Sample records for interaural correlation fails

  1. An interaural-correlation-based approach that accounts for a wide variety of binaural detection data.

    PubMed

    Bernstein, Leslie R; Trahiotis, Constantine

    2017-02-01

    Interaural cross-correlation-based models of binaural processing have accounted successfully for a wide variety of binaural phenomena, including binaural detection, binaural discrimination, and measures of extents of laterality based on interaural temporal disparities, interaural intensitive disparities, and their combination. This report focuses on quantitative accounts of data obtained from binaural detection experiments published over five decades. Particular emphasis is placed on stimulus contexts for which commonly used correlation-based approaches fail to provide adequate explanations of the data. One such context concerns binaural detection of signals masked by certain noises that are narrow-band and/or interaurally partially correlated. It is shown that a cross-correlation-based model that includes stages of peripheral auditory processing can, when coupled with an appropriate decision variable, account well for a wide variety of classic and recently published binaural detection data including those that have, heretofore, proven to be problematic.

  2. The effect of interaural fluctuation rate on correlation change discrimination.

    PubMed

    Goupell, Matthew J; Litovsky, Ruth Y

    2014-02-01

    While bilateral cochlear implants (CIs) provide some binaural benefits, these benefits are limited compared to those observed in normal-hearing (NH) listeners. The large frequency-to-electrode allocation bandwidths (BWs) in CIs compared to auditory filter BWs in NH listeners increases the interaural fluctuation rate available for binaural unmasking, which may limit binaural benefits. The purpose of this work was to investigate the effect of interaural fluctuation rate on correlation change discrimination and binaural masking-level differences in NH listeners presented a CI simulation using a pulsed-sine vocoder. In experiment 1, correlation-change just-noticeable differences (JNDs) and tone-in-noise thresholds were measured for narrowband noises with different BWs and center frequencies (CFs). The results suggest that the BW, CF, and/or interaural fluctuation rate are important factors for correlation change discrimination. In experiment 2, the interaural fluctuation rate was systematically varied and dissociated from changes in BW and CF by using a pulsed-sine vocoder. Results indicated that the interaural fluctuation rate did not affect correlation change JNDs for correlated reference noises; however, slow interaural fluctuations increased correlation change JNDs for uncorrelated reference noises. In experiment 3, the BW, CF, and vocoder pulse rate were varied while interaural fluctuation rate was held constant. JNDs increased for increasing BW and decreased for increasing CF. In summary, relatively fast interaural fluctuation rates are not detrimental for detecting changes in interaural correlation. Thus, limiting factors to binaural benefits in CI listeners could be a result of other temporal and/or spectral deficiencies from electrical stimulation.

  3. Binaural comodulation masking release: Effects of masker interaural correlation

    PubMed Central

    Hall, Joseph W.; Buss, Emily; Grose, John H.

    2007-01-01

    Binaural detection was examined for a signal presented in a narrow band of noise centered on the on-signal masking band (OSB) or in the presence of flanking noise bands that were random or comodulated with respect to the OSB. The noise had an interaural correlation of 1.0 (No), 0.99 or 0.95. In No noise, random flanking bands worsened Sπ detection and comodulated bands improved Sπ detection for some listeners but had no effect for other listeners. For the 0.99 or 0.95 interaural correlation conditions, random flanking bands were less detrimental to Sπ detection and comodulated flanking bands improved Sπ detection for all listeners. Analyses based on signal detection theory indicated that the improvement in Sπ thresholds obtained with comodulated bands was not compatible with an optimal combination of monaural and binaural cues or to across-frequency analyses of dynamic interaural phase differences. Two accounts consistent with the improvement in Sπ thresholds in comodulated noise were (1) envelope information carried by the flanking bands improves the weighting of binaural cues associated with the signal; (2) the auditory system is sensitive to across-frequency differences in ongoing interaural correlation. PMID:17225415

  4. Failure of the precedence effect with a noise-band vocoder

    PubMed Central

    Seeber, Bernhard U.; Hafter, Ervin R.

    2011-01-01

    The precedence effect (PE) describes the ability to localize a direct, leading sound correctly when its delayed copy (lag) is present, though not separately audible. The relative contribution of binaural cues in the temporal fine structure (TFS) of lead–lag signals was compared to that of interaural level differences (ILDs) and interaural time differences (ITDs) carried in the envelope. In a localization dominance paradigm participants indicated the spatial location of lead–lag stimuli processed with a binaural noise-band vocoder whose noise carriers introduced random TFS. The PE appeared for noise bursts of 10 ms duration, indicating dominance of envelope information. However, for three test words the PE often failed even at short lead–lag delays, producing two images, one toward the lead and one toward the lag. When interaural correlation in the carrier was increased, the images appeared more centered, but often remained split. Although previous studies suggest dominance of TFS cues, no image is lateralized in accord with the ITD in the TFS. An interpretation in the context of auditory scene analysis is proposed: By replacing the TFS with that of noise the auditory system loses the ability to fuse lead and lag into one object, and thus to show the PE. PMID:21428515

  5. Acoustic and perceptual effects of magnifying interaural difference cues in a simulated "binaural" hearing aid.

    PubMed

    de Taillez, Tobias; Grimm, Giso; Kollmeier, Birger; Neher, Tobias

    2018-06-01

    To investigate the influence of an algorithm designed to enhance or magnify interaural difference cues on speech signals in noisy, spatially complex conditions using both technical and perceptual measurements. To also investigate the combination of interaural magnification (IM), monaural microphone directionality (DIR), and binaural coherence-based noise reduction (BC). Speech-in-noise stimuli were generated using virtual acoustics. A computational model of binaural hearing was used to analyse the spatial effects of IM. Predicted speech quality changes and signal-to-noise-ratio (SNR) improvements were also considered. Additionally, a listening test was carried out to assess speech intelligibility and quality. Listeners aged 65-79 years with and without sensorineural hearing loss (N = 10 each). IM increased the horizontal separation of concurrent directional sound sources without introducing any major artefacts. In situations with diffuse noise, however, the interaural difference cues were distorted. Preprocessing the binaural input signals with DIR reduced distortion. IM influenced neither speech intelligibility nor speech quality. The IM algorithm tested here failed to improve speech perception in noise, probably because of the dispersion and inconsistent magnification of interaural difference cues in complex environments.

  6. Low-frequency interaural cross correlation discrimination in stereophonic reproduction of musical tones

    NASA Astrophysics Data System (ADS)

    Kim, Sungyoung; Martens, William L.

    2005-04-01

    By industry standard (ITU-R. Recommendation BS.775-1), multichannel stereophonic signals within the frequency range of up to 80 or 120 Hz may be mixed and delivered via a single driver (e.g., a subwoofer) without significant impairment of stereophonic sound quality. The assumption that stereophonic information within such low-frequency content is not significant was tested by measuring discrimination thresholds for changes in interaural cross-correlation (IACC) within spectral bands containing the lowest frequency components of low-pitch musical tones. Performances were recorded for three different musical instruments playing single notes ranging in fundamental frequency from 41 Hz to 110 Hz. The recordings, made using a multichannel microphone array composed of five DPA 4006 pressure microphones, were processed to produce a set of stimuli that varied in interaural cross-correlation (IACC) within a low-frequency band, but were otherwise identical in a higher-frequency band. This correlation processing was designed to have minimal effect upon other psychoacoustic variables such as loudness and timbre. The results show that changes in interaural cross correlation (IACC) within low-frequency bands of low-pitch musical tones are most easily discriminated when decorrelated signals are presented via subwoofers positioned at extreme lateral angles (far from the median plane). [Work supported by VRQ.

  7. Effectiveness of Interaural Delays Alone as Cues During Dynamic Sound Localization

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    The contribution of interaural time differences (ITDs) to the localization of virtual sound sources with and without head motion was examined. Listeners estimated the apparent azimuth, elevation and distance of virtual sources presented over headphones. Stimuli (3 sec., white noise) were synthesized from minimum-phase representations of nonindividualized head-related transfer functions (HRTFs); binaural magnitude spectra were derived from the minimum phase estimates and ITDs were represented as a pure delay. During dynamic conditions, listeners were encouraged to move their heads; head position was tracked and stimuli were synthesized in real time using a Convolvotron to simulate a stationary external sound source. Two synthesis conditions were tested: (1) both interaural level differences (ILDs) and ITDs correctly correlated with source location and head motion, (2) ITDs correct, no ILDs (flat magnitude spectrum). Head movements reduced azimuth confusions primarily when interaural cues were correctly correlated, although a smaller effect was also seen for ITDs alone. Externalization was generally poor for ITD-only conditions and was enhanced by head motion only for normal HRTFs. Overall the data suggest that, while ITDs alone can provide a significant cue for azimuth, the errors most commonly associated with virtual sources are reduced by location-dependent magnitude cues.

  8. Interaural envelope correlation change discrimination in bilateral cochlear implantees: effects of mismatch, centering, and onset of deafness.

    PubMed

    Goupell, Matthew J

    2015-03-01

    Bilateral cochlear implant (CI) listeners can perform binaural tasks, but they are typically worse than normal-hearing (NH) listeners. To understand why this difference occurs and the mechanisms involved in processing dynamic binaural differences, interaural envelope correlation change discrimination sensitivity was measured in real and simulated CI users. In experiment 1, 11 CI (eight late deafened, three early deafened) and eight NH listeners were tested in an envelope correlation change discrimination task. Just noticeable differences (JNDs) were best for a matched place-of-stimulation and increased for an increasing mismatch. In experiment 2, attempts at intracranially centering stimuli did not produce lower JNDs. In experiment 3, the percentage of correct identifications of antiphasic carrier pulse trains modulated by correlated envelopes was measured as a function of mismatch and pulse rate. Sensitivity decreased for increasing mismatch and increasing pulse rate. The experiments led to two conclusions. First, envelope correlation change discrimination necessitates place-of-stimulation matched inputs. However, it is unclear if previous experience with acoustic hearing is necessary for envelope correlation change discrimination. Second, NH listeners presented with CI simulations demonstrated better performance than real CI listeners. If the simulations are realistic representations of electrical stimuli, real CI listeners appear to have difficulty processing interaural information in modulated signals.

  9. A Comparison of Two Objective Measures of Binaural Processing: The Interaural Phase Modulation Following Response and the Binaural Interaction Component.

    PubMed

    Haywood, Nicholas R; Undurraga, Jaime A; Marquardt, Torsten; McAlpine, David

    2015-12-30

    There has been continued interest in clinical objective measures of binaural processing. One commonly proposed measure is the binaural interaction component (BIC), which is obtained typically by recording auditory brainstem responses (ABRs)-the BIC reflects the difference between the binaural ABR and the sum of the monaural ABRs (i.e., binaural - (left + right)). We have recently developed an alternative, direct measure of sensitivity to interaural time differences, namely, a following response to modulations in interaural phase difference (the interaural phase modulation following response; IPM-FR). To obtain this measure, an ongoing diotically amplitude-modulated signal is presented, and the interaural phase difference of the carrier is switched periodically at minima in the modulation cycle. Such periodic modulations to interaural phase difference can evoke a steady state following response. BIC and IPM-FR measurements were compared from 10 normal-hearing subjects using a 16-channel electroencephalographic system. Both ABRs and IPM-FRs were observed most clearly from similar electrode locations-differential recordings taken from electrodes near the ear (e.g., mastoid) in reference to a vertex electrode (Cz). Although all subjects displayed clear ABRs, the BIC was not reliably observed. In contrast, the IPM-FR typically elicited a robust and significant response. In addition, the IPM-FR measure required a considerably shorter recording session. As the IPM-FR magnitude varied with interaural phase difference modulation depth, it could potentially serve as a correlate of perceptual salience. Overall, the IPM-FR appears a more suitable clinical measure than the BIC. © The Author(s) 2015.

  10. The use of interaural parameters during incoherence detection in reproducible noise

    NASA Astrophysics Data System (ADS)

    Goupell, Matthew Joseph

    Interaural incoherence is a measure of the dissimilarity of the signals in the left and right ears. It is important in a number of acoustical phenomenon such as a listener's sensation envelopment and apparent source width in room acoustics, speech intelligibility, and binaural release from energetic masking. Humans are incredibly sensitive to the difference between perfectly coherent and slightly incoherent signals, however the nature of this sensitivity is not well understood. The purpose of this dissertation is to understand what parameters are important to incoherence detection. Incoherence is perceived to have time-varying characteristics. It is conjectured that incoherence detection is performed by a process that takes this time dependency into account. Left-ear-right-ear noise-pairs were generated, all with a fixed value of interaural coherence, 0.9922. The noises had a center frequency of 500 Hz, a bandwidth of 14 Hz, and a duration of 500 ms. Listeners were required to discriminate between these slightly incoherent noises and diotic noises, with a coherence of 1.0. It was found that the value of interaural incoherence itself was an inadequate predictor of discrimination. Instead, incoherence was much more readily detected for those noise-pairs with the largest fluctuations in interaural phase and level differences (as measured by the standard deviation). Noise-pairs with the same value of coherence, and geometric mean frequency of 500 Hz were also generated for bandwidths of 108 Hz and 2394 Hz. It was found that for increasing bandwidth, fluctuations in interaural differences varied less between different noise-pairs and that detection performance varied less as well. The results suggest that incoherence detection is based on the size and the speed of interaural fluctuations and that the value of coherence itself predicts performance only in the wide-band limit where different particular noises with the same incoherence have similar fluctuations. Noise-pairs with short durations of 100, 50, and 25 ms, and bandwidth of 14 Hz, and a coherence of 0.9922 were used to test if a short-term incoherence function is used in incoherence detection. It was found that listeners could significantly use fluctuations of phase and level to detect incoherence for all three of these short durations. Therefore, a short-term coherence function is not used to detect incoherence. For the smallest duration of 25 ms, listeners' detection cue sometimes changed from a "width" cue to a lateralization cue. Modeling of the data was performed. Ten different binaural models were tested against detection data for 14-Hz and 108-Hz bandwidths. These models included different types of binaural processing: independent interaural phase and level differences, lateral position, and short-term cross-correlation. Several preprocessing features were incorporated in the models: compression, temporal averaging, and envelope weighting. For the 14-Hz bandwidth data, the most successful model assumed independent centers for interaural phase and interaural level processing, and this model correlated with detectability at r = 0.87. That model also described the data best when it was assumed that interaural phase fluctuations and interaural level fluctuations contribute approximately equally to incoherence detection. For the 108-Hz bandwidth data, detection performance varied much less among different waveforms, and the data were less able to distinguish between models.

  11. Brief report: atypical neuromagnetic responses to illusory auditory pitch in children with autism spectrum disorders.

    PubMed

    Brock, Jon; Bzishvili, Samantha; Reid, Melanie; Hautus, Michael; Johnson, Blake W

    2013-11-01

    Atypical auditory perception is a widely recognised but poorly understood feature of autism. In the current study, we used magnetoencephalography to measure the brain responses of 10 autistic children as they listened passively to dichotic pitch stimuli, in which an illusory tone is generated by sub-millisecond inter-aural timing differences in white noise. Relative to control stimuli that contain no inter-aural timing differences, dichotic pitch stimuli typically elicit an object related negativity (ORN) response, associated with the perceptual segregation of the tone and the carrier noise into distinct auditory objects. Autistic children failed to demonstrate an ORN, suggesting a failure of segregation; however, comparison with the ORNs of age-matched typically developing controls narrowly failed to attain significance. More striking, the autistic children demonstrated a significant differential response to the pitch stimulus, peaking at around 50 ms. This was not present in the control group, nor has it been found in other groups tested using similar stimuli. This response may be a neural signature of atypical processing of pitch in at least some autistic individuals.

  12. Response of cat inferior colliculus neurons to binaural beat stimuli: possible mechanisms for sound localization.

    PubMed

    Kuwada, S; Yin, T C; Wickesberg, R E

    1979-11-02

    The interaural phase sensitivity of neurons was studied through the use of binaural beat stimuli. The response of most cells was phase-locked to the beat frequency, which provides a possible neural correlate to the human sensation of binaural beats. In addition, this stimulus allowed the direction and rate of interaural phase change to be varied. Some neurons in our sample responded selectively to manipulations of these two variables, which suggests a sensitivity to direction or speed of movement.

  13. Comparison of bandwidths in the inferior colliculus and the auditory nerve. II: Measurement using a temporally manipulated stimulus.

    PubMed

    Mc Laughlin, Myles; Chabwine, Joelle Nsimire; van der Heijden, Marcel; Joris, Philip X

    2008-10-01

    To localize low-frequency sounds, humans rely on an interaural comparison of the temporally encoded sound waveform after peripheral filtering. This process can be compared with cross-correlation. For a broadband stimulus, after filtering, the correlation function has a damped oscillatory shape where the periodicity reflects the filter's center frequency and the damping reflects the bandwidth (BW). The physiological equivalent of the correlation function is the noise delay (ND) function, which is obtained from binaural cells by measuring response rate to broadband noise with varying interaural time delays (ITDs). For monaural neurons, delay functions are obtained by counting coincidences for varying delays across spike trains obtained to the same stimulus. Previously, we showed that BWs in monaural and binaural neurons were similar. However, earlier work showed that the damping of delay functions differs significantly between these two populations. Here, we address this paradox by looking at the role of sensitivity to changes in interaural correlation. We measured delay and correlation functions in the cat inferior colliculus (IC) and auditory nerve (AN). We find that, at a population level, AN and IC neurons with similar characteristic frequencies (CF) and BWs can have different responses to changes in correlation. Notably, binaural neurons often show compression, which is not found in the AN and which makes the shape of delay functions more invariant with CF at the level of the IC than at the AN. We conclude that binaural sensitivity is more dependent on correlation sensitivity than has hitherto been appreciated and that the mechanisms underlying correlation sensitivity should be addressed in future studies.

  14. Localization by interaural time difference (ITD): Effects of interaural frequency mismatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonham, B.H.; Lewis, E.R.

    1999-07-01

    A commonly accepted physiological model for lateralization of low-frequency sounds by interaural time delay (ITD) stipulates that binaural comparison neurons receive input from frequency-matched channels from each ear. Here, the effects of hypothetical interaural frequency mismatches on this model are reported. For this study, the cat{close_quote}s auditory system peripheral to the binaural comparison neurons was represented by a neurophysiologically derived model, and binaural comparison neurons were represented by cross-correlators. The results of the study indicate that, for binaural comparison neurons receiving input from one cochlear channel from each ear, interaural CF mismatches may serve to either augment or diminish themore » effective difference in ipsilateral and contralateral axonal time delays from the periphery to the binaural comparison neuron. The magnitude of this increase or decrease in the effective time delay difference can be up to 400 {mu}s for CF mismatches of 0.2 octaves or less for binaural neurons with CFs between 250 Hz and 2.5 kHz. For binaural comparison neurons with nominal CFs near 500 Hz, the 25-{mu}s effective time delay difference caused by a 0.012-octave CF mismatch is equal to the ITD previously shown to be behaviorally sufficient for the cat to lateralize a low-frequency sound source. {copyright} {ital 1999 Acoustical Society of America.}« less

  15. Accounting for binaural detection as a function of masker interaural correlation: effects of center frequency and bandwidth.

    PubMed

    Bernstein, Leslie R; Trahiotis, Constantine

    2014-12-01

    Binaural detection was measured as a function of the center frequency, bandwidth, and interaural correlation of masking noise. Thresholds were obtained for 500-Hz or 125-Hz Sπ tonal signals and for the latter stimuli (noise or signal-plus-noise) transposed to 4 kHz. A primary goal was assessment of the generality of van der Heijden and Trahiotis' [J. Acoust. Soc. Am. 101, 1019-1022 (1997)] hypothesis that thresholds could be accounted for by the "additive" masking effects of the underlying No and Nπ components of a masker having an interaural correlation of ρ. Results indicated that (1) the overall patterning of the data depended neither upon center frequency nor whether information was conveyed via the waveform or by its envelope; (2) thresholds for transposed stimuli improved relative to their low-frequency counterparts as bandwidth of the masker was increased; (3) the additivity approach accounted well for the data across stimulus conditions but consistently overestimated MLDs, especially for narrowband maskers; (4) a quantitative approach explicitly taking into account the distributions of time-varying ITD-based lateral positions produced by masker-alone and signal-plus-masker waveforms proved more successful, albeit while employing a larger set of assumptions, parameters, and computational complexity.

  16. Sensitivity to envelope-based interaural delays at high frequencies: center frequency affects the envelope rate-limitation.

    PubMed

    Bernstein, Leslie R; Trahiotis, Constantine

    2014-02-01

    Sensitivity to ongoing interaural temporal disparities (ITDs) was measured using bandpass-filtered pulse trains centered at 4600, 6500, or 9200 Hz. Save for minor differences in the exact center frequencies, those target stimuli were those employed by Majdak and Laback [J. Acoust. Soc. Am. 125, 3903-3913 (2009)]. At each center frequency, threshold ITD was measured for pulse repetition rates ranging from 64 to 609 Hz. The results and quantitative predictions by a cross-correlation-based model indicated that (1) at most pulse repetition rates, threshold ITD increased with center frequency, (2) the cutoff frequency of the putative envelope low-pass filter that determines sensitivity to ITD at high envelope rates appears to be inversely related to center frequency, and (3) both outcomes were accounted for by assuming that, independent of the center frequency, the listeners' decision variable was a constant criterion change in interaural correlation of the stimuli as processed internally. The finding of an inverse relation between center frequency and the envelope rate limitation, while consistent with much prior literature, runs counter to the conclusion reached by Majdak and Laback.

  17. Interaural time sensitivity of high-frequency neurons in the inferior colliculus.

    PubMed

    Yin, T C; Kuwada, S; Sujaku, Y

    1984-11-01

    Recent psychoacoustic experiments have shown that interaural time differences provide adequate cues for lateralizing high-frequency sounds, provided the stimuli are complex and not pure tones. We present here physiological evidence in support of these findings. Neurons of high best frequency in the cat inferior colliculus respond to interaural phase differences of amplitude modulated waveforms, and this response depends upon preservation of phase information of the modulating signal. Interaural phase differences were introduced in two ways: by interaural delays of the entire waveform and by binaural beats in which there was an interaural frequency difference in the modulating waveform. Results obtained with these two methods are similar. Our results show that high-frequency cells can respond to interaural time differences of amplitude modulated signals and that they do so by a sensitivity to interaural phase differences of the modulating waveform.

  18. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function.

    PubMed

    Kuwada, S; Yin, T C

    1983-10-01

    Detailed, quantitative studies were made of the interaural phase sensitivity of 197 neurons with low best frequency in the inferior colliculus (IC) of the barbiturate-anesthetized cat. We analyzed the responses of single cells to interaural delays in which tone bursts were delivered to the two ears via sealed earphones and the onset of the tone to one ear with respect to the other was varied. For most (80%) cells the discharge rate is a cyclic function of interaural delay at a period corresponding to that of the stimulating frequency. The cyclic nature of the interaural delay curve indicates that these cells are sensitive to the interaural phase difference. These cells are distributed throughout the low-frequency zone of the IC, but they are less numerous in the medial and caudal zones. Cells with a wide variety of response patterns will exhibit interaural phase sensitivities at stimulating frequencies up to 3,100 Hz, although above 2,500 Hz the number of such cells decrease markedly. Using dichotic stimuli we could study the cell's sensitivity to the onset delay and interaural phase independently. The large majority of IC cells respond only to changes in interaural phase, with no sensitivity to the onset delay. However, a small number (7%) of cells exhibit a sensitivity to the onset delay as well as to the interaural phase disparity, and most of these cells show an onset response. The effects of changing the stimulus intensity equally to both ears or of changing the interaural intensity difference on the mean interaural phase were studied. While some neurons are not affected by level changes, others exhibit systematic phase shifts for both average and interaural intensity variations, and there is a continuous distribution of sensitivities between these extremes. A few cells also showed systematic changes in the shape of the interaural delay curves as a function of interaural intensity difference, especially at very long delays. These shifts can be interpreted as a form of time-intensity trading. A few cells demonstrated orderly changes in the interaural delay curve as the repetition rate of the stimulus was varied. Some of these changes are consonant with an inhibitory effect that occurs at stimulus offset. The responses of the neurons show a strong bias for stimuli that would originate from he contralateral sound field; 77% of the responses display mean interaural phase angles that are less than 0.5 of a cycle, which are delays to the ipsilateral tone.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. Speech segregation based-on binaural cue: interaural time difference (itd) and interaural level difference (ild)

    NASA Astrophysics Data System (ADS)

    Nur Farid, Mifta; Arifianto, Dhany

    2016-11-01

    A person who is suffering from hearing loss can be helped by using hearing aids and the most optimal performance of hearing aids are binaural hearing aids because it has similarities to human auditory system. In a conversation at a cocktail party, a person can focus on a single conversation even though the background sound and other people conversation is quite loud. This phenomenon is known as the cocktail party effect. In an early study, has been explained that binaural hearing have an important contribution to the cocktail party effect. So in this study, will be performed separation on the input binaural sound with 2 microphone sensors of two sound sources based on both the binaural cue, interaural time difference (ITD) and interaural level difference (ILD) using binary mask. To estimate value of ITD, is used cross-correlation method which the value of ITD represented as time delay of peak shifting at time-frequency unit. Binary mask is estimated based on pattern of ITD and ILD to relative strength of target that computed statistically using probability density estimation. Results of sound source separation performing well with the value of speech intelligibility using the percent correct word by 86% and 3 dB by SNR.

  20. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase.

    PubMed

    Yin, T C; Kuwada, S

    1983-10-01

    We used the binaural beat stimulus to study the interaural phase sensitivity of inferior colliculus (IC) neurons in the cat. The binaural beat, produced by delivering tones of slightly different frequencies to the two ears, generates continuous and graded changes in interaural phase. Over 90% of the cells that exhibit a sensitivity to changes in the interaural delay also show a sensitivity to interaural phase disparities with the binaural beat. Cells respond with a burst of impulses with each complete cycle of the beat frequency. The period histogram obtained by binning the poststimulus time histogram on the beat frequency gives a measure of the interaural phase sensitivity of the cell. In general, there is good correspondence in the shapes of the period histograms generated from binaural beats and the interaural phase curves derived from interaural delays and in the mean interaural phase angle calculated from them. The magnitude of the beat frequency determines the rate of change of interaural phase and the sign determines the direction of phase change. While most cells respond in a phase-locked manner up to beat frequencies of 10 Hz, there are some cells tht will phase lock up to 80 Hz. Beat frequency and mean interaural phase angle are linearly related for most cells. Most cells respond equally in the two directions of phase change and with different rates of change, at least up to 10 Hz. However, some IC cells exhibit marked sensitivity to the speed of phase change, either responding more vigorously at low beat frequencies or at high beat frequencies. In addition, other cells demonstrate a clear directional sensitivity. The cells that show sensitivity to the direction and speed of phase changes would be expected to demonstrate a sensitivity to moving sound sources in the free field. Changes in the mean interaural phase of the binaural beat period histograms are used to determine the effects of changes in average and interaural intensity on the phase sensitivity of the cells. The effects of both forms of intensity variation are continuously distributed. The binaural beat offers a number of advantages for studying the interaural phase sensitivity of binaural cells. The dynamic characteristics of the interaural phase can be varied so that the speed and direction of phase change are under direct control. The data can be obtained in a much more efficient manner, as the binaural beat is about 10 times faster in terms of data collection than the interaural delay.

  1. The Relative Contribution of Interaural Time and Magnitude Cues to Dynamic Sound Localization

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    This paper presents preliminary data from a study examining the relative contribution of interaural time differences (ITDs) and interaural level differences (ILDs) to the localization of virtual sound sources both with and without head motion. The listeners' task was to estimate the apparent direction and distance of virtual sources (broadband noise) presented over headphones. Stimuli were synthesized from minimum phase representations of nonindividualized directional transfer functions; binaural magnitude spectra were derived from the minimum phase estimates and ITDs were represented as a pure delay. During dynamic conditions, listeners were encouraged to move their heads; the position of the listener's head was tracked and the stimuli were synthesized in real time using a Convolvotron to simulate a stationary external sound source. ILDs and ITDs were either correctly or incorrectly correlated with head motion: (1) both ILDs and ITDs correctly correlated, (2) ILDs correct, ITD fixed at 0 deg azimuth and 0 deg elevation, (3) ITDs correct, ILDs fixed at 0 deg, 0 deg. Similar conditions were run for static conditions except that none of the cues changed with head motion. The data indicated that, compared to static conditions, head movements helped listeners to resolve confusions primarily when ILDs were correctly correlated, although a smaller effect was also seen for correct ITDs. Together with the results for static conditions, the data suggest that localization tends to be dominated by the cue that is most reliable or consistent, when reliability is defined by consistency over time as well as across frequency bands.

  2. Measurement of Regional Environmental Noise by Use of a Pc-Based System. A Application to the Noise Near Airport ``G. Marconi'' in Bologna

    NASA Astrophysics Data System (ADS)

    Sakai, H.; Sato, S.; Prodi, N.; Pompoli, R.

    2001-03-01

    Measurements of aircraft noise were made at the airport "G. Marconi" in Bologna by using a measurement system for regional environmental noise. The system is based on the model of the human auditory-brain system, which is based on the interplay of autocorrelators and an interaural cross-correlator acting on the pressure signals arriving at the ear entrances, and takes into account the specialization of left and right human cerebral hemispheres (see reference [8]). Measurements were taken through dual microphones at ear entrances of a dummy head. The aircraft noise was characterized with the following physical factors calculated from the autocorrelation function (ACF) and interaural cross-correlation function (IACF) for binaural signals. From the ACF analysis, (1) energy represented at the origin of delay,Φ (0), (2) effective duration of the envelope of the normalized ACF, τe, (3) the delay time of the first peak, τ1, and (4) its amplitude, φ1were extracted. From the IACF analysis, (5) IACC, (6) interaural delay time at which the IACC is defined, τIACC, and (7) width of the IACF at the τIACC, WIACCwere extracted. The factorΦ (0) can be represented as the geometrical mean of the energies at both ears. A noise source may be identified by these factors as timbre.

  3. Transient Auditory Storage of Acoustic Details Is Associated with Release of Speech from Informational Masking in Reverberant Conditions

    ERIC Educational Resources Information Center

    Huang, Ying; Huang, Qiang; Chen, Xun; Wu, Xihong; Li, Liang

    2009-01-01

    Perceptual integration of the sound directly emanating from the source with reflections needs both temporal storage and correlation computation of acoustic details. We examined whether the temporal storage is frequency dependent and associated with speech unmasking. In Experiment 1, a break in correlation (BIC) between interaurally correlated…

  4. Interaural time discrimination of envelopes carried on high-frequency tones as a function of level and interaural carrier mismatch

    PubMed Central

    Blanks, Deidra A.; Buss, Emily; Grose, John H.; Fitzpatrick, Douglas C.; Hall, Joseph W.

    2009-01-01

    Objectives The present study investigated interaural time discrimination for binaurally mismatched carrier frequencies in listeners with normal hearing. One goal of the investigation was to gain insights into binaural hearing in patients with bilateral cochlear implants, where the coding of interaural time differences may be limited by mismatches in the neural populations receiving stimulation on each side. Design Temporal envelopes were manipulated to present low frequency timing cues to high frequency auditory channels. Carrier frequencies near 4 kHz were amplitude modulated at 128 Hz via multiplication with a half-wave rectified sinusoid, and that modulation was either in-phase across ears or delayed to one ear. Detection thresholds for non-zero interaural time differences were measured for a range of stimulus levels and a range of carrier frequency mismatches. Data were also collected under conditions designed to limit cues based on stimulus spectral spread, including masking and truncation of sidebands associated with modulation. Results Listeners with normal hearing can detect interaural time differences in the face of substantial mismatches in carrier frequency across ears. Conclusions The processing of interaural time differences in listeners with normal hearing is likely based on spread of excitation into binaurally matched auditory channels. Sensitivity to interaural time differences in listeners with cochlear implants may depend upon spread of current that results in the stimulation of neural populations that share common tonotopic space bilaterally. PMID:18596646

  5. Enhancing interaural-delay-based extents of laterality at high frequencies by using ``transposed stimuli''

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2003-06-01

    An acoustic pointing task was used to determine whether interaural temporal disparities (ITDs) conveyed by high-frequency ``transposed'' stimuli would produce larger extents of laterality than ITDs conveyed by bands of high-frequency Gaussian noise. The envelopes of transposed stimuli are designed to provide high-frequency channels with information similar to that conveyed by the waveforms of low-frequency stimuli. Lateralization was measured for low-frequency Gaussian noises, the same noises transposed to 4 kHz, and high-frequency Gaussian bands of noise centered at 4 kHz. Extents of laterality obtained with the transposed stimuli were greater than those obtained with bands of Gaussian noise centered at 4 kHz and, in some cases, were equivalent to those obtained with low-frequency stimuli. In a second experiment, the general effects on lateral position produced by imposed combinations of bandwidth, ITD, and interaural phase disparities (IPDs) on low-frequency stimuli remained when those stimuli were transposed to 4 kHz. Overall, the data were fairly well accounted for by a model that computes the cross-correlation subsequent to known stages of peripheral auditory processing augmented by low-pass filtering of the envelopes within the high-frequency channels of each ear.

  6. Sound-localization experiments with barn owls in virtual space: influence of broadband interaural level different on head-turning behavior.

    PubMed

    Poganiatz, I; Wagner, H

    2001-04-01

    Interaural level differences play an important role for elevational sound localization in barn owls. The changes of this cue with sound location are complex and frequency dependent. We exploited the opportunities offered by the virtual space technique to investigate the behavioral relevance of the overall interaural level difference by fixing this parameter in virtual stimuli to a constant value or introducing additional broadband level differences to normal virtual stimuli. Frequency-specific monaural cues in the stimuli were not manipulated. We observed an influence of the broadband interaural level differences on elevational, but not on azimuthal sound localization. Since results obtained with our manipulations explained only part of the variance in elevational turning angle, we conclude that frequency-specific cues are also important. The behavioral consequences of changes of the overall interaural level difference in a virtual sound depended on the combined interaural time difference contained in the stimulus, indicating an indirect influence of temporal cues on elevational sound localization as well. Thus, elevational sound localization is influenced by a combination of many spatial cues including frequency-dependent and temporal features.

  7. Localization and interaural time difference (ITD) thresholds for cochlear implant recipients with preserved acoustic hearing in the implanted ear

    PubMed Central

    Gifford, René H.; Grantham, D. Wesley; Sheffield, Sterling W.; Davis, Timothy J.; Dwyer, Robert; Dorman, Michael F.

    2014-01-01

    The purpose of this study was to investigate horizontal plane localization and interaural time difference (ITD) thresholds for 14 adult cochlear implant recipients with hearing preservation in the implanted ear. Localization to broadband noise was assessed in an anechoic chamber with a 33-loudspeaker array extending from −90 to +90°. Three listening conditions were tested including bilateral hearing aids, bimodal (implant + contralateral hearing aid) and best aided (implant + bilateral hearing aids). ITD thresholds were assessed, under headphones, for low-frequency stimuli including a 250-Hz tone and bandpass noise (100–900 Hz). Localization, in overall rms error, was significantly poorer in the bimodal condition (mean: 60.2°) as compared to both bilateral hearing aids (mean: 46.1°) and the best-aided condition (mean: 43.4°). ITD thresholds were assessed for the same 14 adult implant recipients as well as 5 normal-hearing adults. ITD thresholds were highly variable across the implant recipients ranging from the range of normal to ITDs not present in real-world listening environments (range: 43 to over 1600 μs). ITD thresholds were significantly correlated with localization, the degree of interaural asymmetry in low-frequency hearing, and the degree of hearing preservation related benefit in the speech reception threshold (SRT). These data suggest that implant recipients with hearing preservation in the implanted ear have access to binaural cues and that the sensitivity to ITDs is significantly correlated with localization and degree of preserved hearing in the implanted ear. PMID:24607490

  8. Localization and interaural time difference (ITD) thresholds for cochlear implant recipients with preserved acoustic hearing in the implanted ear.

    PubMed

    Gifford, René H; Grantham, D Wesley; Sheffield, Sterling W; Davis, Timothy J; Dwyer, Robert; Dorman, Michael F

    2014-06-01

    The purpose of this study was to investigate horizontal plane localization and interaural time difference (ITD) thresholds for 14 adult cochlear implant recipients with hearing preservation in the implanted ear. Localization to broadband noise was assessed in an anechoic chamber with a 33-loudspeaker array extending from -90 to +90°. Three listening conditions were tested including bilateral hearing aids, bimodal (implant + contralateral hearing aid) and best aided (implant + bilateral hearing aids). ITD thresholds were assessed, under headphones, for low-frequency stimuli including a 250-Hz tone and bandpass noise (100-900 Hz). Localization, in overall rms error, was significantly poorer in the bimodal condition (mean: 60.2°) as compared to both bilateral hearing aids (mean: 46.1°) and the best-aided condition (mean: 43.4°). ITD thresholds were assessed for the same 14 adult implant recipients as well as 5 normal-hearing adults. ITD thresholds were highly variable across the implant recipients ranging from the range of normal to ITDs not present in real-world listening environments (range: 43 to over 1600 μs). ITD thresholds were significantly correlated with localization, the degree of interaural asymmetry in low-frequency hearing, and the degree of hearing preservation related benefit in the speech reception threshold (SRT). These data suggest that implant recipients with hearing preservation in the implanted ear have access to binaural cues and that the sensitivity to ITDs is significantly correlated with localization and degree of preserved hearing in the implanted ear. Copyright © 2014. Published by Elsevier B.V.

  9. Perception of Interaural Phase Differences With Envelope and Fine Structure Coding Strategies in Bilateral Cochlear Implant Users

    PubMed Central

    Arndt, Susan; Aschendorff, Antje; Laszig, Roland; Wesarg, Thomas

    2016-01-01

    The ability to detect a target signal masked by noise is improved in normal-hearing listeners when interaural phase differences (IPDs) between the ear signals exist either in the masker or in the signal. To improve binaural hearing in bilaterally implanted cochlear implant (BiCI) users, a coding strategy providing the best possible access to IPD is highly desirable. In this study, we compared two coding strategies in BiCI users provided with CI systems from MED-EL (Innsbruck, Austria). The CI systems were bilaterally programmed either with the fine structure processing strategy FS4 or with the constant rate strategy high definition continuous interleaved sampling (HDCIS). Familiarization periods between 6 and 12 weeks were considered. The effect of IPD was measured in two types of experiments: (a) IPD detection thresholds with tonal signals addressing mainly one apical interaural electrode pair and (b) with speech in noise in terms of binaural speech intelligibility level differences (BILD) addressing multiple electrodes bilaterally. The results in (a) showed improved IPD detection thresholds with FS4 compared with HDCIS in four out of the seven BiCI users. In contrast, 12 BiCI users in (b) showed similar BILD with FS4 (0.6 ± 1.9 dB) and HDCIS (0.5 ± 2.0 dB). However, no correlation between results in (a) and (b) both obtained with FS4 was found. In conclusion, the degree of IPD sensitivity determined on an apical interaural electrode pair was not an indicator for BILD based on bilateral multielectrode stimulation. PMID:27659487

  10. Perception of Interaural Phase Differences With Envelope and Fine Structure Coding Strategies in Bilateral Cochlear Implant Users.

    PubMed

    Zirn, Stefan; Arndt, Susan; Aschendorff, Antje; Laszig, Roland; Wesarg, Thomas

    2016-09-22

    The ability to detect a target signal masked by noise is improved in normal-hearing listeners when interaural phase differences (IPDs) between the ear signals exist either in the masker or in the signal. To improve binaural hearing in bilaterally implanted cochlear implant (BiCI) users, a coding strategy providing the best possible access to IPD is highly desirable. In this study, we compared two coding strategies in BiCI users provided with CI systems from MED-EL (Innsbruck, Austria). The CI systems were bilaterally programmed either with the fine structure processing strategy FS4 or with the constant rate strategy high definition continuous interleaved sampling (HDCIS). Familiarization periods between 6 and 12 weeks were considered. The effect of IPD was measured in two types of experiments: (a) IPD detection thresholds with tonal signals addressing mainly one apical interaural electrode pair and (b) with speech in noise in terms of binaural speech intelligibility level differences (BILD) addressing multiple electrodes bilaterally. The results in (a) showed improved IPD detection thresholds with FS4 compared with HDCIS in four out of the seven BiCI users. In contrast, 12 BiCI users in (b) showed similar BILD with FS4 (0.6 ± 1.9 dB) and HDCIS (0.5 ± 2.0 dB). However, no correlation between results in (a) and (b) both obtained with FS4 was found. In conclusion, the degree of IPD sensitivity determined on an apical interaural electrode pair was not an indicator for BILD based on bilateral multielectrode stimulation. © The Author(s) 2016.

  11. How sensitivity to ongoing interaural temporal disparities is affected by manipulations of temporal features of the envelopes of high-frequency stimuli

    PubMed Central

    Bernstein, Leslie R.; Trahiotis, Constantine

    2009-01-01

    This study addressed how manipulating certain aspects of the envelopes of high-frequency stimuli affects sensitivity to envelope-based interaural temporal disparities (ITDs). Listener’s threshold ITDs were measured using an adaptive two-alternative paradigm employing “raised-sine” stimuli [John, M. S., et al. (2002). Ear Hear. 23, 106–117] which permit independent variation in their modulation frequency, modulation depth, and modulation exponent. Threshold ITDs were measured while manipulating modulation exponent for stimuli having modulation frequencies between 32 and 256 Hz. The results indicated that graded increases in the exponent led to graded decreases in envelope-based threshold ITDs. Threshold ITDs were also measured while parametrically varying modulation exponent and modulation depth. Overall, threshold ITDs decreased with increases in the modulation depth. Unexpectedly, increases in the exponent of the raised-sine led to especially large decreases in threshold ITD when the modulation depth was low. An interaural correlation-based model was generally able to capture changes in threshold ITD stemming from changes in the exponent, depth of modulation, and frequency of modulation of the raised-sine stimuli. The model (and several variations of it), however, could not account for the unexpected interaction between the value of raised-sine exponent and its modulation depth. PMID:19425666

  12. Computation of interaural time difference in the owl's coincidence detector neurons.

    PubMed

    Funabiki, Kazuo; Ashida, Go; Konishi, Masakazu

    2011-10-26

    Both the mammalian and avian auditory systems localize sound sources by computing the interaural time difference (ITD) with submillisecond accuracy. The neural circuits for this computation in birds consist of axonal delay lines and coincidence detector neurons. Here, we report the first in vivo intracellular recordings from coincidence detectors in the nucleus laminaris of barn owls. Binaural tonal stimuli induced sustained depolarizations (DC) and oscillating potentials whose waveforms reflected the stimulus. The amplitude of this sound analog potential (SAP) varied with ITD, whereas DC potentials did not. The amplitude of the SAP was correlated with firing rate in a linear fashion. Spike shape, synaptic noise, the amplitude of SAP, and responsiveness to current pulses differed between cells at different frequencies, suggesting an optimization strategy for sensing sound signals in neurons tuned to different frequencies.

  13. Neural tuning matches frequency-dependent time differences between the ears

    PubMed Central

    Benichoux, Victor; Fontaine, Bertrand; Franken, Tom P; Karino, Shotaro; Joris, Philip X; Brette, Romain

    2015-01-01

    The time it takes a sound to travel from source to ear differs between the ears and creates an interaural delay. It varies systematically with spatial direction and is generally modeled as a pure time delay, independent of frequency. In acoustical recordings, we found that interaural delay varies with frequency at a fine scale. In physiological recordings of midbrain neurons sensitive to interaural delay, we found that preferred delay also varies with sound frequency. Similar observations reported earlier were not incorporated in a functional framework. We find that the frequency dependence of acoustical and physiological interaural delays are matched in key respects. This suggests that binaural neurons are tuned to acoustical features of ecological environments, rather than to fixed interaural delays. Using recordings from the nerve and brainstem we show that this tuning may emerge from neurons detecting coincidences between input fibers that are mistuned in frequency. DOI: http://dx.doi.org/10.7554/eLife.06072.001 PMID:25915620

  14. Comparison of Interaural Electrode Pairing Methods for Bilateral Cochlear Implants

    PubMed Central

    Dietz, Mathias

    2015-01-01

    In patients with bilateral cochlear implants (CIs), pairing matched interaural electrodes and stimulating them with the same frequency band is expected to facilitate binaural functions such as binaural fusion, localization, and spatial release from masking. Because clinical procedures typically do not include patient-specific interaural electrode pairing, it remains the case that each electrode is allocated to a generic frequency range, based simply on the electrode number. Two psychoacoustic techniques for determining interaurally paired electrodes have been demonstrated in several studies: interaural pitch comparison and interaural time difference (ITD) sensitivity. However, these two methods are rarely, if ever, compared directly. A third, more objective method is to assess the amplitude of the binaural interaction component (BIC) derived from electrically evoked auditory brainstem responses for different electrode pairings; a method has been demonstrated to be a potential candidate for bilateral CI users. Here, we tested all three measures in the same eight CI users. We found good correspondence between the electrode pair producing the largest BIC and the electrode pair producing the maximum ITD sensitivity. The correspondence between the pairs producing the largest BIC and the pitch-matched electrode pairs was considerably weaker, supporting the previously proposed hypothesis that whilst place pitch might adapt over time to accommodate mismatched inputs, sensitivity to ITDs does not adapt to the same degree. PMID:26631108

  15. Using ILD or ITD Cues for Sound Source Localization and Speech Understanding in a Complex Listening Environment by Listeners With Bilateral and With Hearing-Preservation Cochlear Implants.

    PubMed

    Loiselle, Louise H; Dorman, Michael F; Yost, William A; Cook, Sarah J; Gifford, Rene H

    2016-08-01

    To assess the role of interaural time differences and interaural level differences in (a) sound-source localization, and (b) speech understanding in a cocktail party listening environment for listeners with bilateral cochlear implants (CIs) and for listeners with hearing-preservation CIs. Eleven bilateral listeners with MED-EL (Durham, NC) CIs and 8 listeners with hearing-preservation CIs with symmetrical low frequency, acoustic hearing using the MED-EL or Cochlear device were evaluated using 2 tests designed to task binaural hearing, localization, and a simulated cocktail party. Access to interaural cues for localization was constrained by the use of low-pass, high-pass, and wideband noise stimuli. Sound-source localization accuracy for listeners with bilateral CIs in response to the high-pass noise stimulus and sound-source localization accuracy for the listeners with hearing-preservation CIs in response to the low-pass noise stimulus did not differ significantly. Speech understanding in a cocktail party listening environment improved for all listeners when interaural cues, either interaural time difference or interaural level difference, were available. The findings of the current study indicate that similar degrees of benefit to sound-source localization and speech understanding in complex listening environments are possible with 2 very different rehabilitation strategies: the provision of bilateral CIs and the preservation of hearing.

  16. Aging effects on the Binaural Interaction Component of the Auditory Brainstem Response in the Mongolian Gerbil: Effects of Interaural Time and Level Differences

    PubMed Central

    Laumen, Geneviève; Tollin, Daniel J.; Beutelmann, Rainer; Klump, Georg M.

    2016-01-01

    The effect of interaural time difference (ITD) and interaural level difference (ILD) on wave 4 of the binaural and summed monaural auditory brainstem responses (ABRs) as well as on the DN1 component of the binaural interaction component (BIC) of the ABR in young and old Mongolian gerbils (Meriones unguiculatus) was investigated. Measurements were made at a fixed sound pressure level (SPL) and a fixed level above visually detected ABR threshold to compensate for individual hearing threshold differences. In both stimulation modes (fixed SPL and fixed level above visually detected ABR threshold) an effect of ITD on the latency and the amplitude of wave 4 as well as of the BIC was observed. With increasing absolute ITD values BIC latencies were increased and amplitudes were decreased. ILD had a much smaller effect on these measures. Old animals showed a reduced amplitude of the DN1 component. This difference was due to a smaller wave 4 in the summed monaural ABRs of old animals compared to young animals whereas wave 4 in the binaural-evoked ABR showed no age-related difference. In old animals the small amplitude of the DN1 component was correlated with small binaural-evoked wave 1 and wave 3 amplitudes. This suggests that the reduced peripheral input affects central binaural processing which is reflected in the BIC. PMID:27173973

  17. The impact of variation in low-frequency interaural cross correlation on auditory spatial imagery in stereophonic loudspeaker reproduction

    NASA Astrophysics Data System (ADS)

    Martens, William

    2005-04-01

    Several attributes of auditory spatial imagery associated with stereophonic sound reproduction are strongly modulated by variation in interaural cross correlation (IACC) within low frequency bands. Nonetheless, a standard practice in bass management for two-channel and multichannel loudspeaker reproduction is to mix low-frequency musical content to a single channel for reproduction via a single driver (e.g., a subwoofer). This paper reviews the results of psychoacoustic studies which support the conclusion that reproduction via multiple drivers of decorrelated low-frequency signals significantly affects such important spatial attributes as auditory source width (ASW), auditory source distance (ASD), and listener envelopment (LEV). A variety of methods have been employed in these tests, including forced choice discrimination and identification, and direct ratings of both global dissimilarity and distinct attributes. Contrary to assumptions that underlie industrial standards established in 1994 by ITU-R. Recommendation BS.775-1, these findings imply that substantial stereophonic spatial information exists within audio signals at frequencies below the 80 to 120 Hz range of prescribed subwoofer cutoff frequencies, and that loudspeaker reproduction of decorrelated signals at frequencies as low as 50 Hz can have an impact upon auditory spatial imagery. [Work supported by VRQ.

  18. Adjustment of interaural time difference in head related transfer functions based on listeners' anthropometry and its effect on sound localization

    NASA Astrophysics Data System (ADS)

    Suzuki, Yôiti; Watanabe, Kanji; Iwaya, Yukio; Gyoba, Jiro; Takane, Shouichi

    2005-04-01

    Because the transfer functions governing subjective sound localization (HRTFs) show strong individuality, sound localization systems based on synthesis of HRTFs require suitable HRTFs for individual listeners. However, it is impractical to obtain HRTFs for all listeners based on measurements. Improving sound localization by adjusting non-individualized HRTFs to a specific listener based on that listener's anthropometry might be a practical method. This study first developed a new method to estimate interaural time differences (ITDs) using HRTFs. Then correlations between ITDs and anthropometric parameters were analyzed using the canonical correlation method. Results indicated that parameters relating to head size, and shoulder and ear positions are significant. Consequently, it was attempted to express ITDs based on listener's anthropometric data. In this process, the change of ITDs as a function of azimuth angle was parameterized as a sum of sine functions. Then the parameters were analyzed using multiple regression analysis, in which the anthropometric parameters were used as explanatory variables. The predicted or individualized ITDs were installed in the nonindividualized HRTFs to evaluate sound localization performance. Results showed that individualization of ITDs improved horizontal sound localization.

  19. Localizing nearby sound sources in a classroom: Binaural room impulse responses

    NASA Astrophysics Data System (ADS)

    Shinn-Cunningham, Barbara G.; Kopco, Norbert; Martin, Tara J.

    2005-05-01

    Binaural room impulse responses (BRIRs) were measured in a classroom for sources at different azimuths and distances (up to 1 m) relative to a manikin located in four positions in a classroom. When the listener is far from all walls, reverberant energy distorts signal magnitude and phase independently at each frequency, altering monaural spectral cues, interaural phase differences, and interaural level differences. For the tested conditions, systematic distortion (comb-filtering) from an early intense reflection is only evident when a listener is very close to a wall, and then only in the ear facing the wall. Especially for a nearby source, interaural cues grow less reliable with increasing source laterality and monaural spectral cues are less reliable in the ear farther from the sound source. Reverberation reduces the magnitude of interaural level differences at all frequencies; however, the direct-sound interaural time difference can still be recovered from the BRIRs measured in these experiments. Results suggest that bias and variability in sound localization behavior may vary systematically with listener location in a room as well as source location relative to the listener, even for nearby sources where there is relatively little reverberant energy. .

  20. Localizing nearby sound sources in a classroom: binaural room impulse responses.

    PubMed

    Shinn-Cunningham, Barbara G; Kopco, Norbert; Martin, Tara J

    2005-05-01

    Binaural room impulse responses (BRIRs) were measured in a classroom for sources at different azimuths and distances (up to 1 m) relative to a manikin located in four positions in a classroom. When the listener is far from all walls, reverberant energy distorts signal magnitude and phase independently at each frequency, altering monaural spectral cues, interaural phase differences, and interaural level differences. For the tested conditions, systematic distortion (comb-filtering) from an early intense reflection is only evident when a listener is very close to a wall, and then only in the ear facing the wall. Especially for a nearby source, interaural cues grow less reliable with increasing source laterality and monaural spectral cues are less reliable in the ear farther from the sound source. Reverberation reduces the magnitude of interaural level differences at all frequencies; however, the direct-sound interaural time difference can still be recovered from the BRIRs measured in these experiments. Results suggest that bias and variability in sound localization behavior may vary systematically with listener location in a room as well as source location relative to the listener, even for nearby sources where there is relatively little reverberant energy.

  1. Suitability of the Binaural Interaction Component for Interaural Electrode Pairing of Bilateral Cochlear Implants.

    PubMed

    Hu, Hongmei; Kollmeier, Birger; Dietz, Mathias

    2016-01-01

    Although bilateral cochlear implants (BiCIs) have succeeded in improving the spatial hearing performance of bilateral CI users, the overall performance is still not comparable with normal hearing listeners. Limited success can be partially caused by an interaural mismatch of the place-of-stimulation in each cochlea. Pairing matched interaural CI electrodes and stimulating them with the same frequency band is expected to facilitate binaural functions such as binaural fusion, localization, or spatial release from masking. It has been shown in animal experiments that the magnitude of the binaural interaction component (BIC) derived from the wave-eV decreases for increasing interaural place of stimulation mismatch. This motivated the investigation of the suitability of an electroencephalography-based objective electrode-frequency fitting procedure based on the BIC for BiCI users. A 61 channel monaural and binaural electrically evoked auditory brainstem response (eABR) recording was performed in 7 MED-EL BiCI subjects so far. These BiCI subjects were directly stimulated at 60% dynamic range with 19.9 pulses per second via a research platform provided by the University of Innsbruck (RIB II). The BIC was derived for several interaural electrode pairs by subtracting the response from binaural stimulation from their summed monaural responses. The BIC based pairing results are compared with two psychoacoustic pairing methods: interaural pulse time difference sensitivity and interaural pitch matching. The results for all three methods analyzed as a function of probe electrode allow for determining a matched pair in more than half of the subjects, with a typical accuracy of ± 1 electrode. This includes evidence for statistically significant tuning of the BIC as a function of probe electrode in human subjects. However, results across the three conditions were sometimes not consistent. These discrepancies will be discussed in the light of pitch plasticity versus less plastic brainstem processing.

  2. Interaural intensity difference limen.

    DOT National Transportation Integrated Search

    1967-05-01

    The ability to judge the direction (the azimuth) of a sound source and to discriminate it from others is often essential to flyers. A major factor in the judgment process is the interaural intensity difference that the pilot can perceive. Three kinds...

  3. Correlation between bithermal caloric test results and vestibular evoked myogenic potentials (VEMPs) in normal subjects.

    PubMed

    Andrade, Isabel Vaamonde Sanchez; Santos-Perez, Sofia; Diz, Pilar Gayoso; Caballero, Torcuato Labella; Soto-Varela, Andrés

    2013-05-01

    Bithermal caloric testing and vestibular evoked myogenic potentials (VEMPs) are both diagnostic tools for the study of the vestibular system. The first tests the horizontal semicircular canal and the second evaluates the saccule and lower vestibular nerve. The results of these two tests can therefore be expected to be correlated. The aim of this study was to compare bithermal caloric test results with VEMP records in normal subjects to verify whether they are correlated. A prospective study was conducted in 60 healthy subjects (30 men and 30 women) who underwent otoscopy, pure tone audiometry, bithermal caloric testing and VEMPs. From the caloric test, we assessed the presence of possible vestibular hypofunction, whether there was directional preponderance and reflectivity of each ear (all based on both slow phase velocity and nystagmus frequency). The analysed VEMPs variables were: p1 and n1 latency, corrected amplitude, interaural p1 latency difference and p1 interaural amplitude asymmetry. We compared the reflectivity, hypofunction and directional preponderance of the caloric tests with the corrected amplitudes and amplitude asymmetries of the VEMPs. No correlations were found in the different comparisons between bithermal caloric testing results and VEMPs except for a weak correlation (p = 0.039) when comparing preponderance based on the number of nystagmus in the caloric test and amplitude asymmetry with 99 dB tone burst in the VEMPs test. The results indicate that the two diagnostic tests are not comparable, so one of them cannot replace the other, but the use of both increases diagnostic success in some conditions.

  4. Neural correlates of binaural masking level difference in the inferior colliculus of the barn owl (Tyto alba).

    PubMed

    Asadollahi, Ali; Endler, Frank; Nelken, Israel; Wagner, Hermann

    2010-08-01

    Humans and animals are able to detect signals in noisy environments. Detection improves when the noise and the signal have different interaural phase relationships. The resulting improvement in detection threshold is called the binaural masking level difference. We investigated neural mechanisms underlying the release from masking in the inferior colliculus of barn owls in low-frequency and high-frequency neurons. A tone (signal) was presented either with the same interaural time difference as the noise (masker) or at a 180 degrees phase shift as compared with the interaural time difference of the noise. The changes in firing rates induced by the addition of a signal of increasing level while masker level was kept constant was well predicted by the relative responses to the masker and signal alone. In many cases, the response at the highest signal levels was dominated by the response to the signal alone, in spite of a significant response to the masker at low signal levels, suggesting the presence of occlusion. Detection thresholds and binaural masking level differences were widely distributed. The amount of release from masking increased with increasing masker level. Narrowly tuned neurons in the central nucleus of the inferior colliculus had detection thresholds that were lower than or similar to those of broadly tuned neurons in the external nucleus of the inferior colliculus. Broadly tuned neurons exhibited higher masking level differences than narrowband neurons. These data suggest that detection has different spectral requirements from localization.

  5. Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: Effects of interaural time and level differences.

    PubMed

    Laumen, Geneviève; Tollin, Daniel J; Beutelmann, Rainer; Klump, Georg M

    2016-07-01

    The effect of interaural time difference (ITD) and interaural level difference (ILD) on wave 4 of the binaural and summed monaural auditory brainstem responses (ABRs) as well as on the DN1 component of the binaural interaction component (BIC) of the ABR in young and old Mongolian gerbils (Meriones unguiculatus) was investigated. Measurements were made at a fixed sound pressure level (SPL) and a fixed level above visually detected ABR threshold to compensate for individual hearing threshold differences. In both stimulation modes (fixed SPL and fixed level above visually detected ABR threshold) an effect of ITD on the latency and the amplitude of wave 4 as well as of the BIC was observed. With increasing absolute ITD values BIC latencies were increased and amplitudes were decreased. ILD had a much smaller effect on these measures. Old animals showed a reduced amplitude of the DN1 component. This difference was due to a smaller wave 4 in the summed monaural ABRs of old animals compared to young animals whereas wave 4 in the binaural-evoked ABR showed no age-related difference. In old animals the small amplitude of the DN1 component was correlated with small binaural-evoked wave 1 and wave 3 amplitudes. This suggests that the reduced peripheral input affects central binaural processing which is reflected in the BIC. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Binaural unmasking of multi-channel stimuli in bilateral cochlear implant users.

    PubMed

    Van Deun, Lieselot; van Wieringen, Astrid; Francart, Tom; Büchner, Andreas; Lenarz, Thomas; Wouters, Jan

    2011-10-01

    Previous work suggests that bilateral cochlear implant users are sensitive to interaural cues if experimental speech processors are used to preserve accurate interaural information in the electrical stimulation pattern. Binaural unmasking occurs in adults and children when an interaural delay is applied to the envelope of a high-rate pulse train. Nevertheless, for speech perception, binaural unmasking benefits have not been demonstrated consistently, even with coordinated stimulation at both ears. The present study aimed at bridging the gap between basic psychophysical performance on binaural signal detection tasks on the one hand and binaural perception of speech in noise on the other hand. Therefore, binaural signal detection was expanded to multi-channel stimulation and biologically relevant interaural delays. A harmonic complex, consisting of three sinusoids (125, 250, and 375 Hz), was added to three 125-Hz-wide noise bands centered on the sinusoids. When an interaural delay of 700 μs was introduced, an average BMLD of 3 dB was established. Outcomes are promising in view of real-life benefits. Future research should investigate the generalization of the observed benefits for signal detection to speech perception in everyday listening situations and determine the importance of coordination of bilateral speech processors and accentuation of envelope cues.

  7. Lateralization of noise-burst trains based on onset and ongoing interaural delays.

    PubMed

    Freyman, Richard L; Balakrishnan, Uma; Zurek, Patrick M

    2010-07-01

    The lateralization of 250-ms trains of brief noise bursts was measured using an acoustic pointing technique. Stimuli were designed to assess the contribution of the interaural time delay (ITD) of the onset binaural burst relative to that of the ITDs in the ongoing part of the train. Lateralization was measured by listeners' adjustments of the ITD of a pointer stimulus, a 50-ms burst of noise, to match the lateral position of the target train. Results confirmed previous reports of lateralization dominance by the onset burst under conditions in which the train is composed of frozen tokens and the ongoing part contains multiple ambiguous interaural delays. In contrast, lateralization of ongoing trains in which fresh noise tokens were used for each set of two alternating (left-leading/right-leading) binaural pairs followed the ITD of the first pair in each set, regardless of the ITD of the onset burst of the entire stimulus and even when the onset burst was removed by gradual gating. This clear lateralization of a long-duration stimulus with ambiguous interaural delay cues suggests precedence mechanisms that involve not only the interaural cues at the beginning of a sound, but also the pattern of cues within an ongoing sound.

  8. Growth in Head Size during Infancy: Implications for Sound Localization.

    ERIC Educational Resources Information Center

    Clifton, Rachel K.; And Others

    1988-01-01

    Compared head circumference and interaural distance in infants between birth and 22 weeks of age and in a small sample of preschool children and adults. Calculated changes in interaural time differences according to age. Found a large shift in distance. (SKC)

  9. Multivariate Analyses of Balance Test Performance, Vestibular Thresholds, and Age

    PubMed Central

    Karmali, Faisal; Bermúdez Rey, María Carolina; Clark, Torin K.; Wang, Wei; Merfeld, Daniel M.

    2017-01-01

    We previously published vestibular perceptual thresholds and performance in the Modified Romberg Test of Standing Balance in 105 healthy humans ranging from ages 18 to 80 (1). Self-motion thresholds in the dark included roll tilt about an earth-horizontal axis at 0.2 and 1 Hz, yaw rotation about an earth-vertical axis at 1 Hz, y-translation (interaural/lateral) at 1 Hz, and z-translation (vertical) at 1 Hz. In this study, we focus on multiple variable analyses not reported in the earlier study. Specifically, we investigate correlations (1) among the five thresholds measured and (2) between thresholds, age, and the chance of failing condition 4 of the balance test, which increases vestibular reliance by having subjects stand on foam with eyes closed. We found moderate correlations (0.30–0.51) between vestibular thresholds for different motions, both before and after using our published aging regression to remove age effects. We found that lower or higher thresholds across all threshold measures are an individual trait that account for about 60% of the variation in the population. This can be further distributed into two components with about 20% of the variation explained by aging and 40% of variation explained by a single principal component that includes similar contributions from all threshold measures. When only roll tilt 0.2 Hz thresholds and age were analyzed together, we found that the chance of failing condition 4 depends significantly on both (p = 0.006 and p = 0.013, respectively). An analysis incorporating more variables found that the chance of failing condition 4 depended significantly only on roll tilt 0.2 Hz thresholds (p = 0.046) and not age (p = 0.10), sex nor any of the other four threshold measures, suggesting that some of the age effect might be captured by the fact that vestibular thresholds increase with age. For example, at 60 years of age, the chance of failing is roughly 5% for the lowest roll tilt thresholds in our population, but this increases to 80% for the highest roll tilt thresholds. These findings demonstrate the importance of roll tilt vestibular cues for balance, even in individuals reporting no vestibular symptoms and with no evidence of vestibular dysfunction. PMID:29167656

  10. Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues.

    PubMed

    Reale, R A; Brugge, J F

    1990-10-01

    1. The interaural-phase-difference (IPD) sensitivity of single neurons in the primary auditory (AI) cortex of the anesthetized cat was studied at stimulus frequencies ranging from 120 to 2,500 Hz. Best frequencies of the 43 AI cells sensitive to IPD ranged from 190 to 2,400 Hz. 2. A static IPD was produced when a pair of low-frequency tone bursts, differing from one another only in starting phase, were presented dichotically. The resulting IPD-sensitivity curves, which plot the number of discharges evoked by the binaural signal as a function of IPD, were deeply modulated circular functions. IPD functions were analyzed for their mean vector length (r) and mean interaural phase (phi). Phase sensitivity was relatively independent of best frequency (BF) but highly dependent on stimulus frequency. Regardless of BF or stimulus frequency within the excitatory response area the majority of cells fired maximally when the ipsilateral tone lagged the contralateral signal and fired least when this interaural-phase relationship was reversed. 3. Sensitivity to continuously changing IPD was studied by delivering to the two ears 3-s tones that differed slightly in frequency, resulting in a binaural beat. Approximately 26% of the cells that showed a sensitivity to static changes in IPD also showed a sensitivity to dynamically changing IPD created by this binaural tonal combination. The discharges were highly periodic and tightly synchronized to a particular phase of the binaural beat cycle. High synchrony can be attributed to the fact that cortical neurons typically respond to an excitatory stimulus with but a single spike that is often precisely timed to stimulus onset. A period histogram, binned on the binaural beat frequency (fb), produced an equivalent IPD-sensitivity function for dynamically changing interaural phase. For neurons sensitive to both static and continuously changing interaural phase there was good correspondence between their static (phi s) and dynamic (phi d) mean interaural phases. 4. All cells responding to a dynamically changing stimulus exhibited a linear relationship between mean interaural phase and beat frequency. Most cells responded equally well to binaural beats regardless of the initial direction of phase change. For a fixed duration stimulus, and at relatively low fb, the number of spikes evoked increased with increasing fb, reflecting the increasing number of effective stimulus cycles. At higher fb, AI neurons were unable to follow the rate at which the most effective phase repeated itself during the 3 s of stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)

  11. Cortical Measures of Binaural Processing Predict Spatial Release from Masking Performance

    PubMed Central

    Papesh, Melissa A.; Folmer, Robert L.; Gallun, Frederick J.

    2017-01-01

    Binaural sensitivity is an important contributor to the ability to understand speech in adverse acoustical environments such as restaurants and other social gatherings. The ability to accurately report on binaural percepts is not commonly measured, however, as extensive training is required before reliable measures can be obtained. Here, we investigated the use of auditory evoked potentials (AEPs) as a rapid physiological indicator of detection of interaural phase differences (IPDs) by assessing cortical responses to 180° IPDs embedded in amplitude-modulated carrier tones. We predicted that decrements in encoding of IPDs would be evident in middle age, with further declines found with advancing age and hearing loss. Thus, participants in experiment #1 were young to middle-aged adults with relatively good hearing thresholds while participants in experiment #2 were older individuals with typical age-related hearing loss. Results revealed that while many of the participants in experiment #1 could encode IPDs in stimuli up to 1,000 Hz, few of the participants in experiment #2 had discernable responses to stimuli above 750 Hz. These results are consistent with previous studies that have found that aging and hearing loss impose frequency limits on the ability to encode interaural phase information present in the fine structure of auditory stimuli. We further hypothesized that AEP measures of binaural sensitivity would be predictive of participants' ability to benefit from spatial separation between sound sources, a phenomenon known as spatial release from masking (SRM) which depends upon binaural cues. Results indicate that not only were objective IPD measures well correlated with and predictive of behavioral SRM measures in both experiments, but that they provided much stronger predictive value than age or hearing loss. Overall, the present work shows that objective measures of the encoding of interaural phase information can be readily obtained using commonly available AEP equipment, allowing accurate determination of the degree to which binaural sensitivity has been reduced in individual listeners due to aging and/or hearing loss. In fact, objective AEP measures of interaural phase encoding are actually better predictors of SRM in speech-in-speech conditions than are age, hearing loss, or the combination of age and hearing loss. PMID:28377706

  12. Cortical Measures of Binaural Processing Predict Spatial Release from Masking Performance.

    PubMed

    Papesh, Melissa A; Folmer, Robert L; Gallun, Frederick J

    2017-01-01

    Binaural sensitivity is an important contributor to the ability to understand speech in adverse acoustical environments such as restaurants and other social gatherings. The ability to accurately report on binaural percepts is not commonly measured, however, as extensive training is required before reliable measures can be obtained. Here, we investigated the use of auditory evoked potentials (AEPs) as a rapid physiological indicator of detection of interaural phase differences (IPDs) by assessing cortical responses to 180° IPDs embedded in amplitude-modulated carrier tones. We predicted that decrements in encoding of IPDs would be evident in middle age, with further declines found with advancing age and hearing loss. Thus, participants in experiment #1 were young to middle-aged adults with relatively good hearing thresholds while participants in experiment #2 were older individuals with typical age-related hearing loss. Results revealed that while many of the participants in experiment #1 could encode IPDs in stimuli up to 1,000 Hz, few of the participants in experiment #2 had discernable responses to stimuli above 750 Hz. These results are consistent with previous studies that have found that aging and hearing loss impose frequency limits on the ability to encode interaural phase information present in the fine structure of auditory stimuli. We further hypothesized that AEP measures of binaural sensitivity would be predictive of participants' ability to benefit from spatial separation between sound sources, a phenomenon known as spatial release from masking (SRM) which depends upon binaural cues. Results indicate that not only were objective IPD measures well correlated with and predictive of behavioral SRM measures in both experiments, but that they provided much stronger predictive value than age or hearing loss. Overall, the present work shows that objective measures of the encoding of interaural phase information can be readily obtained using commonly available AEP equipment, allowing accurate determination of the degree to which binaural sensitivity has been reduced in individual listeners due to aging and/or hearing loss. In fact, objective AEP measures of interaural phase encoding are actually better predictors of SRM in speech-in-speech conditions than are age, hearing loss, or the combination of age and hearing loss.

  13. Envelope contributions to the representation of interaural time difference in the forebrain of barn owls.

    PubMed

    Tellers, Philipp; Lehmann, Jessica; Führ, Hartmut; Wagner, Hermann

    2017-09-01

    Birds and mammals use the interaural time difference (ITD) for azimuthal sound localization. While barn owls can use the ITD of the stimulus carrier frequency over nearly their entire hearing range, mammals have to utilize the ITD of the stimulus envelope to extend the upper frequency limit of ITD-based sound localization. ITD is computed and processed in a dedicated neural circuit that consists of two pathways. In the barn owl, ITD representation is more complex in the forebrain than in the midbrain pathway because of the combination of two inputs that represent different ITDs. We speculated that one of the two inputs includes an envelope contribution. To estimate the envelope contribution, we recorded ITD response functions for correlated and anticorrelated noise stimuli in the barn owl's auditory arcopallium. Our findings indicate that barn owls, like mammals, represent both carrier and envelope ITDs of overlapping frequency ranges, supporting the hypothesis that carrier and envelope ITD-based localization are complementary beyond a mere extension of the upper frequency limit. NEW & NOTEWORTHY The results presented in this study show for the first time that the barn owl is able to extract and represent the interaural time difference (ITD) information conveyed by the envelope of a broadband acoustic signal. Like mammals, the barn owl extracts the ITD of the envelope and the carrier of a signal from the same frequency range. These results are of general interest, since they reinforce a trend found in neural signal processing across different species. Copyright © 2017 the American Physiological Society.

  14. Post interaural neural net-based vowel recognition

    NASA Astrophysics Data System (ADS)

    Jouny, Ismail I.

    2001-10-01

    Interaural head related transfer functions are used to process speech signatures prior to neural net based recognition. Data representing the head related transfer function of a dummy has been collected at MIT and made available on the Internet. This data is used to pre-process vowel signatures to mimic the effects of human ear on speech perception. Signatures representing various vowels of the English language are then presented to a multi-layer perceptron trained using the back propagation algorithm for recognition purposes. The focus in this paper is to assess the effects of human interaural system on vowel recognition performance particularly when using a classification system that mimics the human brain such as a neural net.

  15. Interaural level differences do not suffice for restoring spatial release from masking in simulated cochlear implant listening.

    PubMed

    Ihlefeld, Antje; Litovsky, Ruth Y

    2012-01-01

    Spatial release from masking refers to a benefit for speech understanding. It occurs when a target talker and a masker talker are spatially separated. In those cases, speech intelligibility for target speech is typically higher than when both talkers are at the same location. In cochlear implant listeners, spatial release from masking is much reduced or absent compared with normal hearing listeners. Perhaps this reduced spatial release occurs because cochlear implant listeners cannot effectively attend to spatial cues. Three experiments examined factors that may interfere with deploying spatial attention to a target talker masked by another talker. To simulate cochlear implant listening, stimuli were vocoded with two unique features. First, we used 50-Hz low-pass filtered speech envelopes and noise carriers, strongly reducing the possibility of temporal pitch cues; second, co-modulation was imposed on target and masker utterances to enhance perceptual fusion between the two sources. Stimuli were presented over headphones. Experiments 1 and 2 presented high-fidelity spatial cues with unprocessed and vocoded speech. Experiment 3 maintained faithful long-term average interaural level differences but presented scrambled interaural time differences with vocoded speech. Results show a robust spatial release from masking in Experiments 1 and 2, and a greatly reduced spatial release in Experiment 3. Faithful long-term average interaural level differences were insufficient for producing spatial release from masking. This suggests that appropriate interaural time differences are necessary for restoring spatial release from masking, at least for a situation where there are few viable alternative segregation cues.

  16. Interaural delay sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig.

    PubMed

    McAlpine, D; Jiang, D; Palmer, A R

    1996-08-01

    Monaural and binaural response properties of single units in the inferior colliculus (IC) of the guinea pig were investigated. Neurones were classified according to the effect of monaural stimulation of either ear alone and the effect of binaural stimulation. The majority (309/334) of IC units were excited (E) by stimulation of the contralateral ear, of which 41% (127/309) were also excited by monaural ipsilateral stimulation (EE), and the remainder (182/309) were unresponsive to monaural ipsilateral stimulation (EO). For units with best frequencies (BF) up to 3 kHz, similar proportions of EE and EO units were observed. Above 3 kHz, however, significantly more EO than EE units were observed. Units were also classified as either facilitated (F), suppressed (S), or unaffected (O) by binaural stimulation. More EO than EE units were suppressed or unaffected by binaural stimulation, and more EE than EO units were facilitated. There were more EO/S units above 1.5 kHz than below. Binaural beats were used to examine the interaural delay sensitivity of low-BF (BF < 1.5 kHz) units. The distributions of preferred interaural phases and, by extension, interaural delays, resembled those seen in other species, and those obtained using static interaural delays in the IC of the guinea pig. Units with best phase (BP) angles closer to zero generally showed binaural facilitation, whilst those with larger BPs generally showed binaural suppression. The classification of units based upon binaural stimulation with BF tones was consistent with their interaural-delay sensitivity. Characteristic delays (CD) were examined for 96 low-BF units. A clear relationship between BF and CD was observed. CDs of units with very low BFs (< 200 Hz) were long and positive, becoming progressively shorter as BF increased until, for units with BFs between 400 and 800 Hz, the majority of CDs were negative. Above 800 Hz, both positive and negative CDs were observed. A relationship between CD and characteristic phase (CP) was also observed, with CPs increasing in value as CDs became more negative. These results demonstrate that binaural processing in the guinea pig at low frequencies is similar to that reported in all other species studied. However, the dependence of CD on BF would suggest that the delay line system that sets up the interaural-delay sensitivity in the lower brainstem varies across frequency as well as within each frequency band.

  17. Using ILD or ITD Cues for Sound Source Localization and Speech Understanding in a Complex Listening Environment by Listeners with Bilateral and with Hearing-Preservation Cochlear Implants

    ERIC Educational Resources Information Center

    Loiselle, Louise H.; Dorman, Michael F.; Yost, William A.; Cook, Sarah J.; Gifford, Rene H.

    2016-01-01

    Purpose: To assess the role of interaural time differences and interaural level differences in (a) sound-source localization, and (b) speech understanding in a cocktail party listening environment for listeners with bilateral cochlear implants (CIs) and for listeners with hearing-preservation CIs. Methods: Eleven bilateral listeners with MED-EL…

  18. Localization of a Speech Target in Nondirectional and Directional Noise as a Function of Sensation Level

    DTIC Science & Technology

    2012-06-01

    a listener uses to interpret the auditory environment is interaural difference cues. Interaural difference cues are perceived binaurally , and they...signal in noise is not enough for accurate localization performance. Instead, it appears that both audibility and binaural signal processing of both...be interpreted differently among researchers. 4. Conclusions Accurately processed and interpreted binaural and monaural spatial cues enable a

  19. The sensitivity of hearing-impaired adults to acoustic attributes in simulated rooms

    PubMed Central

    Whitmer, William M.; McShefferty, David; Akeroyd, Michael A.

    2016-01-01

    In previous studies we have shown that older hearing-impaired individuals are relatively insensitive to changes in the apparent width of broadband noises when those width changes were based on differences in interaural coherence [W. Whitmer, B. Seeber and M. Akeroyd, J. Acoust. Soc. Am. 132, 369-379 (2012)]. This insensitivity has been linked to senescent difficulties in resolving binaural fine-structure differences. It is therefore possible that interaural coherence, despite its widespread use, may not be the best acoustic surrogate of spatial perception for the aged and impaired. To test this, we simulated the room impulse responses for various acoustic scenarios with differing coherence and lateral (energy) fraction attributes using room modelling software (ODEON). Bilaterally impaired adult participants were asked to sketch the perceived size of speech tokens and musical excerpts that were convolved with these impulse responses and presented to them in a sound-dampened enclosure through a 24-loudspeaker array. Participants’ binaural acuity was also measured using an interaural phase discrimination task. Corroborating our previous findings, the results showed less sensitivity to interaural coherence in the auditory source width judgments of older hearing-impaired individuals, indicating that alternate acoustic measurements in the design of spaces for the elderly may be necessary. PMID:27213028

  20. Anatomical limits on interaural time differences: an ecological perspective

    PubMed Central

    Hartmann, William M.; Macaulay, Eric J.

    2013-01-01

    Human listeners, and other animals too, use interaural time differences (ITD) to localize sounds. If the sounds are pure tones, a simple frequency factor relates the ITD to the interaural phase difference (IPD), for which there are known iso-IPD boundaries, 90°, 180°… defining regions of spatial perception. In this article, iso-IPD boundaries for humans are translated into azimuths using a spherical head model (SHM), and the calculations are checked by free-field measurements. The translated boundaries provide quantitative tests of an ecological interpretation for the dramatic onset of ITD insensitivity at high frequencies. According to this interpretation, the insensitivity serves as a defense against misinformation and can be attributed to limits on binaural processing in the brainstem. Calculations show that the ecological explanation passes the tests only if the binaural brainstem properties evolved or developed consistent with heads that are 50% smaller than current adult heads. Measurements on more realistic head shapes relax that requirement only slightly. The problem posed by the discrepancy between the current head size and a smaller, ideal head size was apparently solved by the evolution or development of central processes that discount large IPDs in favor of interaural level differences. The latter become more important with increasing head size. PMID:24592209

  1. The sensitivity of hearing-impaired adults to acoustic attributes in simulated rooms.

    PubMed

    Whitmer, William M; McShefferty, David; Akeroyd, Michael A

    2013-06-02

    In previous studies we have shown that older hearing-impaired individuals are relatively insensitive to changes in the apparent width of broadband noises when those width changes were based on differences in interaural coherence [W. Whitmer, B. Seeber and M. Akeroyd, J. Acoust. Soc. Am. 132, 369-379 (2012)]. This insensitivity has been linked to senescent difficulties in resolving binaural fine-structure differences. It is therefore possible that interaural coherence, despite its widespread use, may not be the best acoustic surrogate of spatial perception for the aged and impaired. To test this, we simulated the room impulse responses for various acoustic scenarios with differing coherence and lateral (energy) fraction attributes using room modelling software (ODEON). Bilaterally impaired adult participants were asked to sketch the perceived size of speech tokens and musical excerpts that were convolved with these impulse responses and presented to them in a sound-dampened enclosure through a 24-loudspeaker array. Participants' binaural acuity was also measured using an interaural phase discrimination task. Corroborating our previous findings, the results showed less sensitivity to interaural coherence in the auditory source width judgments of older hearing-impaired individuals, indicating that alternate acoustic measurements in the design of spaces for the elderly may be necessary.

  2. Development of the sound localization cues in cats

    NASA Astrophysics Data System (ADS)

    Tollin, Daniel J.

    2004-05-01

    Cats are a common model for developmental studies of the psychophysical and physiological mechanisms of sound localization. Yet, there are few studies on the development of the acoustical cues to location in cats. The magnitude of the three main cues, interaural differences in time (ITDs) and level (ILDs), and monaural spectral shape cues, vary with location in adults. However, the increasing interaural distance associated with a growing head and pinnae during development will result in cues that change continuously until maturation is complete. Here, we report measurements, in cats aged 1 week to adulthood, of the physical dimensions of the head and pinnae and the localization cues, computed from measurements of directional transfer functions. At 1 week, ILD depended little on azimuth for frequencies <6-7 kHz, maximum ITD was 175 μs, and for sources varying in elevation, a prominent spectral notch was located at higher frequencies than in the older cats. As cats develop, the spectral cues and the frequencies at which ILDs become substantial (>10 dB) shift to lower frequencies, and the maximum ITD increases to nearly 370 μs. Changes in the cues are correlated with the increasing size of the head and pinnae. [Work supported by NIDCD DC05122.

  3. Hearing in three dimensions: Sound localization

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Kistler, Doris J.

    1990-01-01

    The ability to localize a source of sound in space is a fundamental component of the three dimensional character of the sound of audio. For over a century scientists have been trying to understand the physical and psychological processes and physiological mechanisms that subserve sound localization. This research has shown that important information about sound source position is provided by interaural differences in time of arrival, interaural differences in intensity and direction-dependent filtering provided by the pinnae. Progress has been slow, primarily because experiments on localization are technically demanding. Control of stimulus parameters and quantification of the subjective experience are quite difficult problems. Recent advances, such as the ability to simulate a three dimensional sound field over headphones, seem to offer potential for rapid progress. Research using the new techniques has already produced new information. It now seems that interaural time differences are a much more salient and dominant localization cue than previously believed.

  4. Assessing the Role of Place and Timing Cues in Coding Frequency and Amplitude Modulation as a Function of Age.

    PubMed

    Whiteford, Kelly L; Kreft, Heather A; Oxenham, Andrew J

    2017-08-01

    Natural sounds can be characterized by their fluctuations in amplitude and frequency. Ageing may affect sensitivity to some forms of fluctuations more than others. The present study used individual differences across a wide age range (20-79 years) to test the hypothesis that slow-rate, low-carrier frequency modulation (FM) is coded by phase-locked auditory-nerve responses to temporal fine structure (TFS), whereas fast-rate FM is coded via rate-place (tonotopic) cues, based on amplitude modulation (AM) of the temporal envelope after cochlear filtering. Using a low (500 Hz) carrier frequency, diotic FM and AM detection thresholds were measured at slow (1 Hz) and fast (20 Hz) rates in 85 listeners. Frequency selectivity and TFS coding were assessed using forward masking patterns and interaural phase disparity tasks (slow dichotic FM), respectively. Comparable interaural level disparity tasks (slow and fast dichotic AM and fast dichotic FM) were measured to control for effects of binaural processing not specifically related to TFS coding. Thresholds in FM and AM tasks were correlated, even across tasks thought to use separate peripheral codes. Age was correlated with slow and fast FM thresholds in both diotic and dichotic conditions. The relationship between age and AM thresholds was generally not significant. Once accounting for AM sensitivity, only diotic slow-rate FM thresholds remained significantly correlated with age. Overall, results indicate stronger effects of age on FM than AM. However, because of similar effects for both slow and fast FM when not accounting for AM sensitivity, the effects cannot be unambiguously ascribed to TFS coding.

  5. Binaural sluggishness in the perception of tone sequences and speech in noise.

    PubMed

    Culling, J F; Colburn, H S

    2000-01-01

    The binaural system is well-known for its sluggish response to changes in the interaural parameters to which it is sensitive. Theories of binaural unmasking have suggested that detection of signals in noise is mediated by detection of differences in interaural correlation. If these theories are correct, improvements in the intelligibility of speech in favorable binaural conditions is most likely mediated by spectro-temporal variations in interaural correlation of the stimulus which mirror the spectro-temporal amplitude modulations of the speech. However, binaural sluggishness should limit the temporal resolution of the representation of speech recovered by this means. The present study tested this prediction in two ways. First, listeners' masked discrimination thresholds for ascending vs descending pure-tone arpeggios were measured as a function of rate of frequency change in the NoSo and NoSpi binaural configurations. Three-tone arpeggios were presented repeatedly and continuously for 1.6 s, masked by a 1.6-s burst of noise. In a two-interval task, listeners determined the interval in which the arpeggios were ascending. The results showed a binaural advantage of 12-14 dB for NoSpi at 3.3 arpeggios per s (arp/s), which reduced to 3-5 dB at 10.4 arp/s. This outcome confirmed that the discrimination of spectro-temporal patterns in noise is susceptible to the effects of binaural sluggishness. Second, listeners' masked speech-reception thresholds were measured in speech-shaped noise using speech which was 1, 1.5, and 2 times the original articulation rate. The articulation rate was increased using a phase-vocoder technique which increased all the modulation frequencies in the speech without altering its pitch. Speech-reception thresholds were, on average, 5.2 dB lower for the NoSpi than for the NoSo configuration, at the original articulation rate. This binaural masking release was reduced to 2.8 dB when the articulation rate was doubled, but the most notable effect was a 6-8 dB increase in thresholds with articulation rate for both configurations. These results suggest that higher modulation frequencies in masked signals cannot be temporally resolved by the binaural system, but that the useful modulation frequencies in speech are sufficiently low (<5 Hz) that they are invulnerable to the effects of binaural sluggishness, even at elevated articulation rates.

  6. Electrophysiological and psychophysical asymmetries in sensitivity to interaural correlation gaps and implications for binaural integration time.

    PubMed

    Lüddemann, Helge; Kollmeier, Birger; Riedel, Helmut

    2016-02-01

    Brief deviations of interaural correlation (IAC) can provide valuable cues for detection, segregation and localization of acoustic signals. This study investigated the processing of such "binaural gaps" in continuously running noise (100-2000 Hz), in comparison to silent "monaural gaps", by measuring late auditory evoked potentials (LAEPs) and perceptual thresholds with novel, iteratively optimized stimuli. Mean perceptual binaural gap duration thresholds exhibited a major asymmetry: they were substantially shorter for uncorrelated gaps in correlated and anticorrelated reference noise (1.75 ms and 4.1 ms) than for correlated and anticorrelated gaps in uncorrelated reference noise (26.5 ms and 39.0 ms). The thresholds also showed a minor asymmetry: they were shorter in the positive than in the negative IAC range. The mean behavioral threshold for monaural gaps was 5.5 ms. For all five gap types, the amplitude of LAEP components N1 and P2 increased linearly with the logarithm of gap duration. While perceptual and electrophysiological thresholds matched for monaural gaps, LAEP thresholds were about twice as long as perceptual thresholds for uncorrelated gaps, but half as long for correlated and anticorrelated gaps. Nevertheless, LAEP thresholds showed the same asymmetries as perceptual thresholds. For gap durations below 30 ms, LAEPs were dominated by the processing of the leading edge of a gap. For longer gap durations, in contrast, both the leading and the lagging edge of a gap contributed to the evoked response. Formulae for the equivalent rectangular duration (ERD) of the binaural system's temporal window were derived for three common window shapes. The psychophysical ERD was 68 ms for diotic and about 40 ms for anti- and uncorrelated noise. After a nonlinear Z-transform of the stimulus IAC prior to temporal integration, ERDs were about 10 ms for reference correlations of ±1 and 80 ms for uncorrelated reference. Hence, a physiologically motivated peripheral nonlinearity changed the rank order of ERDs across experimental conditions in a plausible manner. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Interaural Level Difference Dependent Gain Control and Synaptic Scaling Underlying Binaural Computation

    PubMed Central

    Xiong, Xiaorui R.; Liang, Feixue; Li, Haifu; Mesik, Lukas; Zhang, Ke K.; Polley, Daniel B.; Tao, Huizhong W.; Xiao, Zhongju; Zhang, Li I.

    2013-01-01

    Binaural integration in the central nucleus of inferior colliculus (ICC) plays a critical role in sound localization. However, its arithmetic nature and underlying synaptic mechanisms remain unclear. Here, we showed in mouse ICC neurons that the contralateral dominance is created by a “push-pull”-like mechanism, with contralaterally dominant excitation and more bilaterally balanced inhibition. Importantly, binaural spiking response is generated apparently from an ipsilaterally-mediated scaling of contralateral response, leaving frequency tuning unchanged. This scaling effect is attributed to a divisive attenuation of contralaterally-evoked synaptic excitation onto ICC neurons with their inhibition largely unaffected. Thus, a gain control mediates the linear transformation from monaural to binaural spike responses. The gain value is modulated by interaural level difference (ILD) primarily through scaling excitation to different levels. The ILD-dependent synaptic scaling and gain adjustment allow ICC neurons to dynamically encode interaural sound localization cues while maintaining an invariant representation of other independent sound attributes. PMID:23972599

  8. Perception of Binaural Cues Develops in Children Who Are Deaf through Bilateral Cochlear Implantation

    PubMed Central

    Gordon, Karen A.; Deighton, Michael R.; Abbasalipour, Parvaneh; Papsin, Blake C.

    2014-01-01

    There are significant challenges to restoring binaural hearing to children who have been deaf from an early age. The uncoordinated and poor temporal information available from cochlear implants distorts perception of interaural timing differences normally important for sound localization and listening in noise. Moreover, binaural development can be compromised by bilateral and unilateral auditory deprivation. Here, we studied perception of both interaural level and timing differences in 79 children/adolescents using bilateral cochlear implants and 16 peers with normal hearing. They were asked on which side of their head they heard unilaterally or bilaterally presented click- or electrical pulse- trains. Interaural level cues were identified by most participants including adolescents with long periods of unilateral cochlear implant use and little bilateral implant experience. Interaural timing cues were not detected by new bilateral adolescent users, consistent with previous evidence. Evidence of binaural timing detection was, for the first time, found in children who had much longer implant experience but it was marked by poorer than normal sensitivity and abnormally strong dependence on current level differences between implants. In addition, children with prior unilateral implant use showed a higher proportion of responses to their first implanted sides than children implanted simultaneously. These data indicate that there are functional repercussions of developing binaural hearing through bilateral cochlear implants, particularly when provided sequentially; nonetheless, children have an opportunity to use these devices to hear better in noise and gain spatial hearing. PMID:25531107

  9. A Binaural CI Research Platform for Oticon Medical SP/XP Implants Enabling ITD/ILD and Variable Rate Processing

    PubMed Central

    Adiloğlu, K.; Herzke, T.

    2015-01-01

    We present the first portable, binaural, real-time research platform compatible with Oticon Medical SP and XP generation cochlear implants. The platform consists of (a) a pair of behind-the-ear devices, each containing front and rear calibrated microphones, (b) a four-channel USB analog-to-digital converter, (c) real-time PC-based sound processing software called the Master Hearing Aid, and (d) USB-connected hardware and output coils capable of driving two implants simultaneously. The platform is capable of processing signals from the four microphones simultaneously and producing synchronized binaural cochlear implant outputs that drive two (bilaterally implanted) SP or XP implants. Both audio signal preprocessing algorithms (such as binaural beamforming) and novel binaural stimulation strategies (within the implant limitations) can be programmed by researchers. When the whole research platform is combined with Oticon Medical SP implants, interaural electrode timing can be controlled on individual electrodes to within ±1 µs and interaural electrode energy differences can be controlled to within ±2%. Hence, this new platform is particularly well suited to performing experiments related to interaural time differences in combination with interaural level differences in real-time. The platform also supports instantaneously variable stimulation rates and thereby enables investigations such as the effect of changing the stimulation rate on pitch perception. Because the processing can be changed on the fly, researchers can use this platform to study perceptual changes resulting from different processing strategies acutely. PMID:26721923

  10. A Binaural CI Research Platform for Oticon Medical SP/XP Implants Enabling ITD/ILD and Variable Rate Processing.

    PubMed

    Backus, B; Adiloğlu, K; Herzke, T

    2015-12-30

    We present the first portable, binaural, real-time research platform compatible with Oticon Medical SP and XP generation cochlear implants. The platform consists of (a) a pair of behind-the-ear devices, each containing front and rear calibrated microphones, (b) a four-channel USB analog-to-digital converter, (c) real-time PC-based sound processing software called the Master Hearing Aid, and (d) USB-connected hardware and output coils capable of driving two implants simultaneously. The platform is capable of processing signals from the four microphones simultaneously and producing synchronized binaural cochlear implant outputs that drive two (bilaterally implanted) SP or XP implants. Both audio signal preprocessing algorithms (such as binaural beamforming) and novel binaural stimulation strategies (within the implant limitations) can be programmed by researchers. When the whole research platform is combined with Oticon Medical SP implants, interaural electrode timing can be controlled on individual electrodes to within ±1 µs and interaural electrode energy differences can be controlled to within ±2%. Hence, this new platform is particularly well suited to performing experiments related to interaural time differences in combination with interaural level differences in real-time. The platform also supports instantaneously variable stimulation rates and thereby enables investigations such as the effect of changing the stimulation rate on pitch perception. Because the processing can be changed on the fly, researchers can use this platform to study perceptual changes resulting from different processing strategies acutely. © The Author(s) 2015.

  11. Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.; Cohen, Bernard; Raphan, Theodore; Berthoz, Alain; Clement, Gilles

    2005-01-01

    On Earth, eye velocity of horizontal optokinetic nystagmus (OKN) orients to gravito-inertial acceleration (GIA), the sum of linear accelerations acting on the head and body. We determined whether adaptation to micro-gravity altered this orientation and whether ocular pursuit exhibited similar properties. Eye movements of four astronauts were recorded with three-dimensional video-oculography. Optokinetic stimuli were stripes moving horizontally, vertically, and obliquely at 30 degrees/s. Ocular pursuit was produced by a spot moving horizontally or vertically at 20 degrees/s. Subjects were either stationary or were centrifuged during OKN with 1 or 0.5 g of interaural or dorsoventral centripetal linear acceleration. Average eye position during OKN (the beating field) moved into the quick-phase direction by 10 degrees during lateral and upward field movement in all conditions. The beating field did not shift up during downward OKN on Earth, but there was a strong upward movement of the beating field (9 degrees) during downward OKN in the absence of gravity; this likely represents an adaptation to the lack of a vertical 1-g bias in-flight. The horizontal OKN velocity axis tilted 9 degrees in the roll plane toward the GIA during interaural centrifugation, both on Earth and in space. During oblique OKN, the velocity vector tilted towards the GIA in the roll plane when there was a disparity between the direction of stripe motion and the GIA, but not when the two were aligned. In contrast, dorsoventral acceleration tilted the horizontal OKN velocity vector 6 degrees in pitch away from the GIA. Roll tilts of the horizontal OKN velocity vector toward the GIA during interaural centrifugation are consistent with the orientation properties of velocity storage, but pitch tilts away from the GIA when centrifuged while supine are not. We speculate that visual suppression during OKN may have caused the velocity vector to tilt away from the GIA during dorsoventral centrifugation. Vertical OKN and ocular pursuit did not exhibit orientation toward the GIA in any condition. Static full-body roll tilts and centrifugation generating an equivalent interaural acceleration produced the same tilts in the horizontal OKN velocity before and after flight. Thus, the magnitude of tilt in OKN velocity was dependent on the magnitude of interaural linear acceleration, rather than the tilt of the GIA with regard to the head. These results favor a 'filter' model of spatial orientation in which orienting eye movements are proportional to the magnitude of low frequency interaural linear acceleration, rather than models that postulate an internal representation of gravity as the basis for spatial orientation.

  12. Binaural beats at high frequencies.

    PubMed

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  13. Using Evoked Potentials to Match Interaural Electrode Pairs with Bilateral Cochlear Implants

    PubMed Central

    Delgutte, Bertrand

    2007-01-01

    Bilateral cochlear implantation seeks to restore the advantages of binaural hearing to the profoundly deaf by providing binaural cues normally important for accurate sound localization and speech reception in noise. Psychophysical observations suggest that a key issue for the implementation of a successful binaural prosthesis is the ability to match the cochlear positions of stimulation channels in each ear. We used a cat model of bilateral cochlear implants with eight-electrode arrays implanted in each cochlea to develop and test a noninvasive method based on evoked potentials for matching interaural electrodes. The arrays allowed the cochlear location of stimulation to be independently varied in each ear. The binaural interaction component (BIC) of the electrically evoked auditory brainstem response (EABR) was used as an assay of binaural processing. BIC amplitude peaked for interaural electrode pairs at the same relative cochlear position and dropped with increasing cochlear separation in either direction. To test the hypothesis that BIC amplitude peaks when electrodes from the two sides activate maximally overlapping neural populations, we measured multiunit neural activity along the tonotopic gradient of the inferior colliculus (IC) with 16-channel recording probes and determined the spatial pattern of IC activation for each stimulating electrode. We found that the interaural electrode pairings that produced the best aligned IC activation patterns were also those that yielded maximum BIC amplitude. These results suggest that EABR measurements may provide a method for assigning frequency–channel mappings in bilateral implant recipients, such as pediatric patients, for which psychophysical measures of pitch ranking or binaural fusion are unavailable. PMID:17225976

  14. Using evoked potentials to match interaural electrode pairs with bilateral cochlear implants.

    PubMed

    Smith, Zachary M; Delgutte, Bertrand

    2007-03-01

    Bilateral cochlear implantation seeks to restore the advantages of binaural hearing to the profoundly deaf by providing binaural cues normally important for accurate sound localization and speech reception in noise. Psychophysical observations suggest that a key issue for the implementation of a successful binaural prosthesis is the ability to match the cochlear positions of stimulation channels in each ear. We used a cat model of bilateral cochlear implants with eight-electrode arrays implanted in each cochlea to develop and test a noninvasive method based on evoked potentials for matching interaural electrodes. The arrays allowed the cochlear location of stimulation to be independently varied in each ear. The binaural interaction component (BIC) of the electrically evoked auditory brainstem response (EABR) was used as an assay of binaural processing. BIC amplitude peaked for interaural electrode pairs at the same relative cochlear position and dropped with increasing cochlear separation in either direction. To test the hypothesis that BIC amplitude peaks when electrodes from the two sides activate maximally overlapping neural populations, we measured multiunit neural activity along the tonotopic gradient of the inferior colliculus (IC) with 16-channel recording probes and determined the spatial pattern of IC activation for each stimulating electrode. We found that the interaural electrode pairings that produced the best aligned IC activation patterns were also those that yielded maximum BIC amplitude. These results suggest that EABR measurements may provide a method for assigning frequency-channel mappings in bilateral implant recipients, such as pediatric patients, for which psychophysical measures of pitch ranking or binaural fusion are unavailable.

  15. Observer weighting strategies in interaural time-difference discrimination and monaural level discrimination for a multi-tone complex

    NASA Astrophysics Data System (ADS)

    Dye, Raymond H.; Stellmack, Mark A.; Jurcin, Noah F.

    2005-05-01

    Two experiments measured listeners' abilities to weight information from different components in a complex of 553, 753, and 953 Hz. The goal was to determine whether or not the ability to adjust perceptual weights generalized across tasks. Weights were measured by binary logistic regression between stimulus values that were sampled from Gaussian distributions and listeners' responses. The first task was interaural time discrimination in which listeners judged the laterality of the target component. The second task was monaural level discrimination in which listeners indicated whether the level of the target component decreased or increased across two intervals. For both experiments, each of the three components served as the target. Ten listeners participated in both experiments. The results showed that those individuals who adjusted perceptual weights in the interaural time experiment could also do so in the monaural level discrimination task. The fact that the same individuals appeared to be analytic in both tasks is an indication that the weights measure the ability to attend to a particular region of the spectrum while ignoring other spectral regions. .

  16. Lateralization of the Huggins pitch

    NASA Astrophysics Data System (ADS)

    Zhang, Peter Xinya; Hartmann, William M.

    2004-05-01

    The lateralization of the Huggins pitch (HP) was measured using a direct estimation method. The background noise was initially N0 or Nπ, and then the laterality of the entire stimulus was varied with a frequency-independent interaural delay, ranging from -1 to +1 ms. Two versions of the HP boundary region were used, stepped phase and linear phase. When presented in isolation, without the broadband background, the stepped boundary can be lateralized on its own but the linear boundary cannot. Nevertheless, the lateralizations of both forms of HP were found to be almost identical functions both of the interaural delay and of the boundary frequency over a two-octave range. In a third experiment, the same listeners lateralized sine tones in quiet as a function of interaural delay. Good agreement was found between lateralizations of the HP and of the corresponding sine tones. The lateralization judgments depended on the boundary frequency according to the expected hyperbolic law except when the frequency-independent delay was zero. For the latter case, the dependence on boundary frequency was much slower than hyperbolic. [Work supported by the NIDCD grant DC 00181.

  17. Localization of sound in rooms. V. Binaural coherence and human sensitivity to interaural time differences in noise

    PubMed Central

    Rakerd, Brad; Hartmann, William M.

    2010-01-01

    Binaural recordings of noise in rooms were used to determine the relationship between binaural coherence and the effectiveness of the interaural time difference (ITD) as a cue for human sound localization. Experiments showed a strong, monotonic relationship between the coherence and a listener’s ability to discriminate values of ITD. The relationship was found to be independent of other, widely varying acoustical properties of the rooms. However, the relationship varied dramatically with noise band center frequency. The ability to discriminate small ITD changes was greatest for a mid-frequency band. To achieve sensitivity comparable to mid-band, the binaural coherence had to be much larger at high frequency, where waveform ITD cues are imperceptible, and also at low frequency, where the binaural coherence in a room is necessarily large. Rivalry experiments with opposing interaural level differences (ILDs) found that the trading ratio between ITD and ILD increasingly favored the ILD as coherence decreased, suggesting that the perceptual weight of the ITD is decreased by increased reflections in rooms. PMID:21110600

  18. Speech-on-speech masking in a front-back dimension and analysis of binaural parameters in rooms using MLS methods

    NASA Astrophysics Data System (ADS)

    Aaronson, Neil L.

    This dissertation deals with questions important to the problem of human sound source localization in rooms, starting with perceptual studies and moving on to physical measurements made in rooms. In Chapter 1, a perceptual study is performed relevant to a specific phenomenon the effect of speech reflections occurring in the front-back dimension and the ability of humans to segregate that from unreflected speech. Distracters were presented from the same source as the target speech, a loudspeaker directly in front of the listener, and also from a loudspeaker directly behind the listener, delayed relative to the front loudspeaker. Steps were taken to minimize the contributions of binaural difference cues. For all delays within +/-32 ms, a release from informational masking of about 2 dB occurred. This suggested that human listeners are able to segregate speech sources based on spatial cues, even with minimal binaural cues. In moving on to physical measurements in rooms, a method was sought for simultaneous measurement of room characteristics such as impulse response (IR) and reverberation time (RT60), and binaural parameters such as interaural time difference (ITD), interaural level difference (ILD), and the interaural cross-correlation function and coherence. Chapter 2 involves investigations into the usefulness of maximum length sequences (MLS) for these purposes. Comparisons to random telegraph noise (RTN) show that MLS performs better in the measurement of stationary and room transfer functions, IR, and RT60 by an order of magnitude in RMS percent error, even after Wiener filtering and exponential time-domain filtering have improved the accuracy of RTN measurements. Measurements were taken in real rooms in an effort to understand how the reverberant characteristics of rooms affect binaural parameters important to sound source localization. Chapter 3 deals with interaural coherence, a parameter important for localization and perception of auditory source width. MLS were used to measure waveform and envelope coherences in two rooms for various source distances and 0° azimuth through a head-and-torso simulator (KEMAR). A relationship is sought that relates these two types of coherence, since envelope coherence, while an important quantity, is generally less accessible than waveform coherence. A power law relationship is shown to exist between the two that works well within and across bands, for any source distance, and is robust to reverberant conditions of the room. Measurements of ITD, ILD, and coherence in rooms give insight into the way rooms affect these parameters, and in turn, the ability of listeners to localize sounds in rooms. Such measurements, along with room properties, are made and analyzed using MLS methods in Chapter 4. It was found that the pinnae cause incoherence for sound sources incident between 30° and 90°. In human listeners, this does not seem to adversely affect performance in lateralization experiments. The cause of poor coherence in rooms was studied as part of Chapter 4 as well. It was found that rooms affect coherence by introducing variance into the ITD spectra within the bands in which it is measured. A mathematical model to predict the interaural coherence within a band given the standard deviation of the ITD spectrum and the center frequency of the band gives an exponential relationship. This is found to work well in predicting measured coherence given ITD spectrum variance. The pinnae seem to affect the ITD spectrum in a similar way at incident sound angles for which coherence is poor in an anechoic environment.

  19. The Effect of Microphone Placement on Interaural Level Differences and Sound Localization Across the Horizontal Plane in Bilateral Cochlear Implant Users.

    PubMed

    Jones, Heath G; Kan, Alan; Litovsky, Ruth Y

    2016-01-01

    This study examined the effect of microphone placement on the interaural level differences (ILDs) available to bilateral cochlear implant (BiCI) users, and the subsequent effects on horizontal-plane sound localization. Virtual acoustic stimuli for sound localization testing were created individually for eight BiCI users by making acoustic transfer function measurements for microphones placed in the ear (ITE), behind the ear (BTE), and on the shoulders (SHD). The ILDs across source locations were calculated for each placement to analyze their effect on sound localization performance. Sound localization was tested using a repeated-measures, within-participant design for the three microphone placements. The ITE microphone placement provided significantly larger ILDs compared to BTE and SHD placements, which correlated with overall localization errors. However, differences in localization errors across the microphone conditions were small. The BTE microphones worn by many BiCI users in everyday life do not capture the full range of acoustic ILDs available, and also reduce the change in cue magnitudes for sound sources across the horizontal plane. Acute testing with an ITE placement reduced sound localization errors along the horizontal plane compared to the other placements in some patients. Larger improvements may be observed if patients had more experience with the new ILD cues provided by an ITE placement.

  20. Preferred Compression Speed for Speech and Music and Its Relationship to Sensitivity to Temporal Fine Structure.

    PubMed

    Moore, Brian C J; Sęk, Aleksander

    2016-09-07

    Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008) suggested that reduced sensitivity to temporal fine structure (TFS) may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated hearing aid was fitted individually using the CAM2A method. On each trial, a given segment of speech or music was presented twice. One segment was processed with fast compression and the other with slow compression, and the order was balanced across trials. The subject indicated which segment was preferred and by how much. On average, slow compression was preferred over fast compression, more so for music, but there were distinct individual differences, which were highly correlated for speech and music. Sensitivity to TFS was assessed using the difference limen for frequency at 2000 Hz and by two measures of sensitivity to interaural phase at low frequencies. The results for the difference limens for frequency, but not the measures of sensitivity to interaural phase, supported the suggestion that preference for compression speed is affected by sensitivity to TFS. © The Author(s) 2016.

  1. Detection of Interaural Time Differences in the Alligator

    PubMed Central

    Carr, Catherine E.; Soares, Daphne; Smolders, Jean; Simon, Jonathan Z.

    2011-01-01

    The auditory systems of birds and mammals use timing information from each ear to detect interaural time difference (ITD). To determine whether the Jeffress-type algorithms that underlie sensitivity to ITD in birds are an evolutionarily stable strategy, we recorded from the auditory nuclei of crocodilians, who are the sister group to the birds. In alligators, precisely timed spikes in the first-order nucleus magnocellularis (NM) encode the timing of sounds, and NM neurons project to neurons in the nucleus laminaris (NL) that detect interaural time differences. In vivo recordings from NL neurons show that the arrival time of phase-locked spikes differs between the ipsilateral and contralateral inputs. When this disparity is nullified by their best ITD, the neurons respond maximally. Thus NL neurons act as coincidence detectors. A biologically detailed model of NL with alligator parameters discriminated ITDs up to 1 kHz. The range of best ITDs represented in NL was much larger than in birds, however, and extended from 0 to 1000 μs contralateral, with a median ITD of 450 μs. Thus, crocodilians and birds employ similar algorithms for ITD detection, although crocodilians have larger heads. PMID:19553438

  2. Diagnostic System Based on the Human AUDITORY-BRAIN Model for Measuring Environmental NOISE—AN Application to Railway Noise

    NASA Astrophysics Data System (ADS)

    SAKAI, H.; HOTEHAMA, T.; ANDO, Y.; PRODI, N.; POMPOLI, R.

    2002-02-01

    Measurements of railway noise were conducted by use of a diagnostic system of regional environmental noise. The system is based on the model of the human auditory-brain system. The model consists of the interplay of autocorrelators and an interaural crosscorrelator acting on the pressure signals arriving at the ear entrances, and takes into account the specialization of left and right human cerebral hemispheres. Different kinds of railway noise were measured through binaural microphones of a dummy head. To characterize the railway noise, physical factors, extracted from the autocorrelation functions (ACF) and interaural crosscorrelation function (IACF) of binaural signals, were used. The factors extracted from ACF were (1) energy represented at the origin of the delay, Φ (0), (2) effective duration of the envelope of the normalized ACF, τe, (3) the delay time of the first peak, τ1, and (4) its amplitude,ø1 . The factors extracted from IACF were (5) IACC, (6) interaural delay time at which the IACC is defined, τIACC, and (7) width of the IACF at the τIACC,WIACC . The factor Φ (0) can be represented as a geometrical mean of energies at both ears as listening level, LL.

  3. Intelligibility of speech in a virtual 3-D environment.

    PubMed

    MacDonald, Justin A; Balakrishnan, J D; Orosz, Michael D; Karplus, Walter J

    2002-01-01

    In a simulated air traffic control task, improvement in the detection of auditory warnings when using virtual 3-D audio depended on the spatial configuration of the sounds. Performance improved substantially when two of four sources were placed to the left and the remaining two were placed to the right of the participant. Surprisingly, little or no benefits were observed for configurations involving the elevation or transverse (front/back) dimensions of virtual space, suggesting that position on the interaural (left/right) axis is the crucial factor to consider in auditory display design. The relative importance of interaural spacing effects was corroborated in a second, free-field (real space) experiment. Two additional experiments showed that (a) positioning signals to the side of the listener is superior to placing them in front even when two sounds are presented in the same location, and (b) the optimal distance on the interaural axis varies with the amplitude of the sounds. These results are well predicted by the behavior of an ideal observer under the different display conditions. This suggests that guidelines for auditory display design that allow for effective perception of speech information can be developed from an analysis of the physical sound patterns.

  4. Tympanic-response transition in ICE: Dependence upon the interaural cavity's shape

    NASA Astrophysics Data System (ADS)

    van Hemmen, J. Leo

    More than half of the terrestrial vertebrates have internally coupled ears (ICE), where an interaural cavity of some shape acoustically couples the eardrums. Hence what the animal's auditory system perceives is not the outside stimulus but the superposition of outside and internal pressure on the two eardrums, resulting in so-called internal time and level difference, iTD and iLD, which are keys to sound localization. For a cylindrical shape, it is known that on the frequency axis two domains with appreciably increased iTD and iLD values occur, segregated by the eardrum's fundamental frequency. Here we analyze the case where, as in nature, two or more canals couple the eardrums so that, by opening one of the canals, the animal can switch from coupled to two independent ears. We analyze the iTD/iLD transition and its dependence upon the interaural cavity's size and shape. As compared to a single connection, the iTD performance is preserved to a large extent. Nonetheless, the price to pay for freedom of choice is a reduced frequency range with high-iTD plateau. Work done in collaboration with A.P. Vedurmudi; partially supported by BCCN-Munich.

  5. Spectrotemporal weighting of binaural cues: Effects of a diotic interferer on discrimination of dynamic interaural differences

    PubMed Central

    Bibee, Jacqueline M.; Stecker, G. Christopher

    2016-01-01

    Spatial judgments are often dominated by low-frequency binaural cues and onset cues when binaural cues vary across the spectrum and duration, respectively, of a brief sound. This study combined these dimensions to assess the spectrotemporal weighting of binaural information. Listeners discriminated target interaural time difference (ITD) and interaural level difference (ILD) carried by the onset, offset, or full duration of a 4-kHz Gabor click train with a 2-ms period in the presence or absence of a diotic 500-Hz interferer tone. ITD and ILD thresholds were significantly elevated by the interferer in all conditions and by a similar amount to previous reports for static cues. Binaural interference was dramatically greater for ITD targets lacking onset cues compared to onset and full-duration conditions. Binaural interference for ILD targets was similar across dynamic-cue conditions. These effects mirror the baseline discriminability of dynamic ITD and ILD cues [Stecker and Brown. (2010). J. Acoust. Soc. Am. 127, 3092–3103], consistent with stronger interference for less-robust/higher-variance cues. The results support the view that binaural cue integration occurs simultaneously across multiple variance-weighted dimensions, including time and frequency. PMID:27794286

  6. Sound localization in common vampire bats: Acuity and use of the binaural time cue by a small mammal

    PubMed Central

    Heffner, Rickye S.; Koay, Gimseong; Heffner, Henry E.

    2015-01-01

    Passive sound-localization acuity and the ability to use binaural time and intensity cues were determined for the common vampire bat (Desmodus rotundus). The bats were tested using a conditioned suppression/avoidance procedure in which they drank defibrinated blood from a spout in the presence of sounds from their right, but stopped drinking (i.e., broke contact with the spout) whenever a sound came from their left, thereby avoiding a mild shock. The mean minimum audible angle for three bats for a 100-ms noise burst was 13.1°—within the range of thresholds for other bats and near the mean for mammals. Common vampire bats readily localized pure tones of 20 kHz and higher, indicating they could use interaural intensity-differences. They could also localize pure tones of 5 kHz and lower, thereby demonstrating the use of interaural time-differences, despite their very small maximum interaural distance of 60 μs. A comparison of the use of locus cues among mammals suggests several implications for the evolution of sound localization and its underlying anatomical and physiological mechanisms. PMID:25618037

  7. Spectrotemporal weighting of binaural cues: Effects of a diotic interferer on discrimination of dynamic interaural differences.

    PubMed

    Bibee, Jacqueline M; Stecker, G Christopher

    2016-10-01

    Spatial judgments are often dominated by low-frequency binaural cues and onset cues when binaural cues vary across the spectrum and duration, respectively, of a brief sound. This study combined these dimensions to assess the spectrotemporal weighting of binaural information. Listeners discriminated target interaural time difference (ITD) and interaural level difference (ILD) carried by the onset, offset, or full duration of a 4-kHz Gabor click train with a 2-ms period in the presence or absence of a diotic 500-Hz interferer tone. ITD and ILD thresholds were significantly elevated by the interferer in all conditions and by a similar amount to previous reports for static cues. Binaural interference was dramatically greater for ITD targets lacking onset cues compared to onset and full-duration conditions. Binaural interference for ILD targets was similar across dynamic-cue conditions. These effects mirror the baseline discriminability of dynamic ITD and ILD cues [Stecker and Brown. (2010). J. Acoust. Soc. Am. 127, 3092-3103], consistent with stronger interference for less-robust/higher-variance cues. The results support the view that binaural cue integration occurs simultaneously across multiple variance-weighted dimensions, including time and frequency.

  8. Neural coding of sound envelope in reverberant environments.

    PubMed

    Slama, Michaël C C; Delgutte, Bertrand

    2015-03-11

    Speech reception depends critically on temporal modulations in the amplitude envelope of the speech signal. Reverberation encountered in everyday environments can substantially attenuate these modulations. To assess the effect of reverberation on the neural coding of amplitude envelope, we recorded from single units in the inferior colliculus (IC) of unanesthetized rabbit using sinusoidally amplitude modulated (AM) broadband noise stimuli presented in simulated anechoic and reverberant environments. Although reverberation degraded both rate and temporal coding of AM in IC neurons, in most neurons, the degradation in temporal coding was smaller than the AM attenuation in the stimulus. This compensation could largely be accounted for by the compressive shape of the modulation input-output function (MIOF), which describes the nonlinear transformation of modulation depth from acoustic stimuli into neural responses. Additionally, in a subset of neurons, the temporal coding of AM was better for reverberant stimuli than for anechoic stimuli having the same modulation depth at the ear. Using hybrid anechoic stimuli that selectively possess certain properties of reverberant sounds, we show that this reverberant advantage is not caused by envelope distortion, static interaural decorrelation, or spectral coloration. Overall, our results suggest that the auditory system may possess dual mechanisms that make the coding of amplitude envelope relatively robust in reverberation: one general mechanism operating for all stimuli with small modulation depths, and another mechanism dependent on very specific properties of reverberant stimuli, possibly the periodic fluctuations in interaural correlation at the modulation frequency. Copyright © 2015 the authors 0270-6474/15/354452-17$15.00/0.

  9. Threshold of the precedence effect in noise

    PubMed Central

    Freyman, Richard L.; Griffin, Amanda M.; Zurek, Patrick M.

    2014-01-01

    Three effects that show a temporal asymmetry in the influence of interaural cues were studied through the addition of masking noise: (1) The transient precedence effect—the perceptual dominance of a leading transient over a similar lagging transient; (2) the ongoing precedence effect—lead dominance with lead and lag components that extend in time; and (3) the onset capture effect—determination by an onset transient of the lateral position of an otherwise ambiguous extended trailing sound. These three effects were evoked with noise-burst stimuli and were compared in the presence of masking noise. Using a diotic noise masker, detection thresholds for stimuli with lead/lag interaural delays of 0/500 μs were compared to those with 500/0 μs delays. None of the three effects showed a masking difference between those conditions, suggesting that none of the effects is operative at masked threshold. A task requiring the discrimination between stimuli with 500/0 and 0/500 μs interaural delays was used to determine the threshold for each effect in noise. The results showed similar thresholds in noise (10–13 dB SL) for the transient and ongoing precedence effects, but a much higher threshold (33 dB SL) for onset capture of an ambiguous trailing sound. PMID:24815272

  10. Behavioral manifestations of audiometrically-defined "slight" or "hidden" hearing loss revealed by measures of binaural detection.

    PubMed

    Bernstein, Leslie R; Trahiotis, Constantine

    2016-11-01

    This study assessed whether audiometrically-defined "slight" or "hidden" hearing losses might be associated with degradations in binaural processing as measured in binaural detection experiments employing interaurally delayed signals and maskers. Thirty-one listeners participated, all having no greater than slight hearing losses (i.e., no thresholds greater than 25 dB HL). Across the 31 listeners and consistent with the findings of Bernstein and Trahiotis [(2015). J. Acoust. Soc. Am. 138, EL474-EL479] binaural detection thresholds at 500 Hz and 4 kHz increased with increasing magnitude of interaural delay, suggesting a loss of precision of coding with magnitude of interaural delay. Binaural detection thresholds were consistently found to be elevated for listeners whose absolute thresholds at 4 kHz exceeded 7.5 dB HL. No such elevations were observed in conditions having no binaural cues available to aid detection (i.e., "monaural" conditions). Partitioning and analyses of the data revealed that those elevated thresholds (1) were more attributable to hearing level than to age and (2) result from increased levels of internal noise. The data suggest that listeners whose high-frequency monaural hearing status would be classified audiometrically as being normal or "slight loss" may exhibit substantial and perceptually meaningful losses of binaural processing.

  11. Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity.

    PubMed

    Spitzer, M W; Semple, M N

    1998-12-01

    Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity. J. Neurophysiol. 80: 3062-3076, 1998. Previous studies demonstrated that tuning of inferior colliculus (IC) neurons to interaural phase disparity (IPD) is often profoundly influenced by temporal variation of IPD, which simulates the binaural cue produced by a moving sound source. To determine whether sensitivity to simulated motion arises in IC or at an earlier stage of binaural processing we compared responses in IC with those of two major IPD-sensitive neuronal classes in the superior olivary complex (SOC), neurons whose discharges were phase locked (PL) to tonal stimuli and those that were nonphase locked (NPL). Time-varying IPD stimuli consisted of binaural beats, generated by presenting tones of slightly different frequencies to the two ears, and interaural phase modulation (IPM), generated by presenting a pure tone to one ear and a phase modulated tone to the other. IC neurons and NPL-SOC neurons were more sharply tuned to time-varying than to static IPD, whereas PL-SOC neurons were essentially uninfluenced by the mode of stimulus presentation. Preferred IPD was generally similar in responses to static and time-varying IPD for all unit populations. A few IC neurons were highly influenced by the direction and rate of simulated motion, but the major effect for most IC neurons and all SOC neurons was a linear shift of preferred IPD at high rates-attributable to response latency. Most IC and NPL-SOC neurons were strongly influenced by IPM stimuli simulating motion through restricted ranges of azimuth; simulated motion through partially overlapping azimuthal ranges elicited discharge profiles that were highly discontiguous, indicating that the response associated with a particular IPD is dependent on preceding portions of the stimulus. In contrast, PL-SOC responses tracked instantaneous IPD throughout the trajectory of simulated motion, resulting in highly contiguous discharge profiles for overlapping stimuli. This finding indicates that responses of PL-SOC units to time-varying IPD reflect only instantaneous IPD with no additional influence of dynamic stimulus attributes. Thus the neuronal representation of auditory spatial information undergoes a major transformation as interaural delay is initially processed in the SOC and subsequently reprocessed in IC. The finding that motion sensitivity in IC emerges from motion-insensitive input suggests that information about change of position is crucial to spatial processing at higher levels of the auditory system.

  12. Neural coding of time-varying interaural time differences and time-varying amplitude in the inferior colliculus

    PubMed Central

    2017-01-01

    Binaural cues occurring in natural environments are frequently time varying, either from the motion of a sound source or through interactions between the cues produced by multiple sources. Yet, a broad understanding of how the auditory system processes dynamic binaural cues is still lacking. In the current study, we directly compared neural responses in the inferior colliculus (IC) of unanesthetized rabbits to broadband noise with time-varying interaural time differences (ITD) with responses to noise with sinusoidal amplitude modulation (SAM) over a wide range of modulation frequencies. On the basis of prior research, we hypothesized that the IC, one of the first stages to exhibit tuning of firing rate to modulation frequency, might use a common mechanism to encode time-varying information in general. Instead, we found weaker temporal coding for dynamic ITD compared with amplitude modulation and stronger effects of adaptation for amplitude modulation. The differences in temporal coding of dynamic ITD compared with SAM at the single-neuron level could be a neural correlate of “binaural sluggishness,” the inability to perceive fluctuations in time-varying binaural cues at high modulation frequencies, for which a physiological explanation has so far remained elusive. At ITD-variation frequencies of 64 Hz and above, where a temporal code was less effective, noise with a dynamic ITD could still be distinguished from noise with a constant ITD through differences in average firing rate in many neurons, suggesting a frequency-dependent tradeoff between rate and temporal coding of time-varying binaural information. NEW & NOTEWORTHY Humans use time-varying binaural cues to parse auditory scenes comprising multiple sound sources and reverberation. However, the neural mechanisms for doing so are poorly understood. Our results demonstrate a potential neural correlate for the reduced detectability of fluctuations in time-varying binaural information at high speeds, as occurs in reverberation. The results also suggest that the neural mechanisms for processing time-varying binaural and monaural cues are largely distinct. PMID:28381487

  13. Coincidence detection in the medial superior olive: mechanistic implications of an analysis of input spiking patterns

    PubMed Central

    Franken, Tom P.; Bremen, Peter; Joris, Philip X.

    2014-01-01

    Coincidence detection by binaural neurons in the medial superior olive underlies sensitivity to interaural time difference (ITD) and interaural correlation (ρ). It is unclear whether this process is akin to a counting of individual coinciding spikes, or rather to a correlation of membrane potential waveforms resulting from converging inputs from each side. We analyzed spike trains of axons of the cat trapezoid body (TB) and auditory nerve (AN) in a binaural coincidence scheme. ITD was studied by delaying “ipsi-” vs. “contralateral” inputs; ρ was studied by using responses to different noises. We varied the number of inputs; the monaural and binaural threshold and the coincidence window duration. We examined physiological plausibility of output “spike trains” by comparing their rate and tuning to ITD and ρ to those of binaural cells. We found that multiple inputs are required to obtain a plausible output spike rate. In contrast to previous suggestions, monaural threshold almost invariably needed to exceed binaural threshold. Elevation of the binaural threshold to values larger than 2 spikes caused a drastic decrease in rate for a short coincidence window. Longer coincidence windows allowed a lower number of inputs and higher binaural thresholds, but decreased the depth of modulation. Compared to AN fibers, TB fibers allowed higher output spike rates for a low number of inputs, but also generated more monaural coincidences. We conclude that, within the parameter space explored, the temporal patterns of monaural fibers require convergence of multiple inputs to achieve physiological binaural spike rates; that monaural coincidences have to be suppressed relative to binaural ones; and that the neuron has to be sensitive to single binaural coincidences of spikes, for a number of excitatory inputs per side of 10 or less. These findings suggest that the fundamental operation in the mammalian binaural circuit is coincidence counting of single binaural input spikes. PMID:24822037

  14. Tympanometric findings in superior semicircular canal dehiscence syndrome.

    PubMed

    Castellucci, A; Brandolini, C; Piras, G; Modugno, G C

    2013-04-01

    The diagnostic role of audio-impedancemetry in superior semicircular canal dehiscence (SSCD) disease is well known. In particular, since the first reports, the presence of evoked acoustic reflexes has represented a determining instrumental exhibit in differential diagnosis with other middle ear pathologies that are responsible for a mild-low frequencies air-bone gap (ABG). Even though high resolution computed tomography (HRCT) completed by parasagittal reformatted images still represents the diagnostic gold standard, several instrumental tests can support a suspect of labyrinthine capsule dehiscence when "suggestive" symptoms occur. Objective and subjective audiometry often represents the starting point of the diagnostic course aimed at investigating the cause responsible for the so-called "intra-labyrinthine conductive hearing loss". The purpose of this study is to evaluate the role of tympanometry, in particular of the inter-aural asymmetry ratio in peak compliance as a function of different mild-low frequencies ABG on the affected side, in the diagnostic work-up in patients with unilateral SSCD. The working hypothesis is that an increase in admittance of the "inner-middle ear" conduction system due to a "third mobile window" could be detected by tympanometry. A retrospective review of the clinical records of 45 patients with unilateral dehiscence selected from a pool of 140 subjects diagnosed with SSCD at our institution from 2003 to 2011 was performed. Values of ABG amplitude on the dehiscent side and tympanometric measurements of both ears were collected for each patient in the study group (n = 45). An asymmetry between tympanometric peak compliance of the involved side and that of the contralateral side was investigated by calculating the inter-aural difference and the asymmetry ratio of compliance at the eardrum. A statistically significant correlation (p = 0.015 by Fisher's test) between an asymmetry ratio ≥ 14% in favour of the pathologic ear and an ABG > 20 dB nHL on the same side was found. When "evocative" symptoms of SSCD associated with important ABG occur, the inter-aural difference in tympanometric peak compliance at the eardrum in favour of the "suspected" side could suggest an intra-labyrinthine origin for the asymmetry. Tympanometry would thus prove to be a useful instrument in clinical-instrumental diagnosis of SSCD in detection of cases associated with alterations of inner ear impedance.

  15. An Overview of the Major Phenomena of the Localization of Sound Sources by Normal-Hearing, Hearing-Impaired, and Aided Listeners

    PubMed Central

    2014-01-01

    Localizing a sound source requires the auditory system to determine its direction and its distance. In general, hearing-impaired listeners do less well in experiments measuring localization performance than normal-hearing listeners, and hearing aids often exacerbate matters. This article summarizes the major experimental effects in direction (and its underlying cues of interaural time differences and interaural level differences) and distance for normal-hearing, hearing-impaired, and aided listeners. Front/back errors and the importance of self-motion are noted. The influence of vision on the localization of real-world sounds is emphasized, such as through the ventriloquist effect or the intriguing link between spatial hearing and visual attention. PMID:25492094

  16. Maps of interaural delay in the owl's nucleus laminaris

    PubMed Central

    Shah, Sahil; McColgan, Thomas; Ashida, Go; Kuokkanen, Paula T.; Brill, Sandra; Kempter, Richard; Wagner, Hermann

    2015-01-01

    Axons from the nucleus magnocellularis form a presynaptic map of interaural time differences (ITDs) in the nucleus laminaris (NL). These inputs generate a field potential that varies systematically with recording position and can be used to measure the map of ITDs. In the barn owl, the representation of best ITD shifts with mediolateral position in NL, so as to form continuous, smoothly overlapping maps of ITD with iso-ITD contours that are not parallel to the NL border. Frontal space (0°) is, however, represented throughout and thus overrepresented with respect to the periphery. Measurements of presynaptic conduction delay, combined with a model of delay line conduction velocity, reveal that conduction delays can account for the mediolateral shifts in the map of ITD. PMID:26224776

  17. Effectiveness of focused source generation methods with consideration of interaural time and level difference.

    PubMed

    Zheng, Jianwen; Lu, Jing; Chen, Kai

    2013-07-01

    Several methods have been proposed for the generation of the focused source, usually a virtual monopole source positioned in between the loudspeaker array and the listener. The problem of pre-echoes of the common analytical methods has been noticed, and the most concise method to cope with this problem is the angular weight method. In this paper, the interaural time and level difference, which are well related to the localization cues of human auditory systems, will be used to further investigate the effectiveness of the focused source generation methods. It is demonstrated that the combination of angular weight method and the numerical pressure matching method has comparatively better performance in a given reconstructed area.

  18. Linear summation in the barn owl's brainstem underlies responses to interaural time differences.

    PubMed

    Kuokkanen, Paula T; Ashida, Go; Carr, Catherine E; Wagner, Hermann; Kempter, Richard

    2013-07-01

    The neurophonic potential is a synchronized frequency-following extracellular field potential that can be recorded in the nucleus laminaris (NL) in the brainstem of the barn owl. Putative generators of the neurophonic are the afferent axons from the nucleus magnocellularis, synapses onto NL neurons, and spikes of NL neurons. The outputs of NL, i.e., action potentials of NL neurons, are only weakly represented in the neurophonic. Instead, the inputs to NL, i.e., afferent axons and their synaptic potentials, are the predominant origin of the neurophonic (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274-2290, 2010). Thus in NL the monaural inputs from the two brain sides converge and create a binaural neurophonic. If these monaural inputs contribute independently to the extracellular field, the response to binaural stimulation can be predicted from the sum of the responses to ipsi- and contralateral stimulation. We found that a linear summation model explains the dependence of the responses on interaural time difference as measured experimentally with binaural stimulation. The fit between model predictions and data was excellent, even without taking into account the nonlinear responses of NL coincidence detector neurons, although their firing rate and synchrony strongly depend on the interaural time difference. These results are consistent with the view that the afferent axons and their synaptic potentials in NL are the primary origin of the neurophonic.

  19. Evaluation of a method for enhancing interaural level differences at low frequencies.

    PubMed

    Moore, Brian C J; Kolarik, Andrew; Stone, Michael A; Lee, Young-Woo

    2016-10-01

    A method (called binaural enhancement) for enhancing interaural level differences at low frequencies, based on estimates of interaural time differences, was developed and evaluated. Five conditions were compared, all using simulated hearing-aid processing: (1) Linear amplification with frequency-response shaping; (2) binaural enhancement combined with linear amplification and frequency-response shaping; (3) slow-acting four-channel amplitude compression with independent compression at the two ears (AGC4CH); (4) binaural enhancement combined with four-channel compression (BE-AGC4CH); and (5) four-channel compression but with the compression gains synchronized across ears. Ten hearing-impaired listeners were tested, and gains and compression ratios for each listener were set to match targets prescribed by the CAM2 fitting method. Stimuli were presented via headphones, using virtualization methods to simulate listening in a moderately reverberant room. The intelligibility of speech at ±60° azimuth in the presence of competing speech on the opposite side of the head at ±60° azimuth was not affected by the binaural enhancement processing. Sound localization was significantly better for condition BE-AGC4CH than for condition AGC4CH for a sentence, but not for broadband noise, lowpass noise, or lowpass amplitude-modulated noise. The results suggest that the binaural enhancement processing can improve localization for sounds with distinct envelope fluctuations.

  20. Modelling of human low frequency sound localization acuity demonstrates dominance of spatial variation of interaural time difference and suggests uniform just-noticeable differences in interaural time difference.

    PubMed

    Smith, Rosanna C G; Price, Stephen R

    2014-01-01

    Sound source localization is critical to animal survival and for identification of auditory objects. We investigated the acuity with which humans localize low frequency, pure tone sounds using timing differences between the ears. These small differences in time, known as interaural time differences or ITDs, are identified in a manner that allows localization acuity of around 1° at the midline. Acuity, a relative measure of localization ability, displays a non-linear variation as sound sources are positioned more laterally. All species studied localize sounds best at the midline and progressively worse as the sound is located out towards the side. To understand why sound localization displays this variation with azimuthal angle, we took a first-principles, systemic, analytical approach to model localization acuity. We calculated how ITDs vary with sound frequency, head size and sound source location for humans. This allowed us to model ITD variation for previously published experimental acuity data and determine the distribution of just-noticeable differences in ITD. Our results suggest that the best-fit model is one whereby just-noticeable differences in ITDs are identified with uniform or close to uniform sensitivity across the physiological range. We discuss how our results have several implications for neural ITD processing in different species as well as development of the auditory system.

  1. Binaural sensitivity in children who use bilateral cochlear implants.

    PubMed

    Ehlers, Erica; Goupell, Matthew J; Zheng, Yi; Godar, Shelly P; Litovsky, Ruth Y

    2017-06-01

    Children who are deaf and receive bilateral cochlear implants (BiCIs) perform better on spatial hearing tasks using bilateral rather than unilateral inputs; however, they underperform relative to normal-hearing (NH) peers. This gap in performance is multi-factorial, including the inability of speech processors to reliably deliver binaural cues. Although much is known regarding binaural sensitivity of adults with BiCIs, less is known about how the development of binaural sensitivity in children with BiCIs compared to NH children. Sixteen children (ages 9-17 years) were tested using synchronized research processors. Interaural time differences and interaural level differences (ITDs and ILDs, respectively) were presented to pairs of pitch-matched electrodes. Stimuli were 300-ms, 100-pulses-per-second, constant-amplitude pulse trains. In the first and second experiments, discrimination of interaural cues (either ITDs or ILDs) was measured using a two-interval left/right task. In the third experiment, subjects reported the perceived intracranial position of ITDs and ILDs in a lateralization task. All children demonstrated sensitivity to ILDs, possibly due to monaural level cues. Children who were born deaf had weak or absent sensitivity to ITDs; in contrast, ITD sensitivity was noted in children with previous exposure to acoustic hearing. Therefore, factors such as auditory deprivation, in particular, lack of early exposure to consistent timing differences between the ears, may delay the maturation of binaural circuits and cause insensitivity to binaural differences.

  2. Emphasis of spatial cues in the temporal fine structure during the rising segments of amplitude-modulated sounds II: single-neuron recordings

    PubMed Central

    Marquardt, Torsten; Stange, Annette; Pecka, Michael; Grothe, Benedikt; McAlpine, David

    2014-01-01

    Recently, with the use of an amplitude-modulated binaural beat (AMBB), in which sound amplitude and interaural-phase difference (IPD) were modulated with a fixed mutual relationship (Dietz et al. 2013b), we demonstrated that the human auditory system uses interaural timing differences in the temporal fine structure of modulated sounds only during the rising portion of each modulation cycle. However, the degree to which peripheral or central mechanisms contribute to the observed strong dominance of the rising slope remains to be determined. Here, by recording responses of single neurons in the medial superior olive (MSO) of anesthetized gerbils and in the inferior colliculus (IC) of anesthetized guinea pigs to AMBBs, we report a correlation between the position within the amplitude-modulation (AM) cycle generating the maximum response rate and the position at which the instantaneous IPD dominates the total neural response. The IPD during the rising segment dominates the total response in 78% of MSO neurons and 69% of IC neurons, with responses of the remaining neurons predominantly coding the IPD around the modulation maximum. The observed diversity of dominance regions within the AM cycle, especially in the IC, and its comparison with the human behavioral data suggest that only the subpopulation of neurons with rising slope dominance codes the sound-source location in complex listening conditions. A comparison of two models to account for the data suggests that emphasis on IPDs during the rising slope of the AM cycle depends on adaptation processes occurring before binaural interaction. PMID:24554782

  3. Detection and localization of sounds: Virtual tones and virtual reality

    NASA Astrophysics Data System (ADS)

    Zhang, Peter Xinya

    Modern physiologically based binaural models employ internal delay lines in the pathways from left and right peripheries to central processing nuclei. Various models apply the delay lines differently, and give different predictions for the detection of dichotic pitches, wherein listeners hear a virtual tone in the noise background. Two dichotic pitch stimuli (Huggins pitch and binaural coherence edge pitch) with low boundary frequencies were used to test the predictions by two different models. The results from five experiments show that the relative dichotic pitch strengths support the equalization-cancellation model and disfavor the central activity pattern (CAP) model. The CAP model makes predictions for the lateralization of Huggins pitch based on interaural time differences (ITD). By measuring human lateralization for Huggins pitches with two different types of phase boundaries (linear-phase and stepped phase), and by comparing with lateralization of sine-tones, it was shown that the lateralization of Huggins pitch stimuli is similar to that of the corresponding sine-tones, and the lateralizations of Huggins pitch stimuli with the two different boundaries were even more similar to one another. The results agreed roughly with the CAP model predictions. Agreement was significantly improved by incorporating individualized scale factors and offsets into the model, and was further unproved with a model including compression at large ITDs. Furthermore, ambiguous stimuli, with an interaural phase difference of 180 degrees, were consistently lateralized on the left or right based on individual asymmetries---which introduces the concept of "earedness". Interaural phase difference (IPD) and interaural time difference (ITD) are two different forms of temporal cues. With varying frequency, an auditory system based on IPD or ITD gives different quantitative predictions on lateralization. A lateralization experiment with sine tones tested whether human auditory system is an IPD-meter or an ITD-meter. Listeners estimated the lateral positions of 50 sine tones with IPDs ranging from -150° to +150° and with different frequencies, all in the range where signal fine structure supports lateralization. The estimates indicated that listeners lateralize sine tones on the basis of ITD and not IPD. In order to distinguish between sound sources in front and in back, listeners use spectral cues caused by the diffraction by pinna, head, neck and torso. To study this effect, the VRX technique was developed based on transaural technology. The technique was successful in presenting desired spectra into listeners' ears with high accuracy up to 16 kHz. When presented with real source and simulated virtual signal, listeners in an anechoic room could not distinguish between them. Eleven experiments on discrimination between front and back sources were carried out in an anechoic room. The results show several findings. First, the results support a multiple band comparison model, and disfavor a necessary band(s) model. Second, it was found that preserving the spectral dips was more important than preserving the spectral peaks for successful front/back discrimination. Moreover, it was confirmed that neither monaural cues nor interaural spectral level difference cues were adequate for front/back discrimination. Furthermore, listeners' performance did not deteriorate when presented with sharpened spectra. Finally, when presented with an interaural delay less than 200 mus, listeners could succeed to discriminate front from back, although the image was pulled to the side, which suggests that the localizations in azimuthal plane and in sagittal plane are independent within certain limits.

  4. Monaural and binaural response properties of neurons in the inferior colliculus of the rabbit: effects of sodium pentobarbital.

    PubMed

    Kuwada, S; Batra, R; Stanford, T R

    1989-02-01

    1. We studied the effects of sodium pentobarbital on 22 neurons in the inferior colliculus (IC) of the rabbit. We recorded changes in the sensitivity of these neurons to monaural stimulation and to ongoing interaural time differences (ITDs). Monaural stimuli were tone bursts at or near the neuron's best frequency. The ITD was varied by delivering tones that differed by 1 Hz to the two ears, resulting in a 1-Hz binaural beat. 2. We assessed a neuron's ITD sensitivity by calculating three measures from the responses to binaural beats: composite delay, characteristic delay (CD), and characteristic phase (CP). To obtain the composite delay, we first derived period histograms by averaging, showing the response at each stimulating frequency over one period of the beat frequency. Second, the period histograms were replotted as a function of their equivalent interaural delay and then averaged together to yield the composite delay curve. Last, we calculated the composite peak or trough delay by fitting a parabola to the peak or trough of this composite curve. The composite delay curve represents the average response to all frequencies within the neuron's responsive range, and the peak reflects the interaural delay that produces the maximum response. The CD and CP were estimated from a weighted fit of a regression line to the plot of the mean interaural phase of the response versus the stimulating frequency. The slope and phase intercept of this regression line yielded estimates of CD and CP, respectively. These two quantities are thought to reflect the mechanism of ITD sensitivity, which involves the convergence of phase-locked inputs on a binaural cell. The CD estimates the difference in the time required for the two inputs to travel from either ear to this cell, whereas the CP reflects the interaural phase difference of the inputs at this cell. 3. Injections of sodium pentobarbital at subsurgical dosages (less than 25 mg/kg) almost invariably altered the neuron's response rate, response latency, response pattern, and spontaneous activity. Most of these changes were predictable and consistent with an enhancement of inhibitory influences. For example, if the earliest response was inhibitory, later excitation was usually reduced and latency increased. If the earliest response was excitatory, the level of this excitation was unaltered or slightly enhanced, and changes in latency were minimal. 4. The neuron's response pattern also changed in a predictable way. For example, a response with an inhibitory pause could either change to a response with a longer pause or to a response with an onset only.(ABSTRACT TRUNCATED AT 400 WORDS)

  5. Analysis of masking effects on speech intelligibility with respect to moving sound stimulus

    NASA Astrophysics Data System (ADS)

    Chen, Chiung Yao

    2004-05-01

    The purpose of this study is to compare the disturbed degree of speech by an immovable noise source and an apparent moving one (AMN). In the study of the sound localization, we found that source-directional sensitivity (SDS) well associates with the magnitude of interaural cross correlation (IACC). Ando et al. [Y. Ando, S. H. Kang, and H. Nagamatsu, J. Acoust. Soc. Jpn. (E) 8, 183-190 (1987)] reported that potential correlation between left and right inferior colliculus at auditory path in the brain is in harmony with the correlation function of amplitude input into two ear-canal entrances. We assume that the degree of disturbance under the apparent moving noisy source is probably different from that being installed in front of us within a constant distance in a free field (no reflection). Then, we found there is a different influence on speech intelligibility between a moving and a fixed source generated by 1/3-octave narrow-band noise with the center frequency 2 kHz. However, the reasons for the moving speed and the masking effects on speech intelligibility were uncertain.

  6. The effect of stimulus intensity on the right ear advantage in dichotic listening.

    PubMed

    Hugdahl, Kenneth; Westerhausen, René; Alho, Kimmo; Medvedev, Svyatoslav; Hämäläinen, Heikki

    2008-01-24

    The dichotic listening test is non-invasive behavioural technique to study brain lateralization and it has been shown, that its results can be systematically modulated by varying stimulation properties (bottom-up effects) or attentional instructions (top-down effects) of the testing procedure. The goal of the present study was to further investigate the bottom-up modulation, by examining the effect of differences in the right or left ear stimulus intensity on the ear advantage. For this purpose, interaural intensity difference were gradually varied in steps of 3 dB from -21 dB in favour of the left ear to +21 dB in favour of the right ear, also including a no difference baseline condition. Thirty-three right-handed adult participants with normal hearing acuity were tested. The dichotic listening paradigm was based on consonant-vowel stimuli pairs. Only pairs with the same voicing (voice or non-voiced) of the consonant sound were used. The results showed: (a) a significant right ear advantage (REA) for interaural intensity differences from 21 to -3 dB, (b) no ear advantage (NEA) for the -6 dB difference, and (c) a significant left ear advantage (LEA) for differences form -9 to -21 dB. It is concluded that the right ear advantage in dichotic listening to CV syllables withstands an interaural intensity difference of -9 dB before yielding to a significant left ear advantage. This finding could have implications for theories of auditory laterality and hemispheric asymmetry for phonological processing.

  7. Reliability of Interaural Time Difference-Based Localization Training in Elderly Individuals with Speech-in-Noise Perception Disorder.

    PubMed

    Delphi, Maryam; Lotfi, M-Yones; Moossavi, Abdollah; Bakhshi, Enayatollah; Banimostafa, Maryam

    2017-09-01

    Previous studies have shown that interaural-time-difference (ITD) training can improve localization ability. Surprisingly little is, however, known about localization training vis-à-vis speech perception in noise based on interaural time difference in the envelope (ITD ENV). We sought to investigate the reliability of an ITD ENV-based training program in speech-in-noise perception among elderly individuals with normal hearing and speech-in-noise disorder. The present interventional study was performed during 2016. Sixteen elderly men between 55 and 65 years of age with the clinical diagnosis of normal hearing up to 2000 Hz and speech-in-noise perception disorder participated in this study. The training localization program was based on changes in ITD ENV. In order to evaluate the reliability of the training program, we performed speech-in-noise tests before the training program, immediately afterward, and then at 2 months' follow-up. The reliability of the training program was analyzed using the Friedman test and the SPSS software. Significant statistical differences were shown in the mean scores of speech-in-noise perception between the 3 time points (P=0.001). The results also indicated no difference in the mean scores of speech-in-noise perception between the 2 time points of immediately after the training program and 2 months' follow-up (P=0.212). The present study showed the reliability of an ITD ENV-based localization training in elderly individuals with speech-in-noise perception disorder.

  8. Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials.

    PubMed

    Epp, Bastian; Yasin, Ifat; Verhey, Jesko L

    2013-12-01

    The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound at a fixed physical intensity is varied by introducing auditory cues of (i) interaural target signal phase disparity and (ii) coherent masker level fluctuations in different frequency regions. In agreement with previous studies, psychoacoustical experiments showed that both stimulus manipulations result in a masking release (i: binaural masking level difference; ii: comodulation masking release) compared to a condition where those cues are not present. Late auditory evoked potentials (N1, P2) were recorded for the stimuli at a constant masker level, but different signal levels within the same set of listeners who participated in the psychoacoustical experiment. The data indicate differences in N1 and P2 between stimuli with and without interaural phase disparities. However, differences for stimuli with and without coherent masker modulation were only found for P2, i.e., only P2 is sensitive to the increase in audibility, irrespective of the cue that caused the masking release. The amplitude of P2 is consistent with the psychoacoustical finding of an addition of the masking releases when both cues are present. Even though it cannot be concluded where along the auditory pathway the audibility is represented, the P2 component of auditory evoked potentials is a candidate for an objective measure of audibility in the human auditory system. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    PubMed

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Binaural processing of speech in light aircraft.

    DOT National Transportation Integrated Search

    1972-09-01

    Laboratory studies have shown that the human binaural auditory system can extract signals from noise more effectively when the signals (or the noise) are presented in one of several interaurally disparate configurations. Questions arise as to whether...

  11. Sound source localization inspired by the ears of the Ormia ochracea

    NASA Astrophysics Data System (ADS)

    Kuntzman, Michael L.; Hall, Neal A.

    2014-07-01

    The parasitoid fly Ormia ochracea has the remarkable ability to locate crickets using audible sound. This ability is, in fact, remarkable as the fly's hearing mechanism spans only 1.5 mm which is 50× smaller than the wavelength of sound emitted by the cricket. The hearing mechanism is, for all practical purposes, a point in space with no significant interaural time or level differences to draw from. It has been discovered that evolution has empowered the fly with a hearing mechanism that utilizes multiple vibration modes to amplify interaural time and level differences. Here, we present a fully integrated, man-made mimic of the Ormia's hearing mechanism capable of replicating the remarkable sound localization ability of the special fly. A silicon-micromachined prototype is presented which uses multiple piezoelectric sensing ports to simultaneously transduce two orthogonal vibration modes of the sensing structure, thereby enabling simultaneous measurement of sound pressure and pressure gradient.

  12. JNDS of interaural time delay (ITD) of selected frequency bands in speech and music signals

    NASA Astrophysics Data System (ADS)

    Aliphas, Avner; Colburn, H. Steven; Ghitza, Oded

    2002-05-01

    JNDS of interaural time delay (ITD) of selected frequency bands in the presence of other frequency bands have been reported for noiseband stimuli [Zurek (1985); Trahiotis and Bernstein (1990)]. Similar measurements will be reported for speech and music signals. When stimuli are synthesized with bandpass/band-stop operations, performance with complex stimuli are similar to noisebands (JNDS in tens or hundreds of microseconds); however, the resulting waveforms, when viewed through a model of the auditory periphery, show distortions (irregularities in phase and level) at the boundaries of the target band of frequencies. An alternate synthesis method based upon group-delay filtering operations does not show these distortions and is being used for the current measurements. Preliminary measurements indicate that when music stimuli are created using the new techniques, JNDS of ITDs are increased significantly compared to previous studies, with values on the order of milliseconds.

  13. Cervical Vestibular-Evoked Myogenic Potentials: Norms and Protocols

    PubMed Central

    Isaradisaikul, Suwicha; Navacharoen, Niramon; Hanprasertpong, Charuk; Kangsanarak, Jaran

    2012-01-01

    Vestibular-evoked myogenic potential (VEMP) testing is a vestibular function test used for evaluating saccular and inferior vestibular nerve function. Parameters of VEMP testing include VEMP threshold, latencies of p1 and n1, and p1-n1 interamplitude. Less commonly used parameters were p1-n1 interlatency, interaural difference of p1 and n1 latency, and interaural amplitude difference (IAD) ratio. This paper recommends using air-conducted 500 Hz tone burst auditory stimulation presented monoaurally via an inserted ear phone while the subject is turning his head to the contralateral side in the sitting position and recording the responses from the ipsilateral sternocleidomastoid muscle. Normative values of VEMP responses in 50 normal audiovestibular volunteers were presented. VEMP testing protocols and normative values in other literature were reviewed and compared. The study is beneficial to clinicians as a reference guide to set up VEMP testing and interpretation of the VEMP responses. PMID:22577386

  14. Interaural attenuation for Sennheiser HDA 200 circumaural earphones.

    PubMed

    Brännström, K Jonas; Lantz, Johannes

    2010-06-01

    Interaural attenuation (IA) was evaluated for pure tones (frequency range 125 to 16000 Hz) using Sennheiser HDA 200 circumaural earphones and Telephonics TDH-39P earphones in nine unilaterally deaf subjects. Audiometry was conducted in 1-dB steps using the manual ascending technique in accordance with ISO 8253-1. For all subjects and for all tested frequencies, the lowest IA value for HDA 200 was 42 dB. The present IA values for TDH-39P earphones closely resemble previously reported data. The findings show that the HDA 200 earphones provide more IA than the TDH-39P, especially at lower frequencies (

  15. Binaural enhancement for bilateral cochlear implant users.

    PubMed

    Brown, Christopher A

    2014-01-01

    Bilateral cochlear implant (BCI) users receive limited binaural cues and, thus, show little improvement to speech intelligibility from spatial cues. The feasibility of a method for enhancing the binaural cues available to BCI users is investigated. This involved extending interaural differences of levels, which typically are restricted to high frequencies, into the low-frequency region. Speech intelligibility was measured in BCI users listening over headphones and with direct stimulation, with a target talker presented to one side of the head in the presence of a masker talker on the other side. Spatial separation was achieved by applying either naturally occurring binaural cues or enhanced cues. In this listening configuration, BCI patients showed greater speech intelligibility with the enhanced binaural cues than with naturally occurring binaural cues. In some situations, it is possible for BCI users to achieve greater speech intelligibility when binaural cues are enhanced by applying interaural differences of levels in the low-frequency region.

  16. Time-Varying Distortions of Binaural Information by Bilateral Hearing Aids

    PubMed Central

    Rodriguez, Francisco A.; Portnuff, Cory D. F.; Goupell, Matthew J.; Tollin, Daniel J.

    2016-01-01

    In patients with bilateral hearing loss, the use of two hearing aids (HAs) offers the potential to restore the benefits of binaural hearing, including sound source localization and segregation. However, existing evidence suggests that bilateral HA users’ access to binaural information, namely interaural time and level differences (ITDs and ILDs), can be compromised by device processing. Our objective was to characterize the nature and magnitude of binaural distortions caused by modern digital behind-the-ear HAs using a variety of stimuli and HA program settings. Of particular interest was a common frequency-lowering algorithm known as nonlinear frequency compression, which has not previously been assessed for its effects on binaural information. A binaural beamforming algorithm was also assessed. Wide dynamic range compression was enabled in all programs. HAs were placed on a binaural manikin, and stimuli were presented from an arc of loudspeakers inside an anechoic chamber. Stimuli were broadband noise bursts, 10-Hz sinusoidally amplitude-modulated noise bursts, or consonant–vowel–consonant speech tokens. Binaural information was analyzed in terms of ITDs, ILDs, and interaural coherence, both for whole stimuli and in a time-varying sense (i.e., within a running temporal window) across four different frequency bands (1, 2, 4, and 6 kHz). Key findings were: (a) Nonlinear frequency compression caused distortions of high-frequency envelope ITDs and significantly reduced interaural coherence. (b) For modulated stimuli, all programs caused time-varying distortion of ILDs. (c) HAs altered the relationship between ITDs and ILDs, introducing large ITD–ILD conflicts in some cases. Potential perceptual consequences of measured distortions are discussed. PMID:27698258

  17. Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber).

    PubMed

    Gessele, Nikodemus; Garcia-Pino, Elisabet; Omerbašić, Damir; Park, Thomas J; Koch, Ursula

    2016-01-01

    Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.

  18. Four-choice sound localization abilities of two Florida manatees, Trichechus manatus latirostris.

    PubMed

    Colbert, Debborah E; Gaspard, Joseph C; Reep, Roger; Mann, David A; Bauer, Gordon B

    2009-07-01

    The absolute sound localization abilities of two Florida manatees (Trichechus manatus latirostris) were measured using a four-choice discrimination paradigm, with test locations positioned at 45 deg., 90 deg., 270 deg. and 315 deg. angles relative to subjects facing 0 deg. Three broadband signals were tested at four durations (200, 500, 1000, 3000 ms), including a stimulus that spanned a wide range of frequencies (0.2-20 kHz), one stimulus that was restricted to frequencies with wavelengths shorter than their interaural time distances (6-20 kHz) and one that was limited to those with wavelengths longer than their interaural time distances (0.2-2 kHz). Two 3000 ms tonal signals were tested, including a 4 kHz stimulus, which is the midpoint of the 2.5-5.9 kHz fundamental frequency range of manatee vocalizations and a 16 kHz stimulus, which is in the range of manatee best-hearing sensitivity. Percentage correct within the broadband conditions ranged from 79% to 93% for Subject 1 and from 51% to 93% for Subject 2. Both performed above chance with the tonal signals but had much lower accuracy than with broadband signals, with Subject 1 at 44% and 33% and Subject 2 at 49% and 32% at the 4 kHz and 16 kHz conditions, respectively. These results demonstrate that manatees are able to localize frequency bands with wavelengths that are both shorter and longer than their interaural time distances and suggest that they have the ability to localize both manatee vocalizations and recreational boat engine noises.

  19. Detecting and Quantifying Topography in Neural Maps

    PubMed Central

    Yarrow, Stuart; Razak, Khaleel A.; Seitz, Aaron R.; Seriès, Peggy

    2014-01-01

    Topographic maps are an often-encountered feature in the brains of many species, yet there are no standard, objective procedures for quantifying topography. Topographic maps are typically identified and described subjectively, but in cases where the scale of the map is close to the resolution limit of the measurement technique, identifying the presence of a topographic map can be a challenging subjective task. In such cases, an objective topography detection test would be advantageous. To address these issues, we assessed seven measures (Pearson distance correlation, Spearman distance correlation, Zrehen's measure, topographic product, topological correlation, path length and wiring length) by quantifying topography in three classes of cortical map model: linear, orientation-like, and clusters. We found that all but one of these measures were effective at detecting statistically significant topography even in weakly-ordered maps, based on simulated noisy measurements of neuronal selectivity and sparse sampling of the maps. We demonstrate the practical applicability of these measures by using them to examine the arrangement of spatial cue selectivity in pallid bat A1. This analysis shows that significantly topographic arrangements of interaural intensity difference and azimuth selectivity exist at the scale of individual binaural clusters. PMID:24505279

  20. Figure-background in dichotic task and their relation to skills untrained.

    PubMed

    Cibian, Aline Priscila; Pereira, Liliane Desgualdo

    2015-01-01

    To evaluate the effectiveness of auditory training in dichotic task and to compare the responses of trained skills with the responses of untrained skills, after 4-8 weeks. Nineteen subjects, aged 12-15 years, underwent an auditory training based on dichotic interaural intensity difference (DIID), organized in eight sessions, each lasting 50 min. The assessment of auditory processing was conducted in three stages: before the intervention, after the intervention, and in the middle and at the end of the training. Data from this evaluation were analyzed as per group of disorder, according to the changes in the auditory processes evaluated: selective attention and temporal processing. Each of them was named selective attention group (SAG) and temporal processing group (TPG), and, for both the processes, selective attention and temporal processing group (SATPG). The training improved both the trained and untrained closing skill, normalizing all individuals. Untrained solving and temporal ordering skills did not reach normality for SATPG and TPG. Individuals reached normality for the trained figure-ground skill and for the untrained closing skill. The untrained solving and temporal ordering skills improved in some individuals but failed to reach normality.

  1. Effects of Telephone Ring on Two Mental Tasks Relative to AN Office

    NASA Astrophysics Data System (ADS)

    Mouri, K.; Akiyama, K.; Ando, Y.

    2001-03-01

    In many cases, there are a lot of noise sources in an office and particularly, telephone ringing often irritates the office workers. Effects of aircraft noise on the mental work of pupils were reported by Ando et al.[1]. In spite of its serious effect, it has not yet been found how the physical parameters of the wave form influence the perception of noise. The purpose of this study is to investigate the effects of telephone ringing on two mental tasks. This investigation is based on the human auditory-brain model consisting of the auto-correlation function (ACF) of sound source, the interaural cross-correlation function (IACF) for sound signals arriving at the two ears, and the specialization of the cerebral hemispheres. Under the stimulus of a telephone ringing, an adding task and a drawing task were performed. Results show that telephone ringing influences differently the two tasks: the V-type relaxation was observed only during the drawing task. It is revealed that the interference effect between the drawing task and the noise may occur in the right hemisphere.

  2. Blind people are more sensitive than sighted people to binaural sound-location cues, particularly inter-aural level differences.

    PubMed

    Nilsson, Mats E; Schenkman, Bo N

    2016-02-01

    Blind people use auditory information to locate sound sources and sound-reflecting objects (echolocation). Sound source localization benefits from the hearing system's ability to suppress distracting sound reflections, whereas echolocation would benefit from "unsuppressing" these reflections. To clarify how these potentially conflicting aspects of spatial hearing interact in blind versus sighted listeners, we measured discrimination thresholds for two binaural location cues: inter-aural level differences (ILDs) and inter-aural time differences (ITDs). The ILDs or ITDs were present in single clicks, in the leading component of click pairs, or in the lagging component of click pairs, exploiting processes related to both sound source localization and echolocation. We tested 23 blind (mean age = 54 y), 23 sighted-age-matched (mean age = 54 y), and 42 sighted-young (mean age = 26 y) listeners. The results suggested greater ILD sensitivity for blind than for sighted listeners. The blind group's superiority was particularly evident for ILD-lag-click discrimination, suggesting not only enhanced ILD sensitivity in general but also increased ability to unsuppress lagging clicks. This may be related to the blind person's experience of localizing reflected sounds, for which ILDs may be more efficient than ITDs. On the ITD-discrimination tasks, the blind listeners performed better than the sighted age-matched listeners, but not better than the sighted young listeners. ITD sensitivity declines with age, and the equal performance of the blind listeners compared to a group of substantially younger listeners is consistent with the notion that blind people's experience may offset age-related decline in ITD sensitivity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Time-Varying Distortions of Binaural Information by Bilateral Hearing Aids: Effects of Nonlinear Frequency Compression.

    PubMed

    Brown, Andrew D; Rodriguez, Francisco A; Portnuff, Cory D F; Goupell, Matthew J; Tollin, Daniel J

    2016-10-03

    In patients with bilateral hearing loss, the use of two hearing aids (HAs) offers the potential to restore the benefits of binaural hearing, including sound source localization and segregation. However, existing evidence suggests that bilateral HA users' access to binaural information, namely interaural time and level differences (ITDs and ILDs), can be compromised by device processing. Our objective was to characterize the nature and magnitude of binaural distortions caused by modern digital behind-the-ear HAs using a variety of stimuli and HA program settings. Of particular interest was a common frequency-lowering algorithm known as nonlinear frequency compression, which has not previously been assessed for its effects on binaural information. A binaural beamforming algorithm was also assessed. Wide dynamic range compression was enabled in all programs. HAs were placed on a binaural manikin, and stimuli were presented from an arc of loudspeakers inside an anechoic chamber. Stimuli were broadband noise bursts, 10-Hz sinusoidally amplitude-modulated noise bursts, or consonant-vowel-consonant speech tokens. Binaural information was analyzed in terms of ITDs, ILDs, and interaural coherence, both for whole stimuli and in a time-varying sense (i.e., within a running temporal window) across four different frequency bands (1, 2, 4, and 6 kHz). Key findings were: (a) Nonlinear frequency compression caused distortions of high-frequency envelope ITDs and significantly reduced interaural coherence. (b) For modulated stimuli, all programs caused time-varying distortion of ILDs. (c) HAs altered the relationship between ITDs and ILDs, introducing large ITD-ILD conflicts in some cases. Potential perceptual consequences of measured distortions are discussed. © The Author(s) 2016.

  4. The effect of device use after sequential bilateral cochlear implantation in children: An electrophysiological approach.

    PubMed

    Sparreboom, Marloes; Beynon, Andy J; Snik, Ad F M; Mylanus, Emmanuel A M

    2016-07-01

    In many studies evaluating the effect of sequential bilateral cochlear implantation in congenitally deaf children, device use is not taken into account. In this study, however, device use was analyzed in relation to auditory brainstem maturation and speech recognition, which were measured in children with early-onset deafness, 5-6 years after bilateral cochlear implantation. We hypothesized that auditory brainstem maturation is mostly functionally driven by auditory stimulation and is therefore influenced by device use and not mainly by inter-implant delay. Twenty-one children participated and had inter-implant delays between 1.2 and 7.2 years. The electrically-evoked auditory brainstem response was measured for both implants separately. The difference in interaural wave V latency and speech recognition between both implants were used in the analyses. Device use was measured with a Likert scale. Results showed that the less the second device is used, the larger the difference in interaural wave V latencies is, which consequently leads to larger differences in interaural speech recognition. In children with early-onset deafness, after various periods of unilateral deprivation, full-time device use can lead to similar auditory brainstem responses and speech recognition between both ears. Therefore, device use should be considered as a relevant factor contributing to outcomes after sequential bilateral cochlear implantation. These results are indicative for a longer window between implantations in children with early-onset deafness to obtain symmetrical auditory pathway maturation than is mentioned in the literature. Results, however, must be interpreted as preliminary findings as actual device use with data logging was not yet available at the time of the study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Spatial cue reliability drives frequency tuning in the barn Owl's midbrain

    PubMed Central

    Cazettes, Fanny; Fischer, Brian J; Pena, Jose L

    2014-01-01

    The robust representation of the environment from unreliable sensory cues is vital for the efficient function of the brain. However, how the neural processing captures the most reliable cues is unknown. The interaural time difference (ITD) is the primary cue to localize sound in horizontal space. ITD is encoded in the firing rate of neurons that detect interaural phase difference (IPD). Due to the filtering effect of the head, IPD for a given location varies depending on the environmental context. We found that, in barn owls, at each location there is a frequency range where the head filtering yields the most reliable IPDs across contexts. Remarkably, the frequency tuning of space-specific neurons in the owl's midbrain varies with their preferred sound location, matching the range that carries the most reliable IPD. Thus, frequency tuning in the owl's space-specific neurons reflects a higher-order feature of the code that captures cue reliability. DOI: http://dx.doi.org/10.7554/eLife.04854.001 PMID:25531067

  6. Principal cells of the brainstem's interaural sound level detector are temporal differentiators rather than integrators.

    PubMed

    Franken, Tom P; Joris, Philip X; Smith, Philip H

    2018-06-14

    The brainstem's lateral superior olive (LSO) is thought to be crucial for localizing high-frequency sounds by coding interaural sound level differences (ILD). Its neurons weigh contralateral inhibition against ipsilateral excitation, making their firing rate a function of the azimuthal position of a sound source. Since the very first in vivo recordings, LSO principal neurons have been reported to give sustained and temporally integrating 'chopper' responses to sustained sounds. Neurons with transient responses were observed but largely ignored and even considered a sign of pathology. Using the Mongolian gerbil as a model system, we have obtained the first in vivo patch clamp recordings from labeled LSO neurons and find that principal LSO neurons, the most numerous projection neurons of this nucleus, only respond at sound onset and show fast membrane features suggesting an importance for timing. These results provide a new framework to interpret previously puzzling features of this circuit. © 2018, Franken et al.

  7. Perception and psychological evaluation for visual and auditory environment based on the correlation mechanisms

    NASA Astrophysics Data System (ADS)

    Fujii, Kenji

    2002-06-01

    In this dissertation, the correlation mechanism in modeling the process in the visual perception is introduced. It has been well described that the correlation mechanism is effective for describing subjective attributes in auditory perception. The main result is that it is possible to apply the correlation mechanism to the process in temporal vision and spatial vision, as well as in audition. (1) The psychophysical experiment was performed on subjective flicker rates for complex waveforms. A remarkable result is that the phenomenon of missing fundamental is found in temporal vision as analogous to the auditory pitch perception. This implies the existence of correlation mechanism in visual system. (2) For spatial vision, the autocorrelation analysis provides useful measures for describing three primary perceptual properties of visual texture: contrast, coarseness, and regularity. Another experiment showed that the degree of regularity is a salient cue for texture preference judgment. (3) In addition, the autocorrelation function (ACF) and inter-aural cross-correlation function (IACF) were applied for analysis of the temporal and spatial properties of environmental noise. It was confirmed that the acoustical properties of aircraft noise and traffic noise are well described. These analyses provided useful parameters extracted from the ACF and IACF in assessing the subjective annoyance for noise. Thesis advisor: Yoichi Ando Copies of this thesis written in English can be obtained from Junko Atagi, 6813 Mosonou, Saijo-cho, Higashi-Hiroshima 739-0024, Japan. E-mail address: atagi\\@urban.ne.jp.

  8. Correlation Factors Describing Primary and Spatial Sensations of Sound Fields

    NASA Astrophysics Data System (ADS)

    ANDO, Y.

    2002-11-01

    The theory of subjective preference of the sound field in a concert hall is established based on the model of human auditory-brain system. The model consists of the autocorrelation function (ACF) mechanism and the interaural crosscorrelation function (IACF) mechanism for signals arriving at two ear entrances, and the specialization of human cerebral hemispheres. This theory can be developed to describe primary sensations such as pitch or missing fundamental, loudness, timbre and, in addition, duration sensation which is introduced here as a fourth. These four primary sensations may be formulated by the temporal factors extracted from the ACF associated with the left hemisphere and, spatial sensations such as localization in the horizontal plane, apparent source width and subjective diffuseness are described by the spatial factors extracted from the IACF associated with the right hemisphere. Any important subjective responses of sound fields may be described by both temporal and spatial factors.

  9. Aurally-adequate time-frequency analysis for scattered sound in auditoria

    NASA Astrophysics Data System (ADS)

    Norris, Molly K.; Xiang, Ning; Kleiner, Mendel

    2005-04-01

    The goal of this work was to apply an aurally-adequate time-frequency analysis technique to the analysis of sound scattering effects in auditoria. Time-frequency representations were developed as a motivated effort that takes into account binaural hearing, with a specific implementation of interaural cross-correlation process. A model of the human auditory system was implemented in the MATLAB platform based on two previous models [A. Härmä and K. Palomäki, HUTear, Espoo, Finland; and M. A. Akeroyd, A. Binaural Cross-correlogram Toolbox for MATLAB (2001), University of Sussex, Brighton]. These stages include proper frequency selectivity, the conversion of the mechanical motion of the basilar membrane to neural impulses, and binaural hearing effects. The model was then used in the analysis of room impulse responses with varying scattering characteristics. This paper discusses the analysis results using simulated and measured room impulse responses. [Work supported by the Frank H. and Eva B. Buck Foundation.

  10. Masking Level Difference Response Norms from Learning Disabled Individuals.

    ERIC Educational Resources Information Center

    Waryas, Paul A.; Battin, R. Ray

    1985-01-01

    The study presents normative data on Masking Level Difference (an improvement of the auditory processing of interaural time/intensity differences between signals and masking noises) for 90 learning disabled persons (4-35 years old). It was concluded that the MLD may quickly screen for auditory processing problems. (CL)

  11. Primitive Auditory Memory Is Correlated with Spatial Unmasking That Is Based on Direct-Reflection Integration

    PubMed Central

    Li, Huahui; Kong, Lingzhi; Wu, Xihong; Li, Liang

    2013-01-01

    In reverberant rooms with multiple-people talking, spatial separation between speech sources improves recognition of attended speech, even though both the head-shadowing and interaural-interaction unmasking cues are limited by numerous reflections. It is the perceptual integration between the direct wave and its reflections that bridges the direct-reflection temporal gaps and results in the spatial unmasking under reverberant conditions. This study further investigated (1) the temporal dynamic of the direct-reflection-integration-based spatial unmasking as a function of the reflection delay, and (2) whether this temporal dynamic is correlated with the listeners’ auditory ability to temporally retain raw acoustic signals (i.e., the fast decaying primitive auditory memory, PAM). The results showed that recognition of the target speech against the speech-masker background is a descending exponential function of the delay of the simulated target reflection. In addition, the temporal extent of PAM is frequency dependent and markedly longer than that for perceptual fusion. More importantly, the temporal dynamic of the speech-recognition function is significantly correlated with the temporal extent of the PAM of low-frequency raw signals. Thus, we propose that a chain process, which links the earlier-stage PAM with the later-stage correlation computation, perceptual integration, and attention facilitation, plays a role in spatially unmasking target speech under reverberant conditions. PMID:23658664

  12. Spatial selectivity and binaural responses in the inferior colliculus of the great horned owl.

    PubMed

    Volman, S F; Konishi, M

    1989-09-01

    In this study we have investigated the processing of auditory cues for sound localization in the great horned owl (Bubo virginianus). Previous studies have shown that the barn owl, whose ears are asymmetrically oriented in the vertical plane, has a 2-dimensional, topographic representation of auditory space in the external division of the inferior colliculus (ICx). As in the barn owl, the great horned owl's ICx is anatomically distinct and projects to the optic tectum. Neurons in ICx respond over only a small range of azimuths (mean = 32 degrees), and azimuth is topographically mapped. In contrast to the barn owl, the great horned owl has bilaterally symmetrical ears and its receptive fields are not restricted in elevation. The binaural cues available for sound localization were measured both with cochlear microphonic recordings and with a microphone attached to a probe tube in the auditory canal. Interaural time disparity (ITD) varied monotonically with azimuth. Interaural intensity differences (IID) also changed with azimuth, but the largest IIDs were less than 15 dB, and the variation was not monotonic. Neither ITD nor IID varied systematically with changes in the vertical position of a sound source. We used dichotic stimulation to determine the sensitivity of ICx neurons to these binaural cues. Best ITD of ICx units was topographically mapped and strongly correlated with receptive-field azimuth. The width of ITD tuning curves, measured at 50% of the maximum response, averaged 72 microseconds. All ICx neurons responded only to binaural stimulation and had nonmonotonic IID tuning curves. Best IID was weakly, but significantly, correlated with best ITD (r = 0.39, p less than 0.05). The IID tuning curves, however, were broad (mean 50% width = 24 dB), and 67% of the units had best IIDs within 5 dB of 0 dB IID. ITD tuning was sensitive to variations in IID in the direction opposite to that expected for time-intensity trading, but the magnitude of this effect was only 1.5 microseconds/dB IID. We conclude that, in the great horned owl, the spatial selectivity of ICx neurons arises primarily from their ITD tuning. Except for the absence of elevation selectivity and the narrow range of best IIDs, ICx in the great horned owl appears to be organized much the same as in the barn owl.

  13. Development of Attentional Control of Verbal Auditory Perception from Middle to Late Childhood: Comparisons to Healthy Aging

    ERIC Educational Resources Information Center

    Passow, Susanne; Müller, Maike; Westerhausen, René; Hugdahl, Kenneth; Wartenburger, Isabell; Heekeren, Hauke R.; Lindenberger, Ulman; Li, Shu-Chen

    2013-01-01

    Multitalker situations confront listeners with a plethora of competing auditory inputs, and hence require selective attention to relevant information, especially when the perceptual saliency of distracting inputs is high. This study augmented the classical forced-attention dichotic listening paradigm by adding an interaural intensity manipulation…

  14. Binaural Release from Masking for a Speech Sound in Infants, Preschoolers, and Adults.

    ERIC Educational Resources Information Center

    Nozza, Robert J.

    1988-01-01

    Binaural masked thresholds for a speech sound (/ba/) were estimated under two interaural phase conditions in three age groups (infants, preschoolers, adults). Differences as a function of both age and condition and effects of reducing intensity for adults were significant in indicating possible developmental binaural hearing changes, especially…

  15. Sound Localization with an Army Helmet Worn in Combination with an In-Ear Advanced Communications System

    DTIC Science & Technology

    2009-12-01

    minimize onset transients. Broadband noise allows the observer access to both binaural cues (interaural differences in time of arrival and intensity) and...in the health sciences. 3’ ed. New York: Wiley; 1983. 18. Carmichel EL, Harris FP, Stoiy BH. Effects of binaural electronic hearing protectors on

  16. Active localization of virtual sounds

    NASA Technical Reports Server (NTRS)

    Loomis, Jack M.; Hebert, C.; Cicinelli, J. G.

    1991-01-01

    We describe a virtual sound display built around a 12 MHz 80286 microcomputer and special purpose analog hardware. The display implements most of the primary cues for sound localization in the ear-level plane. Static information about direction is conveyed by interaural time differences and, for frequencies above 1800 Hz, by head sound shadow (interaural intensity differences) and pinna sound shadow. Static information about distance is conveyed by variation in sound pressure (first power law) for all frequencies, by additional attenuation in the higher frequencies (simulating atmospheric absorption), and by the proportion of direct to reverberant sound. When the user actively locomotes, the changing angular position of the source occasioned by head rotations provides further information about direction and the changing angular velocity produced by head translations (motion parallax) provides further information about distance. Judging both from informal observations by users and from objective data obtained in an experiment on homing to virtual and real sounds, we conclude that simple displays such as this are effective in creating the perception of external sounds to which subjects can home with accuracy and ease.

  17. Effects of interaural time differences in fine structure and envelope on lateral discrimination in electric hearing.

    PubMed

    Majdak, Piotr; Laback, Bernhard; Baumgartner, Wolf-Dieter

    2006-10-01

    Bilateral cochlear implant (CI) listeners currently use stimulation strategies which encode interaural time differences (ITD) in the temporal envelope but which do not transmit ITD in the fine structure, due to the constant phase in the electric pulse train. To determine the utility of encoding ITD in the fine structure, ITD-based lateralization was investigated with four CI listeners and four normal hearing (NH) subjects listening to a simulation of electric stimulation. Lateralization discrimination was tested at different pulse rates for various combinations of independently controlled fine structure ITD and envelope ITD. Results for electric hearing show that the fine structure ITD had the strongest impact on lateralization at lower pulse rates, with significant effects for pulse rates up to 800 pulses per second. At higher pulse rates, lateralization discrimination depended solely on the envelope ITD. The data suggest that bilateral CI listeners benefit from transmitting fine structure ITD at lower pulse rates. However, there were strong interindividual differences: the better performing CI listeners performed comparably to the NH listeners.

  18. The dynamic contributions of the otolith organs to human ocular torsion

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Teiwes, W.; Clarke, A. H.; Scherer, H.; Young, L. R.

    1996-01-01

    We measured human ocular torsion (OT) monocularly (using video) and binocularly (using search coils) while sinusoidally accelerating (0.7 g) five human subjects along an earth-horizontal axis at five frequencies (0.35, 0.4, 0.5, 0.75, and 1.0 Hz). The compensatory nature of OT was investigated by changing the relative orientation of the dynamic (linear acceleration) and static (gravitational) cues. Four subject orientations were investigated: (1) Y-upright-acceleration along the interaural (y) axis while upright; (2) Y-supine-acceleration along the y-axis while supine; (3) Z-RED-acceleration along the dorsoventral (z) axis with right ear down; (4) Z-supine-acceleration along the z-axis while supine. Linear acceleration in the Y-upright, Y-supine and Z-RED orientations elicited conjugate OT. The smaller response in the Z-supine orientation appeared disconjugate. The amplitude of the response decreased and the phase lag increased with increasing frequency for each orientation. This frequency dependence does not match the frequency response of the regular or irregular afferent otolith neurons; therefore the response dynamics cannot be explained by simple peripheral mechanisms. The Y-upright responses were larger than the Y-supine responses (P < 0.05). This difference indicates that OT must be more complicated than a simple low-pass filtered response to interaural shear force, since the dynamic shear force along the interaural axis was identical in these two orientations. The Y-supine responses were, in turn, larger than the Z-RED responses (P < 0.01). Interestingly, the vector sum of the Y-supine responses plus Z-RED responses was not significantly different (P = 0.99) from the Y-upright responses. This suggests that, in this frequency range, the conjugate OT response during Y-upright stimulation might be composed of two components: (1) a response to shear force along the y-axis (as in Y-supine stimulation), and (2) a response to roll tilt of gravitoinertial force (as in Z-RED stimulation).

  19. Brief Report: Atypical Neuromagnetic Responses to Illusory Auditory Pitch in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Brock, Jon; Bzishvili, Samantha; Reid, Melanie; Hautus, Michael; Johnson, Blake W.

    2013-01-01

    Atypical auditory perception is a widely recognised but poorly understood feature of autism. In the current study, we used magnetoencephalography to measure the brain responses of 10 autistic children as they listened passively to dichotic pitch stimuli, in which an illusory tone is generated by sub-millisecond inter-aural timing differences in…

  20. Alteration of frequency range for binaural beats in acute low-tone hearing loss.

    PubMed

    Karino, Shotaro; Yamasoba, Tatsuya; Ito, Ken; Kaga, Kimitaka

    2005-01-01

    The effect of acute low-tone sensorineural hearing loss (ALHL) on the interaural frequency difference (IFD) required for perception of binaural beats (BBs) was investigated in 12 patients with unilateral ALHL and 7 patients in whom ALHL had lessened. A continuous pure tone of 30 dB sensation level at 250 Hz was presented to the contralateral, normal-hearing ear. The presence of BBs was determined by a subjective yes-no procedure as the frequency of a loudness-balanced test tone was gradually adjusted around 250 Hz in the affected ear. The frequency range in which no BBs were perceived (FRNB) was significantly wider in the patients with ALHL than in the controls, and FRNBs became narrower in the recovered ALHL group. Specifically, detection of slow BBs with a small IFD was impaired in this limited (10 s) observation period. The significant correlation between the hearing level at 250 Hz and FRNBs suggests that FRNBs represent the degree of cochlear damage caused by ALHL.

  1. Amplitude-modulation detection by gerbils in reverberant sound fields.

    PubMed

    Lingner, Andrea; Kugler, Kathrin; Grothe, Benedikt; Wiegrebe, Lutz

    2013-08-01

    Reverberation can dramatically reduce the depth of amplitude modulations which are critical for speech intelligibility. Psychophysical experiments indicate that humans' sensitivity to amplitude modulation in reverberation is better than predicted from the acoustic modulation depth at the receiver position. Electrophysiological studies on reverberation in rabbits highlight the contribution of neurons sensitive to interaural correlation. Here, we use a prepulse-inhibition paradigm to quantify the gerbils' amplitude modulation threshold in both anechoic and reverberant virtual environments. Data show that prepulse inhibition provides a reliable method for determining the gerbils' AM sensitivity. However, we find no evidence for perceptual restoration of amplitude modulation in reverberation. Instead, the deterioration of AM sensitivity in reverberant conditions can be quantitatively explained by the reduced modulation depth at the receiver position. We suggest that the lack of perceptual restoration is related to physical properties of the gerbil's ear input signals and inner-ear processing as opposed to shortcomings of their binaural neural processing. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The spatial unmasking of speech: evidence for within-channel processing of interaural time delay.

    PubMed

    Edmonds, Barrie A; Culling, John F

    2005-05-01

    Across-frequency processing by common interaural time delay (ITD) in spatial unmasking was investigated by measuring speech reception thresholds (SRTs) for high- and low-frequency bands of target speech presented against concurrent speech or a noise masker. Experiment 1 indicated that presenting one of these target bands with an ITD of +500 micros and the other with zero ITD (like the masker) provided some release from masking, but full binaural advantage was only measured when both target bands were given an ITD of + 500 micros. Experiment 2 showed that full binaural advantage could also be achieved when the high- and low-frequency bands were presented with ITDs of equal but opposite magnitude (+/- 500 micros). In experiment 3, the masker was also split into high- and low-frequency bands with ITDs of equal but opposite magnitude (+/-500 micros). The ITD of the low-frequency target band matched that of the high-frequency masking band and vice versa. SRTs indicated that, as long as the target and masker differed in ITD within each frequency band, full binaural advantage could be achieved. These results suggest that the mechanism underlying spatial unmasking exploits differences in ITD independently within each frequency channel.

  3. [The significance of the interaural latency difference of VEMP].

    PubMed

    Wu, Ziming; Zhang, Suzhen; Ji, Fei; Zhou, Na; Guo, Weiwei; Yang, Weiyan; Han, Dongyi

    2005-05-01

    To investigate the significance of the interaural latency (IAL) difference of the latency of VEMP and to raise the sensitivity of the test. Vestibular evoked myogenic potentials (VEMP) were tested in 20 healthy subjects; 13 patients with acoustic neuromaor cerebellopontile angle occupying lesions and 1 patient with multiple sclerosis. IAL differences of the wave p13,n23 and p13-n23 (abbreviatd as /delta p13/, /delta n23/ and /delta p13-n23/, respectively) were analysed to determine the normal range and the upper limit of the norm data. Four illustrative cases with the abnormality of the IAL difference were given as examples. The upper limit of the IAL of /delta p13/ was 1.13 ms; that of the /delta n23/ was 1.38 ms and that of /delta p13-n23/ was 1.54 ms. The /p13-n23/ latency between the right and left side had no significant difference (P > 0.05). /delta p13/, /delta n23/ and /delta p13-n23/, especially /delta p13/ of VEMP can suggest abnormality in the neural pathway and it may be applicable in practice.

  4. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners.

    PubMed

    Churchill, Tyler H; Kan, Alan; Goupell, Matthew J; Litovsky, Ruth Y

    2014-09-01

    Most contemporary cochlear implant (CI) processing strategies discard acoustic temporal fine structure (TFS) information, and this may contribute to the observed deficits in bilateral CI listeners' ability to localize sounds when compared to normal hearing listeners. Additionally, for best speech envelope representation, most contemporary speech processing strategies use high-rate carriers (≥900 Hz) that exceed the limit for interaural pulse timing to provide useful binaural information. Many bilateral CI listeners are sensitive to interaural time differences (ITDs) in low-rate (<300 Hz) constant-amplitude pulse trains. This study explored the trade-off between superior speech temporal envelope representation with high-rate carriers and binaural pulse timing sensitivity with low-rate carriers. The effects of carrier pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition in quiet were examined in eight bilateral CI listeners. Stimuli consisted of speech tokens processed at different electrical stimulation rates, and pulse timings that either preserved or did not preserve acoustic TFS cues. Results showed that CI listeners were able to use low-rate pulse timing cues derived from acoustic TFS when presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli.

  5. Models of the electrically stimulated binaural system: A review.

    PubMed

    Dietz, Mathias

    2016-01-01

    In an increasing number of countries, the standard treatment for deaf individuals is moving toward the implantation of two cochlear implants. Today's device technology and fitting procedure, however, appears as if the two implants would serve two independent ears and brains. Many experimental studies have demonstrated that after careful matching and balancing of left and right stimulation in controlled laboratory studies most patients have almost normal sensitivity to interaural level differences and some sensitivity to interaural time differences (ITDs). Mechanisms underlying the limited ITD sensitivity are still poorly understood and many different aspects may contribute. Recent pioneering computational approaches identified some of the functional implications the electric input imposes on the neural brainstem circuits. Simultaneously these studies have raised new questions and certainly demonstrated that further refinement of the model stages is necessary. They join the experimental study's conclusions that binaural device technology, binaural fitting, specific speech coding strategies, and binaural signal processing algorithms are obviously missing components to maximize the benefit of bilateral implantation. Within this review, the existing models of the electrically stimulated binaural system are explained, compared, and discussed from a viewpoint of a "CI device with auditory system" and from that of neurophysiological research.

  6. The binaural performance of a cross-talk cancellation system with matched or mismatched setup and playback acoustics.

    PubMed

    Akeroyd, Michael A; Chambers, John; Bullock, David; Palmer, Alan R; Summerfield, A Quentin; Nelson, Philip A; Gatehouse, Stuart

    2007-02-01

    Cross-talk cancellation is a method for synthesizing virtual auditory space using loudspeakers. One implementation is the "Optimal Source Distribution" technique [T. Takeuchi and P. Nelson, J. Acoust. Soc. Am. 112, 2786-2797 (2002)], in which the audio bandwidth is split across three pairs of loudspeakers, placed at azimuths of +/-90 degrees, +/-15 degrees, and +/-3 degrees, conveying low, mid, and high frequencies, respectively. A computational simulation of this system was developed and verified against measurements made on an acoustic system using a manikin. Both the acoustic system and the simulation gave a wideband average cancellation of almost 25 dB. The simulation showed that when there was a mismatch between the head-related transfer functions used to set up the system and those of the final listener, the cancellation was reduced to an average of 13 dB. Moreover, in this case the binaural interaural time differences and interaural level differences delivered by the simulation of the optimal source distribution (OSD) system often differed from the target values. It is concluded that only when the OSD system is set up with "matched" head-related transfer functions can it deliver accurate binaural cues.

  7. The effect of multi-channel wide dynamic range compression, noise reduction, and the directional microphone on horizontal localization performance in hearing aid wearers.

    PubMed

    Keidser, Gitte; Rohrseitz, Kristin; Dillon, Harvey; Hamacher, Volkmar; Carter, Lyndal; Rass, Uwe; Convery, Elizabeth

    2006-10-01

    This study examined the effect that signal processing strategies used in modern hearing aids, such as multi-channel WDRC, noise reduction, and directional microphones have on interaural difference cues and horizontal localization performance relative to linear, time-invariant amplification. Twelve participants were bilaterally fitted with BTE devices. Horizontal localization testing using a 360 degrees loudspeaker array and broadband pulsed pink noise was performed two weeks, and two months, post-fitting. The effect of noise reduction was measured with a constant noise present at 80 degrees azimuth. Data were analysed independently in the left/right and front/back dimension and showed that of the three signal processing strategies, directional microphones had the most significant effect on horizontal localization performance and over time. Specifically, a cardioid microphone could decrease front/back errors over time, whereas left/right errors increased when different microphones were fitted to left and right ears. Front/back confusions were generally prominent. Objective measurements of interaural differences on KEMAR explained significant shifts in left/right errors. In conclusion, there is scope for improving the sense of localization in hearing aid users.

  8. The acoustical bright spot and mislocalization of tones by human listeners.

    PubMed

    Macaulay, Eric J; Hartmann, William M; Rakerd, Brad

    2010-03-01

    Listeners attempted to localize 1500-Hz sine tones presented in free field from a loudspeaker array, spanning azimuths from 0 degrees (straight ahead) to 90 degrees (extreme right). During this task, the tone levels and phases were measured in the listeners' ear canals. Because of the acoustical bright spot, measured interaural level differences (ILD) were non-monotonic functions of azimuth with a maximum near 55 degrees . In a source-identification task, listeners' localization decisions closely tracked the non-monotonic ILD, and thus became inaccurate at large azimuths. When listeners received training and feedback, their accuracy improved only slightly. In an azimuth-discrimination task, listeners decided whether a first sound was to the left or to the right of a second. The discrimination results also reflected the confusion caused by the non-monotonic ILD, and they could be predicted approximately by a listener's identification results. When the sine tones were amplitude modulated or replaced by narrow bands of noise, interaural time difference (ITD) cues greatly reduced the confusion for most listeners, but not for all. Recognizing the important role of the bright spot requires a reevaluation of the transition between the low-frequency region for localization (mainly ITD) and the high-frequency region (mainly ILD).

  9. Investigations in mechanisms and strategies to enhance hearing with cochlear implants

    NASA Astrophysics Data System (ADS)

    Churchill, Tyler H.

    Cochlear implants (CIs) produce hearing sensations by stimulating the auditory nerve (AN) with current pulses whose amplitudes are modulated by filtered acoustic temporal envelopes. While this technology has provided hearing for multitudinous CI recipients, even bilaterally-implanted listeners have more difficulty understanding speech in noise and localizing sounds than normal hearing (NH) listeners. Three studies reported here have explored ways to improve electric hearing abilities. Vocoders are often used to simulate CIs for NH listeners. Study 1 was a psychoacoustic vocoder study examining the effects of harmonic carrier phase dispersion and simulated CI current spread on speech intelligibility in noise. Results showed that simulated current spread was detrimental to speech understanding and that speech vocoded with carriers whose components' starting phases were equal was the least intelligible. Cross-correlogram analyses of AN model simulations confirmed that carrier component phase dispersion resulted in better neural envelope representation. Localization abilities rely on binaural processing mechanisms in the brainstem and mid-brain that are not fully understood. In Study 2, several potential mechanisms were evaluated based on the ability of metrics extracted from stereo AN simulations to predict azimuthal locations. Results suggest that unique across-frequency patterns of binaural cross-correlation may provide a strong cue set for lateralization and that interaural level differences alone cannot explain NH sensitivity to lateral position. While it is known that many bilateral CI users are sensitive to interaural time differences (ITDs) in low-rate pulsatile stimulation, most contemporary CI processing strategies use high-rate, constant-rate pulse trains. In Study 3, we examined the effects of pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition by bilateral CI listeners. Results showed that listeners were able to use low-rate pulse timing cues presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli even when mixed with high rates on other electrodes. These results have contributed to a better understanding of those aspects of the auditory system that support speech understanding and binaural hearing, suggested vocoder parameters that may simulate aspects of electric hearing, and shown that redundant, low-rate pulse timing supports improved spatial hearing for bilateral CI listeners.

  10. Using individual differences to test the role of temporal and place cues in coding frequency modulation

    PubMed Central

    Whiteford, Kelly L.; Oxenham, Andrew J.

    2015-01-01

    The question of how frequency is coded in the peripheral auditory system remains unresolved. Previous research has suggested that slow rates of frequency modulation (FM) of a low carrier frequency may be coded via phase-locked temporal information in the auditory nerve, whereas FM at higher rates and/or high carrier frequencies may be coded via a rate-place (tonotopic) code. This hypothesis was tested in a cohort of 100 young normal-hearing listeners by comparing individual sensitivity to slow-rate (1-Hz) and fast-rate (20-Hz) FM at a carrier frequency of 500 Hz with independent measures of phase-locking (using dynamic interaural time difference, ITD, discrimination), level coding (using amplitude modulation, AM, detection), and frequency selectivity (using forward-masking patterns). All FM and AM thresholds were highly correlated with each other. However, no evidence was obtained for stronger correlations between measures thought to reflect phase-locking (e.g., slow-rate FM and ITD sensitivity), or between measures thought to reflect tonotopic coding (fast-rate FM and forward-masking patterns). The results suggest that either psychoacoustic performance in young normal-hearing listeners is not limited by peripheral coding, or that similar peripheral mechanisms limit both high- and low-rate FM coding. PMID:26627783

  11. Using individual differences to test the role of temporal and place cues in coding frequency modulation.

    PubMed

    Whiteford, Kelly L; Oxenham, Andrew J

    2015-11-01

    The question of how frequency is coded in the peripheral auditory system remains unresolved. Previous research has suggested that slow rates of frequency modulation (FM) of a low carrier frequency may be coded via phase-locked temporal information in the auditory nerve, whereas FM at higher rates and/or high carrier frequencies may be coded via a rate-place (tonotopic) code. This hypothesis was tested in a cohort of 100 young normal-hearing listeners by comparing individual sensitivity to slow-rate (1-Hz) and fast-rate (20-Hz) FM at a carrier frequency of 500 Hz with independent measures of phase-locking (using dynamic interaural time difference, ITD, discrimination), level coding (using amplitude modulation, AM, detection), and frequency selectivity (using forward-masking patterns). All FM and AM thresholds were highly correlated with each other. However, no evidence was obtained for stronger correlations between measures thought to reflect phase-locking (e.g., slow-rate FM and ITD sensitivity), or between measures thought to reflect tonotopic coding (fast-rate FM and forward-masking patterns). The results suggest that either psychoacoustic performance in young normal-hearing listeners is not limited by peripheral coding, or that similar peripheral mechanisms limit both high- and low-rate FM coding.

  12. Effect of occlusion, directionality and age on horizontal localization

    NASA Astrophysics Data System (ADS)

    Alworth, Lynzee Nicole

    Localization acuity of a given listener is dependent upon the ability discriminate between interaural time and level disparities. Interaural time differences are encoded by low frequency information whereas interaural level differences are encoded by high frequency information. Much research has examined effects of hearing aid microphone technologies and occlusion separately and prior studies have not evaluated age as a factor in localization acuity. Open-fit hearing instruments provide new earmold technologies and varying microphone capabilities; however, these instruments have yet to be evaluated with regard to horizontal localization acuity. Thus, the purpose of this study is to examine the effects of microphone configuration, type of dome in open-fit hearing instruments, and age on the horizontal localization ability of a given listener. Thirty adults participated in this study and were grouped based upon hearing sensitivity and age (young normal hearing, >50 years normal hearing, >50 hearing impaired). Each normal hearing participant completed one localization experiment (unaided/unamplified) where they listened to the stimulus "Baseball" and selected the point of origin. Hearing impaired listeners were fit with the same two receiver-in-the-ear hearing aids and same dome types, thus controlling for microphone technologies, type of dome, and fitting between trials. Hearing impaired listeners completed a total of 7 localization experiments (unaided/unamplified; open dome: omnidirectional, adaptive directional, fixed directional; micromold: omnidirectional, adaptive directional, fixed directional). Overall, results of this study indicate that age significantly affects horizontal localization ability as younger adult listeners with normal hearing made significantly fewer localization errors than older adult listeners with normal hearing. Also, results revealed a significant difference in performance between dome type; however, upon further examination was not significant. Therefore, results examining type of dome should be viewed with caution. Results examining microphone configuration and microphone configuration by dome type were not significant. Moreover, results evaluating performance relative to unaided (unamplified) were not significant. Taken together, these results suggest open-fit hearing instruments, regardless of microphone or dome type, do not degrade horizontal localization acuity within a given listener relative to their 'older aged' normal hearing counterparts in quiet environments.

  13. Response Properties of Neighboring Neurons in the Auditory Midbrain for Pure-Tone Stimulation: A Tetrode Study

    PubMed Central

    Seshagiri, Chandran V.; Delgutte, Bertrand

    2007-01-01

    The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly <3 kHz in our sample, and the pure-tone thresholds among neighboring neurons. However, width of frequency tuning, shapes of the frequency response areas, and temporal discharge patterns showed little or no correlation among neighboring neurons. Because the BF and threshold are measured at levels near the threshold and the characteristic frequency (CF), neighboring neurons may receive similar primary inputs tuned to their CF; however, at higher levels, additional inputs from other frequency channels may be recruited, introducing greater variability in the responses. There was also no correlation among neighboring neurons' sensitivity to interaural time differences (ITD) measured with binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives. PMID:17671101

  14. Response properties of neighboring neurons in the auditory midbrain for pure-tone stimulation: a tetrode study.

    PubMed

    Seshagiri, Chandran V; Delgutte, Bertrand

    2007-10-01

    The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly <3 kHz in our sample, and the pure-tone thresholds among neighboring neurons. However, width of frequency tuning, shapes of the frequency response areas, and temporal discharge patterns showed little or no correlation among neighboring neurons. Because the BF and threshold are measured at levels near the threshold and the characteristic frequency (CF), neighboring neurons may receive similar primary inputs tuned to their CF; however, at higher levels, additional inputs from other frequency channels may be recruited, introducing greater variability in the responses. There was also no correlation among neighboring neurons' sensitivity to interaural time differences (ITD) measured with binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives.

  15. Generic HRTFs May be Good Enough in Virtual Reality. Improving Source Localization through Cross-Modal Plasticity.

    PubMed

    Berger, Christopher C; Gonzalez-Franco, Mar; Tajadura-Jiménez, Ana; Florencio, Dinei; Zhang, Zhengyou

    2018-01-01

    Auditory spatial localization in humans is performed using a combination of interaural time differences, interaural level differences, as well as spectral cues provided by the geometry of the ear. To render spatialized sounds within a virtual reality (VR) headset, either individualized or generic Head Related Transfer Functions (HRTFs) are usually employed. The former require arduous calibrations, but enable accurate auditory source localization, which may lead to a heightened sense of presence within VR. The latter obviate the need for individualized calibrations, but result in less accurate auditory source localization. Previous research on auditory source localization in the real world suggests that our representation of acoustic space is highly plastic. In light of these findings, we investigated whether auditory source localization could be improved for users of generic HRTFs via cross-modal learning. The results show that pairing a dynamic auditory stimulus, with a spatio-temporally aligned visual counterpart, enabled users of generic HRTFs to improve subsequent auditory source localization. Exposure to the auditory stimulus alone or to asynchronous audiovisual stimuli did not improve auditory source localization. These findings have important implications for human perception as well as the development of VR systems as they indicate that generic HRTFs may be enough to enable good auditory source localization in VR.

  16. A method to enhance the use of interaural time differences for cochlear implants in reverberant environments

    PubMed Central

    Monaghan, Jessica J. M.; Seeber, Bernhard U.

    2017-01-01

    The ability of normal-hearing (NH) listeners to exploit interaural time difference (ITD) cues conveyed in the modulated envelopes of high-frequency sounds is poor compared to ITD cues transmitted in the temporal fine structure at low frequencies. Sensitivity to envelope ITDs is further degraded when envelopes become less steep, when modulation depth is reduced, and when envelopes become less similar between the ears, common factors when listening in reverberant environments. The vulnerability of envelope ITDs is particularly problematic for cochlear implant (CI) users, as they rely on information conveyed by slowly varying amplitude envelopes. Here, an approach to improve access to envelope ITDs for CIs is described in which, rather than attempting to reduce reverberation, the perceptual saliency of cues relating to the source is increased by selectively sharpening peaks in the amplitude envelope judged to contain reliable ITDs. Performance of the algorithm with room reverberation was assessed through simulating listening with bilateral CIs in headphone experiments with NH listeners. Relative to simulated standard CI processing, stimuli processed with the algorithm generated lower ITD discrimination thresholds and increased extents of laterality. Depending on parameterization, intelligibility was unchanged or somewhat reduced. The algorithm has the potential to improve spatial listening with CIs. PMID:27586742

  17. Spatial hearing in Cope’s gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations

    PubMed Central

    Lee, Norman; Schrode, Katrina M.; Johns, Anastasia R.; Christensen-Dalsgaard, Jakob; Bee, Mark A.

    2014-01-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs. PMID:24504183

  18. On the ability of human listeners to distinguish between front and back.

    PubMed

    Zhang, Peter Xinya; Hartmann, William M

    2010-02-01

    In order to determine whether a sound source is in front or in back, listeners can use location-dependent spectral cues caused by diffraction from their anatomy. This capability was studied using a precise virtual reality technique (VRX) based on a transaural technology. Presented with a virtual baseline simulation accurate up to 16 kHz, listeners could not distinguish between the simulation and a real source. Experiments requiring listeners to discriminate between front and back locations were performed using controlled modifications of the baseline simulation to test hypotheses about the important spectral cues. The experiments concluded: (1) Front/back cues were not confined to any particular 1/3rd or 2/3rd octave frequency region. Often adequate cues were available in any of several disjoint frequency regions. (2) Spectral dips were more important than spectral peaks. (3) Neither monaural cues nor interaural spectral level difference cues were adequate. (4) Replacing baseline spectra by sharpened spectra had minimal effect on discrimination performance. (5) When presented with an interaural time difference less than 200 micros, which pulled the image to the side, listeners still successfully discriminated between front and back, suggesting that front/back discrimination is independent of azimuthal localization within certain limits. Copyright 2009 Elsevier B.V. All rights reserved.

  19. On the ability of human listeners to distinguish between front and back

    PubMed Central

    Zhang, Peter Xinya; Hartmann, William M.

    2009-01-01

    In order to determine whether a sound source is in front or in back, listeners can use location-dependent spectral cues caused by diffraction from their anatomy. This capability was studied using a precise virtual-reality technique (VRX) based on a transaural technology. Presented with a virtual baseline simulation accurate up to 16 kHz, listeners could not distinguish between the simulation and a real source. Experiments requiring listeners to discriminate between front and back locations were performed using controlled modifications of the baseline simulation to test hypotheses about the important spectral cues. The experiments concluded: (1) Front/back cues were not confined to any particular 1/3rd or 2/3rd octave frequency region. Often adequate cues were available in any of several disjoint frequency regions. (2) Spectral dips were more important than spectral peaks. (3) Neither monaural cues nor interaural spectral level difference cues were adequate. (4) Replacing baseline spectra by sharpened spectra had minimal effect on discrimination performance. (5) When presented with an interaural time difference less than 200 μs, which pulled the image to the side, listeners still successfully discriminated between front and back, suggesting that front/back discrimination is independent of azimuthal localization within certain limits. PMID:19900525

  20. A circuit for detection of interaural time differences in the nucleus laminaris of turtles.

    PubMed

    Willis, Katie L; Carr, Catherine E

    2017-11-15

    The physiological hearing range of turtles is approximately 50-1000 Hz, as determined by cochlear microphonics ( Wever and Vernon, 1956a). These low frequencies can constrain sound localization, particularly in red-eared slider turtles, which are freshwater turtles with small heads and isolated middle ears. To determine if these turtles were sensitive to interaural time differences (ITDs), we investigated the connections and physiology of their auditory brainstem nuclei. Tract tracing experiments showed that cranial nerve VIII bifurcated to terminate in the first-order nucleus magnocellularis (NM) and nucleus angularis (NA), and the NM projected bilaterally to the nucleus laminaris (NL). As the NL received inputs from each side, we developed an isolated head preparation to examine responses to binaural auditory stimulation. Magnocellularis and laminaris units responded to frequencies from 100 to 600 Hz, and phase-locked reliably to the auditory stimulus. Responses from the NL were binaural, and sensitive to ITD. Measures of characteristic delay revealed best ITDs around ±200 μs, and NL neurons typically had characteristic phases close to 0, consistent with binaural excitation. Thus, turtles encode ITDs within their physiological range, and their auditory brainstem nuclei have similar connections and cell types to other reptiles. © 2017. Published by The Company of Biologists Ltd.

  1. Examination of Insert Ear Interaural Attenuation (IA)Values in Audiological Evaluations.

    PubMed

    Gumus, Nebi M; Gumus, Merve; Unsal, Selim; Yuksel, Mustafa; Gunduz, Mehmet

    2016-12-01

    The purpose of this study was to evaluate Interaural Attenuation (IA) in frequency base in the insert earphones that are used in audiological assessments. Thirty healthy subjects between 18-65 years of age (14 female and 16 male) participated in our study. Otoscopic examination was performed on all participants. Audiological evaluations were performed using the Interacoustics AC40 clinical audiometer and ER-3A insert earphones. IA value was calculated by subtracting good ear bone conduction hearing thresholds of the worst airway hearing threshold. In our measuring for 0.125-8.0 kHz frequency were performed in our audiometry device separately for each frequency. IA amount in the results we found in 1000 Hz and below frequencies about 75-110 dB range avarage is 89±5dB, in above 1000 Hz frequencies in 50-95 dB range and avarage it is changed to 69±5dB. According to the obtained findings the quantity of melting in the transition between the ears are increasing with the insert earphones. The insert earphone should be beside supraaural earphone that is routinely used in clinics. Difficult masking applications due to the increase in the value of IA can be easily done with insert earphones.

  2. Spatial hearing in Cope's gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations.

    PubMed

    Caldwell, Michael S; Lee, Norman; Schrode, Katrina M; Johns, Anastasia R; Christensen-Dalsgaard, Jakob; Bee, Mark A

    2014-04-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope's gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1-4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs.

  3. The acoustical bright spot and mislocalization of tones by human listeners

    PubMed Central

    Macaulay, Eric J.; Hartmann, William M.; Rakerd, Brad

    2010-01-01

    Listeners attempted to localize 1500-Hz sine tones presented in free field from a loudspeaker array, spanning azimuths from 0° (straight ahead) to 90° (extreme right). During this task, the tone levels and phases were measured in the listeners’ ear canals. Because of the acoustical bright spot, measured interaural level differences (ILD) were non-monotonic functions of azimuth with a maximum near 55°. In a source-identification task, listeners’ localization decisions closely tracked the non-monotonic ILD, and thus became inaccurate at large azimuths. When listeners received training and feedback, their accuracy improved only slightly. In an azimuth-discrimination task, listeners decided whether a first sound was to the left or to the right of a second. The discrimination results also reflected the confusion caused by the non-monotonic ILD, and they could be predicted approximately by a listener’s identification results. When the sine tones were amplitude modulated or replaced by narrow bands of noise, interaural time difference (ITD) cues greatly reduced the confusion for most listeners, but not for all. Recognizing the important role of the bright spot requires a reevaluation of the transition between the low-frequency region for localization (mainly ITD) and the high-frequency region (mainly ILD). PMID:20329844

  4. Local and Global Spatial Organization of Interaural Level Difference and Frequency Preferences in Auditory Cortex

    PubMed Central

    Panniello, Mariangela; King, Andrew J; Dahmen, Johannes C; Walker, Kerry M M

    2018-01-01

    Abstract Despite decades of microelectrode recordings, fundamental questions remain about how auditory cortex represents sound-source location. Here, we used in vivo 2-photon calcium imaging to measure the sensitivity of layer II/III neurons in mouse primary auditory cortex (A1) to interaural level differences (ILDs), the principal spatial cue in this species. Although most ILD-sensitive neurons preferred ILDs favoring the contralateral ear, neurons with either midline or ipsilateral preferences were also present. An opponent-channel decoder accurately classified ILDs using the difference in responses between populations of neurons that preferred contralateral-ear-greater and ipsilateral-ear-greater stimuli. We also examined the spatial organization of binaural tuning properties across the imaged neurons with unprecedented resolution. Neurons driven exclusively by contralateral ear stimuli or by binaural stimulation occasionally formed local clusters, but their binaural categories and ILD preferences were not spatially organized on a more global scale. In contrast, the sound frequency preferences of most neurons within local cortical regions fell within a restricted frequency range, and a tonotopic gradient was observed across the cortical surface of individual mice. These results indicate that the representation of ILDs in mouse A1 is comparable to that of most other mammalian species, and appears to lack systematic or consistent spatial order. PMID:29136122

  5. Binaural hearing in children using Gaussian enveloped and transposed tones.

    PubMed

    Ehlers, Erica; Kan, Alan; Winn, Matthew B; Stoelb, Corey; Litovsky, Ruth Y

    2016-04-01

    Children who use bilateral cochlear implants (BiCIs) show significantly poorer sound localization skills than their normal hearing (NH) peers. This difference has been attributed, in part, to the fact that cochlear implants (CIs) do not faithfully transmit interaural time differences (ITDs) and interaural level differences (ILDs), which are known to be important cues for sound localization. Interestingly, little is known about binaural sensitivity in NH children, in particular, with stimuli that constrain acoustic cues in a manner representative of CI processing. In order to better understand and evaluate binaural hearing in children with BiCIs, the authors first undertook a study on binaural sensitivity in NH children ages 8-10, and in adults. Experiments evaluated sound discrimination and lateralization using ITD and ILD cues, for stimuli with robust envelope cues, but poor representation of temporal fine structure. Stimuli were spondaic words, Gaussian-enveloped tone pulse trains (100 pulse-per-second), and transposed tones. Results showed that discrimination thresholds in children were adult-like (15-389 μs for ITDs and 0.5-6.0 dB for ILDs). However, lateralization based on the same binaural cues showed higher variability than seen in adults. Results are discussed in the context of factors that may be responsible for poor representation of binaural cues in bilaterally implanted children.

  6. Toward a more ecologically valid measure of speech understanding in background noise.

    PubMed

    Jerger, J; Greenwald, R; Wambacq, I; Seipel, A; Moncrieff, D

    2000-05-01

    In an attempt to develop a more ecologically valid measure of speech understanding in a background of competing speech, we constructed a quasidichotic procedure based on the monitoring of continuous speech from loudspeakers placed directly to the listener's right and left sides. The listener responded to the presence of incongruous or anomalous words imbedded within the context of two children's fairy tales. Attention was directed either to the right or to the left side in blocks of 25 utterances. Within each block, there were target (anomalous) and nontarget (nonanomalous) words. Responses to target words were analyzed separately for attend-right and attend-left conditions. Our purpose was twofold: (1) to evaluate the feasibility of such an approach for obtaining electrophysiologic performance measures in the sound field and (2) to gather normative interaural symmetry data for the new technique in young adults with normal hearing. Event-related potentials to target and nontarget words at 30 electrode sites were obtained in 20 right-handed young adults with normal hearing. Waveforms and associated topographic maps were characterized by a slight negativity in the region of 400 msec (N400) and robust positivity in the region of 900 msec (P900). Norms for interaural symmetry of the P900 event-related potential in young adults were derived.

  7. Physiological and content considerations for a second low frequency channel for bass management, subwoofers, and low frequency enhancement (LFE)

    NASA Astrophysics Data System (ADS)

    Miller, Robert E. (Robin)

    2005-04-01

    Perception of very low frequencies (VLF) below 125 Hz reproduced by large woofers and subwoofers (SW), encompassing 3 octaves of the 10 regarded as audible, has physiological and content aspects. Large room acoustics and vibrato add VLF fluctuations, modulating audible carrier frequencies to >1 Hz. By convention, sounds below 90 Hz produce no interaural cues useful for spatial perception or localization, therefore bass management redirects the VLF range from main channels to a single (monaural) subwoofer channel, even if to more than one subwoofer. Yet subjects claim they hear a difference between a single subwoofer channel and two (stereo bass). If recordings contain spatial VLF content, is it possible physiologically to perceive interaural time/phase difference (ITD/IPD) between 16 and 125 Hz? To what extent does this perception have a lifelike quality; to what extent is it localization? If a first approximation of localization, would binaural SWs allow a higher crossover frequency (smaller satellite speakers)? Reported research supports the Jeffress model of ITD determination in brain structures, and extending the accepted lower frequency limit of IPD. Meanwhile, uncorrelated very low frequencies exist in all tested multi-channel music and movie content. The audibility, recording, and reproduction of uncorrelated VLF are explored in theory and experiments.

  8. An Auditory Illusion of Proximity of the Source Induced by Sonic Crystals

    PubMed Central

    Spiousas, Ignacio; Etchemendy, Pablo E.; Vergara, Ramiro O.; Calcagno, Esteban R.; Eguia, Manuel C.

    2015-01-01

    In this work we report an illusion of proximity of a sound source created by a sonic crystal placed between the source and a listener. This effect seems, at first, paradoxical to naïve listeners since the sonic crystal is an obstacle formed by almost densely packed cylindrical scatterers. Even when the singular acoustical properties of these periodic composite materials have been studied extensively (including band gaps, deaf bands, negative refraction, and birrefringence), the possible perceptual effects remain unexplored. The illusion reported here is studied through acoustical measurements and a psychophysical experiment. The results of the acoustical measurements showed that, for a certain frequency range and region in space where the focusing phenomenon takes place, the sonic crystal induces substantial increases in binaural intensity, direct-to-reverberant energy ratio and interaural cross-correlation values, all cues involved in the auditory perception of distance. Consistently, the results of the psychophysical experiment revealed that the presence of the sonic crystal between the sound source and the listener produces a significant reduction of the perceived relative distance to the sound source. PMID:26222281

  9. Effects of sound source location and direction on acoustic parameters in Japanese churches.

    PubMed

    Soeta, Yoshiharu; Ito, Ken; Shimokura, Ryota; Sato, Shin-ichi; Ohsawa, Tomohiro; Ando, Yoichi

    2012-02-01

    In 1965, the Catholic Church liturgy changed to allow priests to face the congregation. Whereas Church tradition, teaching, and participation have been much discussed with respect to priest orientation at Mass, the acoustical changes in this regard have not yet been examined scientifically. To discuss acoustic desired within churches, it is necessary to know the acoustical characteristics appropriate for each phase of the liturgy. In this study, acoustic measurements were taken at various source locations and directions using both old and new liturgies performed in Japanese churches. A directional loudspeaker was used as the source to provide vocal and organ acoustic fields, and impulse responses were measured. Various acoustical parameters such as reverberation time and early decay time were analyzed. The speech transmission index was higher for the new Catholic liturgy, suggesting that the change in liturgy has improved speech intelligibility. Moreover, the interaural cross-correlation coefficient and early lateral energy fraction were higher and lower, respectively, suggesting that the change in liturgy has made the apparent source width smaller. © 2012 Acoustical Society of America

  10. An Auditory Illusion of Proximity of the Source Induced by Sonic Crystals.

    PubMed

    Spiousas, Ignacio; Etchemendy, Pablo E; Vergara, Ramiro O; Calcagno, Esteban R; Eguia, Manuel C

    2015-01-01

    In this work we report an illusion of proximity of a sound source created by a sonic crystal placed between the source and a listener. This effect seems, at first, paradoxical to naïve listeners since the sonic crystal is an obstacle formed by almost densely packed cylindrical scatterers. Even when the singular acoustical properties of these periodic composite materials have been studied extensively (including band gaps, deaf bands, negative refraction, and birrefringence), the possible perceptual effects remain unexplored. The illusion reported here is studied through acoustical measurements and a psychophysical experiment. The results of the acoustical measurements showed that, for a certain frequency range and region in space where the focusing phenomenon takes place, the sonic crystal induces substantial increases in binaural intensity, direct-to-reverberant energy ratio and interaural cross-correlation values, all cues involved in the auditory perception of distance. Consistently, the results of the psychophysical experiment revealed that the presence of the sonic crystal between the sound source and the listener produces a significant reduction of the perceived relative distance to the sound source.

  11. Performance on Tests of Central Auditory Processing by Individuals Exposed to High-Intensity Blasts

    DTIC Science & Technology

    2012-07-01

    percent (gap detected on at least four of the six presentations), with all longer durations receiving a score greater than 50 percent. Binaural ...Processing and Sound Localization Temporal precision of neural firing is also involved in binaural processing and localization of sound in space. The...Masking Level Difference (MLD) test evaluates the integrity of the earliest sites of binaural comparison and sensitivity to interaural phase in the

  12. Exploring auditory neglect: Anatomo-clinical correlations of auditory extinction.

    PubMed

    Tissieres, Isabel; Crottaz-Herbette, Sonia; Clarke, Stephanie

    2018-05-23

    The key symptoms of auditory neglect include left extinction on tasks of dichotic and/or diotic listening and rightward shift in locating sounds. The anatomical correlates of the latter are relatively well understood, but no systematic studies have examined auditory extinction. Here, we performed a systematic study of anatomo-clinical correlates of extinction by using dichotic and/or diotic listening tasks. In total, 20 patients with right hemispheric damage (RHD) and 19 with left hemispheric damage (LHD) performed dichotic and diotic listening tasks. Either task consists of the simultaneous presentation of word pairs; in the dichotic task, 1 word is presented to each ear, and in the diotic task, each word is lateralized by means of interaural time differences and presented to one side. RHD was associated with exclusively contralesional extinction in dichotic or diotic listening, whereas in selected cases, LHD led to contra- or ipsilesional extinction. Bilateral symmetrical extinction occurred in RHD or LHD, with dichotic or diotic listening. The anatomical correlates of these extinction profiles offer an insight into the organisation of the auditory and attentional systems. First, left extinction in dichotic versus diotic listening involves different parts of the right hemisphere, which explains the double dissociation between these 2 neglect symptoms. Second, contralesional extinction in the dichotic task relies on homologous regions in either hemisphere. Third, ipsilesional extinction in dichotic listening after LHD was associated with lesions of the intrahemispheric white matter, interrupting callosal fibres outside their midsagittal or periventricular trajectory. Fourth, bilateral symmetrical extinction was associated with large parieto-fronto-temporal LHD or smaller parieto-temporal RHD, which suggests that divided attention, supported by the right hemisphere, and auditory streaming, supported by the left, likely play a critical role. Copyright © 2018. Published by Elsevier Masson SAS.

  13. Cochlear implantation with hearing preservation yields significant benefit for speech recognition in complex listening environments.

    PubMed

    Gifford, René H; Dorman, Michael F; Skarzynski, Henryk; Lorens, Artur; Polak, Marek; Driscoll, Colin L W; Roland, Peter; Buchman, Craig A

    2013-01-01

    The aim of this study was to assess the benefit of having preserved acoustic hearing in the implanted ear for speech recognition in complex listening environments. The present study included a within-subjects, repeated-measures design including 21 English-speaking and 17 Polish-speaking cochlear implant (CI) recipients with preserved acoustic hearing in the implanted ear. The patients were implanted with electrodes that varied in insertion depth from 10 to 31 mm. Mean preoperative low-frequency thresholds (average of 125, 250, and 500 Hz) in the implanted ear were 39.3 and 23.4 dB HL for the English- and Polish-speaking participants, respectively. In one condition, speech perception was assessed in an eight-loudspeaker environment in which the speech signals were presented from one loudspeaker and restaurant noise was presented from all loudspeakers. In another condition, the signals were presented in a simulation of a reverberant environment with a reverberation time of 0.6 sec. The response measures included speech reception thresholds (SRTs) and percent correct sentence understanding for two test conditions: CI plus low-frequency hearing in the contralateral ear (bimodal condition) and CI plus low-frequency hearing in both ears (best-aided condition). A subset of six English-speaking listeners were also assessed on measures of interaural time difference thresholds for a 250-Hz signal. Small, but significant, improvements in performance (1.7-2.1 dB and 6-10 percentage points) were found for the best-aided condition versus the bimodal condition. Postoperative thresholds in the implanted ear were correlated with the degree of electric and acoustic stimulation (EAS) benefit for speech recognition in diffuse noise. There was no reliable relationship among measures of audiometric threshold in the implanted ear nor elevation in threshold after surgery and improvement in speech understanding in reverberation. There was a significant correlation between interaural time difference threshold at 250 Hz and EAS-related benefit for the adaptive speech reception threshold. The findings of this study suggest that (1) preserved low-frequency hearing improves speech understanding for CI recipients, (2) testing in complex listening environments, in which binaural timing cues differ for signal and noise, may best demonstrate the value of having two ears with low-frequency acoustic hearing, and (3) preservation of binaural timing cues, although poorer than observed for individuals with normal hearing, is possible after unilateral cochlear implantation with hearing preservation and is associated with EAS benefit. The results of this study demonstrate significant communicative benefit for hearing preservation in the implanted ear and provide support for the expansion of CI criteria to include individuals with low-frequency thresholds in even the normal to near-normal range.

  14. Individual Differences Reveal Correlates of Hidden Hearing Deficits

    PubMed Central

    Masud, Salwa; Mehraei, Golbarg; Verhulst, Sarah; Shinn-Cunningham, Barbara G.

    2015-01-01

    Clinical audiometry has long focused on determining the detection thresholds for pure tones, which depend on intact cochlear mechanics and hair cell function. Yet many listeners with normal hearing thresholds complain of communication difficulties, and the causes for such problems are not well understood. Here, we explore whether normal-hearing listeners exhibit such suprathreshold deficits, affecting the fidelity with which subcortical areas encode the temporal structure of clearly audible sound. Using an array of measures, we evaluated a cohort of young adults with thresholds in the normal range to assess both cochlear mechanical function and temporal coding of suprathreshold sounds. Listeners differed widely in both electrophysiological and behavioral measures of temporal coding fidelity. These measures correlated significantly with each other. Conversely, these differences were unrelated to the modest variation in otoacoustic emissions, cochlear tuning, or the residual differences in hearing threshold present in our cohort. Electroencephalography revealed that listeners with poor subcortical encoding had poor cortical sensitivity to changes in interaural time differences, which are critical for localizing sound sources and analyzing complex scenes. These listeners also performed poorly when asked to direct selective attention to one of two competing speech streams, a task that mimics the challenges of many everyday listening environments. Together with previous animal and computational models, our results suggest that hidden hearing deficits, likely originating at the level of the cochlear nerve, are part of “normal hearing.” PMID:25653371

  15. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.

    PubMed

    Brown, Andrew D; Tollin, Daniel J

    2016-09-21

    In mammals, localization of sound sources in azimuth depends on sensitivity to interaural differences in sound timing (ITD) and level (ILD). Paradoxically, while typical ILD-sensitive neurons of the auditory brainstem require millisecond synchrony of excitatory and inhibitory inputs for the encoding of ILDs, human and animal behavioral ILD sensitivity is robust to temporal stimulus degradations (e.g., interaural decorrelation due to reverberation), or, in humans, bilateral clinical device processing. Here we demonstrate that behavioral ILD sensitivity is only modestly degraded with even complete decorrelation of left- and right-ear signals, suggesting the existence of a highly integrative ILD-coding mechanism. Correspondingly, we find that a majority of auditory midbrain neurons in the central nucleus of the inferior colliculus (of chinchilla) effectively encode ILDs despite complete decorrelation of left- and right-ear signals. We show that such responses can be accounted for by relatively long windows of bilateral excitatory-inhibitory interaction, which we explicitly measure using trains of narrowband clicks. Neural and behavioral data are compared with the outputs of a simple model of ILD processing with a single free parameter, the duration of excitatory-inhibitory interaction. Behavioral, neural, and modeling data collectively suggest that ILD sensitivity depends on binaural integration of excitation and inhibition within a ≳3 ms temporal window, significantly longer than observed in lower brainstem neurons. This relatively slow integration potentiates a unique role for the ILD system in spatial hearing that may be of particular importance when informative ITD cues are unavailable. In mammalian hearing, interaural differences in the timing (ITD) and level (ILD) of impinging sounds carry critical information about source location. However, natural sounds are often decorrelated between the ears by reverberation and background noise, degrading the fidelity of both ITD and ILD cues. Here we demonstrate that behavioral ILD sensitivity (in humans) and neural ILD sensitivity (in single neurons of the chinchilla auditory midbrain) remain robust under stimulus conditions that render ITD cues undetectable. This result can be explained by "slow" temporal integration arising from several-millisecond-long windows of excitatory-inhibitory interaction evident in midbrain, but not brainstem, neurons. Such integrative coding can account for the preservation of ILD sensitivity despite even extreme temporal degradations in ecological acoustic stimuli. Copyright © 2016 the authors 0270-6474/16/369908-14$15.00/0.

  16. Index to FAA Office of Aviation Medicine Reports: 1961 through 1998.

    DTIC Science & Technology

    1999-01-01

    Mechanisms of action of the insecticide endrin. AD431299 63-17 Tobias, J. V: Application of a "relative" procedure to a problem in binaural beat ...selection, 90-13. ... auditory fatigue, 63-19, 65-1, 65-2. ... binaural beat perception, 63-17. ... cockpit noise intensities, 68-21, 68-25. ... ear...Communication ... ATC/pilot voice, 93-20, 95-15, 96-26, 98-17, 98-20. ... binaural beat perception, 63-17. ... earphone response, 63-7. ... interaural

  17. Azimuthal sound localization in the European starling (Sturnus vulgaris): I. Physical binaural cues.

    PubMed

    Klump, G M; Larsen, O N

    1992-02-01

    The physical measurements reported here test whether the European starling (Sturnus vulgaris) evaluates the azimuth direction of a sound source with a peripheral auditory system composed of two acoustically coupled pressure-difference receivers (1) or of two decoupled pressure receivers (2). A directional pattern of sound intensity in the free-field was measured at the entrance of the auditory meatus using a probe microphone, and at the tympanum using laser vibrometry. The maximum differences in the sound-pressure level measured with the microphone between various speaker positions and the frontal speaker position were 2.4 dB at 1 and 2 kHz, 7.3 dB at 4 kHz, 9.2 dB at 6 kHz, and 10.9 dB at 8 kHz. The directional amplitude pattern measured by laser vibrometry did not differ from that measured with the microphone. Neither did the directional pattern of travel times to the ear. Measurements of the amplitude and phase transfer function of the starling's interaural pathway using a closed sound system were in accord with the results of the free-field measurements. In conclusion, although some sound transmission via the interaural canal occurred, the present experiments support the hypothesis 2 above that the starling's peripheral auditory system is best described as consisting of two functionally decoupled pressure receivers.

  18. Characteristics of stereo reproduction with parametric loudspeakers

    NASA Astrophysics Data System (ADS)

    Aoki, Shigeaki; Toba, Masayoshi; Tsujita, Norihisa

    2012-05-01

    A parametric loudspeaker utilizes nonlinearity of a medium and is known as a super-directivity loudspeaker. The parametric loudspeaker is one of the prominent applications of nonlinear ultrasonics. So far, the applications have been limited monaural reproduction sound system for public address in museum, station and street etc. In this paper, we discussed characteristics of stereo reproduction with two parametric loudspeakers by comparing with those with two ordinary dynamic loudspeakers. In subjective tests, three typical listening positions were selected to investigate the possibility of correct sound localization in a wide listening area. The binaural information was ILD (Interaural Level Difference) or ITD (Interaural Time Delay). The parametric loudspeaker was an equilateral hexagon. The inner and outer diameters were 99 and 112 mm, respectively. Signals were 500 Hz, 1 kHz, 2 kHz and 4 kHz pure tones and pink noise. Three young males listened to test signals 10 times in each listening condition. Subjective test results showed that listeners at the three typical listening positions perceived correct sound localization of all signals using the parametric loudspeakers. It was almost similar to those using the ordinary dynamic loudspeakers, however, except for the case of sinusoidal waves with ITD. It was determined the parametric loudspeaker could exclude the contradiction between the binaural information ILD and ITD that occurred in stereo reproduction with ordinary dynamic loudspeakers because the super directivity of parametric loudspeaker suppressed the cross talk components.

  19. Mechanisms for Adjusting Interaural Time Differences to Achieve Binaural Coincidence Detection

    PubMed Central

    Seidl, Armin H.; Rubel, Edwin W; Harris, David M.

    2010-01-01

    Understanding binaural perception requires detailed analyses of the neural circuitry responsible for the computation of interaural time differences (ITDs). In the avian brainstem, this circuit consists of internal axonal delay lines innervating an array of coincidence detector neurons that encode external ITDs. Nucleus magnocellularis (NM) neurons project to the dorsal dendritic field of the ipsilateral nucleus laminaris (NL) and to the ventral field of the contralateral NL. Contralateral-projecting axons form a delay line system along a band of NL neurons. Binaural acoustic signals in the form of phase-locked action potentials from NM cells arrive at NL and establish a topographic map of sound source location along the azimuth. These pathways are assumed to represent a circuit similar to the Jeffress model of sound localization, establishing a place code along an isofrequency contour of NL. Three-dimensional measurements of axon lengths reveal major discrepancies with the current model; the temporal offset based on conduction length alone makes encoding of physiological ITDs impossible. However, axon diameter and distances between Nodes of Ranvier also influence signal propagation times along an axon. Our measurements of these parameters reveal that diameter and internode distance can compensate for the temporal offset inferred from axon lengths alone. Together with other recent studies these unexpected results should inspire new thinking on the cellular biology, evolution and plasticity of the circuitry underlying low frequency sound localization in both birds and mammals. PMID:20053889

  20. Representation of Dynamic Interaural Phase Difference in Auditory Cortex of Awake Rhesus Macaques

    PubMed Central

    Scott, Brian H.; Malone, Brian J.; Semple, Malcolm N.

    2009-01-01

    Neurons in auditory cortex of awake primates are selective for the spatial location of a sound source, yet the neural representation of the binaural cues that underlie this tuning remains undefined. We examined this representation in 283 single neurons across the low-frequency auditory core in alert macaques, trained to discriminate binaural cues for sound azimuth. In response to binaural beat stimuli, which mimic acoustic motion by modulating the relative phase of a tone at the two ears, these neurons robustly modulate their discharge rate in response to this directional cue. In accordance with prior studies, the preferred interaural phase difference (IPD) of these neurons typically corresponds to azimuthal locations contralateral to the recorded hemisphere. Whereas binaural beats evoke only transient discharges in anesthetized cortex, neurons in awake cortex respond throughout the IPD cycle. In this regard, responses are consistent with observations at earlier stations of the auditory pathway. Discharge rate is a band-pass function of the frequency of IPD modulation in most neurons (73%), but both discharge rate and temporal synchrony are independent of the direction of phase modulation. When subjected to a receiver operator characteristic analysis, the responses of individual neurons are insufficient to account for the perceptual acuity of these macaques in an IPD discrimination task, suggesting the need for neural pooling at the cortical level. PMID:19164111

  1. Representation of dynamic interaural phase difference in auditory cortex of awake rhesus macaques.

    PubMed

    Scott, Brian H; Malone, Brian J; Semple, Malcolm N

    2009-04-01

    Neurons in auditory cortex of awake primates are selective for the spatial location of a sound source, yet the neural representation of the binaural cues that underlie this tuning remains undefined. We examined this representation in 283 single neurons across the low-frequency auditory core in alert macaques, trained to discriminate binaural cues for sound azimuth. In response to binaural beat stimuli, which mimic acoustic motion by modulating the relative phase of a tone at the two ears, these neurons robustly modulate their discharge rate in response to this directional cue. In accordance with prior studies, the preferred interaural phase difference (IPD) of these neurons typically corresponds to azimuthal locations contralateral to the recorded hemisphere. Whereas binaural beats evoke only transient discharges in anesthetized cortex, neurons in awake cortex respond throughout the IPD cycle. In this regard, responses are consistent with observations at earlier stations of the auditory pathway. Discharge rate is a band-pass function of the frequency of IPD modulation in most neurons (73%), but both discharge rate and temporal synchrony are independent of the direction of phase modulation. When subjected to a receiver operator characteristic analysis, the responses of individual neurons are insufficient to account for the perceptual acuity of these macaques in an IPD discrimination task, suggesting the need for neural pooling at the cortical level.

  2. The Clinical Utility of Vestibular-Evoked Myogenic Potentials in the Diagnosis of Ménière’s Disease

    PubMed Central

    Maheu, Maxime; Alvarado-Umanzor, Jenny Marylin; Delcenserie, Audrey; Champoux, François

    2017-01-01

    Ménière’s disease (MD) is a condition that has been proposed over 150 years ago, which involves audiological and vestibular manifestations, such as aural fullness, tinnitus, vertigo, and fluctuating hearing thresholds. Over the past few years, many researchers have assessed different techniques to help diagnose this pathology. Vestibular-evoked myogenic potential (VEMP) is an electrophysiological method assessing the saccule (cVEMP) and the utricule (oVEMP). Its clinical utility in the diagnosis of multiple pathologies, such as superior canal dehiscence, has made this tool a common method used in otologic clinics. The main objective of the present review is to determine the current state of knowledge of the VEMP in the identification of MD, such as the type of stimuli, the frequency tuning, and the interaural asymmetry ratio of the cVEMP and the oVEMP. Results show that the type of stimulation, the frequency sensitivity shift and the interaural asymmetry ratio (IAR) could be useful tool to diagnose and describe the evolution of MD. It is, however, important to emphasize that further studies are needed to confirm the utility of VEMP in the identification of MD in its early stage, using either bone-conduction vibration or air-conduction stimulation, which is of clinical importance when it comes to early intervention. PMID:28861037

  3. Underwater localization of pure tones by harbor seals (Phoca vitulina).

    PubMed

    Bodson, Anaïs; Miersch, Lars; Dehnhardt, Guido

    2007-10-01

    The underwater sound localization acuity of harbor seals (Phoca vitulina) was measured in the horizontal plane. Minimum audible angles (MAAs) of pure tones were determined as a function of frequency from 0.2 to 16 kHz for two seals. Testing was conducted in a 10-m-diam underwater half circle using a right/left psychophysical procedure. The results indicate that for both harbor seals, MAAs were large at high frequencies (13.5 degrees and 17.4 degrees at 16 kHz), transitional at intermediate frequencies (9.6 degrees and 10.1 degrees at 4 kHz), and particularly small at low frequencies (3.2 degrees and 3.1 degrees at 0.2 kHz). Harbor seals seem to be able to utilize both binaural cues, interaural time differences (ITDs) and interaural intensity differences (IIDs), but a significant decrease in the sound localization acuity with increasing frequency suggests that IID cues may not be as robust as ITD cues under water. These results suggest that the harbor seal can be regarded as a low-frequency specialist. Additionally, to obtain a MAA more representative of the species, the horizontal underwater MAA of six adult harbor seals was measured at 2 kHz under identical conditions. The MAAs of the six animals ranged from 8.8 degrees to 11.7 degrees , resulting in a mean MAA of 10.3 degrees .

  4. T-tubule disease: Relationship between t-tubule organization and regional contractile performance in human dilated cardiomyopathy.

    PubMed

    Crossman, David J; Young, Alistair A; Ruygrok, Peter N; Nason, Guy P; Baddelely, David; Soeller, Christian; Cannell, Mark B

    2015-07-01

    Evidence from animal models suggest that t-tubule changes may play an important role in the contractile deficit associated with heart failure. However samples are usually taken at random with no regard as to regional variability present in failing hearts which leads to uncertainty in the relationship between contractile performance and possible t-tubule derangement. Regional contraction in human hearts was measured by tagged cine MRI and model fitting. At transplant, failing hearts were biopsy sampled in identified regions and immunocytochemistry was used to label t-tubules and sarcomeric z-lines. Computer image analysis was used to assess 5 different unbiased measures of t-tubule structure/organization. In regions of failing hearts that showed good contractile performance, t-tubule organization was similar to that seen in normal hearts, with worsening structure correlating with the loss of regional contractile performance. Statistical analysis showed that t-tubule direction was most highly correlated with local contractile performance, followed by the amplitude of the sarcomeric peak in the Fourier transform of the t-tubule image. Other area based measures were less well correlated. We conclude that regional contractile performance in failing human hearts is strongly correlated with the local t-tubule organization. Cluster tree analysis with a functional definition of failing contraction strength allowed a pathological definition of 't-tubule disease'. The regional variability in contractile performance and cellular structure is a confounding issue for analysis of samples taken from failing human hearts, although this may be overcome with regional analysis by using tagged cMRI and biopsy mapping. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Degradation of Auditory Localization Performance Due to Helmet Ear Coverage: The Effects of Normal Acoustic Reverberation

    DTIC Science & Technology

    2009-07-01

    Therefore, it’s safe to assume that most large errors are due to front-back confusions. Front-back confusions occur in part because the binaural ...two ear) cues that dominate sound localization do not distinguish the front and rear hemispheres. The two binaural cues relied on are interaural...121 (5), 3094–3094. Shinn-Cunningham, B. G.; Kopčo, N.; Martin, T. J. Localizing Nearby Sound Sources in a Classroom: Binaural Room Impulse

  6. Correlation energy, correlated electron density, and exchange-correlation potential in some spherically confined atoms.

    PubMed

    Vyboishchikov, Sergei F

    2016-12-05

    We report correlation energies, electron densities, and exchange-correlation potentials obtained from configuration interaction and density functional calculations on spherically confined He, Be, Be 2+ , and Ne atoms. The variation of the correlation energy with the confinement radius R c is relatively small for the He, Be 2+ , and Ne systems. Curiously, the Lee-Yang-Parr (LYP) functional works well for weak confinements but fails completely for small R c . However, in the neutral beryllium atom the CI correlation energy increases markedly with decreasing R c . This effect is less pronounced at the density-functional theory level. The LYP functional performs very well for the unconfined Be atom, but fails badly for small R c . The standard exchange-correlation potentials exhibit significant deviation from the "exact" potential obtained by inversion of Kohn-Sham equation. The LYP correlation potential behaves erratically at strong confinements. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Individual differences reveal correlates of hidden hearing deficits.

    PubMed

    Bharadwaj, Hari M; Masud, Salwa; Mehraei, Golbarg; Verhulst, Sarah; Shinn-Cunningham, Barbara G

    2015-02-04

    Clinical audiometry has long focused on determining the detection thresholds for pure tones, which depend on intact cochlear mechanics and hair cell function. Yet many listeners with normal hearing thresholds complain of communication difficulties, and the causes for such problems are not well understood. Here, we explore whether normal-hearing listeners exhibit such suprathreshold deficits, affecting the fidelity with which subcortical areas encode the temporal structure of clearly audible sound. Using an array of measures, we evaluated a cohort of young adults with thresholds in the normal range to assess both cochlear mechanical function and temporal coding of suprathreshold sounds. Listeners differed widely in both electrophysiological and behavioral measures of temporal coding fidelity. These measures correlated significantly with each other. Conversely, these differences were unrelated to the modest variation in otoacoustic emissions, cochlear tuning, or the residual differences in hearing threshold present in our cohort. Electroencephalography revealed that listeners with poor subcortical encoding had poor cortical sensitivity to changes in interaural time differences, which are critical for localizing sound sources and analyzing complex scenes. These listeners also performed poorly when asked to direct selective attention to one of two competing speech streams, a task that mimics the challenges of many everyday listening environments. Together with previous animal and computational models, our results suggest that hidden hearing deficits, likely originating at the level of the cochlear nerve, are part of "normal hearing." Copyright © 2015 the authors 0270-6474/15/352161-12$15.00/0.

  8. Physiology of primary saccular afferents of goldfish: implications for Mauthner cell response.

    PubMed

    Fay, R R

    1995-01-01

    Mauthner cells receive neurally coded information from the otolith organs in fishes, and it is most likely that initiation and directional characteristics of the C-start response depend on this input. In the goldfish, saccular afferents are sensitive to sound pressure (< -30 dB re: 1 dyne cm-2) in the most sensitive frequency range (200 to 800 Hz). This input arises from volume fluctuations of the swimbladder in response to the sound pressure waveform and is thus nondirectional. Primary afferents of the saccule, lagena, and utricle of the goldfish also respond with great sensitivity to acoustic particle motion (< 1 nanometer between 100 and 200 Hz). This input arises from the acceleration of the fish in a sound field and is inherently directional. Saccular afferents can be divided into two groups based on their tuning: one group is tuned at about 250 Hz, and the other tuned between 400 Hz and 1 kHz. All otolithic primary afferents phaselock to sinusoids throughout the frequency range of hearing (up to about 2 kHz). Based on physiological and behavioral studies on Mauthner cells, it appears that highly correlated binaural input to the M-cell, from the sacculi responding to sound pressure, may be required for a decision to respond but that the direction of the response is extracted from small deviations from a perfect interaural correlation arising from the directional response of otolith organs to acoustic particle motion.

  9. Interaural asymmetry of hearing loss, Speech, Spatial and Qualities of Hearing Scale (SSQ) disabilities, and handicap.

    PubMed

    Noble, William; Gatehouse, Stuart

    2004-02-01

    A series of comparative analyses is presented between a group with relatively similar degrees of hearing loss in each ear (n = 103: symmetry group) and one with dissimilar losses (n = 50: asymmetry group). Asymmetry was defined as an interaural difference of more than 10dB in hearing levels averaged over 0.5. 1, 2 and 4kHz. Comparison was focused on self-rated disabilities as reflected in responses on the Speech, Spatial and Qualities of Hearing Scale (SSQ). The connections between SSQ ratings and a global self-rating of handicap were also observed. The interrelationships among SSQ items for the two groups were analysed to determine how the SSQ behaves when applied to groups in whom binaural hearing is more (asymmetry) versus less compromised. As expected, spatial hearing is severely disabled in the group with asymmetry; this group is generally more disabled than the symmetry group across all SSQ domains. In the linkages with handicap, spatial hearing, especially in dynamic settings, was strongly represented in the asymmetry group, while all aspects of hearing were moderately to strongly represented in the symmetry group. Item intercorrelations showed that speech hearing is a relatively autonomous function for the symmetry group, whereas it is enmeshed with segregation, clarity and naturalness factors for the asymmetry group. Spatial functions were more independent of others in the asymmetry group. The SSQ shows promise in the assessment of outcomes in the case of bilateral versus unilateral amplification and/or implantation.

  10. Audiometric asymmetry and tinnitus laterality.

    PubMed

    Tsai, Betty S; Sweetow, Robert W; Cheung, Steven W

    2012-05-01

    To identify an optimal audiometric asymmetry index for predicting tinnitus laterality. Retrospective medical record review. Data from adult tinnitus patients (80 men and 44 women) were extracted for demographic, audiometric, tinnitus laterality, and related information. The main measures were sensitivity, specificity, positive predictive value (PPV), and receiver operating characteristic (ROC) curves. Three audiometric asymmetry indices were constructed using one, two, or three frequency elements to compute the average interaural threshold difference (aITD). Tinnitus laterality predictive performance of a particular index was assessed by increasing the cutoff or minimum magnitude of the aITD from 10 to 35 dB in 5-dB steps to determine its ROC curve. Single frequency index performance was inferior to the other two (P < .05). Double and triple frequency indices were indistinguishable (P > .05). Two adjoining frequency elements with aITD ≥ 15 dB performed optimally for predicting tinnitus laterality (sensitivity = 0.59, specificity = 0.71, and PPV = 0.76). Absolute and relative magnitudes of hearing loss in the poorer ear were uncorrelated with tinnitus distress. An optimal audiometric asymmetry index to predict tinnitus laterality is one whereby 15 dB is the minimum aITD of two adjoining frequencies, inclusive of the maximal ITD. Tinnitus laterality dependency on magnitude of interaural asymmetry may inform design and interpretation of neuroimaging studies. Monaural acoustic tinnitus therapy may be an initial consideration for asymmetric hearing loss meeting the criterion of aITD ≥ 15 dB. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  11. Functional relevance of acoustic tracheal design in directional hearing in crickets.

    PubMed

    Schmidt, Arne K D; Römer, Heiner

    2016-10-15

    Internally coupled ears (ICEs) allow small animals to reliably determine the direction of a sound source. ICEs are found in a variety of taxa, but crickets have evolved the most complex arrangement of coupled ears: an acoustic tracheal system composed of a large cross-body trachea that connects two entry points for sound in the thorax with the leg trachea of both ears. The key structure that allows for the tuned directionality of the ear is a tracheal inflation (acoustic vesicle) in the midline of the cross-body trachea holding a thin membrane (septum). Crickets are known to display a wide variety of acoustic tracheal morphologies, most importantly with respect to the presence of a single or double acoustic vesicle. However, the functional relevance of this variation is still not known. In this study, we investigated the peripheral directionality of three co-occurring, closely related cricket species of the subfamily Gryllinae. No support could be found for the hypothesis that a double vesicle should be regarded as an evolutionary innovation to (1) increase interaural directional cues, (2) increase the selectivity of the directional filter or (3) provide a better match between directional and sensitivity tuning. Nonetheless, by manipulating the double acoustic vesicle in the rainforest cricket Paroecanthus podagrosus, selectively eliminating the sound-transmitting pathways, we revealed that these pathways contribute almost equally to the total amount of interaural intensity differences, emphasizing their functional relevance in the system. © 2016. Published by The Company of Biologists Ltd.

  12. Loud Music Exposure and Cochlear Synaptopathy in Young Adults: Isolated Auditory Brainstem Response Effects but No Perceptual Consequences.

    PubMed

    Grose, John H; Buss, Emily; Hall, Joseph W

    2017-01-01

    The purpose of this study was to test the hypothesis that listeners with frequent exposure to loud music exhibit deficits in suprathreshold auditory performance consistent with cochlear synaptopathy. Young adults with normal audiograms were recruited who either did ( n = 31) or did not ( n = 30) have a history of frequent attendance at loud music venues where the typical sound levels could be expected to result in temporary threshold shifts. A test battery was administered that comprised three sets of procedures: (a) electrophysiological tests including distortion product otoacoustic emissions, auditory brainstem responses, envelope following responses, and the acoustic change complex evoked by an interaural phase inversion; (b) psychoacoustic tests including temporal modulation detection, spectral modulation detection, and sensitivity to interaural phase; and (c) speech tests including filtered phoneme recognition and speech-in-noise recognition. The results demonstrated that a history of loud music exposure can lead to a profile of peripheral auditory function that is consistent with an interpretation of cochlear synaptopathy in humans, namely, modestly abnormal auditory brainstem response Wave I/Wave V ratios in the presence of normal distortion product otoacoustic emissions and normal audiometric thresholds. However, there were no other electrophysiological, psychophysical, or speech perception effects. The absence of any behavioral effects in suprathreshold sound processing indicated that, even if cochlear synaptopathy is a valid pathophysiological condition in humans, its perceptual sequelae are either too diffuse or too inconsequential to permit a simple differential diagnosis of hidden hearing loss.

  13. Binaural sensitivity changes between cortical on and off responses

    PubMed Central

    Dahmen, Johannes C.; King, Andrew J.; Schnupp, Jan W. H.

    2011-01-01

    Neurons exhibiting on and off responses with different frequency tuning have previously been described in the primary auditory cortex (A1) of anesthetized and awake animals, but it is unknown whether other tuning properties, including sensitivity to binaural localization cues, also differ between on and off responses. We measured the sensitivity of A1 neurons in anesthetized ferrets to 1) interaural level differences (ILDs), using unmodulated broadband noise with varying ILDs and average binaural levels, and 2) interaural time delays (ITDs), using sinusoidally amplitude-modulated broadband noise with varying envelope ITDs. We also assessed fine-structure ITD sensitivity and frequency tuning, using pure-tone stimuli. Neurons most commonly responded to stimulus onset only, but purely off responses and on-off responses were also recorded. Of the units exhibiting significant binaural sensitivity nearly one-quarter showed binaural sensitivity in both on and off responses, but in almost all (∼97%) of these units the binaural tuning of the on responses differed significantly from that seen in the off responses. Moreover, averaged, normalized ILD and ITD tuning curves calculated from all units showing significant sensitivity to binaural cues indicated that on and off responses displayed different sensitivity patterns across the population. A principal component analysis of ITD response functions suggested a continuous cortical distribution of binaural sensitivity, rather than discrete response classes. Rather than reflecting a release from inhibition without any functional significance, we propose that binaural off responses may be important to cortical encoding of sound-source location. PMID:21562191

  14. The binaural masking level difference: cortical correlates persist despite severe brain stem atrophy in progressive supranuclear palsy

    PubMed Central

    Rowe, James B.; Ghosh, Boyd C. P.; Carlyon, Robert P.; Plack, Christopher J.; Gockel, Hedwig E.

    2014-01-01

    Under binaural listening conditions, the detection of target signals within background masking noise is substantially improved when the interaural phase of the target differs from that of the masker. Neural correlates of this binaural masking level difference (BMLD) have been observed in the inferior colliculus and temporal cortex, but it is not known whether degeneration of the inferior colliculus would result in a reduction of the BMLD in humans. We used magnetoencephalography to examine the BMLD in 13 healthy adults and 13 patients with progressive supranuclear palsy (PSP). PSP is associated with severe atrophy of the upper brain stem, including the inferior colliculus, confirmed by voxel-based morphometry of structural MRI. Stimuli comprised in-phase sinusoidal tones presented to both ears at three levels (high, medium, and low) masked by in-phase noise, which rendered the low-level tone inaudible. Critically, the BMLD was measured using a low-level tone presented in opposite phase across ears, making it audible against the noise. The cortical waveforms from bilateral auditory sources revealed significantly larger N1m peaks for the out-of-phase low-level tone compared with the in-phase low-level tone, for both groups, indicating preservation of early cortical correlates of the BMLD in PSP. In PSP a significant delay was observed in the onset of the N1m deflection and the amplitude of the P2m was reduced, but these differences were not restricted to the BMLD condition. The results demonstrate that although PSP causes subtle auditory deficits, binaural processing can survive the presence of significant damage to the upper brain stem. PMID:25231610

  15. The binaural masking level difference: cortical correlates persist despite severe brain stem atrophy in progressive supranuclear palsy.

    PubMed

    Hughes, Laura E; Rowe, James B; Ghosh, Boyd C P; Carlyon, Robert P; Plack, Christopher J; Gockel, Hedwig E

    2014-12-15

    Under binaural listening conditions, the detection of target signals within background masking noise is substantially improved when the interaural phase of the target differs from that of the masker. Neural correlates of this binaural masking level difference (BMLD) have been observed in the inferior colliculus and temporal cortex, but it is not known whether degeneration of the inferior colliculus would result in a reduction of the BMLD in humans. We used magnetoencephalography to examine the BMLD in 13 healthy adults and 13 patients with progressive supranuclear palsy (PSP). PSP is associated with severe atrophy of the upper brain stem, including the inferior colliculus, confirmed by voxel-based morphometry of structural MRI. Stimuli comprised in-phase sinusoidal tones presented to both ears at three levels (high, medium, and low) masked by in-phase noise, which rendered the low-level tone inaudible. Critically, the BMLD was measured using a low-level tone presented in opposite phase across ears, making it audible against the noise. The cortical waveforms from bilateral auditory sources revealed significantly larger N1m peaks for the out-of-phase low-level tone compared with the in-phase low-level tone, for both groups, indicating preservation of early cortical correlates of the BMLD in PSP. In PSP a significant delay was observed in the onset of the N1m deflection and the amplitude of the P2m was reduced, but these differences were not restricted to the BMLD condition. The results demonstrate that although PSP causes subtle auditory deficits, binaural processing can survive the presence of significant damage to the upper brain stem. Copyright © 2014 the American Physiological Society.

  16. Relation Between Cochlear Mechanics and Performance of Temporal Fine Structure-Based Tasks.

    PubMed

    Otsuka, Sho; Furukawa, Shigeto; Yamagishi, Shimpei; Hirota, Koich; Kashino, Makio

    2016-12-01

    This study examined whether the mechanical characteristics of the cochlea could influence individual variation in the ability to use temporal fine structure (TFS) information. Cochlear mechanical functioning was evaluated by swept-tone evoked otoacoustic emissions (OAEs), which are thought to comprise linear reflection by micromechanical impedance perturbations, such as spatial variations in the number or geometry of outer hair cells, on the basilar membrane (BM). Low-rate (2 Hz) frequency modulation detection limens (FMDLs) were measured for carrier frequency of 1000 Hz and interaural phase difference (IPD) thresholds as indices of TFS sensitivity and high-rate (16 Hz) FMDLs and amplitude modulation detection limens (AMDLs) as indices of sensitivity to non-TFS cues. Significant correlations were found among low-rate FMDLs, low-rate AMDLs, and IPD thresholds (R = 0.47-0.59). A principal component analysis was used to show a common factor that could account for 81.1, 74.1, and 62.9 % of the variance in low-rate FMDLs, low-rate AMDLs, and IPD thresholds, respectively. An OAE feature, specifically a characteristic dip around 2-2.5 kHz in OAE spectra, showed a significant correlation with the common factor (R = 0.54). High-rate FMDLs and AMDLs were correlated with each other (R = 0.56) but not with the other measures. The results can be interpreted as indicating that (1) the low-rate AMDLs, as well as the IPD thresholds and low-rate FMDLs, depend on the use of TFS information coded in neural phase locking and (2) the use of TFS information is influenced by a particular aspect of cochlear mechanics, such as mechanical irregularity along the BM.

  17. The effect of audiovisual and binaural listening on the acceptable noise level (ANL): establishing an ANL conceptual model.

    PubMed

    Wu, Yu-Hsiang; Stangl, Elizabeth; Pang, Carol; Zhang, Xuyang

    2014-02-01

    Little is known regarding the acoustic features of a stimulus used by listeners to determine the acceptable noise level (ANL). Features suggested by previous research include speech intelligibility (noise is unacceptable when it degrades speech intelligibility to a certain degree; the intelligibility hypothesis) and loudness (noise is unacceptable when the speech-to-noise loudness ratio is poorer than a certain level; the loudness hypothesis). The purpose of the study was to investigate if speech intelligibility or loudness is the criterion feature that determines ANL. To achieve this, test conditions were chosen so that the intelligibility and loudness hypotheses would predict different results. In Experiment 1, the effect of audiovisual (AV) and binaural listening on ANL was investigated; in Experiment 2, the effect of interaural correlation (ρ) on ANL was examined. A single-blinded, repeated-measures design was used. Thirty-two and twenty-five younger adults with normal hearing participated in Experiments 1 and 2, respectively. In Experiment 1, both ANL and speech recognition performance were measured using the AV version of the Connected Speech Test (CST) in three conditions: AV-binaural, auditory only (AO)-binaural, and AO-monaural. Lipreading skill was assessed using the Utley lipreading test. In Experiment 2, ANL and speech recognition performance were measured using the Hearing in Noise Test (HINT) in three binaural conditions, wherein the interaural correlation of noise was varied: ρ = 1 (N(o)S(o) [a listening condition wherein both speech and noise signals are identical across two ears]), -1 (NπS(o) [a listening condition wherein speech signals are identical across two ears whereas the noise signals of two ears are 180 degrees out of phase]), and 0 (N(u)S(o) [a listening condition wherein speech signals are identical across two ears whereas noise signals are uncorrelated across ears]). The results were compared to the predictions made based on the intelligibility and loudness hypotheses. The results of the AV and AO conditions appeared to support the intelligibility hypothesis due to the significant correlation between visual benefit in ANL (AV re: AO ANL) and (1) visual benefit in CST performance (AV re: AO CST) and (2) lipreading skill. The results of the N(o)S(o), NπS(o), and N(u)S(o) conditions negated the intelligibility hypothesis because binaural processing benefit (NπS(o) re: N(o)S(o), and N(u)S(o) re: N(o)S(o)) in ANL was not correlated to that in HINT performance. Instead, the results somewhat supported the loudness hypothesis because the pattern of ANL results across the three conditions (N(o)S(o) ≈ NπS(o) ≈ N(u)S(o) ANL) was more consistent with what was predicted by the loudness hypothesis (N(o)S(o) ≈ NπS(o) < N(u)S(o) ANL) than by the intelligibility hypothesis (NπS(o) < N(u)S(o) < N(o)S(o) ANL). The results of the binaural and monaural conditions supported neither hypothesis because (1) binaural benefit (binaural re: monaural) in ANL was not correlated to that in speech recognition performance, and (2) the pattern of ANL results across conditions (binaural < monaural ANL) was not consistent with the prediction made based on previous binaural loudness summation research (binaural ≥ monaural ANL). The study suggests that listeners may use multiple acoustic features to make ANL judgments. The binaural/monaural results showing that neither hypothesis was supported further indicate that factors other than speech intelligibility and loudness, such as psychological factors, may affect ANL. The weightings of different acoustic features in ANL judgments may vary widely across individuals and listening conditions. American Academy of Audiology.

  18. Left-right correlation in coupled F-center defects.

    PubMed

    Janesko, Benjamin G

    2016-08-07

    This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of "strong" left-right correlation, symptoms similar to those seen in stretched H2. Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centers may fail for adjacent F-centers.

  19. Left-right correlation in coupled F-center defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janesko, Benjamin G., E-mail: b.janesko@tcu.edu

    This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of “strong” left-right correlation, symptoms similar to those seen in stretched H{sub 2}. Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centersmore » may fail for adjacent F-centers.« less

  20. Preoperative characteristics of auditory brainstem response in acoustic neuroma with useful hearing: importance as a preliminary investigation for intraoperative monitoring.

    PubMed

    Aihara, Noritaka; Murakami, Shingo; Takahashi, Mariko; Yamada, Kazuo

    2014-01-01

    We classified the results of preoperative auditory brainstem response (ABR) in 121 patients with useful hearing and considered the utility of preoperative ABR as a preliminary assessment for intraoperative monitoring. Wave V was confirmed in 113 patients and was not confirmed in 8 patients. Intraoperative ABR could not detect wave V in these 8 patients. The 8 patients without wave V were classified into two groups (flat and wave I only), and the reason why wave V could not be detected may have differed between the groups. Because high-frequency hearing was impaired in flat patients, an alternative to click stimulation may be more effective. Monitoring cochlear nerve action potential (CNAP) may be useful because CNAP could be detected in 4 of 5 wave I only patients. Useful hearing was preserved after surgery in 1 patient in the flat group and 2 patients in wave I only group. Among patients with wave V, the mean interaural latency difference of wave V was 0.88 ms in Class A (n = 57) and 1.26 ms in Class B (n = 56). Because the latency of wave V is already prolonged before surgery, to estimate delay in wave V latency during surgery probably underestimates cochlear nerve damage. Recording intraoperative ABR is indispensable to avoid cochlear nerve damage and to provide information for surgical decisions. Confirming the condition of ABR before surgery helps to solve certain problems, such as choosing to monitor the interaural latency difference of wave V, CNAP, or alternative sound-evoked ABR.

  1. Interaural Phase and Level Difference Sensitivity in Low-Frequency Neurons in the Lateral Superior Olive

    PubMed Central

    Tollin, Daniel J.; Yin, Tom C. T.

    2006-01-01

    The lateral superior olive (LSO) is believed to encode differences in sound level at the two ears, a cue for azimuthal sound location. Most high-frequency-sensitive LSO neurons are binaural, receiving inputs from both ears. An inhibitory input from the contralateral ear, via the medial nucleus of the trapezoid body (MNTB), and excitatory input from the ipsilateral ear enable level differences to be encoded. However, the classical descriptions of low-frequency-sensitive neurons report primarily monaural cells with no contralateral inhibition. Anatomical and physiological evidence, however, shows that low-frequency LSO neurons receive low-frequency inhibitory input from ipsilateral MNTB, which in turn receives excitatory input from the contralateral cochlear nucleus and low-frequency excitatory input from the ipsilateral cochlear nucleus. Therefore, these neurons would be expected to be binaural with contralateral inhibition. Here, we re-examined binaural interaction in low-frequency (less than ~3 kHz) LSO neurons and phase locking in the MNTB. Phase locking to low-frequency tones in MNTB and ipsilaterally driven LSO neurons with frequency sensitivities < 1.2 kHz was enhanced relative to the auditory nerve. Moreover, most low-frequency LSO neurons exhibited contralateral inhibition: ipsilaterally driven responses were suppressed by raising the level of the contralateral stimulus; most neurons were sensitive to interaural time delays in pure tone and noise stimuli such that inhibition was nearly maximal when the stimuli were presented to the ears in-phase. The data demonstrate that low-frequency LSO neurons of cat are not monaural and can exhibit contralateral inhibition like their high-frequency counterparts. PMID:16291937

  2. Maturation profile of inferior olivary neurons expressing ionotropic glutamate receptors in rats: role in coding linear accelerations.

    PubMed

    Li, Chuan; Han, Lei; Ma, Chun-Wai; Lai, Suk-King; Lai, Chun-Hong; Shum, Daisy Kwok Yan; Chan, Ying-Shing

    2013-07-01

    Using sinusoidal oscillations of linear acceleration along both the horizontal and vertical planes to stimulate otolith organs in the inner ear, we charted the postnatal time at which responsive neurons in the rat inferior olive (IO) first showed Fos expression, an indicator of neuronal recruitment into the otolith circuit. Neurons in subnucleus dorsomedial cell column (DMCC) were activated by vertical stimulation as early as P9 and by horizontal (interaural) stimulation as early as P11. By P13, neurons in the β subnucleus of IO (IOβ) became responsive to horizontal stimulation along the interaural and antero-posterior directions. By P21, neurons in the rostral IOβ became also responsive to vertical stimulation, but those in the caudal IOβ remained responsive only to horizontal stimulation. Nearly all functionally activated neurons in DMCC and IOβ were immunopositive for the NR1 subunit of the NMDA receptor and the GluR2/3 subunit of the AMPA receptor. In situ hybridization studies further indicated abundant mRNA signals of the glutamate receptor subunits by the end of the second postnatal week. This is reinforced by whole-cell patch-clamp data in which glutamate receptor-mediated miniature excitatory postsynaptic currents of rostral IOβ neurons showed postnatal increase in amplitude, reaching the adult level by P14. Further, these neurons exhibited subthreshold oscillations in membrane potential as from P14. Taken together, our results support that ionotropic glutamate receptors in the IO enable postnatal coding of gravity-related information and that the rostral IOβ is the only IO subnucleus that encodes spatial orientations in 3-D.

  3. Modeling Sluggishness in Binaural Unmasking of Speech for Maskers With Time-Varying Interaural Phase Differences

    PubMed Central

    Brand, Thomas

    2018-01-01

    In studies investigating binaural processing in human listeners, relatively long and task-dependent time constants of a binaural window ranging from 10 ms to 250 ms have been observed. Such time constants are often thought to reflect “binaural sluggishness.” In this study, the effect of binaural sluggishness on binaural unmasking of speech in stationary speech-shaped noise is investigated in 10 listeners with normal hearing. In order to design a masking signal with temporally varying binaural cues, the interaural phase difference of the noise was modulated sinusoidally with frequencies ranging from 0.25 Hz to 64 Hz. The lowest, that is the best, speech reception thresholds (SRTs) were observed for the lowest modulation frequency. SRTs increased with increasing modulation frequency up to 4 Hz. For higher modulation frequencies, SRTs remained constant in the range of 1 dB to 1.5 dB below the SRT determined in the diotic situation. The outcome of the experiment was simulated using a short-term binaural speech intelligibility model, which combines an equalization–cancellation (EC) model with the speech intelligibility index. This model segments the incoming signal into 23.2-ms time frames in order to predict release from masking in modulated noises. In order to predict the results from this study, the model required a further time constant applied to the EC mechanism representing binaural sluggishness. The best agreement with perceptual data was achieved using a temporal window of 200 ms in the EC mechanism. PMID:29338577

  4. Adaptive changes in the angular VOR: duration of gain changes and lack of effect of nodulo-uvulectomy.

    PubMed

    Yakushin, Sergei B; Bukharina, Svetlana E; Raphan, Theodore; Buttner-Ennever, Jean; Cohen, Bernard

    2003-10-01

    Alterations in the gain of the vertical angular vestibulo-ocular reflex (VOR) are dependent on the head position in which the gain changes were produced. We determined how long gravity-dependent gain changes last in monkeys after four hours of adaptation, and whether the adaptation is mediated through the nodulus and uvula of the vestibulocerebellum. Vertical VOR gains were adaptively modified by rotation about an interaural axis, in phase or out of phase with the visual surround. Vertical VOR gains were modified with the animals in one of three orientations: upright, left-side down, or right-side down. Monkeys were tested in darkness for up to four days after adaptation using sinusoidal rotation about an interaural axis that was incrementally tilted in 10 degrees steps from vertical to side down positions. Animals were unrestrained in their cages in normal light conditions between tests. Gravity-dependent gain changes lasted for a day or less after adaptation while upright, but persisted for two days or more after on-side adaptation. These data show that gravity-dependent gain changes can last for prolonged periods after only four hours of adaptation in monkeys, as in humans. They also demonstrate that natural head movements made while upright do not provide an adequate stimulus for rapid recovery of vertical VOR gains that were induced on side. In two animals, the nodulus and uvula were surgically ablated. Vertical gravity-dependent gain changes were not significantly different before and after surgery, indicating that the nodulus and uvula do not have a critical role in producing them.

  5. The opponent channel population code of sound location is an efficient representation of natural binaural sounds.

    PubMed

    Młynarski, Wiktor

    2015-05-01

    In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a "panoramic" code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding.

  6. Behavioural sensitivity to binaural spatial cues in ferrets: evidence for plasticity in the duplex theory of sound localization

    PubMed Central

    Keating, Peter; Nodal, Fernando R; King, Andrew J

    2014-01-01

    For over a century, the duplex theory has guided our understanding of human sound localization in the horizontal plane. According to this theory, the auditory system uses interaural time differences (ITDs) and interaural level differences (ILDs) to localize low-frequency and high-frequency sounds, respectively. Whilst this theory successfully accounts for the localization of tones by humans, some species show very different behaviour. Ferrets are widely used for studying both clinical and fundamental aspects of spatial hearing, but it is not known whether the duplex theory applies to this species or, if so, to what extent the frequency range over which each binaural cue is used depends on acoustical or neurophysiological factors. To address these issues, we trained ferrets to lateralize tones presented over earphones and found that the frequency dependence of ITD and ILD sensitivity broadly paralleled that observed in humans. Compared with humans, however, the transition between ITD and ILD sensitivity was shifted toward higher frequencies. We found that the frequency dependence of ITD sensitivity in ferrets can partially be accounted for by acoustical factors, although neurophysiological mechanisms are also likely to be involved. Moreover, we show that binaural cue sensitivity can be shaped by experience, as training ferrets on a 1-kHz ILD task resulted in significant improvements in thresholds that were specific to the trained cue and frequency. Our results provide new insights into the factors limiting the use of different sound localization cues and highlight the importance of sensory experience in shaping the underlying neural mechanisms. PMID:24256073

  7. Extraction of Inter-Aural Time Differences Using a Spiking Neuron Network Model of the Medial Superior Olive.

    PubMed

    Encke, Jörg; Hemmert, Werner

    2018-01-01

    The mammalian auditory system is able to extract temporal and spectral features from sound signals at the two ears. One important cue for localization of low-frequency sound sources in the horizontal plane are inter-aural time differences (ITDs) which are first analyzed in the medial superior olive (MSO) in the brainstem. Neural recordings of ITD tuning curves at various stages along the auditory pathway suggest that ITDs in the mammalian brainstem are not represented in form of a Jeffress-type place code. An alternative is the hemispheric opponent-channel code, according to which ITDs are encoded as the difference in the responses of the MSO nuclei in the two hemispheres. In this study, we present a physiologically-plausible, spiking neuron network model of the mammalian MSO circuit and apply two different methods of extracting ITDs from arbitrary sound signals. The network model is driven by a functional model of the auditory periphery and physiological models of the cochlear nucleus and the MSO. Using a linear opponent-channel decoder, we show that the network is able to detect changes in ITD with a precision down to 10 μs and that the sensitivity of the decoder depends on the slope of the ITD-rate functions. A second approach uses an artificial neuronal network to predict ITDs directly from the spiking output of the MSO and ANF model. Using this predictor, we show that the MSO-network is able to reliably encode static and time-dependent ITDs over a large frequency range, also for complex signals like speech.

  8. Sensitivity to Envelope Interaural Time Differences at High Modulation Rates

    PubMed Central

    Bleeck, Stefan; McAlpine, David

    2015-01-01

    Sensitivity to interaural time differences (ITDs) conveyed in the temporal fine structure of low-frequency tones and the modulated envelopes of high-frequency sounds are considered comparable, particularly for envelopes shaped to transmit similar fidelity of temporal information normally present for low-frequency sounds. Nevertheless, discrimination performance for envelope modulation rates above a few hundred Hertz is reported to be poor—to the point of discrimination thresholds being unattainable—compared with the much higher (>1,000 Hz) limit for low-frequency ITD sensitivity, suggesting the presence of a low-pass filter in the envelope domain. Further, performance for identical modulation rates appears to decline with increasing carrier frequency, supporting the view that the low-pass characteristics observed for envelope ITD processing is carrier-frequency dependent. Here, we assessed listeners’ sensitivity to ITDs conveyed in pure tones and in the modulated envelopes of high-frequency tones. ITD discrimination for the modulated high-frequency tones was measured as a function of both modulation rate and carrier frequency. Some well-trained listeners appear able to discriminate ITDs extremely well, even at modulation rates well beyond 500 Hz, for 4-kHz carriers. For one listener, thresholds were even obtained for a modulation rate of 800 Hz. The highest modulation rate for which thresholds could be obtained declined with increasing carrier frequency for all listeners. At 10 kHz, the highest modulation rate at which thresholds could be obtained was 600 Hz. The upper limit of sensitivity to ITDs conveyed in the envelope of high-frequency modulated sounds appears to be higher than previously considered. PMID:26721926

  9. Effect of background noise on neuronal coding of interaural level difference cues in rat inferior colliculus

    PubMed Central

    Mokri, Yasamin; Worland, Kate; Ford, Mark; Rajan, Ramesh

    2015-01-01

    Humans can accurately localize sounds even in unfavourable signal-to-noise conditions. To investigate the neural mechanisms underlying this, we studied the effect of background wide-band noise on neural sensitivity to variations in interaural level difference (ILD), the predominant cue for sound localization in azimuth for high-frequency sounds, at the characteristic frequency of cells in rat inferior colliculus (IC). Binaural noise at high levels generally resulted in suppression of responses (55.8%), but at lower levels resulted in enhancement (34.8%) as well as suppression (30.3%). When recording conditions permitted, we then examined if any binaural noise effects were related to selective noise effects at each of the two ears, which we interpreted in light of well-known differences in input type (excitation and inhibition) from each ear shaping particular forms of ILD sensitivity in the IC. At high signal-to-noise ratios (SNR), in most ILD functions (41%), the effect of background noise appeared to be due to effects on inputs from both ears, while for a large percentage (35.8%) appeared to be accounted for by effects on excitatory input. However, as SNR decreased, change in excitation became the dominant contributor to the change due to binaural background noise (63.6%). These novel findings shed light on the IC neural mechanisms for sound localization in the presence of continuous background noise. They also suggest that some effects of background noise on encoding of sound location reported to be emergent in upstream auditory areas can also be observed at the level of the midbrain. PMID:25865218

  10. Modeling Sluggishness in Binaural Unmasking of Speech for Maskers With Time-Varying Interaural Phase Differences.

    PubMed

    Hauth, Christopher F; Brand, Thomas

    2018-01-01

    In studies investigating binaural processing in human listeners, relatively long and task-dependent time constants of a binaural window ranging from 10 ms to 250 ms have been observed. Such time constants are often thought to reflect "binaural sluggishness." In this study, the effect of binaural sluggishness on binaural unmasking of speech in stationary speech-shaped noise is investigated in 10 listeners with normal hearing. In order to design a masking signal with temporally varying binaural cues, the interaural phase difference of the noise was modulated sinusoidally with frequencies ranging from 0.25 Hz to 64 Hz. The lowest, that is the best, speech reception thresholds (SRTs) were observed for the lowest modulation frequency. SRTs increased with increasing modulation frequency up to 4 Hz. For higher modulation frequencies, SRTs remained constant in the range of 1 dB to 1.5 dB below the SRT determined in the diotic situation. The outcome of the experiment was simulated using a short-term binaural speech intelligibility model, which combines an equalization-cancellation (EC) model with the speech intelligibility index. This model segments the incoming signal into 23.2-ms time frames in order to predict release from masking in modulated noises. In order to predict the results from this study, the model required a further time constant applied to the EC mechanism representing binaural sluggishness. The best agreement with perceptual data was achieved using a temporal window of 200 ms in the EC mechanism.

  11. The Relationship Between Intensity Coding and Binaural Sensitivity in Adults With Cochlear Implants.

    PubMed

    Todd, Ann E; Goupell, Matthew J; Litovsky, Ruth Y

    Many bilateral cochlear implant users show sensitivity to binaural information when stimulation is provided using a pair of synchronized electrodes. However, there is large variability in binaural sensitivity between and within participants across stimulation sites in the cochlea. It was hypothesized that within-participant variability in binaural sensitivity is in part affected by limitations and characteristics of the auditory periphery which may be reflected by monaural hearing performance. The objective of this study was to examine the relationship between monaural and binaural hearing performance within participants with bilateral cochlear implants. Binaural measures included dichotic signal detection and interaural time difference discrimination thresholds. Diotic signal detection thresholds were also measured. Monaural measures included dynamic range and amplitude modulation detection. In addition, loudness growth was compared between ears. Measures were made at three stimulation sites per listener. Greater binaural sensitivity was found with larger dynamic ranges. Poorer interaural time difference discrimination was found with larger difference between comfortable levels of the two ears. In addition, poorer diotic signal detection thresholds were found with larger differences between the dynamic ranges of the two ears. No relationship was found between amplitude modulation detection thresholds or symmetry of loudness growth and the binaural measures. The results suggest that some of the variability in binaural hearing performance within listeners across stimulation sites can be explained by factors nonspecific to binaural processing. The results are consistent with the idea that dynamic range and comfortable levels relate to peripheral neural survival and the width of the excitation pattern which could affect the fidelity with which central binaural nuclei process bilateral inputs.

  12. Reduced temporal processing in older, normal-hearing listeners evident from electrophysiological responses to shifts in interaural time difference.

    PubMed

    Ozmeral, Erol J; Eddins, David A; Eddins, Ann C

    2016-12-01

    Previous electrophysiological studies of interaural time difference (ITD) processing have demonstrated that ITDs are represented by a nontopographic population rate code. Rather than narrow tuning to ITDs, neural channels have broad tuning to ITDs in either the left or right auditory hemifield, and the relative activity between the channels determines the perceived lateralization of the sound. With advancing age, spatial perception weakens and poor temporal processing contributes to declining spatial acuity. At present, it is unclear whether age-related temporal processing deficits are due to poor inhibitory controls in the auditory system or degraded neural synchrony at the periphery. Cortical processing of spatial cues based on a hemifield code are susceptible to potential age-related physiological changes. We consider two distinct predictions of age-related changes to ITD sensitivity: declines in inhibitory mechanisms would lead to increased excitation and medial shifts to rate-azimuth functions, whereas a general reduction in neural synchrony would lead to reduced excitation and shallower slopes in the rate-azimuth function. The current study tested these possibilities by measuring an evoked response to ITD shifts in a narrow-band noise. Results were more in line with the latter outcome, both from measured latencies and amplitudes of the global field potentials and source-localized waveforms in the left and right auditory cortices. The measured responses for older listeners also tended to have reduced asymmetric distribution of activity in response to ITD shifts, which is consistent with other sensory and cognitive processing models of aging. Copyright © 2016 the American Physiological Society.

  13. Failure Analysis and Magnetic Evaluation of Tertiary Superheater Tube Used in Gas-Fired Boiler

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Patil, Sujay; Sah, Rameshwar; Krishna, P. C.; Eswarappa, B.

    2018-02-01

    Failure analysis was carried out on a prematurely failed tertiary superheater tube used in gas-fired boiler. The analysis includes a comparative study of visual examination, chemical composition, hardness and microstructure at failed region, adjacent and far to failure as well as on fresh tube. The chemistry was found matching to the standard specification, whereas the hardness was low in failed tube compared to the fish mouth opening region and the fresh tube. Microscopic examination of failed sample revealed the presence of spheroidal carbides of Cr and Mo predominantly along the grain boundaries. The primary cause of failure is found to be localized heating. Magnetic hysteresis loop (MHL) measurements were carried out to correlate the magnetic parameters with microstructure and mechanical properties to establish a possible non-destructive evaluation (NDE) for health monitoring of the tubes. The coercivity of the MHL showed a very good correlation with microstructure and mechanical properties deterioration enabling a possible NDE technique for the health monitoring of the tubes.

  14. Magnetoencephalographic responses in relation to temporal and spatial factors of sound fields

    NASA Astrophysics Data System (ADS)

    Soeta, Yoshiharu; Nakagawa, Seiji; Tonoike, Mitsuo; Hotehama, Takuya; Ando, Yoichi

    2004-05-01

    To establish the guidelines based on brain functions for designing sound fields such as a concert hall and an opera house, the activities of the human brain to the temporal and spatial factors of the sound field have been investigated using magnetoencephalography (MEG). MEG is a noninvasive technique for investigating neuronal activity in human brain. First of all, the auditory evoked responses in change of the magnitude of the interaural cross-correlation (IACC) were analyzed. IACC is one of the spatial factors, which has great influence on the degree of subjective preference and diffuseness for sound fields. The results indicated that the peak amplitude of N1m, which was found over the left and right temporal lobes around 100 ms after the stimulus onset, decreased with increasing the IACC. Second, the responses corresponding to subjective preference for one of the typical temporal factors, i.e., the initial delay gap between a direct sound and the first reflection, were investigated. The results showed that the effective duration of the autocorrelation function of MEG between 8 and 13 Hz became longer during presentations of a preferred stimulus. These results indicate that the brain may be relaxed, and repeat a similar temporal rhythm under preferred sound fields.

  15. Absolute auditory thresholds in three Old World monkey species (Cercopithecus aethiops, C. neglectus, Macaca fuscata) and humans (Homo sapiens).

    PubMed

    Owren, M J; Hopp, S L; Sinnott, J M; Petersen, M R

    1988-06-01

    We investigated the absolute auditory sensitivities of three monkey species (Cercopithecus aethiops, C. neglectus, and Macaca fuscata) and humans (Homo sapiens). Results indicated that species-typical variation exists in these primates. Vervets, which have the smallest interaural distance of the species that we tested, exhibited the greatest high-frequency sensitivity. This result is consistent with Masterton, Heffner, and Ravizza's (1969) observations that head size and high-frequency acuity are inversely correlated in mammals. Vervets were also the most sensitive in the middle frequency range. Furthermore, we found that de Brazza's monkeys, though they produce a specialized, low-pitched boom call, did not show the enhanced low-frequency sensitivity that Brown and Waser (1984) showed for blue monkeys (C. mitis), a species with a similar sound. This discrepancy may be related to differences in the acoustics of the respective habitats of these animals or in the way their boom calls are used. The acuity of Japanese monkeys was found to closely resemble that of rhesus macaques (M. mulatta) that were tested in previous studies. Finally, humans tested in the same apparatus exhibited normative sensitivities. These subjects responded more readily to low frequencies than did the monkeys but rapidly became less sensitive in the high ranges.

  16. Fly-ear inspired acoustic sensors for gunshot localization

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Currano, Luke; Gee, Danny; Yang, Benjamin; Yu, Miao

    2009-05-01

    The supersensitive ears of the parasitoid fly Ormia ochracea have inspired researchers to develop bio-inspired directional microphone for sound localization. Although the fly ear is optimized for localizing the narrow-band calling song of crickets at 5 kHz, experiments and simulation have shown that it can amplify directional cues for a wide frequency range. In this article, a theoretical investigation is presented to study the use of fly-ear inspired directional microphones for gunshot localization. Using an equivalent 2-DOF model of the fly ear, the time responses of the fly ear structure to a typical shock wave are obtained and the associated time delay is estimated by using cross-correlation. Both near-field and far-field scenarios are considered. The simulation shows that the fly ear can greatly amplify the time delay by ~20 times, which indicates that with an interaural distance of only 1.2 mm the fly ear is able to generate a time delay comparable to that obtained by a conventional microphone pair with a separation as large as 24 mm. Since the parameters of the fly ear structure can also be tuned for muzzle blast and other impulse stimulus, fly-ear inspired acoustic sensors offers great potential for developing portable gunshot localization systems.

  17. Can monaural temporal masking explain the ongoing precedence effect?

    PubMed

    Freyman, Richard L; Morse-Fortier, Charlotte; Griffin, Amanda M; Zurek, Patrick M

    2018-02-01

    The precedence effect for transient sounds has been proposed to be based primarily on monaural processes, manifested by asymmetric temporal masking. This study explored the potential for monaural explanations with longer ("ongoing") sounds exhibiting the precedence effect. Transient stimuli were single lead-lag noise burst pairs; ongoing stimuli were trains of 63 burst pairs. Unlike with transients, monaural masking data for ongoing sounds showed no advantage for the lead, and are inconsistent with asymmetric audibility as an explanation for ongoing precedence. This result, along with supplementary measurements of interaural time discrimination, suggests different explanations for transient and ongoing precedence.

  18. Echolocation of insects using intermittent frequency-modulated sounds.

    PubMed

    Matsuo, Ikuo; Takanashi, Takuma

    2015-09-01

    Using echolocation influenced by Doppler shift, bats can capture flying insects in real three-dimensional space. On the basis of this principle, a model that estimates object locations using frequency modulated (FM) sound was proposed. However, no investigation was conducted to verify whether the model can localize flying insects from their echoes. This study applied the model to estimate the range and direction of flying insects by extracting temporal changes from the time-frequency pattern and interaural range difference, respectively. The results obtained confirm that a living insect's position can be estimated using this model with echoes measured while emitting intermittent FM sounds.

  19. The effect of different cochlear implant microphones on acoustic hearing individuals’ binaural benefits for speech perception in noise

    PubMed Central

    Aronoff, Justin M.; Freed, Daniel J.; Fisher, Laurel M.; Pal, Ivan; Soli, Sigfrid D.

    2011-01-01

    Objectives Cochlear implant microphones differ in placement, frequency response, and other characteristics such as whether they are directional. Although normal hearing individuals are often used as controls in studies examining cochlear implant users’ binaural benefits, the considerable differences across cochlear implant microphones make such comparisons potentially misleading. The goal of this study was to examine binaural benefits for speech perception in noise for normal hearing individuals using stimuli processed by head-related transfer functions (HRTFs) based on the different cochlear implant microphones. Design HRTFs were created for different cochlear implant microphones and used to test participants on the Hearing in Noise Test. Experiment 1 tested cochlear implant users and normal hearing individuals with HRTF-processed stimuli and with sound field testing to determine whether the HRTFs adequately simulated sound field testing. Experiment 2 determined the measurement error and performance-intensity function for the Hearing in Noise Test with normal hearing individuals listening to stimuli processed with the various HRTFs. Experiment 3 compared normal hearing listeners’ performance across HRTFs to determine how the HRTFs affected performance. Experiment 4 evaluated binaural benefits for normal hearing listeners using the various HRTFs, including ones that were modified to investigate the contributions of interaural time and level cues. Results The results indicated that the HRTFs adequately simulated sound field testing for the Hearing in Noise Test. They also demonstrated that the test-retest reliability and performance-intensity function were consistent across HRTFs, and that the measurement error for the test was 1.3 dB, with a change in signal-to-noise ratio of 1 dB reflecting a 10% change in intelligibility. There were significant differences in performance when using the various HRTFs, with particularly good thresholds for the HRTF based on the directional microphone when the speech and masker were spatially separated, emphasizing the importance of measuring binaural benefits separately for each HRTF. Evaluation of binaural benefits indicated that binaural squelch and spatial release from masking were found for all HRTFs and binaural summation was found for all but one HRTF, although binaural summation was less robust than the other types of binaural benefits. Additionally, the results indicated that neither interaural time nor level cues dominated binaural benefits for the normal hearing participants. Conclusions This study provides a means to measure the degree to which cochlear implant microphones affect acoustic hearing with respect to speech perception in noise. It also provides measures that can be used to evaluate the independent contributions of interaural time and level cues. These measures provide tools that can aid researchers in understanding and improving binaural benefits in acoustic hearing individuals listening via cochlear implant microphones. PMID:21412155

  20. Congenital amusia: a cognitive disorder limited to resolved harmonics and with no peripheral basis.

    PubMed

    Cousineau, Marion; Oxenham, Andrew J; Peretz, Isabelle

    2015-01-01

    Pitch plays a fundamental role in audition, from speech and music perception to auditory scene analysis. Congenital amusia is a neurogenetic disorder that appears to affect primarily pitch and melody perception. Pitch is normally conveyed by the spectro-temporal fine structure of low harmonics, but some pitch information is available in the temporal envelope produced by the interactions of higher harmonics. Using 10 amusic subjects and 10 matched controls, we tested the hypothesis that amusics suffer exclusively from impaired processing of spectro-temporal fine structure. We also tested whether the inability of amusics to process acoustic temporal fine structure extends beyond pitch by measuring sensitivity to interaural time differences, which also rely on temporal fine structure. Further tests were carried out on basic intensity and spectral resolution. As expected, pitch perception based on spectro-temporal fine structure was impaired in amusics; however, no significant deficits were observed in amusics' ability to perceive the pitch conveyed via temporal-envelope cues. Sensitivity to interaural time differences was also not significantly different between the amusic and control groups, ruling out deficits in the peripheral coding of temporal fine structure. Finally, no significant differences in intensity or spectral resolution were found between the amusic and control groups. The results demonstrate a pitch-specific deficit in fine spectro-temporal information processing in amusia that seems unrelated to temporal or spectral coding in the auditory periphery. These results are consistent with the view that there are distinct mechanisms dedicated to processing resolved and unresolved harmonics in the general population, the former being altered in congenital amusia while the latter is spared. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Online approximation of the multichannel Wiener filter with preservation of interaural level difference for binaural hearing-aids.

    PubMed

    Marques do Carmo, Diego; Costa, Márcio Holsbach

    2018-04-01

    This work presents an online approximation method for the multichannel Wiener filter (MWF) noise reduction technique with preservation of the noise interaural level difference (ILD) for binaural hearing-aids. The steepest descent method is applied to a previously proposed MWF-ILD cost function to both approximate the optimal linear estimator of the desired speech and keep the subjective perception of the original acoustic scenario. The computational cost of the resulting algorithm is estimated in terms of multiply and accumulate operations, whose number can be controlled by setting the number of iterations at each time frame. Simulation results for the particular case of one speech and one-directional noise source show that the proposed method increases the signal-to-noise ratio SNR of the originally acquired speech by up to 16.9 dB in the assessed scenarios. As compared to the online implementation of the conventional MWF technique, the proposed technique provides a reduction of up to 7 dB in the noise ILD error at the price of a reduction of up 3 dB in the output SNR. Subjective experiments with volunteers complement these objective measures with psychoacoustic results, which corroborate the expected spatial preservation of the original acoustic scenario. The proposed method allows practical online implementation of the MWF-ILD noise reduction technique under constrained computational resources. Predicted SNR improvements from 12 dB to 16.9 dB can be obtained in application-specific integrated circuits for hearing-aids and state-of-the-art digital signal processors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Perceptual consequences of disrupted auditory nerve activity.

    PubMed

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique contribution of neural synchrony to sensory perception but also provide guidance for translational research in terms of better diagnosis and management of human communication disorders.

  3. The across frequency independence of equalization of interaural time delay in the equalization-cancellation model of binaural unmasking.

    PubMed

    Akeroyd, Michael A

    2004-08-01

    The equalization stage in the equalization-cancellation model of binaural unmasking compensates for the interaural time delay (ITD) of a masking noise by introducing an opposite, internal delay [N. I. Durlach, in Foundations of Modern Auditory Theory, Vol. II., edited by J. V. Tobias (Academic, New York, 1972)]. Culling and Summerfield [J. Acoust. Soc. Am. 98, 785-797 (1995)] developed a multi-channel version of this model in which equalization was "free" to use the optimal delay in each channel. Two experiments were conducted to test if equalization was indeed free or if it was "restricted" to the same delay in all channels. One experiment measured binaural detection thresholds, using an adaptive procedure, for 1-, 5-, or 17-component tones against a broadband masking noise, in three binaural configurations (N0S180, N180S0, and N90S270). The thresholds for the 1-component stimuli were used to normalize the levels of each of the 5- and 17-component stimuli so that they were equally detectable. If equalization was restricted, then, for the 5- and 17-component stimuli, the N90S270 and N180S0 configurations would yield a greater threshold than the N0S180 configurations. No such difference was found. A subsequent experiment measured binaural detection thresholds, via psychometric functions, for a 2-component complex tone in the same three binaural configurations. Again, no differential effect of configuration was observed. An analytic model of the detection of a complex tone showed that the results were more consistent with free equalization than restricted equalization, although the size of the differences was found to depend on the shape of the psychometric function for detection.

  4. The acoustical cues to sound location in the Guinea pig (cavia porcellus)

    PubMed Central

    Greene, Nathanial T; Anbuhl, Kelsey L; Williams, Whitney; Tollin, Daniel J.

    2014-01-01

    There are three main acoustical cues to sound location, each attributable to space-and frequency-dependent filtering of the propagating sound waves by the outer ears, head, and torso: Interaural differences in time (ITD) and level (ILD) as well as monaural spectral shape cues. While the guinea pig has been a common model for studying the anatomy, physiology, and behavior of binaural and spatial hearing, extensive measurements of their available acoustical cues are lacking. Here, these cues were determined from directional transfer functions (DTFs), the directional components of the head-related transfer functions, for eleven adult guinea pigs. In the frontal hemisphere, monaural spectral notches were present for frequencies from ~10 to 20 kHz; in general, the notch frequency increased with increasing sound source elevation and in azimuth toward the contralateral ear. The maximum ITDs calculated from low-pass filtered (2 kHz cutoff frequency) DTFs were ~250 µs, whereas the maximum ITD measured with low frequency tone pips was over 320 µs. A spherical head model underestimates ITD magnitude under normal conditions, but closely approximates values when the pinnae were removed. Interaural level differences (ILDs) strongly depended on location and frequency; maximum ILDs were < 10 dB for frequencies < 4 kHz and were as large as 40 dB for frequencies > 10 kHz. Removal of the pinna reduced the depth and sharpness of spectral notches, altered the acoustical axis, and reduced the acoustical gain, ITDs, and ILDs; however, spectral shape features and acoustical gain were not completely eliminated, suggesting a substantial contribution of the head and torso in altering the sounds present at the tympanic membrane. PMID:25051197

  5. Adaptation in sound localization processing induced by interaural time difference in amplitude envelope at high frequencies.

    PubMed

    Kawashima, Takayuki; Sato, Takao

    2012-01-01

    When a second sound follows a long first sound, its location appears to be perceived away from the first one (the localization/lateralization aftereffect). This aftereffect has often been considered to reflect an efficient neural coding of sound locations in the auditory system. To understand determinants of the localization aftereffect, the current study examined whether it is induced by an interaural temporal difference (ITD) in the amplitude envelope of high frequency transposed tones (over 2 kHz), which is known to function as a sound localization cue. In Experiment 1, participants were required to adjust the position of a pointer to the perceived location of test stimuli before and after adaptation. Test and adapter stimuli were amplitude modulated (AM) sounds presented at high frequencies and their positional differences were manipulated solely by the envelope ITD. Results showed that the adapter's ITD systematically affected the perceived position of test sounds to the directions expected from the localization/lateralization aftereffect when the adapter was presented at ±600 µs ITD; a corresponding significant effect was not observed for a 0 µs ITD adapter. In Experiment 2, the observed adapter effect was confirmed using a forced-choice task. It was also found that adaptation to the AM sounds at high frequencies did not significantly change the perceived position of pure-tone test stimuli in the low frequency region (128 and 256 Hz). The findings in the current study indicate that ITD in the envelope at high frequencies induces the localization aftereffect. This suggests that ITD in the high frequency region is involved in adaptive plasticity of auditory localization processing.

  6. Relative size of auditory pathways in symmetrically and asymmetrically eared owls.

    PubMed

    Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N; Wylie, Douglas R

    2011-01-01

    Owls are highly efficient predators with a specialized auditory system designed to aid in the localization of prey. One of the most unique anatomical features of the owl auditory system is the evolution of vertically asymmetrical ears in some species, which improves their ability to localize the elevational component of a sound stimulus. In the asymmetrically eared barn owl, interaural time differences (ITD) are used to localize sounds in azimuth, whereas interaural level differences (ILD) are used to localize sounds in elevation. These two features are processed independently in two separate neural pathways that converge in the external nucleus of the inferior colliculus to form an auditory map of space. Here, we present a comparison of the relative volume of 11 auditory nuclei in both the ITD and the ILD pathways of 8 species of symmetrically and asymmetrically eared owls in order to investigate evolutionary changes in the auditory pathways in relation to ear asymmetry. Overall, our results indicate that asymmetrically eared owls have much larger auditory nuclei than owls with symmetrical ears. In asymmetrically eared owls we found that both the ITD and ILD pathways are equally enlarged, and other auditory nuclei, not directly involved in binaural comparisons, are also enlarged. We suggest that the hypertrophy of auditory nuclei in asymmetrically eared owls likely reflects both an improved ability to precisely locate sounds in space and an expansion of the hearing range. Additionally, our results suggest that the hypertrophy of nuclei that compute space may have preceded that of the expansion of the hearing range and evolutionary changes in the size of the auditory system occurred independently of phylogeny. Copyright © 2011 S. Karger AG, Basel.

  7. Spectral composition of concurrent noise affects neuronal sensitivity to interaural time differences of tones in the dorsal nucleus of the lateral lemniscus.

    PubMed

    Siveke, Ida; Leibold, Christian; Grothe, Benedikt

    2007-11-01

    We are regularly exposed to several concurrent sounds, producing a mixture of binaural cues. The neuronal mechanisms underlying the localization of concurrent sounds are not well understood. The major binaural cues for localizing low-frequency sounds in the horizontal plane are interaural time differences (ITDs). Auditory brain stem neurons encode ITDs by firing maximally in response to "favorable" ITDs and weakly or not at all in response to "unfavorable" ITDs. We recorded from ITD-sensitive neurons in the dorsal nucleus of the lateral lemniscus (DNLL) while presenting pure tones at different ITDs embedded in noise. We found that increasing levels of concurrent white noise suppressed the maximal response rate to tones with favorable ITDs and slightly enhanced the response rate to tones with unfavorable ITDs. Nevertheless, most of the neurons maintained ITD sensitivity to tones even for noise intensities equal to that of the tone. Using concurrent noise with a spectral composition in which the neuron's excitatory frequencies are omitted reduced the maximal response similar to that obtained with concurrent white noise. This finding indicates that the decrease of the maximal rate is mediated by suppressive cross-frequency interactions, which we also observed during monaural stimulation with additional white noise. In contrast, the enhancement of the firing rate to tones at unfavorable ITD might be due to early binaural interactions (e.g., at the level of the superior olive). A simple simulation corroborates this interpretation. Taken together, these findings suggest that the spectral composition of a concurrent sound strongly influences the spatial processing of ITD-sensitive DNLL neurons.

  8. Ocular motor responses to abrupt interaural head translation in normal humans

    NASA Technical Reports Server (NTRS)

    Ramat, Stefano; Zee, David S.; Shelhamer, M. J. (Principal Investigator)

    2003-01-01

    We characterized the interaural translational vestibulo-ocular reflex (tVOR) in 6 normal humans to brief (approximately 200 ms), high-acceleration (0.4-1.4g) stimuli, while they fixed targets at 15 or 30 cm. The latency was 19 +/- 5 ms at 15-cm and 20 +/- 12 ms at 30-cm viewing. The gain was quantified using the ratio of actual to ideal behavior. The median position gain (at time of peak head velocity) was 0.38 and 0.37, and the median velocity gain, 0.52 and 0.62, at 15- and 30-cm viewing, respectively. These results suggest the tVOR scales proportionally at these viewing distances. Likewise, at both viewing distances, peak eye velocity scaled linearly with peak head velocity and gain was independent of peak head acceleration. A saccade commonly occurred in the compensatory direction, with a greater latency (165 vs. 145 ms) and lesser amplitude (1.8 vs. 3.2 deg) at 30- than 15-cm viewing. Even with saccades, the overall gain at the end of head movement was still considerably undercompensatory (medians 0.68 and 0.77 at 15- and 30-cm viewing). Monocular viewing was also assessed at 15-cm viewing. In 4 of 6 subjects, gains were the same as during binocular viewing and scaled closely with vergence angle. In sum the low tVOR gain and scaling of the response with viewing distance and head velocity extend previous results to higher acceleration stimuli. tVOR latency (approximately 20 ms) was lower than previously reported. Saccades are an integral part of the tVOR, and also scale with viewing distance.

  9. Monaural and binaural contributions to interaural-level-difference sensitivity in human auditory cortex.

    PubMed

    Stecker, G Christopher; McLaughlin, Susan A; Higgins, Nathan C

    2015-10-15

    Whole-brain functional magnetic resonance imaging was used to measure blood-oxygenation-level-dependent (BOLD) responses in human auditory cortex (AC) to sounds with intensity varying independently in the left and right ears. Echoplanar images were acquired at 3 Tesla with sparse image acquisition once per 12-second block of sound stimulation. Combinations of binaural intensity and stimulus presentation rate were varied between blocks, and selected to allow measurement of response-intensity functions in three configurations: monaural 55-85 dB SPL, binaural 55-85 dB SPL with intensity equal in both ears, and binaural with average binaural level of 70 dB SPL and interaural level differences (ILD) ranging ±30 dB (i.e., favoring the left or right ear). Comparison of response functions equated for contralateral intensity revealed that BOLD-response magnitudes (1) generally increased with contralateral intensity, consistent with positive drive of the BOLD response by the contralateral ear, (2) were larger for contralateral monaural stimulation than for binaural stimulation, consistent with negative effects (e.g., inhibition) of ipsilateral input, which were strongest in the left hemisphere, and (3) also increased with ipsilateral intensity when contralateral input was weak, consistent with additional, positive, effects of ipsilateral stimulation. Hemispheric asymmetries in the spatial extent and overall magnitude of BOLD responses were generally consistent with previous studies demonstrating greater bilaterality of responses in the right hemisphere and stricter contralaterality in the left hemisphere. Finally, comparison of responses to fast (40/s) and slow (5/s) stimulus presentation rates revealed significant rate-dependent adaptation of the BOLD response that varied across ILD values. Copyright © 2015. Published by Elsevier Inc.

  10. The Relationship Between Intensity Coding and Binaural Sensitivity in Adults With Cochlear Implants

    PubMed Central

    Todd, Ann E.; Goupell, Matthew J.; Litovsky, Ruth Y.

    2016-01-01

    Objectives Many bilateral cochlear implant users show sensitivity to binaural information when stimulation is provided using a pair of synchronized electrodes. However, there is large variability in binaural sensitivity between and within participants across stimulation sites in the cochlea. It was hypothesized that within-participant variability in binaural sensitivity is in part affected by limitations and characteristics of the auditory periphery which may be reflected by monaural hearing performance. The objective of this study was to examine the relationship between monaural and binaural hearing performance within participants with bilateral cochlear implants. Design Binaural measures included dichotic signal detection and interaural time difference discrimination thresholds. Diotic signal detection thresholds were also measured. Monaural measures included dynamic range and amplitude modulation detection. In addition, loudness growth was compared between ears. Measures were made at three stimulation sites per listener. Results Greater binaural sensitivity was found with larger dynamic ranges. Poorer interaural time difference discrimination was found with larger difference between comfortable levels of the two ears. In addition, poorer diotic signal detection thresholds were found with larger differences between the dynamic ranges of the two ears. No relationship was found between amplitude modulation detection thresholds or symmetry of loudness growth and the binaural measures. Conclusions The results suggest that some of the variability in binaural hearing performance within listeners across stimulation sites can be explained by factors non-specific to binaural processing. The results are consistent with the idea that dynamic range and comfortable levels relate to peripheral neural survival and the width of the excitation pattern which could affect the fidelity with which central binaural nuclei process bilateral inputs. PMID:27787393

  11. Contribution of Binaural Masking Release to Improved Speech Intelligibility for different Masker types.

    PubMed

    Sutojo, Sarinah; van de Par, Steven; Schoenmaker, Esther

    2018-06-01

    In situations with competing talkers or in the presence of masking noise, speech intelligibility can be improved by spatially separating the target speaker from the interferers. This advantage is generally referred to as spatial release from masking (SRM) and different mechanisms have been suggested to explain it. One proposed mechanism to benefit from spatial cues is the binaural masking release, which is purely stimulus driven. According to this mechanism, the spatial benefit results from differences in the binaural cues of target and masker, which need to appear simultaneously in time and frequency to improve the signal detection. In an alternative proposed mechanism, the differences in the interaural cues improve the segregation of auditory streams, a process, which involves top-down processing rather than being purely stimulus driven. Other than the cues that produce binaural masking release, the interaural cue differences between target and interferer required to improve stream segregation do not have to appear simultaneously in time and frequency. This study is concerned with the contribution of binaural masking release to SRM for three masker types that differ with respect to the amount of energetic masking they exert. Speech intelligibility was measured, employing a stimulus manipulation that inhibits binaural masking release, and analyzed with a metric to account for the number of better-ear glimpses. Results indicate that the contribution of the stimulus-driven binaural masking release plays a minor role while binaural stream segregation and the availability of glimpses in the better ear had a stronger influence on improving the speech intelligibility. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. The Opponent Channel Population Code of Sound Location Is an Efficient Representation of Natural Binaural Sounds

    PubMed Central

    Młynarski, Wiktor

    2015-01-01

    In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a “panoramic” code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding. PMID:25996373

  13. The Relationship between Central Auditory Processing, Language, and Cognition in Children Being Evaluated for Central Auditory Processing Disorder.

    PubMed

    Brenneman, Lauren; Cash, Elizabeth; Chermak, Gail D; Guenette, Linda; Masters, Gay; Musiek, Frank E; Brown, Mallory; Ceruti, Julianne; Fitzegerald, Krista; Geissler, Kristin; Gonzalez, Jennifer; Weihing, Jeffrey

    2017-09-01

    Pediatric central auditory processing disorder (CAPD) is frequently comorbid with other childhood disorders. However, few studies have examined the relationship between commonly used CAPD, language, and cognition tests within the same sample. The present study examined the relationship between diagnostic CAPD tests and "gold standard" measures of language and cognitive ability, the Clinical Evaluation of Language Fundamentals (CELF) and the Wechsler Intelligence Scale for Children (WISC). A retrospective study. Twenty-seven patients referred for CAPD testing who scored average or better on the CELF and low average or better on the WISC were initially included. Seven children who scored below the CELF and/or WISC inclusion criteria were then added to the dataset for a second analysis, yielding a sample size of 34. Participants were administered a CAPD battery that included at least the following three CAPD tests: Frequency Patterns (FP), Dichotic Digits (DD), and Competing Sentences (CS). In addition, they were administered the CELF and WISC. Relationships between scores on CAPD, language (CELF), and cognition (WISC) tests were examined using correlation analysis. DD and FP showed significant correlations with Full Scale Intelligence Quotient, and the DD left ear and the DD interaural difference measures both showed significant correlations with working memory. However, ∼80% or more of the variance in these CAPD tests was unexplained by language and cognition measures. Language and cognition measures were more strongly correlated with each other than were the CAPD tests with any CELF or WISC scale. Additional correlations with the CAPD tests were revealed when patients who scored in the mild-moderate deficit range on the CELF and/or in the borderline low intellectual functioning range on the WISC were included in the analysis. While both the DD and FP tests showed significant correlations with one or more cognition measures, the majority of the variance in these CAPD measures went unexplained by cognition. Unlike DD and FP, the CS test was not correlated with cognition. Additionally, language measures were not significantly correlated with any of the CAPD tests. Our findings emphasize that the outcomes and interpretation of results vary as a function of the subject inclusion criteria that are applied for the CELF and WISC. Including participants with poorer cognition and/or language scores increased the number of significant correlations observed. For this reason, it is important that studies investigating the relationship between CAPD and other domains or disorders report the specific inclusion criteria used for all tests. American Academy of Audiology

  14. Effects of Various Architectural Parameters on Six Room Acoustical Measures in Auditoria.

    NASA Astrophysics Data System (ADS)

    Chiang, Wei-Hwa

    The effects of architectural parameters on six room acoustical measures were investigated by means of correlation analyses, factor analyses and multiple regression analyses based on data taken in twenty halls. Architectural parameters were used to estimate acoustical measures taken at individual locations within each room as well as the averages and standard deviations of all measured values in the rooms. The six acoustical measures were Early Decay Time (EDT10), Clarity Index (C80), Overall Level (G), Bass Ratio based on Early Decay Time (BR(EDT)), Treble Ratio based on Early Decay Time (TR(EDT)), and Early Inter-aural Cross Correlation (IACC80). A comprehensive method of quantifying various architectural characteristics of rooms was developed to define a large number of architectural parameters that were hypothesized to effect the acoustical measurements made in the rooms. This study quantitatively confirmed many of the principles used in the design of concert halls and auditoria. Three groups of room architectural parameters such as the parameters associated with the depth of diffusing surfaces were significantly correlated with the hall standard deviations of most of the acoustical measures. Significant differences of statistical relations among architectural parameters and receiver specific acoustical measures were found between a group of music halls and a group of lecture halls. For example, architectural parameters such as the relative distance from the receiver to the overhead ceiling increased the percentage of the variance of acoustical measures that was explained by Barron's revised theory from approximately 70% to 80% only when data were taken in the group of music halls. This study revealed the major architectural parameters which have strong relations with individual acoustical measures forming the basis for a more quantitative method for advancing the theoretical design of concert halls and other auditoria. The results of this study provide designers the information to predict acoustical measures in buildings at very early stages of the design process without using computer models or scale models.

  15. Modeling off-frequency binaural masking for short- and long-duration signals.

    PubMed

    Nitschmann, Marc; Yasin, Ifat; Henning, G Bruce; Verhey, Jesko L

    2017-08-01

    Experimental binaural masking-pattern data are presented together with model simulations for 12- and 600-ms signals. The masker was a diotic 11-Hz wide noise centered on 500 Hz. The tonal signal was presented either diotically or dichotically (180° interaural phase difference) with frequencies ranging from 400 to 600 Hz. The results and the modeling agree with previous data and hypotheses; simulations with a binaural model sensitive to monaural modulation cues show that the effect of duration on off-frequency binaural masking-level differences is mainly a result of modulation cues which are only available in the monaural detection of long signals.

  16. Spatial separation benefit for unaided and aided listening

    PubMed Central

    Ahlstrom, Jayne B.; Horwitz, Amy R.; Dubno, Judy R.

    2013-01-01

    Consonant recognition in noise was measured at a fixed signal-to-noise ratio as a function of low-pass-cutoff frequency and noise location in older adults fit with bilateral hearing aids. To quantify age-related differences, spatial benefit was assessed in younger and older adults with normal hearing. Spatial benefit was similar for all groups suggesting that older adults used interaural difference cues to improve speech recognition in noise equivalently to younger adults. Although amplification was sufficient to increase high-frequency audibility with spatial separation, hearing-aid benefit was minimal, suggesting that factors beyond simple audibility may be responsible for limited hearing-aid benefit. PMID:24121648

  17. Structure of public transit costs in the presence of multiple serial correlation

    DOT National Transportation Integrated Search

    1999-12-01

    Most studies indicate that public transit systems operate under increasing returns to capital stock utilization and are significantly overcapitalized. Existing flexible form time series analyses, however, fail to correct for serial correlation. In th...

  18. Neural Correlates and Mechanisms of Spatial Release From Masking: Single-Unit and Population Responses in the Inferior Colliculus

    PubMed Central

    Lane, Courtney C.; Delgutte, Bertrand

    2007-01-01

    Spatial release from masking (SRM), a factor in listening in noisy environments, is the improvement in auditory signal detection obtained when a signal is separated in space from a masker. To study the neural mechanisms of SRM, we recorded from single units in the inferior colliculus (IC) of barbiturate-anesthetized cats, focusing on low-frequency neurons sensitive to interaural time differences. The stimulus was a broadband chirp train with a 40-Hz repetition rate in continuous broadband noise, and the unit responses were measured for several signal and masker (virtual) locations. Masked thresholds (the lowest signal-to-noise ratio, SNR, for which the signal could be detected for 75% of the stimulus presentations) changed systematically with signal and masker location. Single-unit thresholds did not necessarily improve with signal and masker separation; instead, they tended to reflect the units’ azimuth preference. Both how the signal was detected (through a rate increase or decrease) and how the noise masked the signal response (suppressive or excitatory masking) changed with signal and masker azimuth, consistent with a cross-correlator model of binaural processing. However, additional processing, perhaps related to the signal’s amplitude modulation rate, appeared to influence the units’ responses. The population masked thresholds (the most sensitive unit’s threshold at each signal and masker location) did improve with signal and masker separation as a result of the variety of azimuth preferences in our unit sample. The population thresholds were similar to human behavioral thresholds in both SNR value and shape, indicating that these units may provide a neural substrate for low-frequency SRM. PMID:15857966

  19. Spike-frequency adaptation in the inferior colliculus.

    PubMed

    Ingham, Neil J; McAlpine, David

    2004-02-01

    We investigated spike-frequency adaptation of neurons sensitive to interaural phase disparities (IPDs) in the inferior colliculus (IC) of urethane-anesthetized guinea pigs using a stimulus paradigm designed to exclude the influence of adaptation below the level of binaural integration. The IPD-step stimulus consists of a binaural 3,000-ms tone, in which the first 1,000 ms is held at a neuron's least favorable ("worst") IPD, adapting out monaural components, before being stepped rapidly to a neuron's most favorable ("best") IPD for 300 ms. After some variable interval (1-1,000 ms), IPD is again stepped to the best IPD for 300 ms, before being returned to a neuron's worst IPD for the remainder of the stimulus. Exponential decay functions fitted to the response to best-IPD steps revealed an average adaptation time constant of 52.9 +/- 26.4 ms. Recovery from adaptation to best IPD steps showed an average time constant of 225.5 +/- 210.2 ms. Recovery time constants were not correlated with adaptation time constants. During the recovery period, adaptation to a 2nd best-IPD step followed similar kinetics to adaptation during the 1st best-IPD step. The mean adaptation time constant at stimulus onset (at worst IPD) was 34.8 +/- 19.7 ms, similar to the 38.4 +/- 22.1 ms recorded to contralateral stimulation alone. Individual time constants after stimulus onset were correlated with each other but not with time constants during the best-IPD step. We conclude that such binaurally derived measures of adaptation reflect processes that occur above the level of exclusively monaural pathways, and subsequent to the site of primary binaural interaction.

  20. When Language Experience Fails to Explain Word Reading Development: Early Cognitive and Linguistic Profiles of Young Foreign Language Learners

    ERIC Educational Resources Information Center

    Hu, Chieh-Fang; Schuele, C. Melanie

    2015-01-01

    Although language experience is a key factor in successful foreign language (FL) learning, many FL learners fail to achieve performance levels that were predicted on the basis of their FL experience. This retrospective study investigated early cognitive and linguistic correlates of learning English as a foreign language (FL) in a group of…

  1. Binaural Pitch Fusion in Bilateral Cochlear Implant Users.

    PubMed

    Reiss, Lina A J; Fowler, Jennifer R; Hartling, Curtis L; Oh, Yonghee

    Binaural pitch fusion is the fusion of stimuli that evoke different pitches between the ears into a single auditory image. Individuals who use hearing aids or bimodal cochlear implants (CIs) experience abnormally broad binaural pitch fusion, such that sounds differing in pitch by as much as 3-4 octaves are fused across ears, leading to spectral averaging and speech perception interference. The goal of this study was to determine if adult bilateral CI users also experience broad binaural pitch fusion. Stimuli were pulse trains delivered to individual electrodes. Fusion ranges were measured using simultaneous, dichotic presentation of reference and comparison stimuli in opposite ears, and varying the comparison stimulus to find the range that fused with the reference stimulus. Bilateral CI listeners had binaural pitch fusion ranges varying from 0 to 12 mm (average 6.1 ± 3.9 mm), where 12 mm indicates fusion over all electrodes in the array. No significant correlations of fusion range were observed with any subject factors related to age, hearing loss history, or hearing device history, or with any electrode factors including interaural electrode pitch mismatch, pitch match bandwidth, or within-ear electrode discrimination abilities. Bilateral CI listeners have abnormally broad fusion, similar to hearing aid and bimodal CI listeners. This broad fusion may explain the variability of binaural benefits for speech perception in quiet and in noise in bilateral CI users.

  2. The Balance of Excitatory and Inhibitory Synaptic Inputs for Coding Sound Location

    PubMed Central

    Ono, Munenori

    2014-01-01

    The localization of high-frequency sounds in the horizontal plane uses an interaural-level difference (ILD) cue, yet little is known about the synaptic mechanisms that underlie processing this cue in the inferior colliculus (IC) of mouse. Here, we study the synaptic currents that process ILD in vivo and use stimuli in which ILD varies around a constant average binaural level (ABL) to approximate sounds on the horizontal plane. Monaural stimulation in either ear produced EPSCs and IPSCs in most neurons. The temporal properties of monaural responses were well matched, suggesting connected functional zones with matched inputs. The EPSCs had three patterns in response to ABL stimuli, preference for the sound field with the highest level stimulus: (1) contralateral; (2) bilateral highly lateralized; or (3) at the center near 0 ILD. EPSCs and IPSCs were well correlated except in center-preferred neurons. Summation of the monaural EPSCs predicted the binaural excitatory response but less well than the summation of monaural IPSCs. Binaural EPSCs often showed a nonlinearity that strengthened the response to specific ILDs. Extracellular spike and intracellular current recordings from the same neuron showed that the ILD tuning of the spikes was sharper than that of the EPSCs. Thus, in the IC, balanced excitatory and inhibitory inputs may be a general feature of synaptic coding for many types of sound processing. PMID:24599475

  3. Modulation cues influence binaural masking-level difference in masking-pattern experiments.

    PubMed

    Nitschmann, Marc; Verhey, Jesko L

    2012-03-01

    Binaural masking patterns show a steep decrease in the binaural masking-level difference (BMLD) when masker and signal have no frequency component in common. Experimental threshold data are presented together with model simulations for a diotic masker centered at 250 or 500 Hz and a bandwidth of 10 or 100 Hz masking a sinusoid interaurally in phase (S(0)) or in antiphase (S(π)). Simulations with a binaural model, including a modulation filterbank for the monaural analysis, indicate that a large portion of the decrease in the BMLD in remote-masking conditions may be due to an additional modulation cue available for monaural detection. © 2012 Acoustical Society of America

  4. Endovascular thrombectomy for acute ischemic stroke in failed intravenous tissue plasminogen activator versus non-intravenous tissue plasminogen activator patients: revascularization and outcomes stratified by the site of arterial occlusions.

    PubMed

    Shi, Zhong-Song; Loh, Yince; Walker, Gary; Duckwiler, Gary R

    2010-06-01

    Intracranial mechanical thrombectomy is a therapeutic option for acute ischemic stroke patients failing intravenous tissue plasminogen activator (IV tPA). We compared patients treated by mechanical embolus removal in cerebral ischemia (MERCI) thrombectomy after failed IV tPA with those treated with thrombectomy alone. We pooled MERCI and Multi MERCI study patients, grouped them either as failed IV tPA or non-IV tPA, and assessed revascularization rates, procedural complications, symptomatic hemorrhage rates, clinical outcomes, and mortality. We also evaluated outcomes stratified by the occlusion site and final revascularization. Among 305 patients, 48 failed, and 257 were ineligible for IV tPA. Nonresponders to IV tPA trended toward a higher revascularization rate (73% versus 63%) and less mortality (27.7% versus 40.1%) and had similar rates of symptomatic hemorrhage and procedural complications. Favorable 90-day outcomes were similar in failed and non-IV tPA patients (38% versus 31%), with no difference according to occlusion site. Among patients failing IV tPA, good outcomes tended to occur more frequently in revascularized patients (47.1% versus 15.4%), although this relationship was attributable solely to middle cerebral artery and not internal carotid artery occlusions, with no difference in mortality. Among IV tPA-ineligible patients, revascularization correlated with good outcome (47.4% versus 4.4%) and less mortality (28.5% versus 59.6%). The risks of hemorrhage and procedure-related complications after mechanical thrombectomy do not differ with respect to previous IV tPA administration. Thrombectomy after IV tPA achieves similar rates of good outcomes, a tendency toward lower mortality, and similar revascularization rates when stratified by clot location. Good outcomes correlate with successful revascularization except with internal carotid artery occlusions in tPA-nonresponders.

  5. Analysis of reliability of professor recommendation letters based on concordance with self-introduction letter.

    PubMed

    Kim, Sang Hyun

    2013-12-01

    The purpose of this study was to examine the concordance between a checklist's categories of professor recommendation letters and characteristics of the self-introduction letter. Checklists of professor recommendation letters were analyzed and classified into cognitive, social, and affective domains. Simple correlation was performed to determine whether the characteristics of the checklists were concordant with those of the self-introduction letter. The difference in ratings of the checklists by pass or fail grades was analyzed by independent sample t-test. Logistic regression analysis was performed to determine whether a pass or fail grade was influenced by ratings on the checklists. The Cronbach alpha value of the checklists was 0.854. Initiative, as an affective domain, in the professor's recommendation letter was highly ranked among the six checklist categories. Self-directed learning in the self-introduction letter was influenced by a pass or fail grade by logistic regression analysis (p<0.05). Successful applicants received higher ratings than those who failed in every checklist category, particularly in problem-solving ability, communication skills, initiative, and morality (p<0.05). There was a strong correlation between cognitive and affective characteristics in the professor recommendation letters and the sum of all characteristics in the self-introduction letter.

  6. Evaluating the Medical Symptom Validity Test (MSVT) in a Sample of Veterans Between the Ages of 18 to 64.

    PubMed

    Reslan, Summar; Axelrod, Bradley N

    2017-01-01

    The purpose of the current study was to compare three potential profiles of the Medical Symptom Validity Test (MSVT; Pass, Genuine Memory Impairment Profile [GMIP], and Fail) on other freestanding and embedded performance validity tests (PVTs). Notably, a quantitatively computed version of the GMIP was utilized in this investigation. Data obtained from veterans referred for a neuropsychological evaluation in a metropolitan Veteran Affairs medical center were included (N = 494). Individuals age 65 and older were not included to exclude individuals with dementia from this investigation. The sample revealed 222 (45%) in the Pass group. Of the 272 who failed the easy subtests of the MSVT, 221 (81%) met quantitative criteria for the GMIP and 51 (19%) were classified as Fail. The Pass group failed fewer freestanding and embedded PVTs and obtained higher raw scores on all PVTs than both GMIP and Fail groups. The differences in performances of the GMIP and Fail groups were minimal. Specifically, GMIP protocols failed fewer freestanding PVTs than the Fail group; failure on embedded PVTs did not differ between GMIP and Fail. The MSVT GMIP incorporates the presence of clinical correlates of disability to assist with this distinction, but future research should consider performances on other freestanding measures of performance validity to differentiate cognitive impairment from invalidity.

  7. Adaptation and inhibition underlie responses to time-varying interaural phase cues in a model of inferior colliculus neurons.

    PubMed

    Borisyuk, Alla; Semple, Malcolm N; Rinzel, John

    2002-10-01

    A mathematical model was developed for exploring the sensitivity of low-frequency inferior colliculus (IC) neurons to interaural phase disparity (IPD). The formulation involves a firing-rate-type model that does not include spikes per se. The model IC neuron receives IPD-tuned excitatory and inhibitory inputs (viewed as the output of a collection of cells in the medial superior olive). The model cell possesses cellular properties of firing rate adaptation and postinhibitory rebound (PIR). The descriptions of these mechanisms are biophysically reasonable, but only semi-quantitative. We seek to explain within a minimal model the experimentally observed mismatch between responses to IPD stimuli delivered dynamically and those delivered statically (McAlpine et al. 2000; Spitzer and Semple 1993). The model reproduces many features of the responses to static IPD presentations, binaural beat, and partial range sweep stimuli. These features include differences in responses to a stimulus presented in static or dynamic context: sharper tuning and phase shifts in response to binaural beats, and hysteresis and "rise-from-nowhere" in response to partial range sweeps. Our results suggest that dynamic response features are due to the structure of inputs and the presence of firing rate adaptation and PIR mechanism in IC cells, but do not depend on a specific biophysical mechanism. We demonstrate how the model's various components contribute to shaping the observed phenomena. For example, adaptation, PIR, and transmission delay shape phase advances and delays in responses to binaural beats, adaptation and PIR shape hysteresis in different ranges of IPD, and tuned inhibition underlies asymmetry in dynamic tuning properties. We also suggest experiments to test our modeling predictions: in vitro simulation of the binaural beat (phase advance at low beat frequencies, its dependence on firing rate), in vivo partial range sweep experiments (dependence of the hysteresis curve on parameters), and inhibition blocking experiments (to study inhibitory tuning properties by observation of phase shifts).

  8. [The characteristics of VEMP in patients with acoustic neuroma].

    PubMed

    Xue, Bin; Yang, Jun

    2008-01-01

    To establish the normal value of the vestibular evoked myogenic potential (VEMP), and to determine the characteristics of VEMP in patients with acoustic neuroma (AN) and to explore the significance of VEMP in diagnosis of AN. Click-evoked VEMP was recorded with surface electrodes attached on the sternocleidomastoid muscle. Latencies and amplitudes of specific waveform of VEMP were measured. The hearing normal subjects including 26 males and 20 females were chosen to establish the normal value of VEMP. VEMP was investigated in 14 patients with AN who underwent surgery during the period of 2006-2007 as well as auditory brainstem response (ABR) and vestibular caloric test. Of 46 subjects with normal hearing, VEMP was present in both ears in 43 subjects, absent in either ear in three subjects. The reducible rate is 93.5% (86/92). The nor-mal value obtained from 86 reducible ears were as follows (means +/- standard deviation): latency of p13 (11.86 +/- 2.11) ms, latency of n23 (18.57 +/- 2.19) ms, interval time between p13 and n23 (6.71 +/- 1.69) ms, amplitude of p13n23 (24.18 +/- 8.22) microV. Interaural variances in 43 subjects whose VEMP were available were as follows (means +/- standard deviation): /deltap13 (0.64 +/- 0.61) ms, /deltan23/(1.05 +/- 0.97) ms, interval time between /delta13n23/ (0.84 +/- 0.81) ms, amplitude ratio (max/min) 1.32 +/- 0. 37, interaural asymmetric ratio of VEMP 0.12 +/- 0.11. Of the 14 patients with AN, VEMP was absent on the affected side in eight patients, absent on either side in three patients, and present on the unaffected side in 11 patients. VEMP presented on the affected side in three patients was significantly prolonged in /deltapl3/ and /deltap13n23/. Patients with AN characterized with VEMP could be useful in the diagnosis of AN combined together with other tests.

  9. Translational Vestibulo-Ocular Reflex and Motion Perception During Interaural Linear Acceleration: Comparison of Different Motion Paradigms

    NASA Technical Reports Server (NTRS)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, S. J.

    2011-01-01

    The neural mechanisms to resolve ambiguous tilt-translation motion have been hypothesized to be different for motion perception and eye movements. Previous studies have demonstrated differences in ocular and perceptual responses using a variety of motion paradigms, including Off-Vertical Axis Rotation (OVAR), Variable Radius Centrifugation (VRC), translation along a linear track, and tilt about an Earth-horizontal axis. While the linear acceleration across these motion paradigms is presumably equivalent, there are important differences in semicircular canal cues. The purpose of this study was to compare translation motion perception and horizontal slow phase velocity to quantify consistencies, or lack thereof, across four different motion paradigms. Twelve healthy subjects were exposed to sinusoidal interaural linear acceleration between 0.01 and 0.6 Hz at 1.7 m/s/s (equivalent to 10 tilt) using OVAR, VRC, roll tilt, and lateral translation. During each trial, subjects verbally reported the amount of perceived peak-to-peak lateral translation and indicated the direction of motion with a joystick. Binocular eye movements were recorded using video-oculography. In general, the gain of translation perception (ratio of reported linear displacement to equivalent linear stimulus displacement) increased with stimulus frequency, while the phase did not significantly vary. However, translation perception was more pronounced during both VRC and lateral translation involving actual translation, whereas perceptions were less consistent and more variable during OVAR and roll tilt which did not involve actual translation. For each motion paradigm, horizontal eye movements were negligible at low frequencies and showed phase lead relative to the linear stimulus. At higher frequencies, the gain of the eye movements increased and became more inphase with the acceleration stimulus. While these results are consistent with the hypothesis that the neural computational strategies for motion perception and eye movements differ, they also indicate that the specific motion platform employed can have a significant effect on both the amplitude and phase of each.

  10. Comparative physiology of sound localization in four species of owls.

    PubMed

    Volman, S F; Konishi, M

    1990-01-01

    Bilateral ear asymmetry is found in some, but not all, species of owls. We investigated the neural basis of sound localization in symmetrical and asymmetrical species, to deduce how ear asymmetry might have evolved from the ancestral condition, by comparing the response properties of neurons in the external nucleus of the inferior colliculus (ICx) of the symmetrical burrowing owl and asymmetrical long-eared owl with previous findings in the symmetrical great horned owl and asymmetrical barn owl. In the ICx of all of these owls, the neurons had spatially restricted receptive fields, and auditory space was topographically mapped. In the symmetrical owls, ICx units were not restricted in elevation, and only azimuth was mapped in ICx. In the barn owl, the space map is two-dimensional, with elevation forming the second dimension. Receptive fields in the long-eared owl were somewhat restricted in elevation, but their tuning was not sharp enough to determine if elevation is mapped. In every species, the primary cue for azimuth was interaural time difference, although ICx units were also tuned for interaural intensity difference (IID). In the barn owl, the IIDs of sounds with frequencies between about 5 and 8 kHz vary systematically with elevation, and the IID selectivity of ICx neurons primarily encodes elevation. In the symmetrical owls, whose ICx neurons do not respond to frequencies above about 5 kHz, IID appears to be a supplementary cue for azimuth. We hypothesize that ear asymmetry can be exploited by owls that have evolved the higher-frequency hearing necessary to generate elevation cues. Thus, the IID selectivity of ICx neurons in symmetrical owls may preadapt them for asymmetry; the neural circuitry that underlies IID selectivity is already present in symmetrical owls, but because IID is not absolutely required to encode azimuth it can come to encode elevation in asymmetrical owls.

  11. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography.

    PubMed

    Altmann, Christian F; Ueda, Ryuhei; Bucher, Benoit; Furukawa, Shigeto; Ono, Kentaro; Kashino, Makio; Mima, Tatsuya; Fukuyama, Hidenao

    2017-10-01

    Interaural time (ITD) and level differences (ILD) constitute the two main cues for sound localization in the horizontal plane. Despite extensive research in animal models and humans, the mechanism of how these two cues are integrated into a unified percept is still far from clear. In this study, our aim was to test with human electroencephalography (EEG) whether integration of dynamic ITD and ILD cues is reflected in the so-called motion-onset response (MOR), an evoked potential elicited by moving sound sources. To this end, ITD and ILD trajectories were determined individually by cue trading psychophysics. We then measured EEG while subjects were presented with either static click-trains or click-trains that contained a dynamic portion at the end. The dynamic part was created by combining ITD with ILD either congruently to elicit the percept of a right/leftward moving sound, or incongruently to elicit the percept of a static sound. In two experiments that differed in the method to derive individual dynamic cue trading stimuli, we observed an MOR with at least a change-N1 (cN1) component for both the congruent and incongruent conditions at about 160-190 ms after motion-onset. A significant change-P2 (cP2) component for both the congruent and incongruent ITD/ILD combination was found only in the second experiment peaking at about 250 ms after motion onset. In sum, this study shows that a sound which - by a combination of counter-balanced ITD and ILD cues - induces a static percept can still elicit a motion-onset response, indicative of independent ITD and ILD processing at the level of the MOR - a component that has been proposed to be, at least partly, generated in non-primary auditory cortex. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Setting appropriate pass or fail cut-off criteria for tests to reflect real life listening difficulties in children with suspected auditory processing disorder.

    PubMed

    Ahmmed, Ansar U; Ahmmed, Afsara A

    2016-05-01

    This paper explores the pass or fail cut-off criteria, the number of test fails, and the nature of tests that are most appropriate in predicting listening difficulties (LiD) in children with suspected APD (SusAPD). One hundred and nine English-speaking children (67 males, 42 females) aged between 6 and 11 years with SusAPD were assessed. The Children's Auditory Performance Scale (CHAPS) scores 2 SD below the mean were taken as markers of LiD in different listening conditions. Binary logistic regression analyses were carried out to evaluate the cut-off criterion (2 SD or 1.5 SD or 1 SD below the mean) of failing at least two tests, from the SCAN-C and IMAP test batteries, which significantly predicted LiD. Analyses were also carried out to assess if the group of auditory processing (AP) or cognitive or combination of AP plus cognitive tests were significant in predicting LiD. Receiver Operative Characteristic (ROC) curves were also explored to evaluate how the sensitivity and specificity in confirming LiD varied with the number of test fails. Filtered Words, Competing Words, Competing Sentences, VCV in ICRA noise, Digit Span, Sight Word Reading and the Cued Auditory Attention tests correlated with one or more of the CHAPS domains. Failing at least two of these tests 1.5 SD below the mean significantly predicted (p<.05) CHAPS Ideal scores 2 SD below the mean, and failing at least two of the tests 1 SD below the mean significantly predicted (p<.05) CHAPS Memory and CHAPS Attention scores 2 SD below the mean. The combination of AP plus cognitive tests had significantly higher ability to predict CHAPS Ideal, Memory and Attention scores, compared to the group of AP or cognitive tests separately. ROC curves showed that failing at least two of the tests was associated with the best sensitivity and specificity in predicting LiD. Of the different CHAPS domains only the CHAPS Ideal, Memory and Attention correlated with the APD tests. Failing at least two APD tests from a combination of AP and cognitive tests 1 SD and 1.5 SD below the mean, but not 2 SD, is more appropriate in confirming LiD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. The relationship between internal medicine residency graduate performance on the ABIM certifying examination, yearly in-service training examinations, and the USMLE Step 1 examination.

    PubMed

    Kay, Cynthia; Jackson, Jeffrey L; Frank, Michael

    2015-01-01

    To explore the relationship between United States Medical Licensing Examination (USMLE) Step 1 scores, yearly in-service training exam (ITE) scores, and passing the American Board of Internal Medicine certifying examination (ABIM-CE). The authors conducted a retrospective database review of internal medicine residents from the Medical College of Wisconsin from 2004 through 2012. Residents' USMLE Step 1, ITE, and ABIM-CE scores were extracted. Pearson rho, chi-square, and logistic regression were used to determine whether relationships existed between the scores and if Step 1 and ITE scores correlate with passing the ABIM-CE. There were 241 residents, who participated in 728 annual ITEs. There were Step 1 scores for 195 (81%) residents and ABIM-CE scores for 183 (76%). Step 1 and ABIM-CE scores had a modest correlation (rho: 0.59), as did ITE and ABIM-CE scores (rho: 0.48-0.67). Failing Step 1 or being in the bottom ITE quartile during any year of testing markedly increased likelihood of failing the boards (Step 1: relative risk [RR]: 2.4; 95% CI: 1.0-5.9; first-year residents' RR: 1.3; 95% CI: 1.0-1.6; second-year residents' RR: 1.3; 95% CI: 1.1-1.5; third-year residents' RR: 1.3; 95% CI: 1.1-1.5). USMLE Step 1 and ITE scores have a modest correlation with board scores. Failing Step 1 or scoring in the bottom quartile of the ITE increased the risk of failing the boards. What effective intervention, if any, program directors may use with at-risk residents is a question deserving further research.

  14. Influence of Transformational Leadership Style on Decision-Making Style and Technology Readiness: A Correlation Study

    ERIC Educational Resources Information Center

    Mueller, Crystal A.

    2009-01-01

    The research addressed the problem of technology initiatives failing to meet organizational objectives. The purpose of the quantitative correlation study was to determine the relationship between transformational leadership styles, decision-making styles, and technology readiness. The findings of the study answered research questions in three…

  15. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks.

    PubMed

    Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J

    2018-04-01

    Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.

  16. The Neural Substrate for Binaural Masking Level Differences in the Auditory Cortex

    PubMed Central

    Gilbert, Heather J.; Krumbholz, Katrin; Palmer, Alan R.

    2015-01-01

    The binaural masking level difference (BMLD) is a phenomenon whereby a signal that is identical at each ear (S0), masked by a noise that is identical at each ear (N0), can be made 12–15 dB more detectable by inverting the waveform of either the tone or noise at one ear (Sπ, Nπ). Single-cell responses to BMLD stimuli were measured in the primary auditory cortex of urethane-anesthetized guinea pigs. Firing rate was measured as a function of signal level of a 500 Hz pure tone masked by low-passed white noise. Responses were similar to those reported in the inferior colliculus. At low signal levels, the response was dominated by the masker. At higher signal levels, firing rate either increased or decreased. Detection thresholds for each neuron were determined using signal detection theory. Few neurons yielded measurable detection thresholds for all stimulus conditions, with a wide range in thresholds. However, across the entire population, the lowest thresholds were consistent with human psychophysical BMLDs. As in the inferior colliculus, the shape of the firing-rate versus signal-level functions depended on the neurons' selectivity for interaural time difference. Our results suggest that, in cortex, BMLD signals are detected from increases or decreases in the firing rate, consistent with predictions of cross-correlation models of binaural processing and that the psychophysical detection threshold is based on the lowest neural thresholds across the population. PMID:25568115

  17. Characteristics of train noise in above-ground and underground stations with side and island platforms

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Soeta, Yoshiharu

    2011-04-01

    Railway stations can be principally classified by their locations, i.e., above-ground or underground stations, and by their platform styles, i.e., side or island platforms. However, the effect of the architectural elements on the train noise in stations is not well understood. The aim of the present study is to determine the different acoustical characteristics of the train noise for each station style. The train noise was evaluated by (1) the A-weighted equivalent continuous sound pressure level ( LAeq), (2) the amplitude of the maximum peak of the interaural cross-correlation function (IACC), (3) the delay time ( τ1) and amplitude ( ϕ1) of the first maximum peak of the autocorrelation function. The IACC, τ1 and ϕ1 are related to the subjective diffuseness, pitch and pitch strength, respectively. Regarding the locations, the LAeq in the underground stations was 6.4 dB higher than that in the above-ground stations, and the pitch in the underground stations was higher and stronger. Regarding the platform styles, the LAeq on the side platforms was 3.3 dB higher than on the island platforms of the above-ground stations. For the underground stations, the LAeq on the island platforms was 3.3 dB higher than that on the side platforms when a train entered the station. The IACC on the island platforms of the above-ground stations was higher than that in the other stations.

  18. Comments on "Killer whale (Orcinus orca) behavioral audiograms" [J. Acoust. Soc. Am. 141, 2387-2398 (2017)].

    PubMed

    Heffner, Henry E; Heffner, Rickye S

    2018-01-01

    Branstetter and his colleagues present the audiograms of eight killer whales and provide a comprehensive review of previous killer whale audiograms. In their paper, they say that the present authors have reported a relationship between size and high-frequency hearing but that echolocating cetaceans might be a special case. The purpose of these comments is to clarify that the relationship of a species' high-frequency hearing is not to its size (mass) but to its "functional interaural distance" (a measure of the availability of sound-localization cues). Moreover, it has previously been noted that echolocating animals, cetaceans as well as bats, have extended their high-frequency hearing somewhat beyond the frequencies used by comparable non-echolocators for passive localization.

  19. Evolutionary trends in directional hearing

    PubMed Central

    Carr, Catherine E.; Christensen-Dalsgaard, Jakob

    2016-01-01

    Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds and lizards resemble this ancestral, directionally sensitive framework. Despite this anatomically similarity, coding of sound source location differs between birds and lizards. In birds, brainstem circuits compute sound location from interaural cues. Lizards, however, have coupled ears, and do not need to compute source location in the brain. Thus their neural processing of sound direction differs, although all show mechanisms for enhancing sound source directionality. Comparisons with mammals reveal similarly complex interactions between coding strategies and evolutionary history. PMID:27448850

  20. Auditory display for the blind

    NASA Technical Reports Server (NTRS)

    Fish, R. M. (Inventor)

    1974-01-01

    A system for providing an auditory display of two-dimensional patterns as an aid to the blind is described. It includes a scanning device for producing first and second voltages respectively indicative of the vertical and horizontal positions of the scan and a further voltage indicative of the intensity at each point of the scan and hence of the presence or absence of the pattern at that point. The voltage related to scan intensity controls transmission of the sounds to the subject so that the subject knows that a portion of the pattern is being encountered by the scan when a tone is heard, the subject determining the position of this portion of the pattern in space by the frequency and interaural difference information contained in the tone.

  1. Predicting failing performance on a standardized patient clinical performance examination: the importance of communication and professionalism skills deficits.

    PubMed

    Chang, Anna; Boscardin, Christy; Chou, Calvin L; Loeser, Helen; Hauer, Karen E

    2009-10-01

    The purpose is to determine which assessment measures identify medical students at risk of failing a clinical performance examination (CPX). Retrospective case-control, multiyear design, contingency table analysis, n = 149. We identified two predictors of CPX failure in patient-physician interaction skills: low clerkship ratings (odds ratio 1.79, P = .008) and student progress review for communication or professionalism concerns (odds ratio 2.64, P = .002). No assessments predicted CPX failure in clinical skills. Performance concerns in communication and professionalism identify students at risk of failing the patient-physician interaction portion of a CPX. This correlation suggests that both faculty and standardized patients can detect noncognitive traits predictive of failing performance. Early identification of these students may allow for development of a structured supplemental curriculum with increased opportunities for practice and feedback. The lack of predictors in the clinical skills portion suggests limited faculty observation or feedback.

  2. The Presence of the Correlates of Effective Schools at the District Level: A Case Study

    ERIC Educational Resources Information Center

    Thompson, DeNelle

    2013-01-01

    Although the No Child Left Behind Act (NCLB) requires all American public schools to meet Adequate Yearly Progress (AYP), many fail to meet this standard each year. Effective Schools Research has revealed several correlates, such as a clear mission, a safe climate, strong instructional leadership, monitoring of student progress, strong…

  3. The method used to set the pass mark in an objective structured clinical examination defines the performance of candidates for certification as rheumatologists.

    PubMed

    Pascual-Ramos, Virginia; Guilaisne Bernard-Medina, Ana; Flores-Alvarado, Diana Elsa; Portela-Hernández, Margarita; Maldonado-Velázquez, María Del Rocío; Jara-Quezada, Luis Javier; Amezcua-Guerra, Luis Manuel; Rubio-Judith López-Zepeda, Nadina E; Álvarez-Hernandez, Everardo; Saavedra, Miguel Ángel; Arce-Salinas, César Alejandro

    The Mexican Accreditation Council for Rheumatology certifies trainees (TR) on an annual basis using both a multiple-choice question (MCQ) test and an objective structured clinical examination (OSCE). For 2013 and 2014, the OSCE pass mark (PM) was set by criterion referencing as ≥6 (CPM), whereas overall rating of borderline performance method (BPM) was added for 2015 and 2016 accreditations. We compared OSCE TR performance according to CPM and BPM, and examined whether correlations between MCQ and OSCE were affected by PM. Forty-three (2015) and 37 (2016) candidates underwent both tests. Altogether, OSCE were integrated by 15 validated stations; one evaluator per station scored TR performance according to a station-tailored check-list and a Likert scale (fail, borderline, above range) of overall performance. A composite OSCE score was derived for each candidate. Appropriate statistics were used. Mean (±standard derivation [SD]) MCQ test scores were 6.6±0.6 (2015) and 6.4±0.6 (2016) with 5 candidates receiving a failing score each year. Mean (±SD) OSCE scores were 7.4±0.6 (2015) and 7.3±0.6 (2016); no candidate received a failing CPM score in either 2015 or 2016 OSCE, although 21 (49%) and 19 (51%) TR, respectively, received a failing BPM score (calculated as 7.3 and 7.4, respectively). Stations for BPM ranged from 4.5 to 9.5; overall, candidates showed better performance in CPM. In all, MCQ correlated with composite OSCE, r=0.67 (2015) and r=0.53 (2016); P≤.001. Trainees with a passing BPM score in OSCE had higher MCQ scores than those with a failing score. Overall, OSCE-PM selection impacted candidates' performance but had a limited affect on correlation between clinical and practical examinations. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  4. Learning Style as a Predictor of First-Time NCLEX-RN Success: Implications for Nurse Educators.

    PubMed

    Lown, Susan G; Hawkins, Lee Ann

    Improving NCLEX-RN® pass rates remains a priority for nursing programs. Many programs collect learning style inventory data, yet few studies have looked at relationships between these data and NCLEX-RN pass/fail rates. Learning style preferences (visual, auditory, tactile, individual, group) and NCLEX pass/fail results were examined for 532 undergraduates in a Midwestern university. A significant correlation between preference for group learning and failure of the NCLEX was found (χ = 5.99, P = .05).

  5. Failed Pavlik harness treatment for DDH as a risk factor for avascular necrosis.

    PubMed

    Tiruveedhula, Madhu; Reading, Isabel C; Clarke, Nicholas M P

    2015-03-01

    Avascular necrosis (AVN) of the femoral head is an irreversible complication seen in the treatment of developmental dysplasia of hip (DDH) with the Pavlik harness. Its incidence is reported to be low after successful reduction of the hip but high if the hip is not concentrically relocated. We aim to investigate its incidence after failed Pavlik harness treatment. We prospectively followed up a group of children who failed Pavlik harness treatment for DDH treated at our institution by the senior author between 1988 and 2001 and compared their rates of AVN with a group of children who presented late and hence were treated surgically. AVN was graded as described by Kalamchi and MacEwen and only grade 2 to 4 AVN was considered significant and included in the analysis. Thirty-seven hips were included in the failed Pavlik group (group 1) and 86 hips in the no Pavlik group (group 2). Ten hips in group 1 developed AVN (27%), whereas only 7 hips in group 2 (8%) developed AVN; the odds of developing AVN after failed Pavlik treatment was 4.7 (95% confidence interval, 1.3-14.1) (P=0.009) with a relative risk of 3.32 (range, 1.37 to 8.05). There was no statistically significant association observed with duration of splintage and severity of AVN (Spearman's correlation, -0.46; P=0.18). However, there was a positive correlation noted with age at presentation and severity of AVN. Therefore, we advise close monitoring of hips in the Pavlik harness and discontinue its use if the hips are not reduced within 3 weeks. Level III.

  6. Augmentation of failed human vertebrae with critical un-contained lytic defect restores their structural competence under functional loading: An experimental study.

    PubMed

    Alkalay, Ron N; von Stechow, Dietrich; Hackney, David B

    2015-07-01

    Lytic spinal lesions reduce vertebral strength and may result in their fracture. Vertebral augmentation is employed clinically to provide mechanical stability and pain relief for vertebrae with lytic lesions. However, little is known about its efficacy in strengthening fractured vertebrae containing lytic metastasis. Eighteen unembalmed human lumbar vertebrae, having simulated uncontained lytic defects and tested to failure in a prior study, were augmented using a transpedicular approach and re-tested to failure using a wedge fracture model. Axial and moment based strength and stiffness parameters were used to quantify the effect of augmentation on the structural response of the failed vertebrae. Effects of cement volume, bone mineral density and vertebral geometry on the change in structural response were investigated. Augmentation increased the failed lytic vertebral strength [compression: 85% (P<0.001), flexion: 80% (P<0.001), anterior-posterior shear: 95%, P<0.001)] and stiffness [(40% (P<0.05), 53% (P<0.05), 45% (P<0.05)]. Cement volume correlated with the compressive strength (r(2)=0.47, P<0.05) and anterior-posterior shear strength (r(2)=0.52, P<0.05) and stiffness (r(2)=0.45, P<0.05). Neither the geometry of the failed vertebrae nor its pre-fracture bone mineral density correlated with the volume of cement. Vertebral augmentation is effective in bolstering the failed lytic vertebrae compressive and axial structural competence, showing strength estimates up to 50-90% of historical values of osteoporotic vertebrae without lytic defects. This modest increase suggests that lytic vertebrae undergo a high degree of structural damage at failure, with strength only partially restored by vertebral augmentation. The positive effect of cement volume is self-limiting due to extravasation. Copyright © 2015. Published by Elsevier Ltd.

  7. Merging symmetry projection methods with coupled cluster theory: Lessons from the Lipkin model Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlen-Strothman, J. M.; Henderson, T. H.; Hermes, M. R.

    Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems, but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories.more » We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection and coupled cluster doubles individually fail in different correlation limits, whereas models that merge these two theories are highly successful over the entire phase diagram. Despite the simplicity of the Lipkin Hamiltonian, the lessons learned in this work will be useful for building an ab initio symmetry projected coupled cluster theory that we expect to be accurate in the weakly and strongly correlated limits, as well as the recoupling regime.« less

  8. Simulation shows that HLA-matched stem cell donors can remain unidentified in donor searches

    PubMed Central

    Sauter, Jürgen; Solloch, Ute V.; Giani, Anette S.; Hofmann, Jan A.; Schmidt, Alexander H.

    2016-01-01

    The heterogeneous nature of HLA information in real-life stem cell donor registries may hamper unrelated donor searches. It is even possible that fully HLA-matched donors with incomplete HLA information are not identified. In our simulation study, we estimated the probability of these unnecessarily failed donor searches. For that purpose, we carried out donor searches in several virtual donor registries. The registries differed by size, composition with respect to HLA typing levels, and genetic diversity. When up to three virtual HLA typing requests were allowed within donor searches, the share of unnecessarily failed donor searches ranged from 1.19% to 4.13%, thus indicating that non-identification of completely HLA-matched stem cell donors is a problem of practical relevance. The following donor registry characteristics were positively correlated with the share of unnecessarily failed donor searches: large registry size, high genetic diversity, and, most strongly correlated, large fraction of registered donors with incomplete HLA typing. Increasing the number of virtual HLA typing requests within donor searches up to ten had a smaller effect. It follows that the problem of donor non-identification can be substantially reduced by complete high-resolution HLA typing of potential donors. PMID:26876789

  9. Simulation shows that HLA-matched stem cell donors can remain unidentified in donor searches

    NASA Astrophysics Data System (ADS)

    Sauter, Jürgen; Solloch, Ute V.; Giani, Anette S.; Hofmann, Jan A.; Schmidt, Alexander H.

    2016-02-01

    The heterogeneous nature of HLA information in real-life stem cell donor registries may hamper unrelated donor searches. It is even possible that fully HLA-matched donors with incomplete HLA information are not identified. In our simulation study, we estimated the probability of these unnecessarily failed donor searches. For that purpose, we carried out donor searches in several virtual donor registries. The registries differed by size, composition with respect to HLA typing levels, and genetic diversity. When up to three virtual HLA typing requests were allowed within donor searches, the share of unnecessarily failed donor searches ranged from 1.19% to 4.13%, thus indicating that non-identification of completely HLA-matched stem cell donors is a problem of practical relevance. The following donor registry characteristics were positively correlated with the share of unnecessarily failed donor searches: large registry size, high genetic diversity, and, most strongly correlated, large fraction of registered donors with incomplete HLA typing. Increasing the number of virtual HLA typing requests within donor searches up to ten had a smaller effect. It follows that the problem of donor non-identification can be substantially reduced by complete high-resolution HLA typing of potential donors.

  10. The Physical Significance of the Synthetic Running Correlation Coefficient and Its Applications in Oceanic and Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Zhao, Jinping; Cao, Yong; Wang, Xin

    2018-06-01

    In order to study the temporal variations of correlations between two time series, a running correlation coefficient (RCC) could be used. An RCC is calculated for a given time window, and the window is then moved sequentially through time. The current calculation method for RCCs is based on the general definition of the Pearson product-moment correlation coefficient, calculated with the data within the time window, which we call the local running correlation coefficient (LRCC). The LRCC is calculated via the two anomalies corresponding to the two local means, meanwhile, the local means also vary. It is cleared up that the LRCC reflects only the correlation between the two anomalies within the time window but fails to exhibit the contributions of the two varying means. To address this problem, two unchanged means obtained from all available data are adopted to calculate an RCC, which is called the synthetic running correlation coefficient (SRCC). When the anomaly variations are dominant, the two RCCs are similar. However, when the variations of the means are dominant, the difference between the two RCCs becomes obvious. The SRCC reflects the correlations of both the anomaly variations and the variations of the means. Therefore, the SRCCs from different time points are intercomparable. A criterion for the superiority of the RCC algorithm is that the average value of the RCC should be close to the global correlation coefficient calculated using all data. The SRCC always meets this criterion, while the LRCC sometimes fails. Therefore, the SRCC is better than the LRCC for running correlations. We suggest using the SRCC to calculate the RCCs.

  11. Spiking Models for Level-Invariant Encoding

    PubMed Central

    Brette, Romain

    2012-01-01

    Levels of ecological sounds vary over several orders of magnitude, but the firing rate and membrane potential of a neuron are much more limited in range. In binaural neurons of the barn owl, tuning to interaural delays is independent of level differences. Yet a monaural neuron with a fixed threshold should fire earlier in response to louder sounds, which would disrupt the tuning of these neurons. How could spike timing be independent of input level? Here I derive theoretical conditions for a spiking model to be insensitive to input level. The key property is a dynamic change in spike threshold. I then show how level invariance can be physiologically implemented, with specific ionic channel properties. It appears that these ingredients are indeed present in monaural neurons of the sound localization pathway of birds and mammals. PMID:22291634

  12. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED).

  13. Reliability and Validity of 3 Methods of Assessing Orthopedic Resident Skill in Shoulder Surgery.

    PubMed

    Bernard, Johnathan A; Dattilo, Jonathan R; Srikumaran, Uma; Zikria, Bashir A; Jain, Amit; LaPorte, Dawn M

    Traditional measures for evaluating resident surgical technical skills (e.g., case logs) assess operative volume but not level of surgical proficiency. Our goal was to compare the reliability and validity of 3 tools for measuring surgical skill among orthopedic residents when performing 3 open surgical approaches to the shoulder. A total of 23 residents at different stages of their surgical training were tested for technical skill pertaining to 3 shoulder surgical approaches using the following measures: Objective Structured Assessment of Technical Skills (OSATS) checklists, the Global Rating Scale (GRS), and a final pass/fail assessment determined by 3 upper extremity surgeons. Adverse events were recorded. The Cronbach α coefficient was used to assess reliability of the OSATS checklists and GRS scores. Interrater reliability was calculated with intraclass correlation coefficients. Correlations among OSATS checklist scores, GRS scores, and pass/fail assessment were calculated with Spearman ρ. Validity of OSATS checklists was determined using analysis of variance with postgraduate year (PGY) as a between-subjects factor. Significance was set at p < 0.05 for all tests. Criterion validity was shown between the OSATS checklists and GRS for the 3 open shoulder approaches. Checklist scores showed superior interrater reliability compared with GRS and subjective pass/fail measurements. GRS scores were positively correlated across training years. The incidence of adverse events was significantly higher among PGY-1 and PGY-2 residents compared with more experienced residents. OSATS checklists are a valid and reliable assessment of technical skills across 3 surgical shoulder approaches. However, checklist scores do not measure quality of technique. Documenting adverse events is necessary to assess quality of technique and ultimate pass/fail status. Multiple methods of assessing surgical skill should be considered when evaluating orthopedic resident surgical performance. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  14. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension

    PubMed Central

    Benoist, David; Stones, Rachel; Drinkhill, Mark J.; Benson, Alan P.; Yang, Zhaokang; Cassan, Cecile; Gilbert, Stephen H.; Saint, David A.; Cazorla, Olivier; Steele, Derek S.; Bernus, Olivier

    2012-01-01

    Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca2+ handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca2+ transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca2+-ATPase activity, increased sarcoplasmic reticular Ca2+-release fraction, and increased Ca2+ spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca2+ handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs. PMID:22427523

  15. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.

    PubMed

    Higgins, Nathan C; McLaughlin, Susan A; Rinne, Teemu; Stecker, G Christopher

    2017-09-05

    Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues-particularly interaural time and level differences (ITD and ILD)-that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and-critically-for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues.

  16. Evidence for cue-independent spatial representation in the human auditory cortex during active listening

    PubMed Central

    McLaughlin, Susan A.; Rinne, Teemu; Stecker, G. Christopher

    2017-01-01

    Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues—particularly interaural time and level differences (ITD and ILD)—that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and—critically—for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues. PMID:28827357

  17. Responses of non-eye movement central vestibular neurons to sinusoidal horizontal translation in compensated macaques after unilateral labyrinthectomy

    PubMed Central

    Lin, Nan; Wei, Min

    2014-01-01

    After vestibular labyrinth injury, behavioral deficits partially recover through the process of vestibular compensation. The present study was performed to improve our understanding of the physiology of the macaque vestibular system in the compensated state (>7 wk) after unilateral labyrinthectomy (UL). Three groups of vestibular nucleus neurons were included: pre-UL control neurons, neurons ipsilateral to the lesion, and neurons contralateral to the lesion. The firing responses of neurons sensitive to linear acceleration in the horizontal plane were recorded during sinusoidal horizontal translation directed along six different orientations (30° apart) at 0.5 Hz and 0.2 g peak acceleration (196 cm/s2). This data defined the vector of best response for each neuron in the horizontal plane, along which sensitivity, symmetry, detection threshold, and variability of firing were determined. Additionally, the responses of the same cells to translation over a series of frequencies (0.25–5.0 Hz) either in the interaural or naso-occipital orientation were obtained to define the frequency response characteristics in each group. We found a decrease in sensitivity, increase in threshold, and alteration in orientation of best responses in the vestibular nuclei after UL. Additionally, the phase relationship of the best neural response to translational stimulation changed with UL. The symmetry of individual neuron responses in the excitatory and inhibitory directions was unchanged by UL. Bilateral central utricular neurons still demonstrated two-dimension tuning after UL, consistent with spatio-temporal convergence from a single vestibular end-organ. These neuronal data correlate with known behavioral deficits after unilateral vestibular compromise. PMID:24717349

  18. Architectural acoustics and the heritage of theater architecture in Andalusia (Acustica arquitectonica y patrimonio teatral en Andalucia)

    NASA Astrophysics Data System (ADS)

    Leon, Angel Luis

    2003-11-01

    This thesis reports on the study of the acoustic properties of 18 theaters belonging to the Andalusian historical and architectural heritage. These theaters have undergone recent renovations to modernize and equip them appropriately. Coincident with this work, evaluations and qualification assessments with regard to their acoustic properties have been carried out for the individual theaters and for the group as a whole. Data measurements for this purpose consisted of acoustic measurements in situ, both before the renovation and after the renovation. These results have been compared with computer simulations of sound fields. Variables and parameters considered include the following: reverberation time, rapid speech transition index, back-ground noise, definition, clarity, strength, lateral efficiency, interaural cross-correlation coefficient, volume/seat ratio, volume/audience-area ratio. Based on the measurements and analysis, general conclusions are given in regard to the acoustic performance of theaters whose typology and size are comparable to those that were used in this study (between 800 and 8000 cubic meters). It is noted that these properties are comparable to those of the majority of European theaters. The results and conclusions are presented so that they should be of interest to architectural acoustics practitioners and to architects who are involved in the planning of renovation projects for theaters Thesis advisors: Juan J. Sendra and Jaime Navarro Copies of this thesis written in Spanish may be obtained by contacting the author, Angel L. Leon, E.T.S. de Arquitectura de Sevilla, Dpto. de Construcciones Arquitectonicas I, Av. Reina Mercedes, 2, 41012 Sevilla, Spain. E-mail address: leonr@us.es

  19. Predicting binaural responses from monaural responses in the gerbil medial superior olive

    PubMed Central

    Plauška, Andrius; Borst, J. Gerard

    2016-01-01

    Accurate sound source localization of low-frequency sounds in the horizontal plane depends critically on the comparison of arrival times at both ears. A specialized brainstem circuit containing the principal neurons of the medial superior olive (MSO) is dedicated to this comparison. MSO neurons are innervated by segregated inputs from both ears. The coincident arrival of excitatory inputs from both ears is thought to trigger action potentials, with differences in internal delays creating a unique sensitivity to interaural time differences (ITDs) for each cell. How the inputs from both ears are integrated by the MSO neurons is still debated. Using juxtacellular recordings, we tested to what extent MSO neurons from anesthetized Mongolian gerbils function as simple cross-correlators of their bilateral inputs. From the measured subthreshold responses to monaural wideband stimuli we predicted the rate-ITD functions obtained from the same MSO neuron, which have a damped oscillatory shape. The rate of the oscillations and the position of the peaks and troughs were accurately predicted. The amplitude ratio between dominant and secondary peaks of the rate-ITD function, captured in the width of its envelope, was not always exactly reproduced. This minor imperfection pointed to the methodological limitation of using a linear representation of the monaural inputs, which disregards any temporal sharpening occurring in the cochlear nucleus. The successful prediction of the major aspects of rate-ITD curves supports a simple scheme in which the ITD sensitivity of MSO neurons is realized by the coincidence detection of excitatory monaural inputs. PMID:27009164

  20. [Synovial fluid from aseptically failed total hip or knee arthroplasty is not toxic to osteoblasts].

    PubMed

    Gallo, J; Zdařilová, A; Rajnochová Svobodová, A; Ulrichová, J; Radová, L; Smižanský, M

    2010-10-01

    A failure of total hip or knee artroplasty is associated with an increased production of joint fluid. This contains wear particles and host cells and proteins, and is assumed to be involved in the pathogenesis of aseptic loosening and periprosthetic osteolysis. This study investigated the effect of synovial fluid from patients with aseptically failed joint prostheses on osteoblast cultures. Synovial fluid samples were obtained from patients with failed total joint prostheses (TJP; n=36) and from control patient groups (n = 16) involving cases without TJP and osteoarthritis, without TJP but with osteoarthritis, and with stable TJP. The samples were treated in the standard manner and then cultured with the SaOS-2 cell line which shows the characteristics and behaviour of osteoblasts. Each fluid sample was also examined for the content of proteins, cells and selected cytokines (IL-1ß, TNF-α, IL-6, RANKL and OPG detected by ELISA). We tested the hypothesis assuming that the fluids from failed joints would show higher cytotoxicity to osteoblast culture and we also expected higher levels of IL-1ß, TNF-α, IL-6, and RANKL in patients with TJP failure and/ or with more severe bone loss. The statistical methods used included the Kruskal-Wallis ANOVA and Mann-Whitney U test. The fluids from failed TJPs showed the highest RANKL and the lowest OPG levels resulting in the highest RANKL/OPG ratio. However, there was no evidence suggesting that the joint fluids from failed TJPs would be more toxic to osteoblast culture than the fluids from control groups. In addition, no correlation was found between the fluid levels of molecules promoting inflammation and osteoclastic activity and the extent of bone loss in the hip (in terms of Saleh's classification) or the knee (AORI classification). In fact, the fluids from failed TJPs had higher protein levels in comparison with the controls, but the difference was not significant. The finding of high RANKL levels and low OPG concentrations is in agreement with the theory of aseptic loosening and periprosthetic osteolysis. The other cytokines, particularly TNF-α and IL-1ß, were found in low levels. This can be explained by the stage of particle disease at which the samples were taken for ELISA analysis. It is probable that the level of signal molecules reflects osteolytic process activity and is therefore not constant. The reason for no correlation found between cytokine levels and the extent of bone loss may also lie in the use of therapeutic classifications of bone defects that is apparently less sensitive to the biological activity of aseptic loosening and/or periprosthetic osteolysis. Synovial fluids from failed total hip or knee joint prostheses are not toxic to osteoblast cultures. Cytotoxicity indicators and levels of pro-inflammatory and pro-osteoclastic cytokines (IL-1ß, TNF-α, IL-6, RANKL and OPG) do not correlate well with the extent of periprosthetic bone loss. Key words: total joint replacement, arthroplasty, aseptic loosening, periprosthetic osteolysis, joint fluid, SaOS-2 cell line, cytotoxicity, cytokines, RANKL, OPG.

  1. Improvements of sound localization abilities by the facial ruff of the barn owl (Tyto alba) as demonstrated by virtual ruff removal.

    PubMed

    Hausmann, Laura; von Campenhausen, Mark; Endler, Frank; Singheiser, Martin; Wagner, Hermann

    2009-11-05

    When sound arrives at the eardrum it has already been filtered by the body, head, and outer ear. This process is mathematically described by the head-related transfer functions (HRTFs), which are characteristic for the spatial position of a sound source and for the individual ear. HRTFs in the barn owl (Tyto alba) are also shaped by the facial ruff, a specialization that alters interaural time differences (ITD), interaural intensity differences (ILD), and the frequency spectrum of the incoming sound to improve sound localization. Here we created novel stimuli to simulate the removal of the barn owl's ruff in a virtual acoustic environment, thus creating a situation similar to passive listening in other animals, and used these stimuli in behavioral tests. HRTFs were recorded from an owl before and after removal of the ruff feathers. Normal and ruff-removed conditions were created by filtering broadband noise with the HRTFs. Under normal virtual conditions, no differences in azimuthal head-turning behavior between individualized and non-individualized HRTFs were observed. The owls were able to respond differently to stimuli from the back than to stimuli from the front having the same ITD. By contrast, such a discrimination was not possible after the virtual removal of the ruff. Elevational head-turn angles were (slightly) smaller with non-individualized than with individualized HRTFs. The removal of the ruff resulted in a large decrease in elevational head-turning amplitudes. The facial ruff a) improves azimuthal sound localization by increasing the ITD range and b) improves elevational sound localization in the frontal field by introducing a shift of iso-ILD lines out of the midsagittal plane, which causes ILDs to increase with increasing stimulus elevation. The changes at the behavioral level could be related to the changes in the binaural physical parameters that occurred after the virtual removal of the ruff. These data provide new insights into the function of external hearing structures and open up the possibility to apply the results on autonomous agents, creation of virtual auditory environments for humans, or in hearing aids.

  2. The Binaural Masking-Level Difference of Mandarin Tone Detection and the Binaural Intelligibility-Level Difference of Mandarin Tone Recognition in the Presence of Speech-Spectrum Noise

    PubMed Central

    Ho, Cheng-Yu; Li, Pei-Chun; Chiang, Yuan-Chuan; Young, Shuenn-Tsong; Chu, Woei-Chyn

    2015-01-01

    Binaural hearing involves using information relating to the differences between the signals that arrive at the two ears, and it can make it easier to detect and recognize signals in a noisy environment. This phenomenon of binaural hearing is quantified in laboratory studies as the binaural masking-level difference (BMLD). Mandarin is one of the most commonly used languages, but there are no publication values of BMLD or BILD based on Mandarin tones. Therefore, this study investigated the BMLD and BILD of Mandarin tones. The BMLDs of Mandarin tone detection were measured based on the detection threshold differences for the four tones of the voiced vowels /i/ (i.e., /i1/, /i2/, /i3/, and /i4/) and /u/ (i.e., /u1/, /u2/, /u3/, and /u4/) in the presence of speech-spectrum noise when presented interaurally in phase (S0N0) and interaurally in antiphase (SπN0). The BILDs of Mandarin tone recognition in speech-spectrum noise were determined as the differences in the target-to-masker ratio (TMR) required for 50% correct tone recognitions between the S0N0 and SπN0 conditions. The detection thresholds for the four tones of /i/ and /u/ differed significantly (p<0.001) between the S0N0 and SπN0 conditions. The average detection thresholds of Mandarin tones were all lower in the SπN0 condition than in the S0N0 condition, and the BMLDs ranged from 7.3 to 11.5 dB. The TMR for 50% correct Mandarin tone recognitions differed significantly (p<0.001) between the S0N0 and SπN0 conditions, at –13.4 and –18.0 dB, respectively, with a mean BILD of 4.6 dB. The study showed that the thresholds of Mandarin tone detection and recognition in the presence of speech-spectrum noise are improved when phase inversion is applied to the target speech. The average BILDs of Mandarin tones are smaller than the average BMLDs of Mandarin tones. PMID:25835987

  3. Bilateral cochlear implants in children: Effects of auditory experience and deprivation on auditory perception

    PubMed Central

    Litovsky, Ruth Y.; Gordon, Karen

    2017-01-01

    Spatial hearing skills are essential for children as they grow, learn and play. They provide critical cues for determining the locations of sources in the environment, and enable segregation of important sources, such as speech, from background maskers or interferers. Spatial hearing depends on availability of monaural cues and binaural cues. The latter result from integration of inputs arriving at the two ears from sounds that vary in location. The binaural system has exquisite mechanisms for capturing differences between the ears in both time of arrival and intensity. The major cues that are thus referred to as being vital for binaural hearing are: interaural differences in time (ITDs) and interaural differences in levels (ILDs). In children with normal hearing (NH), spatial hearing abilities are fairly well developed by age 4–5 years. In contrast, children who are deaf and hear through cochlear implants (CIs) do not have an opportunity to experience normal, binaural acoustic hearing early in life. These children may function by having to utilize auditory cues that are degraded with regard to numerous stimulus features. In recent years there has been a notable increase in the number of children receiving bilateral CIs, and evidence suggests that while having two CIs helps them function better than when listening through a single CI, they generally perform worse than their NH peers. This paper reviews some of the recent work on bilaterally implanted children. The focus is on measures of spatial hearing, including sound localization, release from masking for speech understanding in noise and binaural sensitivity using research processors. Data from behavioral and electrophysiological studies are included, with a focus on the recent work of the authors and their collaborators. The effects of auditory plasticity and deprivation on the emergence of binaural and spatial hearing are discussed along with evidence for reorganized processing from both behavioral and electrophysiological studies. The consequences of both unilateral and bilateral auditory deprivation during development suggest that the relevant set of issues is highly complex with regard to successes and the limitations experienced by children receiving bilateral cochlear implants. PMID:26828740

  4. Failed healing of rotator cuff repair correlates with altered collagenase and gelatinase in supraspinatus and subscapularis tendons.

    PubMed

    Robertson, Catherine M; Chen, Christopher T; Shindle, Michael K; Cordasco, Frank A; Rodeo, Scott A; Warren, Russell F

    2012-09-01

    Despite improvements in arthroscopic rotator cuff repair technique and technology, a significant rate of failed tendon healing persists. Improving the biology of rotator cuff repairs may be an important focus to decrease this failure rate. The objective of this study was to determine the mRNA biomarkers and histological characteristics of repaired rotator cuffs that healed or developed persistent defects as determined by postoperative ultrasound. Increased synovial inflammation and tendon degeneration at the time of surgery are correlated with the failed healing of rotator cuff tendons. Case-control study; Level of evidence, 3. Biopsy specimens from the subscapularis tendon, supraspinatus tendon, glenohumeral synovium, and subacromial bursa of 35 patients undergoing arthroscopic rotator cuff repair were taken at the time of surgery. Expression of proinflammatory cytokines, tissue remodeling genes, and angiogenesis factors was evaluated by quantitative real-time polymerase chain reaction. Histological characteristics of the affected tissue were also assessed. Postoperative (>6 months) ultrasound was used to evaluate the healing of the rotator cuff. General linear modeling with selected mRNA biomarkers was used to predict rotator cuff healing. Thirty patients completed all analyses, of which 7 patients (23%) had failed healing of the rotator cuff. No differences in demographic data were found between the defect and healed groups. American Shoulder and Elbow Surgeons shoulder scores collected at baseline and follow-up showed improvement in both groups, but there was no significant difference between groups. Increased expression of matrix metalloproteinase 1 (MMP-1) and MMP-9 was found in the supraspinatus tendon in the defect group versus the healed group (P = .006 and .02, respectively). Similar upregulation of MMP-9 was also found in the subscapularis tendon of the defect group (P = .001), which was consistent with the loss of collagen organization as determined by histological examination. From a general linear model, the upregulation of MMP-1 and MMP-9 was highly correlated with failed healing of the rotator cuff (R(2) = .656). The upregulation of tissue remodeling genes in the torn rotator cuff at the time of surgery provides a snapshot of the biological environment surrounding the torn rotator cuff that is closely related to the healing of repaired rotator cuffs.

  5. Time-resolved versus time-integrated portal dosimetry: the role of an object’s position with respect to the isocenter in volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Schyns, Lotte E. J. R.; Persoon, Lucas C. G. G.; Podesta, Mark; van Elmpt, Wouter J. C.; Verhaegen, Frank

    2016-05-01

    The aim of this work is to compare time-resolved (TR) and time-integrated (TI) portal dosimetry, focussing on the role of an object’s position with respect to the isocenter in volumetric modulated arc therapy (VMAT). Portal dose images (PDIs) are simulated and measured for different cases: a sphere (1), a bovine bone (2) and a patient geometry (3). For the simulated case (1) and the experimental case (2), several transformations are applied at different off-axis positions. In the patient case (3), three simple plans with different isocenters are created and pleural effusion is simulated in the patient. The PDIs before and after the sphere transformations, as well as the PDIs with and without simulated pleural effusion, are compared using a TI and TR gamma analysis. In addition, the performance of the TI and TR gamma analyses for the detection of real geometric changes in patients treated with clinical plans is investigated and a correlation analysis is performed between gamma fail rates and differences in dose volume histogram (DVH) metrics. The TI gamma analysis can show large differences in gamma fail rates for the same transformation at different off-axis positions (or for different plan isocenters). The TR gamma analysis, however, shows consistent gamma fail rates. For the detection of real geometric changes in patients treated with clinical plans, the TR gamma analysis has a higher sensitivity than the TI gamma analysis. However, the specificity for the TR gamma analysis is lower than for the TI gamma analysis. Both the TI and TR gamma fail rates show no correlation with changes in DVH metrics. This work shows that TR portal dosimetry is fundamentally superior to TI portal dosimetry, because it removes the strong dependence of the gamma fail rate on the off-axis position/plan isocenter. However, for 2D TR portal dosimetry, it is still difficult to interpret gamma fail rates in terms of changes in DVH metrics for patients treated with VMAT.

  6. Correlation between Grades 4th, 8th, and 11th English Language Arts Scores and High School Graduation

    ERIC Educational Resources Information Center

    Parese, Errin C.

    2014-01-01

    The focus of this research was on students' low graduation rate in a New York State high school, investigating a possible correlation between students' longitudinal English Language Arts (ELA) exams and their graduation status. In the 2010-11 school year, 25% of the students at the high school of study failed to graduate, a rate which was 5% lower…

  7. Cooperative behaviour and prosocial reputation dynamics in a Dominican village.

    PubMed

    Macfarlan, Shane J; Quinlan, Robert; Remiker, Mark

    2013-06-22

    Prosocial reputations play an important role, from the evolution of language to Internet transactions; however, questions remain about their behavioural correlates and dynamics. Formal models assume prosocial reputations correlate with the number of cooperative acts one performs; however, if reputations flow through information networks, then the number of individuals one assists may be a better proxy. Formal models demonstrate indirect experience must track behaviour with the same fidelity as direct experience for reputations to become viable; however, research on corporate reputations suggests performance change does not always affect reputation change. Debate exists over the cognitive mechanisms employed for assessing reputation dynamics. Image scoring suggests reputations fluctuate relative to the number of times one fails to assist others in need, while standing strategy claims reputations fluctuate relative to the number of times one fails to assist others in good standing. This study examines the behavioural correlates of prosocial reputations and their dynamics over a 20-month period in an Afro-Caribbean village. Analyses suggest prosocial reputations: (i) are correlated with the number of individuals one assists in economic production, not the number of cooperative acts; (ii) track cooperative behaviour, but are anchored across time; and (iii) are captured neither by image scoring nor standing strategy-type mechanisms.

  8. The historic predictive value of Canadian orthopedic surgery residents' orthopedic in-training examination scores on their success on the RCPSC certification examination.

    PubMed

    Yen, David; Athwal, George S; Cole, Gary

    2014-08-01

    Positive correlation between the orthopedic in-training examination (OITE) and success in the American Board of Orthopaedic Surgery examination has been reported. Canadian training programs in internal medicine, anesthesiology and urology have found a positive correlation between in-training examination scores and performance on the Royal College of Physicians and Surgeons of Canada (RCPSC) certification examination. We sought to determine the potential predictive value of the OITE scores of Canadian orthopedic surgery residents on their success on their RCPSC examinations. A total of 118 Canadian orthopedic surgery residents had their annual OITE scores during their 5 years of training matched to the RCPSC examination oral and multiple-choice questions and to overall examination pass/fail scores. We calculated Pearson correlations between the in-training examination for each postgraduate year and the certification oral and multiple-choice questions and pass/fail marks. There was a predictive association between the OITE and success on the RCPSC examination. The association was strongest between the OITE and the written multiple-choice examination and weakest between the OITE and the overall examination pass/fail marks. Overall, the OITE was able to provide useful feedback to Canadian orthopedic surgery residents and their training programs in preparing them for their RCPSC examinations. However, when these data were collected, truly normative data based on a Canadian sample were not available. Further study is warranted based on a more refined analysis of the OITE, which is now being produced and includes normative percentile data based on Canadian residents.

  9. Scaling of the space-time correlation function of particle currents in a suspension of hard-sphere-like particles: exposing when the motion of particles is Brownian.

    PubMed

    van Megen, W; Martinez, V A; Bryant, G

    2009-12-18

    The current correlation function is determined from dynamic light scattering measurements of a suspension of particles with hard spherelike interactions. For suspensions in thermodynamic equilibrium we find scaling of the space and time variables of the current correlation function. This finding supports the notion that the movement of suspended particles can be described in terms of uncorrelated Brownian encounters. However, in the metastable fluid, at volume fractions above freezing, this scaling fails.

  10. Serum level of uric acid, partly secreted from the failing heart, is a prognostic marker in patients with congestive heart failure.

    PubMed

    Sakai, Hiroshi; Tsutamoto, Takayoshi; Tsutsui, Takashi; Tanaka, Toshinari; Ishikawa, Chitose; Horie, Minoru

    2006-08-01

    A recent study suggested that xanthine oxidase is activated in congestive heart failure (CHF). However, whether uric acid (UA) is secreted from the failing heart remains unknown, so it is currently unclear whether serum UA can provide prognostic information independent of brain natriuretic peptide (BNP). Serum UA was measured in the aortic root (AO) and the coronary sinus (CS) of 74 patients with CHF. The serum UA level was significantly higher in the CS than in the AO. The transcardiac gradient of UA (CS-AO) increased with the severity of CHF, inversely correlated with left ventricular ejection fraction (LVEF) and positively correlated with left ventricular end-diastolic volume index. The plasma levels of norepinephrine, BNP, UA, and LVEF were monitored prospectively in 150 CHF patients for a mean follow-up of 3 years. High plasma levels of UA (p<0.001) and BNP (p<0.001) were shown by multivariate stepwise analysis to be independent predictors of mortality. High plasma UA level, partly secreted from the failing heart, is a prognostic predictor independent of BNP in patients with CHF. Monitoring a combination of BNP and UA may be useful for the management of patients with CHF.

  11. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study

    NASA Astrophysics Data System (ADS)

    Wolfs, Cecile J. A.; Brás, Mariana G.; Schyns, Lotte E. J. R.; Nijsten, Sebastiaan M. J. J. G.; van Elmpt, Wouter; Scheib, Stefan G.; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-08-01

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95%) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95%, which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  12. Detection of anatomical changes in lung cancer patients with 2D time-integrated, 2D time-resolved and 3D time-integrated portal dosimetry: a simulation study.

    PubMed

    Wolfs, Cecile J A; Brás, Mariana G; Schyns, Lotte E J R; Nijsten, Sebastiaan M J J G; van Elmpt, Wouter; Scheib, Stefan G; Baltes, Christof; Podesta, Mark; Verhaegen, Frank

    2017-07-12

    The aim of this work is to assess the performance of 2D time-integrated (2D-TI), 2D time-resolved (2D-TR) and 3D time-integrated (3D-TI) portal dosimetry in detecting dose discrepancies between the planned and (simulated) delivered dose caused by simulated changes in the anatomy of lung cancer patients. For six lung cancer patients, tumor shift, tumor regression and pleural effusion are simulated by modifying their CT images. Based on the modified CT images, time-integrated (TI) and time-resolved (TR) portal dose images (PDIs) are simulated and 3D-TI doses are calculated. The modified and original PDIs and 3D doses are compared by a gamma analysis with various gamma criteria. Furthermore, the difference in the D 95% (ΔD 95% ) of the GTV is calculated and used as a gold standard. The correlation between the gamma fail rate and the ΔD 95% is investigated, as well the sensitivity and specificity of all combinations of portal dosimetry method, gamma criteria and gamma fail rate threshold. On the individual patient level, there is a correlation between the gamma fail rate and the ΔD 95% , which cannot be found at the group level. The sensitivity and specificity analysis showed that there is not one combination of portal dosimetry method, gamma criteria and gamma fail rate threshold that can detect all simulated anatomical changes. This work shows that it will be more beneficial to relate portal dosimetry and DVH analysis on the patient level, rather than trying to quantify a relationship for a group of patients. With regards to optimizing sensitivity and specificity, different combinations of portal dosimetry method, gamma criteria and gamma fail rate should be used to optimally detect certain types of anatomical changes.

  13. High Resolution Manometry Correlates of Ineffective Esophageal Motility

    PubMed Central

    Xiao, Yinglian; Kahrilas, Peter J.; Kwasny, Mary J.; Roman, Sabine; Lin, Zhiyue; Nicodème, Frédéric; Lu, Chang; Pandolfino, John E.

    2013-01-01

    Background There are currently no criteria for ineffective esophageal motility (IEM) and ineffective swallow (IES) in High Resolution Manometry (HRM) and Esophageal Pressure Topography (EPT). Our aims were to utilize HRM metrics to define IEM within the Chicago Classification and to determine the distal contractile integral (DCI) threshold for IES. Methods The EPT of 150 patients with either dysphagia or reflux symptoms were reviewed for the breaks >2 cm in the proximal, middle and distal esophagus in the 20 mmHg isobaric contour (IBC). Peristaltic function in EPT was defined by the Chicago Classification, the corresponding conventional line tracing (CLT) were reviewed separately for IEM and IES. Generalized linear mixed models were used to find thresholds for DCI corresponding to traditionally determined IES and failed swallows. An external validation sample was used to confirm these thresholds. Results In terms of swallow subtypes, IES in CLT were a mixture of normal, weak and failed peristalsis in EPT. A DCI of 450mmHg-s-cm was determined to be optimal in predicting IES. In the validation sample, the threshold of 450 mmHg-s-cm showed strong agreement with CLT determination of IES (positive percent agreement 83%, negative percent agreement 90%) Thirty-three among 42 IEM patients in CLT had large peristaltic breaks, small peristaltic breaks or ‘frequent failed peristalsis’ in EPT; 87.2% (34/39) of patients classified as normal in CLT had proximal IBC-breaks in EPT. the patient level diagnostic agreement between CLT and EPT was good (78.6% positive percent agreement, 63.9% negative percent agreement), with negative agreement increasing to 92.0% if proximal breaks were excluded. Conclusions The manometric correlate of IEM in EPT is a mixture of failed swallows and IBC break in the middle/ distal troughs. A DCI value<450 mmHg-s-cm can be utilized to predict IES previously defined in CLT. IEM can be defined by >5 swallows with weak /failed peristalsis or with a DCI <450 mmHg-s-cm. PMID:22929758

  14. Why conventional detection methods fail in identifying the existence of contamination events.

    PubMed

    Liu, Shuming; Li, Ruonan; Smith, Kate; Che, Han

    2016-04-15

    Early warning systems are widely used to safeguard water security, but their effectiveness has raised many questions. To understand why conventional detection methods fail to identify contamination events, this study evaluates the performance of three contamination detection methods using data from a real contamination accident and two artificial datasets constructed using a widely applied contamination data construction approach. Results show that the Pearson correlation Euclidean distance (PE) based detection method performs better for real contamination incidents, while the Euclidean distance method (MED) and linear prediction filter (LPF) method are more suitable for detecting sudden spike-like variation. This analysis revealed why the conventional MED and LPF methods failed to identify existence of contamination events. The analysis also revealed that the widely used contamination data construction approach is misleading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Falling Barometer--Failing Behavior.

    ERIC Educational Resources Information Center

    Scagliotta, Edward G.

    1980-01-01

    Observations of 127 boys with behavior problems (ages 9 to 13) were made to study the correlation between air pressure and adverse behavior in the Ss. Results showed that, with each change in barometric pressure, there was an obvious change in the Ss' behavior. (PHR)

  16. The Thurgood Marshall School of Law Empirical Findings: A Report of the Correlational Analysis of Bar Passing Rates and Final GPA of Years 2005-2009

    ERIC Educational Resources Information Center

    Kadhi, T.; Holley, D.; Palasota, A.; Garrison, P.; Green, T.

    2010-01-01

    The following analysis was done to investigate the findings of the Correlational Relationship (R) between the Bar Passing Rates and GPAs of the Years 2005-2009. This report of findings was done to see if there are any significant relationships between the three variables (Bar Pass/Fail/Unknown, Overall GPA, and Bar GPA). The following procedures…

  17. Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altintas, Ferdi, E-mail: ferdialtintas@ibu.edu.tr; Eryigit, Resul, E-mail: resul@ibu.edu.tr

    2012-12-15

    We have investigated the quantum phase transitions in the ground states of several critical systems, including transverse field Ising and XY models as well as XY with multiple spin interactions, XXZ and the collective system Lipkin-Meshkov-Glick models, by using different quantumness measures, such as entanglement of formation, quantum discord, as well as its classical counterpart, measurement-induced disturbance and the Clauser-Horne-Shimony-Holt-Bell function. Measurement-induced disturbance is found to detect the first and second order phase transitions present in these critical systems, while, surprisingly, it is found to fail to signal the infinite-order phase transition present in the XXZ model. Remarkably, the Clauser-Horne-Shimony-Holt-Bellmore » function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state. - Highlights: Black-Right-Pointing-Pointer The ability of correlation measures to detect quantum phase transitions has been studied. Black-Right-Pointing-Pointer Measurement induced disturbance fails to detect the infinite order phase transition. Black-Right-Pointing-Pointer CHSH-Bell function detects all phase transitions even when the bipartite density matrix is uncorrelated.« less

  18. Does price reveal poor-quality drugs? Evidence from 17 countries.

    PubMed

    Bate, Roger; Jin, Ginger Zhe; Mathur, Aparna

    2011-12-01

    Focusing on 8 drug types on the WHO-approved medicine list, we constructed an original dataset of 899 drug samples from 17 low- and median-income countries and tested them for visual appearance, disintegration, and analyzed their ingredients by chromatography and spectrometry. Fifteen percent of the samples fail at least one test and can be considered substandard. After controlling for local factors, we find that failing drugs are priced 13.6-18.7% lower than non-failing drugs but the signaling effect of price is far from complete, especially for non-innovator brands. The look of the pharmacy, as assessed by our covert shoppers, is weakly correlated with the results of quality tests. These findings suggest that consumers are likely to suspect low quality from market price, non-innovator brand and the look of the pharmacy, but none of these signals can perfectly identify substandard and counterfeit drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Sleeve Gastrectomy: Correlation of Long-Term Results with Remnant Morphology and Eating Disorders.

    PubMed

    Tassinari, Daniele; Berta, Rossana D; Nannipieri, Monica; Giusti, Patrizia; Di Paolo, Luca; Guarino, Daniela; Anselmino, Marco

    2017-11-01

    Remnant dimension is considered one of the crucial elements determining the success of sleeve gastrectomy (SG), and dilation of the gastric fundus is often believed to be the main cause of failure. The main outcome of this study is to find correlations between remnant morphology in the immediate post-operative stage, its dilation in years, and the long-term results. The second purpose aims to correlate preoperative eating disorders, taste alteration, hunger perception, and early satiety with post-SG results. Remnant morphology was evaluated, in the immediate post-operative stage and over the years (≥2 years), through X-ray of the oesophagus-stomach-duodenum calculating the surface in anteroposterior (AP) and right anterior oblique projection (RAO). Presurgery diagnosis of eating disorders and their evaluation through "Eating Disorder Inventory-3" (EDI3) during follow-up were performed. Change in taste perception, sense of appetite, and early satiety were evaluated. Patients were divided into two groups: "failed SGs (EWL<50%) and "efficient SGs" (EWL >50%). There were a total of 50 patients (37 F, 13 M), with mean age 52 years, preoperative weight 131 ± 21.8 kg, and BMI 47.4 ± 6.8 kg/m 2 . Post-operative remnant mean dimensions overlapped between the two groups. On a long-term basis, an increase of 57.2 and 48.4% was documented in the AP and RAO areas respectively. In "failed" SGs, dilation was significantly superior to "efficient" SGs (AP area 70.2 vs 46.1%; RAO area 59.3 vs 39%; body width 102% vs 41.7%). Preoperative eating disorders were more present in efficient SGs than in failed SGs with the exception of sweet eating. There were no significant changes to taste perception during follow-up. Fifty-two percent of efficient SGs vs 26% of failed SGs reported a persistent lack of sense of hunger; similarly, 92.5 vs 78% declared the persistence of a sense of early satiety. The two groups did not statistically differ as far as all the variables of the EDI3 are concerned. On a long-term basis, the remnant mean dilation is around 50% compared to the immediate post-operative stage but failed SGs showed larger remnant dilation than efficient SGs and, in percentage, the more dilated portion is the body of the stomach. As far as all the EDI3 variables obtained are concerned, the two groups did not statistically differ. Of all eating disorders, sweet eating seems to be weakly connected to SG failure.

  20. Audible sonar images generated with proprioception for target analysis.

    PubMed

    Kuc, Roman B

    2017-05-01

    Some blind humans have demonstrated the ability to detect and classify objects with echolocation using palatal clicks. An audible-sonar robot mimics human click emissions, binaural hearing, and head movements to extract interaural time and level differences from target echoes. Targets of various complexity are examined by transverse displacements of the sonar and by target pose rotations that model movements performed by the blind. Controlled sonar movements executed by the robot provide data that model proprioception information available to blind humans for examining targets from various aspects. The audible sonar uses this sonar location and orientation information to form two-dimensional target images that are similar to medical diagnostic ultrasound tomograms. Simple targets, such as single round and square posts, produce distinguishable and recognizable images. More complex targets configured with several simple objects generate diffraction effects and multiple reflections that produce image artifacts. The presentation illustrates the capabilities and limitations of target classification from audible sonar images.

  1. Theory of acoustic design of opera house and a design proposal

    NASA Astrophysics Data System (ADS)

    Ando, Yoichi

    2004-05-01

    First of all, the theory of subjective preference for sound fields based on the model of auditory-brain system is briefly mentioned. It consists of the temporal factors and spatial factors associated with the left and right cerebral hemispheres, respectively. The temporal criteria are the initial time delay gap between the direct sound and the first Reflection (Dt1) and the subsequent reverberation time (Tsub). These preferred conditions are related to the minimum value of effective duration of the running autocorrelation function of source signals (te)min. The spatial criteria are binaural listening level (LL) and the IACC, which may be extracted from the interaural crosscorrelation function. In the opera house, there are two different kind of sound sources, i.e., the vocal source of relatively short values of (te)min in the stage and the orchestra music of long values of (te)min in the pit. For these sources, a proposal is made here.

  2. Glycinergic inhibition tunes coincidence detection in the auditory brainstem

    PubMed Central

    Myoga, Michael H.; Lehnert, Simon; Leibold, Christian; Felmy, Felix; Grothe, Benedikt

    2014-01-01

    Neurons in the medial superior olive (MSO) detect microsecond differences in the arrival time of sounds between the ears (interaural time differences or ITDs), a crucial binaural cue for sound localization. Synaptic inhibition has been implicated in tuning ITD sensitivity, but the cellular mechanisms underlying its influence on coincidence detection are debated. Here we determine the impact of inhibition on coincidence detection in adult Mongolian gerbil MSO brain slices by testing precise temporal integration of measured synaptic responses using conductance-clamp. We find that inhibition dynamically shifts the peak timing of excitation, depending on its relative arrival time, which in turn modulates the timing of best coincidence detection. Inhibitory control of coincidence detection timing is consistent with the diversity of ITD functions observed in vivo and is robust under physiologically relevant conditions. Our results provide strong evidence that temporal interactions between excitation and inhibition on microsecond timescales are critical for binaural processing. PMID:24804642

  3. Directional hearing by linear summation of binaural inputs at the medial superior olive

    PubMed Central

    van der Heijden, Marcel; Lorteije, Jeannette A. M.; Plauška, Andrius; Roberts, Michael T.; Golding, Nace L.; Borst, J. Gerard G.

    2013-01-01

    SUMMARY Neurons in the medial superior olive (MSO) enable sound localization by their remarkable sensitivity to submillisecond interaural time differences (ITDs). Each MSO neuron has its own “best ITD” to which it responds optimally. A difference in physical path length of the excitatory inputs from both ears cannot fully account for the ITD tuning of MSO neurons. As a result, it is still debated how these inputs interact and whether the segregation of inputs to opposite dendrites, well-timed synaptic inhibition, or asymmetries in synaptic potentials or cellular morphology further optimize coincidence detection or ITD tuning. Using in vivo whole-cell and juxtacellular recordings, we show here that ITD tuning of MSO neurons is determined by the timing of their excitatory inputs. The inputs from both ears sum linearly, whereas spike probability depends nonlinearly on the size of synaptic inputs. This simple coincidence detection scheme thus makes accurate sound localization possible. PMID:23764292

  4. Adaptation to stimulus statistics in the perception and neural representation of auditory space.

    PubMed

    Dahmen, Johannes C; Keating, Peter; Nodal, Fernando R; Schulz, Andreas L; King, Andrew J

    2010-06-24

    Sensory systems are known to adapt their coding strategies to the statistics of their environment, but little is still known about the perceptual implications of such adjustments. We investigated how auditory spatial processing adapts to stimulus statistics by presenting human listeners and anesthetized ferrets with noise sequences in which interaural level differences (ILD) rapidly fluctuated according to a Gaussian distribution. The mean of the distribution biased the perceived laterality of a subsequent stimulus, whereas the distribution's variance changed the listeners' spatial sensitivity. The responses of neurons in the inferior colliculus changed in line with these perceptual phenomena. Their ILD preference adjusted to match the stimulus distribution mean, resulting in large shifts in rate-ILD functions, while their gain adapted to the stimulus variance, producing pronounced changes in neural sensitivity. Our findings suggest that processing of auditory space is geared toward emphasizing relative spatial differences rather than the accurate representation of absolute position.

  5. Subliminal speech perception and auditory streaming.

    PubMed

    Dupoux, Emmanuel; de Gardelle, Vincent; Kouider, Sid

    2008-11-01

    Current theories of consciousness assume a qualitative dissociation between conscious and unconscious processing: while subliminal stimuli only elicit a transient activity, supraliminal stimuli have long-lasting influences. Nevertheless, the existence of this qualitative distinction remains controversial, as past studies confounded awareness and stimulus strength (energy, duration). Here, we used a masked speech priming method in conjunction with a submillisecond interaural delay manipulation to contrast subliminal and supraliminal processing at constant prime, mask and target strength. This delay induced a perceptual streaming effect, with the prime popping out in the supraliminal condition. By manipulating the prime-target interval (ISI), we show a qualitatively distinct profile of priming longevity as a function of prime awareness. While subliminal priming disappeared after half a second, supraliminal priming was independent of ISI. This shows that the distinction between conscious and unconscious processing depends on high-level perceptual streaming factors rather than low-level features (energy, duration).

  6. On the temporal window of auditory-brain system in connection with subjective responses

    NASA Astrophysics Data System (ADS)

    Mouri, Kiminori

    2003-08-01

    The human auditory-brain system processes information extracted from autocorrelation function (ACF) of the source signal and interaural cross correlation function (IACF) of binaural sound signals which are associated with the left and right cerebral hemispheres, respectively. The purpose of this dissertation is to determine the desirable temporal window (2T: integration interval) for ACF and IACF mechanisms. For the ACF mechanism, the visual change of Φ(0), i.e., the power of ACF, was associated with the change of loudness, and it is shown that the recommended temporal window is given as about 30(τe)min [s]. The value of (τe)min is the minimum value of effective duration of the running ACF of the source signal. It is worth noticing from the experiment of EEG that the most preferred delay time of the first reflection sound is determined by the piece indicating (τe)min in the source signal. For the IACF mechanism, the temporal window is determined as below: The measured range of τIACC corresponding to subjective angle for the moving image sound depends on the temporal window. Here, the moving image was simulated by the use of two loudspeakers located at +/-20° in the horizontal plane, reproducing amplitude modulated band-limited noise alternatively. It is found that the temporal window has a wide range of values from 0.03 to 1 [s] for the modulation frequency below 0.2 Hz. Thesis advisor: Yoichi Ando Copies of this thesis written in English can be obtained from Kiminori Mouri, 5-3-3-1110 Harayama-dai, Sakai city, Osaka 590-0132, Japan. E-mail address: km529756@aol.com

  7. Binaural speech processing in individuals with auditory neuropathy.

    PubMed

    Rance, G; Ryan, M M; Carew, P; Corben, L A; Yiu, E; Tan, J; Delatycki, M B

    2012-12-13

    Auditory neuropathy disrupts the neural representation of sound and may therefore impair processes contingent upon inter-aural integration. The aims of this study were to investigate binaural auditory processing in individuals with axonal (Friedreich ataxia) and demyelinating (Charcot-Marie-Tooth disease type 1A) auditory neuropathy and to evaluate the relationship between the degree of auditory deficit and overall clinical severity in patients with neuropathic disorders. Twenty-three subjects with genetically confirmed Friedreich ataxia and 12 subjects with Charcot-Marie-Tooth disease type 1A underwent psychophysical evaluation of basic auditory processing (intensity discrimination/temporal resolution) and binaural speech perception assessment using the Listening in Spatialized Noise test. Age, gender and hearing-level-matched controls were also tested. Speech perception in noise for individuals with auditory neuropathy was abnormal for each listening condition, but was particularly affected in circumstances where binaural processing might have improved perception through spatial segregation. Ability to use spatial cues was correlated with temporal resolution suggesting that the binaural-processing deficit was the result of disordered representation of timing cues in the left and right auditory nerves. Spatial processing was also related to overall disease severity (as measured by the Friedreich Ataxia Rating Scale and Charcot-Marie-Tooth Neuropathy Score) suggesting that the degree of neural dysfunction in the auditory system accurately reflects generalized neuropathic changes. Measures of binaural speech processing show promise for application in the neurology clinic. In individuals with auditory neuropathy due to both axonal and demyelinating mechanisms the assessment provides a measure of functional hearing ability, a biomarker capable of tracking the natural history of progressive disease and a potential means of evaluating the effectiveness of interventions. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Relating age and hearing loss to monaural, bilateral, and binaural temporal sensitivity1

    PubMed Central

    Gallun, Frederick J.; McMillan, Garnett P.; Molis, Michelle R.; Kampel, Sean D.; Dann, Serena M.; Konrad-Martin, Dawn L.

    2014-01-01

    Older listeners are more likely than younger listeners to have difficulties in making temporal discriminations among auditory stimuli presented to one or both ears. In addition, the performance of older listeners is often observed to be more variable than that of younger listeners. The aim of this work was to relate age and hearing loss to temporal processing ability in a group of younger and older listeners with a range of hearing thresholds. Seventy-eight listeners were tested on a set of three temporal discrimination tasks (monaural gap discrimination, bilateral gap discrimination, and binaural discrimination of interaural differences in time). To examine the role of temporal fine structure in these tasks, four types of brief stimuli were used: tone bursts, broad-frequency chirps with rising or falling frequency contours, and random-phase noise bursts. Between-subject group analyses conducted separately for each task revealed substantial increases in temporal thresholds for the older listeners across all three tasks, regardless of stimulus type, as well as significant correlations among the performance of individual listeners across most combinations of tasks and stimuli. Differences in performance were associated with the stimuli in the monaural and binaural tasks, but not the bilateral task. Temporal fine structure differences among the stimuli had the greatest impact on monaural thresholds. Threshold estimate values across all tasks and stimuli did not show any greater variability for the older listeners as compared to the younger listeners. A linear mixed model applied to the data suggested that age and hearing loss are independent factors responsible for temporal processing ability, thus supporting the increasingly accepted hypothesis that temporal processing can be impaired for older compared to younger listeners with similar hearing and/or amounts of hearing loss. PMID:25009458

  9. Subjective evaluation and electroacoustic theoretical validation of a new approach to audio upmixing

    NASA Astrophysics Data System (ADS)

    Usher, John S.

    Audio signal processing systems for converting two-channel (stereo) recordings to four or five channels are increasingly relevant. These audio upmixers can be used with conventional stereo sound recordings and reproduced with multichannel home theatre or automotive loudspeaker audio systems to create a more engaging and natural-sounding listening experience. This dissertation discusses existing approaches to audio upmixing for recordings of musical performances and presents specific design criteria for a system to enhance spatial sound quality. A new upmixing system is proposed and evaluated according to these criteria and a theoretical model for its behavior is validated using empirical measurements. The new system removes short-term correlated components from two electronic audio signals using a pair of adaptive filters, updated according to a frequency domain implementation of the normalized-least-means-square algorithm. The major difference of the new system with all extant audio upmixers is that unsupervised time-alignment of the input signals (typically, by up to +/-10 ms) as a function of frequency (typically, using a 1024-band equalizer) is accomplished due to the non-minimum phase adaptive filter. Two new signals are created from the weighted difference of the inputs, and are then radiated with two loudspeakers behind the listener. According to the consensus in the literature on the effect of interaural correlation on auditory image formation, the self-orthogonalizing properties of the algorithm ensure minimal distortion of the frontal source imagery and natural-sounding, enveloping reverberance (ambiance) imagery. Performance evaluation of the new upmix system was accomplished in two ways: Firstly, using empirical electroacoustic measurements which validate a theoretical model of the system; and secondly, with formal listening tests which investigated auditory spatial imagery with a graphical mapping tool and a preference experiment. Both electroacoustic and subjective methods investigated system performance with a variety of test stimuli for solo musical performances reproduced using a loudspeaker in an orchestral concert-hall and recorded using different microphone techniques. The objective and subjective evaluations combined with a comparative study with two commercial systems demonstrate that the proposed system provides a new, computationally practical, high sound quality solution to upmixing.

  10. Resident performance on the in-training and board examinations in obstetrics and gynecology: implications for the ACGME Outcome Project.

    PubMed

    Withiam-Leitch, Matthew; Olawaiye, Alexander

    2008-01-01

    The Accreditation Council on Graduate Medical Education (ACGME) Outcomes Project has endorsed the in-training examination (ITE) as an example of a multiple-choice question examination that is a valid measure of a resident's attainment of medical knowledge. An outcome measure for performance on the ITE would be the subsequent performance on the board certification examination. However, there are few reports that attempt to correlate a resident's performance on the ITE to subsequent performance on the board certification examination. The Council on Resident Education in Obstetrics and Gynecology (CREOG) has administered the ITE annually since 1970. This study tested the hypothesis that the CREOG-ITE score is a valid assessment tool to predict performance on the American Board of Obstetrics and Gynecology (ABOG) written examination. CREOG-ITE and ABOG written board examination results were collected for 69 resident graduates between the years 1998 and 2005. Logistic regression and receiver operating characteristic analyses were used to estimate the relationship between a resident's score on the CREOG-ITE and subsequent performance on the ABOG written examination. Fifty-seven resident graduates passed (82.6%) and 12 graduates failed (17.4%) the ABOG written examination. The correlation between the CREOG-ITE overall score and performance on the ABOG examination was weak (correlation coefficient =.38, p =.001). Receiver operating characteristic analysis for the CREOG-ITE overall scores and the probability of passing or failing the ABOG examination revealed moderate accuracy (area under the curve = 0.77, 95% CI = 0.62-0.92) with a CREOG-ITE score of 187.5 yielding the best trade-off between specificity (0.79) and sensitivity (0.75). At the cutoff value of 187.5 there was a weak positive predictive value of 43% (i.e., 43% of residents with a score less than 187.5 will fail the ABOG exam) and a strong negative predictive value of 94% (i.e., 94% of the residents with a score above 187.5 will pass the ABOG exam). Logistic regression analysis also revealed a statistically significant relationship between the CREOG-ITE overall score and performance on the ABOG written examination (p = .003). Similar to other specialties, resident performance on the CREOG-ITE is a weak assessment tool to predict the probability of a resident failing the ABOG written examination. Our study highlights the need, in the spirit of the ACGME Outcome Project, for residency and board specialty organizations to coordinate efforts to develop more reliable and correlative measures of a resident's medical knowledge and ability to pass the boards.

  11. Supersymmetric Adler functions and holography

    NASA Astrophysics Data System (ADS)

    Iwanaga, Masaya; Karch, Andreas; Sakai, Tadakatsu

    2016-09-01

    We perform several tests on a recent proposal by Shifman and Stepanyantz for an exact expression for the current correlation functions in supersymmetric gauge theories. We clarify the meaning of the relation in superconformal theories. In particular we show that it automatically follows from known relations between the current correlation functions and anomalies. It therefore also automatically matches between different dual realizations of the same superconformal theory. We use holographic examples as well as calculations in free theories to show that the proposed relation fails in theories with mass terms.

  12. Transmural heterogeneity of cellular level power output is reduced in human heart failure.

    PubMed

    Haynes, Premi; Nava, Kristofer E; Lawson, Benjamin A; Chung, Charles S; Mitov, Mihail I; Campbell, Stuart G; Stromberg, Arnold J; Sadayappan, Sakthivel; Bonnell, Mark R; Hoopes, Charles W; Campbell, Kenneth S

    2014-07-01

    Heart failure is associated with pump dysfunction and remodeling but it is not yet known if the condition affects different transmural regions of the heart in the same way. We tested the hypotheses that the left ventricles of non-failing human hearts exhibit transmural heterogeneity of cellular level contractile properties, and that heart failure produces transmural region-specific changes in contractile function. Permeabilized samples were prepared from the sub-epicardial, mid-myocardial, and sub-endocardial regions of the left ventricular free wall of non-failing (n=6) and failing (n=10) human hearts. Power, an in vitro index of systolic function, was higher in non-failing mid-myocardial samples (0.59±0.06μWmg(-1)) than in samples from the sub-epicardium (p=0.021) and the sub-endocardium (p=0.015). Non-failing mid-myocardial samples also produced more isometric force (14.3±1.33kNm(-2)) than samples from the sub-epicardium (p=0.008) and the sub-endocardium (p=0.026). Heart failure reduced power (p=0.009) and force (p=0.042) but affected the mid-myocardium more than the other transmural regions. Fibrosis increased with heart failure (p=0.021) and mid-myocardial tissue from failing hearts contained more collagen than matched sub-epicardial (p<0.001) and sub-endocardial (p=0.043) samples. Power output was correlated with the relative content of actin and troponin I, and was also statistically linked to the relative content and phosphorylation of desmin and myosin light chain-1. Non-failing human hearts exhibit transmural heterogeneity of contractile properties. In failing organs, region-specific fibrosis produces the greatest contractile deficits in the mid-myocardium. Targeting fibrosis and sarcomeric proteins in the mid-myocardium may be particularly effective therapies for heart failure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.

    PubMed

    Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula

    2017-08-02

    Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social interactions, contributing to their isolation. Here, a mouse model of FXS was used to investigate the auditory brainstem where basic sound information is first processed. Loss of the Fragile X mental retardation protein leads to excessive excitatory compared with inhibitory inputs in neurons extracting information about sound levels. Functionally, this elevated excitation results in increased firing rates, and abnormal coding of frequency and binaural sound localization cues. Imbalanced early-stage sound level processing could partially explain the auditory processing deficits in FXS. Copyright © 2017 the authors 0270-6474/17/377403-17$15.00/0.

  14. Spatial hearing ability of the pigmented Guinea pig (Cavia porcellus): Minimum audible angle and spatial release from masking in azimuth.

    PubMed

    Greene, Nathaniel T; Anbuhl, Kelsey L; Ferber, Alexander T; DeGuzman, Marisa; Allen, Paul D; Tollin, Daniel J

    2018-08-01

    Despite the common use of guinea pigs in investigations of the neural mechanisms of binaural and spatial hearing, their behavioral capabilities in spatial hearing tasks have surprisingly not been thoroughly investigated. To begin to fill this void, we tested the spatial hearing of adult male guinea pigs in several experiments using a paradigm based on the prepulse inhibition (PPI) of the acoustic startle response. In the first experiment, we presented continuous broadband noise from one speaker location and switched to a second speaker location (the "prepulse") along the azimuth prior to presenting a brief, ∼110 dB SPL startle-eliciting stimulus. We found that the startle response amplitude was systematically reduced for larger changes in speaker swap angle (i.e., greater PPI), indicating that using the speaker "swap" paradigm is sufficient to assess stimulus detection of spatially separated sounds. In a second set of experiments, we swapped low- and high-pass noise across the midline to estimate their ability to utilize interaural time- and level-difference cues, respectively. The results reveal that guinea pigs can utilize both binaural cues to discriminate azimuthal sound sources. A third set of experiments examined spatial release from masking using a continuous broadband noise masker and a broadband chirp signal, both presented concurrently at various speaker locations. In general, animals displayed an increase in startle amplitude (i.e., lower PPI) when the masker was presented at speaker locations near that of the chirp signal, and reduced startle amplitudes (increased PPI) indicating lower detection thresholds when the noise was presented from more distant speaker locations. In summary, these results indicate that guinea pigs can: 1) discriminate changes in source location within a hemifield as well as across the midline, 2) discriminate sources of low- and high-pass sounds, demonstrating that they can effectively utilize both low-frequency interaural time and high-frequency level difference sound localization cues, and 3) utilize spatial release from masking to discriminate sound sources. This report confirms the guinea pig as a suitable spatial hearing model and reinforces prior estimates of guinea pig hearing ability from acoustical and physiological measurements. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Abilities and Skill Acquisition: A Latent Growth Curve Approach

    ERIC Educational Resources Information Center

    Voelkle, Manuel C.; Wittmann, Werner W.; Ackerman, Phillip L.

    2006-01-01

    The relationship between abilities and skill acquisition has been the subject of numerous controversies in psychology. However, while most researchers implicitly or explicitly accept the idea that abilities and skill acquisition should be related, empirical research has failed to provide evidence for a consistently strong correlation between the…

  16. Socioeconomic Status, a Forgotten Variable in Lateralization Development

    ERIC Educational Resources Information Center

    Boles, David B.

    2011-01-01

    Socioeconomic status (SES), a variable combining income, education, and occupation, is correlated with a variety of social health outcomes including school dropout rates, early parenthood, delinquency, and mental illness. Several studies conducted in the 1970s and 1980s largely failed to report a relationship between SES and hemispheric asymmetry…

  17. 78 FR 36817 - Proposed Agency Information Collection Activities; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ...) accidents resulting from warning system failures can be reduced. Motorists lose faith in warning systems... greater risk of an accident is present when a warning system fails to activate as a train approaches a... device malfunctions. With this information, FRA is able to correlate accident data and equipment...

  18. Correlates of Social Support and Its Association with Physical Activity among Young Adolescents

    ERIC Educational Resources Information Center

    Gill, Monique; Chan-Golston, Alec M.; Rice, Lindsay N.; Roth, Sarah E.; Crespi, Catherine M.; Cole, Brian L.; Koniak-Griffin, Deborah; Prelip, Michael L.

    2018-01-01

    Background: A substantial proportion of adolescents, particularly girls and minority youth, fail to meet daily physical activity (PA) recommendations. Social support contributes to adolescent PA, but studies examining this relationship have yielded inconsistent results and rarely focus on diverse, urban populations. Aims: This study examines the…

  19. A Mixed-Methods Study of Adolescents' Motivation to Read

    ERIC Educational Resources Information Center

    Troyer, Margaret

    2017-01-01

    Background: Research has shown that reading motivation is correlated with achievement. Studying motivation in older students is particularly important as reading motivation declines over the course of elementary and middle school. However, current research largely fails to reflect the nuance and complexity of reading motivation, or its variation…

  20. Measurement of Negativity Bias in Personal Narratives Using Corpus-Based Emotion Dictionaries

    ERIC Educational Resources Information Center

    Cohen, Shuki J.

    2011-01-01

    This study presents a novel methodology for the measurement of negativity bias using positive and negative dictionaries of emotion words applied to autobiographical narratives. At odds with the cognitive theory of mood dysregulation, previous text-analytical studies have failed to find significant correlation between emotion dictionaries and…

  1. Determination of Rolling-Element Fatigue Life From Computer Generated Bearing Tests

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Hendricks, Robert C.; Zaretsky, Erwin V.

    2003-01-01

    Two types of rolling-element bearings representing radial loaded and thrust loaded bearings were used for this study. Three hundred forty (340) virtual bearing sets totaling 31400 bearings were randomly assembled and tested by Monte Carlo (random) number generation. The Monte Carlo results were compared with endurance data from 51 bearing sets comprising 5321 bearings. A simple algebraic relation was established for the upper and lower L(sub 10) life limits as function of number of bearings failed for any bearing geometry. There is a fifty percent (50 percent) probability that the resultant bearing life will be less than that calculated. The maximum and minimum variation between the bearing resultant life and the calculated life correlate with the 90-percent confidence limits for a Weibull slope of 1.5. The calculated lives for bearings using a load-life exponent p of 4 for ball bearings and 5 for roller bearings correlated with the Monte Carlo generated bearing lives and the bearing data. STLE life factors for bearing steel and processing provide a reasonable accounting for differences between bearing life data and calculated life. Variations in Weibull slope from the Monte Carlo testing and bearing data correlated. There was excellent agreement between percent of individual components failed from Monte Carlo simulation and that predicted.

  2. Sound-direction identification, interaural time delay discrimination, and speech intelligibility advantages in noise for a bilateral cochlear implant user.

    PubMed

    Van Hoesel, Richard; Ramsden, Richard; Odriscoll, Martin

    2002-04-01

    To characterize some of the benefits available from using two cochlear implants compared with just one, sound-direction identification (ID) abilities, sensitivity to interaural time delays (ITDs) and speech intelligibility in noise were measured for a bilateral multi-channel cochlear implant user. Sound-direction ID in the horizontal plane was tested with a bilateral cochlear implant user. The subject was tested both unilaterally and bilaterally using two independent behind-the-ear ESPRIT (Cochlear Ltd.) processors, as well as bilaterally using custom research processors. Pink noise bursts were presented using an 11-loudspeaker array spanning the subject's frontal 180 degrees arc in an anechoic room. After each burst, the subject was asked to identify which loudspeaker had produced the sound. No explicit training, and no feedback were given. Presentation levels were nominally at 70 dB SPL, except for a repeat experiment using the clinical devices where the presentation levels were reduced to 60 dB SPL to avoid activation of the devices' automatic gain control (AGC) circuits. Overall presentation levels were randomly varied by +/- 3 dB. For the research processor, a "low-update-rate" and a "high-update-rate" strategy were tested. Direct measurements of ITD just noticeable differences (JNDs) were made using a 3 AFC paradigm targeting 70% correct performance on the psychometric function. Stimuli included simple, low-rate electrical pulse trains as well as high-rate pulse trains modulated at 100 Hz. Speech data comparing monaural and binaural performance in noise were also collected with both low, and high update-rate strategies on the research processors. Open-set sentences were presented from directly in front of the subject and competing multi-talker babble noise was presented from the same loudspeaker, or from a loudspeaker placed 90 degrees to the left or right of the subject. For the sound-direction ID task, monaural performance using the clinical devices showed large mean absolute errors of 81 degrees and 73 degrees, with standard deviations (averaged across all 11 loud-speakers) of 10 degrees and 17 degrees, for left and right ears, respectively. Fore bilateral device use at a presentation level of 70 dB SPL, the mean error improved to about 16 degrees with an average standard deviation of 18 degrees. When the presentation level was decreased to 60 dB SPL to avoid activation of the automatic gain control (AGC) circuits in the clinical processors, the mean response error improved further to 8 degrees with a standard deviation of 13 degrees. Further tests with the custom research processors, which had a higher stimulation rate and did not include AGCs, showed comparable response errors: around 8 or 9 degrees and a standard deviation of about 11 degrees for both update rates. The best ITD JNDs measured for this subject were between 350 to 400 microsec for simple low-rate pulse trains. Speech results showed a substantial headshadow advantage for bilateral device use when speech and noise were spatially separated, but little evidence of binaural unmasking. For spatially coincident speech and noise, listening with both ears showed similar results to listening with either side alone when loudness summation was compensated for. No significant differences were observed between binaural results for high and low update-rates in any test configuration. Only for monaural listening in one test configuration did the high rate show a small significant improvement over the low rate. Results show that even if interaural time delay cues are not well coded or perceived, bilateral implants can offer important advantages, both for speech in noise as well as for sound-direction identification.

  3. Pelvic radiation therapy for gynecologic malignancy in geriatric patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, P.T.; Jeffrey, J.F.; Fraser, R.C.

    Thirty-one patients, aged 75 years or older, who received pelvic radiation therapy as part of primary treatment for a gynecologic malignancy, were reviewed. Ten patients (32%) failed to complete their treatment and 4 patients (13%) died of treatment-related complications. The treatment-related complications were independent of increasing age, but did correlate closely with the patients' pretreatment ECOG performance status. Ten patients with performance levels of 2 or higher had a mortality rate of 30%, while 70% failed to complete treatment. Treatment fractions of greater than 220 cGy per day also resulted in unacceptably high complication rates. Alternative treatment formats should bemore » considered in geriatric patients with poor initial performance levels.« less

  4. Comparison of African American Children's Performances on a Minimal Competence Core for Morphosyntax and the Index of Productive Syntax.

    PubMed

    Stockman, Ida J; Newkirk-Turner, Brandi L; Swartzlander, Elaina; Morris, Lekeitha R

    2016-02-01

    This study is a response to the need for evidence-based measures of spontaneous oral language to assess African American children under the age of 4 years. We determined if pass/fail status on a minimal competence core for morphosyntax (MCC-MS) was more highly related to scores on the Index of Productive Syntax (IPSyn)-the measure of convergent criterion validity-than to scores on 3 measures of divergent validity: number of different words (Watkins, Kelly, Harbers, & Hollis, 1995), Percentage of Consonants Correct-Revised (Shriberg, Austin, Lewis, McSweeney, & Wilson, 1997), and the Leiter International Performance Scale-Revised (Roid & Miller, 1997). Archival language samples for 68 African American 3-year-olds were analyzed to determine MCC-MS pass/fail status and the scores on measures of convergent and divergent validity. Higher IPSyn scores were observed for 60 children who passed the MCC-MS than for 8 children who did not. A significant positive correlation, rpb = .73, between MCC-MS pass/fail status and IPSyn scores was observed. This coefficient was higher than MCC-MS correlations with measures of divergent validity: rpb = .13 (Leiter International Performance Scale-Revised), rpb = .42 (number of different words in 100 utterances), and rpb = .46 (Percentage of Consonants Correct-Revised). The MCC-MS has convergent criterion validity with the IPSyn. Although more research is warranted, both measures can be potentially used in oral language assessments of African American 3-year-olds.

  5. Colocalization analysis in fluorescence micrographs: verification of a more accurate calculation of pearson's correlation coefficient.

    PubMed

    Barlow, Andrew L; Macleod, Alasdair; Noppen, Samuel; Sanderson, Jeremy; Guérin, Christopher J

    2010-12-01

    One of the most routine uses of fluorescence microscopy is colocalization, i.e., the demonstration of a relationship between pairs of biological molecules. Frequently this is presented simplistically by the use of overlays of red and green images, with areas of yellow indicating colocalization of the molecules. Colocalization data are rarely quantified and can be misleading. Our results from both synthetic and biological datasets demonstrate that the generation of Pearson's correlation coefficient between pairs of images can overestimate positive correlation and fail to demonstrate negative correlation. We have demonstrated that the calculation of a thresholded Pearson's correlation coefficient using only intensity values over a determined threshold in both channels produces numerical values that more accurately describe both synthetic datasets and biological examples. Its use will bring clarity and accuracy to colocalization studies using fluorescent microscopy.

  6. Statistical Inference and Spatial Patterns in Correlates of IQ

    ERIC Educational Resources Information Center

    Hassall, Christopher; Sherratt, Thomas N.

    2011-01-01

    Cross-national comparisons of IQ have become common since the release of a large dataset of international IQ scores. However, these studies have consistently failed to consider the potential lack of independence of these scores based on spatial proximity. To demonstrate the importance of this omission, we present a re-evaluation of several…

  7. I Don't Do School: Correlations of School Culture, Power, Fairness, and Behaviour Perceptions

    ERIC Educational Resources Information Center

    Robinson, Derrick; Watson, Marcia; Adams, Tempestt

    2015-01-01

    Student perceptions of fairness shape behavioural responses that impact the climate of a school. However, prevailing literature on student perceptions fails to critically explore culture, power, and self-concept. This study bridges these gaps through connecting student perception and self-concept as a collective and individual experience of…

  8. Factors Distinguishing Exceptional Performance on the Uniform CPA Exam.

    ERIC Educational Resources Information Center

    Ashbaugh, Donald L.; Thompson, A. Frank

    1993-01-01

    Analysis of data from 234 Certified Public Accountant (CPA) candidates (98 of whom failed at least 1 part of the exam) showed that higher grades in the CPA review course correlated with passing the first time. Higher high school class rank and larger high school class size influenced exceptional test performance. (SK)

  9. The Correlation between Children's Personal Behavioural Characteristics and Indicators of Children's Attachment to Their Mother or Father, Respectively.

    ERIC Educational Resources Information Center

    Cugmas, Zlatka

    1998-01-01

    Analyzed relationships between the quality of parental attachment and preschool children's behavioral characteristics, including social skills, productivity, behavior problems, neurosis, anxiety and self-evaluation. Found a positive relationship between parental attachment and the child's adaptation, but failed to confirm the hypothesis regarding…

  10. Behavioral and Neurophysiological Correlates of Striatal Dopamine Depletion: A Rodent Model of Parkinson's Disease

    ERIC Educational Resources Information Center

    Plowman, Emily K.; Kleim, Jeffrey A.

    2011-01-01

    Both limb and cranial motor functions are adversely impacted by Parkinson's disease (PD). While current pharmacological and surgical interventions are effective in alleviating general limb motor symptoms of PD, they have failed to provide significant benefit for cranial motor functions. This suggests that the neuropathologies mediating limb and…

  11. A Test of the Need Hierarchy Concept by a Markov Model of Change in Need Strength.

    ERIC Educational Resources Information Center

    Rauschenberger, John; And Others

    1980-01-01

    In this study of 547 high school graduates, Alderfer's and Maslow's need hierarchy theories were expressed in Markov chain form and were subjected to empirical test. Both models were disconfirmed. Corroborative multiwave correlational analysis also failed to support the need hierarchy concept. (Author/IRT)

  12. The Mystery of Student Selection: Are There Any Selection Criteria?

    ERIC Educational Resources Information Center

    Marnewick, Carl

    2012-01-01

    First-year students are still failing at an alarming rate. This is an international issue that universities face and there is currently no clear indication of the cause of the problem as universities move from being elite to providing mass education. This article examines the possible correlation between students' high school performance and…

  13. Surveys of Thalassemia and Other Blood Defects in Spain

    DTIC Science & Technology

    on the incidence of thalassemia trait and G6PD deficiency in Spain, with particular reference to the former incidence of malaria. They find no...correlation, in the case of thalassemia trait. The G6PD deficiency gene they believe to be uniformly distributed in Spain. They have failed to find any

  14. Impaired lipid accumulation in the liver of Tsc2-heterozygous mice during liver regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obayashi, Yoko, E-mail: youko_oobayashi@ajinomoto.com; Campbell, Jean S.; Fausto, Nelson

    Highlights: •Tuberin phosphorylation correlated with mTOR activation in early liver regeneration. •Liver regeneration in the Tsc2+/− mice was not enhanced. •The Tsc2+/− livers failed to accumulate lipid bodies during liver regeneration. •Mortality rate increased in Tsc2+/− mice after partial hepatectomy. •Tuberin plays a critical role in hepatic lipid accumulation to support regeneration. -- Abstract: Tuberin is a negative regulator of mTOR pathway. To investigate the function of tuberin during liver regeneration, we performed 70% hepatectomy on wild-type and Tsc2+/− mice. We found the tuberin phosphorylation correlated with mTOR activation during early liver regeneration in wild-type mice. However, liver regeneration inmore » the Tsc2+/− mice was not enhanced. Instead, the Tsc2+/− livers failed to accumulate lipid bodies, and this was accompanied by increased mortality. These findings suggest that tuberin plays a critical role in liver energy balance by regulating hepatocellular lipid accumulation during early liver regeneration. These effects may influence the role of mTORC1 on cell growth and proliferation.« less

  15. Hypothesis: discrepancy between intra- and interpopulation studies of the relationship between dietary salt and blood pressure: fact or fiction?

    PubMed

    Omvik, P

    1984-01-01

    It is a paradox that intra-population studies fail to show significant correlation between sodium excretion and blood pressure while a clear relationship exists in cross-cultural studies. Since daily variation of sodium excretion is high, the discrepancy between the two observations could be due to non-comparable data on sodium excretion. This is a discussion of the hypothesis that the finding of a significant correlation or not between sodium excretion and blood pressure depends on the statistical analysis of the data.

  16. Supersymmetric Adler functions and holography

    DOE PAGES

    Iwanaga, Masaya; Karch, Andreas; Sakai, Tadakatsu

    2016-09-16

    Here, we perform several tests on a recent proposal by Shifman and Stepanyantz for an exact expression for the current correlation functions in supersymmetric gauge theories. We clarify the meaning of the relation in superconformal theories. In particular we show that it automatically follows from known relations between the current correlation functions and anomalies. It therefore also automatically matches between different dual realizations of the same superconformal theory. We use holographic examples as well as calculations in free theories to show that the proposed relation fails in theories with mass terms.

  17. Development of a reliable simulation-based test for diagnostic abdominal ultrasound with a pass/fail standard usable for mastery learning.

    PubMed

    Østergaard, Mia L; Nielsen, Kristina R; Albrecht-Beste, Elisabeth; Konge, Lars; Nielsen, Michael B

    2018-01-01

    This study aimed to develop a test with validity evidence for abdominal diagnostic ultrasound with a pass/fail-standard to facilitate mastery learning. The simulator had 150 real-life patient abdominal scans of which 15 cases with 44 findings were selected, representing level 1 from The European Federation of Societies for Ultrasound in Medicine and Biology. Four groups of experience levels were constructed: Novices (medical students), trainees (first-year radiology residents), intermediates (third- to fourth-year radiology residents) and advanced (physicians with ultrasound fellowship). Participants were tested in a standardized setup and scored by two blinded reviewers prior to an item analysis. The item analysis excluded 14 diagnoses. Both internal consistency (Cronbach's alpha 0.96) and inter-rater reliability (0.99) were good and there were statistically significant differences (p < 0.001) between all four groups, except the intermediate and advanced groups (p = 1.0). There was a statistically significant correlation between experience and test scores (Pearson's r = 0.82, p < 0.001). The pass/fail-standard failed all novices (no false positives) and passed all advanced (no false negatives). All intermediate participants and six out of 14 trainees passed. We developed a test for diagnostic abdominal ultrasound with solid validity evidence and a pass/fail-standard without any false-positive or false-negative scores. • Ultrasound training can benefit from competency-based education based on reliable tests. • This simulation-based test can differentiate between competency levels of ultrasound examiners. • This test is suitable for competency-based education, e.g. mastery learning. • We provide a pass/fail standard without false-negative or false-positive scores.

  18. Drug Resistance and Viral Tropism in HIV-1 Subtype C-Infected Patients in KwaZulu-Natal, South Africa: Implications for Future Treatment Options

    PubMed Central

    Singh, Ashika; Sunpath, Henry; Green, Taryn N.; Padayachi, Nagavelli; Hiramen, Keshni; Lie, Yolanda; Anton, Elizabeth D.; Murphy, Richard; Reeves, Jacqueline D.; Kuritzkes, Daniel R.; Ndung’u, Thumbi

    2011-01-01

    Background Drug resistance poses a significant challenge for the successful application of highly active antiretroviral therapy (HAART) globally. Furthermore, emergence of HIV-1 isolates that preferentially utilize CXCR4 as a coreceptor for cell entry, either as a consequence of natural viral evolution or HAART use may compromise the efficacy of CCR5 antagonists as alternative antiviral therapy. Methods We sequenced the pol gene of viruses from 45 individuals failing at least six months of HAART in Durban, South Africa to determine the prevalence and patterns of drug resistance mutations. Coreceptor usage profiles of these viruses and those from 45 HAART-naive individuals were analyzed using phenotypic and genotypic approaches. Results Ninety-five percent of HAART-failing patients had at least one drug resistance mutation. Thymidine analog mutations (TAMs) were present in 55% of patients with 9% of individuals possessing mutations indicative of the TAM1 pathway, 44% had TAM2 while 7% had mutations common to both pathways. Sixty percent of HAART-failing subjects had X4/dual//mixed-tropic viruses compared to 30% of HAART-naïve subjects (p<0.02). Genetic coreceptor usage prediction algorithms correlated with phenotypic results with 60% of samples from HAART-failing subjects predicted to possess CXCR4-using (X4/dual/mixed viruses) versus 15% of HAART-naïve patients. Conclusions The high proportion of TAMs and X4/dual/mixed HIV-1 viruses among patients failing therapy highlight the need for intensified monitoring of patients taking HAART and the problem of diminished drug options (including CCR5 antagonists) for patients failing therapy in resource-poor settings. PMID:21709569

  19. Design of a bistable electromagnetic coupling mechanism for underactuated manipulators

    NASA Astrophysics Data System (ADS)

    Miyuranga Kaluarachchi, Malaka; Ho, Jee-Hou; Yahya, Samer; Teh, Sze-Hong

    2018-07-01

    Electromagnetic clutches have been widely used in underactuated lightweight manipulator designs as a coupling mechanism due to their advantages of fast activation and electrical controllability. However, an electromagnetic clutch consumes electrical energy continuously during its operation. Furthermore, conventional electromagnetic clutches are not fail-safe in unexpected power failure conditions. These factors have a significant impact on the energy efficiency and the safety of the design, and these are vital aspects for underactuated lightweight manipulators. This paper introduces a bistable electromagnetic coupling mechanism design, with reduced energy consumption and with a fail-safe mechanism. The concept of a bistable electromagnetic mechanism consists of an electromagnet with two permanent magnets. The design has the capability to maintain stable mechanism states, either engaged or disengaged, without a continuous electrical power supply, thus enhancing fail-safety and efficiency. Moreover, the design incorporates the advantages of conventional electromagnetic clutches such as rapid activation and electrical controllability. The experimental results highlight the effectiveness of the proposed mechanism in reducing electric energy consumption. Besides this, a theoretical model is developed and a good correlation is achieved between the theoretical and experimental results. The reduced electric energy consumption and fail-safe design make the bistable electromagnetic mechanism a promising concept for underactuated lightweight manipulators.

  20. Attenuated coupled cluster: a heuristic polynomial similarity transformation incorporating spin symmetry projection into traditional coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2017-11-01

    In electronic structure theory, restricted single-reference coupled cluster (CC) captures weak correlation but fails catastrophically under strong correlation. Spin-projected unrestricted Hartree-Fock (SUHF), on the other hand, misses weak correlation but captures a large portion of strong correlation. The theoretical description of many important processes, e.g. molecular dissociation, requires a method capable of accurately capturing both weak and strong correlation simultaneously, and would likely benefit from a combined CC-SUHF approach. Based on what we have recently learned about SUHF written as particle-hole excitations out of a symmetry-adapted reference determinant, we here propose a heuristic CC doubles model to attenuate the dominant spin collective channel of the quadratic terms in the CC equations. Proof of principle results presented here are encouraging and point to several paths forward for improving the method further.

  1. Biocorrosion rate and mechanism of metallic magnesium in model arterial environments

    NASA Astrophysics Data System (ADS)

    Bowen, Patrick K.

    A new paradigm in biomedical engineering calls for biologically active implants that are absorbed by the body over time. One popular application for this concept is in the engineering of endovascular stents that are delivered concurrently with balloon angioplasty. These devices enable the injured vessels to remain patent during healing, but are not needed for more than a few months after the procedure. Early studies of iron- and magnesium-based stents have concluded that magnesium is a potentially suitable base material for such a device; alloys can achieve acceptable mechanical properties and do not seem to harm the artery during degradation. Research done up to the onset of research contained in this dissertation, for the most part, failed to define realistic physiological corrosion mechanisms, and failed to correlate degradation rates between in vitro and in vivo environments. Six previously published works form the basis of this dissertation. The topics of these papers include (1) a method by which tensile testing may be applied to evaluate biomaterial degradation; (2) a suite of approaches that can be used to screen candidate absorbable magnesium biomaterials; (3) in vivo-in vitro environmental correlations based on mechanical behavior; (4) a similar correlation on the basis of penetration rate; (5) a mid-to-late stage physiological corrosion mechanism for magnesium in an arterial environment; and (6) the identification of corrosion products in degradable magnesium using transmission electron microscopy.

  2. Role of lymphatic vessel density in colorectal cancer: prognostic significance and clinicopathologic correlations.

    PubMed

    Pappas, A; Lagoudianakis, E; Seretis, C; Koronakis, N; Keramidaris, D; Grapatsas, K; Filis, K; Manouras, A; Salemis, N

    2015-06-01

    Over the past decades the identification of several molecules that are expressed specifically in the lymphatic endothelial cells has resulted in marked advances in the field of lymphangiogenesis. We aimed to measure LVD in colorectal cancer patients and to compare it with microvascular density (MVD) - a marker of angiogenesis - and patients' clinicopathological parameters and survival, as the measurement of lymphatic vessel density (LVD) has been documented in various tumor types, including colorectal cancer. Fifty one patients who had undergone surgical resection for stage I-III colorectal cancer entered this study. LVD and MVD were determined immunohistochemically with the use of D2-40 and CD34 antibody respectively. The evaluation of LVD was performed by both visual and computer-aided image analysis. The majority of lymphatic vessels were located in the peritumoral areas rather than within the tumor. The results obtained from the image analyzer correlated significantly with the data obtained using visual counting with light microscopy. Both visual and image analysis LVD failed to correlate with patients' age and gender and tumor location, stage, grade, MVD count and survival. The biologic role of the lymphatic vasculature in tumor progression remains controversial. The present study failed to associate LVD with outcome markers and prognosis and further studies would be required to verify our results. © Acta Gastro-Enterologica Belgica.

  3. Application of thin-section low-dose chest CT (TSCT) in the management of pediatric AIDS.

    PubMed

    Ambrosino, M M; Roche, K J; Genieser, N B; Kaul, A; Lawrence, R M

    1995-01-01

    The aim of this study was to evaluate the usefulness of thin-section low-dose computed tomography (TSCT) in the management of children with AIDS, as chest radiographs (CXR) often fail to adequately explain the patients' clinical status. We performed 54 noncontrast TSCTs on 32 children. The patients aged from 3 months to 14.6 years, were diagnosed as having bacterial pneumonia, lumphocytic interstitial pneumonitis (LIP), Pneumocystis carinii pneumonia (PCP), or Mycobacterium avium-intracellulare infection (MAI). The scans were correlated with the clinical diagnosis, T-lymphocyte-subset percentages, and p24-antigen levels. Subsegmental consolidations were seen in patients with LIP, PCP, and MAI, and as an isolated finding in those with only bacterial pneumonia. Ground-glass haziness was seen exclusively with acute PCP. Reticulonodular thickening was identified only in patients with LIP. Mosaic perfusion was seen with MAI, LIP, and pneumonia. The presence of adenopathy correlated with CD4+ T-cell subset percentages. The greatest value of CT in this study was in detecting new disease when chest films failed to correlate with a patient's clinical state, and in demonstrating acute/subacute disease in patients with severe baseline chest-film changes. Recurrent pneumonias may represent progression of "smoldering" disease, rather than true recurrent disease following complete clearing. Adenopathy with low CD4+ levels should suggest lymphoma or infection with MAI.

  4. Medical Humanities Coursework Is Associated with Greater Measured Empathy in Medical Students.

    PubMed

    Graham, Jeremy; Benson, Lauren M; Swanson, Judy; Potyk, Darryl; Daratha, Kenn; Roberts, Ken

    2016-12-01

    The primary focus of the study was to determine whether coursework in the medical humanities would ameliorate students' loss of and failure to develop empathy, a problem known to be common during medical education. Students were offered an elective course in the Medical Humanities for academic credit. The Jefferson Scale of Empathy Student Version (JSE-S) was administered at the beginning and end of an academic year in which humanities courses were offered. Changes in JSE-S scores among students who studied Medical Humanities were compared with changes in student who did not take any humanities coursework. Medical humanities coursework correlated with superior empathy outcomes among the medical students. Of students not enrolled in humanities courses, 71% declined or failed to increase in JSE-S score over the academic year. Of those who took humanities coursework, 46% declined or failed to increase in JSE-S scores. The difference was statistically significant (P = .03). The medical humanities curriculum correlated with favorable empathy outcomes as measured by the JSE-S. Elective medical humanities coursework correlated with improved empathy score outcomes in a group of US medical students. This may reflect a direct effect of the humanities coursework. Alternately, students' elective choice to take medical humanities coursework may be a marker for students with a propensity to favorable empathy outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Concerns of Quality and Safety in Public Domain Surgical Education Videos: An Assessment of the Critical View of Safety in Frequently Used Laparoscopic Cholecystectomy Videos.

    PubMed

    Deal, Shanley B; Alseidi, Adnan A

    2017-12-01

    Online videos are among the most common resources for case preparation. Using crowd sourcing, we evaluated the relationship between operative quality and viewing characteristics of online laparoscopic cholecystectomy videos. We edited 160 online videos of laparoscopic cholecystectomy to 60 seconds or less. Crowd workers (CW) rated videos using Global Objective Assessment of Laparoscopic Skills (GOALS), the critical view of safety (CVS) criteria, and assigned overall pass/fail ratings if CVS was achieved; linear mixed effects models derived average ratings. Views, likes, dislikes, subscribers, and country were recorded for subset analysis of YouTube videos. Spearman correlation coefficient (SCC) assessed correlation between performance measures. One video (0.06%) achieved a passing CVS score of ≥5; 23%, ≥4; 44%, ≥3; 79%, ≥2; and 100% ≥1. Pass/fail ratings correlated to CVS, SCC 0.95 (p < 0.001) and to GOALS, SCC 0.79 (p < 0.001). YouTube videos (n = 139) with higher views, likes, or subscribers did not correlate with better quality. The average CVS and GOALS scores were no different for videos with >20,000 views (22%) compared with those with <20,000 (78%). There is an incredibly low frequency of CVS and average GOALS technical performance in frequently used online surgical videos of LC. Favorable characteristics, such as number of views or likes, do not translate to higher quality. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Variable Selection through Correlation Sifting

    NASA Astrophysics Data System (ADS)

    Huang, Jim C.; Jojic, Nebojsa

    Many applications of computational biology require a variable selection procedure to sift through a large number of input variables and select some smaller number that influence a target variable of interest. For example, in virology, only some small number of viral protein fragments influence the nature of the immune response during viral infection. Due to the large number of variables to be considered, a brute-force search for the subset of variables is in general intractable. To approximate this, methods based on ℓ1-regularized linear regression have been proposed and have been found to be particularly successful. It is well understood however that such methods fail to choose the correct subset of variables if these are highly correlated with other "decoy" variables. We present a method for sifting through sets of highly correlated variables which leads to higher accuracy in selecting the correct variables. The main innovation is a filtering step that reduces correlations among variables to be selected, making the ℓ1-regularization effective for datasets on which many methods for variable selection fail. The filtering step changes both the values of the predictor variables and output values by projections onto components obtained through a computationally-inexpensive principal components analysis. In this paper we demonstrate the usefulness of our method on synthetic datasets and on novel applications in virology. These include HIV viral load analysis based on patients' HIV sequences and immune types, as well as the analysis of seasonal variation in influenza death rates based on the regions of the influenza genome that undergo diversifying selection in the previous season.

  7. The case for customer loyalty.

    PubMed

    Sturm, Arthur C

    2004-09-01

    How does customer loyalty grow? Through good customer experiences. Yet some organizations seem to genuinely fail to understand that they can keep or lose a customer in the proverbial blink of an eye. And in this era of increasing customer demands across all industries, it's important that healthcare financial managers understand the correlation between customer loyalty and customer experience.

  8. Combustion of Nitramine Propellants

    DTIC Science & Technology

    1983-03-01

    through development of a comprehensive analytical model. The ultimate goals are to enable prediction of deflagration rate over a wide pressure range...superior in burn rate prediction , both simple models fail in correlating existing temperature- sensitivity data. (2) In the second part, a...auxiliary condition to enable independent burn rate prediction ; improved melt phase model including decomposition-gas bubbles; model for far-field

  9. Correlational Study of Risk Management and Information Technology Project Success

    ERIC Educational Resources Information Center

    Gillespie, Seth J.

    2014-01-01

    Many IT projects fail despite the best efforts to keep these projects within budget, schedule, and scope. Few studies have looked at the effect of project risk management tools and techniques on project success. The primary focus of this study was to examine the extent to which utilization of project risk management processes influence project…

  10. Variability in Post-Error Behavioral Adjustment Is Associated with Functional Abnormalities in the Temporal Cortex in Children with ADHD

    ERIC Educational Resources Information Center

    Spinelli, Simona; Vasa, Roma A.; Joel, Suresh; Nelson, Tess E.; Pekar, James J.; Mostofsky, Stewart H.

    2011-01-01

    Background: Error processing is reflected, behaviorally, by slower reaction times (RT) on trials immediately following an error (post-error). Children with attention-deficit hyperactivity disorder (ADHD) fail to show RT slowing and demonstrate increased intra-subject variability (ISV) on post-error trials. The neural correlates of these behavioral…

  11. Do Test Scores of Students Who Have Been Retained Predict Future Performance?

    ERIC Educational Resources Information Center

    Bonnaig, Joy

    2017-01-01

    The purpose of this quantitative correlational research was to investigate to what extent 2007 performance of third grade students who had been retained in 2006 for failing to attain proficiency on the Reading and Mathematics Florida Comprehensive Assessment Test (FCAT) predicted their performance in 2010 on the sixth grade Reading and Mathematics…

  12. Inertial processing of vestibulo-ocular signals

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1999-01-01

    New evidence for a central resolution of gravito-inertial signals has been recently obtained by analyzing the properties of the vestibulo-ocular reflex (VOR) in response to combined lateral translations and roll tilts of the head. It is found that the VOR generates robust compensatory horizontal eye movements independent of whether or not the interaural translatory acceleration component is canceled out by a gravitational acceleration component due to simultaneous roll-tilt. This response property of the VOR depends on functional semicircular canals, suggesting that the brain uses both otolith and semicircular canal signals to estimate head motion relative to inertial space. Vestibular information about dynamic head attitude relative to gravity is the basis for computing head (and body) angular velocity relative to inertial space. Available evidence suggests that the inertial vestibular system controls both head attitude and velocity with respect to a gravity-centered reference frame. The basic computational principles underlying the inertial processing of otolith and semicircular canal afferent signals are outlined.

  13. Perception of tilt and ocular torsion of vestibular patients during eccentric rotation.

    PubMed

    Clément, Gilles; Deguine, Olivier

    2010-01-04

    Four patients following unilateral vestibular loss and four patients complaining of otolith-dependent vertigo were tested during eccentric yaw rotation generating 1 x g centripetal acceleration directed along the interaural axis. Perception of body tilt in roll and in pitch was recorded in darkness using a somatosensory plate that the subjects maintained parallel to the perceived horizon. Ocular torsion was recorded by a video camera. Unilateral vestibular-defective patients underestimated the magnitude of the roll tilt and had a smaller torsion when the centrifugal force was towards the operated ear compared to the intact ear and healthy subjects. Patients with otolithic-dependent vertigo overestimated the magnitude of roll tilt in both directions of eccentric rotation relative to healthy subjects, and their ocular torsion was smaller than in healthy subjects. Eccentric rotation is a promising tool for the evaluation of vestibular dysfunction in patients. Eye torsion and perception of tilt during this stimulation are objective and subjective measurements, which could be used to determine alterations in spatial processing in the CNS.

  14. Measurement of fluid rotation, dilation, and displacement in particle image velocimetry using a Fourier–Mellin cross-correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giarra, Matthew N.; Charonko, John J.; Vlachos, Pavlos P.

    Traditional particle image velocimetry (PIV) uses discrete Cartesian cross correlations (CCs) to estimate the displacements of groups of tracer particles within small subregions of sequentially captured images. However, these CCs fail in regions with large velocity gradients or high rates of rotation. In this paper, we propose a new PIV correlation method based on the Fourier–Mellin transformation (FMT) that enables direct measurement of the rotation and dilation of particle image patterns. In previously unresolvable regions of large rotation, our algorithm significantly improves the velocity estimates compared to traditional correlations by aligning the rotated and stretched particle patterns prior to performingmore » Cartesian correlations to estimate their displacements. Furthermore, our algorithm, which we term Fourier–Mellin correlation (FMC), reliably measures particle pattern displacement between pairs of interrogation regions with up to ±180° of angular misalignment, compared to 6–8° for traditional correlations, and dilation/compression factors of 0.5–2.0, compared to 0.9–1.1 for a single iteration of traditional correlations.« less

  15. Measurement of fluid rotation, dilation, and displacement in particle image velocimetry using a Fourier–Mellin cross-correlation

    DOE PAGES

    Giarra, Matthew N.; Charonko, John J.; Vlachos, Pavlos P.

    2015-02-05

    Traditional particle image velocimetry (PIV) uses discrete Cartesian cross correlations (CCs) to estimate the displacements of groups of tracer particles within small subregions of sequentially captured images. However, these CCs fail in regions with large velocity gradients or high rates of rotation. In this paper, we propose a new PIV correlation method based on the Fourier–Mellin transformation (FMT) that enables direct measurement of the rotation and dilation of particle image patterns. In previously unresolvable regions of large rotation, our algorithm significantly improves the velocity estimates compared to traditional correlations by aligning the rotated and stretched particle patterns prior to performingmore » Cartesian correlations to estimate their displacements. Furthermore, our algorithm, which we term Fourier–Mellin correlation (FMC), reliably measures particle pattern displacement between pairs of interrogation regions with up to ±180° of angular misalignment, compared to 6–8° for traditional correlations, and dilation/compression factors of 0.5–2.0, compared to 0.9–1.1 for a single iteration of traditional correlations.« less

  16. Implementing and Evaluating a National Certification Technical Skills Examination: The Colorectal Objective Structured Assessment of Technical Skill.

    PubMed

    de Montbrun, Sandra; Roberts, Patricia L; Satterthwaite, Lisa; MacRae, Helen

    2016-07-01

    To implement the Colorectal Objective Structured Assessment of Technical skill (COSATS) into American Board of Colon and Rectal Surgery (ABCRS) certification and build evidence of validity for the interpretation of the scores of this high stakes assessment tool. Currently, technical skill assessment is not a formal component of board certification. With the technical demands of surgical specialties, documenting competence in technical skill at the time of certification with a valid tool is ideal. In September 2014, the COSATS was a mandatory component of ABCRS certification. Seventy candidates took the examination, with their performance evaluated by expert colorectal surgeons using a task-specific checklist, global rating scale, and overall performance scale. Passing scores were set and compared using 2 standard setting methodologies, using a compensatory and conjunctive model. Inter-rater reliability and the reliability of the pass/fail decision were calculated using Cronbach alpha and Subkoviak methodology, respectively. Overall COSATS scores and pass/fail status were compared with results on the ABCRS oral examination. The pass rate ranged from 85.7% to 90%. Inter-rater reliability (0.85) and reliability of the pass/fail decision (0.87 and 0.84) were high. A low positive correlation (r= 0.25) was seen between the COSATS and oral examination. All individuals who failed the COSATS passed the ABCRS oral examination. COSATS is the first technical skill examination used in national surgical board certification. This study suggests that the current certification process may be failing to identify individuals who have demonstrated technical deficiencies on this standardized assessment tool.

  17. [Analysis of the rationality of the water schedule in student-athletes of various specializations].

    PubMed

    Davletova, N Kh; Ivanov, A V; Tafeeva, E A

    The presented in the article the analysis of water schedule in student-athletes showed a low level of water consumption culture and the irrationality of the actual water schedule. According to the results of the survey revealed that 86.7% of boys-athletes and 67.2% of girls athletes were revealed to fail to keep a certain water schedule; 98.3% student-athletes are in a state of dehydration of the body. There are established correlations between the presence of dehydration of the body and symptoms such as fatigue and decreased performance (correlation coefficient 0.594, p = 0.01), the appearance of dryness in the morning on an empty stomach (correlation coefficient 0.512, p = 0.01).

  18. A Herschel-Detected Correlation between Planets and Debris Disks

    NASA Astrophysics Data System (ADS)

    Bryden, Geoffrey; Krist, J. E.; Stapelfeldt, K. R.; Kennedy, G.; Wyatt, M.; Beichman, C. A.; Eiroa, C.; Marshall, J.; Maldonado, J.; Montesinos, B.; Moro-Martin, A.; Matthews, B. C.; Fischer, D.; Ardila, D. R.; Kospal, A.; Rieke, G.; Su, K. Y.

    2013-01-01

    The Fomalhaut, beta Pic, and HR 8799 systems each have directly imaged planets and prominent debris disks, suggesting a direct link between the two phenomena. Unbiased surveys with Spitzer, however, failed to find a statistically significant correlation. We present results from SKARPS (the Search for Kuiper belts Around Radial-velocity Planet Stars) a Herschel far-IR survey for debris disks around solar-type stars known to have orbiting planets. The identified disks are generally cold and distant 50 K/100 AU), i.e. well separated from the radial-velocity-discovered planets. Nevertheless, we find a strong correlation between the inner planets and outer disks, with disks around planet-bearing stars tending to be much brighter than those not known to have planets.

  19. Methodological Measurement Fruitfulness of Exploratory Structural Equation Modeling (ESEM): New Approaches to Key Substantive Issues in Motivation and Engagement

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Liem, Gregory Arief D.; Martin, Andrew J.; Morin, Alexandre J. S.; Nagengast, Benjamin

    2011-01-01

    The most popular measures of multidimensional constructs typically fail to meet standards of good measurement: goodness of fit, measurement invariance, lack of differential item functioning, and well-differentiated factors that are not so highly correlated as to detract from their discriminant validity. Part of the problem, the authors argue, is…

  20. Neural Correlates of Phonological Processing in Speech Sound Disorder: A Functional Magnetic Resonance Imaging Study

    ERIC Educational Resources Information Center

    Tkach, Jean A.; Chen, Xu; Freebairn, Lisa A.; Schmithorst, Vincent J.; Holland, Scott K.; Lewis, Barbara A.

    2011-01-01

    Speech sound disorders (SSD) are the largest group of communication disorders observed in children. One explanation for these disorders is that children with SSD fail to form stable phonological representations when acquiring the speech sound system of their language due to poor phonological memory (PM). The goal of this study was to examine PM in…

  1. Patterns of Co-Occurring Non-Verbal Behaviour and Self-Directed Speech; a Comparison of Three Methodological Approaches

    ERIC Educational Resources Information Center

    Kuvalja, Martina; Verma, Mohini; Whitebread, David

    2014-01-01

    "Self-directed speech"--the audible or partially whispered self-talk that children engage in during their daily activities, was proposed by Vygotsky to have a mediating role in the emerging self-regulatory behaviour of young children. Studies with correlational findings tend to lend support to this hypothesis but fail to delineate the…

  2. STUDIES ON SCRUB TYPHUS (TSUTSUGAMUSHI DISEASE)

    PubMed Central

    Rights, Fred L.; Smadel, Joseph E.

    1948-01-01

    Antigenic differences among strains of R. tsutsugamushi are sufficiently great that vaccines prepared from certain strains fail to induce resistance in mice to infection with other strains. Although the results of cross-vaccination tests indicate varying degrees of relationship between a number of the strains, there is no correlation between source of the rickettsia and antigenic pattern of the agent. PMID:18904219

  3. Predicting Parental Mediation Behaviors: The Direct and Indirect Influence of Parents' Critical Thinking about Media and Attitudes about Parent-Child Interactions

    ERIC Educational Resources Information Center

    Rasmussen, Eric C.; White, Shawna R.; King, Andy J.; Holiday, Steven; Densley, Rebecca L.

    2016-01-01

    Many parents fail to interact with their children regularly about media content and past research has identified few predictors of parents' engagement in parental mediation behaviors. This correlational study explored the relationship between parents' critical thinking about media and parents' provision of both active and restrictive mediation of…

  4. Dyslexia and Voxel-Based Morphometry: Correlations between Five Behavioural Measures of Dyslexia and Gray and White Matter Volumes

    ERIC Educational Resources Information Center

    Tamboer, Peter; Scholte, H. Steven; Vorst, Harrie C. M.

    2015-01-01

    In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics…

  5. Using the First Exam for Student Placement in Beginning Chemistry Courses

    ERIC Educational Resources Information Center

    Mills, Pamela; Sweeney, William; Bonner, Sarah M.

    2009-01-01

    The first exam in a typical first-semester general chemistry course is used to identify students at risk of failing the course. The performance at Hunter College of 667 students on the first exam in general chemistry in seven different classes between fall 2000 and fall 2005 was correlated with the students' final score in the course. The…

  6. Predictive equation of state method for heavy materials based on the Dirac equation and density functional theory

    NASA Astrophysics Data System (ADS)

    Wills, John M.; Mattsson, Ann E.

    2012-02-01

    Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. The X3LYP extended density functional accurately describes H-bonding but fails completely for stacking.

    PubMed

    Cerný, Jirí; Hobza, Pavel

    2005-04-21

    The performance of the recently introduced X3LYP density functional which was claimed to significantly improve the accuracy for H-bonded and van der Waals complexes was tested for extended H-bonded and stacked complexes (nucleic acid base pairs and amino acid pairs). In the case of planar H-bonded complexes (guanine...cytosine, adenine...thymine) the DFT results nicely agree with accurate correlated ab initio results. For the stacked pairs (uracil dimer, cytosine dimer, adenine...thymine and guanine...cytosine) the DFT fails completely and it was even not able to localize any minimum at the stacked subspace of the potential energy surface. The geometry optimization of all these stacked clusters leads systematically to the planar H-bonded pairs. The amino acid pairs were investigated in the crystal geometry. DFT again strongly underestimates the accurate correlated ab initio stabilization energies and usually it was not able to describe the stabilization of a pair. The X3LYP functional thus behaves similarly to other current functionals. Stacking of nucleic acid bases as well as interaction of amino acids was described satisfactorily by using the tight-binding DFT method, which explicitly covers the London dispersion energy.

  8. Multi-fracture response of cross-ply ceramic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdman, D.L.; Weitsman, Y.J.

    1996-12-31

    Ceramic matrix composites are candidate materials for high temperature applications due to their ability to retain mechanical properties. However, in view of the relatively low transverse strength and ductility associated with unidirectional ceramic matrix lay-ups, it is necessary to consider multi-directional reinforcement for any practical structural application. The simplest laminate that would provide multi-directional toughness would be the cross-ply lay-up. Although there are numerous publications concerned with modeling of the stress-strain response of unidirectional ceramic matrix laminates, there are relatively few investigations in the current literature which deal with laminates such as the cross-ply lay-up. Additionally, the aforementioned publications aremore » often incomplete since they fail to address the failure mechanisms associated with this lay-up in a comprehensive manner and consequently have limited success in correlating experimental stress-strain response with mechanical test results. Furthermore, many current experimental investigations fail to report the details of damage evolution and stress-strain response which are required for correlation with analyses. This investigation presents a comprehensive extended shear-lag type analysis that considers transverse matrix cracking in the 90{degree} plies, the non-linearity of the 0{degree} plies, and slip at the 0/90 ply interface.« less

  9. Correlation of Positive and Negative Reciprocity Fails to Confer an Evolutionary Advantage: Phase Transitions to Elementary Strategies

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2013-10-01

    Economic experiments reveal that humans value cooperation and fairness. Punishing unfair behavior is therefore common, and according to the theory of strong reciprocity, it is also directly related to rewarding cooperative behavior. However, empirical data fail to confirm that positive and negative reciprocity are correlated. Inspired by this disagreement, we determine whether the combined application of reward and punishment is evolutionarily advantageous. We study a spatial public goods game, where in addition to the three elementary strategies of defection, rewarding, and punishment, a fourth strategy that combines the latter two competes for space. We find rich dynamical behavior that gives rise to intricate phase diagrams where continuous and discontinuous phase transitions occur in succession. Indirect territorial competition, spontaneous emergence of cyclic dominance, as well as divergent fluctuations of oscillations that terminate in an absorbing phase are observed. Yet, despite the high complexity of solutions, the combined strategy can survive only in very narrow and unrealistic parameter regions. Elementary strategies, either in pure or mixed phases, are much more common and likely to prevail. Our results highlight the importance of patterns and structure in human cooperation, which should be considered in future experiments.

  10. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Moore, S. T.; Raphan, T.; Cohen, B.

    2001-01-01

    During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural and head vertical (dorsoventral) linear accelerations of 0.5 g and 1 g during constant velocity rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear-out or right-ear-out (Gy centrifugation), or lay supine along the centrifuge arm with their head off-axis (Gz centrifugation). Pre-flight centrifugation, producing linear accelerations of 0.5 g and 1 g along the Gy (interaural) axis, induced illusions of roll-tilt of 20 degrees and 34 degrees for gravito-inertial acceleration (GIA) vector tilts of 27 degrees and 45 degrees , respectively. Pre-flight 0.5 g and 1 g Gz (head dorsoventral) centrifugation generated perceptions of backward pitch of 5 degrees and 15 degrees , respectively. In the absence of gravity during space flight, the same centrifugation generated a GIA that was equivalent to the centripetal acceleration and aligned with the Gy or Gz axes. Perception of tilt was underestimated relative to this new GIA orientation during early in-flight Gy centrifugation, but was close to the GIA after 16 days in orbit, when subjects reported that they felt as if they were 'lying on side'. During the course of the mission, inflight roll-tilt perception during Gy centrifugation increased from 45 degrees to 83 degrees at 1 g and from 42 degrees to 48 degrees at 0.5 g. Subjects felt 'upside-down' during in-flight Gz centrifugation from the first in-flight test session, which reflected the new GIA orientation along the head dorsoventral axis. The different levels of in-flight tilt perception during 0.5 g and 1 g Gy centrifugation suggests that other non-vestibular inputs, including an internal estimate of the body vertical and somatic sensation, were utilized in generating tilt perception. Interpretation of data by a weighted sum of body vertical and somatic vectors, with an estimate of the GIA from the otoliths, suggests that perception weights the sense of the body vertical more heavily early in-flight, that this weighting falls during adaptation to microgravity, and that the decreased reliance on the body vertical persists early post-flight, generating an exaggerated sense of tilt. Since graviceptors respond to linear acceleration and not to head tilt in orbit, it has been proposed that adaptation to weightlessness entails reinterpretation of otolith activity, causing tilt to be perceived as translation. Since linear acceleration during in-flight centrifugation was always perceived as tilt, not translation, the findings do not support this hypothesis.

  11. Underwater hearing and sound localization with and without an air interface.

    PubMed

    Shupak, Avi; Sharoni, Zohara; Yanir, Yoav; Keynan, Yoav; Alfie, Yechezkel; Halpern, Pinchas

    2005-01-01

    Underwater hearing acuity and sound localization are improved by the presence of an air interface around the pinnae and inside the external ear canals. Hearing threshold and the ability to localize sound sources are reduced underwater. The resonance frequency of the external ear is lowered when the external ear canal is filled with water, and the impedance-matching ability of the middle ear is significantly reduced due to elevation of the ambient pressure, the water-mass load on the tympanic membrane, and the addition of a fluid-air interface during submersion. Sound lateralization on land is largely explained by the mechanisms of interaural intensity differences and interaural temporal or phase differences. During submersion, these differences are largely lost due to the increase in underwater sound velocity and cancellation of the head's acoustic shadow effect because of the similarity between the impedance of the skull and the surrounding water. Ten scuba divers wearing a regular opaque face mask or an opaque ProEar 2000 (Safe Dive, Ltd., Hofit, Israel) mask that enables the presence of air at ambient pressure in and around the ear made a dive to a depth of 3 m in the open sea. Four underwater speakers arranged on the horizontal plane at 90-degree intervals and at a distance of 5 m from the diver were used for testing pure-tone hearing thresholds (PTHT), the reception threshold for the recorded sound of a rubber-boat engine, and sound localization. For sound localization, the sound of the rubber boat's engine was randomly delivered by one speaker at a time at 40 dB HL above the recorded sound of a rubber-boat engine, and the diver was asked to point to the sound source. The azimuth was measured by the diver's companion using a navigation board. Underwater PTHT with both masks were significantly higher for frequencies of 250 to 6000 Hz when compared with the thresholds on land (p <0.0001). No differences were found in the PTHT or the reception threshold for the recorded sound of a rubber-boat engine for dry or wet ear conditions. There was no difference in the sound localization error between the regular mask and the ProEar 2000 mask. The presence of air around the pinna and inside the external ear canal did not improve underwater hearing sensitivity or sound localization. These results support the argument that bone conduction plays the main role in underwater hearing.

  12. Vulnerability and cosusceptibility determine the size of network cascades

    DOE PAGES

    Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.

    2017-01-27

    In a network, a local disturbance can propagate and eventually cause a substantial part of the system to fail in cascade events that are easy to conceptualize but extraordinarily difficult to predict. Furthermore, we develop a statistical framework that can predict cascade size distributions by incorporating two ingredients only: the vulnerability of individual components and the cosusceptibility of groups of components (i.e., their tendency to fail together). Using cascades in power grids as a representative example, we show that correlations between component failures define structured and often surprisingly large groups of cosusceptible components. Aside from their implications for blackout studies,more » these results provide insights and a new modeling framework for understanding cascades in financial systems, food webs, and complex networks in general.« less

  13. Predictive Rate-Distortion for Infinite-Order Markov Processes

    NASA Astrophysics Data System (ADS)

    Marzen, Sarah E.; Crutchfield, James P.

    2016-06-01

    Predictive rate-distortion analysis suffers from the curse of dimensionality: clustering arbitrarily long pasts to retain information about arbitrarily long futures requires resources that typically grow exponentially with length. The challenge is compounded for infinite-order Markov processes, since conditioning on finite sequences cannot capture all of their past dependencies. Spectral arguments confirm a popular intuition: algorithms that cluster finite-length sequences fail dramatically when the underlying process has long-range temporal correlations and can fail even for processes generated by finite-memory hidden Markov models. We circumvent the curse of dimensionality in rate-distortion analysis of finite- and infinite-order processes by casting predictive rate-distortion objective functions in terms of the forward- and reverse-time causal states of computational mechanics. Examples demonstrate that the resulting algorithms yield substantial improvements.

  14. Outcome of infants shunted for post-haemorrhagic ventricular dilatation.

    PubMed

    Hislop, J E; Dubowitz, L M; Kaiser, A M; Singh, M P; Whitelaw, A G

    1988-08-01

    Between April 1980 and March 1986, 19 infants underwent cerebrospinal fluid (CSF) shunting procedures for post-haemorrhagic ventricular dilatation at the Hammersmith Hospital, London. A total of 58 shunt-related procedures have been performed on these children. The major perioperative complication was seizure activity (eight children). Postoperative complications included infection (12 shunts) and blockage (29 shunts). Prophylactic antibiotics failed to prevent shunt infection. The likelihood of the first shunt failing was significantly reduced by greater weight of the infant and lower CSF protein at surgery. Long-term outcome was poor: three have died and another four are quadriplegic with severe mental retardation. Only four children are developmentally normal. These outcomes cannot be related to the shunt surgery or its complications, but correlate best with pre-operative parenchymal brain-lesions, as shown on ultrasound scans.

  15. Resonance frequency analysis, insertion torque, and bone to implant contact of 4 implant surfaces: comparison and correlation study in sheep.

    PubMed

    Dagher, Maroun; Mokbel, Nadim; Jabbour, Gabriel; Naaman, Nada

    2014-12-01

    Primary stability is evaluated using resonance frequency analysis (RFA) and insertion torque (IT). Although there is a strong correlation between RFA and IT, studies failed to find a correlation between RFA and bone to implant contact (BIC) or IT and BIC. To compare RFA, IT, and BIC of SLA, SLActive, Euroteknika, and TiUnite implant surfaces and evaluate the correlation between them. Thirty-two implants were placed in 8 sheep. RFA and IT were recorded. Animals were killed at 1 and 2 months. A significant difference was found in RFA between the 4 surfaces. No significant difference was found for IT. Mean BIC was different between all 4 surfaces. A significant positive correlation was found between RFA and IT with SLA. No significant correlation was found between RFA and BIC and between IT and BIC at 1 and 2 months. Implants with 4 different surfaces have similar IT values but different RFA and BIC. Additionally irrespective of the implant surface, there is no correlation between IT and BIC and between RFA and BIC.

  16. Simulation-Based Laparoscopic Surgery Crisis Resource Management Training-Predicting Technical and Nontechnical Skills.

    PubMed

    Goldenberg, Mitchell G; Fok, Kai H; Ordon, Michael; Pace, Kenneth T; Lee, Jason Y

    2017-12-19

    To develop a unique simulation-based assessment using a laparoscopic inferior vena cava (IVC) injury scenario that allows for the safe assessment of urology resident's technical and nontechnical skills, and investigate the effect of personality traits performance in a surgical crisis. Urology residents from our institution were recruited to participate in a simulation-based training laparoscopic nephrectomy exercise. Residents completed demographic and multidimensional personality questionnaires and were instructed to play the role of staff urologist. A vasovagal response to pneumoperitoneum and an IVC injury event were scripted into the scenario. Technical and nontechnical skills were assessed by expert laparoscopic surgeons using validated tools (task checklist, GOALS, and NOTSS). Ten junior and five senior urology residents participated. Five residents were unable to complete the exercise safely. Senior residents outperformed juniors on technical (checklist score 15.1 vs 9.9, p < 0.01, GOALS score 18.0 vs 13.3, p < 0.01) and nontechnical performance (NOTSS score 13.8 vs 10.1, p = 0.03). Technical performance scores correlated with NOTSS scores (p < 0.01) and pass/fail rating correlated with technical performance (p < 0.01 for both checklist and GOALS), NOTSS score (p = 0.02), and blood loss (p < 0.01). Only the conscientiousness dimension of the big five inventory correlated with technical score (p = 0.03) and pass/fail rating (p = 0.04). Resident level of training and laparoscopic experience correlated with technical performance during a simulation-based laparoscopic IVC injury crisis management scenario, as well as multiple domains of nontechnical performance. Personality traits of our surgical residents are similar and did not predict technical skill. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  17. Correlation of High-Resolution Manometric Findings with Symptoms of Dysphagia and Endoscopic Features in Adults with Eosinophilic Esophagitis.

    PubMed

    von Arnim, Ulrike; Kandulski, Arne; Weigt, Jochen; Malfertheiner, Peter

    2017-01-01

    Eosinophilic esophagitis (EoE) presents with dysphagia, but data about motility patterns using high-resolution manometry (HRM) are rare. We aimed at evaluating esophageal motility patterns in EoE and their correlation to endoscopic and dysphagia scores. Twenty-six EoE patients and 23 controls were included after 4 weeks of treatment with proton pump inhibitors. Dysphagia and endoscopic scores were evaluated before performing HRM. EoE patients were classified to have fibrostenotic (FS) or inflammatory (IF) type. HRM analysis was performed according to the Chicago classification (CC) system. According to the CC, the HRM findings in EoE and controls were normal in 11 (42%) and 20 (88.5%), p < 0.0001. Weak and failed peristaltic integrity was only seen in EoE patients (failed 1/2.7%, weak 7/26.9%, p = 0.004). Of the EoE patients, 17 had IF and 9 presented with FS type. HRM parameters showed no differences according to the EoE subtype. The endoscopic score in the FS subtype was significantly higher than in EoE with IF subtype (5.33 vs. 3.58, p = 0.001). No significant difference was seen in dysphagia scores in EoE subtypes. HRM findings in EoE are often diagnostic, but they are non-specific and do not correlate with the severity of dysphagia or endoscopic appearance. The clinical impact of HRM in EoE needs further evaluation. © 2017 S. Karger AG, Basel.

  18. Correlation between presumed sinusitis-induced pain and paranasal sinus computed tomographic findings.

    PubMed

    Mudgil, Shikha P; Wise, Scott W; Hopper, Kenneth D; Kasales, Claudia J; Mauger, David; Fornadley, John A

    2002-02-01

    The correlation between facial and/or head pain in patients clinically suspected of having sinusitis and actual localized findings on sinus computed tomographic (CT) imaging are poorly understood. To prospectively evaluate the relationship of paranasal sinus pain symptoms with CT imaging. Two hundred consecutive patients referred by otolaryngologists and internists for CT of the paranasal sinuses participated by completing a questionnaire immediately before undergoing CT. Three radiologists blinded to the patients' responses scored the degree of air/fluid level, mucosal thickening, bony reaction, and mucus retention cysts using a graded scale of severity (0 to 3 points). The osteomeatal complexes and nasolacrimal ducts were also evaluated for patency. Bivariate analysis was performed to evaluate the relationship between patients' localized symptoms and CT findings in the respective sinus. One hundred sixty-three patients (82%) reported having some form of facial pain or headache. The right temple/forehead was the most frequently reported region of maximal pain. On CT imaging the maxillary sinus was the most frequently involved sinus. Bivariate analysis failed to show any relationship between patient symptoms and findings on CT. Patients with a normal CT reported a mean 5.88 sites of facial or head pain versus 5.45 sites for patients with an abnormal CT. Patient-based responses of sinonasal pain symptoms fail to correlate with findings in the respective sinuses. CT should therefore be reserved for delineating the anatomy and degree of sinus disease before surgical intervention.

  19. Procedure-specific assessment tool for flexible pharyngo-laryngoscopy: gathering validity evidence and setting pass-fail standards.

    PubMed

    Melchiors, Jacob; Petersen, K; Todsen, T; Bohr, A; Konge, Lars; von Buchwald, Christian

    2018-06-01

    The attainment of specific identifiable competencies is the primary measure of progress in the modern medical education system. The system, therefore, requires a method for accurately assessing competence to be feasible. Evidence of validity needs to be gathered before an assessment tool can be implemented in the training and assessment of physicians. This evidence of validity must according to the contemporary theory on validity be gathered from specific sources in a structured and rigorous manner. The flexible pharyngo-laryngoscopy (FPL) is central to the otorhinolaryngologist. We aim to evaluate the flexible pharyngo-laryngoscopy assessment tool (FLEXPAT) created in a previous study and to establish a pass-fail level for proficiency. Eighteen physicians with different levels of experience (novices, intermediates, and experienced) were recruited to the study. Each performed an FPL on two patients. These procedures were video recorded, blinded, and assessed by two specialists. The score was expressed as the percentage of a possible max score. Cronbach's α was used to analyze internal consistency of the data, and a generalizability analysis was performed. The scores of the three different groups were explored, and a pass-fail level was determined using the contrasting groups' standard setting method. Internal consistency was strong with a Cronbach's α of 0.86. We found a generalizability coefficient of 0.72 sufficient for moderate stakes assessment. We found a significant difference between the novice and experienced groups (p < 0.001) and strong correlation between experience and score (Pearson's r = 0.75). The pass/fail level was established at 72% of the maximum score. Applying this pass-fail level in the test population resulted in half of the intermediary group receiving a failing score. We gathered validity evidence for the FLEXPAT according to the contemporary framework as described by Messick. Our results support a claim of validity and are comparable to other studies exploring clinical assessment tools. The high rate of physicians underperforming in the intermediary group demonstrates the need for continued educational intervention. Based on our work, we recommend the use of the FLEXPAT in clinical assessment of FPL and the application of a pass-fail level of 72% for proficiency.

  20. Correlation of 0.67um scatter with local stress in Ge impacted with the modified Cambridge liquid jet device

    NASA Astrophysics Data System (ADS)

    Wilson, Michael; Price, D.; Strohecker, Steve

    1994-09-01

    Germanium witness samples were impacted with the NAWCADWAR modified Cambridge liquid jet device introducing varying levels of damage about the center of each sample. Surface damage statistics were collected, scatter measurements were made at 0.67 micrometers and the samples were failed in tension using a bi-axial flexure test setup. The level and character of the damage was correlated with the reflected scatter measurements as a function of local stress and flaw size distribution. Bi-axial flexure data was analyzed to predict fracture stress and the probability of failure of the germanium samples. The mechanical data were then correlated with the scatter data in order to correlate the BRDF with the material failure. The BRDF measurements were taken in several different orientations in order to study the differences in scatter character for the in-plane and out-of-plane conditions.

  1. Altered neural connectivity during response inhibition in adolescents with attention-deficit/hyperactivity disorder and their unaffected siblings

    PubMed Central

    van Rooij, Daan; Hartman, Catharina A.; Mennes, Maarten; Oosterlaan, Jaap; Franke, Barbara; Rommelse, Nanda; Heslenfeld, Dirk; Faraone, Stephen V.; Buitelaar, Jan K.; Hoekstra, Pieter J.

    2015-01-01

    Introduction Response inhibition is one of the executive functions impaired in attention-deficit/hyperactivity disorder (ADHD). Increasing evidence indicates that altered functional and structural neural connectivity are part of the neurobiological basis of ADHD. Here, we investigated if adolescents with ADHD show altered functional connectivity during response inhibition compared to their unaffected siblings and healthy controls. Methods Response inhibition was assessed using the stop signal paradigm. Functional connectivity was assessed using psycho-physiological interaction analyses applied to BOLD time courses from seed regions within inferior- and superior frontal nodes of the response inhibition network. Resulting networks were compared between adolescents with ADHD (N = 185), their unaffected siblings (N = 111), and controls (N = 125). Results Control subjects showed stronger functional connectivity than the other two groups within the response inhibition network, while subjects with ADHD showed relatively stronger connectivity between default mode network (DMN) nodes. Stronger connectivity within the response inhibition network was correlated with lower ADHD severity, while stronger connectivity with the DMN was correlated with increased ADHD severity. Siblings showed connectivity patterns similar to controls during successful inhibition and to ADHD subjects during failed inhibition. Additionally, siblings showed decreased connectivity with the primary motor areas as compared to both participants with ADHD and controls. Discussion Subjects with ADHD fail to integrate activation within the response inhibition network and to inhibit connectivity with task-irrelevant regions. Unaffected siblings show similar alterations only during failed stop trials, as well as unique suppression of motor areas, suggesting compensatory strategies. These findings support the role of altered functional connectivity in understanding the neurobiology and familial transmission of ADHD. PMID:25610797

  2. Altered neural connectivity during response inhibition in adolescents with attention-deficit/hyperactivity disorder and their unaffected siblings.

    PubMed

    van Rooij, Daan; Hartman, Catharina A; Mennes, Maarten; Oosterlaan, Jaap; Franke, Barbara; Rommelse, Nanda; Heslenfeld, Dirk; Faraone, Stephen V; Buitelaar, Jan K; Hoekstra, Pieter J

    2015-01-01

    Response inhibition is one of the executive functions impaired in attention-deficit/hyperactivity disorder (ADHD). Increasing evidence indicates that altered functional and structural neural connectivity are part of the neurobiological basis of ADHD. Here, we investigated if adolescents with ADHD show altered functional connectivity during response inhibition compared to their unaffected siblings and healthy controls. Response inhibition was assessed using the stop signal paradigm. Functional connectivity was assessed using psycho-physiological interaction analyses applied to BOLD time courses from seed regions within inferior- and superior frontal nodes of the response inhibition network. Resulting networks were compared between adolescents with ADHD (N = 185), their unaffected siblings (N = 111), and controls (N = 125). Control subjects showed stronger functional connectivity than the other two groups within the response inhibition network, while subjects with ADHD showed relatively stronger connectivity between default mode network (DMN) nodes. Stronger connectivity within the response inhibition network was correlated with lower ADHD severity, while stronger connectivity with the DMN was correlated with increased ADHD severity. Siblings showed connectivity patterns similar to controls during successful inhibition and to ADHD subjects during failed inhibition. Additionally, siblings showed decreased connectivity with the primary motor areas as compared to both participants with ADHD and controls. Subjects with ADHD fail to integrate activation within the response inhibition network and to inhibit connectivity with task-irrelevant regions. Unaffected siblings show similar alterations only during failed stop trials, as well as unique suppression of motor areas, suggesting compensatory strategies. These findings support the role of altered functional connectivity in understanding the neurobiology and familial transmission of ADHD.

  3. The Role of Apamin Sensitive Calcium Activated Small Conductance Potassium Currents on the Mechanisms of Ventricular Fibrillation in Pacing Induced Failing Rabbit Hearts

    PubMed Central

    Yin, Dechun; Hsieh, Yu-Cheng; Tsai, Wei-Chung; Wu, Adonis Zhi-Yang; Jiang, Zhaolei; Chan, Yi-Hsin; Xu, Dongzhu; Yang, Na; Shen, Changyu; Chen, Zhenhui; Lin, Shien-Fong; Chen, Peng-Sheng; Everett, Thomas H.

    2017-01-01

    Background Ventricular fibrillation (VF) during heart failure is characterized by stable reentrant spiral waves (rotors). Apamin-sensitive small conductance calcium activated potassium currents (IKAS) are heterogeneously up-regulated in failing hearts. We hypothesized that IKAS influences the location and stability of rotors during VF. Methods and Results Optical mapping was performed on 9 rabbit hearts with pacing induced heart failure. The epicardial RV and LV were simultaneously mapped in a Langendorff preparation. At baseline and after apamin (100 nmol/L) infusion, the APD80 was determined and VF was induced. Areas with a greater than 50% increase in the maximum APD (ΔAPD) after apamin were considered to have a high IKAS distribution. At baseline, the distribution density of phase singularities (PS) during VF in high IKAS distribution areas was higher than in other areas (0.0035±.0011 vs 0.0014±0.0010 PS/pixel, P=0.004). In addition, high dominant frequencies (DF) also co-localized to high IKAS distribution areas (26.0 vs 17.9 Hz, P=0.003). These correlations were eliminated during VF after apamin infusion, as the number of PS (17.2 versus 11.0, P=0.009), and DFs (22.1 vs 16.2 Hz, P=0.022), were all significantly decreased. In addition, reentrant spiral waves became unstable after apamin infusion and the duration of VF decreased. Conclusions The IKAS current influences the mechanism of VF in failing hearts as PS, high DFs, and reentrant spiral waves all correlated to areas of high IKAS. Apamin eliminated this relationship and reduced VF vulnerability. PMID:28213506

  4. Validity of HydraTrend reagent strips for the assessment of hydration status.

    PubMed

    Abbey, Bryce M; Heelan, Kate A; Brown, Gregory A; Bartee, Rodrick T

    2014-09-01

    Hydration is used by athletic governing organizations for weight class eligibility. The measurement of urine specific gravity (USG) as a measure of hydration by reagent strips is a controversial issue. The purpose of this study was to determine the validity of HydraTrend reagent strips that facilitate the correction of USG for alkaline urine samples against refractometry for the assessment of USG. Fifty-one participants (33 males, age = 22.3 ± 1.3 years; 18 females, age = 22.4 ± 1.2 years) provided 84 urine samples. The samples were tested for USG using refractometry and reagent strips and for pH using reagent strips and a digital pH meter. Strong correlation coefficients were found between refractometry and reagent strips for USG (rs(82) = 0.812, p < 0.01) and between reagent strips and pH meter for pH (rs(82) = 0.939, p < 0.01). It was observed that false negative results for National Collegiate Athletic Association (NCAA) requirements (fail refractometry with USG >1.020, pass reagent strips with USG ≤1.020) occurred 39% (33/84) of the time and false negative results for National Federation of State High School Association (NFHS) requirements (fail refractometry with USG >1.025, pass reagent strips with USG ≤1.025) occurred 14% (12/84) of the time. There were no false positives (pass refractometry and fail reagent strips) for NCAA or NFHS requirements. These data show that refractometry and reagent strips have strong positive correlations. However, the risk of a false negative result leading to incorrect certification of euhydration status outweighs the benefits of the HydraTrend reagent strips for the measurement of USG.

  5. Cognition and screening for hearing loss in nursing home residents.

    PubMed

    Jupiter, Tina

    2012-10-01

    To compare hearing screening results using pure tones and distortion product otoacoustic emissions (DPOAEs) with nursing home residents who have dementia and explore the relationship of hearing impairment and cognitive function using the Mini- Mental Status Evaluation (MMSE). A correlational design was implemented to evaluate residents in a large inner city nursing home. One hundred one nursing home residents 65-108 years. DPOAEs and pure tone screenings were conducted at 30 dB HL and 40 dB HL at 1, 2, and 3 kHz. Pure tone thresholds at 1, 2, and 3 kHz were obtained. The MMSE was administered to all participants. Results showed that all residents failed the DPOAE screen, 97.1% failed at 30 dB HL, and 90.0% failed at 40 dB HL. Kendall's tau, phi correlation, linear by linear association, and χ(2) results indicated no significant relationship for any of the screening protocols and cognitive status other than a significant finding with left ear screening at 40 dB HL. Logistic regression analysis indicated that individuals who passed the screen had better MMSE scores. Results of the t test and Mann-Whitney U test revealed a significant difference in cognitive function for residents with a mild hearing loss compared with those with a more significant hearing loss. For screening nursing home residents, 40 dB HL screening level or DPOAEs can be used. The significant finding that residents with greater than a mild hearing loss have poorer cognitive function reinforces the importance of identifying residents with a hearing loss and providing rehabilitation and follow-up. Copyright © 2012 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.

  6. A systematic literature review of sport and physical activity participation in culturally and linguistically diverse (CALD) migrant populations.

    PubMed

    O'Driscoll, Téa; Banting, Lauren Kate; Borkoles, Erika; Eime, Rochelle; Polman, Remco

    2014-06-01

    Culturally and linguistically diverse (CALD) migrants face significant health risks as they adapt to new cultures. These risks are exacerbated by their limited participation in preventative behaviours such as sports and physical activity. The review aimed to identify studies that examined the correlates of sport and physical activity participation in migrants. The systematic review identified 72 papers, including 6 interventions, 18 qualitative and 48 quantitative studies. The 44 identified correlates highlight the complexities involved in working with migrants. The correlates were grouped in four themes using the social ecological model; acculturation, demographic, psychosocial and environmental/organisational. The social ecological model identified general correlates such as social support and safety. However, there were unique correlates relating to individuals who are facing cultural changes such as acculturation and language. Overall, there is a lack of contextualisation of CALD migrants' sport and physical activity experiences because many studies fail to consider acculturation comprehensively.

  7. The representation of sound localization cues in the barn owl's inferior colliculus

    PubMed Central

    Singheiser, Martin; Gutfreund, Yoram; Wagner, Hermann

    2012-01-01

    The barn owl is a well-known model system for studying auditory processing and sound localization. This article reviews the morphological and functional organization, as well as the role of the underlying microcircuits, of the barn owl's inferior colliculus (IC). We focus on the processing of frequency and interaural time (ITD) and level differences (ILD). We first summarize the morphology of the sub-nuclei belonging to the IC and their differentiation by antero- and retrograde labeling and by staining with various antibodies. We then focus on the response properties of neurons in the three major sub-nuclei of IC [core of the central nucleus of the IC (ICCc), lateral shell of the central nucleus of the IC (ICCls), and the external nucleus of the IC (ICX)]. ICCc projects to ICCls, which in turn sends its information to ICX. The responses of neurons in ICCc are sensitive to changes in ITD but not to changes in ILD. The distribution of ITD sensitivity with frequency in ICCc can only partly be explained by optimal coding. We continue with the tuning properties of ICCls neurons, the first station in the midbrain where the ITD and ILD pathways merge after they have split at the level of the cochlear nucleus. The ICCc and ICCls share similar ITD and frequency tuning. By contrast, ICCls shows sigmoidal ILD tuning which is absent in ICCc. Both ICCc and ICCls project to the forebrain, and ICCls also projects to ICX, where space-specific neurons are found. Space-specific neurons exhibit side peak suppression in ITD tuning, bell-shaped ILD tuning, and are broadly tuned to frequency. These neurons respond only to restricted positions of auditory space and form a map of two-dimensional auditory space. Finally, we briefly review major IC features, including multiplication-like computations, correlates of echo suppression, plasticity, and adaptation. PMID:22798945

  8. Vestibular-evoked myogenic potential in the prediction of recovery from acute low-tone sensorineural hearing loss.

    PubMed

    Wang, Chi-Te; Fang, Kai-Min; Young, Yi-Ho; Cheng, Po-Wen

    2010-04-01

    Click and galvanic stimulations of vestibular-evoked myogenic potential (c-VEMP and g-VEMP) were applied to measure the interaural difference (IAD) of saccular responses in patients with acute low-tone sensorineural hearing loss (ALHL). This study intended to explore the relationship between saccular asymmetry and final hearing recovery. We hypothesize that greater extent of saccular dysfunction may be associated with lesser hearing recovery. Twenty-one patients with unilateral ALHL were prospectively enrolled to receive c-VEMP and g-VEMP tests in a random sequence. The IAD of the saccular responses for each patient was measured using three parameters-the raw and corrected amplitudes of c-VEMP, and corrected c-VEMP to g-VEMP amplitude ratio (C/G ratio). The IAD for each parameter was classified as depressed, normal, or augmented by calculating the difference between the affected and unaffected ears and dividing by its sum for both ears. After 3 consecutive months of oral medication and follow-up, 19 patients displayed a hearing recovery of >50%; only two had a recovery of <50%. The significant correlation between the IAD of corrected C/G ratios and hearing recovery demonstrated that subjects with depressed responses had a worse hearing outcome (percent recovery: 51% [45-80%], median [minimum-maximum]), compared with those with normal responses, who exhibited the best recovery (87% [56-100%]), whereas patients with augmented response showed an intermediate recovery (67% [54-100%]; p = 0.02, Kruskal-Wallis test). On the contrary, the raw and corrected amplitudes of c-VEMP did not reveal a significantly different hearing recovery among the three groups of saccular responses. The extent of saccular dysfunction in ALHL might be better explored by combining the results of c-VEMP and g-VEMP. Outcome analysis indicated that the corrected C/G ratio might be a promising prognostic factor for hearing recovery in ALHL.

  9. Neural Correlates of the Binaural Masking Level Difference in Human Frequency-Following Responses.

    PubMed

    Clinard, Christopher G; Hodgson, Sarah L; Scherer, Mary Ellen

    2017-04-01

    The binaural masking level difference (BMLD) is an auditory phenomenon where binaural tone-in-noise detection is improved when the phase of either signal or noise is inverted in one of the ears (S π N o or S o N π , respectively), relative to detection when signal and noise are in identical phase at each ear (S o N o ). Processing related to BMLDs and interaural time differences has been confirmed in the auditory brainstem of non-human mammals; in the human auditory brainstem, phase-locked neural responses elicited by BMLD stimuli have not been systematically examined across signal-to-noise ratio. Behavioral and physiological testing was performed in three binaural stimulus conditions: S o N o , S π N o , and S o N π . BMLDs at 500 Hz were obtained from 14 young, normal-hearing adults (ages 21-26). Physiological BMLDs used the frequency-following response (FFR), a scalp-recorded auditory evoked potential dependent on sustained phase-locked neural activity; FFR tone-in-noise detection thresholds were used to calculate physiological BMLDs. FFR BMLDs were significantly smaller (poorer) than behavioral BMLDs, and FFR BMLDs did not reflect a physiological release from masking, on average. Raw FFR amplitude showed substantial reductions in the S π N o condition relative to S o N o and S o N π conditions, consistent with negative effects of phase summation from left and right ear FFRs. FFR amplitude differences between stimulus conditions (e.g., S o N o amplitude-S π N o amplitude) were significantly predictive of behavioral S π N o BMLDs; individuals with larger amplitude differences had larger (better) behavioral B MLDs and individuals with smaller amplitude differences had smaller (poorer) behavioral B MLDs. These data indicate a role for sustained phase-locked neural activity in BMLDs of humans and are the first to show predictive relationships between behavioral BMLDs and human brainstem responses.

  10. Predicting the Overall Spatial Quality of Automotive Audio Systems

    NASA Astrophysics Data System (ADS)

    Koya, Daisuke

    The spatial quality of automotive audio systems is often compromised due to their unideal listening environments. Automotive audio systems need to be developed quickly due to industry demands. A suitable perceptual model could evaluate the spatial quality of automotive audio systems with similar reliability to formal listening tests but take less time. Such a model is developed in this research project by adapting an existing model of spatial quality for automotive audio use. The requirements for the adaptation were investigated in a literature review. A perceptual model called QESTRAL was reviewed, which predicts the overall spatial quality of domestic multichannel audio systems. It was determined that automotive audio systems are likely to be impaired in terms of the spatial attributes that were not considered in developing the QESTRAL model, but metrics are available that might predict these attributes. To establish whether the QESTRAL model in its current form can accurately predict the overall spatial quality of automotive audio systems, MUSHRA listening tests using headphone auralisation with head tracking were conducted to collect results to be compared against predictions by the model. Based on guideline criteria, the model in its current form could not accurately predict the overall spatial quality of automotive audio systems. To improve prediction performance, the QESTRAL model was recalibrated and modified using existing metrics of the model, those that were proposed from the literature review, and newly developed metrics. The most important metrics for predicting the overall spatial quality of automotive audio systems included those that were interaural cross-correlation (IACC) based, relate to localisation of the frontal audio scene, and account for the perceived scene width in front of the listener. Modifying the model for automotive audio systems did not invalidate its use for domestic audio systems. The resulting model predicts the overall spatial quality of 2- and 5-channel automotive audio systems with a cross-validation performance of R. 2 = 0.85 and root-mean-squareerror (RMSE) = 11.03%.

  11. Identifying Deceptive Speech Across Cultures

    DTIC Science & Technology

    2016-06-25

    34 Interspeech 2016. 2016. G. An, S. I. Levitan, R. Levitan, A. Rosenberg, M. Levine, J. Hirschberg, "Automatically Classifying Self -Rated Personality Scores from...law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB...correlations of deception ability with personality factors (extraversion, conscientiousness). Using acoustic-prosodic features, gender, ethnicity and

  12. Credit networks and systemic risk of Chinese local financing platforms: Too central or too big to fail?. -based on different credit correlations using hierarchical methods

    NASA Astrophysics Data System (ADS)

    He, Fang; Chen, Xi

    2016-11-01

    The accelerating accumulation and risk concentration of Chinese local financing platforms debts have attracted wide attention throughout the world. Due to the network of financial exposures among institutions, the failure of several platforms or regions of systemic importance will probably trigger systemic risk and destabilize the financial system. However, the complex network of credit relationships in Chinese local financing platforms at the state level remains unknown. To fill this gap, we presented the first complex networks and hierarchical cluster analysis of the credit market of Chinese local financing platforms using the ;bottom up; method from firm-level data. Based on balance-sheet channel, we analyzed the topology and taxonomy by applying the analysis paradigm of subdominant ultra-metric space to an empirical data in 2013. It is remarked that we chose to extract the network of co-financed financing platforms in order to evaluate the effect of risk contagion from platforms to bank system. We used the new credit similarity measure by combining the factor of connectivity and size, to extract minimal spanning trees (MSTs) and hierarchical trees (HTs). We found that: (1) the degree distributions of credit correlation backbone structure of Chinese local financing platforms are fat tailed, and the structure is unstable with respect to targeted failures; (2) the backbone is highly hierarchical, and largely explained by the geographic region; (3) the credit correlation backbone structure based on connectivity and size is significantly heterogeneous; (4) key platforms and regions of systemic importance, and contagion path of systemic risk are obtained, which are contributed to preventing systemic risk and regional risk of Chinese local financing platforms and preserving financial stability under the framework of macro prudential supervision. Our approach of credit similarity measure provides a means of recognizing ;systemically important; institutions and regions for a targeted policy with risk minimization which gives a flexible and comprehensive consideration to both aspects of ;too big to fail; and ;too central to fail;.

  13. [Newborn hearing screening program: association between hearing loss and risk factors].

    PubMed

    Pereira, Priscila Karla Santana; Martins, Adriana de Souza; Vieira, Márcia Ribeiro; Azevedo, Marisa Frasson de

    2007-01-01

    Hearing loss in newborns. To verify the prevalence of auditory alterations in newborns of Hospital São Paulo (hospital), observing if there are any correlations with the following variables: birth weight, gestational age, relation weight/gestational age and risk factors for hearing loss. A retrospective analysis of the hospital records of 1696 newborns; 648 records of preterm infants and 1048 records of infants born at term. All of the infants had been submitted to an auditory evaluation consisting of: Transient Otoacoustic Emissions, investigation of the cochleal-palpebral reflexes and acoustic imittance tests, identifying the type and level of hearing loss. Sensorineural hearing loss was identified in .82% of the infants who were born at term and in 3.1% of the preterm infants -- with a statistically significant difference. Conductive hearing loss was the most frequent type of hearing loss in both groups, occurring in 14.6% of the term infants and in 16.3% of the preterm infants. Alteration of the central auditory system was considered as a possible diagnosis for 5.8% of the preterm infants and for 3.3% of the term infants. For the group of infants who were born at term, a significant correlation was observed between failure in the hearing screening test and the presence of risk factors such as family history and presence of a syndrome -- the child who presented a syndrome had 37 times more chances of failing in the hearing screening test and seven times more chances of failing in the right ear when there was a family history for hearing loss. The lower the gestational age (< 30 weeks) and birth weight (< 1500 g), the higher the chances of failing in the hearing screening test (3 times more). Hearing loss had a higher occurrence in preterm infants who remained in the ICU. Gestational age and birth weight were important variables related to the possibility of failure in the hearing screening test. A correlation was observed between the presence of a syndrome and sensorineural hearing loss in infants who were born at term.

  14. Molecular Changes in Children with Heart Failure Undergoing Left Ventricular Assist Device Therapy.

    PubMed

    Medina, Elizabeth; Sucharov, Carmen C; Nelson, Penny; Miyamoto, Shelley D; Stauffer, Brian L

    2017-03-01

    To determine whether left ventricular assist device (LVAD) treatment in children with heart failure would result in the modification of molecular pathways involved in heart failure pathophysiology. Forty-seven explanted hearts from children were studied (16 nonfailing control, 20 failing, and 11 failing post-LVAD implantation [F-LVAD]). Protein expression and phosphorylation states were determined by receptor binding assays and Western blots. mRNA expression was measured with real-time quantitative polymerase chain reaction. To evaluate for interactions and identify correlations, 2-way ANOVA and regression analysis were performed. Treatment with LVAD resulted in recovery of total β-adrenergic receptor expression and β 1 -adrenergic receptor (β 1 -AR) in failing hearts to normal levels (β-adrenergic receptor expression : 67.2 ± 11.5 fmol/mg failing vs 99.5 ± 27.7 fmol/mg nonfailing, 104 ± 38.7 fmol/mg F-LVAD, P ≤ .01; β 1 -AR: 52.2 ± 10.3 fmol/mg failing vs 83.0 ± 23 fmol/mg non-failing, 76.5 ± 32.1 fmol/mg F-LVAD P ≤ .03). The high levels of G protein-coupled receptor kinase-2 were returned to nonfailing levels after LVAD treatment (5.6 ± 9.0 failing vs 1.0 ± 0.493 nonfailing, 1.0 ± 1.3 F-LVAD). Interestingly, β 2 -adrenergic receptor expression was significantly greater in F-LVAD (27.5 ± 12; P < .005) hearts compared with nonfailing (16.4 ± 6.1) and failing (15.1 ± 4.2) hearts. Phospholamban phosphorylation at serine 16 was significantly greater in F-LVAD (7.7 ± 11.7) hearts compared with nonfailing (1.0 ± 1.2, P = .02) and failing (0.8 ± 1.0, P = .01) hearts. Also, atrial natriuretic factor (0.6 ± 0.8) and brain natriuretic peptide (0.1 ± 0.1) expression in F-LVAD was significantly lower compared with failing hearts (2.8 ± 3.6, P = .01 and 0.6 ± 0.7, P = .02). LVAD treatment in children with heart failure results in reversal of several pathologic myocellular processes, and G protein-coupled receptor kinase-2 may regulate β 1 -AR but not β 2 -adrenergic receptor expression in children with heart failure. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Exact Time-Dependent Exchange-Correlation Potential in Electron Scattering Processes

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasumitsu; Lacombe, Lionel; Watanabe, Kazuyuki; Maitra, Neepa T.

    2017-12-01

    We identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection. These results may explain the underestimation of scattering probabilities in some recent studies on molecules and surfaces.

  16. Measurements in a separation bubble on an airfoil using laser velocimetry

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Edward J.; Mueller, Thomas J.

    1990-01-01

    An experimental investigation was conducted to measure the reverse flow within the transitional separation bubble that forms on an airfoil at low Reynolds numbers. Measurements were used to determine the effect of the reverse flow on integrated boundary-layer parameters often used to model the bubble. Velocity profile data were obtained on an NACA 663-018 airfoil at angle of attack of 12 deg and a chord Reynolds number of 140,000 using laser Doppler and single-sensor hot-wire anemometry. A new correlation is proposed based on zero velocity position, since the Schmidt (1986) correlations fail in the turbulent portion of the bubble.

  17. Detecting particle dark matter signatures by cross-correlating γ-ray anisotropies with weak lensing

    NASA Astrophysics Data System (ADS)

    Camera, S.; Fornasa, M.; Fornengo, N.; Regis, M.

    2016-05-01

    The underlying nature of dark matter still represents one of the fundamental questions in contemporary cosmology. Although observations well agree with its description in terms of a new fundamental particle, neither direct nor indirect signatures of its particle nature have been detected so far, despite a strong experimental effort. Similarly, particle accelerators have hitherto failed at producing dark matter particles in collider physics experiments. Here, we illustrate how the cross-correlation between anisotropies in the diffuse γ-ray background and weak gravitational lensing effects represents a novel promising way in the quest of detecting particle dark matter signatures.

  18. The association between the fraternal birth order effect in male homosexuality and other markers of human sexual orientation

    PubMed Central

    Rahman, Qazi

    2005-01-01

    Later fraternal birth order (FBO) is a well-established correlate of homosexuality in human males and may implicate a maternal immunization response in the feminization of male sexuality. This has led to the suggestion that FBO may relate to other markers of male sexual orientation which are robustly sexually dimorphic. If so, among homosexual males the number of older brothers should strongly correlate with traits such as spatial ability and psychological gender, indicative of greater behavioural feminization, compared to heterosexual males. The present study failed to find significant associations between number of older brothers and these traits. PMID:17148215

  19. Construction of exchange-correlation functionals through interpolation between the non-interacting and the strong-correlation limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yongxi; Ernzerhof, Matthias, E-mail: Matthias.Ernzerhof@UMontreal.ca; Bahmann, Hilke

    Drawing on the adiabatic connection of density functional theory, exchange-correlation functionals of Kohn-Sham density functional theory are constructed which interpolate between the extreme limits of the electron-electron interaction strength. The first limit is the non-interacting one, where there is only exchange. The second limit is the strong correlated one, characterized as the minimum of the electron-electron repulsion energy. The exchange-correlation energy in the strong-correlation limit is approximated through a model for the exchange-correlation hole that is referred to as nonlocal-radius model [L. O. Wagner and P. Gori-Giorgi, Phys. Rev. A 90, 052512 (2014)]. Using the non-interacting and strong-correlated extremes, variousmore » interpolation schemes are presented that yield new approximations to the adiabatic connection and thus to the exchange-correlation energy. Some of them rely on empiricism while others do not. Several of the proposed approximations yield the exact exchange-correlation energy for one-electron systems where local and semi-local approximations often fail badly. Other proposed approximations generalize existing global hybrids by using a fraction of the exchange-correlation energy in the strong-correlation limit to replace an equal fraction of the semi-local approximation to the exchange-correlation energy in the strong-correlation limit. The performance of the proposed approximations is evaluated for molecular atomization energies, total atomic energies, and ionization potentials.« less

  20. Characteristics of Pediatric Performance on a Test Battery Commonly Used in the Diagnosis of Central Auditory Processing Disorder.

    PubMed

    Weihing, Jeffrey; Guenette, Linda; Chermak, Gail; Brown, Mallory; Ceruti, Julianne; Fitzgerald, Krista; Geissler, Kristin; Gonzalez, Jennifer; Brenneman, Lauren; Musiek, Frank

    2015-01-01

    Although central auditory processing disorder (CAPD) test battery performance has been examined in adults with neurologic lesions of the central auditory nervous system (CANS), similar data on children being referred for CAPD evaluations are sparse. This study characterizes CAPD test battery performance in children using tests commonly administered to diagnose the disorder. Specifically, this study describes failure rates for various test combinations, relationships between CAPD tests used in the battery, and the influence of cognitive function on CAPD test performance and CAPD diagnosis. A comparison is also made between the performance of children with CAPD and data from patients with neurologic lesions of the CANS. A retrospective study. Fifty-six pediatric patients were referred for CAPD testing. Participants were administered four CAPD tests, including frequency patterns (FP), low-pass filtered speech (LPFS), dichotic digits (DD), and competing sentences (CS). In addition, they were given the Wechsler Intelligence Scale for Children (WISC). Descriptive analyses examined the failure rates of various test combinations, as well as how often children with CAPD failed certain combinations when compared with adults with CANS lesions. A principal components analysis was performed to examine interrelationships between tests. Correlations and regressions were conducted to determine the relationship between CAPD test performance and the WISC. Results showed that the FP and LPFS tests were most commonly failed by children with CAPD. Two-test combinations that included one or both of these two tests and excluded DD tended to be failed more often. Including the DD and CS test in a battery benefited specificity. Tests thought to measure interhemispheric transfer tended to be correlated. Compared with adult patients with neurologic lesions, children with CAPD tended to fail LPFS more frequently and DD less frequently. Both groups failed FP with relatively equal frequency. The two-test combination that showed the highest failure rate for children with CAPD was LPFS-FP. Comparison with adults with CANS lesions, however, suggests that the mechanisms underlying LPFS performance in children need to be better understood. The two-test combination that showed the next highest failure rates among children with CAPD and did not include LPFS was CS-FP. If it is desirable to use a dichotic measure that has a lower linguistic load than CS then DD can be substituted for CS despite the slightly lower failure rate of the DD-FP battery. American Academy of Audiology.

  1. Evidence of forward-backward multiplicity correlation at SPS energy

    NASA Astrophysics Data System (ADS)

    Bhoumik, Gopa; Bhattacharyya, Swarnapratim; Deb, Argha; Ghosh, Dipak

    In this paper, a detailed study of two-particle rapidity correlation has been presented by measuring the dynamical fluctuation variable σc2 in forward and backward pseudo-rapidity window of shower particles produced in the relativistic heavy ion collision, 16O-AgBr interactions at 60AGeV and 32S-AgBr interactions at 200AGeV. Variations of σc2 with rapidity gap between forward and backward zones and with the width of each zone have been studied. For both cases, σc2 increase with increasing either width of the zone or gap between the zones. Our findings show the presence of strong long-range correlation. Comparison of experimental results with MC-RAND events confirms the present correlation to be dynamical in nature. We have also compared our results with FRITIOF and UrQMD events. Such events also show the presence of correlation, but found to fail to reproduce the experimental results both quantitatively and qualitatively. Strength of correlation is dependent on the centrality of collision for experimental events, it decreases with centrality.

  2. Comparison of geographic distributions of Irritable Bowel Syndrome with Inflammatory Bowel Disease fail to support common evolutionary roots: Irritable Bowel Syndrome and Inflammatory Bowel Diseases are not related by evolution.

    PubMed

    Szilagyi, Andrew; Xue, Xiaoqing

    2018-01-01

    Irritable Bowel Syndrome (IBS) shares overlapping symptoms and some features of pathogenesis with Inflammatory Bowel Diseases (IBD: Crohn's disease [CD], and Ulcerative Colitis [UC]). Geographic markers such as latitude/sunshine and more recently lactase population distributions are found to be correlated with IBD. As a result of clinical and pathogenic similarities between the 2 conditions, some authorities questioned whether a connection exists between them. We compare IBS directly with IBD, and indirectly with geographic markers associated with IBD, in order to evaluate possible evolutionary links between IBS and IBD. Similar correlations may link IBS as a precursor to IBD and possibly other conditions which are geographically connected with IBD. Data from four systematic reviews on IBD incidence and prevalence, IBS prevalence, and lactase distributions were included. Pearson's correlations were used for comparisons, with IBD values log-transformed because of skewed distribution. The articles provided 18-28 complete set of national data. Direct comparison between IBS and IBD showed no significant correlations (r = -0.14, r = -0.06 for CD and UC prevalence, r = -0.10 for CD incidence). Indirect comparisons also failed to show correlations of IBS with lactase distributions (r = -0.17), sunshine (r = -0.2) or latitude (r = 0.097); however, there was significant correlation between lactase distributions and CD incidence (r = -0.84), prevalence (r = -0.55) and UC prevalence (r = -0.59). Both sunshine (r= -0.53) and latitude (r = 0.58) are also significantly related to CD incidence. It is concluded that IBS and IBD do not follow similar global geographic patterns. This suggests a lack of an evolutionary genetic background coincident with emergence of lactase persistence. As well, vitamin D has no obvious impact on development of IBS. Similarities with IBD may result from sub groups (not yet identified) within the current Rome criteria of IBS. Alternatively limited intestinal gut-brain responses to host microbial interactions may result in similar overlap features in both. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Balloon catheter dilation and nasolacrimal duct intubation for treatment of nasolacrimal duct obstruction after failed probing.

    PubMed

    Repka, Michael X; Chandler, Danielle L; Holmes, Jonathan M; Hoover, Darren L; Morse, Christine L; Schloff, Susan; Silbert, David I; Tien, D Robbins

    2009-05-01

    To compare the outcomes of balloon catheter dilation and nasolacrimal intubation as treatment for congenital nasolacrimal duct obstruction after failed probing in children younger than 4 years. We conducted a prospective, nonrandomized, multicenter study that enrolled 159 children aged 6 months to younger than 48 months who had a history of a single failed nasolacrimal duct probing and at least 1 of the following clinical signs of nasolacrimal duct obstruction: epiphora, mucous discharge, or increased tear lake. One hundred ninety-nine eyes underwent either balloon catheter nasolacrimal duct dilation or nasolacrimal duct intubation. Treatment success was defined as absence of epiphora, mucous discharge, or increased tear lake at the outcome visit 6 months after surgery. Treatment success was reported in 65 of 84 eyes (77%; 95% confidence interval, 65%-85%) in the balloon catheter dilation group compared with 72 of 88 eyes (84% after adjustment for intereye correlation; 74%-91%) in the nasolacrimal intubation group (risk ratio for success for intubation vs balloon dilation, 1.08; 0.95-1.22). Both balloon catheter dilation and nasolacrimal duct intubation alleviate the clinical signs of persistent nasolacrimal duct obstruction in a similar percentage of patients.

  4. Follow up of infertile patients after failed ART cycles: a preliminary report from Iran and Turkey.

    PubMed

    Khalili, Mohammad Ali; Kahraman, Semra; Ugur, Mete Gurol; Agha-Rahimi, Azam; Tabibnejad, Nasim

    2012-03-01

    Assisted reproductive technology (ART) has become an established and increasingly successful form of treatment for infertility. However, significant numbers of cycles fail after embryo transfer (ET) and it becomes necessary to follow up the infertile couples after failed ART treatments. The main goal was to follow up the infertile patients after failed IVF/ICSI+ET treatments in Iran and Turkey. 198 infertile couples from Iran and 355 infertile couples from Turkey were followed up after IVF/ICSI failures. The patients' demographic data, the couples' decisions about continuation of treatment and the spontaneous pregnancy rates were compared in the two countries. The drop-out rate was higher in Iran (28.3%) than in Turkey (23.4%). The reasons for treatment discontinuation in Iran and Turkey were: financial problem (33.9% vs. 41%), hopeless (10.7% vs. 22.9%), fear of drug side-effects (7.1% vs. 12%), achieving pregnancy (37.5% vs. 19.6%), child adoption (5.4% vs. 2.4%), lack of spouse cooperation (5.4% vs. 2.4%), and divorce (0% vs. 2.4%). Spontaneous pregnancy was significantly higher in Iran (10.1%) than in Turkey (3.9%). There was correlation between duration of infertility and female factor infertility with spontaneous pregnancy. Since the majority of couples that discontinued treatment had financial problems, it is essential for health professionals to support infertile couples during their childlessness crisis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Postbuckling failure of composite plates with central holes. Interim Report, Feb. 1990 - Dec. 1991 Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, H. H.; Hyer, M. W.

    1992-01-01

    The postbuckling failure of square composite plates with central holes is analyzed numerically and experimentally. The particular plates studies have stacking sequences of: (+ and - 45/0/90)(sub 2S); (+ and - 45/0(sub 2))(sub 2S); (+ and - 45/0(sub 6))(sub S); and (+ and - 45)(sub 4S). A simple plate geometry, one with a hole diameter to plate width ratio of 0.3 is compared. Failure load, failure mode, and failure location are predicted numerically by using the finite element method. Predictions are compared with experimental results. In numerical failure analysis the interlaminar shear stresses, as well as the inplane stresses are taken into account. An issue addressed in this study is the possible mode shape change of the plate during loading. It is predicted that the first three laminates fail due to excessive stresses in the fiber direction, and more importantly, that the load level is independent of whether the laminate is deformed in a one-half or two-half wave configuration. It is predicted that the fourth laminate fails due to excessive inplane shear stress. Interlaminar shear failure is not predicted for any laminates. For the first two laminates the experimental observations correlated well with the predictions. Experimentally, the third laminate failed along the side support due to interlaminar shear strength S(sub 23). The fourth experimental laminate failed due to inplane shear in the location predicted, however material softening resulted in a different failure load from predictions.

  6. Quantum Mechanics, Can It Be Consistent with Locality?

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Sestito, Angela

    2011-07-01

    We single out an alternative, strict interpretation of the Einstein-Podolsky-Rosen criterion of reality, and identify the implied extensions of quantum correlations. Then we prove that the theorem of Bell, and the non-locality theorems without inequalities, fail if the new extensions are adopted. Therefore, these theorems can be interpreted as arguments against the wide interpretation of the criterion of reality rather than as a violation of locality.

  7. Possible Correlations of Multinational Military Operations and State Stability, and Application to State Building in Iraq

    DTIC Science & Technology

    2009-03-01

    AOR – Area of Responsibility CENTCOM – United States Central Command CMF – Combined Maritime Force COCOM – Combatant Commander...unhelpful to embrace absolute dichotomies – such as purely private versus public goods – which fail to distinguish intermediate possibilities of...external conflict. 16 B. COUNTRIES In order to ensure wide inclusion of extremely varied countries, 84 countries from the areas of

  8. Abstracts of ARI Research Publications, FY 1978

    DTIC Science & Technology

    1980-09-01

    initial item pool, 49 items were identified as having signifi- cant item-to-total-score correlations and were statistically determined to address a...failing. Differences among the three groups on main gun performance measures and the previous experience of gun- ners were not statistically significant...forms of the noncognitive cod- ing speed test; and (d) a second field administration to derive norms and other statistical characteristics of the new

  9. The reliability, validity, and feasibility of physical activity measurement in adults with traumatic brain injury: an observational study.

    PubMed

    Hassett, Leanne; Moseley, Anne; Harmer, Alison; van der Ploeg, Hidde P

    2015-01-01

    To determine the reliability and validity of the Physical Activity Scale for Individuals with a Physical Disability (PASIPD) in adults with severe traumatic brain injury (TBI) and estimate the proportion of the sample participants who fail to meet the World Health Organization guidelines for physical activity. A single-center observational study recruited a convenience sample of 30 community-based ambulant adults with severe TBI. Participants completed the PASIPD on 2 occasions, 1 week apart, and wore an accelerometer (ActiGraph GT3X; ActiGraph LLC, Pensacola, Florida) for the 7 days between these 2 assessments. The PASIPD test-retest reliability was substantial (intraclass correlation coefficient = 0.85; 95% confidence interval, 0.70-0.92), and the correlation with the accelerometer ranged from too low to be meaningful (R = 0.09) to moderate (R = 0.57). From device-based measurement of physical activity, 56% of participants failed to meet the World Health Organization physical activity guidelines. The PASIPD is a reliable measure of the type of physical activity people with severe TBI participate in, but it is not a valid measure of the amount of moderate to vigorous physical activity in which they engage. Accelerometers should be used to quantify moderate to vigorous physical activity in people with TBI.

  10. Factors affecting the results of comprehensive pre-internship exam among medical students of Kermanshah University of Medical Sciences.

    PubMed

    Khazaei, Mohammad Rasool; Zarin, Afshin; Rezaei, Mansuor; Khazaei, Mozafar

    2018-06-01

    This study was aimed to evaluate the factors affecting the results of comprehensive pre-internship exam (CPIE) among medicals students of Kermanshah University of Medical Sciences. In this descriptive-analytical study, all students (n=240) participating in CPIE over a 3-year period (2012-2014) were selected. Data were gathered by a questionnaire, including the CPIE results and educational and demographic data. Spearman correlation coefficient, Mann-Whitney U-test, and analysis of variance were used to analyze the association of students' success with study variables. Also, regression analysis was applied to determine the role of independent variables in students' success. The frequency of the failed units in apprenticeship course was one of the most important risk factors associated with failure in CPIE. Average scores of pre-internship course were the most important factors of success in CPIE. The CPIE score had the highest direct relationship with grade point average (GPA) of apprenticeship course, total GPA of all three courses, GPAs of physiopathology and basic sciences courses, and score of comprehensive basic sciences examination, respectively. CPIE showed the highest inverse correlation with the number of failed units in apprenticeship course. The most important factors influencing this exam were failure in apprenticeship course and GPA of previous educational stages.

  11. Short-duration solar microwave bursts and associated soft X-ray emission. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Spangler, S. R.

    1972-01-01

    Two hundred and fifty-nine short-duration microwave (15.4 GHz) bursts which occurred during the period of January 1968 to March 1970 were correlated with possible soft X-ray (2-12 A) flares occurring simultaneously. Sixty-six percent of the microwave bursts which were observed during periods of soft X-ray data coverage had associated soft X-ray flares. A study of an index of impulsiveness of the microwave flares failed to show a separation of the events into subclasses which could be attributed to distinctly different physical mechanisms. A weak (0.43) correlation was found between the intensities of the microwave and X-ray flares. A very weak (0.15) and statistically questionable correlation was found between the total energy released in these two energy ranges. Two models for the electron acceleration mechanism are discussed.

  12. Correlated Noise: How it Breaks NMF, and What to Do About It.

    PubMed

    Plis, Sergey M; Potluru, Vamsi K; Lane, Terran; Calhoun, Vince D

    2011-01-12

    Non-negative matrix factorization (NMF) is a problem of decomposing multivariate data into a set of features and their corresponding activations. When applied to experimental data, NMF has to cope with noise, which is often highly correlated. We show that correlated noise can break the Donoho and Stodden separability conditions of a dataset and a regular NMF algorithm will fail to decompose it, even when given freedom to be able to represent the noise as a separate feature. To cope with this issue, we present an algorithm for NMF with a generalized least squares objective function (glsNMF) and derive multiplicative updates for the method together with proving their convergence. The new algorithm successfully recovers the true representation from the noisy data. Robust performance can make glsNMF a valuable tool for analyzing empirical data.

  13. Correlated Noise: How it Breaks NMF, and What to Do About It

    PubMed Central

    Plis, Sergey M.; Potluru, Vamsi K.; Lane, Terran; Calhoun, Vince D.

    2010-01-01

    Non-negative matrix factorization (NMF) is a problem of decomposing multivariate data into a set of features and their corresponding activations. When applied to experimental data, NMF has to cope with noise, which is often highly correlated. We show that correlated noise can break the Donoho and Stodden separability conditions of a dataset and a regular NMF algorithm will fail to decompose it, even when given freedom to be able to represent the noise as a separate feature. To cope with this issue, we present an algorithm for NMF with a generalized least squares objective function (glsNMF) and derive multiplicative updates for the method together with proving their convergence. The new algorithm successfully recovers the true representation from the noisy data. Robust performance can make glsNMF a valuable tool for analyzing empirical data. PMID:23750288

  14. Spatial Orientation and Balance Control Changes Induced by Altered Gravito-Inertial Force Vectors in Vestibular Deficient Patients

    NASA Technical Reports Server (NTRS)

    Kaufman, Galen D.; Wood, Scott J.; Gianna, Claire C.; Black, F. Owen; Paloski, William H.

    2000-01-01

    Eight chronic vestibular deficient (VD) patients (bilateral N = 4, unilateral N = 4, ages 18-67 were exposed to an interaural centripetal acceleration of 1 G (resultant 45 degree roll tilt of 1.4 G) on a 0.8 meter radius centrifuge for up to 90 minutes in the dark. The patients sat with head fixed upright, except every 4 of 10 minutes when instructed to point their nose and eyes towards a visual target (switched on every 3 to 5 seconds at random places within plus or minus 30 deg) in the Earth horizontal plane. Eye movements, including directed saccades for subjective Earth-and head-referenced planes, were recorded before, during, and after centrifugation using electro-oculography. Postural sway was measured before and within ten minutes after centrifugation using a sway-referenced or earth-fixed support surface, and with or without a head movement sequence. The protocol was selected for each patient based on the most challenging condition in which the patient was able to maintain balance with eyes closed.

  15. A real-time biomimetic acoustic localizing system using time-shared architecture

    NASA Astrophysics Data System (ADS)

    Nourzad Karl, Marianne; Karl, Christian; Hubbard, Allyn

    2008-04-01

    In this paper a real-time sound source localizing system is proposed, which is based on previously developed mammalian auditory models. Traditionally, following the models, which use interaural time delay (ITD) estimates, the amount of parallel computations needed by a system to achieve real-time sound source localization is a limiting factor and a design challenge for hardware implementations. Therefore a new approach using a time-shared architecture implementation is introduced. The proposed architecture is a purely sample-base-driven digital system, and it follows closely the continuous-time approach described in the models. Rather than having dedicated hardware on a per frequency channel basis, a specialized core channel, shared for all frequency bands is used. Having an optimized execution time, which is much less than the system's sample rate, the proposed time-shared solution allows the same number of virtual channels to be processed as the dedicated channels in the traditional approach. Hence, the time-shared approach achieves a highly economical and flexible implementation using minimal silicon area. These aspects are particularly important in efficient hardware implementation of a real time biomimetic sound source localization system.

  16. Localizing the sources of two independent noises: Role of time varying amplitude differences

    PubMed Central

    Yost, William A.; Brown, Christopher A.

    2013-01-01

    Listeners localized the free-field sources of either one or two simultaneous and independently generated noise bursts. Listeners' localization performance was better when localizing one rather than two sound sources. With two sound sources, localization performance was better when the listener was provided prior information about the location of one of them. Listeners also localized two simultaneous noise bursts that had sinusoidal amplitude modulation (AM) applied, in which the modulation envelope was in-phase across the two source locations or was 180° out-of-phase. The AM was employed to investigate a hypothesis as to what process listeners might use to localize multiple sound sources. The results supported the hypothesis that localization of two sound sources might be based on temporal-spectral regions of the combined waveform in which the sound from one source was more intense than that from the other source. The interaural information extracted from such temporal-spectral regions might provide reliable estimates of the sound source location that produced the more intense sound in that temporal-spectral region. PMID:23556597

  17. Sound source localization identification accuracy: Envelope dependencies.

    PubMed

    Yost, William A

    2017-07-01

    Sound source localization accuracy as measured in an identification procedure in a front azimuth sound field was studied for click trains, modulated noises, and a modulated tonal carrier. Sound source localization accuracy was determined as a function of the number of clicks in a 64 Hz click train and click rate for a 500 ms duration click train. The clicks were either broadband or high-pass filtered. Sound source localization accuracy was also measured for a single broadband filtered click and compared to a similar broadband filtered, short-duration noise. Sound source localization accuracy was determined as a function of sinusoidal amplitude modulation and the "transposed" process of modulation of filtered noises and a 4 kHz tone. Different rates (16 to 512 Hz) of modulation (including unmodulated conditions) were used. Providing modulation for filtered click stimuli, filtered noises, and the 4 kHz tone had, at most, a very small effect on sound source localization accuracy. These data suggest that amplitude modulation, while providing information about interaural time differences in headphone studies, does not have much influence on sound source localization accuracy in a sound field.

  18. Localizing the sources of two independent noises: role of time varying amplitude differences.

    PubMed

    Yost, William A; Brown, Christopher A

    2013-04-01

    Listeners localized the free-field sources of either one or two simultaneous and independently generated noise bursts. Listeners' localization performance was better when localizing one rather than two sound sources. With two sound sources, localization performance was better when the listener was provided prior information about the location of one of them. Listeners also localized two simultaneous noise bursts that had sinusoidal amplitude modulation (AM) applied, in which the modulation envelope was in-phase across the two source locations or was 180° out-of-phase. The AM was employed to investigate a hypothesis as to what process listeners might use to localize multiple sound sources. The results supported the hypothesis that localization of two sound sources might be based on temporal-spectral regions of the combined waveform in which the sound from one source was more intense than that from the other source. The interaural information extracted from such temporal-spectral regions might provide reliable estimates of the sound source location that produced the more intense sound in that temporal-spectral region.

  19. The Physiological Basis and Clinical Use of the Binaural Interaction Component of the Auditory Brainstem Response

    PubMed Central

    Klump, Georg M.; Tollin, Daniel J.

    2016-01-01

    The auditory brainstem response (ABR) is a sound-evoked non-invasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, we discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. We review how inter-aural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized. PMID:27232077

  20. On the Possible Detection of Lightning Storms by Elephants

    PubMed Central

    Kelley, Michael C.; Garstang, Michael

    2013-01-01

    Simple Summary We use data similar to that taken by the International Monitoring System for the detection of nuclear explosions, to determine whether elephants might be capable of detecting and locating the source of sounds generated by thunderstorms. Knowledge that elephants might be capable of responding to such storms, particularly at the end of the dry season when migrations are initiated, is of considerable interest to management and conservation. Abstract Theoretical calculations suggest that sounds produced by thunderstorms and detected by a system similar to the International Monitoring System (IMS) for the detection of nuclear explosions at distances ≥100 km, are at sound pressure levels equal to or greater than 6 × 10−3 Pa. Such sound pressure levels are well within the range of elephant hearing. Frequencies carrying these sounds might allow for interaural time delays such that adult elephants could not only hear but could also locate the source of these sounds. Determining whether it is possible for elephants to hear and locate thunderstorms contributes to the question of whether elephant movements are triggered or influenced by these abiotic sounds. PMID:26487406

  1. Auditory brainstem response in neonates: influence of gender and weight/gestational age ratio

    PubMed Central

    Angrisani, Rosanna M. Giaffredo; Bautzer, Ana Paula D.; Matas, Carla Gentile; de Azevedo, Marisa Frasson

    2013-01-01

    OBJECTIVE: To investigate the influence of gender and weight/gestational age ratio on the Auditory Brainstem Response (ABR) in preterm (PT) and term (T) newborns. METHODS: 176 newborns were evaluated by ABR; 88 were preterm infants - 44 females (22 small and 22 appropriate for gestational age) and 44 males (22 small and 22 appropriate for gestational age). The preterm infants were compared to 88 term infants - 44 females (22 small and 22 appropriate for gestational age) and 44 males (22 small and 22 appropriate for gestational age). All newborns had bilateral presence of transient otoacoustic emissions and type A tympanometry. RESULTS: No interaural differences were found. ABR response did not differentiate newborns regarding weight/gestational age in males and females. Term newborn females showed statistically shorter absolute latencies (except on wave I) than males. This finding did not occur in preterm infants, who had longer latencies than term newborns, regardless of gender. CONCLUSIONS: Gender and gestational age influence term infants' ABR, with lower responses in females. The weight/gestational age ratio did not influence ABR response in either groups. PMID:24473955

  2. High Speed Jet Noise Prediction Using Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Lele, Sanjiva K.

    2002-01-01

    Current methods for predicting the noise of high speed jets are largely empirical. These empirical methods are based on the jet noise data gathered by varying primarily the jet flow speed, and jet temperature for a fixed nozzle geometry. Efforts have been made to correlate the noise data of co-annular (multi-stream) jets and for the changes associated with the forward flight within these empirical correlations. But ultimately these emipirical methods fail to provide suitable guidance in the selection of new, low-noise nozzle designs. This motivates the development of a new class of prediction methods which are based on computational simulations, in an attempt to remove the empiricism of the present day noise predictions.

  3. Is dependence on one drug associated with dependence on other drugs? The cases of alcohol, caffeine and nicotine.

    PubMed

    Hughes, J R; Oliveto, A H; MacLaughlin, M

    2000-01-01

    Several studies have correlated the use of one drug with that of another drug; however, whether dependence on one drug is associated with dependence on another drug, independent of any use/use association, is unclear. We asked 196 randomly-selected subjects the DSM-IV criteria for dependence as applied to alcohol, caffeine, and nicotine. Among ever users, the severity of alcohol vs nicotine dependence and alcohol vs caffeine dependence was related, but this relationship was weak (r = .22 & .31). Nicotine and caffeine dependence were not correlated. These results fail to confirm theories of commonality that hypothesize dependence on one drug predisposes to dependence on another drug.

  4. Quantitative Investigation of Room-Temperature Breakdown Effects in Pixelated TlBr Detectors

    NASA Astrophysics Data System (ADS)

    Koehler, Will; He, Zhong; Thrall, Crystal; O'Neal, Sean; Kim, Hadong; Cirignano, Leonard; Shah, Kanai

    2014-10-01

    Due to favorable material properties such as high atomic number (Tl: 81, Br: 35), high density ( 7.56 g/cm3), and a wide band gap (2.68 eV), thallium-bromide (TlBr) is currently under investigation for use as an alternative room-temperature semiconductor gamma-ray spectrometer. TlBr detectors can achieve less than 1% FWHM energy resolution at 662 keV, but these results are limited to stable operation at - 20°C. After days to months of room-temperature operation, ionic conduction causes these devices to fail. This work correlates the varying leakage current with alpha-particle and gamma-ray spectroscopic performances at various operating temperatures. Depth-dependent photopeak centroids exhibit time-dependent transient behavior, which indicates trapping sites form near the anode surface during room-temperature operation. After refabrication, similar performance and functionality of failed detectors returned.

  5. Evaluation of High-Resolution Precipitation Estimates from Satellites during July 2012 Beijing Flood Event Using Dense Rain Gauge Observations

    PubMed Central

    Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang

    2014-01-01

    Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing. PMID:24691358

  6. Evaluation of high-resolution precipitation estimates from satellites during July 2012 Beijing flood event using dense rain gauge observations.

    PubMed

    Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang

    2014-01-01

    Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing.

  7. Why e-return services fail: a psychological contract violation approach.

    PubMed

    Hsieh, Pei-Ling

    2012-12-01

    This study elucidates why and how e-return services (e-RS) fail, representing a preliminary attempt to explain the critical role of psychological contract violation (PCV) and explore its antecedents and outcomes in e-RS research. Based on marketing, psychology, and information systems-related studies, a theoretical framework is developed to correlate perceived fairness (PF), causal attribution (CA), and magnitude of negative outcome (MNO) with customers' PCV. Additionally, based on trust (TR), exactly how PCV further influences customers' stickiness intention (SI) is examined as well. Analysis results indicate that PF, CA, and MNO influence customers during both the evaluation stage and the customer receipt of e-RS, subsequently deriving PCV. These factors contribute to the subsequent success of e-RS, especially, customers' TR and SI. Furthermore, recommendations are made on how firms should evaluate PCV and its influencing factors to prevent e-RS failure.

  8. Experimental study of the condensation heat transfer characteristics of CO2 in a horizontal microfin tube with a diameter of 4.95 mm

    NASA Astrophysics Data System (ADS)

    Son, Chang-Hyo; Oh, Hoo-Kyu

    2012-11-01

    The condensation heat transfer characteristics for CO2 flowing in a horizontal microfin tube were investigated by experiment with respect to condensation temperature and mass flux. The test section consists of a 2,400 mm long horizontal copper tube of 4.6 mm inner diameter. The experiments were conducted at refrigerant mass flux of 400-800 kg/m2s, and saturation temperature of 20-30 °C. The main experimental results showed that annular flow was highly dominated the majority of condensation flow in the horizontal microfin tube. The condensation heat transfer coefficient increases with decreasing saturation temperature and increasing mass flux. The experimental data were compared against previous heat transfer correlations. Most correlations failed to predict the experimental data. However, the correlation by Cavallini et al. showed relatively good agreement with experimental data in the microfin tube. Therefore, a new condensation heat transfer correlation is proposed with mean and average deviations of 3.14 and -7.6 %, respectively.

  9. Mathematical modeling of human brain physiological data

    NASA Astrophysics Data System (ADS)

    Böhm, Matthias; Faltermeier, Rupert; Brawanski, Alexander; Lang, Elmar W.

    2013-12-01

    Recently, a mathematical model of the basic physiological processes regulating the cerebral perfusion and oxygen supply was introduced [Jung , J. Math. Biol.JMBLAJ0303-681210.1007/s00285-005-0343-5 51, 491 (2005)]. Although this model correctly describes the interdependence of arterial blood pressure (ABP) and intracranial pressure (ICP), it fails badly when it comes to explaining certain abnormal correlations seen in about 80% of the recordings of ABP together with ICP and the partial oxygen pressure (TiPO2) of the neuronal tissue, taken at an intensive care unit during neuromonitoring of patients with a severe brain trauma. Such recordings occasionally show segments, where the mean arterial blood pressure is correlated with the partial oxygen pressure in tissue but anticorrelated with the intracranial pressure. The origin of such abnormal correlations has not been fully understood yet. Here, two extensions to the previous approach are proposed which can reproduce such abnormal correlations in simulations quantitatively. Furthermore, as the simulations are based on a mathematical model, additional insight into the physiological mechanisms from which such abnormal correlations originate can be gained.

  10. The contributions of non-numeric dimensions to number encoding, representations, and decision-making factors.

    PubMed

    Odic, Darko

    2017-01-01

    Leibovich et al. suggest that congruency effects in number perception (biases towards smaller, denser, etc., dots) are evidence for the number's dependence on these dimensions. I argue that they fail to differentiate between effects at three distinct levels of number perception - encoding, representations, and decision making - and that differentiating between these allows the number to be independent from, but correlated with, non-numeric dimensions.

  11. {Phi}{sup 4} kinks: Statistical mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, S.

    1995-12-31

    Some recent investigations of the thermal equilibrium properties of kinks in a 1+1-dimensional, classical {phi}{sup 4} field theory are reviewed. The distribution function, kink density, correlation function, and certain thermodynamic quantities were studied both theoretically and via large scale simulations. A simple double Gaussian variational approach within the transfer operator formalism was shown to give good results in the intermediate temperature range where the dilute gas theory is known to fail.

  12. An asymptotic theory for cross-correlation between auto-correlated sequences and its application on neuroimaging data.

    PubMed

    Zhou, Yunyi; Tao, Chenyang; Lu, Wenlian; Feng, Jianfeng

    2018-04-20

    Functional connectivity is among the most important tools to study brain. The correlation coefficient, between time series of different brain areas, is the most popular method to quantify functional connectivity. Correlation coefficient in practical use assumes the data to be temporally independent. However, the time series data of brain can manifest significant temporal auto-correlation. A widely applicable method is proposed for correcting temporal auto-correlation. We considered two types of time series models: (1) auto-regressive-moving-average model, (2) nonlinear dynamical system model with noisy fluctuations, and derived their respective asymptotic distributions of correlation coefficient. These two types of models are most commonly used in neuroscience studies. We show the respective asymptotic distributions share a unified expression. We have verified the validity of our method, and shown our method exhibited sufficient statistical power for detecting true correlation on numerical experiments. Employing our method on real dataset yields more robust functional network and higher classification accuracy than conventional methods. Our method robustly controls the type I error while maintaining sufficient statistical power for detecting true correlation in numerical experiments, where existing methods measuring association (linear and nonlinear) fail. In this work, we proposed a widely applicable approach for correcting the effect of temporal auto-correlation on functional connectivity. Empirical results favor the use of our method in functional network analysis. Copyright © 2018. Published by Elsevier B.V.

  13. Oil price and exchange rate co-movements in Asian countries: Detrended cross-correlation approach

    NASA Astrophysics Data System (ADS)

    Hussain, Muntazir; Zebende, Gilney Figueira; Bashir, Usman; Donghong, Ding

    2017-01-01

    Most empirical literature investigates the relation between oil prices and exchange rate through different models. These models measure this relationship on two time scales (long and short terms), and often fail to observe the co-movement of these variables at different time scales. We apply a detrended cross-correlation approach (DCCA) to investigate the co-movements of the oil price and exchange rate in 12 Asian countries. This model determines the co-movements of oil price and exchange rate at different time scale. The exchange rate and oil price time series indicate unit root problem. Their correlation and cross-correlation are very difficult to measure. The result becomes spurious when periodic trend or unit root problem occurs in these time series. This approach measures the possible cross-correlation at different time scale and controlling the unit root problem. Our empirical results support the co-movements of oil prices and exchange rate. Our results support a weak negative cross-correlation between oil price and exchange rate for most Asian countries included in our sample. The results have important monetary, fiscal, inflationary, and trade policy implications for these countries.

  14. Measuring health system responsiveness at facility level in Ethiopia: performance, correlates and implications.

    PubMed

    Yakob, Bereket; Ncama, Busisiwe Purity

    2017-04-11

    Health system responsiveness measures (HSR) the non-health aspect of care relating to the environment and the way healthcare is provided to clients. The study measured the HSR performance and correlates of HIV/AIDS treatment and care services in the Wolaita Zone of Ethiopia. A cross-sectional survey across seven responsiveness domains (attention, autonomy, amenities of care, choice, communication, confidentiality and respect) was conducted on 492 people using pre-ART and ART care. The Likert scale categories were allocated percentages for analysis, being classified as unacceptable (Fail) and acceptable (Good and Very Good) performance. Of the 452 (91.9%) participants, 205 (45.4%) and 247 (54.6%) were from health centers and a hospital respectively. 375 (83.0%) and 77 (17.0%) were on ART and pre-ART care respectively. A range of response classifications was reported for each domain, with Fail performance being higher for choice (48.4%), attention (45.5%) and autonomy (22.7%) domains. Communication (64.2%), amenities (61.4%), attention (51.4%) and confidentiality (50.1%) domains had higher scores in the 'Good' performance category. On the other hand, 'only respect (54.0%) domain had higher score in the 'Very Good' performance category while attention (3.1%), amenities (4.7%) and choice (12.4%) domains had very low scores. Respect (5.1%), confidentiality (7.6%) and communication (14.7%) showed low proportion in the Fail performance. 10.4 and 6.9% of the responsiveness percent score (RPS) were in 'Fail' and Very Good categories respectively while the rest (82.7%) were in Good performance category. In the multivariate analysis, a unit increase in the perceived quality of care, satisfaction with the services and financial fairness scores respectively resulted in 0.27% (p < 0.001), 0.48% (p < 0.001) and 0.48% (p < 0.001) increase in the RPS. On the contrary, visiting traditional medicine practitioner before formal HIV care was associated with 2.1% decrease in the RPS. The health facilities performed low on the autonomy, choice, attention and amenities domains while the overall RPS masked the weaknesses and strengths and showed an overall good performance. The domain specific responsiveness scores are better ways of measuring responsiveness. Improving quality of care, client satisfaction and financial fairness will be important interventions to improve responsiveness performance.

  15. Influence of the local-spin-density correlation functional on the stability of bcc ferromagnetic iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, D.; Clougherty, D.P.; MacLaren, J.M.

    1991-10-01

    The influence of local-spin-dependent correlation effects on the predicted stable ground-state phase of iron is reexamined with use of general-potential linearized augmented-plane-wave calculations. Differences in the form of the Vosko-Wilk-Nusair (VWN) local-spin-density functional used in previous studies are noted, since in previous studies significant additional approximations were made with respect to those of Vosko, Wilk, and Nusan (Can. J. Phys. 58, 1200 (1980)) and of MacLaren, Clougherty, and Albers (Phys. Rev. B 42, 3205 (1990)). While the results of previous linear muffin-tin orbital calculations using the VWN functional predict a bcc ferromagnetic ground state, the present calculations show that themore » VWN spin-correlation effects fail to stabilize a bcc ground state. Considerable sensitivity to the form of the spin interpolation is found.« less

  16. No correlation between adiposity and food intake: why are working class children fatter?

    PubMed

    Rolland-Cachera, M F; Bellisle, F

    1986-12-01

    Many studies have failed to show a correlation between individual energy intake and obesity. However, the prevalence of overweight is higher in populations with higher caloric intake. In this study on a population of French children, no correlation was found between energy intake and individual corpulence (wt/ht2 index or skinfold thickness), but a higher proportion of overweight children was found in lower social classes where energy intake is traditionally higher. A hypothesis is proposed to account for this apparent contradiction: the typical lifestyle or diet in a given population challenges individual adaptive capacities; the more caloric the socially accepted diet, the higher the proportion of individuals who are challenged beyond their adaptive threshold. Socially determined factors such as a high calorie diet act in a permissive way in the development of obesity although the caloric intake of obese individuals may be no different from that of nonobese peers.

  17. Should We Pursue Patients Who Fail to Attend Colorectal Clinics? A 9-Year Study

    PubMed Central

    John, SKP; Jones, OM; Fay, H; Howell, RD; Fozard, JBJ

    2007-01-01

    INTRODUCTION No uniform protocol exists on how to deal with patients who fail to attend colorectal clinics. Our aim was to identify whether the tendency to ‘failure to attend’ (FTA) in the colorectal clinic was associated with FTA in other clinics and also whether FTA patients have serious pathology. PATIENTS AND METHODS This was a retrospective study of a prospectively recorded list of FTA patients, in colorectal urgent or two-week wait clinics from 1996–2004. RESULTS A total of 151 patients, who failed to attend their first appointment, were included in the study. Of these, 61 (40.4%) were colorectal referrals, 76 (50.3%) were general surgical referrals, and for 14 (9.3%) case notes were not available. There were 59 FTA episodes in 61 colorectal patients associated with 59 FTA episodes in other clinics (Pearson correlation: r = 0.411; P = 0.01, two-tailed, SPSS v.12). Of 58 colorectal outcomes, five (8.6%) colorectal cancers (CRC) were diagnosed, 23 (39.6%) were persistent non-attendees, 16 (27.5%) had benign colorectal pathology, two (3.4%) benign non-colorectal outcomes and 12 (20.6%) normal outcomes. CONCLUSIONS Tendency to FTA is habitual. Care needs to be exercised in the management of FTAs to avoid delayed presentation of colorectal cancer. PMID:17688719

  18. How Hedstrom files fail during clinical use? A retrieval study based on SEM, optical microscopy and micro-XCT analysis.

    PubMed

    Zinelis, Spiros; Al Jabbari, Youssef S

    2018-05-01

    This study was conducted to evaluate the failure mechanism of clinically failed Hedstrom (H)-files. Discarded H-files (n=160) from #8 to #40 ISO sizes were collected from different dental clinics. Retrieved files were classified according to their macroscopic appearance and they were investigated under scanning electron microscopy (SEM) and X-ray micro-computed tomography (mXCT). Then the files were embedded in resin along their longitudinal axis and after metallographic grinding and polishing, studied under an incident light microscope. The macroscopic evaluation showed that small ISO sizes (#08-#15) failed by extensive plastic deformation, while larger sizes (≥#20) tended to fracture. Light microscopy and mXCT results coincided showing that unused and plastically deformed files were free of internal defects, while fractured files demonstrate the presence of intense cracking in the flute region. SEM analysis revealed the presence of striations attributed to the fatigue mechanism. Secondary cracks were also identified by optical microscopy and their distribution was correlated to fatigue under bending loading. Experimental results demonstrated that while overloading of cutting instruments is the predominating failure mechanism of small file sizes (#08-#15), fatigue should be considered the fracture mechanism for larger sizes (≥#20).

  19. Modal smoothing for analysis of room reflections measured with spherical microphone and loudspeaker arrays.

    PubMed

    Morgenstern, Hai; Rafaely, Boaz

    2018-02-01

    Spatial analysis of room acoustics is an ongoing research topic. Microphone arrays have been employed for spatial analyses with an important objective being the estimation of the direction-of-arrival (DOA) of direct sound and early room reflections using room impulse responses (RIRs). An optimal method for DOA estimation is the multiple signal classification algorithm. When RIRs are considered, this method typically fails due to the correlation of room reflections, which leads to rank deficiency of the cross-spectrum matrix. Preprocessing methods for rank restoration, which may involve averaging over frequency, for example, have been proposed exclusively for spherical arrays. However, these methods fail in the case of reflections with equal time delays, which may arise in practice and could be of interest. In this paper, a method is proposed for systems that combine a spherical microphone array and a spherical loudspeaker array, referred to as multiple-input multiple-output systems. This method, referred to as modal smoothing, exploits the additional spatial diversity for rank restoration and succeeds where previous methods fail, as demonstrated in a simulation study. Finally, combining modal smoothing with a preprocessing method is proposed in order to increase the number of DOAs that can be estimated using low-order spherical loudspeaker arrays.

  20. Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed.

    PubMed

    Perdew, John P; Ruzsinszky, Adrienn; Constantin, Lucian A; Sun, Jianwei; Csonka, Gábor I

    2009-04-14

    Some fundamental issues in ground-state density functional theory are discussed without equations: (1) The standard Hohenberg-Kohn and Kohn-Sham theorems were proven for a Hamiltonian that is not quite exact for real atoms, molecules, and solids. (2) The density functional for the exchange-correlation energy, which must be approximated, arises from the tendency of electrons to avoid one another as they move through the electron density. (3) In the absence of a magnetic field, either spin densities or total electron density can be used, although the former choice is better for approximations. (4) "Spin contamination" of the determinant of Kohn-Sham orbitals for an open-shell system is not wrong but right. (5) Only to the extent that symmetries of the interacting wave function are reflected in the spin densities should those symmetries be respected by the Kohn-Sham noninteracting or determinantal wave function. Functionals below the highest level of approximations should however sometimes break even those symmetries, for good physical reasons. (6) Simple and commonly used semilocal (lower-level) approximations for the exchange-correlation energy as a functional of the density can be accurate for closed systems near equilibrium and yet fail for open systems of fluctuating electron number. (7) The exact Kohn-Sham noninteracting state need not be a single determinant, but common approximations can fail when it is not. (8) Over an open system of fluctuating electron number, connected to another such system by stretched bonds, semilocal approximations make the exchange-correlation energy and hole-density sum rule too negative. (9) The gap in the exact Kohn-Sham band structure of a crystal underestimates the real fundamental gap but may approximate the first exciton energy in the large-gap limit. (10) Density functional theory is not really a mean-field theory, although it looks like one. The exact functional includes strong correlation, and semilocal approximations often overestimate the strength of static correlation through their semilocal exchange contributions. (11) Only under rare conditions can excited states arise directly from a ground-state theory.

  1. Using the arthroscopic surgery skill evaluation tool as a pass-fail examination.

    PubMed

    Koehler, Ryan J; Nicandri, Gregg T

    2013-12-04

    Examination of arthroscopic skill requires evaluation tools that are valid and reliable with clear criteria for passing. The Arthroscopic Surgery Skill Evaluation Tool was developed as a video-based assessment of technical skill with criteria for passing established by a panel of experts. The purpose of this study was to test the validity and reliability of the Arthroscopic Surgery Skill Evaluation Tool as a pass-fail examination of arthroscopic skill. Twenty-eight residents and two sports medicine faculty members were recorded performing diagnostic knee arthroscopy on a left and right cadaveric specimen in our arthroscopic skills laboratory. Procedure videos were evaluated with use of the Arthroscopic Surgery Skill Evaluation Tool by two raters blind to subject identity. Subjects were considered to pass the Arthroscopic Surgery Skill Evaluation Tool when they attained scores of ≥ 3 on all eight assessment domains. The raters agreed on a pass-fail rating for fifty-five of sixty videos rated with an interclass correlation coefficient value of 0.83. Ten of thirty participants were assigned passing scores by both raters for both diagnostic arthroscopies performed in the laboratory. Receiver operating characteristic analysis demonstrated that logging more than eighty arthroscopic cases or performing more than thirty-five arthroscopic knee cases was predictive of attaining a passing Arthroscopic Surgery Skill Evaluation Tool score on both procedures performed in the laboratory. The Arthroscopic Surgery Skill Evaluation Tool is valid and reliable as a pass-fail examination of diagnostic arthroscopy of the knee in the simulation laboratory. This study demonstrates that the Arthroscopic Surgery Skill Evaluation Tool may be a useful tool for pass-fail examination of diagnostic arthroscopy of the knee in the simulation laboratory. Further study is necessary to determine whether the Arthroscopic Surgery Skill Evaluation Tool can be used for the assessment of multiple arthroscopic procedures and whether it can be used to evaluate arthroscopic procedures performed in the operating room.

  2. Is there an association between airborne and surface microbes in the critical care environment?

    PubMed

    Smith, J; Adams, C E; King, M F; Noakes, C J; Robertson, C; Dancer, S J

    2018-04-09

    There are few data and no accepted standards for air quality in the intensive care unit (ICU). Any relationship between airborne pathogens and hospital-acquired infection (HAI) risk in the ICU remains unknown. First, to correlate environmental contamination of air and surfaces in the ICU; second, to examine any association between environmental contamination and ICU-acquired staphylococcal infection. Patients, air, and surfaces were screened on 10 sampling days in a mechanically ventilated 10-bed ICU for a 10-month period. Near-patient hand-touch sites (N = 500) and air (N = 80) were screened for total colony count and Staphylococcus aureus. Air counts were compared with surface counts according to proposed standards for air and surface bioburden. Patients were monitored for ICU-acquired staphylococcal infection throughout. Overall, 235 of 500 (47%) surfaces failed the standard for aerobic counts (≤2.5 cfu/cm 2 ). Half of passive air samples (20/40: 50%) failed the 'index of microbial air' contamination (2 cfu/9 cm plate/h), and 15/40 (37.5%) active air samples failed the clean air standard (<10 cfu/m 3 ). Settle plate data were closer to the pass/fail proportion from surfaces and provided the best agreement between air parameters and surfaces when evaluating surface benchmark values of 0-20 cfu/cm 2 . The surface standard most likely to reflect hygiene pass/fail results compared with air was 5 cfu/cm 2 . Rates of ICU-acquired staphylococcal infection were associated with surface counts per bed during 72h encompassing sampling days (P = 0.012). Passive air sampling provides quantitative data analogous to that obtained from surfaces. Settle plates could serve as a proxy for routine environmental screening to determine the infection risk in ICU. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. Satisfaction and Clinical Outcomes Among Patients with Immediately Loaded Mandibular Overdentures Supported by One or Two Dental Implants: Results of a 5-Year Prospective Randomized Clinical Trial.

    PubMed

    Kronstrom, Mats; Davis, Ben; Loney, Robert; Gerrow, Jack; Hollender, Lars

    The purpose of this study was to evaluate patient satisfaction and clinical outcomes among subjects with mandibular overdentures supported by one or two immediately placed dental implants 5 years after loading. Thirty-six subjects (16 men and 20 women) received one or two dental implants in the anterior mandible, and all implants were loaded the day of surgery. Subjects were scheduled for follow-up 3-, 6-, and 12 months after implant placement and thereafter annually for 4 more years. Patient satisfaction scores were measured with the Oral Health Impact Profile-EDENT (OHIPEDENT) questionnaire. Seventeen subjects (7 male and 10 female) with a mean age of 59.4 years (range, 44 to 74 years) were available for the 5-year follow-up examination. Nine subjects with 10 failing implants were excluded during the first year and nine subjects were lost to follow-up. No implants failed between the 12- and 60-month follow-up examinations, and the need for denture maintenance was low. Mean peri-implant bone change was 0.92 mm, and the Spearman test failed to show correlation between the insertion torque value and implant stability quotient. Patient satisfaction scores increased significantly when compared with baseline values and continued to be high for both groups, with no significant differences. Ten implants in nine subjects failed early, but no failures were observed after the 12-month examination. No significant differences were found between subjects in the two groups with respect to implant survival rates and peri-implant bone loss, and patient satisfaction scores continued to be high. Although patient satisfaction and implant success were high during the 12- to 60-month period, the results should be interpreted with caution because of the high number of failing implants and patients lost to follow-up. More research is needed to study outcomes of treatment with immediately loaded mandibular implant overdentures.

  4. Performance of red-green color deficient subjects on the Holmes-Wright lantern (Type A) in photopic viewing.

    PubMed

    Birch, J

    1999-09-01

    The Holmes-Wright lantern (Type A) is an approved occupational color vision test for airline pilots in the European Economic Community and for specific occupations in the British Armed Forces. The colors shown are red, green and white signal lights. The Holmes-Wright lantern is a sensitive screening test for red-green color deficiency in photopic viewing and the pass/fail level is similar to that of the Farnsworth Lantern (Falant) if the same scoring method is applied. There were 138 color deficient subjects identified with the Ishihara plates and diagnosed with the Nagel anomaloscope, completed a color vision test battery which included three runs of the nine color pairs of the Holmes-Wright lantern at high brightness in normal room illumination. Screening sensitivity on a single error was found to be 97% compared with the Ishihara plates. Using the Falant scoring method, 20 subjects passed. These were 1 deuteranope, 2 protanomalous trichromats and 17 deuteranomalous trichromats (22% of 88 anomalous trichromats). The mean error score was greater for protans than for deutans but the mean number of qualitative error categories was smaller. Green/white confusions were the most frequent errors. It was not possible to predict who would pass the lantern test from other test results but all subjects with a Nagel anomaloscope matching range > 15 scale units who failed the Farnsworth D15 test or were grading as moderate/severe with the American Optical Company (Hardy, Rand and Rittler) plates failed. The Holmes-Wright lantern is a sensitive screening test for red-green color deficiency. Although a similar percentage of anomalous trichromats fail the Holmes-Wright lantern as fail the Falant, if the same scoring method is used, the superior correlation between the Holmes-Wright result and other color vision tests designed to grade the severity of color deficiency suggests that the two lantern results are not equivalent.

  5. Testing the gravitational instability hypothesis?

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.

    1994-01-01

    We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests that show correlations between galaxy density and velocity fields can rule out some physically interesting models of large-scale structure. In particular, successful reconstructions constrain the nature of any bias between the galaxy and mass distributions, since processes that modulate the efficiency of galaxy formation on large scales in a way that violates the continuity equation also produce a mismatch between the observed galaxy density and the density inferred from the peculiar velocity field. We obtain successful reconstructions for a gravitational model with peaks biasing, but we also show examples of gravitational and nongravitational models that fail reconstruction tests because of more complicated modulations of galaxy formation.

  6. Mineralogic correlates of fibrosis in chrysotile miners and millers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churg, A.; Wright, J.L.; DePaoli, L.

    1989-04-01

    To determine which mineral parameters relate to the degree of interstitial fibrosis (asbestosis) in the lungs of chrysotile miners and millers, we graded fibrosis histologically and correlated fibrosis grades with fiber concentration and mean size, surface area, and mass, and with total sample fiber length, surface area, and mass in 21 cases. A positive correlation of fibrosis grade with tremolite concentration and a lesser correlation with chrysotile concentration was found for whole lungs, specific sites within lungs, and, for tremolite, single microscopic fields. No correlations were found for measures of chrysotile fiber size, surface area, or mass, but tremolite meanmore » fiber length, aspect ratio, and surface area were, surprisingly, negatively correlated with fibrosis grade. Measures based on total rather than on mean case or site parameters failed to show correlations with fibrosis. We conclude that: (1) degree of pulmonary fibrosis reflects fiber concentration at both a bulk and a microscopic level; (2) mean fiber length and parameters related to mean fiber length also correlate with fibrosis grade, but, contrary to predictions from animal studies, this correlation is negative, suggesting that short fibers may be more important in the genesis of pulmonary fibrosis than is commonly believed; (3) there is no evidence that parameters such as total fiber length, surface area, or mass provide predictors of degree of fibrosis.« less

  7. Predicting academic performance in surgical training.

    PubMed

    Yost, Michael J; Gardner, Jeffery; Bell, Richard McMurtry; Fann, Stephen A; Lisk, John R; Cheadle, William G; Goldman, Mitchell H; Rawn, Susan; Weigelt, John A; Termuhlen, Paula M; Woods, Randy J; Endean, Erick D; Kimbrough, Joy; Hulme, Michael

    2015-01-01

    During surgical residency, trainees are expected to master all the 6 competencies specified by the ACGME. Surgical training programs are also evaluated, in part, by the residency review committee based on the percentage of graduates of the program who successfully complete the qualifying examination and the certification examination of the American Board of Surgery in the first attempt. Many program directors (PDs) use the American Board of Surgery In-Training Examination (ABSITE) as an indicator of future performance on the qualifying examination. Failure to meet an individual program's standard may result in remediation or a delay in promotion to the next level of training. Remediation is expensive in terms of not only dollars but also resources, faculty time, and potential program disruptions. We embarked on an exploratory study to determine if residents who might be at risk for substandard performance on the ABSITE could be identified based on the individual resident's behavior and motivational characteristics. If such were possible, then PDs would have the opportunity to be proactive in developing a curriculum tailored to an individual resident, providing a greater opportunity for success in meeting the program's standards. Overall, 7 surgical training programs agreed to participate in this initial study and residents were recruited to voluntarily participate. Each participant completed an online assessment that characterizes an individual's behavioral style, motivators, and Acumen Index. Residents completed the assessment using a code name assigned by each individual PD or their designee. Assessments and the residents' 2013 ABSITE scores were forwarded for analysis using only the code name, thus insuring anonymity. Residents were grouped into those who took the junior examination, senior examination, and pass/fail categories. A passing score of ≥70% correct was chosen a priori. Correlations were performed using logistic regression and data were also entered into a neural network (NN) to develop a model that would explain performance based on data obtained from the TriMetrix assessments. A total of 117 residents' TriMetrix and ABSITE scores were available for analysis. They were divided into 2 groups of 64 senior residents and 53 junior residents. For each group, the pass/fail criteria for the ABSITE were set at 70 and greater as passing and 69 and lower as failing. Multiple logistic regression analysis was complete for pass/fail vs the TriMetrix assessments. For the senior data group, it was found that the parameter Theoretical correlates with pass rate (p < 0.043, B = -0.513, exp(B) = 0.599), which means increasing theoretical scores yields a decreasing likelihood of passing in the examination. For the junior data, the parameter Internal Role Awareness correlated with pass/fail rate (p < 0.004, B = 0.66, exp(B) = 1.935), which means that an increasing Internal Role Awareness score increases the likelihood of a passing score. The NN was able to be trained to predict ABSITE performance with surprising accuracy for both junior and senior residents. Behavioral, motivational, and acumen characteristics can be useful to identify residents "at risk" for substandard performance on the ABSITE. Armed with this information, PDs have the opportunity to intervene proactively to offer these residents a greater chance for success. The NN was capable of developing a model that explained performance on the examination for both the junior and the senior examinations. Subsequent testing is needed to determine if the NN is a good predictive tool for performance on this examination. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  8. Endothelial dysfunction in hemodialysis patients with failed renal transplants.

    PubMed

    Gorgulu, Numan; Yelken, Berna; Caliskan, Yasar; Elitok, Ali; Cimen, Arif Oguzhan; Yazici, Halil; Oflaz, Huseyin; Golcuk, Ebru; Ekmekci, Ahmet; Turkmen, Aydin; Yildiz, Alaattin; Sever, Mehmet Sukru

    2010-01-01

    Endothelial dysfunction (ED) is a common precursor and denominator of cardiovascular events including development of atherosclerosis. In this cross-sectional study, we aimed to investigate ED, measured by coronary flow reserve (CFR) in hemodialysis (nHD) patients who were never transplanted and patients with failed renal transplants restarting hemodialysis (fTx-HD). Forty nHD (24 males, mean age 39 ± 9 yr) and 43 fTx-HD patients (27 males, mean age 36 ± 9 yr) were included in the study. Clinical and biochemical parameters, including high-sensitive C-reactive protein (hs-CRP) levels were determined. Also, CFR measurements were used to evaluate ED. There were no significant differences regarding age, gender, smoking status, systolic and diastolic blood pressure levels, mean duration of HD treatment as well as Kt/V((urea)) values between the two groups. Time spent on dialysis in the nHD group and dialysis duration following failure of renal allograft in the fTx-HD group were similar. Serum creatinine, hemoglobin, hematocrit, calcium and phosphorus levels were similar between the two groups as well. When compared to nHD group, serum total cholesterol (139 ± 3 vs. 154 ± 3 mg/dL, p = 0.045), serum albumin (3.8 ± 0.3 g/dL vs. 4.1 ± 0.2 g/dL, p < 0.0001) and CFR (1.60 ± 0.2 vs. 1.75 ± 0.3, p = 0.028) levels were significantly lower, while serum hs-CRP levels (11 ± 15 mg/L vs. 3 ± 4 mg/L, p = 0.001) were significantly higher in the fTx-HD group. Serum hs-CRP negatively correlated (r = -0254, p = 0.021), while serum albumin positively correlated (r = 0402, p = 0.001) with CFR values. ED is more prominent in fTx-HD than the nHD patients. Inflammation, caused by failed renal allograft can be responsible for this abnormality. © 2009 John Wiley & Sons A/S.

  9. Impact of Image Noise on Gamma Index Calculation

    NASA Astrophysics Data System (ADS)

    Chen, M.; Mo, X.; Parnell, D.; Olivera, G.; Galmarini, D.; Lu, W.

    2014-03-01

    Purpose: The Gamma Index defines an asymmetric metric between the evaluated image and the reference image. It provides a quantitative comparison that can be used to indicate sample-wised pass/fail on the agreement of the two images. The Gamma passing/failing rate has become an important clinical evaluation tool. However, the presence of noise in the evaluated and/or reference images may change the Gamma Index, hence the passing/failing rate, and further, clinical decisions. In this work, we systematically studied the impact of the image noise on the Gamma Index calculation. Methods: We used both analytic formulation and numerical calculations in our study. The numerical calculations included simulations and clinical images. Three different noise scenarios were studied in simulations: noise in reference images only, in evaluated images only, and in both. Both white and spatially correlated noises of various magnitudes were simulated. For clinical images of various noise levels, the Gamma Index of measurement against calculation, calculation against measurement, and measurement against measurement, were evaluated. Results: Numerical calculations for both the simulation and clinical data agreed with the analytic formulations, and the clinical data agreed with the simulations. For the Gamma Index of measurement against calculation, its distribution has an increased mean and an increased standard deviation as the noise increases. On the contrary, for the Gamma index of calculation against measurement, its distribution has a decreased mean and stabilized standard deviation as the noise increases. White noise has greater impact on the Gamma Index than spatially correlated noise. Conclusions: The noise has significant impact on the Gamma Index calculation and the impact is asymmetric. The Gamma Index should be reported along with the noise levels in both reference and evaluated images. Reporting of the Gamma Index with switched roles of the images as reference and evaluated images or some composite metrics would be a good practice.

  10. Education Research: Bias and poor interrater reliability in evaluating the neurology clinical skills examination

    PubMed Central

    Schuh, L A.; London, Z; Neel, R; Brock, C; Kissela, B M.; Schultz, L; Gelb, D J.

    2009-01-01

    Objective: The American Board of Psychiatry and Neurology (ABPN) has recently replaced the traditional, centralized oral examination with the locally administered Neurology Clinical Skills Examination (NEX). The ABPN postulated the experience with the NEX would be similar to the Mini-Clinical Evaluation Exercise, a reliable and valid assessment tool. The reliability and validity of the NEX has not been established. Methods: NEX encounters were videotaped at 4 neurology programs. Local faculty and ABPN examiners graded the encounters using 2 different evaluation forms: an ABPN form and one with a contracted rating scale. Some NEX encounters were purposely failed by residents. Cohen’s kappa and intraclass correlation coefficients (ICC) were calculated for local vs ABPN examiners. Results: Ninety-eight videotaped NEX encounters of 32 residents were evaluated by 20 local faculty evaluators and 18 ABPN examiners. The interrater reliability for a determination of pass vs fail for each encounter was poor (kappa 0.32; 95% confidence interval [CI] = 0.11, 0.53). ICC between local faculty and ABPN examiners for each performance rating on the ABPN NEX form was poor to moderate (ICC range 0.14-0.44), and did not improve with the contracted rating form (ICC range 0.09-0.36). ABPN examiners were more likely than local examiners to fail residents. Conclusions: There is poor interrater reliability between local faculty and American Board of Psychiatry and Neurology examiners. A bias was detected for favorable assessment locally, which is concerning for the validity of the examination. Further study is needed to assess whether training can improve interrater reliability and offset bias. GLOSSARY ABIM = American Board of Internal Medicine; ABPN = American Board of Psychiatry and Neurology; CI = confidence interval; HFH = Henry Ford Hospital; ICC = intraclass correlation coefficients; IM = internal medicine; mini-CEX = Mini-Clinical Evaluation Exercise; NEX = Neurology Clinical Skills Examination; RITE = residency inservice training examination; UC = University of Cincinnati; UM = University of Michigan; USF = University of South Florida. PMID:19605769

  11. Serum human chorionic gonadotropin levels on the day before oocyte retrieval do not correlate with oocyte maturity.

    PubMed

    Levy, Gary; Hill, Micah J; Ramirez, Christina; Plowden, Torrie; Pilgrim, Justin; Howard, Robin S; Segars, James H; Csokmay, John

    2013-05-01

    To evaluate the correlation of preretrieval quantitative serum hCG level with oocyte maturity. Retrospective cohort study. Military assisted reproductive technology (ART) program. Fresh autologous ART cycles. Serum hCG level the day before oocyte retrieval. Linear regression was used to correlate serum hCG levels and oocyte maturity rates. Normal oocyte maturity was defined as ≥75% and the Wilcoxon rank sum test was used to compare serum hCG levels in patients with normal and low oocyte maturity. Threshold analysis was performed to determine hCG levels that could predict oocyte maturity. A total of 468 ART cycles were analyzed. Serum hCG level was not correlated with hCG dose; however, it was negatively correlated with body mass index (BMI). Serum hCG levels did not differ between patients with oocyte maturity of <75% and ≥75%. Serum hCG levels did not correlate with oocyte maturity rates. Receiver operator characteristic and less than efficiency curves failed to demonstrate thresholds at which hCG could predict oocyte maturity. Serum hCG levels were not correlated with oocyte maturity. Although a positive hCG was reassuring that mature oocytes would be retrieved for most patients, the specific value was not helpful. Copyright © 2013. Published by Elsevier Inc.

  12. Re-examining minimal luminal diameter relocation and quantitative coronary angiography--intravascular ultrasound correlations in stented saphenous vein grafts: methodological insights from the randomised RRISC trial.

    PubMed

    Semeraro, Oscar; Agostoni, Pierfrancesco; Verheye, Stefan; Van Langenhove, Glenn; Van den Heuvel, Paul; Convens, Carl; Van den Branden, Frank; Bruining, Nico; Vermeersch, Paul

    2009-03-01

    Angiographic parameters (such as late luminal loss) are common endpoints in drug-eluting stent trials, but their correlation with the neointimal process and their reliability in predicting restenosis are debated. Using quantitative coronary angiography (QCA) data (49 bare metal stent and 44 sirolimus-eluting stent lesions) and intravascular ultrasound (IVUS) data (39 bare metal stent and 34 sirolimus-eluting stent lesions) from the randomised Reduction of Restenosis In Saphenous vein grafts with Cypher stent (RRISC) trial, we analysed the "relocation phenomenon" of QCA-based in-stent minimal luminal diameter (MLD) between post-procedure and follow-up and we correlated QCA-based and IVUS-based restenotic parameters in stented saphenous vein grafts. We expected the presence of MLD relocation for low late loss values, as MLD can "migrate" along the stent if minimal re-narrowing occurs, while we anticipated follow-up MLD to be located close to post-procedural MLD position for higher late loss. QCA-based MLD relocation occurred frequently: the site of MLD shifted from post-procedure to follow-up an "absolute" distance of 5.8 mm [2.5-10.2] and a "relative" value of 29% [10-46]. MLD relocation failed to correlate with in-stent late loss (rho = 0.14 for "absolute" MLD relocation [p = 0.17], and rho=0.03 for "relative" relocation [p = 0.811). Follow-up QCA-based and IVUS-based MLD values well correlated in the overall population (rho = 0.76, p < 0.001), but QCA underestimated MLD on average 0.55 +/- 0.49 mm, and this was mainly evident for lower MLD values. Conversely, the location of QCA-based MLD failed to correlate with the location of IVUS-based MLD (rho = 0.01 for "absolute" values--in mm [p = 0.911, rho = 0.19 for "relative" values--in % [p = 0.111). Overall, the ability of late loss to "predict" IVUS parameters of restenosis (maximum neointimal hyperplasia diameter, neointimal hyperplasia index and maximum neointimal hyperplasia area) was moderate (rho between 0.46 and 0.54 for the 3 IVUS parameters). These findings suggest the need for a critical re-evaluation of angiographic parameters (such as late loss) as endpoints for drug-eluting stent trials and the use of more precise techniques to describe accurately and properly the restenotic process.

  13. Cognitive factors in the close visual and magnetic particle inspection of welds underwater.

    PubMed

    Leach, J; Morris, P E

    1998-06-01

    Underwater close visual inspection (CVI) and magnetic particle inspection (MPI) are major components of the commercial diver's job of nondestructive testing and the maintenance of subsea structures. We explored the accuracy of CVI in Experiment 1 and that of MPI in Experiment 2 and observed high error rates (47% and 24%, respectively). Performance was strongly correlated with embedded figures and visual search tests and was unrelated to length of professional diving experience, formal inspection qualification, or age. Cognitive tests of memory for designs, spatial relations, dotted outlines, and block design failed to correlate with performance. Actual or potential applications of this research include more reliable inspection reporting, increased effectiveness from current inspection techniques, and directions for the refinement of subsea inspection equipment.

  14. Role of Binaural Temporal Fine Structure and Envelope Cues in Cocktail-Party Listening.

    PubMed

    Swaminathan, Jayaganesh; Mason, Christine R; Streeter, Timothy M; Best, Virginia; Roverud, Elin; Kidd, Gerald

    2016-08-03

    While conversing in a crowded social setting, a listener is often required to follow a target speech signal amid multiple competing speech signals (the so-called "cocktail party" problem). In such situations, separation of the target speech signal in azimuth from the interfering masker signals can lead to an improvement in target intelligibility, an effect known as spatial release from masking (SRM). This study assessed the contributions of two stimulus properties that vary with separation of sound sources, binaural envelope (ENV) and temporal fine structure (TFS), to SRM in normal-hearing (NH) human listeners. Target speech was presented from the front and speech maskers were either colocated with or symmetrically separated from the target in azimuth. The target and maskers were presented either as natural speech or as "noise-vocoded" speech in which the intelligibility was conveyed only by the speech ENVs from several frequency bands; the speech TFS within each band was replaced with noise carriers. The experiments were designed to preserve the spatial cues in the speech ENVs while retaining/eliminating them from the TFS. This was achieved by using the same/different noise carriers in the two ears. A phenomenological auditory-nerve model was used to verify that the interaural correlations in TFS differed across conditions, whereas the ENVs retained a high degree of correlation, as intended. Overall, the results from this study revealed that binaural TFS cues, especially for frequency regions below 1500 Hz, are critical for achieving SRM in NH listeners. Potential implications for studying SRM in hearing-impaired listeners are discussed. Acoustic signals received by the auditory system pass first through an array of physiologically based band-pass filters. Conceptually, at the output of each filter, there are two principal forms of temporal information: slowly varying fluctuations in the envelope (ENV) and rapidly varying fluctuations in the temporal fine structure (TFS). The importance of these two types of information in everyday listening (e.g., conversing in a noisy social situation; the "cocktail-party" problem) has not been established. This study assessed the contributions of binaural ENV and TFS cues for understanding speech in multiple-talker situations. Results suggest that, whereas the ENV cues are important for speech intelligibility, binaural TFS cues are critical for perceptually segregating the different talkers and thus for solving the cocktail party problem. Copyright © 2016 the authors 0270-6474/16/368250-08$15.00/0.

  15. Correlations Between Ratings on the Resident Annual Evaluation Summary and the Internal Medicine Milestones and Association With ABIM Certification Examination Scores Among US Internal Medicine Residents, 2013-2014.

    PubMed

    Hauer, Karen E; Vandergrift, Jonathan; Hess, Brian; Lipner, Rebecca S; Holmboe, Eric S; Hood, Sarah; Iobst, William; Hamstra, Stanley J; McDonald, Furman S

    2016-12-06

    US internal medicine residency programs are now required to rate residents using milestones. Evidence of validity of milestone ratings is needed. To compare ratings of internal medicine residents using the pre-2015 resident annual evaluation summary (RAES), a nondevelopmental rating scale, with developmental milestone ratings. Cross-sectional study of US internal medicine residency programs in the 2013-2014 academic year, including 21 284 internal medicine residents (7048 postgraduate-year 1 [PGY-1], 7233 PGY-2, and 7003 PGY-3). Program director ratings on the RAES and milestone ratings. Correlations of RAES and milestone ratings by training year; correlations of medical knowledge ratings with American Board of Internal Medicine (ABIM) certification examination scores; rating of unprofessional behavior using the 2 systems. Corresponding RAES ratings and milestone ratings showed progressively higher correlations across training years, ranging among competencies from 0.31 (95% CI, 0.29 to 0.33) to 0.35 (95% CI, 0.33 to 0.37) for PGY-1 residents to 0.43 (95% CI, 0.41 to 0.45) to 0.52 (95% CI, 0.50 to 0.54) for PGY-3 residents (all P values <.05). Linear regression showed ratings differed more between PGY-1 and PGY-3 years using milestone ratings than the RAES (all P values <.001). Of the 6260 residents who attempted the certification examination, the 618 who failed had lower ratings using both systems for medical knowledge than did those who passed (RAES difference, -0.9; 95% CI, -1.0 to -0.8; P < .001; milestone medical knowledge 1 difference, -0.3; 95% CI, -0.3 to -0.3; P < .001; and medical knowledge 2 difference, -0.2; 95% CI, -0.3 to -0.2; P < .001). Of the 26 PGY-3 residents with milestone ratings indicating deficiencies on either of the 2 medical knowledge subcompetencies, 12 failed the certification examination. Correlation of RAES ratings for professionalism with residents' lowest professionalism milestone ratings was 0.44 (95% CI, 0.43 to 0.45; P < .001). Among US internal medicine residents in the 2013-2014 academic year, milestone-based ratings correlated with RAES ratings but with a greater difference across training years. Both rating systems for medical knowledge correlated with ABIM certification examination scores. Milestone ratings may better detect problems with professionalism. These preliminary findings may inform establishment of the validity of milestone-based assessment.

  16. The role of ethnicity in treatment refractory schizophrenia.

    PubMed

    Teo, Celine; Borlido, Carol; Kennedy, James L; De Luca, Vincenzo

    2013-02-01

    The goal of this research was to describe the relationship between treatment resistant schizophrenia, defined using the APA criteria and ethnic background in patients with schizophrenia spectrum disorders in a Canadian sample. A secondary goal was to analyze the number of antipsychotics failed due to side effects and number of antipsychotics failed due to non-response. We included 497 patients diagnosed with schizophrenia spectrum disorders using the SCID. The medication history was extracted from the electronic health records. Data collection included demographics (sex, age, ethnicity), principal diagnosis according to SCID (Diagnostic and Statistical Manual of Mental Disorders, 4th edition), duration of mental illness, number of psychiatric admissions and treatment information. If patients were on clozapine or polypharmacy treatment, this was recorded at the time of the SCID interview. Additional data, including prior antipsychotic history, were collected from the health records. Thirty per cent of the patients were classified as resistant according to the APA criteria. There were significantly more white European subjects in the treatment resistant group (p=0.031). The duration of illness was significantly higher in the resistant group then in the non-resistant group (21.0 vs 15.1 years; p<0.001). Patients who were treatment resistant were more likely to be on polypharmacy compared with non-resistant patients (p=0.001; OR=2.424; 95%CI=1.446-4.065). When we considered the number of drug trials failed due to non response and drug trial failed because of side effects, we found a strong negative correlation in both white Europeans and non-white Europeans. White European ethnicity is associated with treatment resistant schizophrenia. In addition, patients with treatment-resistant schizophrenia were on polypharmacy at higher rate than non resistant patients. Copyright © 2013. Published by Elsevier Inc.

  17. Mechanical loading of bovine pericardium accelerates enzymatic degradation.

    PubMed

    Ellsmere, J C; Khanna, R A; Lee, J M

    1999-06-01

    Bioprosthetic heart valves fail as the result of two simultaneous processes: structural deterioration and calcification. Leaflet deterioration and perforation have been correlated with regions of highest stress in the tissue. The failures have long been assumed to be due to simple mechanical fatigue of the collagen fibre architecture; however, we have hypothesized that local stresses-and particularly dynamic stresses-accelerate local proteolysis, leading to tissue failure. This study addresses that hypothesis. Using a novel, custom-built microtensile culture system, strips of bovine pericardium were subjected to static and dynamic loads while being exposed to solutions of microbial collagenase or trypsin (a non-specific proteolytic enzyme). The time to extend to 30% strain (defined here as time to failure) was recorded. After failure, the percentage of collagen solubilized was calculated based on the amount of hydroxyproline present in solution. All data were analyzed by analysis of variance (ANOVA). In collagenase, exposure to static load significantly decreased the time to failure (P < 0.002) due to increased mean rate of collagen solubilization. Importantly, specimens exposed to collagenase and dynamic load failed faster than those exposed to collagenase under the same average static load (P = 0.02). In trypsin, by contrast, static load never led to failure and produced only minimal degradation. Under dynamic load, however, specimens exposed to collagenase, trypsin, and even Tris/CaCl2 buffer solution, all failed. Only samples exposed to Hanks' physiological solution did not fail. Failure of the specimens exposed to trypsin and Tris/CaCl2 suggests that the non-collagenous components and the calcium-dependent proteolytic enzymes present in pericardial tissue may play roles in the pathogenesis of bioprosthetic heart valve degeneration.

  18. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait

    NASA Technical Reports Server (NTRS)

    Hausdorff, Jeffrey M.; Peng, C.-K.; Ladin, Zvi; Wei, Jeanne Y.; Goldberger, Ary L.

    1995-01-01

    Complex fluctuation of unknown origin appear in the normal gait pattern. These fluctuations might be described as being (1) uncorrelated white noise, (2) short-range correlations, or (3) long-range correlations with power-law scaling. To test these possibilities, the stride interval of 10 healthy young men was measured as they walked for 9 min at their usual rate. From these time series we calculated scaling indexes by using a modified random walk analysis and power spectral analysis. Both indexes indicated the presence of long-range self-similar correlations extending over hundreds of steps; the stride interval at any time depended on the stride interval at remote previous times, and this dependence decayed in a scale-free (fractallike) power-law fashion. These scaling indexes were significantly different from those obtained after random shuffling of the original time series, indicating the importance of the sequential ordering of the stride interval. We demonstrate that conventional models of gait generation fail to reproduce the observed scaling behavior and introduce a new type of central pattern generator model that sucessfully accounts for the experimentally observed long-range correlations.

  19. Closing in on the constitution of consciousness

    PubMed Central

    Miller, Steven M.

    2014-01-01

    The science of consciousness is a nascent and thriving field of research that is founded on identifying the minimally sufficient neural correlates of consciousness. However, I have argued that it is the neural constitution of consciousness that science seeks to understand and that there are no evident strategies for distinguishing the correlates and constitution of (phenomenal) consciousness. Here I review this correlation/constitution distinction problem and challenge the existing foundations of consciousness science. I present the main analyses from a longer paper in press on this issue, focusing on recording, inhibition, stimulation, and combined inhibition/stimulation strategies, including proposal of the Jenga analogy to illustrate why identifying the minimally sufficient neural correlates of consciousness should not be considered the ultimate target of consciousness science. Thereafter I suggest that while combined inhibition and stimulation strategies might identify some constitutive neural activities—indeed minimally sufficient constitutive neural activities—such strategies fail to identify the whole neural constitution of consciousness and thus the correlation/constitution distinction problem is not fully solved. Various clarifications, potential objections and related scientific and philosophical issues are also discussed and I conclude by proposing new foundational claims for consciousness science. PMID:25452738

  20. Thermal field theory and generalized light front quantization

    NASA Astrophysics Data System (ADS)

    Weldon, H. Arthur

    2003-04-01

    The dependence of thermal field theory on the surface of quantization and on the velocity of the heat bath is investigated by working in general coordinates that are arbitrary linear combinations of the Minkowski coordinates. In the general coordinates the metric tensor gμν¯ is nondiagonal. The Kubo-Martin-Schwinger condition requires periodicity in thermal correlation functions when the temporal variable changes by an amount -i/(T(g00¯)). Light-front quantization fails since g00¯=0; however, various related quantizations are possible.

  1. Feasibility Study on Determining the Effect of Testing on Harpoon Missile System Reliability.

    DTIC Science & Technology

    1985-06-01

    or subassem- blies) failed and the date. Correlation between test date and calendar age is achieved by inservice date. Failure events are keyed to...acceptance test of the guidance section is used as the inservice event. ETH time recorded for each test is a cumulative time except for re-zeroing in...and testing environ- ments. The inservice date would correspond to the beginning of the retrieved test history at the final acceptance test of the

  2. Suitability Screening Test for Marine Corps Air Traffic Controllers Phase 3: Non-cognitive Test Validation and Cognitive Test Prototype

    DTIC Science & Technology

    2014-06-01

    Individuals possess a variety of abilities, preferences , interests, and personal characteristics that should be useful in predicting who will be best suited... traits . Through both concurrent and predictive validity designs, scores on the NCAPS were correlated with measures of schoolhouse academic performance and...other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a

  3. Screening for eye irritancy using cultured HeLa cells.

    PubMed

    Selling, J; Ekwall, B

    1985-01-01

    To investigate whether toxicity tests on HeLa cells were predictive of eye irritancy, 18 compounds of known eye irritancy and in vitro cytotoxicity were tested on HeLa cells in the MIT-24 system. The results correlated well with eye irritancy as determined by the Draize test in rabbits for 16 of the test substances, but failed to detect the high eye irritancy of 1-heptanol and allyl alcohol, both of which were cytotoxic in other cellular systems.

  4. Measuring speaker–listener neural coupling with functional near infrared spectroscopy

    PubMed Central

    Liu, Yichuan; Piazza, Elise A.; Simony, Erez; Shewokis, Patricia A.; Onaral, Banu; Hasson, Uri; Ayaz, Hasan

    2017-01-01

    The present study investigates brain-to-brain coupling, defined as inter-subject correlations in the hemodynamic response, during natural verbal communication. We used functional near-infrared spectroscopy (fNIRS) to record brain activity of 3 speakers telling stories and 15 listeners comprehending audio recordings of these stories. Listeners’ brain activity was significantly correlated with speakers’ with a delay. This between-brain correlation disappeared when verbal communication failed. We further compared the fNIRS and functional Magnetic Resonance Imaging (fMRI) recordings of listeners comprehending the same story and found a significant relationship between the fNIRS oxygenated-hemoglobin concentration changes and the fMRI BOLD in brain areas associated with speech comprehension. This correlation between fNIRS and fMRI was only present when data from the same story were compared between the two modalities and vanished when data from different stories were compared; this cross-modality consistency further highlights the reliability of the spatiotemporal brain activation pattern as a measure of story comprehension. Our findings suggest that fNIRS can be used for investigating brain-to-brain coupling during verbal communication in natural settings. PMID:28240295

  5. Not all that glitters is RMT in the forecasting of risk of portfolios in the Brazilian stock market

    NASA Astrophysics Data System (ADS)

    Sandoval, Leonidas; Bortoluzzo, Adriana Bruscato; Venezuela, Maria Kelly

    2014-09-01

    Using stocks of the Brazilian stock exchange (BM&F-Bovespa), we build portfolios of stocks based on Markowitz's theory and test the predicted and realized risks. This is done using the correlation matrices between stocks, and also using Random Matrix Theory in order to clean such correlation matrices from noise. We also calculate correlation matrices using a regression model in order to remove the effect of common market movements and their cleaned versions using Random Matrix Theory. This is done for years of both low and high volatility of the Brazilian stock market, from 2004 to 2012. The results show that the use of regression to subtract the market effect on returns greatly increases the accuracy of the prediction of risk, and that, although the cleaning of the correlation matrix often leads to portfolios that better predict risks, in periods of high volatility of the market this procedure may fail to do so. The results may be used in the assessment of the true risks when one builds a portfolio of stocks during periods of crisis.

  6. Prospective and retrospective episodic metamemory in posttraumatic stress disorder.

    PubMed

    Sacher, Mathilde; Tudorache, Andrei-Cristian; Clarys, David; Boudjarane, Mohamed; Landré, Lionel; El-Hage, Wissam

    2018-03-14

    Posttraumatic stress disorder (PTSD) has been consistently associated with episodic memory deficits. To some extent, these deficits could be related to an impairment of metamemory in individuals with PTSD. This research consequently aims at investigating prospective (feeling-of-knowing, FOK) and retrospective (confidence) metamemory judgments for episodic information in PTSD. Twenty participants with PTSD and without depression were compared to 30 healthy comparison participants on metamemory judgments during an episodic memory task. The concordance between metamemory judgments and recognition performance was then assessed by gamma correlations. The results confirmed that PTSD is associated with episodic memory impairment. Regarding metamemory, gamma correlations indicated that participants with PTSD failed to accurately predict their future memory performance as compared to the comparison group (mean FOK gamma correlations: .23 vs. .42, respectively). Furthermore, participants with PTSD made less accurate confidence judgments than comparison participants (mean confidence gamma correlations: .62 vs. .74, respectively). Our results demonstrate an alteration of both prospective and retrospective metamemory processes in PTSD, which could be of particular relevance to future therapeutic interventions focusing on metacognitive strategies.

  7. Fitting a function to time-dependent ensemble averaged data.

    PubMed

    Fogelmark, Karl; Lomholt, Michael A; Irbäck, Anders; Ambjörnsson, Tobias

    2018-05-03

    Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software.

  8. Dyslexic children fail to comply with the rhythmic constraints of handwriting.

    PubMed

    Pagliarini, Elena; Guasti, Maria Teresa; Toneatto, Carlo; Granocchio, Elisa; Riva, Federica; Sarti, Daniela; Molteni, Bruna; Stucchi, Natale

    2015-08-01

    In this study, we sought to demonstrate that deficits in a specific motor activity, handwriting, are associated to Developmental Dyslexia. The linguistic and writing performance of children with Developmental Dyslexia, with and without handwriting problems (dysgraphia), were compared to that of children with Typical Development. The quantitative kinematic variables of handwriting were collected by means of a digitizing tablet. The results showed that all children with Developmental Dyslexia wrote more slowly than those with Typical Development. Contrary to typically developing children, they also varied more in the time taken to write the individual letters of a word and failed to comply with the principles of isochrony and homothety. Moreover, a series of correlations was found among reading, language measures and writing measures suggesting that the two abilities may be linked. We propose that the link between handwriting and reading/language deficits is mediated by rhythm, as both reading (which is grounded on language) and handwriting are ruled by principles of rhythmic organization. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Correlating Transcription Initiation and Conformational Changes by a Single-Subunit RNA Polymerase with Near Base-Pair Resolution.

    PubMed

    Koh, Hye Ran; Roy, Rahul; Sorokina, Maria; Tang, Guo-Qing; Nandakumar, Divya; Patel, Smita S; Ha, Taekjip

    2018-05-17

    We provide a comprehensive analysis of transcription in real time by T7 RNA Polymerase (RNAP) using single-molecule fluorescence resonance energy transfer by monitoring the entire life history of transcription initiation, including stepwise RNA synthesis with near base-pair resolution, abortive cycling, and transition into elongation. Kinetically branching pathways were observed for abortive initiation with an RNAP either recycling on the same promoter or exchanging with another RNAP from solution. We detected fast and slow populations of RNAP in their transition into elongation, consistent with the efficient and delayed promoter release, respectively, observed in ensemble studies. Real-time monitoring of abortive cycling using three-probe analysis showed that the initiation events are stochastically branched into productive and failed transcription. The abortive products are generated primarily from initiation events that fail to progress to elongation, and a majority of the productive events transit to elongation without making abortive products. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Platelet-Rich-Plasma injection seems to be effective in treatment of plantar fasciitis: a case series.

    PubMed

    van Egmond, Jeroen C; Breugem, Stefan J M; Driessen, Marcel; Bruijn, Daniel J

    2015-06-01

    Plantar fasciitis is the most common cause of heel pain. Diverse non-operative treatment options are available. The purpose of this study was to determine if a single platelet-rich-plasma injection at the origin of the plantar fascia in patients with plantar fasciitis gives a functional improvement. Patients with plantar fasciitis and failed conservative treatment were included in this retrospective study. Included patients were sent four questionnaires after platelet-rich-plasma injection. Primary outcome is functional improvement, determined by foot function index in which lower scores correlates with a better foot function. A total of 61 feet in 58 patients were included. The median foot function index before treatment was 69.4 and after treatment 31.8, which is a significant decrease. In 80.3% of the patients the foot function index decreased. Therefore platelet-rich-plasma injection seems to be effective in treatment of patients with plantar fasciitis when conservative treatment failed.

  11. Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces

    NASA Astrophysics Data System (ADS)

    Qian, Xi-Yuan; Liu, Ya-Min; Jiang, Zhi-Qiang; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H. Eugene

    2015-06-01

    When common factors strongly influence two power-law cross-correlated time series recorded in complex natural or social systems, using detrended cross-correlation analysis (DCCA) without considering these common factors will bias the results. We use detrended partial cross-correlation analysis (DPXA) to uncover the intrinsic power-law cross correlations between two simultaneously recorded time series in the presence of nonstationarity after removing the effects of other time series acting as common forces. The DPXA method is a generalization of the detrended cross-correlation analysis that takes into account partial correlation analysis. We demonstrate the method by using bivariate fractional Brownian motions contaminated with a fractional Brownian motion. We find that the DPXA is able to recover the analytical cross Hurst indices, and thus the multiscale DPXA coefficients are a viable alternative to the conventional cross-correlation coefficient. We demonstrate the advantage of the DPXA coefficients over the DCCA coefficients by analyzing contaminated bivariate fractional Brownian motions. We calculate the DPXA coefficients and use them to extract the intrinsic cross correlation between crude oil and gold futures by taking into consideration the impact of the U.S. dollar index. We develop the multifractal DPXA (MF-DPXA) method in order to generalize the DPXA method and investigate multifractal time series. We analyze multifractal binomial measures masked with strong white noises and find that the MF-DPXA method quantifies the hidden multifractal nature while the multifractal DCCA method fails.

  12. Effects of dynamic range compression on spatial selective auditory attention in normal-hearing listeners.

    PubMed

    Schwartz, Andrew H; Shinn-Cunningham, Barbara G

    2013-04-01

    Many hearing aids introduce compressive gain to accommodate the reduced dynamic range that often accompanies hearing loss. However, natural sounds produce complicated temporal dynamics in hearing aid compression, as gain is driven by whichever source dominates at a given moment. Moreover, independent compression at the two ears can introduce fluctuations in interaural level differences (ILDs) important for spatial perception. While independent compression can interfere with spatial perception of sound, it does not always interfere with localization accuracy or speech identification. Here, normal-hearing listeners reported a target message played simultaneously with two spatially separated masker messages. We measured the amount of spatial separation required between the target and maskers for subjects to perform at threshold in this task. Fast, syllabic compression that was independent at the two ears increased the required spatial separation, but linking the compressors to provide identical gain to both ears (preserving ILDs) restored much of the deficit caused by fast, independent compression. Effects were less clear for slower compression. Percent-correct performance was lower with independent compression, but only for small spatial separations. These results may help explain differences in previous reports of the effect of compression on spatial perception of sound.

  13. Frequency-tuning characteristics of cervical and ocular vestibular evoked myogenic potentials induced by air-conducted tone bursts.

    PubMed

    Park, Hong Ju; Lee, In-Sik; Shin, Jung Eun; Lee, Yeo Jin; Park, Mun Su

    2010-01-01

    To better characterize both ocular and cervical vestibular evoked myogenic potentials (VEMP) responses at different frequencies of sound in 20 normal subjects. Cervical and ocular VEMPs were recorded. The intensities of sound stimulation decreased from the maximal intensity, until no responses were evoked. Thresholds, amplitudes, latencies and interaural amplitude difference ratio (IADR) at the maximal stimulation were calculated. Both tests showed the similar frequency tuning, with the lowest threshold and highest amplitude for 500-Hz tone-burst stimuli. Sound stimulation at 500Hz showed the response rates of 100% in both tests. Cervical VEMPs showed higher incidence than ocular VEMPs. Ocular VEMP thresholds were significantly higher than those of cervical VEMP. Cervical VEMP amplitudes were significantly higher than ocular VEMP amplitudes. IADRs of ocular and cervical VEMPs did not differ significantly. Ocular VEMP showed the similar frequency tuning to cervical VEMP. Cervical VEMP responses showed higher incidence, lower thresholds and larger amplitudes than ocular VEMP. Cervical VEMP is a more reliable measure than ocular VEMP, though the results of both tests will be complementary. Five hundred Hertz is the optimal frequency to use. Copyright 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Modeling the utility of binaural cues for underwater sound localization.

    PubMed

    Schneider, Jennifer N; Lloyd, David R; Banks, Patchouly N; Mercado, Eduardo

    2014-06-01

    The binaural cues used by terrestrial animals for sound localization in azimuth may not always suffice for accurate sound localization underwater. The purpose of this research was to examine the theoretical limits of interaural timing and level differences available underwater using computational and physical models. A paired-hydrophone system was used to record sounds transmitted underwater and recordings were analyzed using neural networks calibrated to reflect the auditory capabilities of terrestrial mammals. Estimates of source direction based on temporal differences were most accurate for frequencies between 0.5 and 1.75 kHz, with greater resolution toward the midline (2°), and lower resolution toward the periphery (9°). Level cues also changed systematically with source azimuth, even at lower frequencies than expected from theoretical calculations, suggesting that binaural mechanical coupling (e.g., through bone conduction) might, in principle, facilitate underwater sound localization. Overall, the relatively limited ability of the model to estimate source position using temporal and level difference cues underwater suggests that animals such as whales may use additional cues to accurately localize conspecifics and predators at long distances. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A Spiking Neural Network Model of the Medial Superior Olive Using Spike Timing Dependent Plasticity for Sound Localization

    PubMed Central

    Glackin, Brendan; Wall, Julie A.; McGinnity, Thomas M.; Maguire, Liam P.; McDaid, Liam J.

    2010-01-01

    Sound localization can be defined as the ability to identify the position of an input sound source and is considered a powerful aspect of mammalian perception. For low frequency sounds, i.e., in the range 270 Hz–1.5 KHz, the mammalian auditory pathway achieves this by extracting the Interaural Time Difference between sound signals being received by the left and right ear. This processing is performed in a region of the brain known as the Medial Superior Olive (MSO). This paper presents a Spiking Neural Network (SNN) based model of the MSO. The network model is trained using the Spike Timing Dependent Plasticity learning rule using experimentally observed Head Related Transfer Function data in an adult domestic cat. The results presented demonstrate how the proposed SNN model is able to perform sound localization with an accuracy of 91.82% when an error tolerance of ±10° is used. For angular resolutions down to 2.5°, it will be demonstrated how software based simulations of the model incur significant computation times. The paper thus also addresses preliminary implementation on a Field Programmable Gate Array based hardware platform to accelerate system performance. PMID:20802855

  16. Do humans show velocity-storage in the vertical rVOR?

    PubMed

    Bertolini, G; Bockisch, C J; Straumann, D; Zee, D S; Ramat, S

    2008-01-01

    To investigate the contribution of the vestibular velocity-storage mechanism (VSM) to the vertical rotational vestibulo-ocular reflex (rVOR) we recorded eye movements evoked by off-vertical axis rotation (OVAR) using whole-body constant-velocity pitch rotations about an earth-horizontal, interaural axis in four healthy human subjects. Subjects were tumbled forward, and backward, at 60 deg/s for over 1 min using a 3D turntable. Slow-phase velocity (SPV) responses were similar to the horizontal responses elicited by OVAR along the body longitudinal axis, ('barbecue' rotation), with exponentially decaying amplitudes and a residual, otolith-driven sinusoidal response with a bias. The time constants of the vertical SPV ranged from 6 to 9 s. These values are closer to those that reflect the dynamic properties of vestibular afferents than the typical 20 s produced by the VSM in the horizontal plane, confirming the relatively smaller contribution of the VSM to these vertical responses. Our preliminary results also agree with the idea that the VSM velocity response aligns with the direction of gravity. The horizontal and torsional eye velocity traces were also sinusoidally modulated by the change in gravity, but showed no exponential decay.

  17. Adaptive spatial filtering improves speech reception in noise while preserving binaural cues.

    PubMed

    Bissmeyer, Susan R S; Goldsworthy, Raymond L

    2017-09-01

    Hearing loss greatly reduces an individual's ability to comprehend speech in the presence of background noise. Over the past decades, numerous signal-processing algorithms have been developed to improve speech reception in these situations for cochlear implant and hearing aid users. One challenge is to reduce background noise while not introducing interaural distortion that would degrade binaural hearing. The present study evaluates a noise reduction algorithm, referred to as binaural Fennec, that was designed to improve speech reception in background noise while preserving binaural cues. Speech reception thresholds were measured for normal-hearing listeners in a simulated environment with target speech generated in front of the listener and background noise originating 90° to the right of the listener. Lateralization thresholds were also measured in the presence of background noise. These measures were conducted in anechoic and reverberant environments. Results indicate that the algorithm improved speech reception thresholds, even in highly reverberant environments. Results indicate that the algorithm also improved lateralization thresholds for the anechoic environment while not affecting lateralization thresholds for the reverberant environments. These results provide clear evidence that this algorithm can improve speech reception in background noise while preserving binaural cues used to lateralize sound.

  18. Binaural model-based dynamic-range compression.

    PubMed

    Ernst, Stephan M A; Kortlang, Steffen; Grimm, Giso; Bisitz, Thomas; Kollmeier, Birger; Ewert, Stephan D

    2018-01-26

    Binaural cues such as interaural level differences (ILDs) are used to organise auditory perception and to segregate sound sources in complex acoustical environments. In bilaterally fitted hearing aids, dynamic-range compression operating independently at each ear potentially alters these ILDs, thus distorting binaural perception and sound source segregation. A binaurally-linked model-based fast-acting dynamic compression algorithm designed to approximate the normal-hearing basilar membrane (BM) input-output function in hearing-impaired listeners is suggested. A multi-center evaluation in comparison with an alternative binaural and two bilateral fittings was performed to assess the effect of binaural synchronisation on (a) speech intelligibility and (b) perceived quality in realistic conditions. 30 and 12 hearing impaired (HI) listeners were aided individually with the algorithms for both experimental parts, respectively. A small preference towards the proposed model-based algorithm in the direct quality comparison was found. However, no benefit of binaural-synchronisation regarding speech intelligibility was found, suggesting a dominant role of the better ear in all experimental conditions. The suggested binaural synchronisation of compression algorithms showed a limited effect on the tested outcome measures, however, linking could be situationally beneficial to preserve a natural binaural perception of the acoustical environment.

  19. The role of reverberation-related binaural cues in the externalization of speech.

    PubMed

    Catic, Jasmina; Santurette, Sébastien; Dau, Torsten

    2015-08-01

    The perception of externalization of speech sounds was investigated with respect to the monaural and binaural cues available at the listeners' ears in a reverberant environment. Individualized binaural room impulse responses (BRIRs) were used to simulate externalized sound sources via headphones. The measured BRIRs were subsequently modified such that the proportion of the response containing binaural vs monaural information was varied. Normal-hearing listeners were presented with speech sounds convolved with such modified BRIRs. Monaural reverberation cues were found to be sufficient for the externalization of a lateral sound source. In contrast, for a frontal source, an increased amount of binaural cues from reflections was required in order to obtain well externalized sound images. It was demonstrated that the interaction between the interaural cues of the direct sound and the reverberation strongly affects the perception of externalization. An analysis of the short-term binaural cues showed that the amount of fluctuations of the binaural cues corresponded well to the externalization ratings obtained in the listening tests. The results further suggested that the precedence effect is involved in the auditory processing of the dynamic binaural cues that are utilized for externalization perception.

  20. Interaction of Object Binding Cues in Binaural Masking Pattern Experiments.

    PubMed

    Verhey, Jesko L; Lübken, Björn; van de Par, Steven

    2016-01-01

    Object binding cues such as binaural and across-frequency modulation cues are likely to be used by the auditory system to separate sounds from different sources in complex auditory scenes. The present study investigates the interaction of these cues in a binaural masking pattern paradigm where a sinusoidal target is masked by a narrowband noise. It was hypothesised that beating between signal and masker may contribute to signal detection when signal and masker do not spectrally overlap but that this cue could not be used in combination with interaural cues. To test this hypothesis an additional sinusoidal interferer was added to the noise masker with a lower frequency than the noise whereas the target had a higher frequency than the noise. Thresholds increase when the interferer is added. This effect is largest when the spectral interferer-masker and masker-target distances are equal. The result supports the hypothesis that modulation cues contribute to signal detection in the classical masking paradigm and that these are analysed with modulation bandpass filters. A monaural model including an across-frequency modulation process is presented that account for this effect. Interestingly, the interferer also affects dichotic thresholds indicating that modulation cues also play a role in binaural processing.

  1. Monaural and binaural processing of complex waveforms

    NASA Astrophysics Data System (ADS)

    Trahiotis, Constantine; Bernstein, Leslie R.

    1992-01-01

    Our research concerned the manners by which the monaural and binaural auditory systems process information in complex sounds. Substantial progress was made in three areas, consistent with the ojectives outlined in the original proposal. (1) New electronic equipment, including a NeXT computer was purchased, installed and interfaced with the existing laboratory. Software was developed for generating the necessary complex digital stimuli and for running behavioral experiments utilizing those stimuli. (2) Monaural experiments showed that the CMR is not obtained successively and is reduced or non-existent when the flanking bands are pulsed rather than presented continuously. Binaural investigations revealed that the detectability of a tonal target in a masking level difference paradigm could be degraded by the presence of a spectrally remote interfering tone. (3) In collaboration with Dr. Richard Stem, theoretical efforts included the explication and evaluation of a weighted-image model of binaural hearing, attempts to extend the Stern-Colbum position-variable model to account for many crucial lateralization and localization data gathered over the past 50 years, and the continuation of efforts to incorporate into a general model notions that lateralization and localization of spectrally-rich stimuli depend upon the patterns of neural activity within a plane defined by frequency and interaural delay.

  2. A novel procedure for examining pre-lexical phonetic-level analysis

    NASA Astrophysics Data System (ADS)

    Bashford, James A.; Warren, Richard M.; Lenz, Peter W.

    2005-09-01

    A recorded word repeated over and over is heard to undergo a series of illusory changes (verbal transformations) to other syllables and words in the listener's lexicon. When a second image of the same repeating word is added through dichotic presentation (with an interaural delay preventing fusion), the two distinct lateralized images of the word undergo independent illusory transformations at the same rate observed for a single image [Lenz et al., J. Acoust. Soc. Am. 107, 2857 (2000)]. However, when the contralateral word differs by even one phoneme, transformation rate decreases dramatically [Bashford et al., J. Acoust. Soc. Am. 110, 2658 (2001)]. This suppression of transformations did not occur when a nonspeech competitor was employed. The present study found that dichotic suppression of transformation rate also is independent of the top-down influence of a verbal competitor's word frequency, neighborhood density, and lexicality. However, suppression did increase with the extent of feature mismatch at a given phoneme position (e.g., transformations for ``dark'' were suppressed more by contralateral ``hark'' than by ``bark''). These and additional findings indicate that dichotic verbal transformations can provide experimental access to a pre-lexical phonetic analysis normally obscured by subsequent processing. [Work supported by NIH.

  3. Why Internally Coupled Ears (ICE) Work Well

    NASA Astrophysics Data System (ADS)

    van Hemmen, J. Leo

    2014-03-01

    Many vertebrates, such as frogs and lizards, have an air-filled cavity between left and right eardrum, i.e., internally coupled ears (ICE). Depending on source direction, internal time (iTD) and level (iLD) difference as experienced by the animal's auditory system may greatly exceed [C. Vossen et al., JASA 128 (2010) 909-918] the external, or interaural, time and level difference (ITD and ILD). Sensory processing only encodes iTD and iLD. We present an extension of ICE theory so as to elucidate the underlying physics. First, the membrane properties of the eardrum explain why for low frequencies iTD dominates whereas iLD does so for higher frequencies. Second, the plateau of iTD = γ ITD for constant 1 < γ < 5 and variable input frequency <ν∘ follows; e.g., for the Tockay gecko ν∘ ~ 1 . 5 kHz. Third, we use a sectorial instead of circular membrane to quantify the effect of the extracolumella embedded in the tympanum and connecting with the cochlea. The main parameters can be adjusted so that the model is species independent. Work done in collaboration with A.P. Vedurmudi and J. Goulet; partially supported by BCCN-Munich.

  4. Psychometric Personality Differences Between Candidates in Astronaut Selection.

    PubMed

    Mittelstädt, Justin M; Pecena, Yvonne; Oubaid, Viktor; Maschke, Peter

    This paper investigates personality traits as potential factors for success in an astronaut selection by comparing personality profiles of unsuccessful and successful astronaut candidates in different phases of the ESA selection procedure. It is further addressed whether personality traits could predict an overall assessment rating at the end of the selection. In 2008/2009, ESA performed an astronaut selection with 902 candidates who were either psychologically recommended for mission training (N = 46) or failed in basic aptitude (N = 710) or Assessment Center and interview testing (N = 146). Candidates completed the Temperament Structure Scales (TSS) and the NEO Personality Inventory Revised (NEO-PI-R). Those candidates who failed in basic aptitude testing showed higher levels of Neuroticism (M = 49.8) than the candidates who passed that phase (M = 45.4 and M = 41.6). Additionally, candidates who failed in basic testing had lower levels of Agreeableness (M = 132.9) than recommended candidates (M = 138.1). TSS scales for Achievement (r = 0.19) and Vitality (r = 0.18) showed a significant correlation with the overall assessment rating given by a panel board after a final interview. Results indicate that a personality profile similar to Helmreich's "Right Stuff" is beneficial in astronaut selection. Influences of test anxiety on performance are discussed. Mittelstädt JM, Pecena Y, Oubaid V, Maschke P. Psychometric personality differences between candidates in astronaut selection. Aerosp Med Hum Perform. 2016; 87(11):933-939.

  5. Endothelial cell density to predict endothelial graft failure after penetrating keratoplasty.

    PubMed

    Lass, Jonathan H; Sugar, Alan; Benetz, Beth Ann; Beck, Roy W; Dontchev, Mariya; Gal, Robin L; Kollman, Craig; Gross, Robert; Heck, Ellen; Holland, Edward J; Mannis, Mark J; Raber, Irving; Stark, Walter; Stulting, R Doyle

    2010-01-01

    To determine whether preoperative and/or postoperative central endothelial cell density (ECD) and its rate of decline postoperatively are predictive of graft failure caused by endothelial decompensation following penetrating keratoplasty to treat a moderate-risk condition, principally, Fuchs dystrophy or pseudophakic corneal edema. In a subset of Cornea Donor Study participants, a central reading center determined preoperative and postoperative ECD from available specular images for 17 grafts that failed because of endothelial decompensation and 483 grafts that did not fail. Preoperative ECD was not predictive of graft failure caused by endothelial decompensation (P = .91). However, the 6-month ECD was predictive of subsequent failure (P < .001). Among those that had not failed within the first 6 months, the 5-year cumulative incidence (+/-95% confidence interval) of failure was 13% (+/-12%) for the 33 participants with a 6-month ECD of less than 1700 cells/mm(2) vs 2% (+/-3%) for the 137 participants with a 6-month ECD of 2500 cells/mm(2) or higher. After 5 years' follow-up, 40 of 277 participants (14%) with a clear graft had an ECD below 500 cells/mm(2). Preoperative ECD is unrelated to graft failure from endothelial decompensation, whereas there is a strong correlation of ECD at 6 months with graft failure from endothelial decompensation. A graft can remain clear after 5 years even when the ECD is below 500 cells/mm(2).

  6. Screening for hearing loss in the elderly using distortion product otoacoustic emissions, pure tones, and a self-assessment tool.

    PubMed

    Jupiter, Tina

    2009-12-01

    To determine whether distortion product otoacoustic emissions (DPOAEs) could be used as a hearing screening tool with elderly individuals living independently, and to compare the utility of different screening protocols: (a) 3 pure-tone screening protocols consisting of 30 dB HL at 1, 2, and 3 kHz; 40 dB HL at 1, 2, and 3 kHz; or 40 dB HL at 1 and 2 kHz; (b) the Hearing Handicap Inventory for the Elderly-Screening version (HHIE-S); (c) pure tones at 40 dB HL at 1 and 2 kHz plus the HHIE-S; and (d) DPOAEs. A total of 106 elderly individuals age 65-91 years were screened using the above protocols. Pass/fail results showed that most individuals failed at 30 dB HL, followed by DPOAEs, the 40-dB HL protocols, the HHIE-S alone, and the combined pure-tone/HHIE-S protocol. All screening results were associated except the HHIE-S and 30 dB HL and the HHIE-S and DPOAEs. A McNemar analysis revealed that the differences between the correlated pass/fail results were significant except for the HHIE-S and 40 dB at 1 and 2 kHz. DPOAEs can be used to screen the elderly, with the advantage that individuals do not have to voluntarily respond to the test.

  7. Serum human chorionic gonadotropin levels on the day before oocyte retrieval do not correlate with oocyte maturity

    PubMed Central

    Levy, Gary; Hill, Micah J.; Ramirez, Christina; Plowden, Torrie; Pilgrim, Justin; Howard, Robin S.; Segars, James H.; Csokmay, John

    2014-01-01

    Objective To evaluate the correlation of preretrieval quantitative serum hCG level with oocyte maturity. Design Retrospective cohort study. Setting Military assisted reproductive technology (ART) program. Patient(s) Fresh autologous ART cycles. Intervention(s) Serum hCG level the day before oocyte retrieval. Main Outcome Measure(s) Linear regression was used to correlate serum hCG levels and oocyte maturity rates. Normal oocyte maturity was defined as ≥ 75% and the Wilcoxon rank sum test was used to compare serum hCG levels in patients with normal and low oocyte maturity. Threshold analysis was performed to determine hCG levels that could predict oocyte maturity. Result(s) A total of 468 ART cycles were analyzed. Serum hCG level was not correlated with hCG dose; however, it was negatively correlated with body mass index (BMI). Serum hCG levels did not differ between patients with oocyte maturity of <75% and ≥ 75%. Serum hCG levels did not correlate with oocyte maturity rates. Receiver operator characteristic and less than efficiency curves failed to demonstrate thresholds at which hCG could predict oocyte maturity. Conclusion(s) Serum hCG levels were not correlated with oocyte maturity. Although a positive hCG was reassuring that mature oocytes would be retrieved for most patients, the specific value was not helpful. PMID:23375205

  8. Transformational and transactional leadership: a meta-analytic test of their relative validity.

    PubMed

    Judge, Timothy A; Piccolo, Ronald F

    2004-10-01

    This study provided a comprehensive examination of the full range of transformational, transactional, and laissez-faire leadership. Results (based on 626 correlations from 87 sources) revealed an overall validity of .44 for transformational leadership, and this validity generalized over longitudinal and multisource designs. Contingent reward (.39) and laissez-faire (-.37) leadership had the next highest overall relations; management by exception (active and passive) was inconsistently related to the criteria. Surprisingly, there were several criteria for which contingent reward leadership had stronger relations than did transformational leadership. Furthermore, transformational leadership was strongly correlated with contingent reward (.80) and laissez-faire (-.65) leadership. Transformational and contingent reward leadership generally predicted criteria controlling for the other leadership dimensions, although transformational leadership failed to predict leader job performance. (c) 2004 APA, all rights reserved

  9. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception

    NASA Astrophysics Data System (ADS)

    Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.

    2018-04-01

    Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.

  10. FKBP5 methylation as a possible marker for cortisol state and transient cortisol exposure in healthy human subjects.

    PubMed

    Winkler, Britta K; Lehnert, Hendrik; Oster, Henrik; Kirchner, Henriette; Harbeck, Birgit

    2017-10-01

    Current glucocorticoid replacement regimens, in adrenal insufficiency, fail to mimic the physiological cortisol secretion, thereby fostering serious side effects. To experimentally evaluate the impact of CpG methylation within the FKBP5 gene as a possible short- and long-term marker for cortisol exposure in humans. An ACTH-stimulation test was carried out and methylation status of the FKBP5 gene in leukocytes was determined. A negative correlation between basal levels of methylation and serum cortisol was observed. Individual changes in FKBP5 methylation after 24 h correlated with cortisol responses. Considering previous studies conducted with murine leucocytes, FKBP5 methylation may be suitable as a long-term biomarker, rather than acute glucocorticoid exposure, also in humans.

  11. Variational treatment of entanglement in the Dicke model

    NASA Astrophysics Data System (ADS)

    Bakemeier, L.; Alvermann, A.; Fehske, H.

    2015-10-01

    We introduce a variational ansatz for the Dicke model that extends mean-field theory through the inclusion of spin-oscillator correlations. The correlated variational state is obtained from the mean-field product state via a unitary transformation. The ansatz becomes correct in the limit of large oscillator frequency and in the limit of a large spin, for which it captures the leading quantum corrections to the classical limit exactly including the spin-oscillator entanglement entropy. We explain the origin of the unitary transformation before we show that the ansatz improves substantially upon mean-field theory, giving near exact results for the ground state energy and very good results for other observables. We then discuss why the ansatz still encounters problems in the transition regime at moderate spin lengths, where it fails to capture the precursors of the superradiant quantum phase transition faithfully. This observation illustrates the principal limits of semi-classical formulations, even after they are extended with correlations and entanglement.

  12. Evaluation of cerebral function after carotid endarterectomy.

    PubMed

    Uclés, P; Almárcegui, C; Lorente, S; Romero, F; Marco, M

    1997-05-01

    Neuroimaging methods have failed to disclose correlation between degree of cerebral atrophy and blood flow in carotid artery stenosis patients. Moreover, intellectual improvement after carotid endarterectomy does not correlate fully with neuroimaging data in such patients. We performed brain electrical activity mapping and psychological testing before and 4 weeks after operation in 28 patients with symptomatic, high-grade, carotid stenosis. Postoperatively, electroencephalographic (EEG) mean frequency and absolute theta power improved significantly (p < 0.01). Mean frequency increased >1 Hz in most areas while power decreased dramatically, mainly because of resolution of high-voltage foci in 8 patients. Differences were conspicuous in both frontal lobes irrespective of the operated side, which suggests changes in perfusion affecting the whole brain. This is a positive effect of endarterectomy. Mini-Mental test and Set Test for verbal fluency had a positive correlation with the qEEG changes. Quantitative EEG as a measure of cerebral function has disclosed discriminative improvement in the early postoperative period. Our results support the thesis of improvement subsequent to endarterectomy.

  13. Data processing device test apparatus and method therefor

    DOEpatents

    Wilcox, Richard Jacob; Mulig, Jason D.; Eppes, David; Bruce, Michael R.; Bruce, Victoria J.; Ring, Rosalinda M.; Cole, Jr., Edward I.; Tangyunyong, Paiboon; Hawkins, Charles F.; Louie, Arnold Y.

    2003-04-08

    A method and apparatus mechanism for testing data processing devices are implemented. The test mechanism isolates critical paths by correlating a scanning microscope image with a selected speed path failure. A trigger signal having a preselected value is generated at the start of each pattern vector. The sweep of the scanning microscope is controlled by a computer, which also receives and processes the image signals returned from the microscope. The value of the trigger signal is correlated with a set of pattern lines being driven on the DUT. The trigger is either asserted or negated depending the detection of a pattern line failure and the particular line that failed. In response to the detection of the particular speed path failure being characterized, and the trigger signal, the control computer overlays a mask on the image of the device under test (DUT). The overlaid image provides a visual correlation of the failure with the structural elements of the DUT at the level of resolution of the microscope itself.

  14. Evaluation of 2 cognitive abilities tests in a dual-task environment

    NASA Technical Reports Server (NTRS)

    Vidulich, M. A.; Tsang, P. S.

    1986-01-01

    Most real world operators are required to perform multiple tasks simultaneously. In some cases, such as flying a high performance aircraft or trouble shooting a failing nuclear power plant, the operator's ability to time share or process in parallel" can be driven to extremes. This has created interest in selection tests of cognitive abilities. Two tests that have been suggested are the Dichotic Listening Task and the Cognitive Failures Questionnaire. Correlations between these test results and time sharing performance were obtained and the validity of these tests were examined. The primary task was a tracking task with dynamically varying bandwidth. This was performed either alone or concurrently with either another tracking task or a spatial transformation task. The results were: (1) An unexpected negative correlation was detected between the two tests; (2) The lack of correlation between either test and task performance made the predictive utility of the tests scores appear questionable; (3) Pilots made more errors on the Dichotic Listening Task than college students.

  15. Increased alpha 2-macroglobulin in diabetes: a hyperglycemia related phenomenon associated with reduced antithrombin III activity.

    PubMed

    Ceriello, A; Giugliano, D; Quatraro, A; Stante, A; Dello Russo, P; Torella, R

    1989-01-01

    Increased alpha 2-macroglobulin (alpha 2M) activity and concentration, and decreased antithrombin III (ATIII) plasma concentration are reported in diabetic subjects. In diabetes an inverse correlation between ATIII activity and blood glucose, HbA1, alpha 2M activity and alpha 2M concentration, and a direct correlation between both alpha 2M activity and alpha 2M concentration with blood glucose and HbA1 are found. Moreover, a direct correlation between alpha 2M activity and alpha 2M concentration fails. In both diabetic and normal subjects induced hyperglycemia increases alpha 2M activity and alpha 2M concentration reduces ATIII activity, while ATIII concentration is not affected. These data which show that hyperglycemia may increase alpha 2M molecule levels while altering only the biological function of ATIII, provide evidence that hyperglycemia may decrease, directly, the biological function of some proteins and may condition the levels of some risk factors for the development of diabetic complications such as alpha 2M.

  16. Chronotype correlates with developmental index, intelligence and academic achievement: A study based on nationwide indicators.

    PubMed

    Randler, Christoph

    2017-01-01

    Chronotype or morningness-eveningness (M/E) is an individual trait with a biological basis. In this study, I analysed the relationship between M/E and nationwide available data, such as economic variables, school achievement, intelligence and conscientiousness, which is a personality trait. These variables have been chosen because, first, they are linked on the individual level with circadian preference, and, second these associations have been found based on meta-analyses, which gives these findings a high plausibility. In addition, economic status has also been proposed to be related to M/E. Higher developed countries showed a lower morningness, based on both, the ranking of countries as well as on the HDI value. Similarly, GNI was related to morningness, while higher intelligence and performance in PISA were related to eveningness. Conscientiousness was related to morningness, although the results failed the significance level marginally. When using IQ as a control variable in partial correlations, the relationship between GNI and morningness disappeared, as did the correlation between eveningness and PISA results.

  17. Comparison of the backward overhead medicine ball throw to power production in college football players.

    PubMed

    Mayhew, Jerry L; Bird, Michael; Cole, Mary L; Koch, Alex J; Jacques, Jeff A; Ware, John S; Buford, Brittney N; Fletcher, Kate M

    2005-08-01

    The purpose of this study was to determine the relationship of the backward overhead medicine ball (BOMB) throw to power production in college football players. Forty National Collegiate Athletic Association Division II college football players were studied at the end of an 8-week off-season conditioning program for power output determined from a countermovement vertical jump on a force plate and for maximal distance in the standing BOMB throw. Although the reliability of the BOMB test was high (interclass correlation coefficient = 0.86), there was a significant learning effect across 3 trials (p < 0.01). Peak and average powers generated during the vertical jump correlated moderately but significantly with the best BOMB throw distance (r = 0.59 and 0.63, respectively). Considering power relative to body mass or lean body mass failed to produce significant correlations with BOMB throw distance (r = 0.27 and 0.28, respectively). Therefore, the BOMB throw may have limited potential as a predictor of total body explosive power in college football players.

  18. Serum CEACAM1 Elevation Correlates with Melanoma Progression and Failure to Respond to Adoptive Cell Transfer Immunotherapy

    PubMed Central

    Ortenberg, R.; Sapoznik, S.; Zippel, D.; Shapira-Frommer, R.; Itzhaki, O.; Kubi, A.; Zikich, D.; Besser, M. J.; Schachter, J.; Markel, G.

    2015-01-01

    Malignant melanoma is a devastating disease whose incidences are continuously rising. The recently approved antimelanoma therapies carry new hope for metastatic patients for the first time in decades. However, the clinical management of melanoma is severely hampered by the absence of effective screening tools. The expression of the CEACAM1 adhesion molecule on melanoma cells is a strong predictor of poor prognosis. Interestingly, a melanoma-secreted form of CEACAM1 (sCEACAM1) has recently emerged as a potential tumor biomarker. Here we add novel evidences supporting the prognostic role of serum CEACAM1 by using a mice xenograft model of human melanoma and showing a correlation between serum CEACAM1 and tumor burden. Moreover, we demonstrate that serum CEACAM1 is elevated over time in progressive melanoma patients who fail to respond to immunotherapy as opposed to responders and stable disease patients, thus proving a correlation between sCEACAM1, response to treatment, and clinical deterioration. PMID:26688824

  19. Twitter Influenza Surveillance: Quantifying Seasonal Misdiagnosis Patterns and their Impact on Surveillance Estimates.

    PubMed

    Mowery, Jared

    2016-01-01

    Influenza (flu) surveillance using Twitter data can potentially save lives and increase efficiency by providing governments and healthcare organizations with greater situational awareness. However, research is needed to determine the impact of Twitter users' misdiagnoses on surveillance estimates. This study establishes the importance of Twitter users' misdiagnoses by showing that Twitter flu surveillance in the United States failed during the 2011-2012 flu season, estimates the extent of misdiagnoses, and tests several methods for reducing the adverse effects of misdiagnoses. Metrics representing flu prevalence, seasonal misdiagnosis patterns, diagnosis uncertainty, flu symptoms, and noise were produced using Twitter data in conjunction with OpenSextant for geo-inferencing, and a maximum entropy classifier for identifying tweets related to illness. These metrics were tested for correlations with World Health Organization (WHO) positive specimen counts of flu from 2011 to 2014. Twitter flu surveillance erroneously indicated a typical flu season during 2011-2012, even though the flu season peaked three months late, and erroneously indicated plateaus of flu tweets before the 2012-2013 and 2013-2014 flu seasons. Enhancements based on estimates of misdiagnoses removed the erroneous plateaus and increased the Pearson correlation coefficients by .04 and .23, but failed to correct the 2011-2012 flu season estimate. A rough estimate indicates that approximately 40% of flu tweets reflected misdiagnoses. Further research into factors affecting Twitter users' misdiagnoses, in conjunction with data from additional atypical flu seasons, is needed to enable Twitter flu surveillance systems to produce reliable estimates during atypical flu seasons.

  20. DNA viewed as an out-of-equilibrium structure

    NASA Astrophysics Data System (ADS)

    Provata, A.; Nicolis, C.; Nicolis, G.

    2014-05-01

    The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ2 tests shows that DNA can not be described as a low order Markov chain of order up to r =6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.

Top