtual display, especially if the operator is intensely interacting within an eye-hand and head-eye human-machine interface that provides for congruent visual and motor frames of reference. Interaction, immersion, and interest compel telepresence; intuitive functioning and engineered information flows can optimize human adaptation to the artificial new world of virtual reality, as virtual reality expands into entertainment, simulation, telerobotics, and scientific visualization and other professional work.
A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects
NASA Technical Reports Server (NTRS)
Trase, Kathryn; Fink, Eric
2014-01-01
Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information
Disentangling the intragroup HI in Compact Groups of galaxies by means of X3D visualization
NASA Astrophysics Data System (ADS)
Verdes-Montenegro, Lourdes; Vogt, Frederic; Aubery, Claire; Duret, Laetitie; Garrido, Julián; Sánchez, Susana; Yun, Min S.; Borthakur, Sanchayeeta; Hess, Kelley; Cluver, Michelle; Del Olmo, Ascensión; Perea, Jaime
2017-03-01
As an extreme kind of environment, Hickson Compact groups (HCGs) have shown to be very complex systems. HI-VLA observations revealed an intrincated network of HI tails and bridges, tracing pre-processing through extreme tidal interactions. We found HCGs to show a large HI deficiency supporting an evolutionary sequence where gas-rich groups transform via tidal interactions and ISM (interstellar medium) stripping into gas-poor systems. We detected as well a diffuse HI component in the groups, increasing with evolutionary phase, although with uncertain distribution. The complex net of detected HI as observed with the VLA seems hence so puzzling as the missing one. In this talk we revisit the existing VLA information on the HI distribution and kinematics of HCGs by means of X3D visualization. X3D constitutes a powerful tool to extract the most from HI data cubes and a mean of simplifying and easing the access to data visualization and publication via three-dimensional (3-D) diagrams.
Game-Based Evacuation Drill Using Augmented Reality and Head-Mounted Display
ERIC Educational Resources Information Center
Kawai, Junya; Mitsuhara, Hiroyuki; Shishibori, Masami
2016-01-01
Purpose: Evacuation drills should be more realistic and interactive. Focusing on situational and audio-visual realities and scenario-based interactivity, the authors have developed a game-based evacuation drill (GBED) system that presents augmented reality (AR) materials on tablet computers. The paper's current research purpose is to improve…
ERIC Educational Resources Information Center
Chen, Ching-chih
1991-01-01
Describes compact disc interactive (CD-I) as a multimedia home entertainment system that combines audio, visual, text, graphic, and interactive capabilities. Full-screen video and full-motion video (FMV) are explained, hardware for FMV decoding is described, software is briefly discussed, and CD-I titles planned for future production are listed.…
FPV: fast protein visualization using Java 3D.
Can, Tolga; Wang, Yujun; Wang, Yuan-Fang; Su, Jianwen
2003-05-22
Many tools have been developed to visualize protein structures. Tools that have been based on Java 3D((TM)) are compatible among different systems and they can be run remotely through web browsers. However, using Java 3D for visualization has some performance issues with it. The primary concerns about molecular visualization tools based on Java 3D are in their being slow in terms of interaction speed and in their inability to load large molecules. This behavior is especially apparent when the number of atoms to be displayed is huge, or when several proteins are to be displayed simultaneously for comparison. In this paper we present techniques for organizing a Java 3D scene graph to tackle these problems. We have developed a protein visualization system based on Java 3D and these techniques. We demonstrate the effectiveness of the proposed method by comparing the visualization component of our system with two other Java 3D based molecular visualization tools. In particular, for van der Waals display mode, with the efficient organization of the scene graph, we could achieve up to eight times improvement in rendering speed and could load molecules three times as large as the previous systems could. EPV is freely available with source code at the following URL: http://www.cs.ucsb.edu/~tcan/fpv/
Falcon: A Temporal Visual Analysis System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A.
2016-09-05
Flexible visible exploration of long, high-resolution time series from multiple sensor streams is a challenge in several domains. Falcon is a visual analytics approach that helps researchers acquire a deep understanding of patterns in log and imagery data. Falcon allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations with multiple levels of detail. These capabilities are applicable to the analysis of any quantitative time series.
When the display matters: A multifaceted perspective on 3D geovisualizations
NASA Astrophysics Data System (ADS)
Juřík, Vojtěch; Herman, Lukáš; Šašinka, Čeněk; Stachoň, Zdeněk; Chmelík, Jiří
2017-04-01
This study explores the influence of stereoscopic (real) 3D and monoscopic (pseudo) 3D visualization on the human ability to reckon altitude information in noninteractive and interactive 3D geovisualizations. A two phased experiment was carried out to compare the performance of two groups of participants, one of them using the real 3D and the other one pseudo 3D visualization of geographical data. A homogeneous group of 61 psychology students, inexperienced in processing of geographical data, were tested with respect to their efficiency at identifying altitudes of the displayed landscape. The first phase of the experiment was designed as non-interactive, where static 3D visual displayswere presented; the second phase was designed as interactive and the participants were allowed to explore the scene by adjusting the position of the virtual camera. The investigated variables included accuracy at altitude identification, time demands and the amount of the participant's motor activity performed during interaction with geovisualization. The interface was created using a Motion Capture system, Wii Remote Controller, widescreen projection and the passive Dolby 3D technology (for real 3D vision). The real 3D visual display was shown to significantly increase the accuracy of the landscape altitude identification in non-interactive tasks. As expected, in the interactive phase there were differences in accuracy flattened out between groups due to the possibility of interaction, with no other statistically significant differences in completion times or motor activity. The increased number of omitted objects in real 3D condition was further subjected to an exploratory analysis.
DataHub: Science data management in support of interactive exploratory analysis
NASA Technical Reports Server (NTRS)
Handley, Thomas H., Jr.; Rubin, Mark R.
1993-01-01
The DataHub addresses four areas of significant needs: scientific visualization and analysis; science data management; interactions in a distributed, heterogeneous environment; and knowledge-based assistance for these functions. The fundamental innovation embedded within the DataHub is the integration of three technologies, viz. knowledge-based expert systems, science visualization, and science data management. This integration is based on a concept called the DataHub. With the DataHub concept, science investigators are able to apply a more complete solution to all nodes of a distributed system. Both computational nodes and interactives nodes are able to effectively and efficiently use the data services (access, retrieval, update, etc), in a distributed, interdisciplinary information system in a uniform and standard way. This allows the science investigators to concentrate on their scientific endeavors, rather than to involve themselves in the intricate technical details of the systems and tools required to accomplish their work. Thus, science investigators need not be programmers. The emphasis on the definition and prototyping of system elements with sufficient detail to enable data analysis and interpretation leading to information. The DataHub includes all the required end-to-end components and interfaces to demonstrate the complete concept.
DataHub - Science data management in support of interactive exploratory analysis
NASA Technical Reports Server (NTRS)
Handley, Thomas H., Jr.; Rubin, Mark R.
1993-01-01
DataHub addresses four areas of significant need: scientific visualization and analysis; science data management; interactions in a distributed, heterogeneous environment; and knowledge-based assistance for these functions. The fundamental innovation embedded within the DataHub is the integration of three technologies, viz. knowledge-based expert systems, science visualization, and science data management. This integration is based on a concept called the DataHub. With the DataHub concept, science investigators are able to apply a more complete solution to all nodes of a distributed system. Both computational nodes and interactive nodes are able to effectively and efficiently use the data services (access, retrieval, update, etc.) in a distributed, interdisciplinary information system in a uniform and standard way. This allows the science investigators to concentrate on their scientific endeavors, rather than to involve themselves in the intricate technical details of the systems and tools required to accomplish their work. Thus, science investigators need not be programmers. The emphasis is on the definition and prototyping of system elements with sufficient detail to enable data analysis and interpretation leading to information. The DataHub includes all the required end-to-end components and interfaces to demonstrate the complete concept.
Intelligent Visual Input: A Graphical Method for Rapid Entry of Patient-Specific Data
Bergeron, Bryan P.; Greenes, Robert A.
1987-01-01
Intelligent Visual Input (IVI) provides a rapid, graphical method of data entry for both expert system interaction and medical record keeping purposes. Key components of IVI include: a high-resolution graphic display; an interface supportive of rapid selection, i.e., one utilizing a mouse or light pen; algorithm simplification modules; and intelligent graphic algorithm expansion modules. A prototype IVI system, designed to facilitate entry of physical exam findings, is used to illustrates the potential advantages of this approach.
Mood Swings: An Affective Interactive Art System
NASA Astrophysics Data System (ADS)
Bialoskorski, Leticia S. S.; Westerink, Joyce H. D. M.; van den Broek, Egon L.
The progress in the field of affective computing enables the realization of affective consumer products, affective games, and affective art. This paper describes the affective interactive art system Mood Swings, which interprets and visualizes affect expressed by a person. Mood Swings is founded on the integration of a framework for affective movements and a color model. This enables Mood Swings to recognize affective movement characteristics as expressed by a person and display a color that matches the expressed emotion. With that, a unique interactive system is introduced, which can be considered as art, a game, or a combination of both.
Spatial Paradigm for Information Retrieval and Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
The SPIRE system consists of software for visual analysis of primarily text based information sources. This technology enables the content analysis of text documents without reading all the documents. It employs several algorithms for text and word proximity analysis. It identifies the key themes within the text documents. From this analysis, it projects the results onto a visual spatial proximity display (Galaxies or Themescape) where items (documents and/or themes) visually close to each other are known to have content which is close to each other. Innovative interaction techniques then allow for dynamic visual analysis of large text based information spaces.
SPIRE1.03. Spatial Paradigm for Information Retrieval and Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, K.J.; Bohn, S.; Crow, V.
The SPIRE system consists of software for visual analysis of primarily text based information sources. This technology enables the content analysis of text documents without reading all the documents. It employs several algorithms for text and word proximity analysis. It identifies the key themes within the text documents. From this analysis, it projects the results onto a visual spatial proximity display (Galaxies or Themescape) where items (documents and/or themes) visually close to each other are known to have content which is close to each other. Innovative interaction techniques then allow for dynamic visual analysis of large text based information spaces.
An Exploratory Study of Interactivity in Visualization Tools: "Flow" of Interaction
ERIC Educational Resources Information Center
Liang, Hai-Ning; Parsons, Paul C.; Wu, Hsien-Chi; Sedig, Kamran
2010-01-01
This paper deals with the design of interactivity in visualization tools. There are several factors that can be used to guide the analysis and design of the interactivity of these tools. One such factor is flow, which is concerned with the duration of interaction with visual representations of information--interaction being the actions performed…
Visualization Co-Processing of a CFD Simulation
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
1999-01-01
OVERFLOW, a widely used CFD simulation code, is combined with a visualization system, pV3, to experiment with an environment for simulation/visualization co-processing on a SGI Origin 2000 computer(O2K) system. The shared memory version of the solver is used with the O2K 'pfa' preprocessor invoked to automatically discover parallelism in the source code. No other explicit parallelism is enabled. In order to study the scaling and performance of the visualization co-processing system, sample runs are made with different processor groups in the range of 1 to 254 processors. The data exchange between the visualization system and the simulation system is rapid enough for user interactivity when the problem size is small. This shared memory version of OVERFLOW, with minimal parallelization, does not scale well to an increasing number of available processors. The visualization task takes about 18 to 30% of the total processing time and does not appear to be a major contributor to the poor scaling. Improper load balancing and inter-processor communication overhead are contributors to this poor performance. Work is in progress which is aimed at obtaining improved parallel performance of the solver and removing the limitations of serial data transfer to pV3 by examining various parallelization/communication strategies, including the use of the explicit message passing.
A Global System for Transportation Simulation and Visualization in Emergency Evacuation Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei; Liu, Cheng; Thomas, Neil
2015-01-01
Simulation-based studies are frequently used for evacuation planning and decision making processes. Given the transportation systems complexity and data availability, most evacuation simulation models focus on certain geographic areas. With routine improvement of OpenStreetMap road networks and LandScanTM global population distribution data, we present WWEE, a uniform system for world-wide emergency evacuation simulations. WWEE uses unified data structure for simulation inputs. It also integrates a super-node trip distribution model as the default simulation parameter to improve the system computational performance. Two levels of visualization tools are implemented for evacuation performance analysis, including link-based macroscopic visualization and vehicle-based microscopic visualization. Formore » left-hand and right-hand traffic patterns in different countries, the authors propose a mirror technique to experiment with both scenarios without significantly changing traffic simulation models. Ten cities in US, Europe, Middle East, and Asia are modeled for demonstration. With default traffic simulation models for fast and easy-to-use evacuation estimation and visualization, WWEE also retains the capability of interactive operation for users to adopt customized traffic simulation models. For the first time, WWEE provides a unified platform for global evacuation researchers to estimate and visualize their strategies performance of transportation systems under evacuation scenarios.« less
Visualization for Molecular Dynamics Simulation of Gas and Metal Surface Interaction
NASA Astrophysics Data System (ADS)
Puzyrkov, D.; Polyakov, S.; Podryga, V.
2016-02-01
The development of methods, algorithms and applications for visualization of molecular dynamics simulation outputs is discussed. The visual analysis of the results of such calculations is a complex and actual problem especially in case of the large scale simulations. To solve this challenging task it is necessary to decide on: 1) what data parameters to render, 2) what type of visualization to choose, 3) what development tools to use. In the present work an attempt to answer these questions was made. For visualization it was offered to draw particles in the corresponding 3D coordinates and also their velocity vectors, trajectories and volume density in the form of isosurfaces or fog. We tested the way of post-processing and visualization based on the Python language with use of additional libraries. Also parallel software was developed that allows processing large volumes of data in the 3D regions of the examined system. This software gives the opportunity to achieve desired results that are obtained in parallel with the calculations, and at the end to collect discrete received frames into a video file. The software package "Enthought Mayavi2" was used as the tool for visualization. This visualization application gave us the opportunity to study the interaction of a gas with a metal surface and to closely observe the adsorption effect.
Dyadic brain modelling, mirror systems and the ontogenetic ritualization of ape gesture
Arbib, Michael; Ganesh, Varsha; Gasser, Brad
2014-01-01
The paper introduces dyadic brain modelling, offering both a framework for modelling the brains of interacting agents and a general framework for simulating and visualizing the interactions generated when the brains (and the two bodies) are each coded up in computational detail. It models selected neural mechanisms in ape brains supportive of social interactions, including putative mirror neuron systems inspired by macaque neurophysiology but augmented by increased access to proprioceptive state. Simulation results for a reduced version of the model show ritualized gesture emerging from interactions between a simulated child and mother ape. PMID:24778382
Dyadic brain modelling, mirror systems and the ontogenetic ritualization of ape gesture.
Arbib, Michael; Ganesh, Varsha; Gasser, Brad
2014-01-01
The paper introduces dyadic brain modelling, offering both a framework for modelling the brains of interacting agents and a general framework for simulating and visualizing the interactions generated when the brains (and the two bodies) are each coded up in computational detail. It models selected neural mechanisms in ape brains supportive of social interactions, including putative mirror neuron systems inspired by macaque neurophysiology but augmented by increased access to proprioceptive state. Simulation results for a reduced version of the model show ritualized gesture emerging from interactions between a simulated child and mother ape.
What Google Maps can do for biomedical data dissemination: examples and a design study.
Jianu, Radu; Laidlaw, David H
2013-05-04
Biologists often need to assess whether unfamiliar datasets warrant the time investment required for more detailed exploration. Basing such assessments on brief descriptions provided by data publishers is unwieldy for large datasets that contain insights dependent on specific scientific questions. Alternatively, using complex software systems for a preliminary analysis may be deemed as too time consuming in itself, especially for unfamiliar data types and formats. This may lead to wasted analysis time and discarding of potentially useful data. We present an exploration of design opportunities that the Google Maps interface offers to biomedical data visualization. In particular, we focus on synergies between visualization techniques and Google Maps that facilitate the development of biological visualizations which have both low-overhead and sufficient expressivity to support the exploration of data at multiple scales. The methods we explore rely on displaying pre-rendered visualizations of biological data in browsers, with sparse yet powerful interactions, by using the Google Maps API. We structure our discussion around five visualizations: a gene co-regulation visualization, a heatmap viewer, a genome browser, a protein interaction network, and a planar visualization of white matter in the brain. Feedback from collaborative work with domain experts suggests that our Google Maps visualizations offer multiple, scale-dependent perspectives and can be particularly helpful for unfamiliar datasets due to their accessibility. We also find that users, particularly those less experienced with computer use, are attracted by the familiarity of the Google Maps API. Our five implementations introduce design elements that can benefit visualization developers. We describe a low-overhead approach that lets biologists access readily analyzed views of unfamiliar scientific datasets. We rely on pre-computed visualizations prepared by data experts, accompanied by sparse and intuitive interactions, and distributed via the familiar Google Maps framework. Our contributions are an evaluation demonstrating the validity and opportunities of this approach, a set of design guidelines benefiting those wanting to create such visualizations, and five concrete example visualizations.
What google maps can do for biomedical data dissemination: examples and a design study
2013-01-01
Background Biologists often need to assess whether unfamiliar datasets warrant the time investment required for more detailed exploration. Basing such assessments on brief descriptions provided by data publishers is unwieldy for large datasets that contain insights dependent on specific scientific questions. Alternatively, using complex software systems for a preliminary analysis may be deemed as too time consuming in itself, especially for unfamiliar data types and formats. This may lead to wasted analysis time and discarding of potentially useful data. Results We present an exploration of design opportunities that the Google Maps interface offers to biomedical data visualization. In particular, we focus on synergies between visualization techniques and Google Maps that facilitate the development of biological visualizations which have both low-overhead and sufficient expressivity to support the exploration of data at multiple scales. The methods we explore rely on displaying pre-rendered visualizations of biological data in browsers, with sparse yet powerful interactions, by using the Google Maps API. We structure our discussion around five visualizations: a gene co-regulation visualization, a heatmap viewer, a genome browser, a protein interaction network, and a planar visualization of white matter in the brain. Feedback from collaborative work with domain experts suggests that our Google Maps visualizations offer multiple, scale-dependent perspectives and can be particularly helpful for unfamiliar datasets due to their accessibility. We also find that users, particularly those less experienced with computer use, are attracted by the familiarity of the Google Maps API. Our five implementations introduce design elements that can benefit visualization developers. Conclusions We describe a low-overhead approach that lets biologists access readily analyzed views of unfamiliar scientific datasets. We rely on pre-computed visualizations prepared by data experts, accompanied by sparse and intuitive interactions, and distributed via the familiar Google Maps framework. Our contributions are an evaluation demonstrating the validity and opportunities of this approach, a set of design guidelines benefiting those wanting to create such visualizations, and five concrete example visualizations. PMID:23642009
Visualization of semantic indexing similarity over MeSH.
Du, Haixia; Yoo, Terry S
2007-10-11
We present an interactive visualization system for the evaluation of indexing results of the MEDLINE data-base over the Medical Subject Headings (MeSH) structure in a graphical radial-tree layout. It displays indexing similarity measurements with 2D color coding and a 3D height field permitting the evaluation of the automatic Medical Text Indexer (MTI), compared with human indexers.
Sakurada, Takeshi; Ito, Koji; Gomi, Hiroaki
2016-01-01
Although strong motor coordination in intrinsic muscle coordinates has frequently been reported for bimanual movements, coordination in extrinsic visual coordinates is also crucial in various bimanual tasks. To explore the bimanual coordination mechanisms in terms of the frame of reference, here we characterized implicit bilateral interactions in visuomotor tasks. Visual perturbations (finger-cursor gain change) were applied while participants performed a rhythmic tracking task with both index fingers under an in-phase or anti-phase relationship in extrinsic coordinates. When they corrected the right finger's amplitude, the left finger's amplitude unintentionally also changed [motor interference (MI)], despite the instruction to keep its amplitude constant. Notably, we observed two specificities: one was large MI and low relative-phase variability (PV) under the intrinsic in-phase condition, and the other was large MI and high PV under the extrinsic in-phase condition. Additionally, using a multiple-interaction model, we successfully decomposed MI into intrinsic components caused by motor correction and extrinsic components caused by visual-cursor mismatch of the right finger's movements. This analysis revealed that the central nervous system facilitates MI by combining intrinsic and extrinsic components in the condition with in-phases in both intrinsic and extrinsic coordinates, and that under-additivity of the effects is explained by the brain's preference for the intrinsic interaction over extrinsic interaction. In contrast, the PV was significantly correlated with the intrinsic component, suggesting that the intrinsic interaction dominantly contributed to bimanual movement stabilization. The inconsistent features of MI and PV suggest that the central nervous system regulates multiple levels of bilateral interactions for various bimanual tasks. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
An interactive, multi-touch videowall for scientific data exploration
NASA Astrophysics Data System (ADS)
Blower, Jon; Griffiths, Guy; van Meersbergen, Maarten; Lusher, Scott; Styles, Jon
2014-05-01
The use of videowalls for scientific data exploration is rising as hardware becomes cheaper and the availability of software and multimedia content grows. Most videowalls are used primarily for outreach and communication purposes, but there is increasing interest in using large display screens to support exploratory visualization as an integral part of scientific research. In this PICO presentation we will present a brief overview of a new videowall system at the University of Reading, which is designed specifically to support interactive, exploratory visualization activities in climate science and Earth Observation. The videowall consists of eight 42-inch full-HD screens (in 4x2 formation), giving a total resolution of about 16 megapixels. The display is managed by a videowall controller, which can direct video to the screen from up to four external laptops, a purpose-built graphics workstation, or any combination thereof. A multi-touch overlay provides the capability for the user to interact directly with the data. There are many ways to use the videowall, and a key technical challenge is to make the most of the touch capabilities - touch has the potential to greatly reduce the learning curve in interactive data exploration, but most software is not yet designed for this purpose. In the PICO we will present an overview of some ways in which the wall can be employed in science, seeking feedback and discussion from the community. The system was inspired by an existing and highly-successful system (known as the "Collaboratorium") at the Netherlands e-Science Center (NLeSC). We will demonstrate how we have adapted NLeSC's visualization software to our system for touch-enabled multi-screen climate data exploration.
PyContact: Rapid, Customizable, and Visual Analysis of Noncovalent Interactions in MD Simulations.
Scheurer, Maximilian; Rodenkirch, Peter; Siggel, Marc; Bernardi, Rafael C; Schulten, Klaus; Tajkhorshid, Emad; Rudack, Till
2018-02-06
Molecular dynamics (MD) simulations have become ubiquitous in all areas of life sciences. The size and model complexity of MD simulations are rapidly growing along with increasing computing power and improved algorithms. This growth has led to the production of a large amount of simulation data that need to be filtered for relevant information to address specific biomedical and biochemical questions. One of the most relevant molecular properties that can be investigated by all-atom MD simulations is the time-dependent evolution of the complex noncovalent interaction networks governing such fundamental aspects as molecular recognition, binding strength, and mechanical and structural stability. Extracting, evaluating, and visualizing noncovalent interactions is a key task in the daily work of structural biologists. We have developed PyContact, an easy-to-use, highly flexible, and intuitive graphical user interface-based application, designed to provide a toolkit to investigate biomolecular interactions in MD trajectories. PyContact is designed to facilitate this task by enabling identification of relevant noncovalent interactions in a comprehensible manner. The implementation of PyContact as a standalone application enables rapid analysis and data visualization without any additional programming requirements, and also preserves full in-program customization and extension capabilities for advanced users. The statistical analysis representation is interactively combined with full mapping of the results on the molecular system through the synergistic connection between PyContact and VMD. We showcase the capabilities and scientific significance of PyContact by analyzing and visualizing in great detail the noncovalent interactions underlying the ion permeation pathway of the human P2X 3 receptor. As a second application, we examine the protein-protein interaction network of the mechanically ultrastable cohesin-dockering complex. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Two-dimensional melting of colloids with long-range attractive interactions.
Du, Di; Doxastakis, Manolis; Hilou, Elaa; Biswal, Sibani Lisa
2017-02-22
The solid-liquid melting transition in a two-dimensional (2-D) attractive colloidal system is visualized using superparamagnetic colloids that interact through a long-range isotropic attractive interaction potential, which is induced using a high-frequency rotating magnetic field. Various experiments, supported by Monte Carlo simulations, are carried out over a range of interaction potentials and densities to determine structure factors, Lindermann parameters, and translational and orientational order parameters. The system shows a first-order solid-liquid melting transition. Simulations and experiments suggest that dislocations and disclinations simultaneously unbind during melting. This is in direct contrast with reports of 2-D melting of paramagnetic particles that interact with a repulsive interaction potential.
Effects of visual and verbal interaction on unintentional interpersonal coordination.
Richardson, Michael J; Marsh, Kerry L; Schmidt, R C
2005-02-01
Previous research has demonstrated that people's movements can become unintentionally coordinated during interpersonal interaction. The current study sought to uncover the degree to which visual and verbal (conversation) interaction constrains and organizes the rhythmic limb movements of coactors. Two experiments were conducted in which pairs of participants completed an interpersonal puzzle task while swinging handheld pendulums with instructions that minimized intentional coordination but facilitated either visual or verbal interaction. Cross-spectral analysis revealed a higher degree of coordination for conditions in which the pairs were visually coupled. In contrast, verbal interaction alone was not found to provide a sufficient medium for unintentional coordination to occur, nor did it enhance the unintentional coordination that emerged during visual interaction. The results raise questions concerning differences between visual and verbal informational linkages during interaction and how these differences may affect interpersonal movement production and its coordination.
MERIANS, Alma S.; TUNIK, Eugene; ADAMOVICH, Sergei V.
2015-01-01
Stroke patients report hand function as the most disabling motor deficit. Current evidence shows that learning new motor skills is essential for inducing functional neuroplasticity and functional recovery. Adaptive training paradigms that continually and interactively move a motor outcome closer to the targeted skill are important to motor recovery. Computerized virtual reality simulations when interfaced with robots, movement tracking and sensing glove systems are particularly adaptable, allowing for online and offline modifications of task based activities using the participant’s current performance and success rate. We have developed a second generation system that can exercise the hand and the arm together or in isolation and provides for both unilateral and bilateral hand and arm activities in three-dimensional space. We demonstrate that by providing haptic assistance for the hand and arm and adaptive anti-gravity support, the system can accommodate patients with lower level impairments. We hypothesize that combining training in VE with observation of motor actions can bring additional benefits. We present a proof of concept of a novel system that integrates interactive VE with functional neuroimaging to address this issue. Three components of this system are synchronized, the presentation of the visual display of the virtual hands, the collection of fMRI images and the collection of hand joint angles from the instrumented gloves. We show that interactive VEs can facilitate activation of brain areas during training by providing appropriately modified visual feedback. We predict that visual augmentation can become a tool to facilitate functional neuroplasticity. PMID:19592790
Promoting Social Network Awareness: A Social Network Monitoring System
ERIC Educational Resources Information Center
Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin
2010-01-01
To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…
The Curriculum Prerequisite Network: Modeling the Curriculum as a Complex System
ERIC Educational Resources Information Center
Aldrich, Preston R.
2015-01-01
This article advances the prerequisite network as a means to visualize the hidden structure in an academic curriculum. Networks have been used to represent a variety of complex systems ranging from social systems to biochemical pathways and protein interactions. Here, I treat the academic curriculum as a complex system with nodes representing…
Perceptual deficits of object identification: apperceptive agnosia.
Milner, A David; Cavina-Pratesi, Cristiana
2018-01-01
It is argued here that apperceptive object agnosia (generally now known as visual form agnosia) is in reality not a kind of agnosia, but rather a form of "imperception" (to use the term coined by Hughlings Jackson). We further argue that its proximate cause is a bilateral loss (or functional loss) of the visual form processing systems embodied in the human lateral occipital cortex (area LO). According to the dual-system model of cortical visual processing elaborated by Milner and Goodale (2006), area LO constitutes a crucial component of the ventral stream, and indeed is essential for providing the figural qualities inherent in our normal visual perception of the world. According to this account, the functional loss of area LO would leave only spared visual areas within the occipito-parietal dorsal stream - dedicated to the control of visually-guided actions - potentially able to provide some aspects of visual shape processing in patients with apperceptive agnosia. We review the relevant evidence from such individuals, concentrating particularly on the well-researched patient D.F. We conclude that studies of this kind can provide useful pointers to an understanding of the processing characteristics of parietal-lobe visual mechanisms and their interactions with occipitotemporal perceptual systems in the guidance of action. Copyright © 2018 Elsevier B.V. All rights reserved.
Contextual effects on perceived contrast: figure-ground assignment and orientation contrast.
Self, Matthew W; Mookhoek, Aart; Tjalma, Nienke; Roelfsema, Pieter R
2015-02-02
Figure-ground segregation is an important step in the path leading to object recognition. The visual system segregates objects ('figures') in the visual scene from their backgrounds ('ground'). Electrophysiological studies in awake-behaving monkeys have demonstrated that neurons in early visual areas increase their firing rate when responding to a figure compared to responding to the background. We hypothesized that similar changes in neural firing would take place in early visual areas of the human visual system, leading to changes in the perception of low-level visual features. In this study, we investigated whether contrast perception is affected by figure-ground assignment using stimuli similar to those in the electrophysiological studies in monkeys. We measured contrast discrimination thresholds and perceived contrast for Gabor probes placed on figures or the background and found that the perceived contrast of the probe was increased when it was placed on a figure. Furthermore, we tested how this effect compared with the well-known effect of orientation contrast on perceived contrast. We found that figure-ground assignment and orientation contrast produced changes in perceived contrast of a similar magnitude, and that they interacted. Our results demonstrate that figure-ground assignment influences perceived contrast, consistent with an effect of figure-ground assignment on activity in early visual areas of the human visual system. © 2015 ARVO.
Mid-Frequency Sonar Interactions with Beaked Whales
2010-09-30
1 Mid-Frequency Sonar Interactions with Beaked Whales PI Kenneth G. Foote Woods Hole Oceanographic Institution, 98 Water Street, Woods Hole, MA...modeling and visualization system, called the Virtual Beaked Whale, to enable users to predict mid-frequency sonar -induced acoustic fields inside beaked...nature of sonar interactions with beaked whales, and may prove useful in evaluating alternate sonar transmit signals that retain the required
Interactive visual optimization and analysis for RFID benchmarking.
Wu, Yingcai; Chung, Ka-Kei; Qu, Huamin; Yuan, Xiaoru; Cheung, S C
2009-01-01
Radio frequency identification (RFID) is a powerful automatic remote identification technique that has wide applications. To facilitate RFID deployment, an RFID benchmarking instrument called aGate has been invented to identify the strengths and weaknesses of different RFID technologies in various environments. However, the data acquired by aGate are usually complex time varying multidimensional 3D volumetric data, which are extremely challenging for engineers to analyze. In this paper, we introduce a set of visualization techniques, namely, parallel coordinate plots, orientation plots, a visual history mechanism, and a 3D spatial viewer, to help RFID engineers analyze benchmark data visually and intuitively. With the techniques, we further introduce two workflow procedures (a visual optimization procedure for finding the optimum reader antenna configuration and a visual analysis procedure for comparing the performance and identifying the flaws of RFID devices) for the RFID benchmarking, with focus on the performance analysis of the aGate system. The usefulness and usability of the system are demonstrated in the user evaluation.
Stereoscopic applications for design visualization
NASA Astrophysics Data System (ADS)
Gilson, Kevin J.
2007-02-01
Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.
Novel Scientific Visualization Interfaces for Interactive Information Visualization and Sharing
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2012-12-01
As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools in the Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS. 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods.
Visualizing request-flow comparison to aid performance diagnosis in distributed systems.
Sambasivan, Raja R; Shafer, Ilari; Mazurek, Michelle L; Ganger, Gregory R
2013-12-01
Distributed systems are complex to develop and administer, and performance problem diagnosis is particularly challenging. When performance degrades, the problem might be in any of the system's many components or could be a result of poor interactions among them. Recent research efforts have created tools that automatically localize the problem to a small number of potential culprits, but research is needed to understand what visualization techniques work best for helping distributed systems developers understand and explore their results. This paper compares the relative merits of three well-known visualization approaches (side-by-side, diff, and animation) in the context of presenting the results of one proven automated localization technique called request-flow comparison. Via a 26-person user study, which included real distributed systems developers, we identify the unique benefits that each approach provides for different problem types and usage modes.
Functional and structural comparison of visual lateralization in birds – similar but still different
Ströckens, Felix
2014-01-01
Vertebrate brains display physiological and anatomical left-right differences, which are related to hemispheric dominances for specific functions. Functional lateralizations likely rely on structural left-right differences in intra- and interhemispheric connectivity patterns that develop in tight gene-environment interactions. The visual systems of chickens and pigeons show that asymmetrical light stimulation during ontogeny induces a dominance of the left hemisphere for visuomotor control that is paralleled by projection asymmetries within the ascending visual pathways. But structural asymmetries vary essentially between both species concerning the affected pathway (thalamo- vs. tectofugal system), constancy of effects (transient vs. permanent), and the hemisphere receiving stronger bilateral input (right vs. left). These discrepancies suggest that at least two aspects of visual processes are influenced by asymmetric light stimulation: (1) visuomotor dominance develops within the ontogenetically stronger stimulated hemisphere but not necessarily in the one receiving stronger bottom-up input. As a secondary consequence of asymmetrical light experience, lateralized top-down mechanisms play a critical role in the emergence of hemispheric dominance. (2) Ontogenetic light experiences may affect the dominant use of left- and right-hemispheric strategies. Evidences from social and spatial cognition tasks indicate that chickens rely more on a right-hemispheric global strategy whereas pigeons display a dominance of the left hemisphere. Thus, behavioral asymmetries are linked to a stronger bilateral input to the right hemisphere in chickens but to the left one in pigeons. The degree of bilateral visual input may determine the dominant visual processing strategy when redundant encoding is possible. This analysis supports that environmental stimulation affects the balance between hemispheric-specific processing by lateralized interactions of bottom-up and top-down systems. PMID:24723898
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad Allen
EDENx is a multivariate data visualization tool that allows interactive user driven analysis of large-scale data sets with high dimensionality. EDENx builds on our earlier system, called EDEN to enable analysis of more dimensions and larger scale data sets. EDENx provides an initial overview of summary statistics for each variable in the data set under investigation. EDENx allows the user to interact with graphical summary plots of the data to investigate subsets and their statistical associations. These plots include histograms, binned scatterplots, binned parallel coordinate plots, timeline plots, and graphical correlation indicators. From the EDENx interface, a user can selectmore » a subsample of interest and launch a more detailed data visualization via the EDEN system. EDENx is best suited for high-level, aggregate analysis tasks while EDEN is more appropriate for detail data investigations.« less
Interactive visualization and analysis of multimodal datasets for surgical applications.
Kirmizibayrak, Can; Yim, Yeny; Wakid, Mike; Hahn, James
2012-12-01
Surgeons use information from multiple sources when making surgical decisions. These include volumetric datasets (such as CT, PET, MRI, and their variants), 2D datasets (such as endoscopic videos), and vector-valued datasets (such as computer simulations). Presenting all the information to the user in an effective manner is a challenging problem. In this paper, we present a visualization approach that displays the information from various sources in a single coherent view. The system allows the user to explore and manipulate volumetric datasets, display analysis of dataset values in local regions, combine 2D and 3D imaging modalities and display results of vector-based computer simulations. Several interaction methods are discussed: in addition to traditional interfaces including mouse and trackers, gesture-based natural interaction methods are shown to control these visualizations with real-time performance. An example of a medical application (medialization laryngoplasty) is presented to demonstrate how the combination of different modalities can be used in a surgical setting with our approach.
SCSODC: Integrating Ocean Data for Visualization Sharing and Application
NASA Astrophysics Data System (ADS)
Xu, C.; Li, S.; Wang, D.; Xie, Q.
2014-02-01
The South China Sea Ocean Data Center (SCSODC) was founded in 2010 in order to improve collecting and managing of ocean data of the South China Sea Institute of Oceanology (SCSIO). The mission of SCSODC is to ensure the long term scientific stewardship of ocean data, information and products - collected through research groups, monitoring stations and observation cruises - and to facilitate the efficient use and distribution to possible users. However, data sharing and applications were limited due to the characteristics of distribution and heterogeneity that made it difficult to integrate the data. To surmount those difficulties, the Data Sharing System has been developed by the SCSODC using the most appropriate information management and information technology. The Data Sharing System uses open standards and tools to promote the capability to integrate ocean data and to interact with other data portals or users and includes a full range of processes such as data discovery, evaluation and access combining C/S and B/S mode. It provides a visualized management interface for the data managers and a transparent and seamless data access and application environment for users. Users are allowed to access data using the client software and to access interactive visualization application interface via a web browser. The architecture, key technologies and functionality of the system are discussed briefly in this paper. It is shown that the system of SCSODC is able to implement web visualization sharing and seamless access to ocean data in a distributed and heterogeneous environment.
Heat Map Visualization of Complex Environmental and Biomarker Measurements
Over the past decade, the assessment of human systems interactions with the environment has permeated all phases of environmental and public health research. We are invoking lessons learned from the broad discipline of Systems Biology research that focuses primarily on molecular ...
ERIC Educational Resources Information Center
Rieger, Jochem W.; Kochy, Nick; Schalk, Franziska; Gruschow, Marcus; Heinze, Hans-Jochen
2008-01-01
The visual system rapidly extracts information about objects from the cluttered natural environment. In 5 experiments, the authors quantified the influence of orientation and semantics on the classification speed of objects in natural scenes, particularly with regard to object-context interactions. Natural scene photographs were presented in an…
SILVA tree viewer: interactive web browsing of the SILVA phylogenetic guide trees.
Beccati, Alan; Gerken, Jan; Quast, Christian; Yilmaz, Pelin; Glöckner, Frank Oliver
2017-09-30
Phylogenetic trees are an important tool to study the evolutionary relationships among organisms. The huge amount of available taxa poses difficulties in their interactive visualization. This hampers the interaction with the users to provide feedback for the further improvement of the taxonomic framework. The SILVA Tree Viewer is a web application designed for visualizing large phylogenetic trees without requiring the download of any software tool or data files. The SILVA Tree Viewer is based on Web Geographic Information Systems (Web-GIS) technology with a PostgreSQL backend. It enables zoom and pan functionalities similar to Google Maps. The SILVA Tree Viewer enables access to two phylogenetic (guide) trees provided by the SILVA database: the SSU Ref NR99 inferred from high-quality, full-length small subunit sequences, clustered at 99% sequence identity and the LSU Ref inferred from high-quality, full-length large subunit sequences. The Tree Viewer provides tree navigation, search and browse tools as well as an interactive feedback system to collect any kinds of requests ranging from taxonomy to data curation and improving the tool itself.
Makuuchi, Michiru; Someya, Yoshiaki; Ogawa, Seiji; Takayama, Yoshihiro
2011-01-01
In visually guided grasping, possible hand shapes are computed from the geometrical features of the object, while prior knowledge about the object and the goal of the action influence both the computation and the selection of the hand shape. We investigated the system dynamics of the human brain for the pantomiming of grasping with two aspects accentuated. One is object recognition, with the use of objects for daily use. The subjects mimed grasping movements appropriate for an object presented in a photograph either by precision or power grip. The other is the selection of grip hand shape. We manipulated the selection demands for the grip hand shape by having the subjects use the same or different grip type in the second presentation of the identical object. Effective connectivity analysis revealed that the increased selection demands enhance the interaction between the anterior intraparietal sulcus (AIP) and posterior inferior temporal gyrus (pITG), and drive the converging causal influences from the AIP, pITG, and dorsolateral prefrontal cortex to the ventral premotor area (PMv). These results suggest that the dorsal and ventral visual areas interact in the pantomiming of grasping, while the PMv integrates the neural information of different regions to select the hand posture. The present study proposes system dynamics in visually guided movement toward meaningful objects, but further research is needed to examine if the same dynamics is found also in real grasping. PMID:21739528
Oceans 2.0: Interactive tools for the Visualization of Multi-dimensional Ocean Sensor Data
NASA Astrophysics Data System (ADS)
Biffard, B.; Valenzuela, M.; Conley, P.; MacArthur, M.; Tredger, S.; Guillemot, E.; Pirenne, B.
2016-12-01
Ocean Networks Canada (ONC) operates ocean observatories on all three of Canada's coasts. The instruments produce 280 gigabytes of data per day with 1/2 petabyte archived so far. In 2015, 13 terabytes were downloaded by over 500 users from across the world. ONC's data management system is referred to as "Oceans 2.0" owing to its interactive, participative features. A key element of Oceans 2.0 is real time data acquisition and processing: custom device drivers implement the input-output protocol of each instrument. Automatic parsing and calibration takes place on the fly, followed by event detection and quality control. All raw data are stored in a file archive, while the processed data are copied to fast databases. Interactive access to processed data is provided through data download and visualization/quick look features that are adapted to diverse data types (scalar, acoustic, video, multi-dimensional, etc). Data may be post or re-processed to add features, analysis or correct errors, update calibrations, etc. A robust storage structure has been developed consisting of an extensive file system and a no-SQL database (Cassandra). Cassandra is a node-based open source distributed database management system. It is scalable and offers improved performance for big data. A key feature is data summarization. The system has also been integrated with web services and an ERDDAP OPeNDAP server, capable of serving scalar and multidimensional data from Cassandra for fixed or mobile devices.A complex data viewer has been developed making use of the big data capability to interactively display live or historic echo sounder and acoustic Doppler current profiler data, where users can scroll, apply processing filters and zoom through gigabytes of data with simple interactions. This new technology brings scientists one step closer to a comprehensive, web-based data analysis environment in which visual assessment, filtering, event detection and annotation can be integrated.
Dynamic Visualization of Co-expression in Systems Genetics Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
New, Joshua Ryan; Huang, Jian; Chesler, Elissa J
2008-01-01
Biologists hope to address grand scientific challenges by exploring the abundance of data made available through modern microarray technology and other high-throughput techniques. The impact of this data, however, is limited unless researchers can effectively assimilate such complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical studies of gene co-expression require novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These tools should allow biologists to develop an intuitive understanding of the structure of biologicalmore » networks and discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian gene co-expression.« less
Informing Regional Water-Energy-Food Nexus with System Analysis and Interactive Visualizations
NASA Astrophysics Data System (ADS)
Yang, Y. C. E.; Wi, S.
2016-12-01
Communicating scientific results to non-technical practitioners is challenging due to their differing interests, concerns and agendas. It is further complicated by the growing number of relevant factors that need to be considered, such as climate change and demographic dynamic. Visualization is an effective method for the scientific community to disseminate results, and it represents an opportunity for the future of water resources systems analysis (WRSA). This study demonstrates an intuitive way to communicate WRSA results to practitioners using interactive web-based visualization tools developed by the JavaScript library: Data-Driven Documents (D3) with a case study in Great Ruaha River of Tanzania. The decreasing trend of streamflow during the last decades in the region highlights the need of assessing the water usage competition between agricultural production, energy generation, and ecosystem service. Our team conduct the advance water resources systems analysis to inform policy that will affect the water-energy-food nexus. Modeling results are presented in the web-based visualization tools and allow non-technical practitioners to brush the graph directly (e. g. Figure 1). The WRSA suggests that no single measure can completely resolve the water competition. A combination of measures, each of which is acceptable from a social and economic perspective, and accepting that zero flows cannot be totally eliminated during dry years in the wetland, are likely to be the best way forward.
New generation of 3D desktop computer interfaces
NASA Astrophysics Data System (ADS)
Skerjanc, Robert; Pastoor, Siegmund
1997-05-01
Today's computer interfaces use 2-D displays showing windows, icons and menus and support mouse interactions for handling programs and data files. The interface metaphor is that of a writing desk with (partly) overlapping sheets of documents placed on its top. Recent advances in the development of 3-D display technology give the opportunity to take the interface concept a radical stage further by breaking the design limits of the desktop metaphor. The major advantage of the envisioned 'application space' is, that it offers an additional, immediately perceptible dimension to clearly and constantly visualize the structure and current state of interrelations between documents, videos, application programs and networked systems. In this context, we describe the development of a visual operating system (VOS). Under VOS, applications appear as objects in 3-D space. Users can (graphically connect selected objects to enable communication between the respective applications. VOS includes a general concept of visual and object oriented programming for tasks ranging from, e.g., low-level programming up to high-level application configuration. In order to enable practical operation in an office or at home for many hours, the system should be very comfortable to use. Since typical 3-D equipment used, e.g., in virtual-reality applications (head-mounted displays, data gloves) is rather cumbersome and straining, we suggest to use off-head displays and contact-free interaction techniques. In this article, we introduce an autostereoscopic 3-D display and connected video based interaction techniques which allow viewpoint-depending imaging (by head tracking) and visually controlled modification of data objects and links (by gaze tracking, e.g., to pick, 3-D objects just by looking at them).
Discovering Tradeoffs, Vulnerabilities, and Dependencies within Water Resources Systems
NASA Astrophysics Data System (ADS)
Reed, P. M.
2015-12-01
There is a growing recognition and interest in using emerging computational tools for discovering the tradeoffs that emerge across complex combinations infrastructure options, adaptive operations, and sign posts. As a field concerned with "deep uncertainties", it is logically consistent to include a more direct acknowledgement that our choices for dealing with computationally demanding simulations, advanced search algorithms, and sensitivity analysis tools are themselves subject to failures that could adversely bias our understanding of how systems' vulnerabilities change with proposed actions. Balancing simplicity versus complexity in our computational frameworks is nontrivial given that we are often exploring high impact irreversible decisions. It is not always clear that accepted models even encompass important failure modes. Moreover as they become more complex and computationally demanding the benefits and consequences of simplifications are often untested. This presentation discusses our efforts to address these challenges through our "many-objective robust decision making" (MORDM) framework for the design and management water resources systems. The MORDM framework has four core components: (1) elicited problem conception and formulation, (2) parallel many-objective search, (3) interactive visual analytics, and (4) negotiated selection of robust alternatives. Problem conception and formulation is the process of abstracting a practical design problem into a mathematical representation. We build on the emerging work in visual analytics to exploit interactive visualization of both the design space and the objective space in multiple heterogeneous linked views that permit exploration and discovery. Many-objective search produces tradeoff solutions from potentially competing problem formulations that can each consider up to ten conflicting objectives based on current computational search capabilities. Negotiated design selection uses interactive visualization, reformulation, and optimization to discover desirable designs for implementation. Multi-city urban water supply portfolio planning will be used to illustrate the MORDM framework.
Visualization techniques for computer network defense
NASA Astrophysics Data System (ADS)
Beaver, Justin M.; Steed, Chad A.; Patton, Robert M.; Cui, Xiaohui; Schultz, Matthew
2011-06-01
Effective visual analysis of computer network defense (CND) information is challenging due to the volume and complexity of both the raw and analyzed network data. A typical CND is comprised of multiple niche intrusion detection tools, each of which performs network data analysis and produces a unique alerting output. The state-of-the-practice in the situational awareness of CND data is the prevalent use of custom-developed scripts by Information Technology (IT) professionals to retrieve, organize, and understand potential threat events. We propose a new visual analytics framework, called the Oak Ridge Cyber Analytics (ORCA) system, for CND data that allows an operator to interact with all detection tool outputs simultaneously. Aggregated alert events are presented in multiple coordinated views with timeline, cluster, and swarm model analysis displays. These displays are complemented with both supervised and semi-supervised machine learning classifiers. The intent of the visual analytics framework is to improve CND situational awareness, to enable an analyst to quickly navigate and analyze thousands of detected events, and to combine sophisticated data analysis techniques with interactive visualization such that patterns of anomalous activities may be more easily identified and investigated.
a Web-Based Platform for Visualizing Spatiotemporal Dynamics of Big Taxi Data
NASA Astrophysics Data System (ADS)
Xiong, H.; Chen, L.; Gui, Z.
2017-09-01
With more and more vehicles equipped with Global Positioning System (GPS), access to large-scale taxi trajectory data has become increasingly easy. Taxis are valuable sensors and information associated with taxi trajectory can provide unprecedented insight into many aspects of city life. But analysing these data presents many challenges. Visualization of taxi data is an efficient way to represent its distributions and structures and reveal hidden patterns in the data. However, Most of the existing visualization systems have some shortcomings. On the one hand, the passenger loading status and speed information cannot be expressed. On the other hand, mono-visualization form limits the information presentation. In view of these problems, this paper designs and implements a visualization system in which we use colour and shape to indicate passenger loading status and speed information and integrate various forms of taxi visualization. The main work as follows: 1. Pre-processing and storing the taxi data into MongoDB database. 2. Visualization of hotspots for taxi pickup points. Through DBSCAN clustering algorithm, we cluster the extracted taxi passenger's pickup locations to produce passenger hotspots. 3. Visualizing the dynamic of taxi moving trajectory using interactive animation. We use a thinning algorithm to reduce the amount of data and design a preloading strategyto load the data smoothly. Colour and shape are used to visualize the taxi trajectory data.
BiNA: A Visual Analytics Tool for Biological Network Data
Gerasch, Andreas; Faber, Daniel; Küntzer, Jan; Niermann, Peter; Kohlbacher, Oliver; Lenhof, Hans-Peter; Kaufmann, Michael
2014-01-01
Interactive visual analysis of biological high-throughput data in the context of the underlying networks is an essential task in modern biomedicine with applications ranging from metabolic engineering to personalized medicine. The complexity and heterogeneity of data sets require flexible software architectures for data analysis. Concise and easily readable graphical representation of data and interactive navigation of large data sets are essential in this context. We present BiNA - the Biological Network Analyzer - a flexible open-source software for analyzing and visualizing biological networks. Highly configurable visualization styles for regulatory and metabolic network data offer sophisticated drawings and intuitive navigation and exploration techniques using hierarchical graph concepts. The generic projection and analysis framework provides powerful functionalities for visual analyses of high-throughput omics data in the context of networks, in particular for the differential analysis and the analysis of time series data. A direct interface to an underlying data warehouse provides fast access to a wide range of semantically integrated biological network databases. A plugin system allows simple customization and integration of new analysis algorithms or visual representations. BiNA is available under the 3-clause BSD license at http://bina.unipax.info/. PMID:24551056
Interactive client side data visualization with d3.js
NASA Astrophysics Data System (ADS)
Rodzianko, A.; Versteeg, R.; Johnson, D. V.; Soltanian, M. R.; Versteeg, O. J.; Girouard, M.
2015-12-01
Geoscience data associated with near surface research and operational sites is increasingly voluminous and heterogeneous (both in terms of providers and data types - e.g. geochemical, hydrological, geophysical, modeling data, of varying spatiotemporal characteristics). Such data allows scientists to investigate fundamental hydrological and geochemical processes relevant to agriculture, water resources and climate change. For scientists to easily share, model and interpret such data requires novel tools with capabilities for interactive data visualization. Under sponsorship of the US Department of Energy, Subsurface Insights is developing the Predictive Assimilative Framework (PAF): a cloud based subsurface monitoring platform which can manage, process and visualize large heterogeneous datasets. Over the last year we transitioned our visualization method from a server side approach (in which images and animations were generated using Jfreechart and Visit) to a client side one that utilizes the D3 Javascript library. Datasets are retrieved using web service calls to the server, returned as JSON objects and visualized within the browser. Users can interactively explore primary and secondary datasets from various field locations. Our current capabilities include interactive data contouring and heterogeneous time series data visualization. While this approach is very powerful and not necessarily unique, special attention needs to be paid to latency and responsiveness issues as well as to issues as cross browser code compatibility so that users have an identical, fluid and frustration-free experience across different computational platforms. We gratefully acknowledge support from the US Department of Energy under SBIR Award DOE DE-SC0009732, the use of data from the Lawrence Berkeley National Laboratory (LBNL) Sustainable Systems SFA Rifle field site and collaboration with LBNL SFA scientists.
Integration and visualization of systems biology data in context of the genome
2010-01-01
Background High-density tiling arrays and new sequencing technologies are generating rapidly increasing volumes of transcriptome and protein-DNA interaction data. Visualization and exploration of this data is critical to understanding the regulatory logic encoded in the genome by which the cell dynamically affects its physiology and interacts with its environment. Results The Gaggle Genome Browser is a cross-platform desktop program for interactively visualizing high-throughput data in the context of the genome. Important features include dynamic panning and zooming, keyword search and open interoperability through the Gaggle framework. Users may bookmark locations on the genome with descriptive annotations and share these bookmarks with other users. The program handles large sets of user-generated data using an in-process database and leverages the facilities of SQL and the R environment for importing and manipulating data. A key aspect of the Gaggle Genome Browser is interoperability. By connecting to the Gaggle framework, the genome browser joins a suite of interconnected bioinformatics tools for analysis and visualization with connectivity to major public repositories of sequences, interactions and pathways. To this flexible environment for exploring and combining data, the Gaggle Genome Browser adds the ability to visualize diverse types of data in relation to its coordinates on the genome. Conclusions Genomic coordinates function as a common key by which disparate biological data types can be related to one another. In the Gaggle Genome Browser, heterogeneous data are joined by their location on the genome to create information-rich visualizations yielding insight into genome organization, transcription and its regulation and, ultimately, a better understanding of the mechanisms that enable the cell to dynamically respond to its environment. PMID:20642854
HierarchicalTopics: visually exploring large text collections using topic hierarchies.
Dou, Wenwen; Yu, Li; Wang, Xiaoyu; Ma, Zhiqiang; Ribarsky, William
2013-12-01
Analyzing large textual collections has become increasingly challenging given the size of the data available and the rate that more data is being generated. Topic-based text summarization methods coupled with interactive visualizations have presented promising approaches to address the challenge of analyzing large text corpora. As the text corpora and vocabulary grow larger, more topics need to be generated in order to capture the meaningful latent themes and nuances in the corpora. However, it is difficult for most of current topic-based visualizations to represent large number of topics without being cluttered or illegible. To facilitate the representation and navigation of a large number of topics, we propose a visual analytics system--HierarchicalTopic (HT). HT integrates a computational algorithm, Topic Rose Tree, with an interactive visual interface. The Topic Rose Tree constructs a topic hierarchy based on a list of topics. The interactive visual interface is designed to present the topic content as well as temporal evolution of topics in a hierarchical fashion. User interactions are provided for users to make changes to the topic hierarchy based on their mental model of the topic space. To qualitatively evaluate HT, we present a case study that showcases how HierarchicalTopics aid expert users in making sense of a large number of topics and discovering interesting patterns of topic groups. We have also conducted a user study to quantitatively evaluate the effect of hierarchical topic structure. The study results reveal that the HT leads to faster identification of large number of relevant topics. We have also solicited user feedback during the experiments and incorporated some suggestions into the current version of HierarchicalTopics.
Interactive Design and Visualization of Branched Covering Spaces.
Roy, Lawrence; Kumar, Prashant; Golbabaei, Sanaz; Zhang, Yue; Zhang, Eugene
2018-01-01
Branched covering spaces are a mathematical concept which originates from complex analysis and topology and has applications in tensor field topology and geometry remeshing. Given a manifold surface and an -way rotational symmetry field, a branched covering space is a manifold surface that has an -to-1 map to the original surface except at the ramification points, which correspond to the singularities in the rotational symmetry field. Understanding the notion and mathematical properties of branched covering spaces is important to researchers in tensor field visualization and geometry processing, and their application areas. In this paper, we provide a framework to interactively design and visualize the branched covering space (BCS) of an input mesh surface and a rotational symmetry field defined on it. In our framework, the user can visualize not only the BCSs but also their construction process. In addition, our system allows the user to design the geometric realization of the BCS using mesh deformation techniques as well as connecting tubes. This enables the user to verify important facts about BCSs such as that they are manifold surfaces around singularities, as well as the Riemann-Hurwitz formula which relates the Euler characteristic of the BCS to that of the original mesh. Our system is evaluated by student researchers in scientific visualization and geometry processing as well as faculty members in mathematics at our university who teach topology. We include their evaluations and feedback in the paper.
A distributed analysis and visualization system for model and observational data
NASA Technical Reports Server (NTRS)
Wilhelmson, Robert B.
1994-01-01
Software was developed with NASA support to aid in the analysis and display of the massive amounts of data generated from satellites, observational field programs, and from model simulations. This software was developed in the context of the PATHFINDER (Probing ATmospHeric Flows in an Interactive and Distributed EnviRonment) Project. The overall aim of this project is to create a flexible, modular, and distributed environment for data handling, modeling simulations, data analysis, and visualization of atmospheric and fluid flows. Software completed with NASA support includes GEMPAK analysis, data handling, and display modules for which collaborators at NASA had primary responsibility, and prototype software modules for three-dimensional interactive and distributed control and display as well as data handling, for which NSCA was responsible. Overall process control was handled through a scientific and visualization application builder from Silicon Graphics known as the Iris Explorer. In addition, the GEMPAK related work (GEMVIS) was also ported to the Advanced Visualization System (AVS) application builder. Many modules were developed to enhance those already available in Iris Explorer including HDF file support, improved visualization and display, simple lattice math, and the handling of metadata through development of a new grid datatype. Complete source and runtime binaries along with on-line documentation is available via the World Wide Web at: http://redrock.ncsa.uiuc.edu/ PATHFINDER/pathre12/top/top.html.
Multi-Spacecraft Analysis with Generic Visualization Tools
NASA Astrophysics Data System (ADS)
Mukherjee, J.; Vela, L.; Gonzalez, C.; Jeffers, S.
2010-12-01
To handle the needs of scientists today and in the future, software tools are going to have to take better advantage of the currently available hardware. Specifically, computing power, memory, and disk space have become cheaper, while bandwidth has become more expensive due to the explosion of online applications. To overcome these limitations, we have enhanced our Southwest Data Display and Analysis System (SDDAS) to take better advantage of the hardware by utilizing threads and data caching. Furthermore, the system was enhanced to support a framework for adding data formats and data visualization methods without costly rewrites. Visualization tools can speed analysis of many common scientific tasks and we will present a suite of tools that encompass the entire process of retrieving data from multiple data stores to common visualizations of the data. The goals for the end user are ease of use and interactivity with the data and the resulting plots. The data can be simultaneously plotted in a variety of formats and/or time and spatial resolutions. The software will allow one to slice and separate data to achieve other visualizations. Furthermore, one can interact with the data using the GUI or through an embedded language based on the Lua scripting language. The data presented will be primarily from the Cluster and Mars Express missions; however, the tools are data type agnostic and can be used for virtually any type of data.
Programs Visualize Earth and Space for Interactive Education
NASA Technical Reports Server (NTRS)
2014-01-01
Kevin Hussey and others at the Jet Propulsion Laboratory produced web applications to visualize all of the spacecraft in orbit around Earth and in the Solar System. Hussey worked with Milwaukee, Wisconsin-based The Elumenati to rewrite the programs, and after licensing them, the company started offering a version that can be viewed on spheres and dome theaters for schools, museums, science centers, and other institutions.
Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.
2012-04-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.
Interactive visualization for scar transmurality in cardiac resynchronization therapy
NASA Astrophysics Data System (ADS)
Reiml, Sabrina; Toth, Daniel; Panayiotou, Maria; Fahn, Bernhard; Karim, Rashed; Behar, Jonathan M.; Rinaldi, Christopher A.; Razavi, Reza; Rhode, Kawal S.; Brost, Alexander; Mountney, Peter
2016-03-01
Heart failure is a serious disease affecting about 23 million people worldwide. Cardiac resynchronization therapy is used to treat patients suffering from symptomatic heart failure. However, 30% to 50% of patients have limited clinical benefit. One of the main causes is suboptimal placement of the left ventricular lead. Pacing in areas of myocardial scar correlates with poor clinical outcomes. Therefore precise knowledge of the individual patient's scar characteristics is critical for delivering tailored treatments capable of improving response rates. Current research methods for scar assessment either map information to an alternative non-anatomical coordinate system or they use the image coordinate system but lose critical information about scar extent and scar distribution. This paper proposes two interactive methods for visualizing relevant scar information. A 2-D slice based approach with a scar mask overlaid on a 16 segment heart model and a 3-D layered mesh visualization which allows physicians to scroll through layers of scar from endocardium to epicardium. These complementary methods enable physicians to evaluate scar location and transmurality during planning and guidance. Six physicians evaluated the proposed system by identifying target regions for lead placement. With the proposed method more target regions could be identified.
How 3D immersive visualization is changing medical diagnostics
NASA Astrophysics Data System (ADS)
Koning, Anton H. J.
2011-03-01
Originally the only way to look inside the human body without opening it up was by means of two dimensional (2D) images obtained using X-ray equipment. The fact that human anatomy is inherently three dimensional leads to ambiguities in interpretation and problems of occlusion. Three dimensional (3D) imaging modalities such as CT, MRI and 3D ultrasound remove these drawbacks and are now part of routine medical care. While most hospitals 'have gone digital', meaning that the images are no longer printed on film, they are still being viewed on 2D screens. However, this way valuable depth information is lost, and some interactions become unnecessarily complex or even unfeasible. Using a virtual reality (VR) system to present volumetric data means that depth information is presented to the viewer and 3D interaction is made possible. At the Erasmus MC we have developed V-Scope, an immersive volume visualization system for visualizing a variety of (bio-)medical volumetric datasets, ranging from 3D ultrasound, via CT and MRI, to confocal microscopy, OPT and 3D electron-microscopy data. In this talk we will address the advantages of such a system for both medical diagnostics as well as for (bio)medical research.
Wu, Yubao; Zhu, Xiaofeng; Chen, Jian; Zhang, Xiang
2013-11-01
Epistasis (gene-gene interaction) detection in large-scale genetic association studies has recently drawn extensive research interests as many complex traits are likely caused by the joint effect of multiple genetic factors. The large number of possible interactions poses both statistical and computational challenges. A variety of approaches have been developed to address the analytical challenges in epistatic interaction detection. These methods usually output the identified genetic interactions and store them in flat file formats. It is highly desirable to develop an effective visualization tool to further investigate the detected interactions and unravel hidden interaction patterns. We have developed EINVis, a novel visualization tool that is specifically designed to analyze and explore genetic interactions. EINVis displays interactions among genetic markers as a network. It utilizes a circular layout (specially, a tree ring view) to simultaneously visualize the hierarchical interactions between single nucleotide polymorphisms (SNPs), genes, and chromosomes, and the network structure formed by these interactions. Using EINVis, the user can distinguish marginal effects from interactions, track interactions involving more than two markers, visualize interactions at different levels, and detect proxy SNPs based on linkage disequilibrium. EINVis is an effective and user-friendly free visualization tool for analyzing and exploring genetic interactions. It is publicly available with detailed documentation and online tutorial on the web at http://filer.case.edu/yxw407/einvis/. © 2013 WILEY PERIODICALS, INC.
Exploring 4D Flow Data in an Immersive Virtual Environment
NASA Astrophysics Data System (ADS)
Stevens, A. H.; Butkiewicz, T.
2017-12-01
Ocean models help us to understand and predict a wide range of intricate physical processes which comprise the atmospheric and oceanic systems of the Earth. Because these models output an abundance of complex time-varying three-dimensional (i.e., 4D) data, effectively conveying the myriad information from a given model poses a significant visualization challenge. The majority of the research effort into this problem has concentrated around synthesizing and examining methods for representing the data itself; by comparison, relatively few studies have looked into the potential merits of various viewing conditions and virtual environments. We seek to improve our understanding of the benefits offered by current consumer-grade virtual reality (VR) systems through an immersive, interactive 4D flow visualization system. Our dataset is a Regional Ocean Modeling System (ROMS) model representing a 12-hour tidal cycle of the currents within New Hampshire's Great Bay estuary. The model data was loaded into a custom VR particle system application using the OpenVR software library and the HTC Vive hardware, which tracks a headset and two six-degree-of-freedom (6DOF) controllers within a 5m-by-5m area. The resulting visualization system allows the user to coexist in the same virtual space as the data, enabling rapid and intuitive analysis of the flow model through natural interactions with the dataset and within the virtual environment. Whereas a traditional computer screen typically requires the user to reposition a virtual camera in the scene to obtain the desired view of the data, in virtual reality the user can simply move their head to the desired viewpoint, completely eliminating the mental context switches from data exploration/analysis to view adjustment and back. The tracked controllers become tools to quickly manipulate (reposition, reorient, and rescale) the dataset and to interrogate it by, e.g., releasing dye particles into the flow field, probing scalar velocities, placing a cutting plane through a region of interest, etc. It is hypothesized that the advantages afforded by head-tracked viewing and 6DOF interaction devices will lead to faster and more efficient examination of 4D flow data. A human factors study is currently being prepared to empirically evaluate this method of visualization and interaction.
User-Centered Evaluation of Visual Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean C.
Visual analytics systems are becoming very popular. More domains now use interactive visualizations to analyze the ever-increasing amount and heterogeneity of data. More novel visualizations are being developed for more tasks and users. We need to ensure that these systems can be evaluated to determine that they are both useful and usable. A user-centered evaluation for visual analytics needs to be developed for these systems. While many of the typical human-computer interaction (HCI) evaluation methodologies can be applied as is, others will need modification. Additionally, new functionality in visual analytics systems needs new evaluation methodologies. There is a difference betweenmore » usability evaluations and user-centered evaluations. Usability looks at the efficiency, effectiveness, and user satisfaction of users carrying out tasks with software applications. User-centered evaluation looks more specifically at the utility provided to the users by the software. This is reflected in the evaluations done and in the metrics used. In the visual analytics domain this is very challenging as users are most likely experts in a particular domain, the tasks they do are often not well defined, the software they use needs to support large amounts of different kinds of data, and often the tasks last for months. These difficulties are discussed more in the section on User-centered Evaluation. Our goal is to provide a discussion of user-centered evaluation practices for visual analytics, including existing practices that can be carried out and new methodologies and metrics that need to be developed and agreed upon by the visual analytics community. The material provided here should be of use for both researchers and practitioners in the field of visual analytics. Researchers and practitioners in HCI and interested in visual analytics will find this information useful as well as a discussion on changes that need to be made to current HCI practices to make them more suitable to visual analytics. A history of analysis and analysis techniques and problems is provided as well as an introduction to user-centered evaluation and various evaluation techniques for readers from different disciplines. The understanding of these techniques is imperative if we wish to support analysis in the visual analytics software we develop. Currently the evaluations that are conducted and published for visual analytics software are very informal and consist mainly of comments from users or potential users. Our goal is to help researchers in visual analytics to conduct more formal user-centered evaluations. While these are time-consuming and expensive to carryout, the outcomes of these studies will have a defining impact on the field of visual analytics and help point the direction for future features and visualizations to incorporate. While many researchers view work in user-centered evaluation as a less-than-exciting area to work, the opposite is true. First of all, the goal is user-centered evaluation is to help visual analytics software developers, researchers, and designers improve their solutions and discover creative ways to better accommodate their users. Working with the users is extremely rewarding as well. While we use the term “users” in almost all situations there are a wide variety of users that all need to be accommodated. Moreover, the domains that use visual analytics are varied and expanding. Just understanding the complexities of a number of these domains is exciting. Researchers are trying out different visualizations and interactions as well. And of course, the size and variety of data are expanding rapidly. User-centered evaluation in this context is rapidly changing. There are no standard processes and metrics and thus those of us working on user-centered evaluation must be creative in our work with both the users and with the researchers and developers.« less
MoleCoolQt – a molecule viewer for charge-density research
Hübschle, Christian B.; Dittrich, Birger
2011-01-01
MoleCoolQt is a molecule viewer for charge-density research. Features include the visualization of local atomic coordinate systems in multipole refinements based on the Hansen and Coppens formalism as implemented, for example, in the XD suite. Residual peaks and holes from XDfft are translated so that they appear close to the nearest atom of the asymmetric unit. Critical points from a topological analysis of the charge density can also be visualized. As in the program MolIso, color-mapped isosurfaces can be generated with a simple interface. Apart from its visualization features the program interactively helps in assigning local atomic coordinate systems and local symmetry, which can be automatically detected and altered. Dummy atoms – as sometimes required for local atomic coordinate systems – are calculated on demand; XD system files are updated after changes. When using the invariom database, potential scattering factor assignment problems can be resolved by the use of an interactive dialog. The following file formats are supported: XD, MoPro, SHELX, GAUSSIAN (com, FChk, cube), CIF and PDB. MoleCoolQt is written in C++ using the Qt4 library, has a user-friendly graphical user interface, and is available for several flavors of Linux, Windows and MacOS. PMID:22477783
Telementoring systems in the operating room: a new approach in medical training.
Wachs, Juan P; Gomez, Gerardo
2013-01-01
This paper discusses the challenges and innovations related to the use of telementoring systems in the operating room. Most of the systems presented leverage on three types of interaction channels: audio, visual and physical. The audio channel enables the mentor to verbally instruct the trainee, and allows the trainee to ask questions. The visual channel is used to deliver annotations, alerts and other messages graphically to the trainee during the surgery. These visual representations are often displayed through a telestrator. The physical channel has been used in laparoscopic procedures by partially controlling the laparoscope through force-feedback. While in face to face instruction, the mentor produces gestures to convey certain aspects of the surgical instruction, there is not equivalent of this form of physical interaction between the mentor and trainee in open surgical procedures in telementoring systems. Even that the trend is to perform more minimally invasive surgery (MIS), trauma surgeries are still necessary, where initial resuscitation and stabilization of the patient in a timely manner is crucial. This paper presents a preliminary study conducted at the Indiana University Medical School and Purdue University, where initial lexicons of surgical instructive gestures (SIGs) were determined through systematic observation when mentor and trainee operate together. The paper concludes with potential ways to convey gestural information through surgical robots.
1998-03-01
Research Laboratory’s Virtual Reality Responsive Workbench (VRRWB) and Dragon software system which together address the problem of battle space...and describe the lessons which have been learned. Interactive graphics, workbench, battle space visualization, virtual reality , user interface.
Emergency Response Virtual Environment for Safe Schools
NASA Technical Reports Server (NTRS)
Wasfy, Ayman; Walker, Teresa
2008-01-01
An intelligent emergency response virtual environment (ERVE) that provides emergency first responders, response planners, and managers with situational awareness as well as training and support for safe schools is presented. ERVE incorporates an intelligent agent facility for guiding and assisting the user in the context of the emergency response operations. Response information folders capture key information about the school. The system enables interactive 3D visualization of schools and academic campuses, including the terrain and the buildings' exteriors and interiors in an easy to use Web..based interface. ERVE incorporates live camera and sensors feeds and can be integrated with other simulations such as chemical plume simulation. The system is integrated with a Geographical Information System (GIS) to enable situational awareness of emergency events and assessment of their effect on schools in a geographic area. ERVE can also be integrated with emergency text messaging notification systems. Using ERVE, it is now possible to address safe schools' emergency management needs with a scaleable, seamlessly integrated and fully interactive intelligent and visually compelling solution.
Ko, Sungahn; Zhao, Jieqiong; Xia, Jing; Afzal, Shehzad; Wang, Xiaoyu; Abram, Greg; Elmqvist, Niklas; Kne, Len; Van Riper, David; Gaither, Kelly; Kennedy, Shaun; Tolone, William; Ribarsky, William; Ebert, David S
2014-12-01
We present VASA, a visual analytics platform consisting of a desktop application, a component model, and a suite of distributed simulation components for modeling the impact of societal threats such as weather, food contamination, and traffic on critical infrastructure such as supply chains, road networks, and power grids. Each component encapsulates a high-fidelity simulation model that together form an asynchronous simulation pipeline: a system of systems of individual simulations with a common data and parameter exchange format. At the heart of VASA is the Workbench, a visual analytics application providing three distinct features: (1) low-fidelity approximations of the distributed simulation components using local simulation proxies to enable analysts to interactively configure a simulation run; (2) computational steering mechanisms to manage the execution of individual simulation components; and (3) spatiotemporal and interactive methods to explore the combined results of a simulation run. We showcase the utility of the platform using examples involving supply chains during a hurricane as well as food contamination in a fast food restaurant chain.
Towards a gestural 3D interaction for tangible and three-dimensional GIS visualizations
NASA Astrophysics Data System (ADS)
Partsinevelos, Panagiotis; Agadakos, Ioannis; Pattakos, Nikolas; Maragakis, Michail
2014-05-01
The last decade has been characterized by a significant increase of spatially dependent applications that require storage, visualization, analysis and exploration of geographic information. GIS analysis of spatiotemporal geographic data is operated by highly trained personnel under an abundance of software and tools, lacking interoperability and friendly user interaction. Towards this end, new forms of querying and interaction are emerging, including gestural interfaces. Three-dimensional GIS representations refer to either tangible surfaces or projected representations. Making a 3D tangible geographic representation touch-sensitive may be a convenient solution, but such an approach raises the cost significantly and complicates the hardware and processing required to combine touch-sensitive material (for pinpointing points) with deformable material (for displaying elevations). In this study, a novel interaction scheme upon a three dimensional visualization of GIS data is proposed. While gesture user interfaces are not yet fully acceptable due to inconsistencies and complexity, a non-tangible GIS system where 3D visualizations are projected, calls for interactions that are based on three-dimensional, non-contact and gestural procedures. Towards these objectives, we use the Microsoft Kinect II system which includes a time of flight camera, allowing for a robust and real time depth map generation, along with the capturing and translation of a variety of predefined gestures from different simultaneous users. By incorporating these features into our system architecture, we attempt to create a natural way for users to operate on GIS data. Apart from the conventional pan and zoom features, the key functions addressed for the 3-D user interface is the ability to pinpoint particular points, lines and areas of interest, such as destinations, waypoints, landmarks, closed areas, etc. The first results shown, concern a projected GIS representation where the user selects points and regions of interest while the GIS component responds accordingly by changing the scenario in a natural disaster application. Creating a 3D model representation of geospatial data provides a natural way for users to perceive and interact with space. To the best of our knowledge it is the first attempt to use Kinect II for GIS applications and generally virtual environments using novel Human Computer Interaction methods. Under a robust decision support system, the users are able to interact, combine and computationally analyze information in three dimensions using gestures. This study promotes geographic awareness and education and will prove beneficial for a wide range of geoscience applications including natural disaster and emergency management. Acknowledgements: This work is partially supported under the framework of the "Cooperation 2011" project ATLANTAS (11_SYN_6_1937) funded from the Operational Program "Competitiveness and Entrepreneurship" (co-funded by the European Regional Development Fund (ERDF)) and managed by the Greek General Secretariat for Research and Technology.
A framework for interactive visualization of digital medical images.
Koehring, Andrew; Foo, Jung Leng; Miyano, Go; Lobe, Thom; Winer, Eliot
2008-10-01
The visualization of medical images obtained from scanning techniques such as computed tomography and magnetic resonance imaging is a well-researched field. However, advanced tools and methods to manipulate these data for surgical planning and other tasks have not seen widespread use among medical professionals. Radiologists have begun using more advanced visualization packages on desktop computer systems, but most physicians continue to work with basic two-dimensional grayscale images or not work directly with the data at all. In addition, new display technologies that are in use in other fields have yet to be fully applied in medicine. It is our estimation that usability is the key aspect in keeping this new technology from being more widely used by the medical community at large. Therefore, we have a software and hardware framework that not only make use of advanced visualization techniques, but also feature powerful, yet simple-to-use, interfaces. A virtual reality system was created to display volume-rendered medical models in three dimensions. It was designed to run in many configurations, from a large cluster of machines powering a multiwalled display down to a single desktop computer. An augmented reality system was also created for, literally, hands-on interaction when viewing models of medical data. Last, a desktop application was designed to provide a simple visualization tool, which can be run on nearly any computer at a user's disposal. This research is directed toward improving the capabilities of medical professionals in the tasks of preoperative planning, surgical training, diagnostic assistance, and patient education.
Visualization and simulation techniques for surgical simulators using actual patient's data.
Radetzky, Arne; Nürnberger, Andreas
2002-11-01
Because of the increasing complexity of surgical interventions research in surgical simulation became more and more important over the last years. However, the simulation of tissue deformation is still a challenging problem, mainly due to the short response times that are required for real-time interaction. The demands to hard and software are even larger if not only the modeled human anatomy is used but the anatomy of actual patients. This is required if the surgical simulator should be used as training medium for expert surgeons rather than students. In this article, suitable visualization and simulation methods for surgical simulation utilizing actual patient's datasets are described. Therefore, the advantages and disadvantages of direct and indirect volume rendering for the visualization are discussed and a neuro-fuzzy system is described, which can be used for the simulation of interactive tissue deformations. The neuro-fuzzy system makes it possible to define the deformation behavior based on a linguistic description of the tissue characteristics or to learn the dynamics by using measured data of real tissue. Furthermore, a simulator for minimally-invasive neurosurgical interventions is presented that utilizes the described visualization and simulation methods. The structure of the simulator is described in detail and the results of a system evaluation by an experienced neurosurgeon--a quantitative comparison between different methods of virtual endoscopy as well as a comparison between real brain images and virtual endoscopies--are given. The evaluation proved that the simulator provides a higher realism of the visualization and simulation then other currently available simulators. Copyright 2002 Elsevier Science B.V.
Building the Joint Battlespace Infosphere. Volume 2: Interactive Information Technologies
1999-12-17
G. A . Vouros, “ A Knowledge- Based Methodology for Supporting Multilingual and User -Tailored Interfaces ,” Interacting With Computers, Vol. 9 (1998), p...project is to develop a two-handed user interface to the stereoscopic field analyzer, an interactive 3-D scientific visualization system. The...62 See http://www.hitl.washington.edu/research/vrd/. 63 R. Baumann and R. Clavel, “Haptic Interface for Virtual Reality Based
Application of Frameworks in the Analysis and (Re)design of Interactive Visual Learning Tools
ERIC Educational Resources Information Center
Liang, Hai-Ning; Sedig, Kamran
2009-01-01
Interactive visual learning tools (IVLTs) are software environments that encode and display information visually and allow learners to interact with the visual information. This article examines the application and utility of frameworks in the analysis and design of IVLTs at the micro level. Frameworks play an important role in any design. They…
State/federal interaction of LANDSAT system and related technical assistance
NASA Technical Reports Server (NTRS)
Tesser, P. A.
1981-01-01
The history of state involvement in LANDSAT systems planning and related efforts is described. Currently 16 states have visual LANDSAT capabilities and 10 others are planning on developing such capabilities. The federal government's future plans for the LANDSAT system, the impacts of recent budget decisions on the systems, and the FY 82 budget process are examined.
Rahman, Md Mahmudur; Antani, Sameer K; Demner-Fushman, Dina; Thoma, George R
2015-10-01
This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term "concept" refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature.
Rahman, Md. Mahmudur; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.
2015-01-01
Abstract. This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term “concept” refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature. PMID:26730398
Giesbrecht, Barry; Sy, Jocelyn L.; Guerin, Scott A.
2012-01-01
Environmental context learned without awareness can facilitate visual processing of goal-relevant information. According to one view, the benefit of implicitly learned context relies on the neural systems involved in spatial attention and hippocampus-mediated memory. While this view has received empirical support, it contradicts traditional models of hippocampal function. The purpose of the present work was to clarify the influence of spatial context on visual search performance and on brain structures involved memory and attention. Event-related functional magnetic resonance imaging revealed that activity in the hippocampus as well as in visual and parietal cortex was modulated by learned visual context even though participants’ subjective reports and performance on a post-experiment recognition task indicated no explicit knowledge of the learned context. Moreover, the magnitude of the initial selective hippocampus response predicted the magnitude of the behavioral benefit due to context observed at the end of the experiment. The results suggest that implicit contextual learning is mediated by attention and memory and that these systems interact to support search of our environment. PMID:23099047
AWE: Aviation Weather Data Visualization Environment
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)
2000-01-01
Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.
Butson, Christopher R.; Tamm, Georg; Jain, Sanket; Fogal, Thomas; Krüger, Jens
2012-01-01
In recent years there has been significant growth in the use of patient-specific models to predict the effects of neuromodulation therapies such as deep brain stimulation (DBS). However, translating these models from a research environment to the everyday clinical workflow has been a challenge, primarily due to the complexity of the models and the expertise required in specialized visualization software. In this paper, we deploy the interactive visualization system ImageVis3D Mobile, which has been designed for mobile computing devices such as the iPhone or iPad, in an evaluation environment to visualize models of Parkinson’s disease patients who received DBS therapy. Selection of DBS settings is a significant clinical challenge that requires repeated revisions to achieve optimal therapeutic response, and is often performed without any visual representation of the stimulation system in the patient. We used ImageVis3D Mobile to provide models to movement disorders clinicians and asked them to use the software to determine: 1) which of the four DBS electrode contacts they would select for therapy; and 2) what stimulation settings they would choose. We compared the stimulation protocol chosen from the software versus the stimulation protocol that was chosen via clinical practice (independently of the study). Lastly, we compared the amount of time required to reach these settings using the software versus the time required through standard practice. We found that the stimulation settings chosen using ImageVis3D Mobile were similar to those used in standard of care, but were selected in drastically less time. We show how our visualization system, available directly at the point of care on a device familiar to the clinician, can be used to guide clinical decision making for selection of DBS settings. In our view, the positive impact of the system could also translate to areas other than DBS. PMID:22450824
2017-04-01
ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH (VISRIDER) PROGRAM TASK 6: POINT CLOUD...To) OCT 2013 – SEP 2014 4. TITLE AND SUBTITLE ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH...various point cloud visualization techniques for viewing large scale LiDAR datasets. Evaluate their potential use for thick client desktop platforms
Sherman, Aleksandra; Grabowecky, Marcia; Suzuki, Satoru
2015-08-01
What shapes art appreciation? Much research has focused on the importance of visual features themselves (e.g., symmetry, natural scene statistics) and of the viewer's experience and expertise with specific artworks. However, even after taking these factors into account, there are considerable individual differences in art preferences. Our new result suggests that art preference is also influenced by the compatibility between visual properties and the characteristics of the viewer's visual system. Specifically, we have demonstrated, using 120 artworks from diverse periods, cultures, genres, and styles, that art appreciation is increased when the level of visual complexity within an artwork is compatible with the viewer's visual working memory capacity. The result highlights the importance of the interaction between visual features and the beholder's general visual capacity in shaping art appreciation. (c) 2015 APA, all rights reserved).
Mehler, Bruce; Kidd, David; Reimer, Bryan; Reagan, Ian; Dobres, Jonathan; McCartt, Anne
2016-03-01
One purpose of integrating voice interfaces into embedded vehicle systems is to reduce drivers' visual and manual distractions with 'infotainment' technologies. However, there is scant research on actual benefits in production vehicles or how different interface designs affect attentional demands. Driving performance, visual engagement, and indices of workload (heart rate, skin conductance, subjective ratings) were assessed in 80 drivers randomly assigned to drive a 2013 Chevrolet Equinox or Volvo XC60. The Chevrolet MyLink system allowed completing tasks with one voice command, while the Volvo Sensus required multiple commands to navigate the menu structure. When calling a phone contact, both voice systems reduced visual demand relative to the visual-manual interfaces, with reductions for drivers in the Equinox being greater. The Equinox 'one-shot' voice command showed advantages during contact calling but had significantly higher error rates than Sensus during destination address entry. For both secondary tasks, neither voice interface entirely eliminated visual demand. Practitioner Summary: The findings reinforce the observation that most, if not all, automotive auditory-vocal interfaces are multi-modal interfaces in which the full range of potential demands (auditory, vocal, visual, manipulative, cognitive, tactile, etc.) need to be considered in developing optimal implementations and evaluating drivers' interaction with the systems. Social Media: In-vehicle voice-interfaces can reduce visual demand but do not eliminate it and all types of demand need to be taken into account in a comprehensive evaluation.
Suggested Interactivity: Seeking Perceived Affordances for Information Visualization.
Boy, Jeremy; Eveillard, Louis; Detienne, Françoise; Fekete, Jean-Daniel
2016-01-01
In this article, we investigate methods for suggesting the interactivity of online visualizations embedded with text. We first assess the need for such methods by conducting three initial experiments on Amazon's Mechanical Turk. We then present a design space for Suggested Interactivity (i. e., visual cues used as perceived affordances-SI), based on a survey of 382 HTML5 and visualization websites. Finally, we assess the effectiveness of three SI cues we designed for suggesting the interactivity of bar charts embedded with text. Our results show that only one cue (SI3) was successful in inciting participants to interact with the visualizations, and we hypothesize this is because this particular cue provided feedforward.
Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F
2007-01-01
Background Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. Results We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: . Conclusion MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine. PMID:17937818
Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F
2007-10-15
Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: http://sig.biostr.washington.edu/projects/MindSeer. MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine.
NASA Astrophysics Data System (ADS)
Santosa, H.; Ernawati, J.; Wulandari, L. D.
2018-03-01
The visual aesthetic experience in urban spaces is important in establishing a comfortable and satisfying experience for the community. The embodiment of a good visual image of urban space will encourage the emergence of positive perceptions and meanings stimulating the community to produce a good reaction to its urban space. Moreover, to establish a Good Governance in urban planning and design, it is necessary to boost and promote a community participation in the process of controlling the visual quality of urban space through the visual quality evaluation on urban street corridors. This study is an early stage as part of the development of ‘Landscape Visual Planning System’ on the commercial street corridor in Malang. Accordingly, the research aims to evaluate the physical characteristics and the public preferences of the spatial and visual aspects in five provincial road corridors in Malang. This study employs a field survey methods, and an environmental aesthetics approach through semantic differential method. The result of the identification of physical characteristics and the assessment of public preferences on the spatial and visual aspects of the five provincial streets serve as the basis for constructing the 3d interactive simulation scenarios in the Landscape Visual Planning System.
Visual analytics as a translational cognitive science.
Fisher, Brian; Green, Tera Marie; Arias-Hernández, Richard
2011-07-01
Visual analytics is a new interdisciplinary field of study that calls for a more structured scientific approach to understanding the effects of interaction with complex graphical displays on human cognitive processes. Its primary goal is to support the design and evaluation of graphical information systems that better support cognitive processes in areas as diverse as scientific research and emergency management. The methodologies that make up this new field are as yet ill defined. This paper proposes a pathway for development of visual analytics as a translational cognitive science that bridges fundamental research in human/computer cognitive systems and design and evaluation of information systems in situ. Achieving this goal will require the development of enhanced field methods for conceptual decomposition of human/computer cognitive systems that maps onto laboratory studies, and improved methods for conducting laboratory investigations that might better map onto real-world cognitive processes in technology-rich environments. Copyright © 2011 Cognitive Science Society, Inc.
Virtual environment display for a 3D audio room simulation
NASA Astrophysics Data System (ADS)
Chapin, William L.; Foster, Scott
1992-06-01
Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.
Rashid, Mahbub; Khan, Nayma; Jones, Belinda
2016-01-01
This study compared physical and visual accessibilities and their associations with staff perception and interaction behaviors in 2 intensive care units (ICUs) with open-plan and racetrack layouts. For the study, physical and visual accessibilities were measured using the spatial analysis techniques of Space Syntax. Data on staff perception were collected from 81 clinicians using a questionnaire survey. The locations of 2233 interactions, and the location and length of another 339 interactions in these units were collected using systematic field observation techniques. According to the study, physical and visual accessibilities were different in the 2 ICUs, and clinicians' primary workspaces were physically and visually more accessible in the open-plan ICU. Physical and visual accessibilities affected how well clinicians' knew their peers and where their peers were located in these units. Physical and visual accessibilities also affected clinicians' perception of interaction and communication and of teamwork and collaboration in these units. Additionally, physical and visual accessibilities showed significant positive associations with interaction behaviors in these units, with the open-plan ICU showing stronger associations. However, physical accessibilities were less important than visual accessibilities in relation to interaction behaviors in these ICUs. The implications of these findings for ICU design are discussed.
ERIC Educational Resources Information Center
Devlin, Niall
2009-01-01
This article introduces a new practical visual approach, the Rules Grid, to support children who have social communication and interaction needs. The Rules Grid involves a system whereby behaviours of concern can be broken down into smaller behavioural manifestations which in turn lead not only to problem identification and specification, but…
Learning Protein Structure with Peers in an AR-Enhanced Learning Environment
ERIC Educational Resources Information Center
Chen, Yu-Chien
2013-01-01
Augmented reality (AR) is an interactive system that allows users to interact with virtual objects and the real world at the same time. The purpose of this dissertation was to explore how AR, as a new visualization tool, that can demonstrate spatial relationships by representing three dimensional objects and animations, facilitates students to…
An overview of 3D software visualization.
Teyseyre, Alfredo R; Campo, Marcelo R
2009-01-01
Software visualization studies techniques and methods for graphically representing different aspects of software. Its main goal is to enhance, simplify and clarify the mental representation a software engineer has of a computer system. During many years, visualization in 2D space has been actively studied, but in the last decade, researchers have begun to explore new 3D representations for visualizing software. In this article, we present an overview of current research in the area, describing several major aspects like: visual representations, interaction issues, evaluation methods and development tools. We also perform a survey of some representative tools to support different tasks, i.e., software maintenance and comprehension, requirements validation and algorithm animation for educational purposes, among others. Finally, we conclude identifying future research directions.
Motor-visual neurons and action recognition in social interactions.
de la Rosa, Stephan; Bülthoff, Heinrich H
2014-04-01
Cook et al. suggest that motor-visual neurons originate from associative learning. This suggestion has interesting implications for the processing of socially relevant visual information in social interactions. Here, we discuss two aspects of the associative learning account that seem to have particular relevance for visual recognition of social information in social interactions - namely, context-specific and contingency based learning.
Manipulating and Visualizing Molecular Interactions in Customized Nanoscale Spaces
NASA Astrophysics Data System (ADS)
Stabile, Francis; Henkin, Gil; Berard, Daniel; Shayegan, Marjan; Leith, Jason; Leslie, Sabrina
We present a dynamically adjustable nanofluidic platform for formatting the conformations of and visualizing the interaction kinetics between biomolecules in solution, offering new time resolution and control of the reaction processes. This platform extends convex lens-induced confinement (CLiC), a technique for imaging molecules under confinement, by introducing a system for in situ modification of the chemical environment; this system uses a deep microchannel to diffusively exchange reagents within the nanoscale imaging region, whose height is fixed by a nanopost array. To illustrate, we visualize and manipulate salt-induced, surfactant-induced, and enzyme-induced reactions between small-molecule reagents and DNA molecules, where the conformations of the DNA molecules are formatted by the imposed nanoscale confinement. By using nanofabricated, nonabsorbing, low-background glass walls to confine biomolecules, our nanofluidic platform facilitates quantitative exploration of physiologically and biotechnologically relevant processes at the nanoscale. This device provides new kinetic information about dynamic chemical processes at the single-molecule level, using advancements in the CLiC design including a microchannel-based diffuser and postarray-based dialysis slit.
NASA Astrophysics Data System (ADS)
Chen, ChuXin; Trivedi, Mohan M.
1992-03-01
This research is focused on enhancing the overall productivity of an integrated human-robot system. A simulation, animation, visualization, and interactive control (SAVIC) environment has been developed for the design and operation of an integrated robotic manipulator system. This unique system possesses the abilities for multisensor simulation, kinematics and locomotion animation, dynamic motion and manipulation animation, transformation between real and virtual modes within the same graphics system, ease in exchanging software modules and hardware devices between real and virtual world operations, and interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation, and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.
NASA Technical Reports Server (NTRS)
Poulton, C. E.
1975-01-01
Comparative statistics were presented on the capability of LANDSAT-1 and three of the Skylab remote sensing systems (S-190A, S-190B, S-192) for the recognition and inventory of analogous natural vegetations and landscape features important in resource allocation and management. Two analogous regions presenting vegetational zonation from salt desert to alpine conditions above the timberline were observed, emphasizing the visual interpretation mode in the investigation. An hierarchical legend system was used as the basic classification of all land surface features. Comparative tests were run on image identifiability with the different sensor systems, and mapping and interpretation tests were made both in monocular and stereo interpretation with all systems except the S-192. Significant advantage was found in the use of stereo from space when image analysis is by visual or visual-machine-aided interactive systems. Some cost factors in mapping from space are identified. The various image types are compared and an operational system is postulated.
VIGOR: Interactive Visual Exploration of Graph Query Results.
Pienta, Robert; Hohman, Fred; Endert, Alex; Tamersoy, Acar; Roundy, Kevin; Gates, Chris; Navathe, Shamkant; Chau, Duen Horng
2018-01-01
Finding patterns in graphs has become a vital challenge in many domains from biological systems, network security, to finance (e.g., finding money laundering rings of bankers and business owners). While there is significant interest in graph databases and querying techniques, less research has focused on helping analysts make sense of underlying patterns within a group of subgraph results. Visualizing graph query results is challenging, requiring effective summarization of a large number of subgraphs, each having potentially shared node-values, rich node features, and flexible structure across queries. We present VIGOR, a novel interactive visual analytics system, for exploring and making sense of query results. VIGOR uses multiple coordinated views, leveraging different data representations and organizations to streamline analysts sensemaking process. VIGOR contributes: (1) an exemplar-based interaction technique, where an analyst starts with a specific result and relaxes constraints to find other similar results or starts with only the structure (i.e., without node value constraints), and adds constraints to narrow in on specific results; and (2) a novel feature-aware subgraph result summarization. Through a collaboration with Symantec, we demonstrate how VIGOR helps tackle real-world problems through the discovery of security blindspots in a cybersecurity dataset with over 11,000 incidents. We also evaluate VIGOR with a within-subjects study, demonstrating VIGOR's ease of use over a leading graph database management system, and its ability to help analysts understand their results at higher speed and make fewer errors.
Comprehensive Reconstruction and Visualization of Non-Coding Regulatory Networks in Human
Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba
2014-01-01
Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape. PMID:25540777
Comprehensive reconstruction and visualization of non-coding regulatory networks in human.
Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba
2014-01-01
Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape.
Assessing GPS Constellation Resiliency in an Urban Canyon Environment
2015-03-26
Taipei, Taiwan as his area of interest. His GPS constellation is modeled in the Satellite Toolkit ( STK ) where augmentation satellites can be added and...interaction. SEAS also provides a visual display of the simulation which is useful for verification and debugging portions of the analysis. Furthermore...entire system. Interpreting the model is aided by the visual display of the agents moving in the region of inter- est. Furthermore, SEAS collects
NASA Technical Reports Server (NTRS)
Plesniak, Michael W.; Johnston, J. P.
1989-01-01
The construction and development of the multi-component traversing system and associated control hardware and software are presented. A hydrogen bubble/laser sheet flow visualization technique was developed to visually study the characteristics of the mixing layers. With this technique large-scale rollers arising from the Taylor-Gortler instability and its interaction with the primary Kelvin-Helmholtz structures can be studied.
Model of rhythmic ball bouncing using a visually controlled neural oscillator.
Avrin, Guillaume; Siegler, Isabelle A; Makarov, Maria; Rodriguez-Ayerbe, Pedro
2017-10-01
The present paper investigates the sensory-driven modulations of central pattern generator dynamics that can be expected to reproduce human behavior during rhythmic hybrid tasks. We propose a theoretical model of human sensorimotor behavior able to account for the observed data from the ball-bouncing task. The novel control architecture is composed of a Matsuoka neural oscillator coupled with the environment through visual sensory feedback. The architecture's ability to reproduce human-like performance during the ball-bouncing task in the presence of perturbations is quantified by comparison of simulated and recorded trials. The results suggest that human visual control of the task is achieved online. The adaptive behavior is made possible by a parametric and state control of the limit cycle emerging from the interaction of the rhythmic pattern generator, the musculoskeletal system, and the environment. NEW & NOTEWORTHY The study demonstrates that a behavioral model based on a neural oscillator controlled by visual information is able to accurately reproduce human modulations in a motor action with respect to sensory information during the rhythmic ball-bouncing task. The model attractor dynamics emerging from the interaction between the neuromusculoskeletal system and the environment met task requirements, environmental constraints, and human behavioral choices without relying on movement planning and explicit internal models of the environment. Copyright © 2017 the American Physiological Society.
An ERP investigation of visual word recognition in syllabary scripts.
Okano, Kana; Grainger, Jonathan; Holcomb, Phillip J
2013-06-01
The bimodal interactive-activation model has been successfully applied to understanding the neurocognitive processes involved in reading words in alphabetic scripts, as reflected in the modulation of ERP components in masked repetition priming. In order to test the generalizability of this approach, in the present study we examined word recognition in a different writing system, the Japanese syllabary scripts hiragana and katakana. Native Japanese participants were presented with repeated or unrelated pairs of Japanese words in which the prime and target words were both in the same script (within-script priming, Exp. 1) or were in the opposite script (cross-script priming, Exp. 2). As in previous studies with alphabetic scripts, in both experiments the N250 (sublexical processing) and N400 (lexical-semantic processing) components were modulated by priming, although the time course was somewhat delayed. The earlier N/P150 effect (visual feature processing) was present only in "Experiment 1: Within-script priming", in which the prime and target words shared visual features. Overall, the results provide support for the hypothesis that visual word recognition involves a generalizable set of neurocognitive processes that operate in similar manners across different writing systems and languages, as well as pointing to the viability of the bimodal interactive-activation framework for modeling such processes.
An ERP Investigation of Visual Word Recognition in Syllabary Scripts
Okano, Kana; Grainger, Jonathan; Holcomb, Phillip J.
2013-01-01
The bi-modal interactive-activation model has been successfully applied to understanding the neuro-cognitive processes involved in reading words in alphabetic scripts, as reflected in the modulation of ERP components in masked repetition priming. In order to test the generalizability of this approach, the current study examined word recognition in a different writing system, the Japanese syllabary scripts Hiragana and Katakana. Native Japanese participants were presented with repeated or unrelated pairs of Japanese words where the prime and target words were both in the same script (within-script priming, Experiment 1) or were in the opposite script (cross-script priming, Experiment 2). As in previous studies with alphabetic scripts, in both experiments the N250 (sub-lexical processing) and N400 (lexical-semantic processing) components were modulated by priming, although the time-course was somewhat delayed. The earlier N/P150 effect (visual feature processing) was present only in Experiment 1 where prime and target words shared visual features. Overall, the results provide support for the hypothesis that visual word recognition involves a generalizable set of neuro-cognitive processes that operate in a similar manner across different writing systems and languages, as well as pointing to the viability of the bi-modal interactive activation framework for modeling such processes. PMID:23378278
Augmented reality in laparoscopic surgical oncology.
Nicolau, Stéphane; Soler, Luc; Mutter, Didier; Marescaux, Jacques
2011-09-01
Minimally invasive surgery represents one of the main evolutions of surgical techniques aimed at providing a greater benefit to the patient. However, minimally invasive surgery increases the operative difficulty since the depth perception is usually dramatically reduced, the field of view is limited and the sense of touch is transmitted by an instrument. However, these drawbacks can currently be reduced by computer technology guiding the surgical gesture. Indeed, from a patient's medical image (US, CT or MRI), Augmented Reality (AR) can increase the surgeon's intra-operative vision by providing a virtual transparency of the patient. AR is based on two main processes: the 3D visualization of the anatomical or pathological structures appearing in the medical image, and the registration of this visualization on the real patient. 3D visualization can be performed directly from the medical image without the need for a pre-processing step thanks to volume rendering. But better results are obtained with surface rendering after organ and pathology delineations and 3D modelling. Registration can be performed interactively or automatically. Several interactive systems have been developed and applied to humans, demonstrating the benefit of AR in surgical oncology. It also shows the current limited interactivity due to soft organ movements and interaction between surgeon instruments and organs. If the current automatic AR systems show the feasibility of such system, it is still relying on specific and expensive equipment which is not available in clinical routine. Moreover, they are not robust enough due to the high complexity of developing a real-time registration taking organ deformation and human movement into account. However, the latest results of automatic AR systems are extremely encouraging and show that it will become a standard requirement for future computer-assisted surgical oncology. In this article, we will explain the concept of AR and its principles. Then, we will review the existing interactive and automatic AR systems in digestive surgical oncology, highlighting their benefits and limitations. Finally, we will discuss the future evolutions and the issues that still have to be tackled so that this technology can be seamlessly integrated in the operating room. Copyright © 2011 Elsevier Ltd. All rights reserved.
Visual traffic jam analysis based on trajectory data.
Wang, Zuchao; Lu, Min; Yuan, Xiaoru; Zhang, Junping; van de Wetering, Huub
2013-12-01
In this work, we present an interactive system for visual analysis of urban traffic congestion based on GPS trajectories. For these trajectories we develop strategies to extract and derive traffic jam information. After cleaning the trajectories, they are matched to a road network. Subsequently, traffic speed on each road segment is computed and traffic jam events are automatically detected. Spatially and temporally related events are concatenated in, so-called, traffic jam propagation graphs. These graphs form a high-level description of a traffic jam and its propagation in time and space. Our system provides multiple views for visually exploring and analyzing the traffic condition of a large city as a whole, on the level of propagation graphs, and on road segment level. Case studies with 24 days of taxi GPS trajectories collected in Beijing demonstrate the effectiveness of our system.
Simulator platform for fast reactor operation and safety technology demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, R. B.; Park, Y. S.; Grandy, C.
2012-07-30
A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe responsemore » to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.« less
Fox, Jessica L.; Aptekar, Jacob W.; Zolotova, Nadezhda M.; Shoemaker, Patrick A.; Frye, Mark A.
2014-01-01
The behavioral algorithms and neural subsystems for visual figure–ground discrimination are not sufficiently described in any model system. The fly visual system shares structural and functional similarity with that of vertebrates and, like vertebrates, flies robustly track visual figures in the face of ground motion. This computation is crucial for animals that pursue salient objects under the high performance requirements imposed by flight behavior. Flies smoothly track small objects and use wide-field optic flow to maintain flight-stabilizing optomotor reflexes. The spatial and temporal properties of visual figure tracking and wide-field stabilization have been characterized in flies, but how the two systems interact spatially to allow flies to actively track figures against a moving ground has not. We took a systems identification approach in flying Drosophila and measured wing-steering responses to velocity impulses of figure and ground motion independently. We constructed a spatiotemporal action field (STAF) – the behavioral analog of a spatiotemporal receptive field – revealing how the behavioral impulse responses to figure tracking and concurrent ground stabilization vary for figure motion centered at each location across the visual azimuth. The figure tracking and ground stabilization STAFs show distinct spatial tuning and temporal dynamics, confirming the independence of the two systems. When the figure tracking system is activated by a narrow vertical bar moving within the frontal field of view, ground motion is essentially ignored despite comprising over 90% of the total visual input. PMID:24198267
Experimenter's Laboratory for Visualized Interactive Science
NASA Technical Reports Server (NTRS)
Hansen, Elaine R.; Rodier, Daniel R.; Klemp, Marjorie K.
1994-01-01
ELVIS (Experimenter's Laboratory for Visualized Interactive Science) is an interactive visualization environment that enables scientists, students, and educators to visualize and analyze large, complex, and diverse sets of scientific data. It accomplishes this by presenting the data sets as 2-D, 3-D, color, stereo, and graphic images with movable and multiple light sources combined with displays of solid-surface, contours, wire-frame, and transparency. By simultaneously rendering diverse data sets acquired from multiple sources, formats, and resolutions and by interacting with the data through an intuitive, direct-manipulation interface, ELVIS provides an interactive and responsive environment for exploratory data analysis.
Simulation and visualization of energy-related occupant behavior in office buildings
Chen, Yixing; Liang, Xin; Hong, Tianzhen; ...
2017-03-15
In current building performance simulation programs, occupant presence and interactions with building systems are over-simplified and less indicative of real world scenarios, contributing to the discrepancies between simulated and actual energy use in buildings. Simulation results are normally presented using various types of charts. However, using those charts, it is difficult to visualize and communicate the importance of occupants’ behavior to building energy performance. This study introduced a new approach to simulating and visualizing energy-related occupant behavior in office buildings. First, the Occupancy Simulator was used to simulate the occupant presence and movement and generate occupant schedules for each spacemore » as well as for each occupant. Then an occupant behavior functional mockup unit (obFMU) was used to model occupant behavior and analyze their impact on building energy use through co-simulation with EnergyPlus. Finally, an agent-based model built upon AnyLogic was applied to visualize the simulation results of the occupant movement and interactions with building systems, as well as the related energy performance. A case study using a small office building in Miami, FL was presented to demonstrate the process and application of the Occupancy Simulator, the obFMU and EnergyPlus, and the AnyLogic module in simulation and visualization of energy-related occupant behaviors in office buildings. Furthermore, the presented approach provides a new detailed and visual way for policy makers, architects, engineers and building operators to better understand occupant energy behavior and their impact on energy use in buildings, which can improve the design and operation of low energy buildings.« less
Simulation and visualization of energy-related occupant behavior in office buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yixing; Liang, Xin; Hong, Tianzhen
In current building performance simulation programs, occupant presence and interactions with building systems are over-simplified and less indicative of real world scenarios, contributing to the discrepancies between simulated and actual energy use in buildings. Simulation results are normally presented using various types of charts. However, using those charts, it is difficult to visualize and communicate the importance of occupants’ behavior to building energy performance. This study introduced a new approach to simulating and visualizing energy-related occupant behavior in office buildings. First, the Occupancy Simulator was used to simulate the occupant presence and movement and generate occupant schedules for each spacemore » as well as for each occupant. Then an occupant behavior functional mockup unit (obFMU) was used to model occupant behavior and analyze their impact on building energy use through co-simulation with EnergyPlus. Finally, an agent-based model built upon AnyLogic was applied to visualize the simulation results of the occupant movement and interactions with building systems, as well as the related energy performance. A case study using a small office building in Miami, FL was presented to demonstrate the process and application of the Occupancy Simulator, the obFMU and EnergyPlus, and the AnyLogic module in simulation and visualization of energy-related occupant behaviors in office buildings. Furthermore, the presented approach provides a new detailed and visual way for policy makers, architects, engineers and building operators to better understand occupant energy behavior and their impact on energy use in buildings, which can improve the design and operation of low energy buildings.« less
Beyond perceptual expertise: revisiting the neural substrates of expert object recognition
Harel, Assaf; Kravitz, Dwight; Baker, Chris I.
2013-01-01
Real-world expertise provides a valuable opportunity to understand how experience shapes human behavior and neural function. In the visual domain, the study of expert object recognition, such as in car enthusiasts or bird watchers, has produced a large, growing, and often-controversial literature. Here, we synthesize this literature, focusing primarily on results from functional brain imaging, and propose an interactive framework that incorporates the impact of high-level factors, such as attention and conceptual knowledge, in supporting expertise. This framework contrasts with the perceptual view of object expertise that has concentrated largely on stimulus-driven processing in visual cortex. One prominent version of this perceptual account has almost exclusively focused on the relation of expertise to face processing and, in terms of the neural substrates, has centered on face-selective cortical regions such as the Fusiform Face Area (FFA). We discuss the limitations of this face-centric approach as well as the more general perceptual view, and highlight that expert related activity is: (i) found throughout visual cortex, not just FFA, with a strong relationship between neural response and behavioral expertise even in the earliest stages of visual processing, (ii) found outside visual cortex in areas such as parietal and prefrontal cortices, and (iii) modulated by the attentional engagement of the observer suggesting that it is neither automatic nor driven solely by stimulus properties. These findings strongly support a framework in which object expertise emerges from extensive interactions within and between the visual system and other cognitive systems, resulting in widespread, distributed patterns of expertise-related activity across the entire cortex. PMID:24409134
An amodal shared resource model of language-mediated visual attention
Smith, Alastair C.; Monaghan, Padraic; Huettig, Falk
2013-01-01
Language-mediated visual attention describes the interaction of two fundamental components of the human cognitive system, language and vision. Within this paper we present an amodal shared resource model of language-mediated visual attention that offers a description of the information and processes involved in this complex multimodal behavior and a potential explanation for how this ability is acquired. We demonstrate that the model is not only sufficient to account for the experimental effects of Visual World Paradigm studies but also that these effects are emergent properties of the architecture of the model itself, rather than requiring separate information processing channels or modular processing systems. The model provides an explicit description of the connection between the modality-specific input from language and vision and the distribution of eye gaze in language-mediated visual attention. The paper concludes by discussing future applications for the model, specifically its potential for investigating the factors driving observed individual differences in language-mediated eye gaze. PMID:23966967
On the use of Augmented Reality techniques in learning and interpretation of cardiologic data.
Lamounier, Edgard; Bucioli, Arthur; Cardoso, Alexandre; Andrade, Adriano; Soares, Alcimar
2010-01-01
Augmented Reality is a technology which provides people with more intuitive ways of interaction and visualization, close to those in real world. The amount of applications using Augmented Reality is growing every day, and results can be already seen in several fields such as Education, Training, Entertainment and Medicine. The system proposed in this article intends to provide a friendly and intuitive interface based on Augmented Reality for heart beating evaluation and visualization. Cardiologic data is loaded from several distinct sources: simple standards of heart beating frequencies (for example situations like running or sleeping), files of heart beating signals, scanned electrocardiographs and real time data acquisition of patient's heart beating. All this data is processed to produce visualization within Augmented Reality environments. The results obtained in this research have shown that the developed system is able to simplify the understanding of concepts about heart beating and its functioning. Furthermore, the system can help health professionals in the task of retrieving, processing and converting data from all the sources handled by the system, with the support of an edition and visualization mode.
CPP-TRS(C): On using visual cognitive symbols to enhance communication effectiveness
NASA Technical Reports Server (NTRS)
Tonfoni, Graziella
1994-01-01
Communicative Positioning Program/Text Representation Systems (CPP-TRS) is a visual language based on a system of 12 canvasses, 10 signals and 14 symbols. CPP-TRS is based on the fact that every communication action is the result of a set of cognitive processes and the whole system is based on the concept that you can enhance communication by visually perceiving text. With a simple syntax, CPP-TRS is capable of representing meaning and intention as well as communication functions visually. Those are precisely invisible aspects of natural language that are most relevant to getting the global meaning of a text. CPP-TRS reinforces natural language in human machine interaction systems. It complements natural language by adding certain important elements that are not represented by natural language by itself. These include communication intention and function of the text expressed by the sender, as well as the role the reader is supposed to play. The communication intention and function of a text and the reader's role are invisible in natural language because neither specific words nor punctuation conveys them sufficiently and unambiguously; they are therefore non-transparent.
2016-05-01
research, Kunkler (2006) suggested that the similarities between computer simulation tools and robotic surgery systems (e.g., mechanized feedback...distribution is unlimited. 49 Davies B. A review of robotics in surgery . Proceedings of the Institution of Mechanical Engineers, Part H: Journal...ARL-TR-7683 ● MAY 2016 US Army Research Laboratory A Guide for Developing Human- Robot Interaction Experiments in the Robotic
Interactive target tracking for persistent wide-area surveillance
NASA Astrophysics Data System (ADS)
Ersoy, Ilker; Palaniappan, Kannappan; Seetharaman, Guna S.; Rao, Raghuveer M.
2012-06-01
Persistent aerial surveillance is an emerging technology that can provide continuous, wide-area coverage from an aircraft-based multiple-camera system. Tracking targets in these data sets is challenging for vision algorithms due to large data (several terabytes), very low frame rate, changing viewpoint, strong parallax and other imperfections due to registration and projection. Providing an interactive system for automated target tracking also has additional challenges that require online algorithms that are seamlessly integrated with interactive visualization tools to assist the user. We developed an algorithm that overcomes these challenges and demonstrated it on data obtained from a wide-area imaging platform.
Interactive Visualization of Dependencies
ERIC Educational Resources Information Center
Moreno, Camilo Arango; Bischof, Walter F.; Hoover, H. James
2012-01-01
We present an interactive tool for browsing course requisites as a case study of dependency visualization. This tool uses multiple interactive visualizations to allow the user to explore the dependencies between courses. A usability study revealed that the proposed browser provides significant advantages over traditional methods, in terms of…
SPV: a JavaScript Signaling Pathway Visualizer.
Calderone, Alberto; Cesareni, Gianni
2018-03-24
The visualization of molecular interactions annotated in web resources is useful to offer to users such information in a clear intuitive layout. These interactions are frequently represented as binary interactions that are laid out in free space where, different entities, cellular compartments and interaction types are hardly distinguishable. SPV (Signaling Pathway Visualizer) is a free open source JavaScript library which offers a series of pre-defined elements, compartments and interaction types meant to facilitate the representation of signaling pathways consisting of causal interactions without neglecting simple protein-protein interaction networks. freely available under Apache version 2 license; Source code: https://github.com/Sinnefa/SPV_Signaling_Pathway_Visualizer_v1.0. Language: JavaScript; Web technology: Scalable Vector Graphics; Libraries: D3.js. sinnefa@gmail.com.
Stereoscopic display of 3D models for design visualization
NASA Astrophysics Data System (ADS)
Gilson, Kevin J.
2006-02-01
Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.
Visual display aid for orbital maneuvering - Design considerations
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Ellis, Stephen R.
1993-01-01
This paper describes the development of an interactive proximity operations planning system that allows on-site planning of fuel-efficient multiburn maneuvers in a potential multispacecraft environment. Although this display system most directly assists planning by providing visual feedback to aid visualization of the trajectories and constraints, its most significant features include: (1) the use of an 'inverse dynamics' algorithm that removes control nonlinearities facing the operator, and (2) a trajectory planning technique that separates, through a 'geometric spreadsheet', the normally coupled complex problems of planning orbital maneuvers and allows solution by an iterative sequence of simple independent actions. The visual feedback of trajectory shapes and operational constraints, provided by user-transparent and continuously active background computations, allows the operator to make fast, iterative design changes that rapidly converge to fuel-efficient solutions. The planning tool provides an example of operator-assisted optimization of nonlinear cost functions.
Development of Communication Technology in Japan: The Hi-OVIS Project.
ERIC Educational Resources Information Center
Murata, Toshihiko
1981-01-01
Describes the two-way Highly Interactive Optical Visual Information System (Hi-OVIS), involving the transmission and reception of educational, advertising, and public service programing, which has been in experimental use in Japan since 1978. Utilizing fiber optics, the system equips each house with a keyboard, television, television camera, and…
A Qualitative Analogy for Respiratory Mechanics
ERIC Educational Resources Information Center
Baptista, Vander
2010-01-01
The geometric configuration and mechanical properties of the integral elements of the respiratory system, as well as the modus operandi of the interacting parts in the ventilation process, comprise a hard-to-visualize system, making the mechanics of pulmonary ventilation a confusing topic for students and a difficult task for the teacher. To…
Interactive Visualization of Complex Seismic Data and Models Using Bokeh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Chengping; Ammon, Charles J.; Maceira, Monica
Visualizing multidimensional data and models becomes more challenging as the volume and resolution of seismic data and models increase. But thanks to the development of powerful and accessible computer systems, a model web browser can be used to visualize complex scientific data and models dynamically. In this paper, we present four examples of seismic model visualization using an open-source Python package Bokeh. One example is a visualization of a surface-wave dispersion data set, another presents a view of three-component seismograms, and two illustrate methods to explore a 3D seismic-velocity model. Unlike other 3D visualization packages, our visualization approach has amore » minimum requirement on users and is relatively easy to develop, provided you have reasonable programming skills. Finally, utilizing familiar web browsing interfaces, the dynamic tools provide us an effective and efficient approach to explore large data sets and models.« less
Interactive Visualization of Complex Seismic Data and Models Using Bokeh
Chai, Chengping; Ammon, Charles J.; Maceira, Monica; ...
2018-02-14
Visualizing multidimensional data and models becomes more challenging as the volume and resolution of seismic data and models increase. But thanks to the development of powerful and accessible computer systems, a model web browser can be used to visualize complex scientific data and models dynamically. In this paper, we present four examples of seismic model visualization using an open-source Python package Bokeh. One example is a visualization of a surface-wave dispersion data set, another presents a view of three-component seismograms, and two illustrate methods to explore a 3D seismic-velocity model. Unlike other 3D visualization packages, our visualization approach has amore » minimum requirement on users and is relatively easy to develop, provided you have reasonable programming skills. Finally, utilizing familiar web browsing interfaces, the dynamic tools provide us an effective and efficient approach to explore large data sets and models.« less
VisGets: coordinated visualizations for web-based information exploration and discovery.
Dörk, Marian; Carpendale, Sheelagh; Collins, Christopher; Williamson, Carey
2008-01-01
In common Web-based search interfaces, it can be difficult to formulate queries that simultaneously combine temporal, spatial, and topical data filters. We investigate how coordinated visualizations can enhance search and exploration of information on the World Wide Web by easing the formulation of these types of queries. Drawing from visual information seeking and exploratory search, we introduce VisGets--interactive query visualizations of Web-based information that operate with online information within a Web browser. VisGets provide the information seeker with visual overviews of Web resources and offer a way to visually filter the data. Our goal is to facilitate the construction of dynamic search queries that combine filters from more than one data dimension. We present a prototype information exploration system featuring three linked VisGets (temporal, spatial, and topical), and used it to visually explore news items from online RSS feeds.
The Bilingual Language Interaction Network for Comprehension of Speech*
Marian, Viorica
2013-01-01
During speech comprehension, bilinguals co-activate both of their languages, resulting in cross-linguistic interaction at various levels of processing. This interaction has important consequences for both the structure of the language system and the mechanisms by which the system processes spoken language. Using computational modeling, we can examine how cross-linguistic interaction affects language processing in a controlled, simulated environment. Here we present a connectionist model of bilingual language processing, the Bilingual Language Interaction Network for Comprehension of Speech (BLINCS), wherein interconnected levels of processing are created using dynamic, self-organizing maps. BLINCS can account for a variety of psycholinguistic phenomena, including cross-linguistic interaction at and across multiple levels of processing, cognate facilitation effects, and audio-visual integration during speech comprehension. The model also provides a way to separate two languages without requiring a global language-identification system. We conclude that BLINCS serves as a promising new model of bilingual spoken language comprehension. PMID:24363602
Chiesa, S; Galati, D; Schmidt, S
2015-11-01
Social and emotional development of infants and young children is largely based on the communicative interaction with their mother, or principal caretaker (Trevarthen ). The main modalities implied in this early communication are voice, facial expressions and gaze (Stern ). This study aims at analysing early mother-child interactions in the case of visually impaired mothers who do not have access to their children's gaze and facial expressions. Spontaneous play interactions between seven visually impaired mothers and their sighted children aged between 6 months and 3 years were filmed. These dyads were compared with a control group of sighted mothers and children analysing four modalities of communication and interaction regulation: gaze, physical contacts, verbal productions and facial expressions. The visually impaired mothers' facial expressions differed from the ones of sighted mothers mainly with respect to forehead movements, leading to an impoverishment of conveyed meaning. Regarding the other communicative modalities, results suggest that visually impaired mothers and their children use compensatory strategies to guaranty harmonic interaction despite the mother's impairment: whereas gaze results the main factor of interaction regulation in sighted dyads, physical contacts and verbal productions assume a prevalent role in dyads with visually impaired mothers. Moreover, visually impaired mother's children seem to be able to differentiate between their mother and sighted interaction partners, adapting differential modes of communication. The results of this study show that, in spite of the obvious differences in the modes of communication, visual impairment does not prevent a harmonious interaction with the child. © 2015 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Gao, Tao; Gao, Zaifeng; Li, Jie; Sun, Zhongqiang; Shen, Mowei
2011-01-01
Mainstream theories of visual perception assume that visual working memory (VWM) is critical for integrating online perceptual information and constructing coherent visual experiences in changing environments. Given the dynamic interaction between online perception and VWM, we propose that how visual information is processed during visual…
Scientific Visualization for Atmospheric Data Analysis in Collaborative Virtual Environments
NASA Astrophysics Data System (ADS)
Engelke, Wito; Flatken, Markus; Garcia, Arturo S.; Bar, Christian; Gerndt, Andreas
2016-04-01
1 INTRODUCTION The three year European research project CROSS DRIVE (Collaborative Rover Operations and Planetary Science Analysis System based on Distributed Remote and Interactive Virtual Environments) started in January 2014. The research and development within this project is motivated by three use case studies: landing site characterization, atmospheric science and rover target selection [1]. Currently the implementation for the second use case is in its final phase [2]. Here, the requirements were generated based on the domain experts input and lead to development and integration of appropriate methods for visualization and analysis of atmospheric data. The methods range from volume rendering, interactive slicing, iso-surface techniques to interactive probing. All visualization methods are integrated in DLR's Terrain Rendering application. With this, the high resolution surface data visualization can be enriched with additional methods appropriate for atmospheric data sets. This results in an integrated virtual environment where the scientist has the possibility to interactively explore his data sets directly within the correct context. The data sets include volumetric data of the martian atmosphere, precomputed two dimensional maps and vertical profiles. In most cases the surface data as well as the atmospheric data has global coverage and is of time dependent nature. Furthermore, all interaction is synchronized between different connected application instances, allowing for collaborative sessions between distant experts. 2 VISUALIZATION TECHNIQUES Also the application is currently used for visualization of data sets related to Mars the techniques can be used for other data sets as well. Currently the prototype is capable of handling 2 and 2.5D surface data as well as 4D atmospheric data. Specifically, the surface data is presented using an LoD approach which is based on the HEALPix tessellation of a sphere [3, 4, 5] and can handle data sets in the order of terabytes. The combination of different data sources (e.g., MOLA, HRSC, HiRISE) and selection of presented data (e.g., infrared, spectral, imagery) is also supported. Furthermore, the data is presented unchanged and with the highest possible resolution for the target setup (e.g., power-wall, workstation, laptop) and view distance. The visualization techniques for the volumetric data sets can handle VTK [6] based data sets and also support different grid types as well as a time component. In detail, the integrated volume rendering uses a GPU based ray casting algorithm which was adapted to work in spherical coordinate systems. This approach results in interactive frame-rates without compromising visual fidelity. Besides direct visualization via volume rendering the prototype supports interactive slicing, extraction of iso-surfaces and probing. The latter can also be used for side-by-side comparison and on-the-fly diagram generation within the application. Similarily to the surface data a combination of different data sources is supported as well. For example, the extracted iso-surface of a scalar pressure field can be used for the visualization of the temperature. The software development is supported by the ViSTA VR-toolkit [7] and supports different target systems as well as a wide range of VR-devices. Furthermore, the prototype is scalable to run on laptops, workstations and cluster setups. REFERENCES [1] A. S. Garcia, D. J. Roberts, T. Fernando, C. Bar, R. Wolff, J. Dodiya, W. Engelke, and A. Gerndt, "A collaborative workspace architecture for strengthening collaboration among space scientists," in IEEE Aerospace Conference, (Big Sky, Montana, USA), 7-14 March 2015. [2] W. Engelke, "Mars Cartography VR System 2/3." German Aerospace Center (DLR), 2015. Project Deliverable D4.2. [3] E. Hivon, F. K. Hansen, and A. J. Banday, "The healpix primer," arXivpreprint astro-ph/9905275, 1999. [4] K. M. Gorski, E. Hivon, A. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelmann, "Healpix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere," The Astrophysical Journal, vol. 622, no. 2, p. 759, 2005. [5] R. Westerteiger, A. Gerndt, and B. Hamann, "Spherical terrain render- ing using the hierarchical healpix grid," VLUDS, vol. 11, pp. 13-23, 2011. [6] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit. Kitware, 4 ed., 2006. [7] T. van Reimersdahl, T. Kuhlen, A. Gerndt, J. Henrichs, and C. Bischof, "ViSTA: a multimodal, platform-independent VR-toolkit based on WTK, VTK, and MPI," in Proceedings of the 4th International Immersive Projection Technology Workshop (IPT), 2000.
Visual Attention and Applications in Multimedia Technologies
Le Callet, Patrick; Niebur, Ernst
2013-01-01
Making technological advances in the field of human-machine interactions requires that the capabilities and limitations of the human perceptual system are taken into account. The focus of this report is an important mechanism of perception, visual selective attention, which is becoming more and more important for multimedia applications. We introduce the concept of visual attention and describe its underlying mechanisms. In particular, we introduce the concepts of overt and covert visual attention, and of bottom-up and top-down processing. Challenges related to modeling visual attention and their validation using ad hoc ground truth are also discussed. Examples of the usage of visual attention models in image and video processing are presented. We emphasize multimedia delivery, retargeting and quality assessment of image and video, medical imaging, and the field of stereoscopic 3D images applications. PMID:24489403
Visual exploration and analysis of human-robot interaction rules
NASA Astrophysics Data System (ADS)
Zhang, Hui; Boyles, Michael J.
2013-01-01
We present a novel interaction paradigm for the visual exploration, manipulation and analysis of human-robot interaction (HRI) rules; our development is implemented using a visual programming interface and exploits key techniques drawn from both information visualization and visual data mining to facilitate the interaction design and knowledge discovery process. HRI is often concerned with manipulations of multi-modal signals, events, and commands that form various kinds of interaction rules. Depicting, manipulating and sharing such design-level information is a compelling challenge. Furthermore, the closed loop between HRI programming and knowledge discovery from empirical data is a relatively long cycle. This, in turn, makes design-level verification nearly impossible to perform in an earlier phase. In our work, we exploit a drag-and-drop user interface and visual languages to support depicting responsive behaviors from social participants when they interact with their partners. For our principal test case of gaze-contingent HRI interfaces, this permits us to program and debug the robots' responsive behaviors through a graphical data-flow chart editor. We exploit additional program manipulation interfaces to provide still further improvement to our programming experience: by simulating the interaction dynamics between a human and a robot behavior model, we allow the researchers to generate, trace and study the perception-action dynamics with a social interaction simulation to verify and refine their designs. Finally, we extend our visual manipulation environment with a visual data-mining tool that allows the user to investigate interesting phenomena such as joint attention and sequential behavioral patterns from multiple multi-modal data streams. We have created instances of HRI interfaces to evaluate and refine our development paradigm. As far as we are aware, this paper reports the first program manipulation paradigm that integrates visual programming interfaces, information visualization, and visual data mining methods to facilitate designing, comprehending, and evaluating HRI interfaces.
Visualization of molecular structures using HoloLens-based augmented reality
Hoffman, MA; Provance, JB
2017-01-01
Biological molecules and biologically active small molecules are complex three dimensional structures. Current flat screen monitors are limited in their ability to convey the full three dimensional characteristics of these molecules. Augmented reality devices, including the Microsoft HoloLens, offer an immersive platform to change how we interact with molecular visualizations. We describe a process to incorporate the three dimensional structures of small molecules and complex proteins into the Microsoft HoloLens using aspirin and the human leukocyte antigen (HLA) as examples. Small molecular structures can be introduced into the HoloStudio application, which provides native support for rotating, resizing and performing other interactions with these molecules. Larger molecules can be imported through the Unity gaming development platform and then Microsoft Visual Developer. The processes described here can be modified to import a wide variety of molecular structures into augmented reality systems and improve our comprehension of complex structural features. PMID:28815109
ViSBARD: Visual System for Browsing, Analysis and Retrieval of Data
NASA Astrophysics Data System (ADS)
Roberts, D. Aaron; Boller, Ryan; Rezapkin, V.; Coleman, J.; McGuire, R.; Goldstein, M.; Kalb, V.; Kulkarni, R.; Luckyanova, M.; Byrnes, J.; Kerbel, U.; Candey, R.; Holmes, C.; Chimiak, R.; Harris, B.
2018-04-01
ViSBARD interactively visualizes and analyzes space physics data. It provides an interactive integrated 3-D and 2-D environment to determine correlations between measurements across many spacecraft. It supports a variety of spacecraft data products and MHD models and is easily extensible to others. ViSBARD provides a way of visualizing multiple vector and scalar quantities as measured by many spacecraft at once. The data are displayed three-dimesionally along the orbits which may be displayed either as connected lines or as points. The data display allows the rapid determination of vector configurations, correlations between many measurements at multiple points, and global relationships. With the addition of magnetohydrodynamic (MHD) model data, this environment can also be used to validate simulation results with observed data, use simulated data to provide a global context for sparse observed data, and apply feature detection techniques to the simulated data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric A. Wernert; William R. Sherman; Patrick O'Leary
Immersive visualization makes use of the medium of virtual reality (VR) - it is a subset of virtual reality focused on the application of VR technologies to scientific and information visualization. As the name implies, there is a particular focus on the physically immersive aspect of VR that more fully engages the perceptual and kinesthetic capabilities of the scientist with the goal of producing greater insight. The immersive visualization community is uniquely positioned to address the analysis needs of the wide spectrum of domain scientists who are becoming increasingly overwhelmed by data. The outputs of computational science simulations and high-resolutionmore » sensors are creating a data deluge. Data is coming in faster than it can be analyzed, and there are countless opportunities for discovery that are missed as the data speeds by. By more fully utilizing the scientists visual and other sensory systems, and by offering a more natural user interface with which to interact with computer-generated representations, immersive visualization offers great promise in taming this data torrent. However, increasing the adoption of immersive visualization in scientific research communities can only happen by simultaneously lowering the engagement threshold while raising the measurable benefits of adoption. Scientists time spent immersed with their data will thus be rewarded with higher productivity, deeper insight, and improved creativity. Immersive visualization ties together technologies and methodologies from a variety of related but frequently disjoint areas, including hardware, software and human-computer interaction (HCI) disciplines. In many ways, hardware is a solved problem. There are well established technologies including large walk-in systems such as the CAVE{trademark} and head-based systems such as the Wide-5{trademark}. The advent of new consumer-level technologies now enable an entirely new generation of immersive displays, with smaller footprints and costs, widening the potential consumer base. While one would be hard-pressed to call software a solved problem, we now understand considerably more about best practices for designing and developing sustainable, scalable software systems, and we have useful software examples that illuminate the way to even better implementations. As with any research endeavour, HCI will always be exploring new topics in interface design, but we now have a sizable knowledge base of the strengths and weaknesses of the human perceptual systems and we know how to design effective interfaces for immersive systems. So, in a research landscape with a clear need for better visualization and analysis tools, a methodology in immersive visualization that has been shown to effectively address some of those needs, and vastly improved supporting technologies and knowledge of hardware, software, and HCI, why hasn't immersive visualization 'caught on' more with scientists? What can we do as a community of immersive visualization researchers and practitioners to facilitate greater adoption by scientific communities so as to make the transition from 'the promise of virtual reality' to 'the reality of virtual reality'.« less
1994-06-01
numbers on a Cathode Ray Tube (CRT) visual display or monochrome monitor. Gradually, pictures and color were added to enhance this interaction...apparent that there are very strong interactions among the political, economic, and military aspects of national power. Although the NCA will...classified according to the levels of war. Which level of war best describes your experience with C4I systems? Strategic - NCA (Nuclear) Operational
2014-07-08
internction ( BCI ) system allows h uman subjects to communicate with or control an extemal device with their brain signals [1], or to use those brain...signals to interact with computers, environments, or even other humans [2]. One application of BCI is to use brnin signals to distinguish target...images within a large collection of non-target images [2]. Such BCI -based systems can drastically increase the speed of target identification in
Adapting the iSNOBAL model for improved visualization in a GIS environment
NASA Astrophysics Data System (ADS)
Johansen, W. J.; Delparte, D.
2014-12-01
Snowmelt is a primary means of crucial water resources in much of the western United States. Researchers are developing models that estimate snowmelt to aid in water resource management. One such model is the image snowcover energy and mass balance (iSNOBAL) model. It uses input climate grids to simulate the development and melting of snowpack in mountainous regions. This study looks at applying this model to the Reynolds Creek Experimental Watershed in southwestern Idaho, utilizing novel approaches incorporating geographic information systems (GIS). To improve visualization of the iSNOBAL model, we have adapted it to run in a GIS environment. This type of environment is suited to both the input grid creation and the visualization of results. The data used for input grid creation can be stored locally or on a web-server. Kriging interpolation embedded within Python scripts are used to create air temperature, soil temperature, humidity, and precipitation grids, while built-in GIS and existing tools are used to create solar radiation and wind grids. Additional Python scripting is then used to perform model calculations. The final product is a user-friendly and accessible version of the iSNOBAL model, including the ability to easily visualize and interact with model results, all within a web- or desktop-based GIS environment. This environment allows for interactive manipulation of model parameters and visualization of the resulting input grids for the model calculations. Future work is moving towards adapting the model further for use in a 3D gaming engine for improved visualization and interaction.
Tuikkala, Johannes; Vähämaa, Heidi; Salmela, Pekka; Nevalainen, Olli S; Aittokallio, Tero
2012-03-26
Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications.
Pyramidal neurovision architecture for vision machines
NASA Astrophysics Data System (ADS)
Gupta, Madan M.; Knopf, George K.
1993-08-01
The vision system employed by an intelligent robot must be active; active in the sense that it must be capable of selectively acquiring the minimal amount of relevant information for a given task. An efficient active vision system architecture that is based loosely upon the parallel-hierarchical (pyramidal) structure of the biological visual pathway is presented in this paper. Although the computational architecture of the proposed pyramidal neuro-vision system is far less sophisticated than the architecture of the biological visual pathway, it does retain some essential features such as the converging multilayered structure of its biological counterpart. In terms of visual information processing, the neuro-vision system is constructed from a hierarchy of several interactive computational levels, whereupon each level contains one or more nonlinear parallel processors. Computationally efficient vision machines can be developed by utilizing both the parallel and serial information processing techniques within the pyramidal computing architecture. A computer simulation of a pyramidal vision system for active scene surveillance is presented.
An Interactive Visual Analytics Framework for Multi-Field Data in a Geo-Spatial Context
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhiyuan; Tong, Xiaonan; McDonnell, Kevin T.
2013-04-01
Climate research produces a wealth of multivariate data. These data often have a geospatial reference and so it is of interest to show them within their geospatial context. One can consider this configuration as a multi field visualization problem, where the geospace provides the expanse of the field. However, there is a limit on the amount of multivariate information that can be fit within a certain spatial location, and the use of linked multivari ate information displays has previously been devised to bridge this gap. In this paper we focus on the interactions in the geographical display, present an implementationmore » that uses Google Earth, and demonstrate it within a tightly linked parallel coordinates display. Several other visual representations, such as pie and bar charts are integrated into the Google Earth display and can be interactively manipulated. Further, we also demonstrate new brushing and visualization techniques for parallel coordinates, such as fixedwindow brushing and correlationenhanced display. We conceived our system with a team of climate researchers, who already made a few important discov eries using it. This demonstrates our system’s great potential to enable scientific discoveries, possibly also in oth er domains where data have a geospatial reference.« less
Ovis: A Framework for Visual Analysis of Ocean Forecast Ensembles.
Höllt, Thomas; Magdy, Ahmed; Zhan, Peng; Chen, Guoning; Gopalakrishnan, Ganesh; Hoteit, Ibrahim; Hansen, Charles D; Hadwiger, Markus
2014-08-01
We present a novel integrated visualization system that enables interactive visual analysis of ensemble simulations of the sea surface height that is used in ocean forecasting. The position of eddies can be derived directly from the sea surface height and our visualization approach enables their interactive exploration and analysis.The behavior of eddies is important in different application settings of which we present two in this paper. First, we show an application for interactive planning of placement as well as operation of off-shore structures using real-world ensemble simulation data of the Gulf of Mexico. Off-shore structures, such as those used for oil exploration, are vulnerable to hazards caused by eddies, and the oil and gas industry relies on ocean forecasts for efficient operations. We enable analysis of the spatial domain, as well as the temporal evolution, for planning the placement and operation of structures.Eddies are also important for marine life. They transport water over large distances and with it also heat and other physical properties as well as biological organisms. In the second application we present the usefulness of our tool, which could be used for planning the paths of autonomous underwater vehicles, so called gliders, for marine scientists to study simulation data of the largely unexplored Red Sea.
Using high-resolution displays for high-resolution cardiac data.
Goodyer, Christopher; Hodrien, John; Wood, Jason; Kohl, Peter; Brodlie, Ken
2009-07-13
The ability to perform fast, accurate, high-resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to visualization must evolve. In this paper, we address the interactive display of data from high-resolution magnetic resonance imaging scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled liquid crystal display panel display wall and associated software, which provides an interactive and intuitive user interface. The oView software is an OpenGL application that is written for the VR Juggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at the universities of both Leeds and Oxford. We discuss important factors to be considered for interactive two-dimensional display of large three-dimensional datasets, including the use of intuitive input devices and level of detail aspects.
Commonalities between Perception and Cognition.
Tacca, Michela C
2011-01-01
Perception and cognition are highly interrelated. Given the influence that these systems exert on one another, it is important to explain how perceptual representations and cognitive representations interact. In this paper, I analyze the similarities between visual perceptual representations and cognitive representations in terms of their structural properties and content. Specifically, I argue that the spatial structure underlying visual object representation displays systematicity - a property that is considered to be characteristic of propositional cognitive representations. To this end, I propose a logical characterization of visual feature binding as described by Treisman's Feature Integration Theory and argue that systematicity is not only a property of language-like representations, but also of spatially organized visual representations. Furthermore, I argue that if systematicity is taken to be a criterion to distinguish between conceptual and non-conceptual representations, then visual representations, that display systematicity, might count as an early type of conceptual representations. Showing these analogies between visual perception and cognition is an important step toward understanding the interface between the two systems. The ideas here presented might also set the stage for new empirical studies that directly compare binding (and other relational operations) in visual perception and higher cognition.
Commonalities between Perception and Cognition
Tacca, Michela C.
2011-01-01
Perception and cognition are highly interrelated. Given the influence that these systems exert on one another, it is important to explain how perceptual representations and cognitive representations interact. In this paper, I analyze the similarities between visual perceptual representations and cognitive representations in terms of their structural properties and content. Specifically, I argue that the spatial structure underlying visual object representation displays systematicity – a property that is considered to be characteristic of propositional cognitive representations. To this end, I propose a logical characterization of visual feature binding as described by Treisman’s Feature Integration Theory and argue that systematicity is not only a property of language-like representations, but also of spatially organized visual representations. Furthermore, I argue that if systematicity is taken to be a criterion to distinguish between conceptual and non-conceptual representations, then visual representations, that display systematicity, might count as an early type of conceptual representations. Showing these analogies between visual perception and cognition is an important step toward understanding the interface between the two systems. The ideas here presented might also set the stage for new empirical studies that directly compare binding (and other relational operations) in visual perception and higher cognition. PMID:22144974
Nonretinotopic visual processing in the brain.
Melcher, David; Morrone, Maria Concetta
2015-01-01
A basic principle in visual neuroscience is the retinotopic organization of neural receptive fields. Here, we review behavioral, neurophysiological, and neuroimaging evidence for nonretinotopic processing of visual stimuli. A number of behavioral studies have shown perception depending on object or external-space coordinate systems, in addition to retinal coordinates. Both single-cell neurophysiology and neuroimaging have provided evidence for the modulation of neural firing by gaze position and processing of visual information based on craniotopic or spatiotopic coordinates. Transient remapping of the spatial and temporal properties of neurons contingent on saccadic eye movements has been demonstrated in visual cortex, as well as frontal and parietal areas involved in saliency/priority maps, and is a good candidate to mediate some of the spatial invariance demonstrated by perception. Recent studies suggest that spatiotopic selectivity depends on a low spatial resolution system of maps that operates over a longer time frame than retinotopic processing and is strongly modulated by high-level cognitive factors such as attention. The interaction of an initial and rapid retinotopic processing stage, tied to new fixations, and a longer lasting but less precise nonretinotopic level of visual representation could underlie the perception of both a detailed and a stable visual world across saccadic eye movements.
Muellner, Ulrich J; Vial, Flavie; Wohlfender, Franziska; Hadorn, Daniela; Reist, Martin; Muellner, Petra
2015-01-01
The reporting of outputs from health surveillance systems should be done in a near real-time and interactive manner in order to provide decision makers with powerful means to identify, assess, and manage health hazards as early and efficiently as possible. While this is currently rarely the case in veterinary public health surveillance, reporting tools do exist for the visual exploration and interactive interrogation of health data. In this work, we used tools freely available from the Google Maps and Charts library to develop a web application reporting health-related data derived from slaughterhouse surveillance and from a newly established web-based equine surveillance system in Switzerland. Both sets of tools allowed entry-level usage without or with minimal programing skills while being flexible enough to cater for more complex scenarios for users with greater programing skills. In particular, interfaces linking statistical softwares and Google tools provide additional analytical functionality (such as algorithms for the detection of unusually high case occurrences) for inclusion in the reporting process. We show that such powerful approaches could improve timely dissemination and communication of technical information to decision makers and other stakeholders and could foster the early-warning capacity of animal health surveillance systems.
Tactile interactions activate mirror system regions in the human brain.
McKyton, Ayelet
2011-12-07
Communicating with others is essential for the development of a society. Although types of communications, such as language and visual gestures, were thoroughly investigated in the past, little research has been done to investigate interactions through touch. To study this we used functional magnetic resonance imaging. Twelve participants were scanned with their eyes covered while stroking four kinds of items, representing different somatosensory stimuli: a human hand, a realistic rubber hand, an object, and a simple texture. Although the human and the rubber hands had the same overall shape, in three regions there was significantly more blood oxygen level dependent activation when touching the real hand: the anterior medial prefrontal cortex, the ventral premotor cortex, and the posterior superior temporal cortex. The last two regions are part of the mirror network and are known to be activated through visual interactions such as gestures. Interestingly, in this study, these areas were activated through a somatosensory interaction. A control experiment was performed to eliminate confounds of temperature, texture, and imagery, suggesting that the activation in these areas was correlated with the touch of a human hand. These results reveal the neuronal network working behind human tactile interactions, and highlight the participation of the mirror system in such functions.
Interactive Visualization of Assessment Data: The Software Package Mondrian
ERIC Educational Resources Information Center
Unlu, Ali; Sargin, Anatol
2009-01-01
Mondrian is state-of-the-art statistical data visualization software featuring modern interactive visualization techniques for a wide range of data types. This article reviews the capabilities, functionality, and interactive properties of this software package. Key features of Mondrian are illustrated with data from the Programme for International…
NASA Technical Reports Server (NTRS)
Coeckelenbergh, Y.; Macelroy, R. D.; Rein, R.
1978-01-01
The investigation of specific interactions among biological molecules must take into consideration the stereochemistry of the structures. Thus, models of the molecules are essential for describing the spatial organization of potentially interacting groups, and estimations of conformation are required for a description of spatial organization. Both the function of visualizing molecules, and that of estimating conformation through calculations of energy, are part of the molecular modeling system described in the present paper. The potential uses of the system in investigating some aspects of the origin of life rest on the assumption that translation of conformation from genetic elements to catalytic elements would have been required for the development of the first replicating systems subject to the process of biological evolution.
Enhancement of vision by monocular deprivation in adult mice.
Prusky, Glen T; Alam, Nazia M; Douglas, Robert M
2006-11-08
Plasticity of vision mediated through binocular interactions has been reported in mammals only during a "critical" period in juvenile life, wherein monocular deprivation (MD) causes an enduring loss of visual acuity (amblyopia) selectively through the deprived eye. Here, we report a different form of interocular plasticity of vision in adult mice in which MD leads to an enhancement of the optokinetic response (OKR) selectively through the nondeprived eye. Over 5 d of MD, the spatial frequency sensitivity of the OKR increased gradually, reaching a plateau of approximately 36% above pre-deprivation baseline. Eye opening initiated a gradual decline, but sensitivity was maintained above pre-deprivation baseline for 5-6 d. Enhanced function was restricted to the monocular visual field, notwithstanding the dependence of the plasticity on binocular interactions. Activity in visual cortex ipsilateral to the deprived eye was necessary for the characteristic induction of the enhancement, and activity in visual cortex contralateral to the deprived eye was necessary for its maintenance after MD. The plasticity also displayed distinct learning-like properties: Active testing experience was required to attain maximal enhancement and for enhancement to persist after MD, and the duration of enhanced sensitivity after MD was extended by increasing the length of MD, and by repeating MD. These data show that the adult mouse visual system maintains a form of experience-dependent plasticity in which the visual cortex can modulate the normal function of subcortical visual pathways.
Visualization Techniques for Computer Network Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaver, Justin M; Steed, Chad A; Patton, Robert M
2011-01-01
Effective visual analysis of computer network defense (CND) information is challenging due to the volume and complexity of both the raw and analyzed network data. A typical CND is comprised of multiple niche intrusion detection tools, each of which performs network data analysis and produces a unique alerting output. The state-of-the-practice in the situational awareness of CND data is the prevalent use of custom-developed scripts by Information Technology (IT) professionals to retrieve, organize, and understand potential threat events. We propose a new visual analytics framework, called the Oak Ridge Cyber Analytics (ORCA) system, for CND data that allows an operatormore » to interact with all detection tool outputs simultaneously. Aggregated alert events are presented in multiple coordinated views with timeline, cluster, and swarm model analysis displays. These displays are complemented with both supervised and semi-supervised machine learning classifiers. The intent of the visual analytics framework is to improve CND situational awareness, to enable an analyst to quickly navigate and analyze thousands of detected events, and to combine sophisticated data analysis techniques with interactive visualization such that patterns of anomalous activities may be more easily identified and investigated.« less
Visualization of spatial-temporal data based on 3D virtual scene
NASA Astrophysics Data System (ADS)
Wang, Xianghong; Liu, Jiping; Wang, Yong; Bi, Junfang
2009-10-01
The main purpose of this paper is to realize the expression of the three-dimensional dynamic visualization of spatialtemporal data based on three-dimensional virtual scene, using three-dimensional visualization technology, and combining with GIS so that the people's abilities of cognizing time and space are enhanced and improved by designing dynamic symbol and interactive expression. Using particle systems, three-dimensional simulation, virtual reality and other visual means, we can simulate the situations produced by changing the spatial location and property information of geographical entities over time, then explore and analyze its movement and transformation rules by changing the interactive manner, and also replay history and forecast of future. In this paper, the main research object is the vehicle track and the typhoon path and spatial-temporal data, through three-dimensional dynamic simulation of its track, and realize its timely monitoring its trends and historical track replaying; according to visualization techniques of spatialtemporal data in Three-dimensional virtual scene, providing us with excellent spatial-temporal information cognitive instrument not only can add clarity to show spatial-temporal information of the changes and developments in the situation, but also be used for future development and changes in the prediction and deduction.
Collaborative visual analytics of radio surveys in the Big Data era
NASA Astrophysics Data System (ADS)
Vohl, Dany; Fluke, Christopher J.; Hassan, Amr H.; Barnes, David G.; Kilborn, Virginia A.
2017-06-01
Radio survey datasets comprise an increasing number of individual observations stored as sets of multidimensional data. In large survey projects, astronomers commonly face limitations regarding: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. To support collaborative data inquiry, we present encube, a large-scale comparative visual analytics framework. encube can utilise advanced visualization environments such as the CAVE2 (a hybrid 2D and 3D virtual reality environment powered with a 100 Tflop/s GPU-based supercomputer and 84 million pixels) for collaborative analysis of large subsets of data from radio surveys. It can also run on standard desktops, providing a capable visual analytics experience across the display ecology. encube is composed of four primary units enabling compute-intensive processing, advanced visualisation, dynamic interaction, parallel data query, along with data management. Its modularity will make it simple to incorporate astronomical analysis packages and Virtual Observatory capabilities developed within our community. We discuss how encube builds a bridge between high-end display systems (such as CAVE2) and the classical desktop, preserving all traces of the work completed on either platform - allowing the research process to continue wherever you are.
Visually induced plasticity of auditory spatial perception in macaques.
Woods, Timothy M; Recanzone, Gregg H
2004-09-07
When experiencing spatially disparate visual and auditory stimuli, a common percept is that the sound originates from the location of the visual stimulus, an illusion known as the ventriloquism effect. This illusion can persist for tens of minutes, a phenomenon termed the ventriloquism aftereffect. The underlying neuronal mechanisms of this rapidly induced plasticity remain unclear; indeed, it remains untested whether similar multimodal interactions occur in other species. We therefore tested whether macaque monkeys experience the ventriloquism aftereffect similar to the way humans do. The ability of two monkeys to determine which side of the midline a sound was presented from was tested before and after a period of 20-60 min in which the monkeys experienced either spatially identical or spatially disparate auditory and visual stimuli. In agreement with human studies, the monkeys did experience a shift in their auditory spatial perception in the direction of the spatially disparate visual stimulus, and the aftereffect did not transfer across sounds that differed in frequency by two octaves. These results show that macaque monkeys experience the ventriloquism aftereffect similar to the way humans do in all tested respects, indicating that these multimodal interactions are a basic phenomenon of the central nervous system.
ERIC Educational Resources Information Center
Isik-Ercan, Zeynep; Zeynep Inan, Hatice; Nowak, Jeffrey A.; Kim, Beomjin
2014-01-01
This qualitative case study describes (a) the ways 3D visualization, coupled with other science and literacy experiences, supported young children's first exploration of the Earth-Sun-Moon system and (b) the perspectives of classroom teachers and children on using 3D visualization. We created three interactive 3D software modules that simulate day…
Common Ground: An Interactive Visual Exploration and Discovery for Complex Health Data
2014-04-01
annotate other ontologies for the visual interface client. Finally, we are actively working on software development of both a backend server and the...the following infrastructure and resources. For the development and management of the ontologies, we installed a framework consisting of a server...that is being developed by Google. Using these 9 technologies, we developed an HTML5 client that runs on Windows, Mac OSX, Linux and mobile systems
Visualization of usability and functionality of a professional website through web-mining.
Jones, Josette F; Mahoui, Malika; Gopa, Venkata Devi Pragna
2007-10-11
Functional interface design requires understanding of the information system structure and the user. Web logs record user interactions with the interface, and thus provide some insight into user search behavior and efficiency of the search process. The present study uses a data-mining approach with techniques such as association rules, clustering and classification, to visualize the usability and functionality of a digital library through in depth analyses of web logs.
Data-Driven Healthcare: Challenges and Opportunities for Interactive Visualization.
Gotz, David; Borland, David
2016-01-01
The healthcare industry's widespread digitization efforts are reshaping one of the largest sectors of the world's economy. This transformation is enabling systems that promise to use ever-improving data-driven evidence to help doctors make more precise diagnoses, institutions identify at risk patients for intervention, clinicians develop more personalized treatment plans, and researchers better understand medical outcomes within complex patient populations. Given the scale and complexity of the data required to achieve these goals, advanced data visualization tools have the potential to play a critical role. This article reviews a number of visualization challenges unique to the healthcare discipline.
Barone, Pascal; Chambaudie, Laure; Strelnikov, Kuzma; Fraysse, Bernard; Marx, Mathieu; Belin, Pascal; Deguine, Olivier
2016-10-01
Due to signal distortion, speech comprehension in cochlear-implanted (CI) patients relies strongly on visual information, a compensatory strategy supported by important cortical crossmodal reorganisations. Though crossmodal interactions are evident for speech processing, it is unclear whether a visual influence is observed in CI patients during non-linguistic visual-auditory processing, such as face-voice interactions, which are important in social communication. We analyse and compare visual-auditory interactions in CI patients and normal-hearing subjects (NHS) at equivalent auditory performance levels. Proficient CI patients and NHS performed a voice-gender categorisation in the visual-auditory modality from a morphing-generated voice continuum between male and female speakers, while ignoring the presentation of a male or female visual face. Our data show that during the face-voice interaction, CI deaf patients are strongly influenced by visual information when performing an auditory gender categorisation task, in spite of maximum recovery of auditory speech. No such effect is observed in NHS, even in situations of CI simulation. Our hypothesis is that the functional crossmodal reorganisation that occurs in deafness could influence nonverbal processing, such as face-voice interaction; this is important for patient internal supramodal representation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Martin, Christopher Flynn; Biro, Dora; Matsuzawa, Tetsuro
2014-09-01
We report on the development of a novel shared touch-panel apparatus for examining a diverse range of topics in great ape social cognition and interaction. Our apparatus-named the Arena System-is composed of a single multitouch monitor that spans across two separate testing booths, so that individuals situated in each booth have tactile access to half of the monitor and visual access to the whole monitor. Additional components of the system include a smart-film barrier able to restrict visual access between the booths, as well as two automated feeding devices that dispense food rewards to the subjects. The touch-panel, smart-film, and feeders are controlled by a PC that is also responsible for running the experimental tasks. We present data from a pilot behavioral game theory study with two chimpanzees in order to illustrate the efficacy of our method, and we suggest applications for a range of topics including animal social learning, coordination, and behavioral economics. The system enables fully automated experimental procedures, which means that no human participation is needed to run the tasks. The novel use of a touch-panel in a social setting allows for a finer degree of data resolution than do the traditional experimental apparatuses used in prior studies on great ape social interaction.
ERIC Educational Resources Information Center
Mirel, Barbara
2001-01-01
Conducts a scenario-based usability test with 10 data analysts using visual querying (visually analyzing data with interactive graphics). Details a range of difficulties found in visual selection that, at times, gave rise to inaccurate selections, invalid conclusions, and misguided decisions. Argues that support for visual selection must be built…
Vitol, Elina A.; Rozhkova, Elena A.; Rose, Volker; ...
2014-06-06
Temperature-responsive magnetic nanomicelles can serve as thermal energy and cargo carriers with controlled drug release functionality. In view of their potential biomedical applications, understanding the modes of interaction between nanomaterials and living systems and evaluation of efficiency of cargo delivery is of the utmost importance. In this paper, we investigate the interaction between the hybrid magnetic nanomicelles engineered for controlled platinum complex drug delivery and a biological system at three fundamental levels: subcellular compartments, a single cell and whole living animal. Nanomicelles with polymeric P(NIPAAm-co-AAm)-b-PCL core-shell were loaded with a hydrophobic Pt(IV) complex and Fe 3O 4 nanoparticles though self-assembly.more » The distribution of a platinum complex on subcellular level is visualized using hard X-ray fluorescence microscopy with unprecedented level of detail at sub-100 nm spatial resolution. We then study the cytotoxic effects of platinum complex-loaded micelles in vitro on a head and neck cancer cell culture model SQ20B. In conclusion, by employing the magnetic functionality of the micelles and additionally loading them with a near infrared fluorescent dye, we magnetically target them to a tumor site in a live animal xenografted model which allows to visualize their biodistribution in vivo.« less
PACS-based interface for 3D anatomical structure visualization and surgical planning
NASA Astrophysics Data System (ADS)
Koehl, Christophe; Soler, Luc; Marescaux, Jacques
2002-05-01
The interpretation of radiological image is routine but it remains a rather difficult task for physicians. It requires complex mental processes, that permit translation from 2D slices into 3D localization and volume determination of visible diseases. An easier and more extensive visualization and exploitation of medical images can be reached through the use of computer-based systems that provide real help from patient admission to post-operative followup. In this way, we have developed a 3D visualization interface linked to a PACS database that allows manipulation and interaction on virtual organs delineated from CT-scan or MRI. This software provides the 3D real-time surface rendering of anatomical structures, an accurate evaluation of volumes and distances and the improvement of radiological image analysis and exam annotation through a negatoscope tool. It also provides a tool for surgical planning allowing the positioning of an interactive laparoscopic instrument and the organ resection. The software system could revolutionize the field of computerized imaging technology. Indeed, it provides a handy and portable tool for pre-operative and intra-operative analysis of anatomy and pathology in various medical fields. This constitutes the first step of the future development of augmented reality and surgical simulation systems.
Telerobotic Haptic Exploration in Art Galleries and Museums for Individuals with Visual Impairments.
Park, Chung Hyuk; Ryu, Eun-Seok; Howard, Ayanna M
2015-01-01
This paper presents a haptic telepresence system that enables visually impaired users to explore locations with rich visual observation such as art galleries and museums by using a telepresence robot, a RGB-D sensor (color and depth camera), and a haptic interface. The recent improvement on RGB-D sensors has enabled real-time access to 3D spatial information in the form of point clouds. However, the real-time representation of this data in the form of tangible haptic experience has not been challenged enough, especially in the case of telepresence for individuals with visual impairments. Thus, the proposed system addresses the real-time haptic exploration of remote 3D information through video encoding and real-time 3D haptic rendering of the remote real-world environment. This paper investigates two scenarios in haptic telepresence, i.e., mobile navigation and object exploration in a remote environment. Participants with and without visual impairments participated in our experiments based on the two scenarios, and the system performance was validated. In conclusion, the proposed framework provides a new methodology of haptic telepresence for individuals with visual impairments by providing an enhanced interactive experience where they can remotely access public places (art galleries and museums) with the aid of haptic modality and robotic telepresence.
Mehler, Bruce; Kidd, David; Reimer, Bryan; Reagan, Ian; Dobres, Jonathan; McCartt, Anne
2016-01-01
Abstract One purpose of integrating voice interfaces into embedded vehicle systems is to reduce drivers’ visual and manual distractions with ‘infotainment’ technologies. However, there is scant research on actual benefits in production vehicles or how different interface designs affect attentional demands. Driving performance, visual engagement, and indices of workload (heart rate, skin conductance, subjective ratings) were assessed in 80 drivers randomly assigned to drive a 2013 Chevrolet Equinox or Volvo XC60. The Chevrolet MyLink system allowed completing tasks with one voice command, while the Volvo Sensus required multiple commands to navigate the menu structure. When calling a phone contact, both voice systems reduced visual demand relative to the visual–manual interfaces, with reductions for drivers in the Equinox being greater. The Equinox ‘one-shot’ voice command showed advantages during contact calling but had significantly higher error rates than Sensus during destination address entry. For both secondary tasks, neither voice interface entirely eliminated visual demand. Practitioner Summary: The findings reinforce the observation that most, if not all, automotive auditory–vocal interfaces are multi-modal interfaces in which the full range of potential demands (auditory, vocal, visual, manipulative, cognitive, tactile, etc.) need to be considered in developing optimal implementations and evaluating drivers’ interaction with the systems. Social Media: In-vehicle voice-interfaces can reduce visual demand but do not eliminate it and all types of demand need to be taken into account in a comprehensive evaluation. PMID:26269281
A multimodal parallel architecture: A cognitive framework for multimodal interactions.
Cohn, Neil
2016-01-01
Human communication is naturally multimodal, and substantial focus has examined the semantic correspondences in speech-gesture and text-image relationships. However, visual narratives, like those in comics, provide an interesting challenge to multimodal communication because the words and/or images can guide the overall meaning, and both modalities can appear in complicated "grammatical" sequences: sentences use a syntactic structure and sequential images use a narrative structure. These dual structures create complexity beyond those typically addressed by theories of multimodality where only a single form uses combinatorial structure, and also poses challenges for models of the linguistic system that focus on single modalities. This paper outlines a broad theoretical framework for multimodal interactions by expanding on Jackendoff's (2002) parallel architecture for language. Multimodal interactions are characterized in terms of their component cognitive structures: whether a particular modality (verbal, bodily, visual) is present, whether it uses a grammatical structure (syntax, narrative), and whether it "dominates" the semantics of the overall expression. Altogether, this approach integrates multimodal interactions into an existing framework of language and cognition, and characterizes interactions between varying complexity in the verbal, bodily, and graphic domains. The resulting theoretical model presents an expanded consideration of the boundaries of the "linguistic" system and its involvement in multimodal interactions, with a framework that can benefit research on corpus analyses, experimentation, and the educational benefits of multimodality. Copyright © 2015.
Does Seeing Ice Really Feel Cold? Visual-Thermal Interaction under an Illusory Body-Ownership
Kanaya, Shoko; Matsushima, Yuka; Yokosawa, Kazuhiko
2012-01-01
Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed. PMID:23144814
Does seeing ice really feel cold? Visual-thermal interaction under an illusory body-ownership.
Kanaya, Shoko; Matsushima, Yuka; Yokosawa, Kazuhiko
2012-01-01
Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed.
Automated social skills training with audiovisual information.
Tanaka, Hiroki; Sakti, Sakriani; Neubig, Graham; Negoro, Hideki; Iwasaka, Hidemi; Nakamura, Satoshi
2016-08-01
People with social communication difficulties tend to have superior skills using computers, and as a result computer-based social skills training systems are flourishing. Social skills training, performed by human trainers, is a well-established method to obtain appropriate skills in social interaction. Previous works have attempted to automate one or several parts of social skills training through human-computer interaction. However, while previous work on simulating social skills training considered only acoustic and linguistic features, human social skills trainers take into account visual features (e.g. facial expression, posture). In this paper, we create and evaluate a social skills training system that closes this gap by considering audiovisual features regarding ratio of smiling, yaw, and pitch. An experimental evaluation measures the difference in effectiveness of social skill training when using audio features and audiovisual features. Results showed that the visual features were effective to improve users' social skills.
Volume curtaining: a focus+context effect for multimodal volume visualization
NASA Astrophysics Data System (ADS)
Fairfield, Adam J.; Plasencia, Jonathan; Jang, Yun; Theodore, Nicholas; Crawford, Neil R.; Frakes, David H.; Maciejewski, Ross
2014-03-01
In surgical preparation, physicians will often utilize multimodal imaging scans to capture complementary information to improve diagnosis and to drive patient-specific treatment. These imaging scans may consist of data from magnetic resonance imaging (MR), computed tomography (CT), or other various sources. The challenge in using these different modalities is that the physician must mentally map the two modalities together during the diagnosis and planning phase. Furthermore, the different imaging modalities will be generated at various resolutions as well as slightly different orientations due to patient placement during scans. In this work, we present an interactive system for multimodal data fusion, analysis and visualization. Developed with partners from neurological clinics, this work discusses initial system requirements and physician feedback at the various stages of component development. Finally, we present a novel focus+context technique for the interactive exploration of coregistered multi-modal data.
A web-portal for interactive data exploration, visualization, and hypothesis testing
Bartsch, Hauke; Thompson, Wesley K.; Jernigan, Terry L.; Dale, Anders M.
2014-01-01
Clinical research studies generate data that need to be shared and statistically analyzed by their participating institutions. The distributed nature of research and the different domains involved present major challenges to data sharing, exploration, and visualization. The Data Portal infrastructure was developed to support ongoing research in the areas of neurocognition, imaging, and genetics. Researchers benefit from the integration of data sources across domains, the explicit representation of knowledge from domain experts, and user interfaces providing convenient access to project specific data resources and algorithms. The system provides an interactive approach to statistical analysis, data mining, and hypothesis testing over the lifetime of a study and fulfills a mandate of public sharing by integrating data sharing into a system built for active data exploration. The web-based platform removes barriers for research and supports the ongoing exploration of data. PMID:24723882
European Union RACE program contributions to digital audiovisual communications and services
NASA Astrophysics Data System (ADS)
de Albuquerque, Augusto; van Noorden, Leon; Badique', Eric
1995-02-01
The European Union RACE (R&D in advanced communications technologies in Europe) and the future ACTS (advanced communications technologies and services) programs have been contributing and continue to contribute to world-wide developments in audio-visual services. The paper focuses on research progress in: (1) Image data compression. Several methods of image analysis leading to the use of encoders based on improved hybrid DCT-DPCM (MPEG or not), object oriented, hybrid region/waveform or knowledge-based coding methods are discussed. (2) Program production in the aspects of 3D imaging, data acquisition, virtual scene construction, pre-processing and sequence generation. (3) Interoperability and multimedia access systems. The diversity of material available and the introduction of interactive or near- interactive audio-visual services led to the development of prestandards for video-on-demand (VoD) and interworking of multimedia services storage systems and customer premises equipment.
Visual Exploration of Genetic Association with Voxel-based Imaging Phenotypes in an MCI/AD Study
Kim, Sungeun; Shen, Li; Saykin, Andrew J.; West, John D.
2010-01-01
Neuroimaging genomics is a new transdisciplinary research field, which aims to examine genetic effects on brain via integrated analyses of high throughput neuroimaging and genomic data. We report our recent work on (1) developing an imaging genomic browsing system that allows for whole genome and entire brain analyses based on visual exploration and (2) applying the system to the imaging genomic analysis of an existing MCI/AD cohort. Voxel-based morphometry is used to define imaging phenotypes. ANCOVA is employed to evaluate the effect of the interaction of genotypes and diagnosis in relation to imaging phenotypes while controlling for relevant covariates. Encouraging experimental results suggest that the proposed system has substantial potential for enabling discovery of imaging genomic associations through visual evaluation and for localizing candidate imaging regions and genomic regions for refined statistical modeling. PMID:19963597
The Efficiency of a Visual Skills Training Program on Visual Search Performance
Krzepota, Justyna; Zwierko, Teresa; Puchalska-Niedbał, Lidia; Markiewicz, Mikołaj; Florkiewicz, Beata; Lubiński, Wojciech
2015-01-01
In this study, we conducted an experiment in which we analyzed the possibilities to develop visual skills by specifically targeted training of visual search. The aim of our study was to investigate whether, for how long and to what extent a training program for visual functions could improve visual search. The study involved 24 healthy students from the Szczecin University who were divided into two groups: experimental (12) and control (12). In addition to regular sports and recreational activities of the curriculum, the subjects of the experimental group also participated in 8-week long training with visual functions, 3 times a week for 45 min. The Signal Test of the Vienna Test System was performed four times: before entering the study, after first 4 weeks of the experiment, immediately after its completion and 4 weeks after the study terminated. The results of this experiment proved that an 8-week long perceptual training program significantly differentiated the plot of visual detecting time. For the visual detecting time changes, the first factor, Group, was significant as a main effect (F(1,22)=6.49, p<0.05) as well as the second factor, Training (F(3,66)=5.06, p<0.01). The interaction between the two factors (Group vs. Training) of perceptual training was F(3,66)=6.82 (p<0.001). Similarly, for the number of correct reactions, there was a main effect of a Group factor (F(1,22)=23.40, p<0.001), a main effect of a Training factor (F(3,66)=11.60, p<0.001) and a significant interaction between factors (Group vs. Training) (F(3,66)=10.33, p<0.001). Our study suggests that 8-week training of visual functions can improve visual search performance. PMID:26240666
New solutions for climate network visualization
NASA Astrophysics Data System (ADS)
Nocke, Thomas; Buschmann, Stefan; Donges, Jonathan F.; Marwan, Norbert
2016-04-01
An increasing amount of climate and climate impact research methods deals with geo-referenced networks, including energy, trade, supply-chain, disease dissemination and climatic tele-connection networks. At the same time, the size and complexity of these networks increases, resulting in networks of more than hundred thousand or even millions of edges, which are often temporally evolving, have additional data at nodes and edges, and can consist of multiple layers even in real 3D. This gives challenges to both the static representation and the interactive exploration of these networks, first of all avoiding edge clutter ("edge spagetti") and allowing interactivity even for unfiltered networks. Within this presentation, we illustrate potential solutions to these challenges. Therefore, we give a glimpse on a questionnaire performed with climate and complex system scientists with respect to their network visualization requirements, and on a review of available state-of-the-art visualization techniques and tools for this purpose (see as well Nocke et al., 2015). In the main part, we present alternative visualization solutions for several use cases (global, regional, and multi-layered climate networks) including alternative geographic projections, edge bundling, and 3-D network support (based on CGV and GTX tools), and implementation details to reach interactive frame rates. References: Nocke, T., S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz, and C. Tominski: Review: Visual analytics of climate networks, Nonlinear Processes in Geophysics, 22, 545-570, doi:10.5194/npg-22-545-2015, 2015