Science.gov

Sample records for intercalator displacement-based discovery

  1. Semi-automated high-throughput fluorescent intercalator displacement-based discovery of cytotoxic DNA binding agents from a large compound library.

    PubMed

    Glass, Lateca S; Bapat, Aditi; Kelley, Mark R; Georgiadis, Millie M; Long, Eric C

    2010-03-01

    High-throughput fluorescent intercalator displacement (HT-FID) was adapted to the semi-automated screening of a commercial compound library containing 60,000 molecules resulting in the discovery of cytotoxic DNA-targeted agents. Although commercial libraries are routinely screened in drug discovery efforts, the DNA binding potential of the compounds they contain has largely been overlooked. HT-FID led to the rapid identification of a number of compounds for which DNA binding properties were validated through demonstration of concentration-dependent DNA binding and increased thermal melting of A/T- or G/C-rich DNA sequences. Selected compounds were assayed further for cell proliferation inhibition in glioblastoma cells. Seven distinct compounds emerged from this screening procedure that represent structures unknown previously to be capable of targeting DNA leading to cell death. These agents may represent structures worthy of further modification to optimally explore their potential as cytotoxic anti-cancer agents. In addition, the general screening strategy described may find broader impact toward the rapid discovery of DNA targeted agents with biological activity.

  2. Drug-DNA intercalation: from discovery to the molecular mechanism.

    PubMed

    Mukherjee, Arnab; Sasikala, Wilbee D

    2013-01-01

    The ability of small molecules to perturb the natural structure and dynamics of nucleic acids is intriguing and has potential applications in cancer therapeutics. Intercalation is a special binding mode where the planar aromatic moiety of a small molecule is inserted between a pair of base pairs, causing structural changes in the DNA and leading to its functional arrest. Enormous progress has been made to understand the nature of the intercalation process since its idealistic conception five decades ago. However, the biological functions were detected even earlier. In this review, we focus mainly on the acridine and anthracycline types of drugs and provide a brief overview of the development in the field through various experimental methods that led to our present understanding of the subject. Subsequently, we discuss the molecular mechanism of the intercalation process, free-energy landscapes, and kinetics that was revealed recently through detailed and rigorous computational studies.

  3. A modified fluorescent intercalator displacement assay for RNA ligand discovery

    PubMed Central

    Asare-Okai, Papa Nii; Chow, Christine S.

    2010-01-01

    Fluorescent intercalator displacement (FID) is a convenient and practical tool for identifying new nucleic-acid-binding ligands. The success of FID is based on the fact that it can be fashioned into a versatile screening assay for assessing the relative binding affinities of compounds to nucleic acids. FID is a tagless approach; the target RNAs and the ligands or small molecules under investigation do not have to be modified in order to be examined. In this study, a modified FID assay for screening RNA-binding ligands was established using 3-methyl-2-((1-(3-(trimethylammonio)propyl)-4-quinolinylidene)methyl)benzothiazolium (TO-PRO) as the fluorescent indicator. Electrospray ionization mass spectrometry (ESI-MS) results provide direct evidence that correlates the reduction in fluorescence intensity observed in the FID assay with displacement of the dye molecule from RNA. The assay was successfully applied to screen a variety of RNA-binding ligands with a set of small hairpin RNAs. Ligands that bind with moderate affinity to the chosen RNA constructs (A-site, TAR, h31, and H69) were identified. PMID:20863807

  4. DISPLACEMENT BASED SEISMIC DESIGN CRITERIA

    SciTech Connect

    HOFMAYER,C.H.

    1999-03-29

    The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration.

  5. Weaving hypothesis of cardiomyocyte sarcomeres: discovery of periodic broadening and narrowing of intercalated disk during volume-load change.

    PubMed

    Yoshida, Makoto; Sho, Eiketsu; Nanjo, Hiroshi; Takahashi, Masato; Kobayashi, Mikio; Kawamura, Kouiti; Honma, Makiko; Komatsu, Masayo; Sugita, Akihiro; Yamauchi, Misa; Hosoi, Takahiro; Ito, Yukinobu; Masuda, Hirotake

    2010-02-01

    To investigate how cardiomyocytes change their length, echocardiographic and morphological studies were performed on rabbit hearts that were subjected to volume overload, overload removal, and repeated cycles of overload and overload removal. These conditions were created by arterio-venous fistula between the carotid artery and jugular vein, closure of the fistula, and cycles of repeatedly forming and closing fistula, respectively. After overload, hearts dilated and myocytes elongated. Intercalated disks repeatedly broadened and narrowed with a 2-day cycle, which continued for 8 weeks in many animals. The cycle consisted of shifts between five modes characterized by two interdigitation elongation-and-shortenings as follows: (I) flat with short ( approximately 1/4 to approximately 1/3 sarcomere long) interdigitations; (II) flat with long (one sarcomere long) interdigitations; (III) grooved with short interdigitations; (IV) grooved with long interdigitations; (V) flat with short interdigitations intermingled by sporadic long interdigitations; and return to (I). After overload removal, hearts contracted and myocytes shortened with similar 2-day broadening and narrowing cycle of intercalated disks, in which the five modes were reversed. Repeated overload and overload removal resulted in the repetition of myocyte elongation and shortening. We hypothesize that a single elongation-and-shortening event creates or disposes one sarcomere layer, and the two consecutive elongation-and-shortenings occur complementarily to each other so that the disks return to their original state after each cycle. Our hypothesis predicts that intercalated disks weave and unravel one sarcomere per myocyte per day.

  6. Intercalated Graphite Fiber Conductor.

    DTIC Science & Technology

    1980-12-01

    Lightweight electrical conductors were developed from graphitic fibers inter- calated with highly electrophilic intercalants. Conductance increases of...intercalated with highly electrophilic molecules ("intercalants") to en- hance their electrical conductivity. Evaluation of the elec- trical resistance of two...corrosion resistant to fluorine containing chemicals. Since the moisture permeability of the TFE is much less than that of the FEP, attempts were made to

  7. Discovery

    ERIC Educational Resources Information Center

    de Mestre, Neville

    2010-01-01

    All common fractions can be written in decimal form. In this Discovery article, the author suggests that teachers ask their students to calculate the decimals by actually doing the divisions themselves, and later on they can use a calculator to check their answers. This article presents a lesson based on the research of Bolt (1982).

  8. Superconductivity in graphite intercalation compounds

    DOE PAGES

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; ...

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  9. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  10. Intercalated graphite electrical conductors

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1983-01-01

    For years NASA has wanted to reduce the weight of spacecraft and aircraft. Experiments are conducted to find a lightweight synthetic metal to replace copper. The subject of this paper, intercalated graphite, is such a material. Intercalated graphite is made by heating petroleum or coal to remove the hydrogen and to form more covalent bonds, thus increasing the molecular weight. The coal or petroleum eventually turns to pitch, which can then be drawn into a fiber. With continued heating the pitch-based fiber releases hydrogen and forms a carbon fiber. The carbon fiber, if heated sufficiently, becomes more organized in parallel layers of hexagonally arranged carbon atoms in the form of graphite. A conductor of intercalated graphite is potentially useful for spacecraft or aircraft applications because of its low weight.

  11. Thin flexible intercalation anodes

    SciTech Connect

    Levy, S.C.; Cieslak, W.R.; Klassen, S.E.; Lagasse, R.R.

    1994-10-01

    Poly(acrylonitrile) fibers have been pyrolyzed under various conditions to form flexible carbon yarns capable of intercalating lithium ions. These fibers have also been formed into both woven and non woven cloths. Potentiostatic, potentiodynamic and galvanostatic tests have been conducted with these materials in several electrolytes. In some tests, a potential hold was used after each constant current charge and discharge. These tests have shown some of these flexible materials to reversibly intercalate lithium ions to levels that are suitable for use as a practical battery anode.

  12. Measurement of chest wall displacement based on terahertz wave

    NASA Astrophysics Data System (ADS)

    Li, Hui; Lv, Hao; Jiao, Teng; Lu, Guohua; Li, Sheng; Li, Zhao; Liu, Miao; Jing, Xijing; Wang, Jianqi

    2015-02-01

    Measurement of chest wall displacement is an important approach for measuring mechanics of chest wall, which has considerable significance for assessing respiratory system and diagnosing pulmonary diseases. However, existing optical methods for measuring chest wall displacement are inconvenient for some specific patients such as the female patients and the patients with bandaged chest. In this letter, we proposed a method for measuring chest wall displacement based on terahertz wave and established corresponding mathematic model and set up a terahertz measurement system. The main advantages of this method are that it can measure the chest wall displacement of the subjects without taking off clothes or arranging any markers. To validate this method and assess the performance of the terahertz system, in vitro, the displacement of a water module driven by a linear guide rail was measured by the terahertz system and compared with the actual displacement of the water module. The results showed that the waveforms measured with two methods have a good agreement, and the relative error is less than 5% and sufficiently good for measurement demands. In vivo, the synchronous experiment was performed on five human volunteers with the terahertz system and a respiratory belt transducer. The results demonstrate that this method has good performance and promising prospects for measuring chest wall displacement.

  13. Structural studies of intercalants

    SciTech Connect

    Hastings, J.B.

    1981-01-01

    The structure of stage 2 potassium intercalated graphite, KC/sub 24/, is discussed in both the ordered and disordered phases. A one-dimensional model is used to illustrate the qualitative features of the KC/sub 24/ diffraction patterns.

  14. Graphite fiber intercalation: Dynamics of the bromine intercalation process

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Zinolabedini, R.

    1985-01-01

    The resistance of pitch-based graphite fibers was monitored, in situ, during a series of bromine intercalation experiments. The threshold pressure for the bromine intercalation of pitch-based fibers was estimated to be 102 torr. When the bromine atmosphere was removed from the reaction chamber, the resistivity of the intercalated graphite fibers increased consistently. This increase was attributed to loss of bromine from the perimeter of the fiber. The loss was confirmed by mapping the bromine concentration across the diameter of single intercalated fibers with either energy dispersive spectroscopy or scanning Auger microscopy. A statistical study comparing fibers intercalated in bromine vapor with fibers intercalated in bromine liquid showed that similar products were obtained with both methods of intercalation.

  15. Efficiency Improvements to the Displacement Based Multilevel Structural Optimization Algorithm

    NASA Technical Reports Server (NTRS)

    Plunkett, C. L.; Striz, A. G.; Sobieszczanski-Sobieski, J.

    2001-01-01

    Multilevel Structural Optimization (MSO) continues to be an area of research interest in engineering optimization. In the present project, the weight optimization of beams and trusses using Displacement based Multilevel Structural Optimization (DMSO), a member of the MSO set of methodologies, is investigated. In the DMSO approach, the optimization task is subdivided into a single system and multiple subsystems level optimizations. The system level optimization minimizes the load unbalance resulting from the use of displacement functions to approximate the structural displacements. The function coefficients are then the design variables. Alternately, the system level optimization can be solved using the displacements themselves as design variables, as was shown in previous research. Both approaches ensure that the calculated loads match the applied loads. In the subsystems level, the weight of the structure is minimized using the element dimensions as design variables. The approach is expected to be very efficient for large structures, since parallel computing can be utilized in the different levels of the problem. In this paper, the method is applied to a one-dimensional beam and a large three-dimensional truss. The beam was tested to study possible simplifications to the system level optimization. In previous research, polynomials were used to approximate the global nodal displacements. The number of coefficients of the polynomials equally matched the number of degrees of freedom of the problem. Here it was desired to see if it is possible to only match a subset of the degrees of freedom in the system level. This would lead to a simplification of the system level, with a resulting increase in overall efficiency. However, the methods tested for this type of system level simplification did not yield positive results. The large truss was utilized to test further improvements in the efficiency of DMSO. In previous work, parallel processing was applied to the

  16. DNA intercalators in cancer therapy: organic and inorganic drugs and their spectroscopic tools of analysis.

    PubMed

    Wheate, Nial J; Brodie, Craig R; Collins, J Grant; Kemp, Sharon; Aldrich-Wright, Janice R

    2007-06-01

    Since the discovery of the DNA intercalation process by Lerman in 1961 thousands of organic, inorganic octahedral (particularly ruthenium(II) and rhodium(III)) and square-planar (particularly platinum(II)) compounds have been developed as potential anticancer agents and diagnostic agents. The design and synthesis of new drugs is focused on bis-intercalators which have two intercalating groups linked via a variety of ligands, and synergistic drugs, which combine the anticancer properties of intercalation with other functionalities, such as covalent binding or boron-cages (for radiation therapy). Advances in spectroscopic techniques mean that the process of DNA intercalation can be examined in far greater detail than ever before, yielding important information on structure-activity relationships. In this review we examine the history and development of DNA intercalators as anticancer agents and advances in the analysis of DNA-drug interactions.

  17. Stacking interactions and DNA intercalation

    SciTech Connect

    Li, Dr. Shen; Cooper, Valentino R; Thonhauser, Prof. Timo; Lundqvist, Prof. Bengt I.; Langreth, David C.

    2009-01-01

    The relationship between stacking interactions and the intercalation of proflavine and ellipticine within DNA is investigated using a nonempirical van der Waals density functional for the correlation energy. Our results, employing a binary stack model, highlight fundamental, qualitative differences between base-pair base-pair interactions and that of the stacked intercalator base pair system. Most notable result is the paucity of torque which so distinctively defines the Twist of DNA. Surprisingly, this model, when combined with a constraint on the twist of the surrounding base-pair steps to match the observed unwinding of the sugar-phosphate backbone, was sufficient for explaining the experimentally observed proflavine intercalator configuration. Our extensive mapping of the potential energy surface of base-pair intercalator interactions can provide valuable information for future nonempirical studies of DNA intercalation dynamics.

  18. Durability of Intercalated Graphite Epoxy Composites in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Davidson, Michelle L.; Shively, Rhonda

    1996-01-01

    The electrical conductivity of graphite epoxy composites can be substantially increased by intercalating (inserting guest atoms or molecules between the graphene planes) the graphite fibers before composite formation. The resulting high strength, low density, electrically conducting composites have been proposed for EMI shielding in spacecraft. Questions have been raised, however, about their durability in the space environment, especially with respect to outgassing of the intercalates, which are corrosive species such as bromine. To answer those concerns, six samples of bromine intercalated graphite epoxy composites were included in the third Evaluation of Oxygen Interaction with Materials (EOIM-3) experiment flown on the Space Shuttle Discovery (STS-46). Changes in electrical conductivity, optical reflectance, surface texture, and mass loss for SiO2 protected and unprotected samples were measured after being exposed to the LEO environment for 42 hours. SiO2 protected samples showed no degradation, verifying conventional protection strategies are applicable to bromine intercalated composites. The unprotected samples showed that bromine intercalation does not alter the degradation of graphite-epoxy composites. No bromine was detected to have been released by the fibers allaying fears that outgassing could be disruptive to the sensitive electronics the EMI shield is meant to protect.

  19. Synthesis and insertion mechanism of graphite intercalation compounds

    SciTech Connect

    Leong, K.W.

    1987-01-01

    The formation of graphite intercalation compounds were studied in graphite-oxide and graphite-metal chloride systems. Three types of fibers-type P (Union Carbide), GY-30 and GY-70 (Celanese), and HMS and HT(Hercules)- were oxidized by chemical as well as electrochemical means. The chemically oxidized fibers had an increase in electrical resistivity of over three orders of magnitude compared to the pristine fiber. The interstitial oxidation reduced the tensile strength and elastic modulus of the fiber by no more than 25%. In examining the role played by co-reagents in assisting insertion of AlCl/sub 3/, it was concluded that intercalation was initiated by a charge transfer between the graphite layers and an adsorbed Friedel-Crafts complex. Nitric oxide, hydrogen chloride, and nitrosyl chloride had been identified as new effective coreagents for the intercalation of AlCl/sub 3/. Discovery of these coreagents offered alternative synthetic routes, which are discussed. The kinetic investigation of the intercalation of AlCl/sub 3/-Cl/sub 2/ suggested that charge transfer between graphite and AlCl/sub 3/ is a surface phenomenon, and propagation of electron holes along c-axis is one of the rate-determining steps. To model the non-Fickian diffusion behavior, it was proposed that relaxation of the matrix as driven by elastic interaction of the intercalants contributes to the anomalies. A mathematical expression was derived to correlate the data by superpositioning relaxation terms over the diffusion equation.

  20. Dual intercalating molten electrolyte batteries

    SciTech Connect

    Carlin, R.T.; Long, H.C. De; Fuller, J.; Lauderdale, W.J.; Naughton, T.; Trulove, P.C.; Bahn, C.S.

    1995-12-31

    Dual Intercalating Molten Electrolyte (DIME) electrodes and cells have been examined using a number of low-melting and room-temperature molten salts. A cell with a chloroaluminate melt achieved a cycling efficiency of 85% with a discharge voltage of 2.92 V. Coke-elastomer composite electrodes underwent cation reductive intercalation without experiencing the exfoliation and degradation seen for graphite rods. Theoretical studies for an imidazolium-graphite intercalate predicted the graphite layer spacing expands between 5.18 and 8.01 {angstrom} upon insertion of the imidazolium molecule into the graphite lattice.

  1. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  2. Intercalation and de-intercalation pathway of proflavine through the minor and major grooves of DNA: roles of water and entropy.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2013-05-07

    DNA intercalation is a clinically relevant biophysical process due to its potential to inhibit the growth and survival of tumor cells and microbes through the arrest of the transcription and replication processes. Extensive kinetic and thermodynamic studies have followed since the discovery of the intercalative binding mode. However, the molecular mechanism and the origin of the thermodynamic and kinetic profile of the process are still not clear. Here we have constructed the free energy landscape of intercalation, de-intercalation and dissociation from both the major and minor grooves of DNA using extensive all-atom metadynamics simulations, capturing both the free energy barriers and stability in close agreement with fluorescence kinetic experiments. In the intercalated state, an alternate orientation of proflavine is found with an almost equal stability compared to the crystal orientation, however, separated by a 5.0 kcal mol(-1) barrier that decreases as the drug approaches the groove edges. This study provides a comprehensive picture in comparison with experiments, which indicates that the intercalation and de-intercalation of proflavine happen through the major groove side, although the effective intercalation barrier increases because the path of intercalation goes through the stable (abortive) minor groove bound state, making the process a millisecond long one in excellent agreement with the experiments. The molecular origin of the higher barrier for the intercalation from the minor groove side is attributed to the desolvation energy of DNA and the loss of entropy, while the barrier from the major groove, in the absence of desolvation energy, is primarily entropic.

  3. Batteries: Beyond intercalation and conversion

    NASA Astrophysics Data System (ADS)

    Grimaud, Alexis

    2017-01-01

    Conventional positive electrode materials for lithium-ion batteries, such as intercalation and conversion compounds, feature a host structure to reversibly insert and conduct lithium ions. Now, electrochemically activated transition metal oxide-lithium fluoride composite materials are shown to be a promising class of positive electrodes.

  4. The mechanism of caesium intercalation of graphene.

    PubMed

    Petrović, M; Šrut Rakić, I; Runte, S; Busse, C; Sadowski, J T; Lazić, P; Pletikosić, I; Pan, Z-H; Milun, M; Pervan, P; Atodiresei, N; Brako, R; Šokčević, D; Valla, T; Michely, T; Kralj, M

    2013-01-01

    Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene, can be manipulated by the inclusion of different atomic and molecular species between the layers via a process known as intercalation. For example, intercalation in graphite can lead to superconductivity and is crucial in the working cycle of modern batteries and supercapacitors. Intercalation involves complex diffusion processes along and across the layers; however, the microscopic mechanisms and dynamics of these processes are not well understood. Here we report on a novel mechanism for intercalation and entrapment of alkali atoms under epitaxial graphene. We find that the intercalation is adjusted by the van der Waals interaction, with the dynamics governed by defects anchored to graphene wrinkles. Our findings are relevant for the future design and application of graphene-based nano-structures. Similar mechanisms can also have a role for intercalation of layered materials.

  5. Superlubricity of Fullerene Intercalated Graphite Composite

    NASA Astrophysics Data System (ADS)

    Miura, Kouji; Tsuda, Daisuke; Itamura, Noriaki; Sasaki, Naruo

    2007-08-01

    A novel superlubric system of fullerene intercalated graphite composite is reported. First, it is clarified that fullerene intercalated graphite films exhibit an ultralow average friction force and an excellent friction coefficient μ <0.001 smaller than μ <0.002 for MoS2 and μ\\cong 0.001 for graphite. Next, it is demonstrated that superlubricity can be controlled by changing the intercalant species. The C60 intercalated graphite film shows much less maximum static friction force than the C70 intercalated graphite film. Finally, we propose one of the simple guidelines on designing a practical superlubric system-reduction in the contact area between the intercalated fullerene and the graphite sheet to the pointlike contact. Our newly developed superlubric system will contribute to solving energy and environmental problems.

  6. ASSESSMENT OF THE RELEVANCE OF DISPLACEMENT BASED DESIGN METHODS/CRITERIA TO NUCLEAR PLANT STRUCTURES.

    SciTech Connect

    HOFMAYER,C.; MILLER,C.; WANG,Y.; COSTELLO,J.

    2001-08-12

    Revisions to the USNRC Regulatory Guides and Standard Review Plan Sections devoted to earthquake engineering practice are currently in process. The intent is to reflect changes in engineering practice that have evolved in the twenty years that have passed since those criteria were originally published. Additionally, field observations of the effects of the Northridge (1994) and Kobe (1995) earthquakes have inspired some reassessment in the technical community about certain aspects of design practice. In particular, questions have arisen about the effectiveness of basing earthquake resistant designs on resistance to seismic forces and, then evaluating tolerability of the expected displacements. Therefore, a research effort was undertaken to examine the implications for NRC's seismic practice of the move, in the earthquake engineering community, toward using expected displacement rather than force (or stress) as the basis for assessing design adequacy. The results of the NRC sponsored research on this subject are reported in this paper. A slow trend toward the utilization of displacement based methods for design was noted. However, there is a more rapid trend toward the use of displacement based methods for seismic evaluation of existing facilities. A document known as FEMA 273, has been developed and is being used as the basis for the design of modifications to enhance the seismic capability of existing non-nuclear facilities. The research concluded that displacement based methods, such as given in FEMA 273, may be useful for seismic margin studies of existing nuclear power stations. They are unlikely to be useful for the basic design of new stations since nuclear power stations are designed to remain elastic during a seismic event. They could, however, be useful for estimating the margins associated with that design.

  7. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  8. Band gap opening in methane intercalated graphene.

    PubMed

    Hargrove, Jasmine; Shashikala, H B Mihiri; Guerrido, Lauren; Ravi, Natarajan; Wang, Xiao-Qian

    2012-08-07

    Recent experimental work has demonstrated production of quasi-free-standing graphene by methane intercalation. The intercalation weakens the coupling of adjacent graphene layers and yields Dirac fermion behaviour of monolayer graphene. We have investigated the electronic characteristics of a methane intercepted graphene bilayer under a perpendicularly applied electric field. Evolution of the band structure of intercalated graphene as a function of the bias is studied by means of density-functional theory including interlayer van der Waals interactions. The implications of controllable band gap opening in methane-intercalated graphene for future device applications are discussed.

  9. Dynamics of DNA/intercalator complexes

    NASA Astrophysics Data System (ADS)

    Schurr, J. M.; Wu, Pengguang; Fujimoto, Bryant S.

    1990-05-01

    Complexes of linear and supercoiled DNAs with different intercalating dyes are studied by time-resolved fluorescence polarization anisotropy using intercalated ethidium as the probe. Existing theory is generalized to take account of excitation transfer between intercalated ethidiums, and Forster theory is shown to be valid in this context. The effects of intercalated ethidium, 9-aminoacridine, and proflavine on the torsional rigidity of linear and supercoiled DNAs are studied up to rather high binding ratios. Evidence is presented that metastable secondary structure persists in dye-relaxed supercoiled DNAs, which contradicts the standard model of supercoiled DNAs.

  10. Synthetic Metals from Intercalated Graphite

    DTIC Science & Technology

    1988-05-09

    Studies of the Structure of SbCl 5Graphite Inter- calation Compounds", L.E. McNeil, J. Steinbeck, L. Salamanca- Riba and G. Dresselhaus, Bull. APS 29...Graphite Intercalation Compounds", L.E. McNeil, J. Steinbeck, L. Salamanca- Riba and G. Dresselhaus, Phys. Rev. B31, 2451 (1985). 12. "Non-Ohmic Transport...Boston (1984), p. 149. 16. "High Resolution Electron Microscopy and X-Ray Diffraction Studies on SbCI5 - GIC", G. Roth, L. Salamanca- Riba , A.R. Kortan, G

  11. Synthetic Metals from Intercalated Graphite.

    DTIC Science & Technology

    1985-09-30

    34, L. Salamanca- Riba and M.S. Dres- selhaus, Carbon, (in press) (1986). 16. "High Resolution Transmission Electron Microscopy on KH.-GICs", L. Salaman...ca- Riba , N.C. Yeh, M.S. Dresselhaus, M. Endo and T. Enoki, J. of Mat. Res. (in press) (1986). 11 04 -.4* 17. "Electron Beam Induced Damage and...Structure of SbCl5 Graphite Intercalation Compounds", L. Salamanca- Riba , G. Roth, J.M. Gibson, A.R. Kortan, G. Dresselhaus and - R.J. Birgeneau, Phys. Rev

  12. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    SciTech Connect

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-12-15

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4′-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules. - Graphical abstract: Nitrogen-containing organic compounds can be intercalated into the interlayer space of zirconium 4-sulfophenylphosphonate. - Highlights: • Zirconium 4-sulfophenylphosphonate was examined as a host material in intercalation chemistry. • A wide range of nitrogen-containing organic compounds were intercalated. • Possible arrangement of the intercalated species is described.

  13. Environmental stability of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, J. R.; Jaworske, D. A.

    1985-01-01

    Graphite fibers intercalated with bromine, iodine monochloride, ferric chloride, and cupric chloride were subjected to stability tests under four environments which are encountered by engineering materials in the aerospace industry: ambient laboratory conditions, as would be experienced during handling operations and terrestrial applications; high vacuum, as would be experienced in space applications; high humidity, as would be experienced in marine applications; and high temperature, as would be experienced in some processing steps and applications. Monitoring the resistance of the fibers at ambient laboratory conditions revealed that only the ferric chloride intercalated fibers were unstable, due to absorption of water from the air. All four types of intercalated fibers were unstable, due to absorption of water from the air. All four types of intercalated fibers were stable for long periods under high vacuum. Ferric chloride, cupric chloride, and iodine monochloride intercalated fibers were sensitive to high humidity conditions. All intercalated fibers began to degrade above 250 C. The order of their thermal stability, from lowest to highest, was cupric chloride, iodine monochloride, bromine, and ferric chloride. Of the four types of intercalated fibers tested, the bromine intercalated fibers appear to have the most potential for application, based on environmental stability.

  14. Graphite intercalation compound with iodine as the major intercalate

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Kucera, Donald

    1994-01-01

    Halogenated graphite CBr(x)I(y) (I less than y/x less than 10) was made by exposing graphite materials to either pure Br2 or an I2/Br2/HBr mixture to initiate the reaction, and then to iodine vapor containing a small amount of Br2/HBr/IBr to complete the intercalation reaction. Wetting of the graphite materials by the I2/Br2/HBr mixture is needed to start the reaction, and a small amount of Br2/HBr/IBr is needed to complete the charge transfer between iodine and carbon. The interplanar spacings for the graphite materials need to be in the 3.35 to 3.41 A range. The X-ray diffraction data obtained from the halogenated HOPG indicate that the distance between the two carbon layers containing intercalate is 7.25 A. Electrical resistivity of the fiber product is from 3 to 6.5 times the pristine value, The presence of a small amount of isoprene rubber in the reaction significantly increased the iodine-to-bromine ratio in the product. In this reaction, rubber is known to generate HBr and to slowly remove bromine from the vapor. The halogenation generally caused a 22 percent to 25 percent weight increase. The halogens were found uniformly distributed in the product interior. However, although the surface contains very little iodine, it has high concentrations of bromine and oxygen. It is believed that the high concentrations of bromine and oxygen in this surface cause the halogenated fiber to be more resistant to structural damage during subsequent fluorination to fabricate graphite fluoride fibers.

  15. Intercalated hybrid graphite fiber composite

    NASA Technical Reports Server (NTRS)

    Gaier, James R. (Inventor)

    1993-01-01

    The invention is directed to a highly conductive lightweight hybrid material and methods of producing the same. The hybrid composite is obtained by weaving strands of a high strength carbon or graphite fiber into a fabric-like structure, depositing a layer of carbon onto the structure, heat treating the structure to graphitize the carbon layer, and intercalating the graphitic carbon layer structure. A laminate composite material useful for protection against lightning strikes comprises at least one layer of the hybrid material over at least one layer of high strength carbon or graphite fibers. The composite material of the present invention is compatible with matrix compounds, has a coefficient of thermal expansion which is the same as underlying fiber layers, and is resistant to galvanic corrosion in addition to being highly conductive. These materials are useful in the aerospace industry, in particular as lightning strike protection for airplanes.

  16. Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling.

    PubMed

    Rescifina, Antonio; Zagni, Chiara; Varrica, Maria Giulia; Pistarà, Venerando; Corsaro, Antonino

    2014-03-03

    The interaction of small molecules with DNA plays an essential role in many biological processes. As DNA is often the target for majority of anticancer and antibiotic drugs, study about the interaction of drug and DNA has a key role in pharmacology. Moreover, understanding the interactions of small molecules with DNA is of prime significance in the rational design of more powerful and selective anticancer agents. Two of the most important and promising targets in cancer chemotherapy include DNA alkylating agents and DNA intercalators. For these last the DNA recognition is a critical step in their anti-tumor action and the intercalation is not only one kind of the interactions in DNA recognition but also a pivotal step of several clinically used anti-tumor drugs such as anthracyclines, acridines and anthraquinones. To push clinical cancer therapy, the discovery of new DNA intercalators has been considered a practical approach and a number of intercalators have been recently reported. The intercalative binding properties of such molecules can also be harnessed as diagnostic probes for DNA structure in addition to DNA-directed therapeutics. Moreover, the problem of intercalation site formation in the undistorted B-DNA of different length and sequence is matter of tremendous importance in molecular modeling studies and, nowadays, three models of DNA intercalation targets have been proposed that account for the binding features of intercalators. Finally, despite DNA being an important target for several drugs, most of the docking programs are validated only for proteins and their ligands. Therefore, a default protocol to identify DNA binding modes which uses a modified canonical DNA as receptor is needed.

  17. Intercalation of Europium (III) species into bentonite

    SciTech Connect

    Sanchez, A.; Echeverria, Y.; Torres, C.M. Sotomayor; Gonzalez, G.; Benavente, E. . E-mail: ebenaven@uchile.cl

    2006-06-15

    It is shown that the intercalation of [Europium(bipyridine){sub 2}]{sup 3+} into bentonite results in a new nanocomposite which preserves the emission properties of Europium (III). The exchange of sodium by europium in bentonite is correlated with the cation exchange capacity and molecular size. The intercalated complex exhibits luminescence where both the 2,2-bipyridine 'antenna' effect and the intensity maxima are comparable to the free complex suggesting that clay intercalated with rare earths may results in novel optical materials.

  18. Stability of Bromine Intercalated Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Gaier, J. R.

    1984-01-01

    Previous evidence suggested that bromine intercalation compounds of crystalline graphite spontaneously deintercalate when the bromine atmosphere is removed. However, results show that bromine intercalated P-100 graphite fibers are stable for long periods of time. They are stable under vacuum conditions, high humidity, and current densities up to 24,000 A/sq cm. They are thermally stable to 200 C, and at temperatures as high as 400 C still retain 80 percent of the conductivity gained by intercalation. At temperatures greater than 300 C, there is significant oxidative degradation of the fibers. The environmental stability shown by the bromine compound makes it a promising candidate for practical applications in aerospace technology.

  19. A method to remove intercalates from bromine and iodine intercalated carbon fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1993-01-01

    Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers which were intercalated with 18 percent bromine by weight, 1 hr of fluorine exposure results in a large weight increase, but causes only a small decrease in thermal stability. More than l hr of fluorine exposure time results in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena do not occur if the fluorine exposure is at 250 C. These observations suggest the mechanism that at room temperature, fluorine is absorbed quickly by the intercalated fibers and intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. Under an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for two weeks, the brominated fibers lost about 45 percent of their bromine, and their resistivity increased from 64 omega-cm to a range of 95 to 170 micro omega-cm. This is still much lower than the 300 micro omega-cm value for pristine P-100. For practical purposes, in order to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature, or to any intercalate at a temperature where, upon direct contact to graphite, an intercalation compound can easily be formed.

  20. Development of Intercalated Wire and Cable.

    DTIC Science & Technology

    1984-02-01

    powder is washed with deionized H20 to remove any unintercalated CuCl 2. To drive off this wash water the powder is heated overnight in a vacuum. Still...Die Design ...... .................. 16 3. Pressure Effects ......... 17 4. CuCl ,-Graphite Experiments ... * 19 5. Conclusions ......... . . . . 19...for most of the intercalated graphite compounds that have been studied to date. Thus, the revelation (9) that CuCl 2 intercalated graphite is entirely

  1. Load Distribution Patterns for Displacement-based Seismic Design of RC Framed Buildings

    NASA Astrophysics Data System (ADS)

    Varughese, Jiji Anna; Menon, Devdas; Meher Prasad, A.

    2014-12-01

    The behaviour of tall frames is characterized by the influence of higher modes in addition to the fundamental mode and thus the design procedures for Displacement-based Design (DBD) adopt several measures to control higher mode effects. The performances of 4, 9 and 15-storeyed frames, designed by DBD were verified using non-linear time history analyses. Higher values of inter-storey drift and damage index were seen near the top of tall frames, which shows the inefficiency of the design method in accounting for higher mode effect. As the principle of damage-limiting aseismic design is to get uniform damage along the height of the frame, several load distribution patterns were examined and the storey shear distributions were compared to identify the best pattern to get uniform damage. The Chao load distribution was found to give higher storey shear at top and thus the frames were redesigned using this load distribution. The efficiency of Chao load distribution in reducing higher mode effects is demonstrated using non-linear time history analyses.

  2. Displacement-based seismic design of flat slab-shear wall buildings

    NASA Astrophysics Data System (ADS)

    Sen, Subhajit; Singh, Yogendra

    2016-06-01

    Flat slab system is becoming widely popular for multistory buildings due to its several advantages. However, the performance of flat slab buildings under earthquake loading is unsatisfactory due to their vulnerability to punching shear failure. Several national design codes provide guidelines for designing flat slab system under gravity load only. Nevertheless, flat slab buildings are also being constructed in high seismicity regions. In this paper, performance of flat slab buildings of various heights, designed for gravity load alone according to code, is evaluated under earthquake loading as per ASCE/SEI 41 methodology. Continuity of slab bottom reinforcement through column cage improves the performance of flat slab buildings to some extent, but it is observed that these flat slab systems are not adequate in high seismicity areas and need additional primary lateral load resisting systems such as shear walls. A displacement-based method is proposed to proportion shear walls as primary lateral load resisting elements to ensure satisfactory performance. The methodology is validated using design examples of flat slab buildings with various heights.

  3. Displacement-Based Seismic Design Procedure for Framed Buildings with Dissipative Braces Part I: Theoretical formulation

    NASA Astrophysics Data System (ADS)

    Mazza, Fabio; Vulcano, Alfonso

    2008-07-01

    The insertion of steel braces equipped with dissipative devices proves to be very effective in order to enhance the performance of a framed building under horizontal seismic loads. Multi-level design criteria were proposed according to the Performance-Based Design, in order to get, for a specific level of the seismic intensity, a designated performance objective of the building (e.g., an assigned damage level of either the framed structure or non-structural elements). In this paper a design procedure aiming to proportion braces with hysteretic dampers in order to attain, for a specific level of the seismic intensity, a designated performance level of the building is proposed. Exactly, a proportional stiffness criterion, which assumes the elastic lateral storey-stiffness due to the braces proportional to that of the unbraced frame, is combined with the Direct Displacement-Based Design, in which the design starts from target deformations. A computer code has been prepared for the nonlinear static and dynamic analyses, using a step-by-step procedure. Frame members and hysteretic dampers are idealized by bilinear models.

  4. Displacement-Based Seismic Design Procedure for Framed Buildings with Dissipative Braces Part II: Numerical Results

    NASA Astrophysics Data System (ADS)

    Mazza, Fabio; Vulcano, Alfonso

    2008-07-01

    For a widespread application of dissipative braces to protect framed buildings against seismic loads, practical and reliable design procedures are needed. In this paper a design procedure based on the Direct Displacement-Based Design approach is adopted, assuming the elastic lateral storey-stiffness of the damped braces proportional to that of the unbraced frame. To check the effectiveness of the design procedure, presented in an associate paper, a six-storey reinforced concrete plane frame, representative of a medium-rise symmetric framed building, is considered as primary test structure; this structure, designed in a medium-risk region, is supposed to be retrofitted as in a high-risk region, by insertion of diagonal braces equipped with hysteretic dampers. A numerical investigation is carried out to study the nonlinear static and dynamic responses of the primary and the damped braced test structures, using step-by-step procedures described in the associate paper mentioned above; the behaviour of frame members and hysteretic dampers is idealized by bilinear models. Real and artificial accelerograms, matching EC8 response spectrum for a medium soil class, are considered for dynamic analyses.

  5. Hydrogen intercalation under graphene on Ir(111)

    NASA Astrophysics Data System (ADS)

    Grånäs, Elin; Gerber, Timm; Schröder, Ulrike A.; Schulte, Karina; Andersen, Jesper N.; Michely, Thomas; Knudsen, Jan

    2016-09-01

    Using high resolution X-ray photoelectron spectroscopy and scanning tunneling microscopy we study the intercalation of hydrogen under graphene/Ir(111). The hydrogen intercalated graphene is characterized by a component in C 1s that is shifted -0.10 to -0.18 eV with respect to pristine graphene and a component in Ir 4f at 60.54 eV. The position of this Ir 4f component is identical to that of the Ir(111) surface layer with hydrogen atoms adsorbed, indicating that the atomic hydrogen adsorption site on bare Ir(111) and beneath graphene is the same. Based on co-existence of fully- and non-intercalated graphene, and the inability to intercalate a closed graphene film covering the entire Ir(111) surface, we conclude that hydrogen dissociatively adsorbs at bare Ir(111) patches, and subsequently diffuses rapidly under graphene. A likely entry point for the intercalating hydrogen atoms is identified to be where graphene crosses an underlying Ir(111) step.

  6. Collecting Duct Intercalated Cell Function and Regulation

    PubMed Central

    Roy, Ankita; Al-bataineh, Mohammad M.

    2015-01-01

    Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species. They are most abundant in the collecting duct, where they can be detected all the way from the cortex to the initial part of the inner medulla. Intercalated cells are interspersed among the more numerous segment-specific principal cells. There are three types of intercalated cells, each having distinct structures and expressing different ensembles of transport proteins that translate into very different functions in the processing of the urine. This review includes recent findings on how intercalated cells regulate their intracellular milieu and contribute to acid-base regulation and sodium, chloride, and potassium homeostasis, thus highlighting their potential role as targets for the treatment of hypertension. Their novel regulation by paracrine signals in the collecting duct is also discussed. Finally, this article addresses their role as part of the innate immune system of the kidney tubule. PMID:25632105

  7. Organic intercalation of structure modified vermiculite.

    PubMed

    Wu, Nian; Wu, Limei; Liao, Libing; Lv, Guocheng

    2015-11-01

    The experiment used cationic surfactants of different chain lengths to intercalate structure modified vermiculites. The influences of structure modification, chain length and dosage of surfactants on the intercalation behavior of vermiculites were studied, and intercalation mechanism and features of interlayer chemical reactions were discussed. Results indicate that structure modified vermiculites with different layer charge have different intercalation behavior. The basal spacing of the organic intercalated modified vermiculite is the largest when acid concentration used in structure modification is 0.003 mol/L, and increases with increasing the chain length and dosage of the organics. Molecular dynamics simulation verifies that interlayer organics align almost parallel to structure layer of vermiculite, with alkyl chain stretching to the middle of interlayer space. -N(+) groups of the three surfactants locate above the leached [SiO4], which has stronger interaction with interlayer organic cations. Electrostatic force is the main interaction force between interlayer organics and structure layer of vermiculite, and then is Van der Waals force, no chemical bond formed.

  8. Intercalation of Aldehydes into Vanadyl Phosphate

    NASA Astrophysics Data System (ADS)

    Melánová, Klára; Beneš, Ludvík.; Zima, Vítězslav; Votinský, Jiří

    2001-02-01

    Intercalates of VOPO4 with several aliphatic aldehydes, benzaldehyde, and 4-methylbenzaldehyde were prepared and characterized by thermogravimetric analysis, X-ray diffractometry, and IR and UV-vis spectroscopies. Aliphatic aldehyde intercalates are unstable and the guests undergo aldol condensation and oxidation. The arrangement of the guest molecules in the interlayer space of the host is discussed. A part of aliphatic aldehydes is anchored to the host layers by coordination of their carbonyl oxygen to the vanadium atom; the rest is probably bonded by weak van der Waals forces. In the benzaldehyde and 4-methylbenzaldehyde intercalates, all guest molecules are coordinated to the vanadium atoms with their benzene rings perpendicular to the sheets of the host.

  9. Feasibility of intercalated graphite railgun armatures

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Gooden, Clarence E.; Yashan, Doreen; Naud, Steven

    1990-01-01

    Graphite intercalation compounds may provide an excellent material for the fabrication of electro-magnetic railgun armatures. As a pulse of power is fed into the armature the intercalate could be excited into the plasma state around the edges of the armature, while the bulk of the current would be carried through the graphite block. Such an armature would have the desirable characteristics of both diffuse plasma armatures and bulk conduction armatures. In addition, the highly anisotropic nature of these materials could enable the electrical and thermal conductivity to be tailored to meet the specific requirements of electromagnetic railgun armatures. Preliminary investigations were performed in an attempt to determine the feasibility of using graphite intercalation compounds as railgun armatures. Issues of fabrication, resistivity, stability, and electrical current spreading are addressed for the case of highly oriented pyrolytic graphite.

  10. Small molecule intercalation with double stranded DNA: implications for normal gene regulation and for predicting the biological efficacy and genotoxicity of drugs and other chemicals.

    PubMed

    Hendry, Lawrence B; Mahesh, Virendra B; Bransome, Edwin D; Ewing, Douglas E

    2007-10-01

    The binding of small molecules to double stranded DNA including intercalation between base pairs has been a topic of research for over 40 years. For the most part, however, intercalation has been of marginal interest given the prevailing notion that binding of small molecules to protein receptors is largely responsible for governing biological function. This picture is now changing with the discovery of nuclear enzymes, e.g. topoisomerases that modulate intercalation of various compounds including certain antitumor drugs and genotoxins. While intercalators are classically flat, aromatic structures that can easily insert between base pairs, our laboratories reported in 1977 that a number of biologically active compounds with greater molecular thickness, e.g. steroid hormones, could fit stereospecifically between base pairs. The hypothesis was advanced that intercalation was a salient feature of the action of gene regulatory molecules. Two parallel lines of research were pursued: (1) development of technology to employ intercalation in the design of safe and effective chemicals, e.g. pharmaceuticals, nutraceuticals, agricultural chemicals; (2) exploration of intercalation in the mode of action of nuclear receptor proteins. Computer modeling demonstrated that degree of fit of certain small molecules into DNA intercalation sites correlated with degree of biological activity but not with strength of receptor binding. These findings led to computational tools including pharmacophores and search engines to design new drug candidates by predicting desirable and undesirable activities. The specific sequences in DNA into which ligands best intercalated were later found in the consensus sequences of genes activated by nuclear receptors implying intercalation was central to their mode of action. Recently, the orientation of ligands bound to nuclear receptors was found to match closely the spatial locations of ligands derived from intercalation into unwound gene sequences

  11. Development of intercalated wire and cable

    NASA Astrophysics Data System (ADS)

    Vogel, F. L.

    1984-02-01

    An extensive study was conducted on the swaging of composite wires consisting of an intercalated graphite core in a copper sheath. The purpose was to develop a method that replicated earlier results wherein high electrical conductivity was encountered. The project was unable to produce those earlier, favorable results. It was determined that analysis of core resistivity cannot be done where the core has a higher resistivity than the sheath. Copper chloride was shown to be an air stable intercalant in graphite with a crystal resistivity in the vicinity of 5 x 10 to the minus 6 ohm cm. The main problem of swaging cored tube samples remains unsolved.

  12. A Topological Model of Bilingual Intercalation Behavior.

    ERIC Educational Resources Information Center

    Attinasi, John; And Others

    This paper reviews issues and analyses in bilingual switching, or intercalation, and offers a topological model to represent the activity of code switching, sometimes under the same environmental conditions and with the same interlocutors. The topological notion of catastrophe is proposed as a means to model the various factors that influence code…

  13. Polytypic phase transitions in metal intercalated Bi2Se3

    NASA Astrophysics Data System (ADS)

    Wang, Mengjing; Koski, Kristie J.

    2016-12-01

    The temperature and concentration dependent phase diagrams of zero-valent copper, cobalt, and iron intercalated bismuth selenide are investigated using in situ transmission electron microscopy. Polytypic phase transitions associated with superlattice formation along with order-disorder transitions of the guest intercalant are determined. Dual-element intercalants of CuCo, CuFe, and CoFe-Bi2Se3 are also investigated. Hexagonal and striped domain formation consistent with two-dimensional ordering of the intercalant and Pokrovksy-Talapov theory is identified as a function of concentration. These studies provide a complete picture of the structural behavior of zero-valent metal intercalated Bi2Se3.

  14. Onset of superconductivity in sodium and potassium intercalated molybdenum disulphide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Rembaum, A.

    1971-01-01

    Molybdenum disulfide in the form of natural crystals or powder has been intercalated at -65 to -70 C with sodium and potassium using the liquid ammonia technique. All intercalated samples were found to show a superconducting transition. A plot of the percent of diamagnetic throw versus temperature indicates the possible existence of two phases in the potassium intercalated molybdenum disulfide. The onset of superconductivity in potassium and sodium intercalated molybdenite powder was found to be approximately 6.2 and approximately 4.5 K, respectively. The observed superconductivity is believed to be due to an increase in electron density as a result of intercalation.

  15. Demonstration of Einstein-Podolsky-Rosen Steering Using Single-Photon Path Entanglement and Displacement-Based Detection

    NASA Astrophysics Data System (ADS)

    Guerreiro, T.; Monteiro, F.; Martin, A.; Brask, J. B.; Vértesi, T.; Korzh, B.; Caloz, M.; Bussières, F.; Verma, V. B.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Marsilli, F.; Shaw, M. D.; Gisin, N.; Brunner, N.; Zbinden, H.; Thew, R. T.

    2016-08-01

    We demonstrate the violation of an Einstein-Podolsky-Rosen steering inequality developed for single-photon path entanglement with displacement-based detection. We use a high-rate source of heralded single-photon path-entangled states, combined with high-efficiency superconducting-based detectors, in a scheme that is free of any postselection and thus immune to the detection loophole. This result conclusively demonstrates single-photon entanglement in a one-sided device-independent scenario, and opens the way towards implementations of device-independent quantum technologies within the paradigm of path entanglement.

  16. Phosphate-stabilized Lithium intercalation compounds

    SciTech Connect

    Richardson, Thomas J.

    2002-07-22

    Four manganese and iron phosphates with alluaudite or fillowite structures have been prepared by solid state reactions: Na2FeMn2(PO4)3, LiNaFeMn2(PO4)3, NaFe3(PO4)3, and Na2Mn3(PO4)3. LixNa2-xFeMn2(PO4)3 with x close to 2 was prepared from Na2FeMn2(PO4)3 by molten salt ion exchange. These materials are similar in stoichiometry to the phospho-olivines LiFe(Mn)PO4, but have a more complex structure that can accommodate mixed transition metal oxidation states. They are of interest as candidates for lithium battery cathodes because of their somewhat higher electronic conductivity, high intercalant ion mobility, and ease of preparation. Their performance as intercalation electrodes in non-aqueous lithium cells was, however, poor.

  17. Monte Carlo simulation of intercalated carbon nanotubes.

    PubMed

    Mykhailenko, Oleksiy; Matsui, Denis; Prylutskyy, Yuriy; Le Normand, Francois; Eklund, Peter; Scharff, Peter

    2007-01-01

    Monte Carlo simulations of the single- and double-walled carbon nanotubes (CNT) intercalated with different metals have been carried out. The interrelation between the length of a CNT, the number and type of metal atoms has also been established. This research is aimed at studying intercalated systems based on CNTs and d-metals such as Fe and Co. Factors influencing the stability of these composites have been determined theoretically by the Monte Carlo method with the Tersoff potential. The modeling of CNTs intercalated with metals by the Monte Carlo method has proved that there is a correlation between the length of a CNT and the number of endo-atoms of specific type. Thus, in the case of a metallic CNT (9,0) with length 17 bands (3.60 nm), in contrast to Co atoms, Fe atoms are extruded out of the CNT if the number of atoms in the CNT is not less than eight. Thus, this paper shows that a CNT of a certain size can be intercalated with no more than eight Fe atoms. The systems investigated are stabilized by coordination of 3d-atoms close to the CNT wall with a radius-vector of (0.18-0.20) nm. Another characteristic feature is that, within the temperature range of (400-700) K, small systems exhibit ground-state stabilization which is not characteristic of the higher ones. The behavior of Fe and Co endo-atoms between the walls of a double-walled carbon nanotube (DW CNT) is explained by a dominating van der Waals interaction between the Co atoms themselves, which is not true for the Fe atoms.

  18. EMI Shields made from intercalated graphite composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Terry, Jennifer

    1995-01-01

    Electromagnetic interference (EMI) shielding typically makes up about twenty percent of the mass of a spacecraft power system. Graphite fiber/polymer composites have significantly lower densities and higher strengths than aluminum, the present material of choice for EMI shields, but they lack the electrical conductivity that enables acceptable shielding effectiveness. Bromine intercalated pitch-based graphite/epoxy composites have conductivities fifty times higher than conventional structural graphite fibers. Calculations are presented which indicate that EMI shields made from such composites can have sufficient shielding at less than 20% of the mass of conventional aluminum shields. EMI shields provide many functions other than EMI shielding including physical protection, thermal management, and shielding from ionizing radiation. Intercalated graphite composites perform well in these areas also. Mechanically, they have much higher specific strength and modulus than aluminum. They also have shorter half thicknesses for x-rays and gamma radiation than aluminum. Thermally, they distribute infra-red radiation by absorbing and re-radiating it rather than concentrating it by reflection as aluminum does. The prospects for intercalated graphite fiber/polymer composites for EMI shielding are encouraging.

  19. Arrhythmogenic cardiomyopathy: a disease of intercalated discs.

    PubMed

    Calore, Martina; Lorenzon, Alessandra; De Bortoli, Marzia; Poloni, Giulia; Rampazzo, Alessandra

    2015-06-01

    Arrhythmogenic cardiomyopathy (ACM) is an acquired progressive disease having an age-related penetrance and showing clinical manifestations usually during adolescence and young adulthood. It is characterized clinically by a high incidence of severe ventricular tachyarrhythmias and sudden cardiac death and pathologically by degeneration of ventricular cardiomyocytes with replacement by fibro-fatty tissue. Whereas, in the past, the disease was considered to involve only the right ventricle, more recent clinical studies have established that the left ventricle is frequently involved. ACM is an inherited disease in up to 50% of cases, with predominantly an autosomal dominant pattern of transmission, although recessive inheritance has also been described. Since most of the pathogenic mutations have been identified in genes encoding desmosomal proteins, ACM is currently defined as a disease of desmosomes. However, on the basis of the most recent description of the intercalated disc organization and of the identification of a novel ACM gene encoding for an area composita protein, ACM can be considered as a disease of the intercalated disc, rather than only as a desmosomal disease. Despite increasing knowledge of the genetic basis of ACM, we are just beginning to understand early molecular events leading to cardiomyocyte degeneration, fibrosis and fibro-fatty substitution. This review summarizes recent advances in our comprehension of the link between the molecular genetics and pathogenesis of ACM and of the novel role of cardiac intercalated discs.

  20. Core level shifts of intercalated graphene

    NASA Astrophysics Data System (ADS)

    Schröder, Ulrike A.; Petrović, Marin; Gerber, Timm; Martínez-Galera, Antonio J.; Grånäs, Elin; Arman, Mohammad A.; Herbig, Charlotte; Schnadt, Joachim; Kralj, Marko; Knudsen, Jan; Michely, Thomas

    2017-03-01

    Through intercalation of metals and gases the Dirac cone of graphene on Ir(111) can be shifted with respect to the Fermi level without becoming destroyed by strong hybridization. Here, we use x-ray photoelectron spectroscopy to measure the C 1s core level shift (CLS) of graphene in contact with a number of structurally well-defined intercalation layers (O, H, Eu, and Cs). By analysis of our own and additional literature data for decoupled graphene, the C 1s CLS is found to be a non-monotonic function of the doping level. For small doping levels the shifts are well described by a rigid band model. However, at larger doping levels, a second effect comes into play which is proportional to the transferred charge and counteracts the rigid band shift. Moreover, not only the position, but also the C 1s peak shape displays a unique evolution as a function of doping level. Our conclusions are supported by intercalation experiments with Li, with which, due to the absence of phase separation, the doping level of graphene can be continuously tuned.

  1. Intercalation compounds and electrodes for batteries

    DOEpatents

    Chiang, Yet-Ming; Sadoway, Donald R.; Jang, Young-Il; Huang, Biyan

    2004-09-07

    This invention concerns intercalation compounds and in particular lithium intercalation compounds which have improved properties for use in batteries. Compositions of the invention include particulate metal oxide material having particles of multicomponent metal oxide, each including an oxide core of at least first and second metals in a first ratio, and each including a surface coating of metal oxide or hydroxide that does not include the first and second metals in the first ratio formed by segregation of at least one of the first and second metals from the core. The core may preferably comprise Li.sub.x M.sub.y N.sub.z O.sub.2 wherein M and N are metal atom or main group elements, x, y and z are numbers from about 0 to about 1 and y and z are such that a formal charge on M.sub.y N.sub.z portion of the compound is (4-x), and having a charging voltage of at least about 2.5V. The invention may also be characterized as a multicomponent oxide microstructure usable as a lithium intercalation material including a multiphase oxide core and a surface layer of one material, which is a component of the multiphase oxide core, that protects the underlying intercalation material from chemical dissolution or reaction. In a particular preferred example the multicomponent oxide may be an aluminum-doped lithium manganese oxide composition. Such aluminum-doped lithium manganese oxide compositions, having an orthorhombic structure, also form a part of the invention. In addition, the invention includes articles, particularly electrodes, for batteries formed from the compositions of the invention, and batteries including such electrodes. The invention further relates to a composite intercalation material comprising at least two compounds in which at least one compound has an orthorhombic structure Li.sub.x Al.sub.y Mn.sub.1-y O.sub.2, where y is nonzero, or a mixture of orthorhombic and monoclinic Li.sub.x Al.sub.y Mn.sub.1-y O.sub.2.

  2. Pristine and intercalated transition metal dichalcogenide superconductors

    NASA Astrophysics Data System (ADS)

    Klemm, Richard A.

    2015-07-01

    Transition metal dichalcogenides (TMDs) are quasi-two-dimensional layered compounds that exhibit strongly competing effects of charge-density wave (CDW) formation and superconductivity (SC). The weak van der Waals interlayer bonding between hexagonal layers of octahedral or trigonal prismatic TMD building blocks allows many polytypes to form. In the single layer 1 T polytype materials, one or more CDW states can form, but the pristine TMDs are not superconducting. The 2 H polytypes have two or more Fermi surfaces and saddle bands, allowing for dual orderings, which can be coexisting CDW and SC orderings, two SC gaps as in MgB2, two CDW gaps, and possibly even pseudogaps above the onset TCDW s of CDW orderings. Higher order polytypes allow for multiple CDW gaps and at least one superconducting gap. The CDW transitions TCDW s usually greatly exceed the superconducting transitions at their low Tc values, their orbital order parameters (OPs) are generally highly anisotropic and can even contain nodes, and the SC OPs can be greatly affected by their simultaneous presence. The properties of the CDWs ubiquitously seen in TMDs are remarkably similar to those of the pseudogaps seen in the high-Tc cuprates. In 2H-NbSe2, for example, the CDW renders its general s-wave SC OP orbital symmetry to be highly anisotropic and strongly reduces its Josephson coupling strength (IcRn) with the conventional SC, Pb. Hence, the pristine TMDs are highly "unconventional" in comparison with Pb, but are much more "conventional" than are the ferromagnetic superconductors such as URhGe. Applied pressure and intercalation generally suppress the TMD CDWs, allowing for enhanced SC formation, even in the 1 T polytype materials. The misfit intercalation compound (LaSe)1.14(NbSe2) and many 2 H -TMDs intercalated with organic Lewis base molecules, such as TaS2(pyridine)1/2, have completely incoherent c-axis transport, dimensional-crossover effects, and behave as stacks of intrinsic Josephson junctions

  3. The intercalation chemistry of layered iron chalcogenide superconductors

    NASA Astrophysics Data System (ADS)

    Vivanco, Hector K.; Rodriguez, Efrain E.

    2016-10-01

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the role of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials-mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.

  4. Guided Discoveries.

    ERIC Educational Resources Information Center

    Ehrlich, Amos

    1991-01-01

    Presented are four mathematical discoveries made by students on an arithmetical function using the Fibonacci sequence. Discussed is the nature of the role of the teacher in directing the students' discovery activities. (KR)

  5. Superconductivity in Li{sub 3}Ca{sub 2}C{sub 6} intercalated graphite

    SciTech Connect

    Emery, Nicolas; Herold, Claire . E-mail: Claire.Herold@lcsm.uhp-nancy.fr; Mareche, Jean-Francois; Bellouard, Christine; Loupias, Genevieve; Lagrange, Philippe

    2006-04-15

    In this paper, we report the discovery of superconductivity in Li{sub 3}Ca{sub 2}C{sub 6}. Several graphite intercalation compounds (GICs) with electron donors, are well known as superconductors [T. Enoki, S. Masatsugu, E. Morinobu, Graphite Intercalation Compounds and Applications, Oxford University Press, Oxford, 2003]. It is probably not astonishing, since it is generally admitted that low dimensionality promotes high superconducting transition temperatures. Superconductivity is lacking in pristine graphite, but after charging the graphene planes by intercalation, its electronic properties change considerably and superconducting behaviour can appear. Li{sub 3}Ca{sub 2}C{sub 6} is a ternary GIC [S. Pruvost, C. Herold, A. Herold, P. Lagrange, Eur. J. Inorg. Chem. 8 (2004) 1661-1667], for which the intercalated sheets are very thick and poly layered (five lithium layers and two calcium ones). It contains a great amount of metal (five metallic atoms for six carbon ones). Its critical temperature of 11.15 K is very close to that of CaC{sub 6} GIC [T.E. Weller, M. Ellerby, S.S. Saxena, R.P. Smith, N.T. Skipper, Nat. Phys. 1 (2005) 39-41; N. Emery, C. Herold, M. d'Astuto, V. Garcia, Ch. Bellin, J.F. Mareche, P. Lagrange, G. Loupias, Phys. Rev. Lett. 95 (2005) 087003] (11.5 K). Both CaC{sub 6} and Li{sub 3}Ca{sub 2}C{sub 6} GICs possess currently the highest transition temperatures among all the GICs.

  6. Structure-Property Relationships in Intercalated Graphite.

    DTIC Science & Technology

    1985-07-10

    McNeil, J. Steinbeck, L. Salamanca- Riba and G. Dresselhaus, Bull. APS 29, 253 (1984). 4. "The Effect of Impurities on the Electronic Phase Transition In...12. "Raman Microprobe Observation of Intercalate Contraction In Graphite Inter- calation Compounds", L.E. McNeil, J. Steinbeck, L. Salamanca- Riba and...17. "High Resolution Electron Microscopy and X-Ray Diffraction Studies on SbCl5 - GI0", G. Roth, L. Salamanca- Riba , A.R. Kortan, G. Dresselhaus, R.J

  7. Intercalation of water into lithium. beta. -alumina

    SciTech Connect

    Dudney, N J; Bates, J B; Wang, J C; Brown, G M; Larson, B C; Engstrom, H

    1981-01-01

    Infrared absorption, neutron diffraction and weight loss techniques have been used to investigate the hydration of single crystals of Li ..beta..-alumina. The hydration is a reversible intercalation reaction. Up to approximately two water molecules per formula unit can penetrate the conduction plane. Other protonated species are formed from the dissociation of the molecular water. The rate of hydration is controlled by the diffusion of water in the conduction plane. A likely diffusion mechanism requires dissociation of the water and an interstitialcy motion of the oxygen.

  8. Intercalation processes of copper complexes in DNA.

    PubMed

    Galindo-Murillo, Rodrigo; García-Ramos, Juan Carlos; Ruiz-Azuara, Lena; Cheatham, Thomas E; Cortés-Guzmán, Fernando

    2015-06-23

    The family of anticancer complexes that include the transition metal copper known as Casiopeínas® shows promising results. Two of these complexes are currently in clinical trials. The interaction of these compounds with DNA has been observed experimentally and several hypotheses regarding the mechanism of action have been developed, and these include the generation of reactive oxygen species, phosphate hydrolysis and/or base-pair intercalation. To advance in the understanding on how these ligands interact with DNA, we present a molecular dynamics study of 21 Casiopeínas with a DNA dodecamer using 10 μs of simulation time for each compound. All the complexes were manually inserted into the minor groove as the starting point of the simulations. The binding energy of each complex and the observed representative type of interaction between the ligand and the DNA is reported. With this extended sampling time, we found that four of the compounds spontaneously flipped open a base pair and moved inside the resulting cavity and four compounds formed stacking interactions with the terminal base pairs. The complexes that formed the intercalation pocket led to more stable interactions.

  9. The dynamics of copper intercalated molybdenum ditelluride

    NASA Astrophysics Data System (ADS)

    Onofrio, Nicolas; Guzman, David; Strachan, Alejandro

    2016-11-01

    Layered transition metal dichalcogenides are emerging as key materials in nanoelectronics and energy applications. Predictive models to understand their growth, thermomechanical properties, and interaction with metals are needed in order to accelerate their incorporation into commercial products. Interatomic potentials enable large-scale atomistic simulations connecting first principle methods and devices. We present a ReaxFF reactive force field to describe molybdenum ditelluride and its interactions with copper. We optimized the force field parameters to describe the energetics, atomic charges, and mechanical properties of (i) layered MoTe2, Mo, and Cu in various phases, (ii) the intercalation of Cu atoms and small clusters within the van der Waals gap of MoTe2, and (iii) bond dissociation curves. The training set consists of an extensive set of first principles calculations computed using density functional theory (DFT). We validate the force field via the prediction of the adhesion of a single layer MoTe2 on a Cu(111) surface and find good agreement with DFT results not used in the training set. We characterized the mobility of the Cu ions intercalated into MoTe2 under the presence of an external electric field via finite temperature molecular dynamics simulations. The results show a significant increase in drift velocity for electric fields of approximately 0.4 V/Å and that mobility increases with Cu ion concentration.

  10. Intercalation processes of copper complexes in DNA

    PubMed Central

    Galindo-Murillo, Rodrigo; García-Ramos, Juan Carlos; Ruiz-Azuara, Lena; Cheatham, Thomas E.; Cortés-Guzmán, Fernando

    2015-01-01

    The family of anticancer complexes that include the transition metal copper known as Casiopeínas® shows promising results. Two of these complexes are currently in clinical trials. The interaction of these compounds with DNA has been observed experimentally and several hypotheses regarding the mechanism of action have been developed, and these include the generation of reactive oxygen species, phosphate hydrolysis and/or base-pair intercalation. To advance in the understanding on how these ligands interact with DNA, we present a molecular dynamics study of 21 Casiopeínas with a DNA dodecamer using 10 μs of simulation time for each compound. All the complexes were manually inserted into the minor groove as the starting point of the simulations. The binding energy of each complex and the observed representative type of interaction between the ligand and the DNA is reported. With this extended sampling time, we found that four of the compounds spontaneously flipped open a base pair and moved inside the resulting cavity and four compounds formed stacking interactions with the terminal base pairs. The complexes that formed the intercalation pocket led to more stable interactions. PMID:25958394

  11. Electrochemical intercalation and electrical conductivity of graphite fibers

    NASA Technical Reports Server (NTRS)

    Besenhard, J. O.; Fritz, H. P.; Moehwald, H.; Nickl, J. J.

    1982-01-01

    Lamellar compounds of graphite fibers were prepared by electrochemical intercalation. The dependence of the electrical resistance on the intercalate concentration was determined by a quasi simultaneous method. A factor 30 decrease of the relative fiber resistance was obtained with fluorosulfuric acid.

  12. Intercalation and delamination of layered carbides and carbonitrides.

    PubMed

    Mashtalir, Olha; Naguib, Michael; Mochalin, Vadym N; Dall'Agnese, Yohan; Heon, Min; Barsoum, Michel W; Gogotsi, Yury

    2013-01-01

    Intercalation and delamination of two-dimensional solids in many cases is a requisite step for exploiting their unique properties. Herein we report on the intercalation of two-dimensional Ti3C2, Ti3CN and TiNbC-so called MXenes. Intercalation of hydrazine, and its co-intercalation with N,N-dimethylformamide, resulted in increases of the c-lattice parameters of surface functionalized f-Ti3C2, from 19.5 to 25.48 and 26.8 Å, respectively. Urea is also intercalated into f-Ti3C2. Molecular dynamics simulations suggest that a hydrazine monolayer intercalates between f-Ti3C2 layers. Hydrazine is also intercalated into f-Ti3CN and f-TiNbC. When dimethyl sulphoxide is intercalated into f-Ti3C2, followed by sonication in water, the f-Ti3C2 is delaminated forming a stable colloidal solution that is in turn filtered to produce MXene 'paper'. The latter shows excellent Li-ion capacity at extremely high charging rates.

  13. Plasmon characteristics in stage-1 graphene intercalation compounds

    NASA Astrophysics Data System (ADS)

    Acharya, Sidharth; Sharma, Raman

    2015-05-01

    We report the Plasmon characteristics in stage-1 graphene intercalation compounds (GIC's), using the massless Dirac fermion (MDF) gas approximation. With the discussion of the weak and the strong c-axis coupling at graphene-intercalant hetrojunction plasmon characteristics of GIC's are predicted. We have found a reasonable agreement between our results and the experimental results of Ritsko and Rice.

  14. Solution structure and thermodynamics of 2',5' RNA intercalation.

    PubMed

    Horowitz, Eric D; Lilavivat, Seth; Holladay, Benjamin W; Germann, Markus W; Hud, Nicholas V

    2009-04-29

    As a means to explore the influence of the nucleic acid backbone on the intercalative binding of ligands to DNA and RNA, we have determined the solution structure of a proflavine-bound 2',5'-linked octamer duplex with the sequence GCCGCGGC. This structure represents the first NMR structure of an intercalated RNA duplex, of either backbone structural isomer. By comparison with X-ray crystal structures, we have identified similarities and differences between intercalated 3',5' and 2',5'-linked RNA duplexes. First, the two forms of RNA have different sugar pucker geometries at the intercalated nucleotide steps, yet have the same interphosphate distances. Second, as in intercalated 3',5' RNA, the phosphate backbone angle zeta at the 2',5' RNA intercalation site prefers to be in the trans conformation, whereas unintercalated 2',5' and 3',5' RNA prefer the -gauche conformation. These observations provide new insights regarding the transitions required for intercalation of a phosphodiester-ribose backbone and suggest a possible contribution of the backbone to the origin of the nearest-neighbor exclusion principle. Thermodynamic studies presented for intercalation of both structural RNA isomers also reveal a surprising sensitivity of intercalator binding enthalpy and entropy to the details of RNA backbone structure.

  15. Superconductivity in the alkali metal intercalates of molybdenum disulphide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1972-01-01

    The complete series of alkali metals, lithium through cesium, have been intercalated into molybdenum disulphide, using both the liquid ammonia and vapor techniques. All the intercalates with the exception of lithium yielded full superconducting transitions with onset temperatures of 6 K for AxMoS2(Ax=K,Rb,Cs) and 4 K for BxMoS2(Bx=Li,Na). The superconducting transition for lithium was incomplete down to 1.5 K. Stoichiometries and unit cell parameters have been determined for the intercalation compounds. Both rhombohedral and hexagonal polymorphs of MoS2 have been intercalated and found to exhibit the same superconductivity behavior. The nature of the extraneous superconducting transition of some intercalated samples on exposure to air was elucidated.

  16. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    NASA Astrophysics Data System (ADS)

    Alattas, M.; Schwingenschlögl, U.

    2016-05-01

    A possible approach to achieve quasi-freestanding graphene on a substrate for technological purpose is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) therefore is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. We find that Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which agrees with experiments, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy.

  17. Homogeneity of pristine and bromine intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, J. R.; Marino, D.

    1985-01-01

    Wide variations in the resistivity of intercalated graphite fibers and to use these materials for electrical applications, their bulk properties must be established. The homogeneity of the diameter, the resistivity, and the mass density of 50 graphite fibers, before and after bromine intercalation was measured. Upon intercalation the diameter was found to expand by about 5%, the resistivity to decrease by a factor of five, and the density to increase by about 6%. Each individual fiber was found to have uniform diameter and resistivity over macroscopic regions for lengths as long as 7 cm. The ratio of pristine to intercalated resistivity increases as the pristine fiber diameter increases at a rate of 0.16 micron, but decreases with the increasing ratio of intercalated diameter to pristine diameter at a rate of 0.08.

  18. Metal intercalation-induced selective adatom mass transport on graphene

    DOE PAGES

    Liu, Xiaojie; Wang, Cai -Zhuang; Hupalo, Myron; ...

    2016-03-29

    Recent experiments indicate that metal intercalation is a very effective method to manipulate the graphene-adatom interaction and control metal nanostructure formation on graphene. A key question is mass transport, i.e., how atoms deposited uniformly on graphene populate different areas depending on the local intercalation. Using first-principles calculations, we show that partially intercalated graphene, with a mixture of intercalated and pristine areas, can induce an alternating electric field because of the spatial variations in electron doping, and thus, an oscillatory electrostatic potential. As a result, this alternating field can change normal stochastic adatom diffusion to biased diffusion, leading to selective massmore » transport and consequent nucleation, on either the intercalated or pristine areas, depending on the charge state of the adatoms.« less

  19. Metal intercalation-induced selective adatom mass transport on graphene

    SciTech Connect

    Liu, Xiaojie; Wang, Cai -Zhuang; Hupalo, Myron; Lin, Hai -Qing; Ho, Kai -Ming; Thiel, Patricia A.; Tringides, Michael C.

    2016-03-29

    Recent experiments indicate that metal intercalation is a very effective method to manipulate the graphene-adatom interaction and control metal nanostructure formation on graphene. A key question is mass transport, i.e., how atoms deposited uniformly on graphene populate different areas depending on the local intercalation. Using first-principles calculations, we show that partially intercalated graphene, with a mixture of intercalated and pristine areas, can induce an alternating electric field because of the spatial variations in electron doping, and thus, an oscillatory electrostatic potential. As a result, this alternating field can change normal stochastic adatom diffusion to biased diffusion, leading to selective mass transport and consequent nucleation, on either the intercalated or pristine areas, depending on the charge state of the adatoms.

  20. Intercalated layered clay composites and their applications

    NASA Astrophysics Data System (ADS)

    Phukan, Anjali

    Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double

  1. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Gao, Xiaorui; Lei, Lixu; O'Hare, Dermot; Xie, Juan; Gao, Pengran; Chang, Tao

    2013-07-01

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg-Al and Mg-Fe layered double hydroxides (LDHs) have been synthesized by the calcination-rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV-vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO32- solutions imply that Mg3Al-VC LDH is a better controlled release system than Mg3Fe-VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO32- solution.

  2. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    SciTech Connect

    Gao, Xiaorui; Lei, Lixu; O'Hare, Dermot; Xie, Juan; Gao, Pengran; Chang, Tao

    2013-07-15

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.

  3. Carbonaceous materials as lithium intercalation anodes

    SciTech Connect

    Tran, T.D.; Feikert, J.H.; Mayer, S.T.; Song, X.; Kinoshita, K.

    1994-10-01

    Commercial and polymer-derived carbonaceous materials were examined as lithium intercalation anodes in propylene carbonate (pyrolysis < 1350C, carbons) and ethylene carbonate/dimethyl carbonate (graphites) electrolytes. The reversible capacity (180--355 mAh/g) and the irreversible capacity loss (15--200 % based on reversible capacity) depend on the type of binder, carbon type, morphology, and phosphorus doping concentration. A carbon-based binder was chosen for electrode fabrication, producing mechanically and chemically stable electrodes and reproducible results. Several types of graphites had capacity approaching LiC{sub 6}. Petroleum fuel green cokes doped with phosphorous gave more than a 20 % increase in capacity compared to undoped samples. Electrochemical characteristics are related to SEM, TEM, XRD and BET measurements.

  4. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    SciTech Connect

    Arizaga, Gregorio Guadalupe Carbajal

    2012-01-15

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}2H{sub 2}O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 Degree-Sign C while the exothermic event in ZHN was 366 Degree-Sign C and in the LDH at 276 Degree-Sign C. - Graphical abstract: The zinc hydroxide chloride (ZHC) with formula Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}2H{sub 2}O was tested as intercalation matrix. In comparison with the well-known zinc hydroxide nitrate (ZHN) and layered double hydroxides (LDH), ZHC was the best matrix for thermal protection of Asp combustion, presenting exothermic peaks even at 452 Degree-Sign C, while the highest exothermic event in ZHN was at 366 Degree-Sign C, and in the LDH it was at 276 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Zinc hydroxide chloride (ZHC) was tested as intercalation matrix for the first time. Black-Right-Pointing-Pointer ZHC has higher chemical and thermal stability than zinc hydroxide nitrate and LDH. Black-Right-Pointing-Pointer NH{sub 3} molecules can be intercalated into ZHC. Black-Right-Pointing-Pointer The amino group of amino acids limits the intercalation by ion-exchange.

  5. Amine-intercalated α-zirconium phosphates as lubricant additives

    NASA Astrophysics Data System (ADS)

    Xiao, Huaping; Dai, Wei; Kan, Yuwei; Clearfield, Abraham; Liang, Hong

    2015-02-01

    In this study, three types of amines intercalated α-zirconium phosphate nanosheets with different interspaces were synthesized and examined as lubricant additives to a mineral oil. Results from tribological experiments illustrated that these additives improved lubricating performance. Results of rheological experiments showed that the viscosity of the mineral oil was effectively reduced with the addition of α-zirconium phosphate nanosheets. The two-dimensional structure, with larger interspaces, resulting from amine intercalation, exhibited improved effectiveness in reducing viscosity. This study demonstrates that the nanosheet structure of α-zirconium phosphates is effective in friction reduction. The manufacture of lubricants with tailored viscosity is possible by using different intercalators.

  6. Intercalated samarium as an agent enabling the intercalation of oxygen under a monolayer graphene film on iridium

    NASA Astrophysics Data System (ADS)

    Afanas'eva, E. Yu.; Rut'kov, E. V.; Gall', N. R.

    2016-06-01

    Using thermal desorption time-of-flight mass spectrometry and thermionic methods, it is shown that oxygen does not intercalate under a graphene monolayer grown correctly on iridium, at least at temperatures of T = 300-400 K and exposures below 12000 L. However, if the graphene film on iridium is preliminary intercalated with samarium atoms (up to coverage of θSm = 0.2-0.45), the penetration of oxygen atoms under the graphene film is observed. The oxygen atoms in the intercalated state are chemically bonded to samarium atoms and remain under graphene up to high temperatures (~2150 K).

  7. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  8. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  9. Graphitized needle cokes and natural graphites for lithium intercalation

    SciTech Connect

    Tran, T.D.; Spellman, L.M.; Pekala, R.W.; Goldberger, W.M.; Kinoshita, K.

    1996-05-10

    This paper examined effects of heat treatment and milling (before or after heat treatment) on the (electrochemical) intercalating ability of needle petroleum coke; natural graphite particles are included for comparison. 1 tab, 4 figs, 7 refs.

  10. Removal of cesium ions from clays by cationic surfactant intercalation.

    PubMed

    Park, Chan Woo; Kim, Bo Hyun; Yang, Hee-Man; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo

    2017-02-01

    We propose a new approach to remediate cesium-contaminated clays based on intercalation of the cationic surfactant dodecyltrimethylammonium bromide (DTAB) into clay interlayers. Intercalation of DTAB was found to occur very rapidly and involved exchanging interlayer cations. The reaction yielded efficient cesium desorption (∼97%), including of a large amount of otherwise non-desorbable cesium ions by cation exchange with ammonium ions. In addition, the intercalation of DTAB afforded an expansion of the interlayers, and an enhanced desorption of Cs by cation exchange with ammonium ions even at low concentrations of DTAB. Finally, the residual intercalated surfactants were easily removed by a decomposition reaction with hydrogen peroxide in the presence of Cu(2+)/Fe(2+) catalysts.

  11. Electronic properties of carbon fibers intercalated with copper chloride

    NASA Technical Reports Server (NTRS)

    Oshima, H.; Natarajan, V.; Woollam, J. A.; Yavrouian, A.; Haugland, E. J.; Tsuzuku, T.

    1984-01-01

    Copper chloride intercalated pitch-based carbon fibers are found to have electrical resistivities as low as 12.9 micro-ohm-cm, and are air- and thermally-stable at and above room temperature. This is therefore a good candidate system for conductor application. In addition, Shubnikov-deHaas quantum oscillatory effects were found, and electronic properties of the intercalated fiber are studied using magnetic fields to 20 tesla.

  12. Intercalation-driven reversible control of magnetism in bulk ferromagnets.

    PubMed

    Dasgupta, Subho; Das, Bijoy; Knapp, Michael; Brand, Richard A; Ehrenberg, Helmut; Kruk, Robert; Hahn, Horst

    2014-07-16

    An extension in magnetoelectric effects is proposed to include reversible chemistry-controlled magnetization variations. This ion-intercalation-driven magnetic control can be fully reversible and pertinent to bulk material volumes. The concept is demonstrated for ferromagnetic iron oxide where the intercalated lithium ions cause valence change and partial redistribution of Fe(3+) cations yielding a large and fully reversible change in magnetization at room temperature.

  13. Should an intercalated degree be compulsory for undergraduate medical students?

    PubMed

    Philip, Aaron B; Prasad, Sunila J; Patel, Ankur

    2015-01-01

    Undertaking an intercalated year whilst at medical school involves taking time out of the medicine undergraduate programme in order to pursue a separate but related degree. It is widely seen as a challenging but rewarding experience, with much to be gained from the independent project or research component of most additional degrees. However, whilst intercalating is encouraged at many universities and is incorporated into some undergraduate curricula, it is by no means compulsory for all students. The literature would suggest that those who have intercalated tend to do better academically, both for the remainder of medical school and after graduating. Despite this, the issue of making intercalation mandatory is one of considerable debate, with counter-arguments ranging from the detrimental effect time taken out of the course can have to the lack of options available to cater for all students. Nonetheless, the research skills developed during an intercalated year are invaluable and help students prepare for taking a critical evidence-based approach to medicine. If intercalated degrees were made compulsory for undergraduates, it would be a step in the right direction. It would mean the doctors of tomorrow would be better equipped to practise medicine in disciplines that are constantly evolving.

  14. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate

    NASA Astrophysics Data System (ADS)

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-03-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy ( μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO4, K2Cr2O7) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO4 and NaClO3.

  15. Cellulose nanocrystals: A layered host candidate for fabricating intercalated nanocomposites.

    PubMed

    Guo, Juan; Du, Wenbo; Wang, Siqun; Yin, Yafang; Gao, Yong

    2017-02-10

    The stacking of cellulose chains along planes and weak intersheet interactions make cellulose nanocrystals (CNCs) promising as a layered host candidate for fabricating intercalated nanocomposites. As a proof-of-concept, we demonstrate the intercalation of alkyls into CNCs through the in situ intercalative chemical reaction between terminal groups of N-octadecyl isocyanates and hydroxyl groups on the (200) planes in CNCs. Results showed that CNCs could intercalate alkyls in a high degree of substitution to form dense brushes on their (200) planes. After intercalation, a significant enlargement of interlayer spacing was observed. Moreover, alkyls were fully extended in all-trans configuration and crystallized in a co-existing organization of αH, βH and βO crystalline forms. This meant that the molecular arrangement in CNCs/alkyl intercalated nanocomposites would involve a bilayer model in which alkyls were in the ordered packing and titled to (200) plane. Furthermore, CNCs/alkyl intercalated nanocomposites possessed increased thermal properties and decreased char residue.

  16. Obtaining graphene nanoplatelets from various graphite intercalation compounds

    NASA Astrophysics Data System (ADS)

    Melezhyk, A.; Galunin, E.; Memetov, N.

    2015-11-01

    The work compares the exfoliation ability of different graphite materials (expanded graphite intercalation compound, thermally expanded and oxidatively intercalated graphites) and describes the properties of graphene nanoplatelets (GNPs) obtained dependently on intercalation/deintercalation conditions and reagents. Among the studied materials, the graphite intercalated with ammonium persulfate in sulfuric acid and expanded at 40 °C possesses the maximum ability for ultrasonic exfoliation in the presence of a surfactant. The exfoliation efficiency strongly depends on the content of water in sulfuric acid during the intercalation. The highest efficiency was achieved for the expanded graphite intercalation compound (EGIC) prepared in sulfuric acid containing diluted oleum, which may be explained by increased acidity of the medium and, correspondingly, redox potential of the persulfate compound. This is also related to increased amounts of oxygen groups in the GNPs obtained from the EGIC synthesized in 100% sulfuric acid and diluted oleum. Besides, the nature of surface groups on the GNPs strongly depends on the nature of a deintercalating reagent. Thus, the treatment of the EGIC with different nucleophilic molecules (such as water, ammonia, carbamide, hexamethylenetetramine, organic amines, etc.) can yield GNPs with various surface groups. The interaction between the EGIC and nucleophilic molecules does not only include the substitution of sulfate groups, but also redox reactions with participation of graphene layers. Depending on the nature of the nucleophile, those reactions can lead to the formation of different groups attached to the graphene surface. GNPs with almost pure surface were obtained when using ammonia and carbamide.

  17. Stochastic Terminal Dynamics in Epithelial Cell Intercalation

    NASA Astrophysics Data System (ADS)

    Eule, Stephan; Metzger, Jakob; Reichl, Lars; Kong, Deqing; Zhang, Yujun; Grosshans, Joerg; Wolf, Fred

    2015-03-01

    We found that the constriction of epithelial cell contacts during intercalation in germ band extension in Drosophila embryos follows intriguingly simple quantitative laws. The mean contact length < L > follows < L > (t) ~(T - t) α , where T is the finite collapse time; the time dependent variance of contact length is proportional to the square of the mean; finally the time dependent probability density of the contact lengths remains close to Gaussian during the entire process. These observations suggest that the dynamics of contact collapse can be captured by a stochastic differential equation analytically tractable in small noise approximation. Here, we present such a model, providing an effective description of the non-equilibrium statistical mechanics of contact collapse. All model parameters are fixed by measurements of time dependent mean and variance of contact lengths. The model predicts the contact length covariance function that we obtain in closed form. The contact length covariance function closely matches experimental observations suggesting that the model well captures the dynamics of contact collapse.

  18. DNA intercalation optimized by two-step molecular lock mechanism

    PubMed Central

    Almaqwashi, Ali A.; Andersson, Johanna; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C.

    2016-01-01

    The diverse properties of DNA intercalators, varying in affinity and kinetics over several orders of magnitude, provide a wide range of applications for DNA-ligand assemblies. Unconventional intercalation mechanisms may exhibit high affinity and slow kinetics, properties desired for potential therapeutics. We used single-molecule force spectroscopy to probe the free energy landscape for an unconventional intercalator that binds DNA through a novel two-step mechanism in which the intermediate and final states bind DNA through the same mono-intercalating moiety. During this process, DNA undergoes significant structural rearrangements, first lengthening before relaxing to a shorter DNA-ligand complex in the intermediate state to form a molecular lock. To reach the final bound state, the molecular length must increase again as the ligand threads between disrupted DNA base pairs. This unusual binding mechanism results in an unprecedented optimized combination of high DNA binding affinity and slow kinetics, suggesting a new paradigm for rational design of DNA intercalators. PMID:27917863

  19. Space Discovery.

    ERIC Educational Resources Information Center

    Blackman, Joan

    1998-01-01

    Describes one teacher's experience taking Space Discovery courses that were sponsored by the United States Space Foundation (USSF). These courses examine the history of space science, theory of orbits and rocketry, the effects of living in outer space on humans, and space weather. (DDR)

  20. Tunable thermal expansion in framework materials through redox intercalation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J. Paul; Xing, Xianran

    2017-02-01

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.

  1. Tunable thermal expansion in framework materials through redox intercalation

    PubMed Central

    Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J. Paul; Xing, Xianran

    2017-01-01

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion. PMID:28181576

  2. Electrochemical synthesis of alkali-intercalated iron selenide superconductors

    NASA Astrophysics Data System (ADS)

    Shen, Shi-Jie; Ying, Tian-Ping; Wang, Gang; Jin, Shi-Feng; Zhang, Han; Lin, Zhi-Ping; Chen, Xiao-Long

    2015-11-01

    Electrochemical method has been used to insert K/Na into FeSe lattice to prepare alkali-intercalated iron selenides at room temperature. Magnetization measurement reveals that KxFe2Se2 and NaxFe2Se2 are superconductive at 31 K and 46 K, respectively. This is the first successful report of obtaining metal-intercalated FeSe-based high-temperature superconductors using electrochemical method. It provides an effective route to synthesize metal-intercalated layered compounds for new superconductor exploration. Project supported by the National Natural Science Foundation of China (Grant Nos. 51322211and 91422303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100), Beijing Nova Program of China (Grant No. 2011096), and K. C. Wong Education Foundation, Hong Kong, China.

  3. Tunable thermal expansion in framework materials through redox intercalation.

    PubMed

    Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J Paul; Xing, Xianran

    2017-02-09

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.

  4. Progressive specification rather than intercalation of segments during limb regeneration.

    PubMed

    Roensch, Kathleen; Tazaki, Akira; Chara, Osvaldo; Tanaka, Elly M

    2013-12-13

    An amputated salamander limb regenerates the correct number of segments. Models explaining limb regeneration were largely distinct from those for limb development, despite the presence of common patterning molecules. Intercalation has been an important concept to explain salamander limb regeneration, but clear evidence supporting or refuting this model was lacking. In the intercalation model, the first blastema cells acquire fingertip identity, creating a gap in positional identity that triggers regeneration of the intervening region from the stump. We used HOXA protein analysis and transplantation assays to show that axolotl limb blastema cells acquire positional identity in a proximal-to-distal sequence. Therefore, intercalation is not the primary mechanism for segment formation during limb regeneration in this animal. Patterning in development and regeneration uses similar mechanisms.

  5. The preliminary feasibility of intercalated graphite railgun armatures

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Gooden, Clarence E.; Yashan, Doreen; Naud, Steve

    1991-01-01

    Graphite intercalation compounds may provide an excellent material for the fabrication of electromagnetic railgun armatures. As a pulse of power is fed into the armature the intercalate could be excited into the plasma state around the edges of the armature, while the bulk of the current would be carried through the graphite block. Such an armature would have both diffuse plasma armatures and bulk conduction armatures. In addition, the highly anisotropic nature of these materials could enable the electrical and thermal conductivity to be tailored to meet the specific requirements of electromagnetic railgun armatures. Preliminary investigations have been performed in an attempt to determine the feasibility of using graphite intercalation compounds as railgun armatures. Issues of fabrication, resistivity, stability, and electrical current spreading have been addressed for the case of highly oriented pyrolytic graphite.

  6. Real-time electrochemical LAMP: a rational comparative study of different DNA intercalating and non-intercalating redox probes.

    PubMed

    Martin, Alexandra; Bouffier, Laurent; Grant, Kathryn B; Limoges, Benoît; Marchal, Damien

    2016-06-20

    We present a comparative study of ten redox-active probes for use in real-time electrochemical loop-mediated isothermal amplification (LAMP). Our main objectives were to establish the criteria that need to be fulfilled for minimizing some of the current limitations of the technique and to provide future guidelines in the search for ideal redox reporters. To ensure a reliable comparative study, each redox probe was tested under similar conditions using the same LAMP reaction and the same entirely automatized custom-made real-time electrochemical device (designed for electrochemically monitoring in real-time and in parallel up to 48 LAMP samples). Electrochemical melt curve analyses were recorded immediately at the end of each LAMP reaction. Our results show that there are a number of intercalating and non-intercalating redox compounds suitable for real-time electrochemical LAMP and that the best candidates are those able to intercalate strongly into ds-DNA but not too much to avoid inhibition of the LAMP reaction. The strongest intercalating redox probes were finally shown to provide higher LAMP sensitivity, speed, greater signal amplitude, and cleaner-cut DNA melting curves than the non-intercalating molecules.

  7. Intercalation of paracetamol into the hydrotalcite-like host

    SciTech Connect

    Kovanda, Frantisek; Maryskova, Zuzana; Kovar, Petr

    2011-12-15

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 Degree-Sign C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals. - Graphical abstract: Molecular simulations showed disordered arrangement of paracetamol molecules in the interlayer; most of the interlayer water molecules are located near the hydroxide sheets. Black-Small-Square Highlights: Black-Right-Pointing-Pointer Paracetamol was intercalated in Mg-Al hydrotalcite-like host by rehydration/reconstruction procedure. Black-Right-Pointing-Pointer Paracetamol phenolic groups interact with positively charged sites in hydroxide sheets. Black-Right-Pointing-Pointer Molecular simulations showed disordered arrangement of guest molecules in the interlayer. Black-Right-Pointing-Pointer Slower release of paracetamol intercalated in the hydrotalcite-like host was observed.

  8. Anisotropic Tuning of Graphite Thermal Conductivity by Lithium Intercalation.

    PubMed

    Qian, Xin; Gu, Xiaokun; Dresselhaus, Mildred S; Yang, Ronggui

    2016-11-17

    Understanding thermal transport in lithium intercalated layered materials is not only important for managing heat generation and dissipation in lithium ion batteries but also the understanding potentially provides a novel way to design materials with reversibly tunable thermal conductivity. In this work, the thermal conductivity of lithium-graphite intercalation compounds (LixC6) is calculated using molecular dynamics simulations as a function of the amount of lithium intercalated. We found that intercalation of lithium has an anisotropic effect on tuning the thermal conductivity: the thermal conductivity in the basal plane decreases monotonically from 1232 W/m·K of pristine graphite to 444 W/m·K of the fully lithiated LiC6, while the thermal conductivity along the c-axis decreases first from 6.5 W/m·K for graphite to 1.3 W/m·K for LiC18 and then increases to 5.0 W/m·K for LiC6 as the lithium composition increases. More importantly, we provide the very first atomic-scale insight into the effect of lithium intercalation on the spectral phonon properties of graphite. The intercalated lithium ions are found to suppress the phonon lifetime and to reduce the group velocity of phonons parallel to the basal plane but significantly to increase the phonon group velocity along the c-axis, which anisotropically tunes the thermal conductivity of lithiated graphite compounds. This work could shed some light on the search for tunable thermal conductivity materials and might have strong impacts on the thermal management of lithium ion batteries.

  9. Revisiting the domain model for lithium intercalated graphite

    NASA Astrophysics Data System (ADS)

    Krishnan, Sridevi; Brenet, Gilles; Machado-Charry, Eduardo; Caliste, Damien; Genovese, Luigi; Deutsch, Thierry; Pochet, Pascal

    2013-12-01

    In this Letter, we study the stability of the domain model for lithium intercalated graphite in stages III and II by means of Density Functional Theory and Kinetic Lattice Monte Carlo simulations. We find that the domain model is either thermodynamically or kinetically stable when compared to the standard model in stages III and II. The existence of domains in the intercalation sequence is well supported by recent high resolution transmission electron microscope observations in lithiated graphite. Moreover, we predict that such domain staging sequences leads to a wide range of diffusivity as reported in experiments.

  10. Development of a high conductivity intercalated graphite composite wire

    NASA Astrophysics Data System (ADS)

    Singhal, S. C.

    1982-02-01

    Composite wires previously fabricated by swaging and claimed to possess conductivity equal to or greater than that of copper were analyzed. Intercalation of HOPG crystals with SbF5+HF mixtures was studied to assess the effect of defects in the starting graphite on the final conductivity and also to determine the conductivity as a function of the stage of the compound. Composite wires consisting of copper, aluminum or lead outer sheath and SbF5+HF-or AsF5-intercalated graphite in the core were fabricated by swaging and/or drawing and then analyzed for their electrical conductivity.

  11. Another morphogenetic movement on the map: Charting dorsal intercalation in C. elegans.

    PubMed

    Walck-Shannon, Elise; Hardin, Jeff

    2016-01-01

    Dorsal intercalation is a coordinated cell migration event that rearranges hypodermal cells during C. elegans embryogenesis, and that resembles cell intercalation in many systems from flies to mice. Despite its conservation, the molecular mechanisms that govern dorsal intercalation in worms have remained elusive. Here, we comment on our recent publication, Walck-Shannon et al.,(1) which begins to spatially map the molecular requirements for intercalation. First, we provide a historical perspective on the factors that have previously hampered the study of dorsal intercalation. Next, we provide a summary of the molecular pathways identified in Walck-Shannon et al.,(1) pointing out surprises along the way. Finally, we consider the potential conservation of the molecular pathway we described and discuss future questions surrounding dorsal intercalation. Despite the challenges, dorsal intercalation is a process poised to advance our understanding of cell intercalation during morphogenesis throughout the animal kingdom.

  12. Layered Compounds and Intercalation Chemistry: An Example of Chemistry and Diffusion in Solids.

    ERIC Educational Resources Information Center

    Whittingham, M. Stanley; Chianelli, Russell R.

    1980-01-01

    Considers a few areas of oxide/sulfide and intercalation-type chemistry. Discusses synthesis of the disulfides of the metals of group IVB, VB, and VIB; the intercalation reaction between lithium and titanium disulfide; other intercalates; and sulfide catalysts. (CS)

  13. Intercalated Compounds: A New Class of Materials as Advanced Solid Lubricants.

    DTIC Science & Technology

    1982-01-25

    CLASSIFICATION OF THIS PAGE (Whin DaE~I’ _______________ RED fI3TRUCTIOMSREPORT DOCUMENTATION PAGE Ston COMPLEIM7VG FORm I.RPR NUM an GVT ACCESO NO L...contain multiple layers of intercalant between adjacent carbon planes 41. As a consequence of intercalation, the interplanar distance between intercalated

  14. Exfoliation of Hexagonal Boron Nitride via Ferric Chloride Intercalation

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Rogers, Richard B.

    2014-01-01

    Sodium fluoride (NaF) was used as an activation agent to successfully intercalate ferric chloride (FeCl3) into hexagonal boron nitride (hBN). This reaction caused the hBN mass to increase by approx.100 percent, the lattice parameter c to decrease from 6.6585 to between 6.6565 and 6.6569 ?, the x-ray diffraction (XRD) (002) peak to widen from 0.01deg to 0.05deg of the full width half maximum value, the Fourier transform infrared (FTIR) spectrum's broad band (1277/cm peak) to change shape, and new FTIR bands to emerge at 3700 to 2700 and 1600/cm. This indicates hBN's structural and chemical properties are significantly changed. The intercalated product was hygroscopic and interacted with moisture in the air to cause further structural and chemical changes (from XRD and FTIR). During a 24-h hold at room temperature in air with 100 percent relative humidity, the mass increased another 141 percent. The intercalated product, hydrated or not, can be heated to 750 C in air to cause exfoliation. Exfoliation becomes significant after two intercalation-air heating cycles, when 20-nm nanosheets are commonly found. Structural and chemical changes indicated by XRD and FTIR data were nearly reversed after the product was placed in hydrochloric acid (HCl), resulting in purified, exfoliated, thin hBN products.

  15. Intercalation of paracetamol into the hydrotalcite-like host

    NASA Astrophysics Data System (ADS)

    Kovanda, František; Maryšková, Zuzana; Kovář, Petr

    2011-12-01

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals.

  16. Development of a high conductivity intercalated graphite composite wire

    SciTech Connect

    Singhal, S.C.

    1982-02-01

    Beginning in May 1979, the Department of Energy initiated the present program entitled, Development of a High Conductivity Intercalated Graphite Composite Wire, to develop the scientific base and technology for reproducibly fabricating high conductivity intercalated graphite composite wires. Toward achieving this objective, the following work was carried out in this program: (1) composite wires previously fabricated by swaging at the University of Pennsylvania and claimed to possess conductivity equal to or greater than that of copper were analyzed, (2) intercalation of HOPG crystals with SbF/sub 5/+HF mixtures was studied to assess the effect of defects in the starting graphite on the final conductivity and also to determine the conductivity as a function of the stage of the compound, and (3) composite wires consisting of copper, aluminum or lead outer sheath and SbF/sub 5/+HF- or AsF/sub 5/-intercalated graphite in the core were fabricated by swaging and/or drawing and then analyzed for their electrical conductivity.

  17. Magnetic Properties of CoCl2-Intercalated Graphite,

    DTIC Science & Technology

    1983-04-01

    Dresselhaus, in Intercalated Graphite, edited by M.S. Dresselhaus, G. Dresselhaus, J.E. Fischer and M.J. Moran, ( Elsiever , New York, 1983), vol. 20, p...G. Dresselhau JE. Fischer and M.J. Moran, ( Elsiever , New York, 1983), vol. 20, p. 213. 13. J. Tobochnik and G.V. Chester, Phys. Rev. B20, 3761 (1979

  18. [Raman and infrared spectrograms of organic borate intercalated hydrotalcite].

    PubMed

    Zhang, Jing-Yu; Bai, Zhi-Min; Zhao, Dong

    2013-03-01

    The pattern of X-ray diffraction, the Raman and infrared spectra of organic borate intercalated hydrotalcite were discussed. The well crystallized zinc-aluminum layered double hydroxides (Zn-Al LDHs) intercalated by carbonate ions and borate ions were respectively prepared by co-precipitation method. Patterns of X-ray diffraction showed that the (003) reflection of borate-LDHs was sharp and symmetric and shifted to lower angle than that of carbonate-LDHs. The gallery height of borate-LDHs increased from 0. 28 nm to 0.42 nm after intercalation, indicating that interlayered carbonate ions were substituted by borate anions. The Raman and IR spectra showed that specific bands of carbonate ions in the borate-LDHs disappeared, but with the presence of B3O3(OH)4- X B4O5(OH)4(2-) and B(OH)4- in the interlayer galleries. The hydroxide interlayer anions had a significant influence on the band positions in Raman and infrared spectra of modes related to the hydroxyl group. Our results indicate that single phase and pure borate-pillared LDHs can be obtained using tributyl orthoborate as intercalating agents, and the change in the structure and nature of hydrotalcite can be detected precisely by Raman spectroscopy.

  19. Intercalation of papain enzyme into hydrotalcite type layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Zou, N.; Plank, J.

    2012-09-01

    Intercalation of proteolytic enzyme papain into hydrotalcite type LDH structure was achieved by controlled co-precipitation at pH=9.0 in the presence of papain. Characterization of the MgAl-papain-LDH phase was carried out using X-ray powder diffraction (XRD), elemental analysis, infrared spectroscopy (IR) and thermogravimetry (TG). According to XRD, papain was successfully intercalated. The d-value for the basal spacing of MgAl-papain-LDH was found at ˜5.3 nm. Consequently, original papain (hydrodynamic diameter ˜7.2 nm) attains a compressed conformation during intercalation.Formation of MgAl-papain-LDH was confirmed by elemental analysis and transmission electron microscopy (TEM). Under SEM, MgAl-papain-LDH phases appear as nanothin platelets which are intergrown to flower-like aggregates. Steric size and activity of the enzyme was retained after deintercalation from MgAl-LDH framework, as was evidenced by light scattering and UV/vis measurements. Thus, papain is not denatured during intercalation, and LDH is a suitable host structure which can provide a time-controlled release of the biomolecule.

  20. Kinetics of the Formation of Intercalation Compounds in Crystalline Graphite

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Hickey, G. S.

    1995-01-01

    Crystalline graphite has a structure that can be best described as an ordered stack of flat aromatic layers. It is known to form intercalation compounds with bromine and nitric acid. Their formation was studied using thermal measurements and analytical techniques. Samples of graphite treated with either bromine or nitric acid were prepared by contacting these reagents with powdered graphite.

  1. First principles investigation of copper and silver intercalated molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Guzman, D. M.; Onofrio, N.; Strachan, A.

    2017-02-01

    We characterize the energetics and atomic structures involved in the intercalation of copper and silver into the van der Waals gap of molybdenum disulfide as well as the resulting ionic and electronic transport properties using first-principles density functional theory. The intercalation energy of systems with formula (Cu,Ag)xMoS2 decreases with ion concentration and ranges from 1.2 to 0.8 eV for Cu; Ag exhibits a stronger concentration dependence from 2.2 eV for x = 0.014 to 0.75 eV for x = 1 (using the fcc metal as a reference). Partial atomic charge analysis indicates that approximately half an electron is transferred per metallic ion in the case of Cu at low concentrations and the ionicity decreases only slightly with concentration. In contrast, while Ag is only slightly less ionic than Cu for low concentrations, charge transfer reduces significantly to approximately 0.1 e for x = 1. This difference in ionicity between Cu and Ag correlates with their intercalation energies. Importantly, the predicted values indicate the possibility of electrochemical intercalation of both Cu and Ag into MoS2 and the calculated activation energies associated with ionic transport within the gaps, 0.32 eV for Cu and 0.38 eV for Ag, indicate these materials to be good ionic conductors. Analysis of the electronic structure shows that charge transfer leads to a shift of the Fermi energy into the conduction band resulting in a semiconductor-to-metal transition. Electron transport calculations based on non-equilibrium Green's function show that the low-bias conductance increases with metal concentration and is comparable in the horizontal and vertical transport directions. These properties make metal intercalated transition metal di-chalcogenides potential candidates for several applications including electrochemical metallization cells and contacts in electronics based on 2D materials.

  2. Technical Report-Final-Electrochemistry of Nanostructured Intercalation Hosts

    SciTech Connect

    Professor William H. Smyrl, Principal Investigator

    2009-03-09

    We have shown that: (1) Li+ ions are inserted reversibly, without diffusion control, up to the level of at least 4 moles Li+ ions per mole for V2O5, in the aerogel (ARG) form (500 m2/g specific surface area) and aerogel-like (ARG-L) form (200 m2/g specific surface area)(6,7,1,2); (2) polyvalent cations (Al+3, Mg+2, Zn+2) may be intercalated reversibly into V2O5 (ARG) with high capacity (approaching 4 equivalents/mole V2O5 (ARG)) for each (5); (3) dopant cations such as Ag+ and Cu+2 increase the conductivity of V2O5 (XRG) up to three orders of magnitude(3), they are electrochemically active – showing reduction to the metallic-state in parallel to intercalation of Li+ ions – but are not released to the electrolyte upon oxidation and Li+ ion release (Cu+2 ions are reduced to Cu metal and reoxidized to Cu+2 in Li+ ion insertion/release cycles, but the copper ions are not released to the electrolyte over more than 400 cycles of the XRG form); (4) we have shown that Cu+2 ion (dopant) and Zn+2 ions (chemical insertion and dopant) occupy the same intercalation site inV2O5 xerogel and aerogel(4); (5) the reversible intercalation of Zn+2, Mg+2, and Al+3 in the ARG(11) indicates that these cations are “mobile”, but that Cu+2 ions and Ag+ ions are “immobile” in the xerogel, i.e., the latter ions are not exchanged with the electrolyte in Li+ ion intercalation cycling(3).

  3. A unique perylene-based DNA intercalator: localization in cell nuclei and inhibition of cancer cells and tumors.

    PubMed

    Xu, Zejun; Guo, Kunru; Yu, Jieshi; Sun, Haili; Tang, Jun; Shen, Jie; Müllen, Klaus; Yang, Wantai; Yin, Meizhen

    2014-10-29

    To date, perylene derivatives have not been explored as DNA intercalator to inhibit cancer cells by intercalating into the base pairs of DNA. Herein, a water-soluble perylene bisimide (PBDI) that efficiently intercalates into the base pairs of DNA is synthesized. Excitingly, PBDI is superior to the commercial DNA intercalator, amonafide, for specific nuclear accumulation and effective suppression of cancer cells and tumors.

  4. Intercalated graphite fiber composites as EMI shields in aerospace structures

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1990-01-01

    The requirements for electromagnetic interference (EMI) shielding in aerospace structures are complicated over that of ground structures by their weight limitations. As a result, the best EMI shielding materials must blend low density, high strength, and high elastic modulus with high shielding ability. In addition, fabrication considerations including penetrations and joints play a major role. The EMI shielding properties are calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compared to preliminary experimental results and to shields made from aluminum. Calculations indicate that EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding properties alone.

  5. Superconductivity in the Graphite Intercalation Compound BaC(6).

    PubMed

    Heguri, Satoshi; Kawade, Naoya; Fujisawa, Takumi; Yamaguchi, Akira; Sumiyama, Akihiko; Tanigaki, Katsumi; Kobayashi, Mototada

    2015-06-19

    Among many two-dimensional (2D) high T(C) superconductors, graphite intercalation compounds (GICs) are the most famous intercalation family, which are classified as typical electron-phonon mediated superconductors. We show unambiguous experimental facts that BaC(6), the superconductivity of which has been missing for many years so far among various alkaline earth metal (Ca, Sr, and Ba) intercalted GICs, exhibits superconductivity at T(C)=65  mK. By adding this finding as the additional experimental point, a complete figure displaying the relationship between T(C) and interlayer distance (d) for GICs is now provided, and their possible superconducting mechanisms raised so far are revisited. The present study settles a long-running debate between theories and experiments on the superconductivity in the first stage GICs.

  6. Controlling the photoconductivity: Graphene oxide and polyaniline self assembled intercalation

    SciTech Connect

    Vempati, Sesha; Ozcan, Sefika; Uyar, Tamer

    2015-02-02

    We report on controlling the optoelectronic properties of self-assembled intercalating compound of graphene oxide (GO) and HCl doped polyaniline (PANI). Optical emission and X-ray diffraction studies revealed a secondary doping phenomenon of PANI with –OH and –COOH groups of GO, which essentially arbitrate the intercalation. A control on the polarity and the magnitude of the photoresponse (PR) is harnessed by manipulating the weight ratios of PANI to GO (viz., 1:1.5 and 1:2.2 are abbreviated as PG1.5 and PG2.2, respectively), where ±PR = 100(R{sub Dark} – R{sub UV-Vis})/R{sub Dark} and R corresponds to the resistance of the device in dark or UV-Vis illumination. To be precise, the PR from GO, PANI, PG1.5, and PG2.2 are +34%, −111%, −51%, and +58%, respectively.

  7. DNA Intercalated Psoralen Undergoes Efficient Photoinduced Electron Transfer.

    PubMed

    Fröbel, Sascha; Reiffers, Anna; Torres Ziegenbein, Christian; Gilch, Peter

    2015-04-02

    The interaction of psoralens with DNA has been used for therapeutic and research purposes for decades. Still the photoinduced behavior of psoralens in DNA has never been observed directly. Femtosecond transient absorption spectroscopy is used here to gain direct insight into the photophysics of a DNA-intercalated psoralen (4'-aminomethyl-4,5',8-trimethyl-psoralen (AMT)). Intercalation reduces the excited singlet lifetime of AMT to 4 ps compared with 1400 ps for AMT in water. This singlet quenching prohibits the population of the triplet state that is accessed in free AMT. Instead, a DNA to AMT electron transfer takes place. The resulting radical pair decays primarily via charge recombination with a time constant of 30 ps. The efficient electron transfer observed here reveals a completely new aspect of the psoralen-DNA interaction.

  8. Superconductivity in intercalated group-IV honeycomb structures

    NASA Astrophysics Data System (ADS)

    Flores-Livas, José A.; Sanna, Antonio

    2015-02-01

    We present a theoretical investigation on the electron-phonon superconductivity of honeycomb M X2 layered structures where X is one element of group IV (C, Si, or Ge) and M is an alkali or an alkaline-earth metal. Among the studied compositions we predict a TC of 7 K in RbGe2, 9 K in RbSi2, and 11 K in SrC2. All these compounds feature a strongly anisotropic superconducting gap. Our results show that despite the different doping levels and structural properties, the three families of materials fall into a similar description of their superconducting behavior. This allows us to estimate an upper critical temperature of about 20 K for the class of intercalated group-IV structures, including intercalated graphite and doped graphene.

  9. Intercalation Pseudocapacitance of Exfoliated Molybdenum Disulfide for Ultrafast Energy Storage

    DOE PAGES

    Yoo, Hyun Deog; Li, Yifei; Liang, Yanliang; ...

    2016-05-23

    In this study, we report intercalation pseudocapacitance of 250 F g-1 for exfoliated molybdenum disulfide (MoS2) in non-aqueous electrolytes that contain lithium ions. The exfoliated MoS2 shows surface-limited reaction kinetics with high rate capability up to 3 min of charge or discharge. The intercalation pseudocapacitance originates from the extremely fast kinetics due to the enhanced ionic and electronic transport enabled by the slightly expanded layer structure as well as the metallic 1T-phase. The exfoliated MoS2 could be also used in a Li-Mg-ion hybrid capacitor, which shows full cell specific capacitance of 240 F g-1.

  10. Intercalation Pseudocapacitance of Exfoliated Molybdenum Disulfide for Ultrafast Energy Storage

    SciTech Connect

    Yoo, Hyun Deog; Li, Yifei; Liang, Yanliang; Lan, Yucheng; Wang, Feng; Yao, Yan

    2016-05-23

    In this study, we report intercalation pseudocapacitance of 250 F g-1 for exfoliated molybdenum disulfide (MoS2) in non-aqueous electrolytes that contain lithium ions. The exfoliated MoS2 shows surface-limited reaction kinetics with high rate capability up to 3 min of charge or discharge. The intercalation pseudocapacitance originates from the extremely fast kinetics due to the enhanced ionic and electronic transport enabled by the slightly expanded layer structure as well as the metallic 1T-phase. The exfoliated MoS2 could be also used in a Li-Mg-ion hybrid capacitor, which shows full cell specific capacitance of 240 F g-1.

  11. Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation.

    PubMed

    Blanchard, Guy B; Kabla, Alexandre J; Schultz, Nora L; Butler, Lucy C; Sanson, Benedicte; Gorfinkiel, Nicole; Mahadevan, L; Adams, Richard J

    2009-06-01

    The dynamic reshaping of tissues during morphogenesis results from a combination of individual cell behaviors and collective cell rearrangements. However, a comprehensive framework to unambiguously measure and link cell behavior to tissue morphogenesis is lacking. Here we introduce such a kinematic framework, bridging cell and tissue behaviors at an intermediate, mesoscopic, level of cell clusters or domains. By measuring domain deformation in terms of the relative motion of cell positions and the evolution of their shapes, we characterized the basic invariant quantities that measure fundamental classes of cell behavior, namely tensorial rates of cell shape change and cell intercalation. In doing so we introduce an explicit definition of cell intercalation as a continuous process. We mapped strain rates spatiotemporally in three models of tissue morphogenesis, gaining insight into morphogenetic mechanisms. Our quantitative approach has broad relevance for the precise characterization and comparison of morphogenetic phenotypes.

  12. Amphiphilic properties of poly(oxyalkylene)amine-intercalated smectite aluminosilicates.

    PubMed

    Lin, Jiang-Jen; Chen, Yu-Min

    2004-05-11

    Layered aluminosilicates, including synthetic fluorine mica and natural montmorillonite (MMT), were intercalated with poly(oxypropylene)-polyamine quaternary salts with a 230-5000 molecular weight range. The X-ray basal spacing of these silicates had been expanded from 13.5 to 83.7 A for the synthetic mica and to 92.0 A for MMT. The relative silicate dimensions (300-1000 nm for synthetic mica and 80-100 nm for MMT) were ascertained by direct TEM observations in the case of the co-intercalated synthetic mica and MMT mixtures with Mw = 2000 quaternary ammonium salts. The tailored organic incorporation of synthetic mica and MMT clays could alter these hydrophilic clays, making them amphiphilic, and enable the lowering of toluene/water interfacial tension to 2.0 mN/m at the critical concentration of 0.1 wt %.

  13. Rational design of a triple helix-specific intercalating ligand.

    PubMed

    Escudé, C; Nguyen, C H; Kukreti, S; Janin, Y; Sun, J S; Bisagni, E; Garestier, T; Hélène, C

    1998-03-31

    DNA triple helices offer new perspectives toward oligonucleotide-directed gene regulation. However, the poor stability of some of these structures might limit their use under physiological conditions. Specific ligands can intercalate into DNA triple helices and stabilize them. Molecular modeling and thermal denaturation experiments suggest that benzo[f]pyrido[3, 4-b]quinoxaline derivatives intercalate into triple helices by stacking preferentially with the Hoogsteen-paired bases. Based on this model, it was predicted that a benzo[f]quino[3,4-b]quinoxaline derivative, which possesses an additional aromatic ring, could engage additional stacking interactions with the pyrimidine strand of the Watson-Crick double helix upon binding of this pentacyclic ligand to a triplex structure. This compound was synthesized. Thermal denaturation experiments and inhibition of restriction enzyme cleavage show that this new compound can indeed stabilize triple helices with great efficiency and specificity and/or induce triple helix formation under physiological conditions.

  14. Lithium intercalation behavior of surface modified carbonaceous materials

    SciTech Connect

    Tran, T.D.; Murguia, L.X.; Song, X.; Kinoshita, K.

    1997-07-17

    The surface properties of several well-characterized commercial carbon materials were modified by thermal and chemical treatments. The reversible capacities for lithium intercalation of a sponge green coke and a fuel green coke for lithium intercalation increased by as much as 25% after heat treatment in both reducing (5% H{sub 2}/Ar) and oxidizing (CO{sub 2}) environments. The irreversible capacity loss increased significantly with CO{sub 2} treatment at 800{degrees}C. The trend of larger capacity losses with CO{sub 2} treatment is also observed with a synthetic graphite (SFG6) which was produced by heat treatment at about 3000{degrees}C. Carbon fibers that were first impregnated with LiOH solution followed by reaction with CO{sub 2} to form Li{sub 2}CO{sub 3} tended to show lower irreversible capacity losses.

  15. Electrochemical Doping of Halide Perovskites with Ion Intercalation.

    PubMed

    Jiang, Qinglong; Chen, Mingming; Li, Junqiang; Wang, Mingchao; Zeng, Xiaoqiao; Besara, Tiglet; Lu, Jun; Xin, Yan; Shan, Xin; Pan, Bicai; Wang, Changchun; Lin, Shangchao; Siegrist, Theo; Xiao, Qiangfeng; Yu, Zhibin

    2017-01-24

    Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40% reduction of transmittance in the 450-850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.

  16. Superconductivity in the Graphite Intercalation Compound BaC 6

    NASA Astrophysics Data System (ADS)

    Heguri, Satoshi; Kawade, Naoya; Fujisawa, Takumi; Yamaguchi, Akira; Sumiyama, Akihiko; Tanigaki, Katsumi; Kobayashi, Mototada

    2015-06-01

    Among many two-dimensional (2D) high TC superconductors, graphite intercalation compounds (GICs) are the most famous intercalation family, which are classified as typical electron-phonon mediated superconductors. We show unambiguous experimental facts that BaC 6 , the superconductivity of which has been missing for many years so far among various alkaline earth metal (Ca, Sr, and Ba) intercalted GICs, exhibits superconductivity at TC=65 mK . By adding this finding as the additional experimental point, a complete figure displaying the relationship between TC and interlayer distance (d ) for GICs is now provided, and their possible superconducting mechanisms raised so far are revisited. The present study settles a long-running debate between theories and experiments on the superconductivity in the first stage GICs.

  17. Technological hurdles to the application of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1988-01-01

    Before intercalated graphite fibers can be developed as an effective power material, there are several technological hurdles which must be overcome. These include the environmental stability, homogeneity and bulk properties, connection procedures, and costs. Strides were made within the last several years in stability and homogeneity of intercalated graphite fibers. Bulk properties and connection procedures are areas of active research now. Costs are still prohibitive for all but the most demanding applications. None of these problems, however, appear to be unsolvable, and their solution may result in wide spread GOC application. The development of a relatively simple technology application, such as EMI shielding, would stimulate the solution of scale-up problems. Once this technology is developed, then more demanding applications, such as power bus bars, may be possible.

  18. Intercalation of Trichloroethene by Sediment-Associated Clay Minerals

    SciTech Connect

    Matthieu, Donald E.; Brusseau, Mark; Johnson, G. R.; Artiola, J. L.; Bowden, Mark E.; Curry, J. E.

    2013-01-01

    The objective of this research was to examine the potential for intercalation of trichloroethene (TCE) by clay minerals associated with aquifer sediments. Sediment samples were collected from a field site inTucson, AZ. Two widely used Montmorillonite specimen clays were employed as controls. X-ray diffraction, conducted with a controlled-environment chamber, was used to characterize smectite interlayer dspacing for three treatments (bulk air-dry sample, sample mixed with synthetic groundwater, sample mixed with TCE-saturated synthetic groundwater). The results show that the d-spacing measured for the samples treated with TCE-saturated synthetic groundwater are larger (*26%) than those of the untreated samples for all field samples as well as the specimen clays. These results indicate that TCE was intercalated by the clay minerals, which may have contributed to the extensive elution tailing observed in prior miscible-displacement experiments conducted with this sediment.

  19. Abl suppresses cell extrusion and intercalation during epithelium folding.

    PubMed

    Jodoin, Jeanne N; Martin, Adam C

    2016-09-15

    Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical-basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT.

  20. Exfoliation and intercalation of montmorillonite by small peptides.

    PubMed

    Block, Karin A; Trusiak, Adrianna; Katz, Al; Alimova, Alexandra; Wei, Hui; Gottlieb, Paul; Steiner, Jeffrey C

    2015-04-01

    Understanding structural changes in clay minerals induced by complexation with organic matter is relevant to soil science and agricultural applications. In this study, the effect of peptide storage in montmorillonite and the thermal stability of peptide-clay complexes was examined through characterization by X-ray diffraction (XRD), electron microscopy, UV absorption, and thermogravimetric analysis (TGA). XRD analysis of small peptide-montmorillonite clay complexes produced profiles consisting of reflections associated with the smectite 001 reflection and related peaks similar to that produced by a mixed layer clay mineral structure. Shifts in higher order diffraction maxima were attributed to disorder caused by the intercalation with the peptides. Increasing peptide concentrations resulted in greater shifts towards smaller 2θ from 6.37° (1.39 nm) to 5.45° (1.62 nm) as the interlayer space expanded. The expansion was accompanied by broadening of the 001 reflection (FWHM increases from 0.51 to 1.22° 2θ). The XRD line broadening was interpreted as caused by poorer crystallinity resulting from intercalation and tactoid exfoliation. SEM images revealed montmorillonite platelets with upwardly rolled edges that tend toward cylindrical structures with the production of tubules. High-resolution TEM images revealed bending of montmorillonite platelets, confirming exfoliation. The distribution of basal spacings in the micrographs was determined from the spatial frequencies obtained by Fourier analysis of density profiles. The distribution indicated the presence of discrete coherent crystallite domains. XRD and TGA results indicated that higher peptide concentrations resulted in a greater fraction of intercalated peptides and that surface adsorption of peptides mediated intercalation. Therefore, higher peptide concentration led to more stable organoclay complexes. However, UV absorption and TGA found that peptide adsorption onto montmorillonite had a finite limit at

  1. Exfoliation and intercalation of montmorillonite by small peptides

    PubMed Central

    Block, Karin A.; Trusiak, Adrianna; Katz, Al; Alimova, Alexandra; Wei, Hui; Gottlieb, Paul; Steiner, Jeffrey C.

    2015-01-01

    Understanding structural changes in clay minerals induced by complexation with organic matter is relevant to soil science and agricultural applications. In this study, the effect of peptide storage in montmorillonite and the thermal stability of peptide-clay complexes was examined through characterization by X-ray diffraction (XRD), electron microscopy, UV absorption, and thermogravimetric analysis (TGA). XRD analysis of small peptide-montmorillonite clay complexes produced profiles consisting of reflections associated with the smectite 001 reflection and related peaks similar to that produced by a mixed layer clay mineral structure. Shifts in higher order diffraction maxima were attributed to disorder caused by the intercalation with the peptides. Increasing peptide concentrations resulted in greater shifts towards smaller 2θ from 6.37° (1.39 nm) to 5.45° (1.62 nm) as the interlayer space expanded. The expansion was accompanied by broadening of the 001 reflection (FWHM increases from 0.51 to 1.22° 2θ). The XRD line broadening was interpreted as caused by poorer crystallinity resulting from intercalation and tactoid exfoliation. SEM images revealed montmorillonite platelets with upwardly rolled edges that tend toward cylindrical structures with the production of tubules. High-resolution TEM images revealed bending of montmorillonite platelets, confirming exfoliation. The distribution of basal spacings in the micrographs was determined from the spatial frequencies obtained by Fourier analysis of density profiles. The distribution indicated the presence of discrete coherent crystallite domains. XRD and TGA results indicated that higher peptide concentrations resulted in a greater fraction of intercalated peptides and that surface adsorption of peptides mediated intercalation. Therefore, higher peptide concentration led to more stable organoclay complexes. However, UV absorption and TGA found that peptide adsorption onto montmorillonite had a finite limit at

  2. Structural and Kinetic Properties of Graphite Intercalation Compounds

    DTIC Science & Technology

    1982-08-21

    the crystal is heated. the pressure within thC cracks will increase as the intercalate takes on a more gaseous character. Higashida and Kamada...flat crack may open to form a bubble. We propose that the latter fracture mode is responsible for the expansion observed in exfoliation. Higashida and...the crack growth stops rather than propagati:n ca’.astrophical1y to the crystal edge.) Although the analysis of Higashida and Kamada was developed for

  3. Ferric chloride graphite intercalation compounds prepared from graphite fluoride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1994-01-01

    The reaction between graphite fluoride and ferric chloride was observed in the temperature range of 300 to 400 C. The graphite fluorides used for this reaction have an sp3 electronic structure and are electrical insulators. They can be made by fluorinating either carbon fibers or powder having various degrees of graphitization. Reaction is fast and spontaneous and can occur in the presence of air. The ferric chloride does not have to be predried. The products have an sp2 electronic structure and are electrical conductors. They contain first stage FeCl3 intercalated graphite. Some of the products contain FeCl2*2H2O, others contain FeF3 in concentrations that depend on the intercalation condition. The graphite intercalated compounds (GIC) deintercalated slowly in air at room temperature, but deintercalated quickly and completely at 370 C. Deintercalation is accompanied by the disappearing of iron halides and the formation of rust (hematite) distributed unevenly on the fiber surface. When heated to 400 C in pure N2 (99.99 vol %), this new GIC deintercalates without losing its molecular structure. However, when the compounds are heated to 800 C in quartz tube, they lost most of its halogen atoms and formed iron oxides (other than hematite), distributed evenly in or on the fiber. This iron-oxide-covered fiber may be useful in making carbon-fiber/ceramic-matrix composites with strong bonding at the fiber-ceramic interface.

  4. Ferrix Chloride-Graphite Intercalation Compounds Prepared From Graphite Flouride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    The reaction between graphite fluoride and ferric chloride was observed in the temperature range of 300 to 400 C. The graphite fluorides used for this reaction have an sp(sup 3) electronic structure and are electrical insulators. They can be made by fluorinating either carbon fibers or powder having various degrees of graphitization. Reaction is fast and spontaneous and can occur in the presence of air. The ferric chloride does not have to be predried. The products have an sp(sup 2) electronic structure and are electrical conductors. They contain first-stage FeCl3 intercalated graphite. Some of the products contain FeCl2 (center dot) 2H2O, others contain FeF3, in concentrations that depend on the intercalation condition. The graphite intercalated compounds (GIC) deintercalated slowly in air at room temperature, but deintercalated quickly and completely at 370 C. Deintercalation is accompanied by the disappearance of iron halides and the formation of rust (hematite) distributed unevenly on the fiber surface. When heated to 400 C in pure N2 (99.99 vol%), this new GIC deintercalates without losing its molecular structure. However, when the compounds are exposed to 800 C N2, in a quartz tube, they lost most of their halogen atoms and formed iron oxides (other than hematite), distributed evenly in or on the fiber.

  5. Manipulate the Doping of Graphene at Nanoscale with Intercalated Oxygen

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Luo, Hong; Liu, Lei; Gu, Gong; Stradi, Daniele; Brandbyge, Mads

    2015-03-01

    We have created nanoscale p- and n-doped graphene regions side by side, by partially removing the oxygen between the graphene and the Cu foil growth substrate intercalated upon elongated air exposure. The Cu foil surface is almost exclusively (100) oriented, and the removal of intercalated oxygen is by thermal annealing. Scanning tunneling microscopy (STM) reveals a 0.72 × 0.72 nm square superlattice in the single layer (1L) graphene/O/Cu(100) structure, assigned to be Cu(2√{ 2} × 2√{ 2})R45°-O, which has not been reported so far. Graphene with intercalated oxygen underneath it is p-doped while the surrounding graphene areas, directly in contact with the copper surface, are n-doped. Comparing the scanning tunneling spectra (STS) of the two types of regions, we show a charge transfer-induced shift of the electronic structure. Such a shift is also observed between p- and n-doped twisted bilayer (2L) graphene regions, where the van Hove singularity (vHS) peaks are used as markers to precisely determine the energy shift. Across the boundaries between the p- and n-doped regions, the shift of the electronic structure is spatially resolved, showing the vanishing and reappearance of the vHS peaks. The experimental observations are consistent with first-principles calculations.

  6. Electrochemical Intercalation of Lithium Ions into Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Allen, J. L.; Sumanasekera, G. U.; Rao, A. M.; Fang, S.; Eklund, P. C.

    1998-03-01

    We have investigated the electrochemical intercalation of lithium ions into ropes of single-walled carbon nanotubes (SWNTs) in a standard three electrode cell. The SWNT mat pressed onto a Pt plate was the working electrode. Lithium was used at both the counter and reference electrodes, and 1M LiAsF6 in ethylene carbonate:diethyl carbonate (1:1 by volume) served as the electrolyte. Raman spectra of the SWNTs were recorded in situ as a function of electrochemical charge using 514.5 nm excitation. During galvanostatic intercalation, we observed a relatively steep decrease in voltage until a plateau at around 1.2 V is reached. We attribute this initial decrease to the intercalation of lithium into SWNT and a concurrent electron doping of the SWNT π band. In the Raman spectrum, as the voltage reaches 1.2 V, the tangential mode frequency down shifted from 1593 cm-1 to 1591 cm-1 consistent with electron addition to the π^* band. We speculate that surface reactions of the lithium doped SWNT and the electrolyte are occuring during the plateau. During the evolution of the plateau, the Raman signal of the tangential mode gradually diminishes without further downshift of the its frequency and eventually disappears completely. Cyclic voltammograms show a minimum at around 1.2 V and peaks at around 0.7 V and 1.7 V. The origin of this structure is not presently understood.

  7. Incommensurate Graphene Foam as a High Capacity Lithium Intercalation Anode

    NASA Astrophysics Data System (ADS)

    Paronyan, Tereza M.; Thapa, Arjun Kumar; Sherehiy, Andriy; Jasinski, Jacek B.; Jangam, John Samuel Dilip

    2017-01-01

    Graphite’s capacity of intercalating lithium in rechargeable batteries is limited (theoretically, 372 mAh g‑1) due to low diffusion within commensurately-stacked graphene layers. Graphene foam with highly enriched incommensurately-stacked layers was grown and applied as an active electrode in rechargeable batteries. A 93% incommensurate graphene foam demonstrated a reversible specific capacity of 1,540 mAh g‑1 with a 75% coulombic efficiency, and an 86% incommensurate sample achieves above 99% coulombic efficiency exhibiting 930 mAh g‑1 specific capacity. The structural and binding analysis of graphene show that lithium atoms highly intercalate within weakly interacting incommensurately-stacked graphene network, followed by a further flexible rearrangement of layers for a long-term stable cycling. We consider lithium intercalation model for multilayer graphene where capacity varies with N number of layers resulting LiN+1C2N stoichiometry. The effective capacity of commonly used carbon-based rechargeable batteries can be significantly improved using incommensurate graphene as an anode material.

  8. Incommensurate Graphene Foam as a High Capacity Lithium Intercalation Anode

    PubMed Central

    Paronyan, Tereza M.; Thapa, Arjun Kumar; Sherehiy, Andriy; Jasinski, Jacek B.; Jangam, John Samuel Dilip

    2017-01-01

    Graphite’s capacity of intercalating lithium in rechargeable batteries is limited (theoretically, 372 mAh g−1) due to low diffusion within commensurately-stacked graphene layers. Graphene foam with highly enriched incommensurately-stacked layers was grown and applied as an active electrode in rechargeable batteries. A 93% incommensurate graphene foam demonstrated a reversible specific capacity of 1,540 mAh g−1 with a 75% coulombic efficiency, and an 86% incommensurate sample achieves above 99% coulombic efficiency exhibiting 930 mAh g−1 specific capacity. The structural and binding analysis of graphene show that lithium atoms highly intercalate within weakly interacting incommensurately-stacked graphene network, followed by a further flexible rearrangement of layers for a long-term stable cycling. We consider lithium intercalation model for multilayer graphene where capacity varies with N number of layers resulting LiN+1C2N stoichiometry. The effective capacity of commonly used carbon-based rechargeable batteries can be significantly improved using incommensurate graphene as an anode material. PMID:28059110

  9. Selective and low temperature transition metal intercalation in layered tellurides

    PubMed Central

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-01-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid. PMID:27966540

  10. Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite

    NASA Technical Reports Server (NTRS)

    West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.

    2007-01-01

    We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.

  11. Selective and low temperature transition metal intercalation in layered tellurides

    NASA Astrophysics Data System (ADS)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-12-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid.

  12. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst.

    PubMed

    Gao, Honglin; Yan, Shicheng; Wang, Jiajia; Huang, Yu An; Wang, Peng; Li, Zhaosheng; Zou, Zhigang

    2013-11-07

    The development of efficient photocatalytic material for converting solar energy to hydrogen energy as viable alternatives to fossil-fuel technologies is expected to revolutionize energy shortage and environment issues. However, to date, the low quantum yield for solar hydrogen production over photocatalysts has hindered advances in the practical applications of photocatalysis. Here, we show that a carbon nitride intercalation compound (CNIC) synthesized by a simple molten salt route is an efficient polymer photocatalyst with a high quantum yield. We found that coordinating the alkali metals into the C-N plane of carbon nitride will induce the un-uniform spatial charge distribution. The electrons are confined in the intercalated region while the holes are in the far intercalated region, which promoted efficient separation of photogenerated carriers. The donor-type alkali metal ions coordinating into the nitrogen pots of carbon nitrides increase the free carrier concentration and lead to the formation of novel nonradiative paths. This should favor improved transport of the photogenerated electron and hole and decrease the electron-hole recombination rate. As a result, the CNIC exhibits a quantum yield as high as 21.2% under 420 nm light irradiation for solar hydrogen production. Such high quantum yield opens up new opportunities for using cheap semiconducting polymers as energy transducers.

  13. Materials discovery through crystal growth

    NASA Astrophysics Data System (ADS)

    zur Loye, Hans-Conrad

    2016-04-01

    The discovery of new materials and associated desirable properties has been a driving force behind chemical innovation for centuries. When we look at some of the many recent technological advances, and how widespread and significant their impact has been, we appreciate how much they have relied on new materials. The increase in hard drive storage capacity due to new giant magneto-resistive materials, the ever-shrinking cell phone due to improved microwave dielectric materials, the enhancement in lithium battery storage capacity due to new intercalation materials, or the improved capacitor due to new ferroelectric materials are all excellent examples. How were these materials discovered? While there is no single answer, in all cases there was a First-Material, the archetype in which the phenomenon was first observed, the one that led to further investigations and the subsequent preparation of improved 2nd or 3rd generation materials. It is this First-Material, the archetype, that was discovered - often via crystal growth.

  14. Magnetic field effects on superconductivity in alkali metal intercalates of MoS2

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Flood, D. J.; Wagoner, D. E.; Somoano, R. B.; Rembaum, A.

    1972-01-01

    The effects of a magnetic field on the superconducting transition in MoS2 intercalated with potassium and sodium were studied. It was found that the potassium intercalated MoS2 has better properties in a magnetic field. In zero magnetic field the transition to superconductivity begins near 6.4 K. Diagrams of the basic circuitry for superconducting transition studies, and charts showing critical magnetic field versus critical temperature for the intercalated MoS2 are included.

  15. High field superconductivity in alkali metal intercalates of MoS2

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Flood, D. J.; Wagoner, D. E.; Somoano, R. B.; Rembaum, A.

    1973-01-01

    In the search for better high temperature, high critical field superconductors, a class of materials was found which have layered structures and can be intercalated with various elements and compounds. Since a large number of compounds can be formed, intercalation provides a method of control of superconducting properties. They also provide the possible medium for excitonic superconductivity. Results of magnetic field studies are presented on alkali metal (Na, K, Rb, and Cs) intercalated MoS2 (2H polymorph).

  16. Synthesis of ACECLOFENAC/HYDROXYPROPYL-β-CYCLODEXTRIN Intercalated Layered Double Hydroxides and Controlled Release Properties

    NASA Astrophysics Data System (ADS)

    Li, Shifeng; Shen, Yanming; Liu, Dongbin; Fan, Lihui; Wu, Keke; Xiao, Min

    2013-04-01

    Aceclofenac (AC)/hydroxypropyl-β-cyclodextrin (HP-β-CD) complex intercalated layered double hydroxides (LDHs) have been synthesized by reconstruction method. X-ray diffraction, Fourier transform infrared and thermal gravimetric analyses indicated a successful intercalation of AC/HP-β-CD complex into the LDHs gallery. The AC release properties were also studied in different pH values buffer solution. The results indicate that the AC/HP-β-CD intercalated LDH has a potential application in drug delivery agent.

  17. False discoveries and models for gene discovery.

    PubMed

    van den Oord, Edwin J C G; Sullivan, Patrick F

    2003-10-01

    In the search for genes underlying complex traits, there is a tendency to impose increasingly stringent criteria to avoid false discoveries. These stringent criteria make it hard to find true effects, and we argue that it might be better to optimize our procedures for eliminating and controlling false discoveries. Focusing on achieving an acceptable ratio of true- and false-positives, we show that false discoveries could be eliminated much more efficiently using a stepwise approach. To avoid a relatively high false discovery rate, corrections for 'multiple testing' might also be needed in candidate gene studies. If the appropriate methods are used, detecting the proportion of true effects appears to be a more important determinant of the genotyping burden than the desired false discovery rate. This raises the question of whether current models for gene discovery are shaped excessively by a fear of false discoveries.

  18. Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Lipson, Albert L.; Han, Sang-Don; Kim, Soojeong; Pan, Baofei; Sa, Niya; Liao, Chen; Fister, Timothy T.; Burrell, Anthony K.; Vaughey, John T.; Ingram, Brian J.

    2016-09-01

    New energy storage chemistries based on Mg ions or Ca ions can theoretically improve both the energy density and reduce the costs of batteries. To date there has been limited progress in implementing these systems due to the challenge of finding a high voltage high capacity cathode that is compatible with an electrolyte that can plate and strip the elemental metal. In order to accelerate the discovery of such a system, model systems are needed that alleviate some of the issues of incompatibility. This report demonstrates the ability of nickel hexacyanoferrate to electrochemically intercalate Mg, Ca and Zn ions from a nonaqueous electrolyte. This material has a relatively high insertion potential and low overpotential in the electrolytes used in this study. Furthermore, since it is not an oxide based cathode it should be able to resist attack by corrosive electrolytes such as the chloride containing electrolytes that are often used to plate and strip magnesium. This makes it an excellent cathode for use in developing and understanding the complex electrochemistry of multivalent ion batteries.

  19. Structure and physical properties of gallium selenide laser-intercalated with nickel

    NASA Astrophysics Data System (ADS)

    Pokladok, N. T.; Grygorchak, I. I.; Lukiyanets, B. A.; Popovich, D. I.

    2007-04-01

    Intercalated crystals of indium and gallium selenide are prepared. It is shown that laser intercalation of nickel into GaSe samples leads to a giant magnetoresistive effect whose magnitude and sign depend on the concentration of the guest component. The giant magnetoresistive effect in the InSe intercalation compounds is considerably weaker and does not exceed 5%. The experimental data obtained are explained in terms of magnetic delocalization (localization) of charge carriers with the participation of states of intercalated magnetically active atoms in the vicinity of the Fermi level.

  20. Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation.

    PubMed

    Cates, Nichole C; Gysel, Roman; Beiley, Zach; Miller, Chad E; Toney, Michael F; Heeney, Martin; McCulloch, Iain; McGehee, Michael D

    2009-12-01

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells.

  1. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.

  2. Copper-Intercalated Birnessite as a Water Oxidation Catalyst.

    PubMed

    Thenuwara, Akila C; Shumlas, Samantha L; Attanayake, Nuwan H; Cerkez, Elizabeth B; McKendry, Ian G; Frazer, Laszlo; Borguet, Eric; Kang, Qing; Zdilla, Michael J; Sun, Jianwei; Strongin, Daniel R

    2015-11-24

    We report a synthetic method to increase the catalytic activity of birnessite toward water oxidation by intercalating copper in the interlayer region of the layered manganese oxide. Intercalation of copper, verified by XRD, XPS, ICP, and Raman spectroscopy, was accomplished by exposing a suspension of birnessite to a Cu(+)-bearing precursor molecule that underwent disproportionation in solution to yield Cu(0) and Cu(2+). Electrocatalytic studies showed that the Cu-modified birnessite exhibited an overpotential for water oxidation of ∼490 mV (at 10 mA/cm(2)) and a Tafel slope of 126 mV/decade compared to ∼700 mV (at 10 mA/cm(2)) and 240 mV/decade, respectively, for birnessite without copper. Impedance spectroscopy results suggested that the charge transfer resistivity of the Cu-modified sample was significantly lower than Cu-free birnessite, suggesting that Cu in the interlayer increased the conductivity of birnessite leading to an enhancement of water oxidation kinetics. Density functional theory calculations show that the intercalation of Cu(0) into a layered MnO2 model structure led to a change of the electronic properties of the material from a semiconductor to a metallic-like structure. This conclusion from computation is in general agreement with the aforementioned impedance spectroscopy results. X-ray photoelectron spectroscopy (XPS) showed that Cu(0) coexisted with Cu(2+) in the prepared Cu-modified birnessite. Control experiments using birnessite that was decorated with only Cu(2+) showed a reduction in water oxidation kinetics, further emphasizing the importance of Cu(0) for the increased activity of birnessite. The introduction of Cu(0) into the birnessite structure also increased the stability of the electrocatalyst. At a working current of 2 mA, the Cu-modified birnessite took ∼3 times longer for the overpotential for water oxdiation to increase by 100 mV compared to when Cu was not present in the birnessite.

  3. Lithium intercalation reaction into the Keggin type polyoxomolybdates

    NASA Astrophysics Data System (ADS)

    Sonoyama, Noriyuki; Suganuma, Yoshiaki; Kume, Tomohiro; Quan, Zhen

    The electrochemical property of Keggin type hetero polyoxomolybdate K 3[PMo 12O 40] (KPM) as the cathode electrode material for lithium battery was examined. KPM showed charge-discharge performance in the potential region from 4.2 V to 1.5 V with capacity of over 200 mAh g -1. From the result of the ex situ XRD measurement, it is presumed that the electrochemical reaction of KPM proceeds via the lithium (de-)intercalation. The cycle performance of KPM is largely dependent on the charge-discharge potential range. The capacity fade caused by deep discharging seems to be concerned to the < to ® isomerization of KPM.

  4. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    SciTech Connect

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J.

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  5. The 13C nuclear magnetic resonance in graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Resing, H. A.

    1985-01-01

    The (13)C NMR chemical shifts of graphite intercalation compounds were calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about -140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.

  6. C-13 nuclear magnetic resonance in graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Resing, H. A.

    1985-01-01

    The C-13 NMR chemical shifts of graphite intercalation compounds have been calculated. For acceptor types, the shifts come mainly from the paramagnetic (Ramsey) intra-atomic terms. They are related to the gross features of the two-dimensional band structures. The calculated anisotropy is about - 140 ppm and is independent of the finer details such as charge transfer. For donor types, the carbon 2p pi orbitals are spin-polarized because of mixing with metal-conduction electrons, thus there is an additional dipolar contribution which may be correlated with the electronic specific heat. The general agreement with experimental data is satisfactory.

  7. Scaling Relations for Intercalation Induced Damage in Electrodes

    SciTech Connect

    Chen, Chien-Fan; Barai, Pallab; Smith, Kandler; Mukherjee, Partha P.

    2016-04-02

    Mechanical degradation, owing to intercalation induced stress and microcrack formation, is a key contributor to the electrode performance decay in lithium-ion batteries (LIBs). The stress generation and formation of microcracks are caused by the solid state diffusion of lithium in the active particles. Here in this work, scaling relations are constructed for diffusion induced damage in intercalation electrodes based on an extensive set of numerical experiments with a particle-level description of microcrack formation under disparate operating and cycling conditions, such as temperature, particle size, C-rate, and drive cycle. The microcrack formation and evolution in active particles is simulated based on a stochastic methodology. A reduced order scaling law is constructed based on an extensive set of data from the numerical experiments. The scaling relations include combinatorial constructs of concentration gradient, cumulative strain energy, and microcrack formation. Lastly, the reduced order relations are further employed to study the influence of mechanical degradation on cell performance and validated against the high order model for the case of damage evolution during variable current vehicle drive cycle profiles.

  8. Scaling Relations for Intercalation Induced Damage in Electrodes

    SciTech Connect

    Chen, Chien-Fan; Barai, Pallab; Smith, Kandler; Mukherjee, Partha P.

    2016-06-01

    Mechanical degradation, owing to intercalation induced stress and microcrack formation, is a key contributor to the electrode performance decay in lithium-ion batteries (LIBs). The stress generation and formation of microcracks are caused by the solid state diffusion of lithium in the active particles. In this work, scaling relations are constructed for diffusion induced damage in intercalation electrodes based on an extensive set of numerical experiments with a particle-level description of microcrack formation under disparate operating and cycling conditions, such as temperature, particle size, C-rate, and drive cycle. The microcrack formation and evolution in active particles is simulated based on a stochastic methodology. A reduced order scaling law is constructed based on an extensive set of data from the numerical experiments. The scaling relations include combinatorial constructs of concentration gradient, cumulative strain energy, and microcrack formation. The reduced order relations are further employed to study the influence of mechanical degradation on cell performance and validated against the high order model for the case of damage evolution during variable current vehicle drive cycle profiles.

  9. An intercalation-locked parallel-stranded DNA tetraplex

    PubMed Central

    Tripathi, Shailesh; Zhang, Daoning; Paukstelis, Paul J.

    2015-01-01

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(ACBrUCGGABrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5′-most A–A base pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H–1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures. PMID:25628357

  10. Abl suppresses cell extrusion and intercalation during epithelium folding

    PubMed Central

    Jodoin, Jeanne N.; Martin, Adam C.

    2016-01-01

    Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical–basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena. Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT. PMID:27440923

  11. Anion-Intercalating Cathodes for High-Energy-Density Cells

    NASA Technical Reports Server (NTRS)

    West, William

    2006-01-01

    A report discusses physicochemical issues affecting a fluoride-intercalating cathode that operates in conjunction with a lithium ion-intercalating anode in a rechargeable electrochemical cell described in a cited prior report. The instant report also discusses corresponding innovations made in solvent and electrolyte compositions since the prior report. The advantages of this cell, relative to other lithium-ion-based cells, are said to be greater potential (5 V vs. 4 V), and greater theoretical cathode specific capacity (0.9 to 2.2 A-h/g vs. about 0.18 A-h/g). The discussion addresses a need for the solvent to be unreactive toward the lithium anode and to resist anodic oxidation at potentials greater than about 4.5 V vs. lithium; the pertinent innovation is the selection of propylene carbonate (PC) as a solvent having significantly more stability, relative to other solvents that have been tried. The discussion also addresses the need for an electrolyte additive, denoted an anion receptor, to complex the fluoride ion; the pertinent innovation is the selection of tris(hexafluoroisopropyl) borate as a superior alternative to the prior anion receptor, which was tris(pentafluorophenyl) borate.

  12. Stochastics of diffusion induced damage in intercalation materials

    NASA Astrophysics Data System (ADS)

    Barai, Pallab; Mukherjee, Partha P.

    2016-10-01

    Fundamental understanding of the underlying diffusion-mechanics interplay in the intercalation electrode materials is critical toward improved life and performance of lithium-ion batteries for electric vehicles. Especially, diffusion induced microcrack formation in brittle, intercalation active materials, with emphasis on the grain/grain-boundary (GB) level implications, has been fundamentally investigated based on a stochastic modeling approach. Quasistatic damage evolution has been analyzed under lithium concentration gradient induced stress. Scaling of total amount of microcrack formation shows a power law variation with respect to the system size. Difference between the global and local roughness exponent indicates the existence of anomalous scaling. The deterioration of stiffness with respect to microcrack density displays two distinct regions of damage propagation; namely, diffused damage evolution and stress concentration driven localized crack propagation. Polycrystalline material microstructures with different grain sizes have been considered to study the diffusion-induced fracture in grain and GB regions. Intergranular crack paths are observed within microstructures containing softer GB region, whereas, transgranular crack paths have been observed in microstructures with relatively strong GB region. Increased tortuosity of the spanning crack has been attributed as the reason behind attaining increased fracture strength in polycrystalline materials with smaller grain sizes.

  13. Sulfuric acid intercalated graphite oxide for graphene preparation.

    PubMed

    Hong, Yanzhong; Wang, Zhiyong; Jin, Xianbo

    2013-12-06

    Graphene has shown enormous potential for innovation in various research fields. The current chemical approaches based on exfoliation of graphite via graphite oxide (GO) are potential for large-scale synthesis of graphene but suffer from high cost, great operation difficulties, and serious waste discharge. We report a facile preparation of graphene by rapid reduction and expansion exfoliation of sulfuric acid intercalated graphite oxide (SIGO) at temperature just above 100°C in ambient atmosphere, noting that SIGO is easily available as the immediate oxidation descendent of graphite in sulfuric acid. The oxygenic and hydric groups in SIGO are mainly removed through dehydration as catalyzed by the intercalated sulfuric acid (ISA). The resultant consists of mostly single layer graphene sheets with a mean diameter of 1.07 μm after dispersion in DMF. This SIGO process is reductant free, easy operation, low-energy, environmental friendly and generates graphene with low oxygen content, less defect and high conductivity. The provided synthesis route from graphite to graphene via SIGO is compact and readily scalable.

  14. Electron Beam Irradiated Intercalated CNT Yarns For Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Waters, Deborah L.; Gaier, James R.; Williams, Tiffany S.; Lopez Calero, Johnny E.; Ramirez, Christopher; Meador, Michael A.

    2015-01-01

    Multi-walled CNT yarns have been experimentally and commercially created to yield lightweight, high conductivity fibers with good tensile properties for application as electrical wiring and multifunctional tendons. Multifunctional tendons are needed as the cable structures in tensegrity robots for use in planetary exploration. These lightweight robust tendons can provide mechanical strength for movement of the robot in addition to power distribution and data transmission. In aerospace vehicles, such as Orion, electrical wiring and harnessing mass can approach half of the avionics mass. Use of CNT yarns as electrical power and data cables could reduce mass of the wiring by thirty to seventy percent. These fibers have been intercalated with mixed halogens to increase their specific electrical conductivity to that near copper. This conductivity, combined with the superior strength and fatigue resistance makes it an attractive alternative to copper for wiring and multifunctional tendon applications. Electron beam irradiation has been shown to increase mechanical strength in pristine CNT fibers through increased cross-linking. Both pristine and intercalated CNT yarns have been irradiated using a 5-megavolt electron beam for various durations and the conductivities and tensile properties will be discussed. Structural information obtained using a field emission scanning electron microscope, energy dispersive X-ray spectroscopy (EDS), and Raman spectroscopy will correlate microstructural details with bulk properties.

  15. Resistivity of pristine and intercalated graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Hambourger, Paul D.; Slabe, Melissa E.

    1991-01-01

    Laminar composites were fabricated from pristine and bromine intercalated Amoco P-55, P-75, and P-100 graphite fibers and Hysol-Grafil EAG101-1 film epoxy. The thickness and r.f. eddy current resistivity of several samples were measured at grid points and averaged point by point to obtain final values. Although the values obtained this way have high precision (less than 3 percent deviation), the resistivity values appear to be 20 to 90 percent higher than resistivities measured on high aspect ratio samples using multi-point techniques, and by those predicted by theory. The temperature dependence of the resistivity indicates that the fibers are neither damaged nor deintercalated by the composite fabrication process. The resistivity of the composites is a function of sample thickness (i.e., resin content). Composite resistivity is dominated by fiber resistivity, so lowering the resistivity of the fibers, either through increased graphitization or intercalation, results in a lower composite resistivity. A modification of the simple rule of mixtures model appears to predict the conductivity of high aspect ratio samples measured along a fiber direction, but a directional dependence appears which is not predicted by the theory. The resistivity of these materials is clearly more complex than that of homogeneous materials.

  16. Modeling of alkyl quaternary ammonium cations intercalated into montmorillonite lattice

    SciTech Connect

    Daoudi, El Mehdi; Boughaleb, Yahia; El Gaini, Layla; Meghea, Irina; Bakasse, Mina

    2013-05-15

    Highlights: ► The modification of montmorillonites by three surfactants increases the basal spacing. ► The model proposed show a bilayer conformation for the surfactant ODTMA. ► The DODMA and TOMA surfactants adopt a paraffin type arrangement. ► Behavior of surfactants in interlayer space was confirmed by TGA and ATR analysis. - Abstract: The objective of this work was to study the conformation of the quaternary ammonium cations viz., octadecyl trimethyl ammonium (ODTMA), dioctadecyl dimethyl ammonium (DMDOA) and trioctadecyl methyl ammonium (TOMA) intercalated within montmorillonite. The modified montmorillonite was characterized by X-ray diffraction in small angle (SAXS), thermal analysis (TGA) and infrared spectroscopy of attenuated total reflection (ATR). The modification of organophilic montmorillonites by the three surfactants ODTMA, DMDOA and TOMA increases the basal spacing from their respective intercalated distances of 1.9 nm, 2.6 nm and 3.4 nm respectively. The increase in the spacing due to the basic organic modification was confirmed by the results of thermal analysis (TGA) and infrared spectroscopy (ATR), and also supported by theoretical calculations of longitudinal and transversal chain sizes of these alkyl quaternary ammonium cations.

  17. Intercalation of alkylamines into an organic polymer crystal

    NASA Astrophysics Data System (ADS)

    Matsumoto, Akikazu; Odani, Toru; Sada, Kazuki; Miyata, Mikiji; Tashiro, Kohji

    2000-05-01

    Organic solid-state synthesis allows formation of products that are difficult or impossible to produce by conventional methods. This feature, and the high degree of reaction selectivity that can be achieved, is a direct result of the control over the relative orientation of the reactants afforded by the solid state. But as the successful development of `topochemical reactions' requires the careful design of suitable reactant crystals, the range of both reactions and products amenable to this approach has been limited. However, recent advances in organic crystal engineering, particularly the rational design of complex solid architectures through supramolecular preorganization, have renewed interest in topochemical reactions. Previously, we have orientated muconate monomers-diene moieties with a carboxylate group on each end-using long-chain n-alkylammonium ions, such that the topochemical photopolymerization of the solid-state reactants produces layered crystals of stereoregular and high-molecular-mass polymers. Here we show that these polymer crystals are capable of repeated, reversible intercalation by conversion to the analogous poly(carboxylic acid), followed by transformation into a number of poly(alkylammonium muconate)s upon addition of the appropriate amine. Introduction of functional groups into these crystals may allow the design of organic solids for applications such as molecular recognition, separation and catalysis, thereby extending the range and practical utility of current intercalation compounds.

  18. Intercalation of alkylamines into an organic polymer crystal

    PubMed

    Matsumoto; Odani; Sada; Miyata; Tashiro

    2000-05-18

    Organic solid-state synthesis allows formation of products that are difficult or impossible to produce by conventional methods. This feature, and the high degree of reaction selectivity that can be achieved, is a direct result of the control over the relative orientation of the reactants afforded by the solid state. But as the successful development of 'topochemical reactions' requires the careful design of suitable reactant crystals, the range of both reactions and products amenable to this approach has been limited. However, recent advances in organic crystal engineering, particularly the rational design of complex solid architectures through supramolecular preorganization, have renewed interest in topochemical reactions. Previously, we have orientated muconate monomers--diene moieties with a carboxylate group on each end--using long-chain n-alkylammonium ions, such that the topochemical photopolymerization of the solid-state reactants produces layered crystals of stereoregular and high-molecular-mass polymers. Here we show that these polymer crystals are capable of repeated, reversible intercalation by conversion to the analogous poly(carboxylic acid), followed by transformation into a number of poly(alkylammonium muconate)s upon addition of the appropriate amine. Introduction of functional groups into these crystals may allow the design of organic solids for applications such as molecular recognition, separation and catalysis, thereby extending the range and practical utility of current intercalation compounds.

  19. Duplex-Selective Ruthenium-based DNA Intercalators

    PubMed Central

    Shade, Chad M.; Kennedy, Robert D.; Rouge, Jessica L.; Rosen, Mari S.; Wang, Mary X.; Seo, Soyoung E.; Clingerman, Daniel J.

    2016-01-01

    We report the design and synthesis of small molecules that exhibit enhanced luminescence in the presence of duplex rather than single-stranded DNA. The local environment presented by a well-known [Ru(dipyrido[2,3-a:3',2'-c]phenazine)L2]2+-based DNA intercalator was modified by functionalizing the bipyridine ligands with esters and carboxylic acids. By systematically varying the number and charge of the pendant groups, it was determined that decreasing the electrostatic interaction between the intercalator and the anionic DNA backbone reduced single-strand interactions and translated to better duplex specificity. In studying this class of complexes, a single RuII complex emerged that selectively luminesces in the presence of duplex DNA with little to no background from interacting with single stranded DNA. This complex shows promise as a new dye capable of selectively staining double versus single-stranded DNA in gel electrophoresis, which cannot be done with conventional SYBR dyes. PMID:26119581

  20. Lithium intercalation properties in manganese-iron Prussian blue analogues

    NASA Astrophysics Data System (ADS)

    Matsuda, T.; Kurihara, Y.; Moritomo, Y.

    2013-04-01

    We investigated the electronic states and structural properties of LixMn[Fe(CN)6]0.83·3.5H2O, and LixMn[Fe(CN)6]0.87·2.6H2O, which have different amount of [Fe(CN)6] vacancies. X-ray absorption spectra near the Fe and Mn K-edges revealed that the Li intercalation/deintercalation process is two-electron reaction, i.e. MnII—NC—FeII, MnII—NC—FeIII, and MnIII—NC—FeIII. The crystal structure of LixMn[Fe(CN)6]0.83·3.5H2O remains cubic and single phase throughout the Li intercalation/deintercalation process. The crystal structure of LixMn[Fe(CN)6]0.87·2.6H2O is also cubic, while phase separation of Li+-rich phase and Li+-poor phase was observed during the MnII/MnIII reduction/oxidation process.

  1. Scaling Relations for Intercalation Induced Damage in Electrodes

    DOE PAGES

    Chen, Chien-Fan; Barai, Pallab; Smith, Kandler; ...

    2016-04-02

    Mechanical degradation, owing to intercalation induced stress and microcrack formation, is a key contributor to the electrode performance decay in lithium-ion batteries (LIBs). The stress generation and formation of microcracks are caused by the solid state diffusion of lithium in the active particles. Here in this work, scaling relations are constructed for diffusion induced damage in intercalation electrodes based on an extensive set of numerical experiments with a particle-level description of microcrack formation under disparate operating and cycling conditions, such as temperature, particle size, C-rate, and drive cycle. The microcrack formation and evolution in active particles is simulated based onmore » a stochastic methodology. A reduced order scaling law is constructed based on an extensive set of data from the numerical experiments. The scaling relations include combinatorial constructs of concentration gradient, cumulative strain energy, and microcrack formation. Lastly, the reduced order relations are further employed to study the influence of mechanical degradation on cell performance and validated against the high order model for the case of damage evolution during variable current vehicle drive cycle profiles.« less

  2. Atomic intercalation to measure adhesion of graphene on graphite

    DOE PAGES

    Wang, Jun; Sorescu, Dan C.; Jeon, Seokmin; ...

    2016-10-31

    The interest in mechanical properties of layered and 2D materials has reemerged in light of device concepts that take advantage of flexing, adhesion and friction in such systems. Here we provide an effective measurement of the nanoscale elastic adhesion of a graphene sheet atop highly ordered pyrolytic graphite (HOPG) based on the analysis of atomic intercalates in graphite. Atomic intercalation is carried out using conventional ion sputtering, creating blisters in the top-most layer of the HOPG surface. Scanning tunneling microscopy coupled with image analysis and density functional theory are used to reconstruct the atomic positions and the strain map withinmore » the deformed graphene sheet, as well as to demonstrate subsurface diffusion of the ions creating such blisters. To estimate the adhesion energy we invoke an analytical model originally devised for macroscopic deformations of graphene. This model yields a value of 0.221 ± 0.011 J/m-2 for the adhesion energy of graphite, which is in surprisingly good agreement with reported experimental and theoretical values. This implies that macroscopic mechanical properties of graphene scale down to at least a few nanometers length. The simplicity of our method, compared to the macroscale characterization, enables analysis of elastic mechanical properties in two-dimensional layered materials and provides a unique opportunity to investigate the local variability of mechanical properties on the nanoscale.« less

  3. Intercalation of cellulase enzyme into a hydrotalcite layer structure

    NASA Astrophysics Data System (ADS)

    Zou, N.; Plank, J.

    2015-01-01

    A new inorganic-organic hybrid material whereby cellulase enzyme is incorporated into a hydrotalcite type layered double hydroxide (LDH) structure is reported. The Mg2Al-cellulase-LDH was synthesized via co-precipitation from Mg/Al nitrate at pH=9.6. Characterization was performed using X-ray powder diffraction (XRD), small angle X-ray scattering (SAXS), elemental analysis, infrared spectroscopy (IR) and thermogravimetry (TG). From XRD and SAXS measurements, a d-value of ~5.0 nm was identified for the basal spacing of the Mg2Al-cellulase-LDH. Consequently, the cellulase enzyme (hydrodynamic diameter ~6.6 nm) attains a slightly compressed conformation when intercalated. Formation of the LDH hybrid was also confirmed via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mg2Al-cellulase-LDH phases appear as ~20 nm thin foils which are intergrown to flower-like aggregates. Activity of the enzyme was retained after deintercalation from the Mg2Al-LDH framework using anion exchange. Accordingly, cellulase is not denatured during the intercalation process, and LDH presents a suitable host structure for time-controlled release of the biomolecule.

  4. An intercalation-locked parallel-stranded DNA tetraplex

    DOE PAGES

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    2015-01-27

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(ACBrUCGGABrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A base pairs betweenmore » adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H–1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less

  5. Resistivity of pristine and intercalated graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Hambourger, Paul D.; Slabe, Melissa E.

    1989-01-01

    Laminar composites were fabricated from pristine and bromine intercalated Amoco P-55, P-75, and P-100 graphite fibers and Hysol-Grafil EAG101-1 film epoxy. The thickness and r.f. eddy current resistivity of several samples were measured at grid points and averaged point by point to obtain final values. Although the values obtained this way have high precision (less than 3 percent deviation), the resistivity values appear to be 20 to 90 percent higher than resistivities measured on high aspect ratio samples using multi-point techniques, and by those predicted by theory. The temperature dependence of the resistivity indicates that the fibers are neither damaged nor deintercalated by the composite fabrication process. The resistivity of the composites is a function of sample thickness (i.e., resin content). Composite resistivity is dominated by fiber resistivity, so lowering the resistivity of the fibers, either through increased graphitization or intercalation, results in a lower composite resistivity. A modification of the simple rule of mixtures model appears to predict the conductivity of high aspect ratio samples measured along a fiber direction, but a directional dependence appears which is not predicted by the theory. The resistivity of these materials is clearly more complex than that of homogeneous materials.

  6. Atomic intercalation to measure adhesion of graphene on graphite

    SciTech Connect

    Wang, Jun; Sorescu, Dan C.; Jeon, Seokmin; Belianinov, Alex; Kalinin, Sergei V.; Baddorf, Arthur P.; Maksymovych, Petro

    2016-10-31

    The interest in mechanical properties of layered and 2D materials has reemerged in light of device concepts that take advantage of flexing, adhesion and friction in such systems. Here we provide an effective measurement of the nanoscale elastic adhesion of a graphene sheet atop highly ordered pyrolytic graphite (HOPG) based on the analysis of atomic intercalates in graphite. Atomic intercalation is carried out using conventional ion sputtering, creating blisters in the top-most layer of the HOPG surface. Scanning tunneling microscopy coupled with image analysis and density functional theory are used to reconstruct the atomic positions and the strain map within the deformed graphene sheet, as well as to demonstrate subsurface diffusion of the ions creating such blisters. To estimate the adhesion energy we invoke an analytical model originally devised for macroscopic deformations of graphene. This model yields a value of 0.221 ± 0.011 J/m-2 for the adhesion energy of graphite, which is in surprisingly good agreement with reported experimental and theoretical values. This implies that macroscopic mechanical properties of graphene scale down to at least a few nanometers length. The simplicity of our method, compared to the macroscale characterization, enables analysis of elastic mechanical properties in two-dimensional layered materials and provides a unique opportunity to investigate the local variability of mechanical properties on the nanoscale.

  7. Methotrexate intercalated ZnAl-layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Chakraborty, Manjusha; Dasgupta, Sudip; Soundrapandian, Chidambaram; Chakraborty, Jui; Ghosh, Swapankumar; Mitra, Manoj K.; Basu, Debabrata

    2011-09-01

    The anticancerous drug methotrexate (MTX) has been intercalated into an ZnAl-layered double hydroxide (LDH) using an anion exchange technique to produce LDH-MTX hybrids having particle sizes in the range of 100-300 nm. X-ray diffraction studies revealed increases in the basal spacings of ZnAl-LDH-MTX hybrid on MTX intercalation. This was corroborated by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.9 Å in pristine LDH to 21.3 Å in LDH-MTX hybrid. Thermogravimetric analyses showed an increase in the decomposition temperature for the MTX molecule in the LDH-MTX hybrid indicating enhanced thermal stability of the drug molecule in the LDH nanovehicle. The cumulative release profile of MTX from ZnAl-LDH-MTX hybrids in phosphate buffer saline (PBS) at pH 7.4 was successfully sustained for 48 h following Rigter-Peppas model release kinetics via diffusion.

  8. Role of the intercalated disc in cardiac propagation and arrhythmogenesis.

    PubMed

    Kleber, Andre G; Saffitz, Jeffrey E

    2014-01-01

    This review article discusses mechanisms underlying impulse propagation in cardiac muscle with specific emphasis on the role of the cardiac cell-to-cell junction, called the "intercalated disc."The first part of this review deals with the role of gap junction channels, formed by connexin proteins, as a determinant of impulse propagation. It is shown that, depending on the underlying structure of the cellular network, decreasing the conductance of gap junction channels (so-called "electrical uncoupling") may either only slow, or additionally stabilize propagation and reverse unidirectional propagation block to bidirectional propagation. This is because the safety factor for propagation increases with decreasing intercellular electrical conductance. The role of heterogeneous connexin expression, which may be present in disease states, is also discussed. The hypothesis that so-called ephaptic impulse transmission plays a role in heart and can substitute for electrical coupling has been revived recently. Whereas ephaptic transmission can be demonstrated in theoretical simulations, direct experimental evidence has not yet been presented. The second part of this review deals with the interaction of three protein complexes at the intercalated disc: (1) desmosomal and adherens junction proteins, (2) ion channel proteins, and (3) gap junction channels consisting of connexins. Recent work has revealed multiple interactions between these three protein complexes which occur, at least in part, at the level of protein trafficking. Such interactions are likely to play an important role in the pathogenesis of arrhythmogenic cardiomyopathy, and may reveal new therapeutic concepts and targets.

  9. An intercalation-locked parallel-stranded DNA tetraplex

    SciTech Connect

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    2015-01-27

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(ACBrUCGGABrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A base pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H–1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.

  10. Transition Metal Intercalators as Anticancer Agents—Recent Advances

    PubMed Central

    Deo, Krishant M.; Pages, Benjamin J.; Ang, Dale L.; Gordon, Christopher P.; Aldrich-Wright, Janice R.

    2016-01-01

    The diverse anticancer utility of cisplatin has stimulated significant interest in the development of additional platinum-based therapies, resulting in several analogues receiving clinical approval worldwide. However, due to structural and mechanistic similarities, the effectiveness of platinum-based therapies is countered by severe side-effects, narrow spectrum of activity and the development of resistance. Nonetheless, metal complexes offer unique characteristics and exceptional versatility, with the ability to alter their pharmacology through facile modifications of geometry and coordination number. This has prompted the search for metal-based complexes with distinctly different structural motifs and non-covalent modes of binding with a primary aim of circumventing current clinical limitations. This review discusses recent advances in platinum and other transition metal-based complexes with mechanisms of action involving intercalation. This mode of DNA binding is distinct from cisplatin and its derivatives. The metals focused on in this review include Pt, Ru and Cu along with examples of Au, Ni, Zn and Fe complexes; these complexes are capable of DNA intercalation and are highly biologically active. PMID:27809241

  11. Click modification of diazido acridine intercalators: a versatile route towards decorated DNA nanostructures.

    PubMed

    Moradpour Hafshejani, Shahrbanou; Watson, Scott M D; Tuite, Eimer M; Pike, Andrew R

    2015-09-01

    Diazido derivatives of 3,6-diamino acridine (proflavine) intercalate into DNA and undergo functionalization through click chemistry to form 1D nanostructures with redox active, conductive nanowire, and fluorescent properties. This two-step approach, intercalation followed by click modification allows for the controlled decoration of DNA nanostructures.

  12. Intercalating Arabidopsis leaf cells: a jigsaw puzzle of lobes, necks, ROPs, and RICs.

    PubMed

    Settleman, Jeffrey

    2005-03-11

    Intercalation of cells is an evolutionarily conserved strategy used for a variety of developmental processes in animals. In this issue of Cell, Fu et al. have uncovered an elaborate Rho GTPase-mediated mechanism by which cytoskeletal-dependent intercalation of Arabidopsis leaf cells is achieved, suggesting that conserved Rho GTPase signaling pathways may similarly regulate tissue morphogenesis in animals and plants.

  13. Role of Cooperative Interactions in the Intercalation of Heteroatoms between Graphene and a Metal Substrate.

    PubMed

    Li, Geng; Zhou, Haitao; Pan, Lida; Zhang, Yi; Huang, Li; Xu, Wenyan; Du, Shixuan; Ouyang, Min; Ferrari, Andrea C; Gao, Hong-Jun

    2015-06-10

    The intercalation of heteroatoms between graphene and a metal substrate has been studied intensively over the past few years, due to its effect on the graphene properties, and as a method to create vertical heterostructures. Various intercalation processes have been reported with different combinations of heteroatoms and substrates. Here we study Si intercalation between graphene and Ru(0001). We elucidate the role of cooperative interactions between hetero-atoms, graphene, and substrate. By combining scanning tunneling microscopy with density functional theory, the intercalation process is confirmed to consist of four key steps, involving creation of defects, migration of heteroatoms, self-repairing of graphene, and growth of an intercalated monolayer. Both theory and experiments indicate that this mechanism applies also to other combinations of hetero-atoms and substrates.

  14. Elements of discovery.

    PubMed

    Toledo-Pereyra, Luis H

    2008-01-01

    I understand discovery as the essence of thinking man, or to paraphrase the notable French philosopher René Descartes, "I think, therefore I discover." In this study, I introduce discovery as the foundation of modern science. Discovery consists of six stages or elements, including: concept, belief, ability, support, proof, and protection. Each element is discussed within the context of the whole discovery enterprise. Fundamental tenets for understanding discovery are given throughout the paper, and a few examples illustrate the significance of some of the most important elements. I invite clinicians, researchers, and/or clinical researchers to integrate themselves into the active process of discovery. Remember--I think, therefore I discover.

  15. Electrochemical Techniques for Intercalation Electrode Materials in Rechargeable Batteries.

    PubMed

    Zhu, Yujie; Gao, Tao; Fan, Xiulin; Han, Fudong; Wang, Chunsheng

    2017-03-16

    Understanding of the thermodynamic and kinetic properties of electrode materials is of great importance to develop new materials for high performance rechargeable batteries. Compared with computational understanding of physical and chemical properties of electrode materials, experimental methods provide direct and convenient evaluation of these properties. Often, the information gained from experimental work can not only offer feedback for the computational methods but also provide useful insights for improving the performance of materials. However, accurate experimental quantification of some properties can still be challenging. Among them, chemical diffusion coefficient is one representative example. It is one of the most crucial parameters determining the kinetics of intercalation compounds, which are by far the dominant electrode type used in rechargeable batteries. Therefore, it is of significance to quantitatively evaluate this parameter. For this purpose, various electrochemical techniques have been invented, for example, galvanostatic intermittent titration technique (GITT), potentiostatic intermittent titration technique (PITT), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). One salient advantage of these electrochemical techniques over other characterization techniques is that some implicit thermodynamic and kinetic quantities can be linked with the readily measurable electrical signals, current, and voltage, with very high precision. Nevertheless, proper application of these techniques requires not just an understanding of the structure and chemistry of the studied materials but sufficient knowledge of the physical model for ion transport within solid host materials and the analysis method to solve for chemical diffusion coefficient. Our group has been focusing on using various electrochemical techniques to investigate battery materials, as well as developing models for studying some emerging materials. In this Account, the

  16. Morphology and Structure of Amino-fatty Acid Intercalated Montmorillonite

    NASA Astrophysics Data System (ADS)

    Reyes, Larry; Sumera, Florentino

    2015-04-01

    Natural clays and its modified forms have been studied for their wide range of applications, including polymer-layered silicate, catalysts and adsorbents. For nanocomposite production, montmorillonite (MMT) clays are often modified with organic surfactants to favor its intermixing with the polymer matrix. In the present study, Na+-montmorillonite (Na+-MMT) was subjected to organo-modification with a protonated 12-aminolauric acid (12-ALA). The amount of amino fatty acid surfactants loaded was 25, 50, 100 and 200% the cation exchange capacity (CEC) of Na+-MMT (25CEC-AMMT, 50CEC-AMMT, 100CEC-AMMT and 200CEC-AMMT). Fatty acid-derived surfactants are an attractive resource of intercalating agents for clays due to their renewability and abundance. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were performed to determine the occurrence of intercalation of 12-ALA and their molecular structure in the clay's silicates. XRD analysis revealed that the interlayer spacing between the alumino-silicate layers increased from 1.25 nm to 1.82 nm with increasing ALA content. The amino fatty acid chains were considered to be in a flat monolayer structure at low surfactant loading, and a bilayered to a pseudotrilayered structure at high surfactant loading. On the other hand, FTIR revealed that the alkyl chains adopt a gauche conformation, indicating their disordered state based on their CH2symmetric and asymmetric vibrations. Thermogravimetric analyses (TGA) allows the determination of the moisture and organic content in clays. Here, TGA revealed that the surfactant in the clay was thermally stable, with Td ranging from 353° C to 417° C. The difference in the melting behavior of the pristine amino fatty acids and confined fatty acids in the interlayer galleries of the clay were evaluated by Differential Scanning Calorimerty (DSC). The melting temperatures (Tm) of the amino fatty acid in the clay were initially found to be higher than those of the free

  17. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation

    PubMed Central

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.

    2016-01-01

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030

  18. Preparation and thermal properties of Zr-intercalated clays

    SciTech Connect

    Figueras, F.; Mattrod-Bashi, A.; Fetter, G.; Thrierr, A. ); Zanchetta, J.V. )

    1989-09-01

    Montmorillonites intercalated by zirconium macrocations have been prepared. Diffusion of the Zr cations within the particles of clay controls the rate of ion exchange, and hence the distribution of the Zr pillars. This effect accounts for the influence of particle size on the degree of exchange, the surface area, and the thermal stability of the pillared clay. The thermal stability of the Zr clays prepared under these conditions is limited to 973 K in dry air. The changes in microporosity, evaluated from nitrogen adsorption using the equation of Dubinin, show that collapse of the structure occurs by sintering of the pillars. This sintering can be decreased by doping the pillars with rare earth cations. The resulting material then retains a surface area of 180 m{sup 2}/g after calcination at 1023 K in dry air, and is more acidic than the corresponding Zr-clay.

  19. A Brief Review on Multivalent Intercalation Batteries with Aqueous Electrolytes.

    PubMed

    Guduru, Ramesh K; Icaza, Juan C

    2016-02-26

    Rapidly growing global demand for high energy density rechargeable batteries has driven the research toward developing new chemistries and battery systems beyond Li-ion batteries. Due to the advantages of delivering more than one electron and giving more charge capacity, the multivalent systems have gained considerable attention. At the same time, affordability, ease of fabrication and safety aspects have also directed researchers to focus on aqueous electrolyte based multivalent intercalation batteries. There have been a decent number of publications disclosing capabilities and challenges of several multivalent battery systems in aqueous electrolytes, and while considering an increasing interest in this area, here, we present a brief overview of their recent progress, including electrode chemistries, functionalities and challenges.

  20. Intercalation of graphene on iridium with samarium atoms

    NASA Astrophysics Data System (ADS)

    Afanas'eva, E. Yu.; Rut'kov, E. V.; Gall, N. R.

    2016-07-01

    Intercalation of graphene on Ir (111) with Sm atoms is studied by methods of thermal desorption spectroscopy and thermionic emission. It is shown that adsorption of samarium at T = 300 K on graphene to concentrations of N ≤ 6 × 1014 atoms cm-2 followed by heating of the substrate leads to practically complete escape of adsorbate underneath the graphene layer. At N > 6 × 1014 atoms cm-2 and increasing temperature, a fraction of adsorbate remains on graphene in the form of two-dimensional "gas" and samarium islands and are desorbed in the range of temperatures of 1000-1200 K. Samarium remaining under the graphene is desorbed from the surface in the temperature range 1200-2150 K. Model conceptions for the samarium-graphene-iridium system in a wide temperature range are developed.

  1. Nano-intercalated organophosphorus-hydrolyzing enzymes in organophosphorus antagonism.

    PubMed

    Petrikovics, Ilona; Wales, Melinda; Budai, Marianna; Yu, Jorn C C; Szilasi, Mária

    2012-03-01

    A dendritic poly(2-alkyloxazoline)-based polymer was studied as a new carrier system for the organophosphorus-hydrolyzing recombinant enzymes, organophosphorus acid anhydrolase and organophosphorus hydrolase. Paraoxon (PO) and diisopropylfluorophosphate (DFP) were used as model organophosphorus compounds. Changes in plasma cholinesterase activity were monitored. The cholinesterase activity was proportional to the concentrations of DFP or PO. Plasma cholinesterase activity was higher in animals receiving enzyme and oxime before the organophosphates than in the oxime-only pretreated groups. These studies suggest that cholinesterase activity can serve as an indicator for the in vivo protection by the nano-intercalated organophosphorus acid anhydrolase or organophosphorus hydrolase against organophosphorus intoxications. These studies represent a practical application of polymeric nano-delivery systems as enzyme carriers in drug antidotal therapy.

  2. Dry synthesis of lithium intercalated graphite powders and carbon fibers

    SciTech Connect

    Sacci, Robert L; Adamczyk, Leslie A; Veith, Gabriel M; Dudney, Nancy J

    2014-01-01

    Herein we describe the direct synthesis of lithium intercalated graphite by heating under vacuum or ball milling under pressurized Ar(g). Both methods allow for stoichometric control of Li-C ratio in batter-grade graphites and carbon fibers prior formation of a solid electrolyte interphase. The products' surface chemistries, as probed by XPS, suggest that LiC6 are extremely reactive with trace amounts of moisture or oxygen. The open circuit potential and SEM data show that the reactivity of the lithiated battery-grade graphite and the carbon fiber can be related to the density of edge/defect sites on the surfaces. Preliminary results of spontaneous SEI formation on Li-graphite in electrolyte are also given.

  3. Gas insulated transmission line having low inductance intercalated sheath

    DOEpatents

    Cookson, Alan H.

    1978-01-01

    A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.

  4. A Brief Review on Multivalent Intercalation Batteries with Aqueous Electrolytes

    PubMed Central

    Guduru, Ramesh K.; Icaza, Juan C.

    2016-01-01

    Rapidly growing global demand for high energy density rechargeable batteries has driven the research toward developing new chemistries and battery systems beyond Li-ion batteries. Due to the advantages of delivering more than one electron and giving more charge capacity, the multivalent systems have gained considerable attention. At the same time, affordability, ease of fabrication and safety aspects have also directed researchers to focus on aqueous electrolyte based multivalent intercalation batteries. There have been a decent number of publications disclosing capabilities and challenges of several multivalent battery systems in aqueous electrolytes, and while considering an increasing interest in this area, here, we present a brief overview of their recent progress, including electrode chemistries, functionalities and challenges. PMID:28344298

  5. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation.

    PubMed

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G

    2016-10-21

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials.

  6. Maghemite Intercalated Montmorillonite as New Nanofillers for Photopolymers

    PubMed Central

    Tarablsi, Bassam; Delaite, Christelle; Brendle, Jocelyne; Croutxe-Barghorn, Celine

    2012-01-01

    In this work, maghemite intercalated montmorillonite (γFe2O3-MMT)/polymer nanocomposites loaded with 1 or 2 wt.% of nanofillers were obtained by photopolymerization of difunctional acrylate monomers. The γFe2O3-MMT nanofillers were prepared by a new method based on the in situ formation of maghemite in the interlayer space of Fe-MMT using a three step process. X-ray diffraction (XRD), chemical analysis, TG/DTA and transmission electron microscopy (TEM) characterization of these nanofillers indicated the efficiency of the synthesis. When following the kinetics of the photopolymerization of diacrylate-γFe2O3-MMT nanocomposites using FTIR spectroscopy no significant inhibition effect of the nanofillers was observed at a loading up to 2 wt.%. These innovative nanocomposites exhibit improved mechanical properties compared to the crude polymer. PMID:28348316

  7. Atomic intercalation to measure adhesion of graphene on graphite

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Sorescu, Dan C.; Jeon, Seokmin; Belianinov, Alexei; Kalinin, Sergei V.; Baddorf, Arthur P.; Maksymovych, Petro

    2016-10-01

    The interest in mechanical properties of two-dimensional materials has emerged in light of new device concepts taking advantage of flexing, adhesion and friction. Here we demonstrate an effective method to measure adhesion of graphene atop highly ordered pyrolytic graphite, utilizing atomic-scale `blisters' created in the top layer by neon atom intercalates. Detailed analysis of scanning tunnelling microscopy images is used to reconstruct atomic positions and the strain map within the deformed graphene layer, and demonstrate the tip-induced subsurface translation of neon atoms. We invoke an analytical model, originally devised for graphene macroscopic deformations, to determine the graphite adhesion energy of 0.221+/-0.011 J m-2. This value is in excellent agreement with reported macroscopic values and our atomistic simulations. This implies mechanical properties of graphene scale down to a few-nanometre length. The simplicity of our method provides a unique opportunity to investigate the local variability of nanomechanical properties in layered materials.

  8. Surface and interlayer structure of vermiculite intercalated with methyl viologen.

    PubMed

    Kulhánková, Lenka; Capková, Pavla; De Valle, Veronika Ramirez; Poyato, Juan; Pérez-Rodríguez, Jose Luis; Lerf, Anton

    2008-12-01

    Molecular modeling using empirical force field revealed the differences between the surface and interlayer arrangement of the dye guest molecules in vermiculite intercalated with the divalent methyl viologen cation (MV(2+)). Conformation and anchoring of MV(2+) cations on the silicate layer in the interlayer space of vermiculite host structure is different from that on the crystal surface. A preferential position has been found for the anchoring of guests on the silicate layer. Anyway the arrangement of guests in the interlayer space as well as on the crystal surface exhibits a high degree of disorder due to a certain flexibility in guest molecules arrangement and first of all due to the presence of water molecules in the interlayer space. The presence of water disturbs not only the regularity in guest positions and orientations but also in conformation of guest molecules in the interlayer space of the host structure.

  9. Superparamagnetic behavior in a Ni vermiculite intercalation compound

    NASA Astrophysics Data System (ADS)

    Suzuki, Masatsugu; Suzuki, Itsuko S.; Wada, N.; Whittingham, M. Stanley

    2001-09-01

    The Ni vermiculite intercalation compound (VIC) magnetically behaves like a quasi two-dimensional (2D) Ising-like site-random ferromagnet on the triangular lattice sites, with weak antiferromagnetic interplanar interactions. The magnetic properties of Ni VIC have been studied using superconducting quantum interference device (SQUID) DC magnetization and SQUID AC magnetic susceptibility measurements. The 2D ferromagnetic short-range order of Ni2+ spins starts to grow below 45 K. A partially disordered antiferromagnetic phase is established below TN(=21.0 K), where 2D ferromagnetic Ni clusters are antiferromagnetically coupled along the c axis. The dispersion χ'cc along the c axis shows a peak around 2-3 K shifting to the low-temperature side with increasing AC frequency. Temperature dependence of the corresponding average relaxation time is well described by a generalized Arrhenius law. The system may be formed of disordered antiferromagnetic clusters, exhibiting a superparamagnetic behavior.

  10. Local conductance mapping of water-intercalated graphene on mica

    NASA Astrophysics Data System (ADS)

    Hwang, Jin Heui; Lee, Hyunsoo; Kwon, Sangku; Jeong, Jin Hyeok; Song, Hee Chan; Choi, Joong Il Jake; Park, Jeong Young

    2016-12-01

    We report that the conductance of graphene is influenced by intercalated water layers using current sensing atomic force microscopy (AFM). We obtained a confined water layer between chemical vapor deposition graphene and mica by transferring graphene onto mica in a liquid water bath. Atomic force microscopy topographic images confirm high coverage by a single water layer, and scanning tunneling microscopy (STM) verifies a clean surface without contamination by measuring the honeycomb lattice structure of the graphene. We show that the surface conductance is perturbed by the presence of a water layer between the graphene and mica, which is not found in the STM topographic image. We found that the graphene on the edge and at pinholes of the water layer exhibits lower conductance, compared with that of graphene on the water terrace. We attribute the perturbation of conductance to structural defects from the water film and a variation of interaction between the edge of the water and graphene.

  11. An enhanced hydrogen adsorption enthalpy for fluoride intercalated graphite compounds.

    PubMed

    Cheng, Hansong; Sha, Xianwei; Chen, Liang; Cooper, Alan C; Foo, Maw-Lin; Lau, Garret C; Bailey, Wade H; Pez, Guido P

    2009-12-16

    We present a combined theoretical and experimental study on H(2) physisorption in partially fluorinated graphite. This material, first predicted computationally using ab initio molecular dynamics simulation and subsequently synthesized and characterized experimentally, represents a novel class of "acceptor type" graphite intercalated compounds that exhibit significantly higher isosteric heat of adsorption for H(2) at near ambient temperatures than previously demonstrated for commonly available porous carbon-based materials. The unusually strong interaction arises from the semi-ionic nature of the C-F bonds. Although a high H(2) storage capacity (>4 wt %) at room temperature is predicted not to be feasible due to the low heat of adsorption, enhanced storage properties can be envisaged by doping the graphitic host with appropriate species to promote higher levels of charge transfer from graphene to F(-) anions.

  12. VARIABLES IN "DISCOVERY LEARNING."

    ERIC Educational Resources Information Center

    GLASER, ROBERT

    A PRESENTATION WAS MADE OF THE ANALYSIS OF BEHAVIOR THAT IS REQUIRED AS A FIRST STEP IN THE PROCESS OF DEVELOPING PROCEDURES AND MATERIALS FOR "DISCOVERY LEARNING." TEACHING BY THE DISCOVERY METHOD IS DESCRIBED AS REQUIRING THAT A MINIMUM OF STRUCTURED INSTRUCTIONAL SEQUENCE BE IMPOSED TO ALLOW THE CHILD TO (1) LEARN BY DISCOVERY AND (2)…

  13. Multivalent dendrimer vectors with DNA intercalation motifs for gene delivery.

    PubMed

    Wong, Pamela T; Tang, Kenny; Coulter, Alexa; Tang, Shengzhuang; Baker, James R; Choi, Seok Ki

    2014-11-10

    Poly(amido amine) (PAMAM) dendrimers constitute an important class of nonviral, cationic vectors in gene delivery. Here we report on a new concept for dendrimer vector design based on the incorporation of dual binding motifs: DNA intercalation, and receptor recognition for targeted delivery. We prepared a series of dendrimer conjugates derived from a fifth generation (G5) PAMAM dendrimer, each conjugated with multiple folate (FA) or riboflavin (RF) ligands for cell receptor targeting, and with 3,8-diamino-6-phenylphenanthridinium ("DAPP")-derived ligands for anchoring a DNA payload. Polyplexes of each dendrimer with calf thymus dsDNA were made and characterized by surface plasmon resonance (SPR) spectroscopy, dynamic light scattering (DLS) and zeta potential measurement. These studies provided evidence supporting polyplex formation based on the observation of tight DNA-dendrimer adhesion, and changes in particle size and surface charge upon coincubation. Further SPR studies to investigate the adhesion of the polyplex to a model surface immobilized with folate binding protein (FBP), demonstrated that the DNA payload has only a minimal effect on the receptor binding activity of the polyplex: KD = 0.22 nM for G5(FA)(DAPP) versus 0.98 nM for its polyplex. Finally, we performed in vitro transfection assays to determine the efficiency of conjugate mediated delivery of a luciferase-encoding plasmid into the KB cancer cell line and showed that RF-conjugated dendrimers were 1 to 2 orders of magnitude more effective in enhancing luciferase gene transfection than a plasmid only control. In summary, this study serves as a proof of concept for DNA-ligand intercalation as a motif in the design of multivalent dendrimer vectors for targeted gene delivery.

  14. Advantages of GPU technology in DFT calculations of intercalated graphene

    NASA Astrophysics Data System (ADS)

    Pešić, J.; Gajić, R.

    2014-09-01

    Over the past few years, the expansion of general-purpose graphic-processing unit (GPGPU) technology has had a great impact on computational science. GPGPU is the utilization of a graphics-processing unit (GPU) to perform calculations in applications usually handled by the central processing unit (CPU). Use of GPGPUs as a way to increase computational power in the material sciences has significantly decreased computational costs in already highly demanding calculations. A level of the acceleration and parallelization depends on the problem itself. Some problems can benefit from GPU acceleration and parallelization, such as the finite-difference time-domain algorithm (FTDT) and density-functional theory (DFT), while others cannot take advantage of these modern technologies. A number of GPU-supported applications had emerged in the past several years (www.nvidia.com/object/gpu-applications.html). Quantum Espresso (QE) is reported as an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nano-scale. It is based on DFT, the use of a plane-waves basis and a pseudopotential approach. Since the QE 5.0 version, it has been implemented as a plug-in component for standard QE packages that allows exploiting the capabilities of Nvidia GPU graphic cards (www.qe-forge.org/gf/proj). In this study, we have examined the impact of the usage of GPU acceleration and parallelization on the numerical performance of DFT calculations. Graphene has been attracting attention worldwide and has already shown some remarkable properties. We have studied an intercalated graphene, using the QE package PHonon, which employs GPU. The term ‘intercalation’ refers to a process whereby foreign adatoms are inserted onto a graphene lattice. In addition, by intercalating different atoms between graphene layers, it is possible to tune their physical properties. Our experiments have shown there are benefits from using GPUs, and we reached an

  15. Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds

    SciTech Connect

    Martins, Marcel G.; Martins, Daniel O.T.A.; Carvalho, Beatriz L.C. de; Mercante, Luiza A.; Soriano, Stéphane; Andruh, Marius; Vieira, Méri D.; Vaz, Maria G.F.

    2015-08-15

    In this work montmorillonite (MMT) clay, whose matrix was modified with an ammonium salt (hexadecyltrimethylammonium bromide – CTAB), was employed as an inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange: a nitronyl nitroxide derivative 2-[4-(N-ethyl)-pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (p-EtRad{sup +}) and two binuclear coordination compounds, [Ni(valpn)Ln]{sup 3+}, where H{sub 2}valpn stands for 1,3-propanediyl-bis(2-iminomethylene-6-methoxy-phenol), and Ln=Gd{sup III}; Dy{sup III}. The pristine MMT and the intercalated materials were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and magnetic measurements. The X-ray diffraction data analysis showed an increase of the interlamellar space of the intercalated MMT, indicating the intercalation of the magnetic compounds. Furthermore, the magnetic properties of the hybrid compounds were investigated, showing similar behavior as the pure magnetic guest species. - Graphical abstract: Montmorillonite clay was employed as inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange - Highlights: • Montmorillonite was employed as a host material. • Three molecular magnetic compounds were intercalated through ion exchange. • The compounds were successful intercalated maintaining the layered structure. • The hybrid materials exhibited similar magnetic behavior as the pure magnetic guest.

  16. A new way to synthesize superconducting metal-intercalated C60 and FeSe

    PubMed Central

    Takahei, Yuuki; Tomita, Keitaro; Itoh, Yugo; Ashida, Keishi; Lee, Ji-Hyun; Nishimoto, Naoki; Kimura, Takumi; Kudo, Kazutaka; Nohara, Minoru; Kubozono, Yoshihiro; Kambe, Takashi

    2016-01-01

    Doping with the optimum concentration of carriers (electrons or holes) can modify the physical properties of materials. Therefore, improved ways to achieve carrier doping have been pursued extensively for more than 50 years. Metal-intercalation is one of the most important techniques for electron doping of organic / inorganic solids, and has produced superconductors from insulators and metallic solids. The most successful examples are metal-intercalated graphite and C60 superconductors. Metal intercalation has been performed using solid-reaction and liquid solvent techniques. However, precise control of the quantity of intercalants in the target solids can be difficult to achieve using these methods, as that quantity depends largely on the initial conditions. Here we report an electrochemical method for metal-intercalation, and demonstrate the preparation of superconductors using organic and inorganic materials (C60 and FeSe). The metal atoms are effectively intercalated into the spaces in C60 and FeSe solids by supplying an electric current between electrodes in a solvent that includes electrolytes. The recorded superconducting transition temperatures, Tc’s, were the same as those of metal-intercalated C60 and FeSe prepared using solid-reaction or liquid solvent techniques. This technique may open a new avenue in the search for organic / inorganic superconductors. PMID:26732250

  17. Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Zhu, Yingjie; Chen, Nuofu; Liu, Xinling; Sun, Zhengliang; Huang, Zhenghong; Kang, Feiyu; Gao, Qiuming; Jiang, Jun; Chen, Lidong

    2011-12-01

    A two-step method has been used to fabricate nano-particles of layer-structured bismuth chalcogenide compounds, including Bi2Te3, Bi2Se3, and Bi2Se0.3Te2.7, through a nano-scaled top-down route. In the first step, lithium (Li) atoms are intercalated between the van der Waals bonded quintuple layers of bismuth chalcogenide compounds by controllable electrochemical process inside self-designed lithium ion batteries. And in the second step, the Li intercalated bismuth chalcogenides are subsequently exposed to ethanol, in which process the intercalated Li atoms would explode like atom-scaled bombs to exfoliate original microscaled powder into nano-scaled particles with size around 10 nm. The influence of lithium intercalation speed and amount to three types of bismuth chalcogenide compounds are compared and the optimized intercalation conditions are explored. As to maintain the phase purity of the final nano-particle product, the intercalation lithium amount should be well controlled in Se contained bismuth chalcogenide compounds. Besides, compared with binary bismuth chalcogenide compound, lower lithium intercalation speed should be applied in ternary bismuth chalcogenide compound.

  18. Fabrication and Resistivity of IBr Intercalated Vapor-Grown Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Smith, Jaclyn M.; Gahl, Gregory K.; Stevens, Eric C.; Gaier, Elizabeth M.

    1998-01-01

    Composites using vapor-crown carbon fibers (VGCF), the most conductive of the carbon fiber types, are attractive for applications where low density, high strength, and at least moderate conductivity are required, such as electromagnetic interference shielding covers for spacecraft. The conductivity can be enhanced another order of magnitude by intercalation of the VGCF. If a high Z intercalate is used, the protection of components from ionizing radiation can be enhanced also. Thus, the intercalation of VGCF with IBr is reported. Since composite testing is required to verify properties, the intercalation reaction optimization, stability of the intercalation compound, scale-up of the intercalation reaction, composite fabrication, and resistivity of the resulting composites is also reported. The optimum conditions for low resistivity and uniformity for the scaled up reaction (20-30 g of product) were 114 C for at least 72 hr, yielding a fiber with a resistivity of 8.7+/-2 micro-Omega-cm. The thermal stability of these fibers was poor, with degradation occurring at temperatures as low as 40 C in air, though they were insensitive to water vapor. Composite resistivity was 20-30 micro-Omega-cm, as measured by contactless conductivity measurements, about a factor of five higher than would be expected from a simple rule of mixtures. The addition of 1.0 percent Br2, intercalated microfibers increased the resistivity of the composites by more than 20 percent.

  19. Carbon dioxide intercalation in Na-fluorohectorite clay at near-ambient conditions

    NASA Astrophysics Data System (ADS)

    Fossum, Jon Otto; Hemmen, Henrik; Rolseth, Erlend G.; Fonseca, Davi; Lindbo Hansen, Elisabeth; Plivelic, Tomas

    2012-02-01

    A molecular dynamics study by Cygan et al.[1] shows the possibility of intercalation and retention of CO2 in smectite clays at 37 ^oC and 200 bar, which suggests that clay minerals may prove suitable for carbon capture and carbon dioxide sequestration. In this work we show from x-ray diffraction measurements that gaseous CO2 intercalates into the interlayer space of the synthetic smectite clay Na-fluorohectorite. The mean interlayer distance of the clay when CO2 is intercalated is 12.5 å at -20 C and 15 bar. The magnitude of the expansion of the interlayer upon intercalation is indistinguishable from that of the dehydrated-monohydrated intercalation of H2O, but this possibility is ruled out by careful repeating the measurements exposing the clay to nitrogen gas. The dynamics of the CO2 intercalation process displays a higher intercalation rate at increased pressure, and the rate is several orders of magnitude slower than that of water or vapor at ambient pressure and temperature.[4pt] [1] Cygan, R. T.; Romanov, V. N.; Myshakin, E. M. Natural materials for carbon capture; Techincal report SAND2010-7217; Sandia National Laboratories: Albuquerque, New Mexico, November, 2010.

  20. Single-molecule kinetics and footprinting of DNA bis-intercalation: the paradigmatic case of Thiocoraline

    PubMed Central

    Camunas-Soler, Joan; Manosas, Maria; Frutos, Silvia; Tulla-Puche, Judit; Albericio, Fernando; Ritort, Felix

    2015-01-01

    DNA bis-intercalators are widely used in molecular biology with applications ranging from DNA imaging to anticancer pharmacology. Two fundamental aspects of these ligands are the lifetime of the bis-intercalated complexes and their sequence selectivity. Here, we perform single-molecule optical tweezers experiments with the peptide Thiocoraline showing, for the first time, that bis-intercalation is driven by a very slow off-rate that steeply decreases with applied force. This feature reveals the existence of a long-lived (minutes) mono-intercalated intermediate that contributes to the extremely long lifetime of the complex (hours). We further exploit this particularly slow kinetics to determine the thermodynamics of binding and persistence length of bis-intercalated DNA for a given fraction of bound ligand, a measurement inaccessible in previous studies of faster intercalating agents. We also develop a novel single-molecule footprinting technique based on DNA unzipping and determine the preferred binding sites of Thiocoraline with one base-pair resolution. This fast and radiolabelling-free footprinting technique provides direct access to the binding sites of small ligands to nucleic acids without the need of cleavage agents. Overall, our results provide new insights into the binding pathway of bis-intercalators and the reported selectivity might be of relevance for this and other anticancer drugs interfering with DNA replication and transcription in carcinogenic cell lines. PMID:25690887

  1. Intercalation compound of diclofenac sodium with layered inorganic compounds as a new drug material.

    PubMed

    Tajima, Tomoko; Suzuki, Noriko; Watanabe, Yoshiteru; Kanzaki, Yasushi

    2005-11-01

    The intercalation reaction of diclofenac sodium (DFS) with layered inorganic compounds, gamma-titanium phosphate (gamma-TiP), proton type titanium oxide (H-TiO2) and sodium type synthetic mica (Na-TSM), was examined on. The direct reaction of DFS in ethanol-water mixed solvent resulted in the large amount accommodation of DFS. The amount of intercalated DFS was the order of gamma-TiP>H-TiO2>Na-TSM corresponding to the order of acidity. The intercalation using phospholiopids was also examined to assist the intercalation reaction. However, the amount of intercalated DFS was rather small in comparison with those in the direct reaction. DFS accommodated in gamma-TiP dissolved into neutral and basic buffer solution stoichiometry while scarcely dissolved in the acidic solution. The mechanism of the intercalation and reverse dissolution was successfully accounted according to the ion-exchange mechanism between Na+ in DFS and H+ in gamma-TiP. The dissolution from tablet of DFS/gamma-TiP intercalation compound was examined by using a disintegrator. It was found that the dissolution rate appropriately controlled by mixing the disintegrator. The present results suggested the different possibilities in the clinical field to use layered inorganic compounds such as drug delivery system (DDS).

  2. The intercalation of bicyclic and tricyclic carboxylates into layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Khan, Aamir I.; Williams, Gareth R.; Hu, Gang; Rees, Nicholas H.; O'Hare, Dermot

    2010-12-01

    Twenty-four nanocomposites built from layered double hydroxides and bicyclic and tricyclic carboxylates have been synthesised for the first time. Eight carboxylates were successfully intercalated into [LiAl 2(OH) 6]Cl· yH 2O, [Ca 2Al(OH) 6]NO 3· yH 2O, and [Mg 2Al(OH) 6]NO 3· yH 2O, and the products fully characterised. Guest species incorporated include 1-adamantane carboxylate (1- AC) and 5-norbornene-2- endo-3- exo-dicarboxylate. In some cases, carbonate anions were co-intercalated with the organic guest, and in others poorly crystalline aluminium hydroxides formed as by-products. Sharper resonances were observed in the 13C solid-state NMR spectra of the 1- AC intercalates than in the spectrum of pure 1- AC, suggesting increased order in the arrangement of the cyclic cages in the intercalates. Where possible, time-resolved in situ X-ray diffraction was employed to study the nanoscopic steps involved in the intercalation reactions. These investigations showed that the reactions are one-step processes, proceeding directly to the fully exchanged intercalate with no intermediate phases. The intercalation processes were found to be nucleation controlled.

  3. Synthesis and DNA-binding properties of novel DNA cyclo-intercalators containing purine-glucuronic acid hybrids.

    PubMed

    Zhang, Renshuai; Chen, Shaopeng; Wang, Xueting; Yu, Rilei; Li, Mingjing; Ren, Sumei; Jiang, Tao

    2016-06-24

    Novel DNA cyclo-intercalators, which incorporated two intercalator subunits linked by two bridges, were synthesized. Binding of the compounds to calf-thymus DNA was studied by fluorescence spectroscopy, and docking simulations were used to predict the binding modes of these cyclic compounds. The spectral data demonstrated that all of these compounds can interact with CT-DNA. The sugar moiety played an important role in the process of binding between the intercalators containing glucuronic acid and DNA. The length and flexibility of the connecting bridges affected the binding affinity of the resultant cyclo-intercalators. Docking simulations showed that compounds 7 and 8 interact with DNA as mono-intercalators.

  4. Functional characterization of three intercalated cell subtypes in the rabbit outer cortical collecting duct.

    PubMed Central

    Emmons, C; Kurtz, I

    1994-01-01

    The distribution of Na(+)-independent Cl(-)-HCO3- exchange was studied in individual intercalated cells from in vitro perfused rabbit outer CCDs using dual excitation laser scanning confocal microscopy by measuring the pHi response to sequential removal of Cl- from both sides of the tubule. Three patterns of intracellular pH (pHi) response were observed. 39% of intercalated cells had only apical Cl(-)-HCO3- exchange (beta cell), 4% had only basolateral Cl(-)-HCO3- exchange (alpha cell), and 57% had both apical and basolateral Cl(-)-HCO3- exchange (gamma cell). Valinomycin-high K+ voltage clamping had no effect on the pHi response of intercalated cells with bilateral Cl(-)-HCO3- exchange. Although the mean rates of dpHi/dt following apical Cl- removal were similar in beta cells compared to gamma cells, a wide range of apical rates was seen among individual beta and gamma intercalated cells. Neither the apical nor the basolateral Cl(-)-HCO3- exchanger in gamma cells was inhibited by 0.5 mM H2DIDS. Binding of apical peanut lectin was seen both in beta cells and in gamma cells. In 41% of CCDs with four to seven intercalated cells studied, all intercalated cells were of the same subtype. We conclude that the majority of intercalated cells from the rabbit outer CCD have both apical and basolateral Na(+)-independent Cl(-)-HCO3- exchangers (gamma cells), which are stilbene-insensitive. Intercalated cells with only basolateral Cl(-)-HCO3- exchange are very uncommon in the rabbit outer CCD. There is a tendency for all intercalated cells in a given rabbit outer CCD to be of the same subtype (either all beta cells or all gamma cells), suggesting the presence of CCD intertubule heterogeneity at the same cortical level. This finding may account for intertubule differences in transepithelial H(+)-base transport. Images PMID:8282814

  5. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhao, Minggang; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang

    2016-07-01

    ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  6. Intercalated degrees, learning styles, and career preferences: prospective longitudinal study of UK medical students

    PubMed Central

    McManus, I C; Richards, P; Winder, B C

    1999-01-01

    Objectives To assess the effects of taking an intercalated degree (BSc) on the study habits and learning styles of medical students and on their interest in a career in medical research. Design Longitudinal questionnaire study of medical students at application to medical school and in their final year. Setting All UK medical schools. Participants 6901 medical school applicants for admission in 1991 were studied in the autumn of 1990. 3333 entered medical school in 1991 or 1992, and 2695 who were due to qualify in 1996 or 1997 were studied 3 months before the end of their clinical course. Response rates were 92% for applicants and 56% for final year students. Main outcome measures Study habits (surface, deep, and strategic learning style) and interest in different medical careers, including medical research. Identical questions were used at time of application and in final year. Results Students who had taken an intercalated degree had higher deep and strategic learning scores than at application to medical school. Those with highest degree classes had higher strategic and deep learning scores and lower surface learning scores. Students taking intercalated degrees showed greater interest in careers in medical research and laboratory medicine and less interest in general practice than their peers. The effects of the course on interest in medical research and learning styles were independent. The effect of the intercalated degree was greatest in schools where relatively few students took intercalated degrees. Conclusions Intercalated degrees result in a greater interest in research careers and higher deep and strategic learning scores. However, the effects are much reduced in schools where most students intercalate a degree. Introduction of intercalated degrees for all medical students without sufficient resources may not therefore achieve its expected effects. Key messagesAlthough intercalated degrees are well established, little is known about their effect on

  7. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  8. Unique properties of α-NaFeO{sub 2}: De-intercalation of sodium via hydrolysis and the intercalation of guest molecules into the extract solution

    SciTech Connect

    Monyoncho, Evans; Bissessur, Rabin

    2013-07-15

    Graphical abstract: - Highlights: • Facile de-intercalating Na from NaFeO2. • Formation of layered sodium hydrogen carbonate hydrate. • Intercalation chemistry on layered sodium hydrogen carbonate hydrate. - Abstract: We report on a versatile method for the de-intercalation of Na from α-NaFeO{sub 2} by using water to produce α-Na{sub 1−x}FeO{sub 2}, where x ≈ 1. This de-intercalation technique provides an excellent route to ion exchange Na with other metal ions in α-NaFeO{sub 2}. The hydrolysis mechanism is provided. We show that the extracted solution captures CO{sub 2} from the atmosphere leading to the formation of sodium hydrogen carbonate hydrate crystals. The lamellar structure of the hydrate crystals was confirmed by powder X-ray diffraction, and were found Na-deficient via elemental analysis. Intercalation of guest molecules such as polymers, alcohols, and inorganic ions into the gallery space of the newly formed sodium hydrogen carbonate hydrate crystals was demonstrated by the use of powder X-ray diffraction technique. The reported materials were also characterized by Mössbauer spectroscopy, thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy.

  9. LETTER TO THE EDITOR: On some physical properties of InSe and GaSe semiconducting crystals intercalated by ferroelectrics

    NASA Astrophysics Data System (ADS)

    Grigorchak, I. I.; Netyaga, V. V.; Kovalyuk, Z. D.

    1997-03-01

    Physical mechanisms of intercalation of semiconductors are determined, establishing the main laws of intercalation, and the physical nature of new phenomena and effects induced by intercalation are explained; general statements for obtaining intercalates with characteristics assigned in advance are also developed.

  10. Observation of potassium-intercalated carbon nanotubes and their valence-band excitation spectra

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Tomita, M.

    1996-04-01

    Second-stage potassium-intercalated carbon nanotubes were synthesized in a specially designed ultrahigh vacuum analytical electron microscope and their valence-band excitation spectra in the region of the π+σ plasmon were measured by electron energy loss spectroscopy. The carbon nanostructures consisted of graphene sheets. Potassium was deposited in an ultrahigh vacuum at room temperature. As a result, a second stage of intercalated nanotubes was found to be formed close to the surface. The energy loss spectra of the intercalated nanotubes showed humps at about 16, 19, and 22 eV, in addition to those of unintercalated tubes. This suggests that intercalation modified the band structure of the interlayer bands and/or the σ(σ*) bands.

  11. Synthesis of new oligothiophene derivatives and their intercalation compounds: Orientation effects

    USGS Publications Warehouse

    Ibrahim, M.A.; Lee, B.-G.; Park, N.-G.; Pugh, J.R.; Eberl, D.D.; Frank, A.J.

    1999-01-01

    The orientation dependence of intercalated oligothiophene derivatives in vermiculite and metal disulfides MS2 (M = Mo, Ti and Zr) on the pendant group on the thiophene ring and the host material was studied by X-ray diffraction (XRD) and solid state nuclear magnetic resonance spectroscopy. Amino and nitro derivatives of bi-, ter- and quarter-thiophenes were synthesized for the first time. The amino-oligothiophenes were intercalated into vermiculite by an exchange reaction with previously intercalated octadecylammonium vermiculite and into MS2 by the intercalation-exfoliation technique. Analysis of the XRD data indicates that a monolayer of amino-oligothiophene orients perpendicularly to the silicate surface in vermiculite and lies flat in the van der Waals gap of MS2.

  12. Hydroxypropyl chitosan/organic rectorite-based nanofibrous mats with intercalated structure for bacterial inhibition.

    PubMed

    Deng, Hongbing; Lin, Penghua; Li, Wei; Xin, Shangjing; Zhou, Xue; Yang, Jianhong

    2013-01-01

    This paper reported antibacterial hydroxypropyl chitosan (HPCS)/organic rectorite (OREC)-based nanofibrous mats with intercalated structure fabricated via solution intercalation method and electrospinning. Field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra, Energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and inhibition zone surrounding circular mats disks measurement were performed to characterize the morphology, intercalation structure, elements analysis, and the antibacterial properties of the as-spun nanofibrous mats. The results showed that the nanofibrous mats were with better fiber shape with the addition of OREC, the polymer chains were successfully intercalated into the interlayer of OREC, and nanofibrous mats containing HPCS exhibited good antibacterial activities against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus. In addition, the bacterial inhibition ability of the nanofibrous mats was enhanced when OREC was added.

  13. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    PubMed

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  14. Supramolecular polymer formation by cyclic dinucleotides and intercalators affects dinucleotide enzymatic processing

    PubMed Central

    Nakayama, Shizuka; Zhou, Jie; Zheng, Yue; Szmacinski, Henryk; Sintim, Herman O

    2016-01-01

    Background: Cyclic dinucleotides form supramolecular aggregates with intercalators, and this property could be utilized in nanotechnology and medicine. Methods & results: Atomic force microscopy and electrophoretic mobility shift assays were used to show that cyclic diguanylic acid (c-di-GMP) forms G-wires in the presence of intercalators. The average fluorescence lifetime of thiazole orange, when bound to c-di-GMP was greater than when bound to DNA G-quadruplexes or dsDNA. The stability of c-di-GMP supramolecular polymers is dependent on both the nature of the cation present and the intercalator. C-di-GMP or cyclic diadenylic acid/intercalator complexes are more resistant to cleavage by YybT, a phosphodiesterase, than the uncomplexed nucleotides. Conclusion: Cleavage of bacterial cyclic dinucleotides could be slowed down via complexation with small molecules and that this could be utilized for diverse applications in nanotechnology and medicine. PMID:28031943

  15. A micrographic and gravimetric study of intercalation and deintercalation of graphite fibers

    NASA Technical Reports Server (NTRS)

    Hung, C. C.

    1985-01-01

    Intercalation and deintercalation of Union Carbide P-100 graphite fibers with liquid and vaporous bromine was studied gravimetrically and microscopically. The mass of the bromine intercalated fibers was found to be 17 to 20 percent greater than their pristine counterpart. This variation decreased to 17 to 18 percent after heating in air for 3 days at 200 C and to 14.5 to 18 percent after 6 days of 260 C heating. The fiber length did not change throughout the experiment. The fiber diameter increased during intercalation and decreased slightly upon deintercalation but was not affected by heating to 260 C for 3 days in air. Comparing the mass and volume data to those with highly oriented pyrolitic graphite or natural single crystal graphite suggested the possibility that the intercalated P-100 fibers could be mostly stage 4.

  16. Water-mediated potassium acetate intercalation in kaolinite as revealed by molecular simulation.

    PubMed

    Ható, Zoltán; Makó, Éva; Kristóf, Tamás

    2014-03-01

    Molecular simulations are suitable tools to study the adsorption and intercalation of molecules in clays. In this work, a recently proposed thermodynamically consistent force field for inorganic compounds (INTERFACE, Heinz H, Lin TJ, Mishra RK, Emami FS (2013) Langmuir 29:1754-1765), which enables accurate simulations of inorganic-organic interfaces, was tested for a two-sheet type clay mineral. All-atom NpT molecular dynamics simulations were used to describe the characteristics (basal spacing, loading, molecular orientation) of some intercalate complexes of kaolinite with potassium acetate and the results were compared with the available experimental data. The most probable structural configurations of the kaolinite/potassium acetate intercalate complexes were determined from the simulations. Our examinations confirmed some supposed (single- or double-layered) arrangements of guest molecules. The need of interlayer water in the intercalate complex, which can be produced by the basic synthesis procedure in air atmosphere, was verified.

  17. STS-92 Discovery Launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Viewed from across the waters of Banana Creek, clouds of smoke and steam are illuminated by the flames from Space Shuttle Discovery'''s perfect on-time launch at 7:17 p.m. EDT. Discovery carries a crew of seven on a construction flight to the International Space Station. Discovery also carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery'''s landing is expected Oct. 22 at 2:10 p.m. EDT.

  18. Computational drug discovery

    PubMed Central

    Ou-Yang, Si-sheng; Lu, Jun-yan; Kong, Xiang-qian; Liang, Zhong-jie; Luo, Cheng; Jiang, Hualiang

    2012-01-01

    Computational drug discovery is an effective strategy for accelerating and economizing drug discovery and development process. Because of the dramatic increase in the availability of biological macromolecule and small molecule information, the applicability of computational drug discovery has been extended and broadly applied to nearly every stage in the drug discovery and development workflow, including target identification and validation, lead discovery and optimization and preclinical tests. Over the past decades, computational drug discovery methods such as molecular docking, pharmacophore modeling and mapping, de novo design, molecular similarity calculation and sequence-based virtual screening have been greatly improved. In this review, we present an overview of these important computational methods, platforms and successful applications in this field. PMID:22922346

  19. Direct observation of Dirac cone in multilayer silicene intercalation compound CaSi2.

    PubMed

    Noguchi, Eiichi; Sugawara, Katsuaki; Yaokawa, Ritsuko; Hitosugi, Taro; Nakano, Hideyuki; Takahashi, Takashi

    2015-02-04

    Calcium-intercalated multilayer silicene CaSi2 exhibits a massless Dirac-cone π-electron-band dispersion like graphene, while the Dirac point is about 2 eV away from the Fermi level due to diiimide-based charge transfer from the Ca atoms to the silicene layers. This indicates that the graphene-like electronic structure with a massless Dirac cone is stably formed in the metal-intercalated multilayer silicene.

  20. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.

    PubMed

    Wang, Lili; Zhu, Yongchun; Guo, Cong; Zhu, Xiaobo; Liang, Jianwen; Qian, Yitai

    2014-01-01

    Ferric chloride-graphite intercalation compounds (FeCl3 -GICs) with stage 1 and stage 2 structures were synthesized by reacting FeCl3 and expanded graphite (EG) in air in a stainless-steel autoclave. As rechargeable Li-ion batteries, these FeCl3 -GICs exhibit high capacity, excellent cycling stability, and superior rate capability, which could be attributed to their unique intercalation features. This work may enable new possibilities for the fabrication of Li-ion batteries.

  1. Organo-Soluble Porphyrin Mixed Monolayer-Protected Gold Nanorods with Intercalated Fullerenes

    DTIC Science & Technology

    2012-03-16

    Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods . J. Phys. Chem. B 1999, 103, 8410- 8426. (7) Yu, C.; Irudayaraj, J...Mixed Monolayer- Protected Gold Nanorods with Intercalated Fullerenes Chenming Xue, Yongqian Xu, Yi Pang, Dingshan Yu, Liming Dai, Min Gao, Augustine...Protected Gold Nanorods with Intercalated Fullerenes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  2. Intercalation of Layered Silicates, Layered Double Hydroxides, and Lead Iodide: Synthesis, Characterization and Properties.

    NASA Astrophysics Data System (ADS)

    Mehrotra, Vivek

    Layered silicates, layered double hydroxides, and lead iodide are lamellar solids that can incorporate guest species into the galleries between their layers. Various intercalated forms of these layered materials have been synthesized and their properties studied. The dielectric behavior of pristine fluorohectorite, a typical layered silicate, and Zn-Al layered double hydroxide is explained by considering the structural ordering and mobility of the intercalated water molecules, as well as models invoking fractal time processes and fractal structure. Intercalative polymerization of aniline and pyrrole into fluorohectorite leads to a multilayered structure consisting of single polymer chains alternately stacked with the 9.6 A thick silicate layers. The polymer chains are confined to the quasi two-dimensional interlayer space between the rigid host layers. The hybrid films exhibit highly anisotropic properties. The optical, electrical and mechanical behavior is discussed in terms of the molecular confinement of the polymer chains. Ethylenediamine functionalized C _{60} clusters have also been intercalated into fluorohectorite via an ion-exchange procedure. Intercalation results in an improved thermal stability of the functionalized C_{60} clusters. Rutherford backscattering spectrometry has been used to elucidate the mechanism of intercalative ion exchange of silver in muscovite mica, a layered silicate with a layer charge density of 2e per unit cell. It is proposed that ion-exchange progresses by intercalating successive galleries through the edges of the mica layers. Guest-host interactions have been studied in the system aniline-PbI_2. The optical and structural effects of aniline intercalation in lead iodide thin films is discussed. Intercalation leads to a large shift in the optical band gap of PbI_2. The observed change in band gap is not only due to the increased separation between the PbI_2 layers but also because of an electrostatic interaction between the

  3. Application of mean-field model of polymer melt intercalation in organo-silicates for nanocomposites.

    PubMed

    Meneghetti, Paulo; Qutubuddin, Syed

    2005-08-15

    The mean-field, lattice-based model of polymer melt intercalation in organically-modified layered silicates (OLS) originally developed by Vaia and Giannelis was applied for different polymers such as poly(methyl methacrylate) (PMMA), polypropylene (PP), and poly(ethylene oxide) (PEO). The nature of each polymer controls significantly the intercalation of the system. The internal energy change caused by the interaction of polymer, surfactant and clay is the strongest factor in determining the equilibrium structure of the nanocomposite system.

  4. Preparation of intercalation compounds of carbon fibers through electrolysis using phosphoric acid electrolyte and their exfoliation

    NASA Astrophysics Data System (ADS)

    Toyoda, Masahiro; Yoshinaga, Aya; Amao, Yutaka; Takagi, Hideyuki; Soneda, Yasushi; Inagaki, Michio

    2006-05-01

    Preparation of intercalation compounds using H3PO4 electrolyte solution in mesophase-pitch-based carbon fibers successfully carried out by electrolysis in less than 10 mol/dm3 of its electrolyte solution. Structural changes with preparation of intercalation compounds of carbon fibers were confirmed by a peak appeared around 2θ=8° observed after electrolysis, which corresponds to an interlayer spacing of about 0.9 nm through XRD pattern (anticathode: Cu Kα). This new peak was reasonably supposed to be due to the intercalation into interspacing of carbon layers. Suitable synthesis condition of the intercalation compounds was determined to be the concentration of electrolyte of 5 mol/dm3 at the electrolysis. It was also confirmed by morphology changes through SEM, that is carbon fibers, which treated low electrolyte concentration synthesized the intercalation compounds easily, and then it revealed markedly morphology changes such as fibrils. It could become exfoliation as well as them treated by other acid treatment through rapid heat-treatment. The formation of graphite oxide was suggested when the kind of intercalate was analyzed with elementary and TPD analysis.

  5. In situ intercalation dynamics in inorganic-organic layered perovskite thin films.

    PubMed

    Ahmad, Shahab; Kanaujia, Pawan K; Niu, Wendy; Baumberg, Jeremy J; Vijaya Prakash, G

    2014-07-09

    The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic-organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson-Mehl-Avrami-Kolmogorov model, with results fitting both ideal and nonideal cases.

  6. CDC-42 Orients Cell Migration during Epithelial Intercalation in the Caenorhabditis elegans Epidermis.

    PubMed

    Walck-Shannon, Elise; Lucas, Bethany; Chin-Sang, Ian; Reiner, David; Kumfer, Kraig; Cochran, Hunter; Bothfeld, William; Hardin, Jeff

    2016-11-01

    Cell intercalation is a highly directed cell rearrangement that is essential for animal morphogenesis. As such, intercalation requires orchestration of cell polarity across the plane of the tissue. CDC-42 is a Rho family GTPase with key functions in cell polarity, yet its role during epithelial intercalation has not been established because its roles early in embryogenesis have historically made it difficult to study. To circumvent these early requirements, in this paper we use tissue-specific and conditional loss-of-function approaches to identify a role for CDC-42 during intercalation of the Caenorhabditis elegans dorsal embryonic epidermis. CDC-42 activity is enriched in the medial tips of intercalating cells, which extend as cells migrate past one another. Moreover, CDC-42 is involved in both the efficient formation and orientation of cell tips during cell rearrangement. Using conditional loss-of-function we also show that the PAR complex functions in tip formation and orientation. Additionally, we find that the sole C. elegans Eph receptor, VAB-1, functions during this process in an Ephrin-independent manner. Using epistasis analysis, we find that vab-1 lies in the same genetic pathway as cdc-42 and is responsible for polarizing CDC-42 activity to the medial tip. Together, these data establish a previously uncharacterized role for polarized CDC-42, in conjunction with PAR-6, PAR-3 and an Eph receptor, during epithelial intercalation.

  7. Simulation assisted characterization of kaolinite-methanol intercalation complexes synthesized using cost-efficient homogenization method

    NASA Astrophysics Data System (ADS)

    Makó, Éva; Kovács, András; Ható, Zoltán; Kristóf, Tamás

    2015-12-01

    Recent experimental and simulation findings with kaolinite-methanol intercalation complexes raised the question of the existence of more stable structures in wet and dry state, which has not been fully cleared up yet. Experimental and molecular simulation analyses were used to investigate different types of kaolinite-methanol complexes, revealing their real structures. Cost-efficient homogenization methods were applied to synthesize the kaolinite-dimethyl sulfoxide and kaolinite-urea pre-intercalation complexes of the kaolinite-methanol ones. The tested homogenization method required an order of magnitude lower amount of reagents than the generally applied solution method. The influence of the type of pre-intercalated molecules and of the wetting or drying (at room temperature and at 150 °C) procedure on the intercalation was characterized experimentally by X-ray diffraction and thermal analysis. Consistent with the suggestion from the present simulations, 1.12-nm and 0.83-nm stable kaolinite-methanol complexes were identified. For these complexes, our molecular simulations predict either single-layered structures of mobile methanol/water molecules or non-intercalated structures of methoxy-functionalized kaolinite. We found that the methoxy-modified kaolinite can easily be intercalated by liquid methanol.

  8. Sugar-anionic clay composite materials: intercalation of pentoses in layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Aisawa, Sumio; Hirahara, Hidetoshi; Ishiyama, Kayoko; Ogasawara, Wataru; Umetsu, Yoshio; Narita, Eiichi

    2003-09-01

    The intercalation of non-ionized guest pentoses (ribose and 2-deoxyribose) into the Mg-Al and Zn-Al layered double hydroxides (LDHs) was carried out at 298 K by the calcination-rehydration reaction using the Mg-Al and Zn-Al oxide precursors calcined at 773 K. The resulting solid products reconstructed the LDH structure with incorporating pentoses, and the maximum amount of ribose intercalated by the Mg-Al oxide precursor was approximately 20 times that by the Zn-Al oxide precursor. The ribose/Mg-Al LDH was observed to have the expanded LDH structure with a broad (003) spacing of 0.85 nm. As the thickness of the LDH hydroxide basal layer is 0.48 nm, the interlayer distance of the ribose/Mg-Al LDH is 0.37 nm. This value corresponds to molecular size of ribose in thickness (0.36 nm), supporting that ribose is horizontally oriented in the interlayer space of LDH. The maximum amount of ribose intercalated by the Mg-Al oxide precursor was approximately 5 times that of 2-deoxyribose. Ribose is substituted only by the hydroxyl group at C-2 position for 2-deoxyribose. Therefore, the number of hydroxyl group of sugar is essentially important for the intercalation of sugar molecule into the LDH, suggesting that the intercalation behavior of sugar for the LDH was greatly influenced by hydrogen bond between hydroxyl group of the intercalated pentose and the LDH hydroxide basal layers.

  9. Optical properties of NbCl5 and ZnMg intercalated graphite compounds

    NASA Astrophysics Data System (ADS)

    Jung, Eilho; Lee, Seokbae; Roh, Seulki; Meng, Xiuqing; Tongay, Sefaattin; Kang, Jihoon; Park, Tuson; Hwang, Jungseek

    2014-12-01

    We studied NbCl5 and ZnMg alloy intercalated graphite compounds using an optical spectroscopy technique. These intercalated metallic graphite samples were quite challenging to obtain optical reflectance spectra since they were not flat and quite thin. By using both a new method and an in situ gold evaporation technique we were able to obtain reliable reflectance spectra of our samples in the far and mid infrared range (80-7000 cm-1). We extracted the optical constants including the optical conductivity and the dielectric function from the measured reflectance spectra using a Kramers-Kronig analysis. We also extracted the dc conductivity and the plasma frequencies from the optical conductivity and dielectric functions. NbCl5 intercalated graphite samples show similar optical conductivity spectra as bare highly oriented pyrolytic graphite even though there are some differences in detail. ZnMg intercalated samples show significantly different optical conductivity spectra from the bare graphite. Optical spectroscopy is one of the most reliable experimental techniques to obtain the electronic band structures of materials. The obtained optical conductivities support the recent theoretically calculated electronic band structures of NbCl5 and ZnMg intercalated graphite compounds. Our results also provide important information of electronic structures and charge carrier properties of these two new intercalated materials for applications.

  10. In Situ Intercalation Dynamics in Inorganic–Organic Layered Perovskite Thin Films

    PubMed Central

    2014-01-01

    The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic–organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson–Mehl–Avrami–Kolmogorov model, with results fitting both ideal and nonideal cases. PMID:24905435

  11. Caffeine and other xanthines as cytochemical blockers and removers of heterocyclic DNA intercalators from chromatin.

    PubMed

    Lyles, Mark B; Cameron, Ivan L

    2002-01-01

    Caffeine (CAF) and other xanthines non-covalently bind with the cationic fluorescent dye acridine orange (AO) and with other heterocyclic mutagens and carcinogens that are known to intercalate into double-stranded DNA (dsDNA). Fluorescence microscopy and spectrofluorometry studies were employed to test the ability of caffeine and certain other methyl substituted xanthines, with different binding affinities for AO, to inhibit and to reverse the intercalation of AO and other heterocyclic agents from intercalation with the DNA of nuclear chromatin of air-dried cells. Results indicated that xanthines with binding affinity for AO greater than 150 m(-1) block the AO molecule in a concentration dependent manner and comply with mass action kinetics. Thus CAF and other xanthines can be used to either inhibit intercalation of AO into nuclear DNA or to remove AO once intercalated into nuclear DNA. The interactions between other planar heterocyclics, xanthines, and nuclear chromatin dsDNA were also found to be non-covalent. Studies are needed to determine the ability of CAF and other xanthines to block and/or remove polyaromatic hydrocarbon (PAH) intercalators from the DNA of living cells.

  12. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    SciTech Connect

    Ferencz, Zs.; Szabados, M.; Varga, G.; Csendes, Z.; Kukovecz, Á.; Kónya, Z.; Carlson, S.; Sipos, P.; and others

    2016-01-15

    A mechanochemical method (grinding the components without added water – dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution – wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure was also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic–inorganic nanocomposites: LDHs intercalated with amino acid anions. - Graphical abstract: Amino acid anion-Ca(II)Fe(III)-LDHs were successfully prepared by a two-step milling procedure. - Highlights: • Synthesis of pristine and amino acid intercalated CaFe-LDHs by two-step milling. • Identifying the optimum synthesis and intercalation parameters. • Characterisation of the samples with a range of instrumental methods.

  13. Intercalation of trioxatriangulenium ion in DNA: binding, electron transfer, x-ray crystallography, and electronic structure.

    PubMed

    Reynisson, Jóhannes; Schuster, Gary B; Howerton, Sheldon B; Williams, Loren Dean; Barnett, Robert N; Cleveland, Charles L; Landman, Uzi; Harrit, Niels; Chaires, Jonathan B

    2003-02-26

    Trioxatriangulenium ion (TOTA(+)) is a flat, somewhat hydrophobic compound that has a low-energy unoccupied molecular orbital. It binds to duplex DNA by intercalation with a preference for G-C base pairs. Irradiation of intercalated TOTA(+) causes charge (radical cation) injection that results in strand cleavage (after piperidine treatment) primarily at GG steps. The X-ray crystal structure of TOTA(+) intercalated in the hexameric duplex d[CGATCG](2) described here reveals that intercalation of TOTA(+) results in an unusually large extension of the helical rise of the DNA and that the orientation of TOTA(+) is sensitive to hydrogen-bonding interactions with backbone atoms of the DNA. Electronic structure calculations reveal no meaningful charge transfer from DNA to TOTA(+) because the lowest unoccupied molecular orbital of TOTA(+), (LUMO)(T), falls in the gap between the highest occupied molecular orbital, (HOMO)(D), and the (LUMO)(D) of the DNA bases. These calculations reveal the importance of backbone, water, and counterion interactions, which shift the energy levels of the bases and the intercalated TOTA(+) orbitals significantly. The calculations also show that the inserted TOTA(+) strongly polarizes the intercalation cavity where a sheet of excess electron density surrounds the TOTA(+).

  14. CDC-42 Orients Cell Migration during Epithelial Intercalation in the Caenorhabditis elegans Epidermis

    PubMed Central

    Lucas, Bethany; Chin-Sang, Ian; Reiner, David; Kumfer, Kraig

    2016-01-01

    Cell intercalation is a highly directed cell rearrangement that is essential for animal morphogenesis. As such, intercalation requires orchestration of cell polarity across the plane of the tissue. CDC-42 is a Rho family GTPase with key functions in cell polarity, yet its role during epithelial intercalation has not been established because its roles early in embryogenesis have historically made it difficult to study. To circumvent these early requirements, in this paper we use tissue-specific and conditional loss-of-function approaches to identify a role for CDC-42 during intercalation of the Caenorhabditis elegans dorsal embryonic epidermis. CDC-42 activity is enriched in the medial tips of intercalating cells, which extend as cells migrate past one another. Moreover, CDC-42 is involved in both the efficient formation and orientation of cell tips during cell rearrangement. Using conditional loss-of-function we also show that the PAR complex functions in tip formation and orientation. Additionally, we find that the sole C. elegans Eph receptor, VAB-1, functions during this process in an Ephrin-independent manner. Using epistasis analysis, we find that vab-1 lies in the same genetic pathway as cdc-42 and is responsible for polarizing CDC-42 activity to the medial tip. Together, these data establish a previously uncharacterized role for polarized CDC-42, in conjunction with PAR-6, PAR-3 and an Eph receptor, during epithelial intercalation. PMID:27861585

  15. Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application

    PubMed Central

    2013-01-01

    Background Zinc layered hydroxide (ZLH) intercalated with cinnamate, an anionic form of cinnamic acid (CA), an efficient UVA and UVB absorber, have been synthesized by direct method using zinc oxide (ZnO) and cinnamic acid as the precursor. Results The resulting obtained intercalation compound, ZCA, showed a basal spacing of 23.9 Å as a result of cinnamate intercalated in a bilayer arrangement between the interlayer spaces of ZLH with estimated percentage loading of cinnamate of about 40.4 % w/w. The UV–vis absorption spectrum of the intercalation compound showed excellent UVA and UVB absorption ability. Retention of cinnamate in ZLH interlayers was tested against media usually came across with sunscreen usage to show low release over an extended period of time. MTT assay of the intercalation compound on human dermal fibroblast (HDF) cells showed cytotoxicity of ZCA to be concentration dependent and is overall less toxic than its precursor, ZnO. Conclusions (Cinnamate-zinc layered hydroxide) intercalation compound is suitable to be used as a safe and effective sunscreen with long UV protection effect. PMID:23383738

  16. Room-Temperature Fluorine-Induced Decrease in the Stability of Bromine and Iodine Intercalated Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers, which were intercalated with 18 wt percent bromine, 1 hour of fluorine exposure resulted in a large weight increase but caused only a small decrease in thermal stability. An additional 89 hours of fluorine exposure time resulted in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena of weight increase and stability decrease do not occur if the intercalated fibers are exposed to 250 C fluorine. These observations suggest that, at room temperature, fluorine is absorbed quickly by the intercalated fibers and is intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. In an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for 2 weeks, the brominated fibers lost about 45% of their bromine, and their resistivity increased from 64 mu(Omega)-cm to a range of 95-170 mu(Omega)-cm. This is still much lower than the value of 300 mu(Omega)-cm for pristine P-100. For practical purposes, to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature or to any intercalate at a temperature where, upon direct contact with graphite, an intercalation compound can easily be formed.

  17. Two different ground states in K-intercalated polyacenes

    NASA Astrophysics Data System (ADS)

    Phan, Quynh T. N.; Heguri, Satoshi; Tamura, Hiroyuki; Nakano, Takehito; Nozue, Yasuo; Tanigaki, Katsumi

    2016-02-01

    The electronic states of potassium- (K-) intercalated zigzag-type polycyclic aromatic (PLA) hydrocarbon [polyacene PLAs] Kx(PLAs ) are studied for a series of the four smallest molecules: naphthalene (NN), anthracene (AN), tetracene (TN), and pentacene (PN), focusing on their 1:1 stoichiometric phases. Clear experimental differences are identified between the first group [K1(NN ) and K1(AN ) ] and the second group [K1(TN ) and K1(PN ) ] by magnetic, vibrational, and optical measurements. The first group is categorized as a Mott insulator with an antiferromagnetic ground state with energy of ˜10 meV, whereas the second group is classified as a band insulator via dimer formation due to the spin Peierls instability. In the latter system, the first thermally accessible triplet states are located far apart from the singlet ground states and are not detected by electron spin-resonance spectroscopy until 300 K being very different from what is observed for the hole-doped PN reported earlier. The results give a new systematic understanding on the electronic states of electron-doped PLAs sensitive to the energetic balance among on-site Coulomb repulsion, bandwidth, and the Peierls instability.

  18. Atomic intercalation to measure adhesion of graphene on graphite

    PubMed Central

    Wang, Jun; Sorescu, Dan C.; Jeon, Seokmin; Belianinov, Alexei; Kalinin, Sergei V.; Baddorf, Arthur P.; Maksymovych, Petro

    2016-01-01

    The interest in mechanical properties of two-dimensional materials has emerged in light of new device concepts taking advantage of flexing, adhesion and friction. Here we demonstrate an effective method to measure adhesion of graphene atop highly ordered pyrolytic graphite, utilizing atomic-scale ‘blisters' created in the top layer by neon atom intercalates. Detailed analysis of scanning tunnelling microscopy images is used to reconstruct atomic positions and the strain map within the deformed graphene layer, and demonstrate the tip-induced subsurface translation of neon atoms. We invoke an analytical model, originally devised for graphene macroscopic deformations, to determine the graphite adhesion energy of 0.221±0.011 J m−2. This value is in excellent agreement with reported macroscopic values and our atomistic simulations. This implies mechanical properties of graphene scale down to a few-nanometre length. The simplicity of our method provides a unique opportunity to investigate the local variability of nanomechanical properties in layered materials. PMID:27796294

  19. Physiological identification and infralimbic responsiveness of rat intercalated amygdala neurons.

    PubMed

    Amir, Alon; Amano, Taiju; Pare, Denis

    2011-06-01

    Intercalated (ITC) amygdala neurons are thought to play a critical role in the extinction of conditioned fear. However, several factors hinder progress in studying ITC contributions to extinction. First, although extinction is usually studied in rats and mice, most ITC investigations were performed in guinea pigs or cats. Thus it is unclear whether their connectivity is similar across species. Second, we lack criteria to identify ITC cells on the basis of their discharge pattern. As a result, key predictions of ITC extinction models remain untested. Among these, ITC cells were predicted to be strongly excited by infralimbic inputs, explaining why infralimbic inhibition interferes with extinction. To study the connectivity of ITC cells, we labeled them with neurobiotin during patch recordings in slices of the rat amygdala. This revealed that medially located ITC cells project topographically to the central nucleus and to other ITC clusters located more ventrally. To study the infralimbic responsiveness of ITC cells, we performed juxtacellular recording and labeling of amygdala cells with neurobiotin in anesthetized rats. All ITC cells were orthodromically responsive to infralimbic stimuli, and their responses usually consisted of high-frequency (~350 Hz) trains of four to six spikes, a response pattern never seen in neighboring amygdala nuclei. Overall, our results suggest that the connectivity of ITC cells is conserved across species and that ITC cells are strongly responsive to infralimbic stimuli, as predicted by extinction models. The unique response pattern of ITC cells to infralimbic stimuli can now be used to identify them in fear conditioning experiments.

  20. Tuning epitaxial graphene sensitivity to water by hydrogen intercalation.

    PubMed

    Melios, C; Winters, M; Strupiński, W; Panchal, V; Giusca, C E; Imalka Jayawardena, K D G; Rorsman, N; Silva, S Ravi P; Kazakova, O

    2017-03-09

    The effects of humidity on the electronic properties of quasi-free standing one layer graphene (QFS 1LG) are investigated via simultaneous magneto-transport in the van der Pauw geometry and local work function measurements in a controlled environment. QFS 1LG on 4H-SiC(0001) is obtained by hydrogen intercalation of the interfacial layer. In this system, the carrier concentration experiences a two-fold increase in sensitivity to changes in relative humidity as compared to the as-grown epitaxial graphene. This enhanced sensitivity to water is attributed to the lowering of the hydrophobicity of QFS 1LG, which results from spontaneous polarization of 4H-SiC(0001) strongly influencing the graphene. Moreover, the superior carrier mobility of the QFS 1LG system is retained even at the highest humidity. The work function maps constructed from Kelvin probe force microscopy also revealed higher sensitivity to water for 1LG compared to 2LG in both QFS 1LG and as-grown systems. These results point to a new field of applications for QFS 1LG, i.e., as humidity sensors, and the corresponding need for metrology in calibration of graphene-based sensors and devices.

  1. Atomic intercalation to measure adhesion of graphene on graphite.

    PubMed

    Wang, Jun; Sorescu, Dan C; Jeon, Seokmin; Belianinov, Alexei; Kalinin, Sergei V; Baddorf, Arthur P; Maksymovych, Petro

    2016-10-31

    The interest in mechanical properties of two-dimensional materials has emerged in light of new device concepts taking advantage of flexing, adhesion and friction. Here we demonstrate an effective method to measure adhesion of graphene atop highly ordered pyrolytic graphite, utilizing atomic-scale 'blisters' created in the top layer by neon atom intercalates. Detailed analysis of scanning tunnelling microscopy images is used to reconstruct atomic positions and the strain map within the deformed graphene layer, and demonstrate the tip-induced subsurface translation of neon atoms. We invoke an analytical model, originally devised for graphene macroscopic deformations, to determine the graphite adhesion energy of 0.221±0.011 J m(-2). This value is in excellent agreement with reported macroscopic values and our atomistic simulations. This implies mechanical properties of graphene scale down to a few-nanometre length. The simplicity of our method provides a unique opportunity to investigate the local variability of nanomechanical properties in layered materials.

  2. Serendipity and Scientific Discovery.

    ERIC Educational Resources Information Center

    Rosenman, Martin F.

    1988-01-01

    The discovery of penicillin is cited in a discussion of the role of serendipity as it relates to scientific discovery. The importance of sagacity as a personality trait is noted. Successful researchers have questioning minds, are willing to view data from several perspectives, and recognize and appreciate the unexpected. (JW)

  3. Friends' Discovery Camp

    ERIC Educational Resources Information Center

    Seymour, Seth

    2008-01-01

    This article features Friends' Discovery Camp, a program that allows children with and without autism spectrum disorder to learn and play together. In Friends' Discovery Camp, campers take part in sensory-rich experiences, ranging from hands-on activities and performing arts to science experiments and stories teaching social skills. Now in its 7th…

  4. Decades of Discovery

    DOE R&D Accomplishments Database

    2011-06-01

    For the past two-and-a-half decades, the Office of Science at the U.S. Department of Energy has been at the forefront of scientific discovery. Over 100 important discoveries supported by the Office of Science are represented in this document.

  5. "Eureka, Eureka!" Discoveries in Science

    ERIC Educational Resources Information Center

    Agarwal, Pankaj

    2011-01-01

    Accidental discoveries have been of significant value in the progress of science. Although accidental discoveries are more common in pharmacology and chemistry, other branches of science have also benefited from such discoveries. While most discoveries are the result of persistent research, famous accidental discoveries provide a fascinating…

  6. Hydrogen Adsorption by Alkali Metal Graphite Intercalation Compounds

    NASA Astrophysics Data System (ADS)

    Purewal, Justin

    Adsorption occurs whenever a solid surface is exposed to a gas or liquid, and is characterized by an increase in fluid density near the interface. Adsorbents have drawn attention in the current effort to engineer materials that store hydrogen at high densities within moderate temperature and pressure regimes. Carbon adsorbents are a logical choice as a storage material due to their low costs and large surface areas. Unfortunately, carbon adsorbents suffer from a low binding enthalpy for H2 (about 5 kJ mol-1), well below the 15 to 18 kJ mol-1) that is considered optimal for hydrogen storage systems. Binding interactions can be increased by the following methods: (1) adjusting the graphite interplanar separation with a pillared structure, and (2) introducing dopant species that interact with H2 molecules by strong electrostatic forces. Graphite intercalation compounds are a class of materials that contain both pillared structures and chemical dopants, making them an excellent model system for studying the fundamentals of hydrogen adsorption in nanostructured carbons. Pressure-composition-temperature diagrams of the MC24(H 2)x graphite intercalation compounds were measured for M = (K, Rb, Cs). Adsorption enthalpies were measured as a function of H2 concentration. Notably, CsC24 had an average adsorption enthalpy of 14.9 kJ mol-1), nearly three times larger than that of pristine graphite. The adsorption enthalpies were found to be positively correlated with the alkali metal size. Adsorption capacities were negatively correlated with the size of the alkali metal. The rate of adsorption is reduced at large H2 compositions, due to the effects of site-blocking and correlation on the H2 diffusion. The strong binding interaction and pronounced molecular-sieving behavior of KC24 is likely to obstruct the translational diffusion of adsorbed H2 molecules. In this work, the diffusion of H2 adsorbed in KC24 was studied by quasielastic neutron scattering measurements and molecular

  7. Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries

    SciTech Connect

    Takami, Norio; Satoh, Asako; Hara, Michikazu; Ohsaki, Takahisa

    1995-02-01

    Electrochemical intercalation of lithium into carbons has been studied using mesophase-pitch-based carbon fibers with different heat-treatment temperatures, coke, and graphites as anodes for secondary lithium batteries. The variations in the average layer spacing and the voltage profile for the carbons with intercalating depend on the degree of graphitization. The intercalation into a more disordered carbon fiber heated at 900 C has been characterized as intercalation into the layer structure for 0 < x < 0.5 in Li{sub x}C{sub 6}, but additional lithium insertion into an unorganized carbon loses the layer structure. The polarization resistance (R{sub p}) estimated from the impedance spectrum decreased by increasing degree of graphitization. The variation in R{sub p} with intercalation revealed the intercalation processes in various disordered carbons to be single-phase reactions with different stoichiometries of lithium intercalation. The chemical diffusion coefficient D{sub Li} of lithium ions in carbons decreased by increasing the composition x in Li{sub x}C{sub 6} up to x = 0.5. The chemical diffusion coefficient was considerably affected by the texture and the degree of graphitization of the carbons. The graphitized carbon fiber heated at 3,000 C for 0.1 < x < 0.5 in Li{sub x}C{sub 6} exhibited one order magnitude larger values of D{sub Li} than those of graphites. The rapid diffusion in the graphitized carbon fiber has been attributed to the radial texture in the cross section. It has been found that the activation energy for the diffusion process decreased by increasing the degree of graphitization.

  8. The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development

    PubMed Central

    Ossipova, Olga; Chu, Chih-Wen; Fillatre, Jonathan; Brott, Barbara K.; Itoh, Keiji; Sokol, Sergei Y.

    2015-01-01

    The planar cell polarity (PCP) pathway orients cells in diverse epithelial tissues in Drosophila and vertebrate embryos and has been implicated in many human congenital defects and diseases, such as ciliopathies, polycystic kidney disease and malignant cancers. During vertebrate gastrulation and neurulation, PCP signaling is required for convergent extension movements, which are primarily driven by mediolateral cell intercalations, whereas the role for PCP signaling in radial cell intercalations has been unclear. In this study, we examine the function of the core PCP proteins Vangl2, Prickle3 (Pk3) and Disheveled in the ectodermal cells, which undergo radial intercalations during Xenopus gastrulation and neurulation. In the epidermis, multiciliated cell (MCC) progenitors originate in the inner layer, but subsequently migrate to the embryo surface during neurulation. We find that the Vangl2/Pk protein complexes are enriched at the apical domain of intercalating MCCs and are essential for the MCC intercalatory behavior. Addressing the underlying mechanism, we identified KIF13B, as a motor protein that binds Disheveled. KIF13B is required for MCC intercalation and acts synergistically with Vangl2 and Disheveled, indicating that it may mediate microtubule-dependent trafficking of PCP proteins necessary for cell shape regulation. In the neural plate, the Vangl2/Pk complexes were also concentrated near the outermost surface of deep layer cells, suggesting a general role for PCP in radial intercalation. Consistent with this hypothesis, the ectodermal tissues deficient in Vangl2 or Disheveled functions contained more cell layers than normal tissues. We propose that PCP signaling is essential for both mediolateral and radial cell intercalations during vertebrate morphogenesis. These expanded roles underscore the significance of vertebrate PCP proteins as factors contributing to a number of diseases, including neural tube defects, tumor metastases, and various genetic

  9. Large Intercalated Neurons of Amygdala Relay Noxious Sensory Information

    PubMed Central

    Bienvenu, Thomas C.M.; Busti, Daniela; Micklem, Benjamin R.; Mansouri, Mahnaz; Magill, Peter J.

    2015-01-01

    Various GABAergic neuron types of the amygdala cooperate to control principal cell firing during fear-related and other behaviors, and understanding their specialized roles is important. Among GABAergic neurons, the so-called intercalated cells (ITCcs) are critically involved in the expression and extinction of fear memory. Tightly clustered small-sized spiny neurons constitute the majority of ITCcs, but they are surrounded by sparse, larger neurons (L-ITCcs) for which very little information is known. We report here a detailed neurochemical, structural and physiological characterization of rat L-ITCcs, as identified with juxtacellular recording/labeling in vivo. We supplement these data with anatomical and neurochemical analyses of nonrecorded L-ITCcs. We demonstrate that L-ITCcs are GABAergic, and strongly express metabotropic glutamate receptor 1α and GABAA receptor α1 subunit, together with moderate levels of parvalbumin. Furthermore, L-ITCcs are innervated by fibers enriched with metabotropic glutamate receptors 7a and/or 8a. In contrast to small-sized spiny ITCcs, L-ITCcs possess thick, aspiny dendrites, have highly branched, long-range axonal projections, and innervate interneurons in the basolateral amygdaloid complex. The axons of L-ITCcs also project to distant brain areas, such as the perirhinal, entorhinal, and endopiriform cortices. In vivo recorded L-ITCcs are strongly activated by noxious stimuli, such as hindpaw pinches or electrical footshocks. Consistent with this, we observed synaptic contacts on L-ITCc dendrites from nociceptive intralaminar thalamic nuclei. We propose that, during salient sensory stimulation, L-ITCcs disinhibit local and distant principal neurons, acting as “hub cells,” to orchestrate the activity of a distributed network. PMID:25653362

  10. High transition temperatures in molecular intercalates of FeSe

    NASA Astrophysics Data System (ADS)

    Blundell, Stephen

    2015-03-01

    Molecular groups can now be intercalated into iron-based superconductors with dramatic consequences on the superconducting properties. These species act as charge reservoirs, sources of electrical polarization, and also make subtle structural modifications to superconducting layers, all of which can make novel adjustments to the band structure that in turn can control superconducting properties. By synthesizing the compound Lix(NH2)y(NH3)1 -yFe2Se2 (x ~ 0.6; y ~ 0.2), in which lithium ions, lithium amide and ammonia (NH3) act as the spacer layer between FeSe layers, we have turned a 9 K superconductor into a 43 K superconductor. Further chemical modification allow us to produce a range of new superconducting materials which we have studied using a variety of techniques including muon-spin rotation. Recently, we have used hydrothermal reactions to produce layered lithium iron selenide hydroxides with chemical formula Li1-xFex(OH)Fe1-ySe and thereby producing compounds whose transition temperature can be tuned from zero up to about 40 K. Minimizing the concentration of iron vacancies in the iron selenide layer and simultaneously increasing the electron count on iron in the selenide layers enhance the superconducting properties in this family. Future prospects for new superconducting materials using these novel synthetic routes will be discussed, as will also our current understanding of the superconductivity in these materials. (Work performed in collaboration with S. J. Clarke and coworkers at Oxford, RAL and Durham, UK.) Work supported by EPSRC(UK).

  11. Improved DNA hybridization parameters by Twisted Intercalating Nucleic Acid (TINA).

    PubMed

    Schneider, Uffe Vest

    2012-01-01

    This thesis establishes oligonucleotide design rules and applications of a novel group of DNA stabilizing molecules collectively called Twisted Intercalating Nucleic Acid - TINA. Three peer-reviewed publications form the basis for the thesis. One publication describes an improved and rapid method for determination of DNA melting points and two publications describe the effects of positioning TINA molecules in parallel triplex helix and antiparallel duplex helix forming DNA structures. The third publication establishes that TINA molecules containing oligonucleotides improve an antiparallel duplex hybridization based capture assay's analytical sensitivity compared to conventionel DNA oligonucleotides. Clinical microbiology is traditionally based on pathogenic microorganisms' culture and serological tests. The introduction of DNA target amplification methods like PCR has improved the analytical sensitivity and total turn around time involved in clinical diagnostics of infections. Due to the relatively weak hybridization between the two strands of double stranded DNA, a number of nucleic acid stabilizing molecules have been developed to improve the sensitivity of DNA based diagnostics through superior binding properties. A short introduction is given to Watson-Crick and Hoogsteen based DNA binding and the derived DNA structures. A number of other nucleic acid stabilizing molecules are described. The stabilizing effect of TINA molecules on different DNA structures is discussed and considered in relation to other nucleic acid stabilizing molecules and in relation to future use of TINA containing oligonucleotides in clinical diagnostics and therapy. In conclusion, design of TINA modified oligonucleotides for antiparallel duplex helixes and parallel triplex helixes follows simple purpose dependent rules. TINA molecules are well suited for improving multiplex PCR assays and can be used as part of novel technologies. Future research should test whether combinations of TINA

  12. Cobalt intercalation at the graphene/iridium(111) interface: Influence of rotational domains, wrinkles, and atomic steps

    SciTech Connect

    Vlaic, S.; Kimouche, A.; Coraux, J.; Rougemaille, N.; Santos, B.; Locatelli, A.

    2014-03-10

    Using low-energy electron microscopy, we study Co intercalation under graphene grown on Ir(111). Depending on the rotational domain of graphene on which it is deposited, Co is found intercalated at different locations. While intercalated Co is observed preferentially at the substrate step edges below certain rotational domains, it is mostly found close to wrinkles below other domains. These results indicate that curved regions (near substrate atomic steps and wrinkles) of the graphene sheet facilitate Co intercalation and suggest that the strength of the graphene/Ir interaction determines which pathway is energetically more favorable.

  13. Purposive discovery of operations

    NASA Technical Reports Server (NTRS)

    Sims, Michael H.; Bresina, John L.

    1992-01-01

    The Generate, Prune & Prove (GPP) methodology for discovering definitions of mathematical operators is introduced. GPP is a task within the IL exploration discovery system. We developed GPP for use in the discovery of mathematical operators with a wider class of representations than was possible with the previous methods by Lenat and by Shen. GPP utilizes the purpose for which an operator is created to prune the possible definitions. The relevant search spaces are immense and there exists insufficient information for a complete evaluation of the purpose constraint, so it is necessary to perform a partial evaluation of the purpose (i.e., pruning) constraint. The constraint is first transformed so that it is operational with respect to the partial information, and then it is applied to examples in order to test the generated candidates for an operator's definition. In the GPP process, once a candidate definition survives this empirical prune, it is passed on to a theorem prover for formal verification. We describe the application of this methodology to the (re)discovery of the definition of multiplication for Conway numbers, a discovery which is difficult for human mathematicians. We successfully model this discovery process utilizing information which was reasonably available at the time of Conway's original discovery. As part of this discovery process, we reduce the size of the search space from a computationally intractable size to 3468 elements.

  14. The Greatest Mathematical Discovery?

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2010-05-12

    What mathematical discovery more than 1500 years ago: (1) Is one of the greatest, if not the greatest, single discovery in the field of mathematics? (2) Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? (3) Was fiercely resisted in Europe for hundreds of years after its discovery? (4) Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, together with the basic arithmetic computational schemes, which were discovered in India about 500 CE.

  15. Stable alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries.

    PubMed

    Zhao, Yunlong; Han, Chunhua; Yang, Junwei; Su, Jie; Xu, Xiaoming; Li, Shuo; Xu, Lin; Fang, Ruopian; Jiang, Hong; Zou, Xiaodong; Song, Bo; Mai, Liqiang; Zhang, Qingjie

    2015-03-11

    Intercalation of ions in electrode materials has been explored to improve the rate capability in lithium batteries and supercapacitors, due to the enhanced diffusion of Li(+) or electrolyte cations. Here, we describe a synergistic effect between crystal structure and intercalated ion by experimental characterization and ab initio calculations, based on more than 20 nanomaterials: five typical cathode materials together with their alkali metal ion intercalation compounds A-M-O (A = Li, Na, K, Rb; M = V, Mo, Co, Mn, Fe-P). Our focus on nanowires is motivated by general enhancements afforded by nanoscale structures that better sustain lattice distortions associated with charge/discharge cycles. We show that preintercalation of alkali metal ions in V-O and Mo-O yields substantial improvement in the Li ion charge/discharge cycling and rate, compared to A-Co-O, A-Mn-O, and A-Fe-P-O. Diffraction and modeling studies reveal that preintercalation with K and Rb ions yields a more stable interlayer expansion, which prevents destructive collapse of layers and allow Li ions to diffuse more freely. This study demonstrates that appropriate alkali metal ion intercalation in admissible structure can overcome the limitation of cyclability as well as rate capability of cathode materials, besides, the preintercalation strategy provides an effective method to enlarge diffusion channel at the technical level, and more generally, it suggests that the optimized design of stable intercalation compounds could lead to substantial improvements for applications in energy storage.

  16. Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons.

    PubMed

    Li, Yan-Sheng; Liao, Jia-Liang; Wang, Shan-Yu; Chiang, Wei-Hung

    2016-03-07

    We have demonstrated an effective intercalation of multi-walled carbon nanotubes (MWCNTs) for the green and scalable synthesis of graphene nanoribbons (GNRs) using an intercalation-assisted longitudinal unzipping of MWCNTs. The key step is to introduce an intercalation treatment of raw MWCNTs with KNO3 and H2SO4, making it promising to decrease the strong van der Waals attractions in the MWCNTs bundles and between the coaxial graphene walls of CNTs. Systematic micro Raman, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) characterizations suggest that potassium, nitrate, and sulfate ions play an important role in the CNT intertube and intratube intercalations during the pretreatment. Detailed scanning electron microscopy (SEM), transmission electron microscopy, XRD, and micro Raman characterizations indicate that the developed methodology possesses the ability to synthesis GNRs effectively with an improved CNT concentration in H2SO4 of 10 mg/ml at 70 °C, which is amenable to industrial-scale production because of the decreased amount of strong acid. Our work provides a scientific understanding how to enhance the GNR formation by accelerating the CNT longitudinal unzipping via suitable molecular intercalation.

  17. Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Li, Yan-Sheng; Liao, Jia-Liang; Wang, Shan-Yu; Chiang, Wei-Hung

    2016-03-01

    We have demonstrated an effective intercalation of multi-walled carbon nanotubes (MWCNTs) for the green and scalable synthesis of graphene nanoribbons (GNRs) using an intercalation-assisted longitudinal unzipping of MWCNTs. The key step is to introduce an intercalation treatment of raw MWCNTs with KNO3 and H2SO4, making it promising to decrease the strong van der Waals attractions in the MWCNTs bundles and between the coaxial graphene walls of CNTs. Systematic micro Raman, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) characterizations suggest that potassium, nitrate, and sulfate ions play an important role in the CNT intertube and intratube intercalations during the pretreatment. Detailed scanning electron microscopy (SEM), transmission electron microscopy, XRD, and micro Raman characterizations indicate that the developed methodology possesses the ability to synthesis GNRs effectively with an improved CNT concentration in H2SO4 of 10 mg/ml at 70 °C, which is amenable to industrial-scale production because of the decreased amount of strong acid. Our work provides a scientific understanding how to enhance the GNR formation by accelerating the CNT longitudinal unzipping via suitable molecular intercalation.

  18. Electrochemical Intercalation of Lithium Ions into NbSe2 Nanosheets.

    PubMed

    Hitz, Emily; Wan, Jiayu; Patel, Anand; Xu, Yue; Meshi, Louisa; Dai, Jiaqi; Chen, Yanan; Lu, Aijiang; Davydov, Albert V; Hu, Liangbing

    2016-05-11

    Transition metal dichalcogenides (TMDCs) have been known for decades to have unique properties and recently attracted broad attention for their two-dimensional (2D) characteristics. NbSe2 is a metallic TMDC that has been studied for its charge density wave transition behavior and superconductivity but is still largely unexplored for its potential use in engineered devices with applications in areas such as electronics, optics, and batteries. Thus, we successfully demonstrate and present evidence of lithium intercalation in NbSe2 as a technique capable of modifying the material properties of NbSe2 for further study. We demonstrate successful intercalation of Li ions into NbSe2 and confirm this result through X-ray diffraction, noting a unit cell size increase from 12.57 to 13.57 Å in the c lattice parameter of the NbSe2 after intercalation. We also fabricate planar half-cell electrochemical devices using ultrathin NbSe2 from platelets to observe evidence of Li-ion intercalation through an increase in the optical transmittance of the material in the visible range. Using 550 nm wavelength light, we observed an increase in optical transmittance of 26% during electrochemical intercalation.

  19. Physical nature of ethidium and proflavine interactions with nucleic acid bases in the intercalation plane.

    PubMed

    Langner, Karol M; Kedzierski, Pawel; Sokalski, W Andrzej; Leszczynski, Jerzy

    2006-05-18

    On the basis of the crystallographic structures of three nucleic acid intercalation complexes involving ethidium and proflavine, we have analyzed the interaction energies between intercalator chromophores and their four nearest bases, using a hybrid variation-perturbation method at the second-order Møller-Plesset theory level (MP2) with a 6-31G(d,p) basis set. A total MP2 interaction energy minimum precisely reproduces the crystallographic position of the ethidium chromophore in the intercalation plane between UA/AU bases. The electrostatic component constitutes the same fraction of the total energy for all three studied structures. The multipole electrostatic interaction energy, calculated from cumulative atomic multipole moments (CAMMs), was found to converge only after including components above the fifth order. CAMM interaction surfaces, calculated on grids in the intercalation planes of these structures, reasonably reproduce the alignment of intercalators in crystal structures; they exhibit additional minima in the direction of the DNA grooves, however, which also need to be examined at higher theory levels if no crystallographic data are given.

  20. Micromechanical properties of intercalated compounds of graphite oxide with dodecahydro- closo-dodecaboric acid

    NASA Astrophysics Data System (ADS)

    Karpenko, A. A.; Saldin, V. I.

    2016-08-01

    The micromechanical properties (Young's modulus, deformation, and adhesion) of the intercalated compound of graphite oxide with dodecahydro- closo-dodecaboric acid were studied by atomic force microscopy, transmission electron microscopy, and Raman spectroscopy and compared with the same characteristics of the starting graphite oxide. The significant difference in the micromechanical properties of the materials under study is dictated by differences in the topography and properties of their film surface, which, in turn, can be determined by their chemical composition. The introduction of dodecahydro- closo-dodecaboric acid in the interplanar space of graphite oxide affects the structuring of the latter. A considerable increase in the adhesion of the intercalated compound relative to that of oxide graphite is explained by high adhesive properties of the introduced acid, the Young's modulus of graphite oxide being higher than that of the intercalated compound. This was attributed to the high hydrophilicity of dodecahydro- closo-dodecaboric acid and the difficulty of water removal from the interplanar space; water plasticizes the material, which becomes softer than graphite oxide. The difference in the structure of the coating of the intercalated compounds and the starting graphite oxide was found to be also reflected by their Raman spectra, namely, by the increased intensity of the D line with the preserved position of the G line, which points to the impurity nature of the intercalate and the unchanged hexagonal lattice of graphite.

  1. Potential-modulated intercalation of alkali cations into metal hexacyanoferrate coated electrodes. 1998 annual progress report

    SciTech Connect

    Schwartz, D.T.

    1998-06-01

    'This program is studying potential-driven cation intercalation and deintercalation in metal hexacyanoferrate compounds, with the eventual goal of creating materials with high selectivity for cesium separations and long cycle lifetimes. The separation of radiocesium from other benign cations has important implications for the cost of processing a variety of cesium contaminated DOE wasteforms. This report summarizes results after nine months of work. Much of the initial efforts have been directed towards quantitatively characterizing the selectivity of nickel hexacyanoferrate derivatized electrodes for intercalating cesium preferentially over other alkali metal cations. Using energy dispersive xray spectroscopy (ex-situ, but non-destructive) and ICP analysis (ex-situ and destructive), the authors have demonstrated that the nickel hexacyanoferrate lattice has a strong preference for intercalated cesium over sodium. For example, when ions are reversibly loaded into a nickel hexacyanoferrate thin film from a solution containing 0.9999 M Na{sup +} and 0.0001 M Cs{sup +}, the film intercalates 40% as much Cs{sup +} as when loaded from pure 1 M Cs{sup +} containing electrolyte (all electrolytes use nitrates as the common anion). The authors have also shown that, contrary to the common assumptions found in the literature, a significant fraction of the thin film is not active initially. A new near infrared laser has been purchased and is being added to the Raman spectroscopy facilities to allow in-situ studies of the intercalation processes.'

  2. Intercalation compounds of layered materials for drug delivery use. II. Diclofenac sodium.

    PubMed

    Suzuki, N; Nakamura, Y; Watanabe, Y; Kanzaki, Y

    2001-08-01

    Intercalation compounds of ternary layered inorganic materials, synthetic mica (Na-TSM), with diclofenac sodium (DFS) and its drug release characteristics were investigated. Hygroscopic DFS was selected as a model drug to verify the anti-humidity and anti-oxidation of the intercalation compounds. Na-TSM powder was first mixed with the reduced-type phosphatidylcholine (H-PC) solution of chloroform or ethanol. DFS was then mixed with these solutions and heated at 37 degrees C to prepare the ternary Na-TSM/H-PC/DFS compound. A remarkable phenomenon was observed in the drug release study. The net amount of DFS from the DFS powder decreased apparently after 20 min arising from the decomposition of DFS in acidic medium. On the other hand, the net amount of the released DFS from the intercalation compound was invariant. Thermal analyses study indicated that DFS powder was hygroscopic and a significant endothermic peak was observed accompanied by a large weight loss due to the dehydration of adsorbed water from 40 to 90 degrees C. On the other hand, no significant dehydration reaction was observed in the intercalation compounds even in the sample stored under humid conditions. The present results indicated that the ternary intercalation compound was resistant to acid in addition to anti-humidity.

  3. A trap potential model investigation of the optical activity induced in dye-DNA intercalation complexes

    NASA Astrophysics Data System (ADS)

    Kamiya, Mamoru

    1988-02-01

    The fundamental features of the optical activity induced in dye-DNA intercalation complexes are studied by application of the trap potential model which is useful to evaluate the induced rotational strength without reference to detailed geometrical information about the intercalation complexes. The specific effect of the potential depth upon the induced optical activity is explained in terms of the relative magnitudes of the wave-phase and helix-phase variations in the path of an electron moving on a restricted helical segment just like an exciton trapped around the dye intercalation site. The parallel and perpendicular components of the induced rotational strength well reflect basic properties of the helicity effects about the longitudinal and tangential axes of the DNA helical cylinder. The trap potential model is applied to optimize the potential parameters so as to reproduce the ionic strength effect upon the optical activity induced to proflavine-DNA intercalation complexes. From relationships between the optimized potential parameters and ionic strengths, it is inferred that increase in the ionic strength contributes to the optical activity induced by the nearest-neighbour interaction between intercalated proflavine and DNA base pairs.

  4. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    SciTech Connect

    Osiry, H.; Cano, A.; Lemus-Santana, A.A.; Rodríguez, A.; Carbonio, R.E.; Reguera, E.

    2015-10-15

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π–π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting. - Highlights: • Intercalation of organic molecules in 2D copper (II) nitroprusside. • Molecular properties of intercalation compounds of 2D copper (II) nitroprusside. • Magnetic properties of hybrid inorganic–organic solids. • Hybrid inorganic–organic 3D framework.

  5. Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons

    PubMed Central

    Li, Yan-Sheng; Liao, Jia-Liang; Wang, Shan-Yu; Chiang, Wei-Hung

    2016-01-01

    We have demonstrated an effective intercalation of multi-walled carbon nanotubes (MWCNTs) for the green and scalable synthesis of graphene nanoribbons (GNRs) using an intercalation-assisted longitudinal unzipping of MWCNTs. The key step is to introduce an intercalation treatment of raw MWCNTs with KNO3 and H2SO4, making it promising to decrease the strong van der Waals attractions in the MWCNTs bundles and between the coaxial graphene walls of CNTs. Systematic micro Raman, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) characterizations suggest that potassium, nitrate, and sulfate ions play an important role in the CNT intertube and intratube intercalations during the pretreatment. Detailed scanning electron microscopy (SEM), transmission electron microscopy, XRD, and micro Raman characterizations indicate that the developed methodology possesses the ability to synthesis GNRs effectively with an improved CNT concentration in H2SO4 of 10 mg/ml at 70 °C, which is amenable to industrial-scale production because of the decreased amount of strong acid. Our work provides a scientific understanding how to enhance the GNR formation by accelerating the CNT longitudinal unzipping via suitable molecular intercalation. PMID:26948486

  6. Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs

    NASA Astrophysics Data System (ADS)

    Xia, Sheng-Jie; Ni, Zhe-Ming; Xu, Qian; Hu, Bao-Xiang; Hu, Jun

    2008-10-01

    Zn/Al layered double hydroxides (LDHs) were intercalated with the anionic antihypertensive drugs Enalpril, Lisinopril, Captopril and Ramipril by using coprecipitation or ion-exchange technique. TG-MS analyses suggested that the thermal stability of Ena -, Lis - (arranged with monolayer, resulted from X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR) analysis was enhanced much more than Cap - and Ram - (arranged with bilayer). The release studies show that the release rate of all samples markedly decreased in both pH 4.25 and 7.45. However, the release time of Ena -, Lis - were much longer compared with Cap -, Ram - in both pH 4.25 and 7.45, it is possible that the intercalated guests, arranged with monolayer in the interlayer, show lesser repulsive force and strong affinity with the LDH layers. And the release data followed both the Higuchi-square-root law and the first-order equation well. Based on the analysis of batch release, intercalated structural models as well as the TG-DTA results, we conclude that for drug-LDH, stronger the affinity between intercalated anions and the layers is, better the thermal property and the stability to the acid attack of drug-LDH, and the intercalated anions are easier apt to monolayer arrangement within the interlayer, were presented.

  7. On the effects of intercalators in DNA condensation: a force spectroscopy and gel electrophoresis study.

    PubMed

    Rocha, M S; Cavalcante, A G; Silva, R; Ramos, E B

    2014-05-08

    In this work we have characterized the effects of the intercalator ethidium bromide (EtBr) on the DNA condensation process by using force spectroscopy and gel electrophoresis. We have tested two condensing agents: spermine (spm(4+)), a tetravalent cationic amine which promotes cation-induced DNA condensation, and poly(ethylene glycol) (PEG), a neutral polymer which promotes DNA ψ-condensation. Two different types of experiments were performed. In the first type, bare DNA molecules disperse in solution are first treated with EtBr for intercalation, and then the condensing agent is added to the sample with the purpose of verifying the effects of the intercalator in hindering DNA condensation. In the second experiment type, the bare DNA molecules are first condensed, and then the intercalator is added to the sample in order to verify its influence on the previously condensed DNA. The results obtained with the two different experimental techniques used agree very well, indicating that previously intercalated EtBr can hinder both cation-induced and ψ-condensation, being more efficient in the first case. On the other hand, EtBr has little effect on the previously formed cation-induced condensates, but is efficient in unfolding the ψ-condensates.

  8. The Learning Discovery

    ERIC Educational Resources Information Center

    Prout, Joan

    1975-01-01

    The learning discovery of youngsters is a do-it-yourself teaching method for clerical, administrative, and accountant trainees at the Bankside House headquarters of the Central Electricity Generating Board's South Eastern Region, London. (Author)

  9. Discovery Touches Down!

    NASA Video Gallery

    Discovery has completed its final mission, STS-133, for NASA's Space Shuttle Program landing on-time at Kennedy Space Center in Florida at 11:57 a.m. EST, March 9, 2011 after 202 orbits around Eart...

  10. Platforms for antibiotic discovery.

    PubMed

    Lewis, Kim

    2013-05-01

    The spread of resistant bacteria, leading to untreatable infections, is a major public health threat but the pace of antibiotic discovery to combat these pathogens has slowed down. Most antibiotics were originally isolated by screening soil-derived actinomycetes during the golden era of antibiotic discovery in the 1940s to 1960s. However, diminishing returns from this discovery platform led to its collapse, and efforts to create a new platform based on target-focused screening of large libraries of synthetic compounds failed, in part owing to the lack of penetration of such compounds through the bacterial envelope. This article considers strategies to re-establish viable platforms for antibiotic discovery. These include investigating untapped natural product sources such as uncultured bacteria, establishing rules of compound penetration to enable the development of synthetic antibiotics, developing species-specific antibiotics and identifying prodrugs that have the potential to eradicate dormant persisters, which are often responsible for hard-to-treat infections.

  11. The requirements discovery process

    SciTech Connect

    Bahill, A.T.; Dean, F.F.

    1997-02-01

    Cost and schedule overruns are often caused by poor requirements that are produced by people who do not understand the requirement process. This paper provides a high-level overview of the requirements discovery process.

  12. Toxins and drug discovery.

    PubMed

    Harvey, Alan L

    2014-12-15

    Components from venoms have stimulated many drug discovery projects, with some notable successes. These are briefly reviewed, from captopril to ziconotide. However, there have been many more disappointments on the road from toxin discovery to approval of a new medicine. Drug discovery and development is an inherently risky business, and the main causes of failure during development programmes are outlined in order to highlight steps that might be taken to increase the chances of success with toxin-based drug discovery. These include having a clear focus on unmet therapeutic needs, concentrating on targets that are well-validated in terms of their relevance to the disease in question, making use of phenotypic screening rather than molecular-based assays, and working with development partners with the resources required for the long and expensive development process.

  13. Comets: Search and Discovery

    NASA Astrophysics Data System (ADS)

    Shanklin, J.; Murdin, P.

    2003-04-01

    Comet discovery in the traditional sense by an amateur astronomer may be a thing of the past. The development of increasing numbers of professional all-sky survey programs, many specifically designed to spot moving or changing objects, means that the future prospects for visual discovery of a comet by an amateur astronomer are bleak. In the near future the professional programs are likely to cover...

  14. Electronic Properties of Ferric Chloride Intercalated Graphite Compounds

    NASA Astrophysics Data System (ADS)

    Powers, Robert E., Jr.

    This dissertation reports electronic transport measurements on ferric chloride (FeCl_3) graphite intercalation compounds (GIC's). The c-axis conductivity is measured as a function of temperature from 1K to 293K in various stages of FeCl _3 acceptor GIC's and there are marked changes in the behavior of the conductivity as a function of stage. An attempt is made to explain these results on the basis of current theories of c-axis conduction in GIC's, notably the various hopping mechanisms assisted by phonons and impurities in parallel with band conduction. The in-plane resistivity of various stages of FeCl_3 GIC's at temperatures from 1K to 293K is measured and it is found that the absolute conductivity is enhanced from that of highly-oriented pyrolytic graphite and that the temperature behavior is metal-like and stage dependent. The hall effect and magnetoresistance of the samples are measured at low and high applied magnetic fields (up to 20T) and at various fixed point temperatures (1K, 4K, 77K, and 293K). Besides qualitative features obtained from these measurements such as the sign of the predominant carrier and the shape of the fermi surface, the Lorentz -Drude Single Carrier Model is used to obtain the carrier densities and mobilities as a function of stage. Shubnikov-deHaas (SdH) oscillations are observed in the samples at high field and at various temperatures from 1K to about 30K. The data are used to determine the effective carrier masses, relaxation times, and mobilities for some stages. DeHaas-VanAlphen oscillations are also observed in the AC susceptibility in independently measured samples. The frequencies observed are comparable to those observed in the SdH measurements but in the cases of both types of measurements, frequencies which are present in some samples are not found in others. The data is in good agreement with previous preliminary measurements by other investigators. ftn*All degree requirements completed in 1993, but degree will be granted

  15. Hydroxy double salts intercalated with Mn(II) complexes as potential contrast agents

    NASA Astrophysics Data System (ADS)

    Jin, Miao; Li, Wanjing; Spillane, Dominic E. M.; Geraldes, Carlos F. G. C.; Williams, Gareth R.; Bligh, S. W. Annie

    2016-03-01

    A series of Mn(II) aminophosphonate complexes were successfully synthesized and intercalated into the hydroxy double salt [Zn5(OH)8]Cl2·yH2O. Complex incorporation led to an increase in the interlayer spacing from 7.8 to 10-12 Å. Infrared spectroscopy showed the presence of the characteristic vibration peaks of the Mn(II) complexes in the intercalates' spectra, indicating successful incorporation. The complex-loaded composites had somewhat lower proton relaxivities than the pure complexes. Nevertheless, these intercalates may have use as MRI contrast agents for patients with poor kidney function, where traditional Gd(III)-based contrast agents cause severe renal failure.

  16. Intercalation complex of proflavine with DNA: Structure and dynamics by solid-state NMR

    SciTech Connect

    Tang, Pei; Juang, Chilong; Harbison, G.S. )

    1990-07-06

    The structure of the complex formed between the intercalating agent proflavine and fibrous native DNA was studied by one- and two-dimensional high-resolution solid-state nuclear magnetic resonance (NMR). Carbon-13-labeled proflavine was used to show that the drug is stacked with the aromatic ring plane perpendicular to the fiber axis and that it is essentially immobile. Natural abundance carbon-13 NMR of the DNA itself shows that proflavine binding does not change the puckering of the deoxyribose ring. However, phosphorus-31 NMR spectra show profound changes in the orientation of the phosphodiester grouping on proflavine binding, with some of the phosphodiesters tilting almost parallel to the helix axis, and a second set almost perpendicular. The first group to the phosphodiesters probably spans the intercalation sites, whereas the tilting of the second set likely compensates for the unwinding of the DNA by the intercalator.

  17. Novel Ternary Graphite Intercalation Compounds of Alkali Metal Cations and Amines

    NASA Astrophysics Data System (ADS)

    Maluangnont, Tosapol

    Novel ternary graphite intercalation compounds (GICs) of alkali metal cations and a wide variety of amines have been synthesized by one-pot chemical syntheses. Alkali metals studied includes Li, Na and K. The families of amines employed are nalkylamines, branched alkylamines, and different structural isomers of diamines and polyamines. Intragallery structures of the amine co-intercalates residing between the graphene sheets are proposed based on powder X-ray diffraction (PXRD), supplemented by compositional analyses, thermal analyses, and structure optimization when appropriate. A homologous series of M-n-alkylamine-GICs (M = Na, Li) is reported for the first time, with the n-alkylamines of 3-14 carbon atoms (nC3-nC14). The following new GICs with indicated stages and intercalate arrangements are obtained: stage 1, di~ 0.70 nm, monolayer (nC3, nC4); stage 1, di ~ 1.10 nm, bilayer (nC6, nC8); and stage 2, di ~ 1.10 nm, bilayer (nC12, nC14). Here di is the gallery height. Two features new to donor-type GICs found are (i) an intercalate bilayer arrangement with guest alkyl chains parallel to encasing graphene layers, and (ii) the transition from an intercalate bilayer to monolayer arrangement upon evacuation for nC6. GICs containing branched alkylamines co-intercalates are prepared and their intragallery structures compared to those of selected n-alkylamines. A notable difference is observed for amines with 4 carbon atoms. While the linear n-butylamine forms parallel monolayers (di ~ 0.70 nm), the branched analogs (iso-butylamine and sec-butylamine) instead form bilayers with di ~ 1.30 nm. This result contrasts with the general observation that more sterically-hindered intercalates tend to intercalate at lower concentrations. This structural difference is not observed, however, between npropylamine and iso-propylamine (di ~ 0.70 and 0.76 nm respectively). A rare example of a ternary GIC exhibiting cation-directed orientation of the diamine co-intercalate (1

  18. DFT Calculations of the Electronic Structure and Interlayer Interaction in the Li-INTERCALATED Graphene Bilayer

    NASA Astrophysics Data System (ADS)

    Petrova, N. V.; Yakovkin, I. N.

    The electronic band structure, density of states (DOS) and interlayer interaction in Li-intercalated graphene bilayers are studied by means of density functional theory (DFT) calculations. It has been found that for a pristine bilayer, the relative shift of graphene layers from AB stacking configuration, pertinent to a bulk graphite, to AA configuration results in the opening of the bandgap at Fermi level, so that the bilayer becomes a semiconductor. The Li intercalation of the graphene bilayer significantly increases the density of states at Fermi level, which can be considered as an increased metallicity. The electronic density in the space between graphene layers also substantially increases and leads to related increase of the interlayer interaction. We hope that the obtained results of calculations will be useful for various applications of Li-intercalated graphene layers in nanoelectronics.

  19. Unforeseen high temperature and humidity stability of FeCl3 intercalated few layer graphene

    PubMed Central

    Wehenkel, Dominique Joseph; Bointon, Thomas Hardisty; Booth, Tim; Bøggild, Peter; Craciun, Monica Felicia; Russo, Saverio

    2015-01-01

    We present the first systematic study of the stability of the structure and electrical properties of FeCl3 intercalated few-layer graphene to high levels of humidity and high temperature. Complementary experimental techniques such as electrical transport, high resolution transmission electron microscopy and Raman spectroscopy conclusively demonstrate the unforseen stability of this transparent conductor to a relative humidity up to 100% at room temperature for 25 days, to a temperature up to 150°C in atmosphere and to a temperature as high as 620°C in vacuum, that is more than twice higher than the temperature at which the intercalation is conducted. The stability of FeCl3 intercalated few-layer graphene together with its unique values of low square resistance and high optical transparency, makes this material an attractive transparent conductor in future flexible electronic applications. PMID:25567796

  20. Effect of lightning strike on bromine intercalated graphite fiber/epoxy composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.; Brink, Norman O.

    1991-01-01

    Laminar composites were fabricated from pristine and bromine intercalated pitch based graphite fibers. It was found that laminar composites could be fabricated using either pristine or intercalated graphite fibers using standard fabrication techniques. The intercalated graphite fiber composites had electrical properties which were markedly improved over both the corresponding pitch based and polyacrylonitrile (PAN) based composites. Despite composites resistivities more than an order of magnitude lower for pitch based fiber composites, the lightning strike resistance was poorer than that of the Pan based fiber composites. This leads to the conclusion that the mechanical properties of the pitch fibers are more important than electrical or thermal properties in determining the lightning strike resistance. Based on indicated lightning strike tolerance for high elongation to failure materials, the use of vapor grown, rather than pitch based graphite fibers appears promising.

  1. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide.

    PubMed

    Lukatskaya, Maria R; Mashtalir, Olha; Ren, Chang E; Dall'Agnese, Yohan; Rozier, Patrick; Taberna, Pierre Louis; Naguib, Michael; Simon, Patrice; Barsoum, Michel W; Gogotsi, Yury

    2013-09-27

    The intercalation of ions into layered compounds has long been exploited in energy storage devices such as batteries and electrochemical capacitors. However, few host materials are known for ions much larger than lithium. We demonstrate the spontaneous intercalation of cations from aqueous salt solutions between two-dimensional (2D) Ti3C2 MXene layers. MXenes combine 2D conductive carbide layers with a hydrophilic, primarily hydroxyl-terminated surface. A variety of cations, including Na(+), K(+), NH4(+), Mg(2+), and Al(3+), can also be intercalated electrochemically, offering capacitance in excess of 300 farads per cubic centimeter (much higher than that of porous carbons). This study provides a basis for exploring a large family of 2D carbides and carbonitrides in electrochemical energy storage applications using single- and multivalent ions.

  2. Methylene blue intercalated into calcium phosphate - Electrochemical properties and an ascorbic acid oxidation study

    NASA Astrophysics Data System (ADS)

    Lazarin, Angélica M.; Airoldi, Claudio

    2008-09-01

    Methylene blue (MB) was intercalated inside the cavity of a layered calcium phosphate host. The dye is strongly retained and not easily leached from the matrix. The intercalated dye material was incorporated into a carbon paste electrode and by means of cyclic voltammetry and amperometry, its electrochemical properties were investigated. In various electrolyte solutions, on changing the pH between 3 and 9, the midpoint potential remained practically constant at -0.15 V. This is not the usual behavior for MB, since it is known that in the solution phase the midpoint potential changes considerably with pH, indicating that, in the present case, methylene blue is a guest molecule intercalated inside the lamellar structure of the calcium phosphate. An electrode made with this material was used to study the electrochemical oxidation of ascorbic acid and then applied to commercial samples, with excellent agreement within the 95% confidence level.

  3. Electronic and geometric structure of graphene/SiC(0001) decoupled by lithium intercalation

    NASA Astrophysics Data System (ADS)

    Bisti, F.; Profeta, G.; Vita, H.; Donarelli, M.; Perrozzi, F.; Sheverdyaeva, P. M.; Moras, P.; Horn, K.; Ottaviano, L.

    2015-06-01

    Graphene formation on top of SiC(0001) by decoupling the carbon buffer layer through lithium intercalation is investigated. Low-energy electron diffraction and core-level photoemission spectroscopy results show that graphene formation already occurs at room temperature, and that the interface morphology is improved after thermal annealing. Angle-resolved photoemission spectroscopy (ARPES) shows that the resulting graphene layer is strongly n -type doped, and in spite of the decoupling by lithium intercalation, a persistent interaction with the substrate imposes a superperiodicity on the graphene band structure that modulates the π band intensity and gives rise to quasi-(2 ×2 ) π replica bands. Through a comparison of the ARPES-derived band structure with density-functional-theory calculations, we assign the observed bands to SiC-derived states and interface-related ones; this assignment permits us to establish that the intercalated lithium occupies the T4 site on the topmost SiC layer.

  4. Controlling the actuation properties of MXene paper electrodes upon cation intercalation

    SciTech Connect

    Come, Jeremy E.; Black, Jennifer M.; Naguib, Michael; Lukatskaya, Maria R.; Beidaghi, Majid; Wesolowski, David J.; Gogotsi, Yury; Rondinone, Adam J.; Balke, Nina; Kalinin, Sergei V.

    2015-08-05

    Atomic force microscopy was used to monitor the macroscopic deformation in a delaminated Ti₃C₂ paper electrode in-situ, during charge/discharge in a variety of aqueous electrolytes to examine the effect of the cation intercalation on the electrochemical behavior and mechanical response. The results show a strong dependence of the electrode deformation on cation size and charge. The electrode undergoes a large contraction during Li⁺, Na⁺ or Mg²⁺ intercalation, differentiating the Ti₃C₂ paper from conventional electrodes where redox intercalation of ions (e.g. Li⁺) into the bulk phase (e.g. graphite, silicon) results in volumetric expansion. This feature may explain the excellent rate performance and cyclability reported for MXenes. We also demonstrated that the variation of the electromechanical contraction can be easily adjusted by electrolyte exchange, and shows interesting characteristics for the design of actuators based on 2D metal carbides.

  5. Density Functional Study on the Intercalation of Fullerenes into AnE-PV Copolymer Layers.

    PubMed

    Dong, Chuan-Ding; Beenken, Wichard J D

    2017-03-09

    We investigated the intercalation of C60 into poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene) copolymers layers by density functional theory calculations in respect of crystal structures and electronic band structures. Based on the experimental observations, we found that the copolymer with branched side chains substituted next to the anthracene units and the linear side chains substituted to the vinylene units has a better tendency to intercalate with C60 than the reversely substituted copolymer. The calculated electronic band structures of the intercalated phase, featured by flat in-gap states resulting from C60 molecules, explain the experimentally observed variations of the photocurrent, photoluminescence, and electroluminescence yields with different ratio between PCBM and the two types of copolymers in the ternary blend.

  6. Myosin II-mediated cell shape changes and cell intercalation contribute to primitive streak formation

    PubMed Central

    Song, Feifei; Sang, Helen M.; Martin, René; Knölker, Hans-Joachim; MacDonald, Michael P; Weijer, Cornelis J

    2016-01-01

    Primitive streak formation in the chick embryo involves large scale highly coordinated flows of over 100.000 cells in the epiblast. These large scale tissue flows and deformations can be correlated with specific anisotropic cell behaviours in the forming mesendoderm through a combined light-sheet microscopy and computational analysis. Relevant behaviours include apical contraction, elongation along the apical-basal axis followed by ingression as well as asynchronous directional cell intercalation of small groups of mesendoderm cells. Cell intercalation is associated with sequential, directional contraction of apical junctions, the onset, localisation and direction of which correlate strongly with the appearance of active Myosin II cables in aligned apical junctions in neighbouring cells. Use of a class specific Myosin inhibitors and gene specific knockdowns show that apical contraction and intercalation are Myosin II dependent and also reveal critical roles for Myosin I and Myosin V family members in the assembly of junctional Myosin II cables. PMID:25812521

  7. Preparation and characterization of trans-RhCl(CO)(TPPTS){sub 2}-intercalated layered double hydroxides

    SciTech Connect

    Zhang Xian; Wei Min; Pu Min; Li Xianjun; Chen Hua; Evans, David G.; Duan Xue . E-mail: duanx@mail.buct.edu.cn

    2005-09-15

    trans-RhCl(CO)(TPPTS){sub 2} (TPPTS=tris(m-sulfonatophenyl)phosphine) has been intercalated into Zn-Al layered double hydroxides (LDHs) by the method of ion exchange. The structure, composition and thermal stability of the composite material have been characterized by powder X-ray diffraction, Fourier transform infrared and {sup 31}P solid-state magic-angle spinning nuclear magnetic resonance spectroscopy, elemental analysis, thermogravimetry, and differential thermal analysis. The geometry of trans-RhCl(CO)(TPPTS){sub 2} was fully optimized using the PM3 semiempirical molecular orbital method, and a schematic model for the intercalated species has been proposed. The thermal stability of trans-RhCl(CO)(TPPTS){sub 2} is significantly enhanced by intercalation, which suggests that such materials may have prospective application as the basis of a supported catalyst system for the hydroformylation of higher olefins.

  8. The "interceptor" properties of chlorophyllin measured within the three-component system: intercalator-DNA-chlorophyllin.

    PubMed

    Pietrzak, Monika; Wieczorek, Zbigniew; Wieczorek, Jolanta; Darzynkiewicz, Zbigniew

    2006-08-20

    In aqueous solutions, in the presence of double-stranded DNA, chlorophyllin (CHL) forms complexes with each of the three DNA intercalators: acridine orange (AO), quinacrine mustard (QM), and doxorubicin (DOX). The evidence for these interactions was obtained by measurement changes in the absorption and fluorescence spectra of the mixtures containing DNA and intercalators during titration with CHL. A model of simple competition between DNA and CHL for the intercalator was used to define the measured interactions. The concentrations of the complexes estimated based on this model were consistent with the concentrations obtained by actual measurement of the absorption spectra. The present data provide further support for the role of chlorophyllin as an "interceptor" that may neutralize biological activity of aromatic compounds including mutagens and antitumor drugs.

  9. Intercalation of diclofenac in modified Zn/Al hydrotalcite-like preparation

    NASA Astrophysics Data System (ADS)

    Heraldy, E.; Suprihatin, R. W.; Pranoto

    2016-02-01

    The intercalation of a pharmaceutically active material diclofenac into modified Zn/Al Hydrotalcite-like (Zn/Al HTlc) preparation has been investigated by the coprecipitation and ion exchange method, respectively. The synthetic materials were characterized using X- Ray Diffraction (XRD); Fourier transforms infrared spectroscopy (FTIR); Scanning Electron Microscope (SEM); X-Ray Fluorescence (XRF) and surface area analyzer. The results show that the basal spacing of the product was expanded to 11.03 A for direct synthesis and 10.68 A for indirect synthesis, suggesting that diclofenac anion was intercalated into Zn/Al HTlc and arranged in a tilted bilayer fashion and the specific surface area of material increased after the intercalation of diclofenac.

  10. Preparation and characterization of trans-RhCl(CO)(TPPTS) 2-intercalated layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Xian; Wei, Min; Pu, Min; Li, Xianjun; Chen, Hua; Evans, David G.; Duan, Xue

    2005-09-01

    trans-RhCl(CO)(TPPTS) 2 (TPPTS= tris( m-sulfonatophenyl)phosphine) has been intercalated into Zn-Al layered double hydroxides (LDHs) by the method of ion exchange. The structure, composition and thermal stability of the composite material have been characterized by powder X-ray diffraction, Fourier transform infrared and 31P solid-state magic-angle spinning nuclear magnetic resonance spectroscopy, elemental analysis, thermogravimetry, and differential thermal analysis. The geometry of trans-RhCl(CO)(TPPTS) 2 was fully optimized using the PM3 semiempirical molecular orbital method, and a schematic model for the intercalated species has been proposed. The thermal stability of trans-RhCl(CO)(TPPTS) 2 is significantly enhanced by intercalation, which suggests that such materials may have prospective application as the basis of a supported catalyst system for the hydroformylation of higher olefins.

  11. Nanoscale spinel LiFeTiO4 for intercalation pseudocapacitive Li(+) storage.

    PubMed

    Chen, Ruiyong; Knapp, Michael; Yavuz, Murat; Ren, Shuhua; Witte, Ralf; Heinzmann, Ralf; Hahn, Horst; Ehrenberg, Helmut; Indris, Sylvio

    2015-01-14

    Intercalation pseudocapacitive Li(+) storage has been recognized recently in metal oxide materials, wherein Li(+) intercalation into the lattice is not solid-state diffusion-limited. This may bridge the performance gap between electrochemical capacitors and battery materials. To date, only a few materials with desired crystal structure and with well-defined nanoarchitectures have been found to exhibit such attractive behaviour. Herein, we report for the first time that nanoscale spinel LiFeTiO4 as a cathode material for Li-ion batteries exhibits intercalation pseudocapacitive Li(+) storage behaviour. Nanoscale LiFeTiO4 nanoparticles with native carbon coating were synthesized by a sol-gel route. A fast and large-amount of Li(+) storage (up to 1.6 Li(+) per formula unit over cycling) in the nanoscale LiFeTiO4 host has been achieved without compromising kinetics.

  12. Millisecond analysis of double stranded DNA with fluorescent intercalator by micro-thermocontrol-device.

    PubMed

    Arata, Hideyuki F; Gillot, Frederic; Collard, Dominique; Fujita, Hiroyuki

    2009-08-15

    Study of interaction between DNA and intercalator at molecular level is important to understand the mechanisms of DNA replication and repair. A micro-fabricated local heating thermodevice was adapted to perform denaturation experiments of DNA with fluorescent intercalator on millisecond time scale. Response time of complete unzipping of double stranded DNA, 16 microm in length, was measured to be around 5 min by commercial thermocycler. Response time of quenching of double stranded DNA with fluorescent intercalator SYBR Green was measured to be 10 ms. Thus, quenching properties owing to strand unzipping and denaturation at base pair level were distinguished. This method has provided easy access to measure this parameter and may be a powerful methodology in analyzing biomolecules on millisecond time scale.

  13. Electron doping through lithium intercalation to interstitial channels in tetrahedrally bonded SiC

    SciTech Connect

    Sakai, Yuki; Oshiyama, Atsushi

    2015-11-07

    We report on first-principles calculations that clarify the effect of lithium atom intercalation into zinc blende 3C-silicon carbide (3C-SiC) on electronic and structural properties. Lithium atoms inside 3C-SiC are found to donate electrons to 3C-SiC that is an indication of a new way of electron doping through the intercalation. The electrons doped into the conduction band interact with lithium cations and reduce the band spacing between the original valence and conduction bands. We have also found that a silicon monovacancy in 3C-SiC promotes the lithium intercalation, showing that the vacancy generation makes SiC as a possible anode material for lithium-ion battery.

  14. Novel alkylimidazolium/vanadium pentoxide intercalation compounds with excellent adsorption performance for methylene blue

    SciTech Connect

    Kong Aiguo; Ding Yongjie; Wang Ping; Zhang Hengqiang; Yang Fan; Shan Yongkui

    2011-02-15

    Novel alkylimidazolium-intercalated V{sub 2}O{sub 5} compounds were synthesized by a redox reaction between iodide ion and V{sub 2}O{sub 5}. The X-ray photoelectron spectroscopy and the diffuse reflectance UV-vis spectrometry experiments reveal that the vanadium in the intercalated V{sub 2}O{sub 5} products was partially reduced by an iodide ion and the resultant iodine can be removed in the final products. The transmission electron microscope observation and X-ray diffraction analysis testify that the prepared alkylimidazolium/V{sub 2}O{sub 5} intercalation compounds have typical lamellar structure with different d{sub 100} interlayer spacing values and the special straw-like nanofiber morphology with the length of 0.5-10 {mu}m. Systematic investigation indicates that new intercalation compounds possess the extraordinary adsorption performance for methylene blue in an aqueous solution. -- Graphical abstract: The alkylimidazolium-intercalated V{sub 2}O{sub 5} compounds with special straw-like nanofiber morphology were synthesized by a redox reaction between iodide ion and V{sub 2}O{sub 5}, which show the excellent adsorption performance for methylene blue in an aqueous medium. Display Omitted Research highlights: {yields} Novel alkylimidazolium-intercalated V{sub 2}O{sub 5} compounds. {yields} A simple preparation method by a redox reaction between iodide ion in ionic liquid and V{sub 2}O{sub 5}. {yields} The excellent adsorption performance for methylene blue in an aqueous medium.

  15. Intercalation behavior of poly(ethylene glycol) in organically modified montmorillonite

    NASA Astrophysics Data System (ADS)

    Zhu, Shipeng; Peng, Hongmei; Chen, Jinyao; Li, Huilin; Cao, Ya; Yang, Yunhua; Feng, Zhihai

    2013-07-01

    In this paper, two kinds of organically modified montmorillonite (OMMT) were prepared using alkylammonium surfactants with different alkyl chain numbers. XRD results showed the interlayer spacing of OMMT increased with low concentration surfactants. With further increasing the surfactants concentration, the interlayer spacing of OMMT was unchanged. Meanwhile, FTIR was used to characterize the local environments of surfactants in the interlayer space of OMMT. The results suggested that the double chain surfactant D-18 preferred to adopt highly ordered conformation compared with single chain surfactant S-18 in interlayer space of OMMT. It indicated that the surface property of the OMMT is affected by the concentration and configuration of the intercalated surfactants. Moreover, the effect of the OMMT type, or more particularly the chemical nature of the organic modifier in the interlayer spacing and the poly(ethylene glycol) (PEG) concentration onintercalation behavior of PEG chains in OMMT were investigated with XRD and DSC.The results indicated that PEG chains could not intercalate into Na-MMT when the surfactants were saturated in interlayer space of Na-MMT. PEG chains could intercalate into the interlayer space of SM when the S-18 concentration was lower than 2.00CEC, implying that the low surfactant concentration modified SM provided a better environment (presumably through the balanced hydrophobic and hydrophilic surfaces) for the PEG intercalation as well. However, PEG did not intercalate into the interlayer space of DM when the D-18 concentration was higher than 1.00CEC. It could be attributed to the hydrophobic double alkyl chains of DM increased with D-18. The increased hydrophobic properties in the interlayer space of 1.50DM hybrids can prevent the intercalation of hydrophilic PEG.

  16. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance

    NASA Astrophysics Data System (ADS)

    Y. A. Kaassis, Abdessamad; Xu, Si-Min; Guan, Shanyue; Evans, David G.; Wei, Min; Williams, Gareth R.

    2016-06-01

    The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co1.2Zn3.8(OH)8](NO3)2·2H2O (CoZn-NO3), [Ni2Zn3(OH)8](NO3)2·2H2O (NiZn-NO3) and [Zn5(OH)8](NO3)2·2H2O (Zn-NO3). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO3 but when it was reacted with Zn-NO3 the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verified by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an "X" shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO3 and Zn-NO3 is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO3 and of Val into CoZn-NO3 are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles.

  17. Intercalation of rhodium complex hydrogenation catalysts and organo-silanes in layered silicates

    SciTech Connect

    Raythatha, R.H.

    1981-01-01

    (Rh(NBO)(Diphos))/sup +/ where NBD = norbornadiene and Diphos = 1,2-bis(diphenylphosphino)ethane intercalated in hectorite, a swelling layered silicate, catalyze the overall 1,2 and 1,4 addition of hydrogen to 1,3-butadiene, 2-methyl-1,3-butadiene and 2,3-dimehtyl-1,3-butadiene at rates which range from < 10/sup -5/ to 0.83 relative to the homogeneous catalyst. The yields of the 1,2 addition products are 1.5 to 2.3 times higher than those obtained under homogeneous conditions. The catalysis of the reduction of 1-hexene in methanol with the intercalated catalysts occurs without isomerization up to 69% conversion of substrate, whereas extensive isomerization of internal olefin was observed with analogous catalyst system in homogeneous solution. The difference in specificity between the intercalated and homogeneous catalyst is accounted for by the effect of catalyst intercalation on the equilibrium between RhH/sub 2//sup 2 +/ and RhH/sup 2 +/ complexes and a hydrogen ion. The behavior of the catalyst was explained on the basis of surface Broensted acidity of the RhH/sub 2//sup 2 +/ complex. The initial rate of reduction of relatively small alkynes (1-hexyne, 2-hexyne), with a catalyst precursor of the type Rh(PPh/sub 3/)/sub x//sup +/ where PPh = triphenylphosphine and x = 1,2, in the interlayers swelled with methanol are comparable to those observed with heterogeneous catalyst. With large alkynes, the spatial requirements, of the substrates in the swelled interlayers are important in determining their reactivity with the intercalated catalyst. A binding model is proposed for the intercalated substrate-catalyst complex.

  18. Role of Cooperative Interactions in the Intercalation of Heteroatoms between Graphene and a Metal Substrate

    NASA Astrophysics Data System (ADS)

    Du, Shixuan

    Graphene, a two-dimensional crystal of carbon atoms packed in a honeycomb structure, has many promising mechanical, electrical, and optical properties. The intercalation of heteroatoms between graphene and a metal substrate has been studied intensively over the past few years, due to its effect on the graphene properties, and as a method to create vertical heterostructures. Various intercalation processes have been reported with different combinations of heteroatoms and substrates. In this talk, I will present the investigation of the key processes governing the intercalation of heteroatoms between graphene and a substrate by combining atomic-scale characterization with density functional theory (DFT). Si intercalation between graphene and Ru(0001) is chosen as a test bed. We elucidate the role of cooperative interactions between heteroatoms, graphene, and substrate. By combining scanning tunneling microscopy with density functional theory, the intercalation process is confirmed to consist of four key steps, involving creation of defects, migration of heteroatoms, self-repairing of graphene, and growth of an intercalated monolayer. Other combinations of heteroatoms (such as Ni, Pd and Pt) and substrates (such as Ir(111) and SiC(0001)) are also investigated to support the generality of our study. Both theory and experiments indicate that this mechanism applies also to other combinations of heteroatoms and substrates. (G. Li et al., J. Am. Chem. Soc. 137 (2015) 7099. In collaboration with G. Li, H.T. Zhou, L.D. Pan, Y. Zhang, L. Huang, W.Y. Xu, and H.J. Gao in CAS, Min Ouyang in MU, and A.C. Ferrari in U. Cambridge.)

  19. Intercalated carbon nanotubes as a template for the preparation of supported heteroatomic nanoparticles.

    PubMed

    Schouler, Marie-Claude; Chamssedine, Fadel; Claves, Daniel

    2011-03-01

    Chemistry in confined conditions is explored at the level of the interlayer space of multiwall carbon nanotubes. Starting from preliminary intercalated tubes, a ligand exchange reaction has been successfully conducted within the former Van der Waals gap, resulting in a final dispersion of heteroatomic particles, around 2 nm large and nearly homogeneous in size, on the outer surface of the tubes. Intercalated tubular carbon architectures thus prove to be interesting templates for a bottom-up preparation of chemically complex supported nanoparticles, with potential activities for versatile applications.

  20. Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries

    DOEpatents

    Kong, Peter C.; Pink, Robert J.; Nelson, Lee O.

    2005-01-04

    The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.

  1. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene)

    DOE PAGES

    Mashtalir, O.; Lukatskaya, Maria R.; Kolesnikov, Alexander I.; ...

    2016-03-25

    Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. Furthermore, the hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g–1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm.

  2. Structural and electronic properties of the graphene/Al/Ni(111) intercalation system

    NASA Astrophysics Data System (ADS)

    Voloshina, E. N.; Generalov, A.; Weser, M.; Böttcher, S.; Horn, K.; Dedkov, Yu S.

    2011-11-01

    Decoupling of the graphene layer from the ferromagnetic substrate via intercalation of sp metal has recently been proposed as an effective way to realize a single-layer graphene-based spin-filter. Here, the structural and electronic properties of the prototype system, graphene/Al/Ni(111), are investigated via a combination of electron diffraction and spectroscopic methods. These studies are accompanied by state-of-the-art electronic structure calculations. The properties of this prospective Al-intercalation-like system and its possible implementations in future graphene-based devices are discussed.

  3. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene).

    PubMed

    Mashtalir, O; Lukatskaya, M R; Kolesnikov, A I; Raymundo-Piñero, E; Naguib, M; Barsoum, M W; Gogotsi, Y

    2016-04-28

    Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. The hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g(-1) in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm.

  4. DNA stretching in the nucleosome facilitates alkylation by an intercalating antitumour agent

    PubMed Central

    Dong, Yuancai; Surana, Uttam; Davey, Curt A.

    2010-01-01

    DNA stretching in the nucleosome core can cause dramatic structural distortions, which may influence compaction and factor recognition in chromatin. We find that the base pair unstacking arising from stretching-induced extreme minor groove kinking near the nucleosome centre creates a hot spot for intercalation and alkylation by a novel anticancer compound. This may have far reaching implications for how chromatin structure can influence binding of intercalator species and indicates potential for the development of site selective DNA-binding agents that target unique conformational features of the nucleosome. PMID:20026584

  5. Plasma Synthesis of Lithium Based Intercalation Powders for Solid Polymer Electrolyte Batteries

    SciTech Connect

    Kong, Peter C.; Pink, Robert J.; Nelson, Lee O.

    2005-01-04

    The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O2 gas wherein the O2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to form a very pure single phase product.

  6. Synthesis, characterization and properties of polyaniline/expanded vermiculite intercalated nanocomposite

    PubMed Central

    Lin, Jianming; Tang, Qunwei; Wu, Jihuai; Sun, Hui

    2008-01-01

    The synthesis characterization and conductivities of polyaniline/expanded vermiculite intercalated nanocomposite are presented in this paper. The conductive emeraldine salt form of polyaniline is inserted into the interlayer of expanded vermiculite to produce the nanocomposite with high conductivity. The structures and properties are characterized by transmission electron microscopy x-ray diffraction spectroscopy fourier transform infrared spectroscopy thermogravimetry analysis and by the measurements of conductivity and stability. The results show that an intercalated nanocomposite with high conductivity and stability is obtained. The synthesis conditions are optimized to obtain the highest conductivity which is 6.80 S cm−1. PMID:27877985

  7. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance

    SciTech Connect

    Kaassis, Abdessamad Y.A.; Xu, Si-Min; Guan, Shanyue; Evans, David G.; Wei, Min; Williams, Gareth R.

    2016-06-15

    The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co{sub 1.2}Zn{sub 3.8}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (CoZn-NO{sub 3}), [Ni{sub 2}Zn{sub 3}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (NiZn-NO{sub 3}) and [Zn{sub 5}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (Zn-NO{sub 3}). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO{sub 3} but when it was reacted with Zn-NO{sub 3} the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verified by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an “X” shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO{sub 3} and Zn-NO{sub 3} is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO{sub 3} and of Val into CoZn-NO{sub 3} are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles. - Graphical abstract: Seven new drug intercalates of hydroxy double salts (HDSs) have been prepared and characterised. The intercalation mechanisms have been explored, and the drug release properties of the HDS/drug composites quantified. Display Omitted.

  8. Synthesis, characterization and properties of polyaniline/expanded vermiculite intercalated nanocomposite.

    PubMed

    Lin, Jianming; Tang, Qunwei; Wu, Jihuai; Sun, Hui

    2008-04-01

    The synthesis characterization and conductivities of polyaniline/expanded vermiculite intercalated nanocomposite are presented in this paper. The conductive emeraldine salt form of polyaniline is inserted into the interlayer of expanded vermiculite to produce the nanocomposite with high conductivity. The structures and properties are characterized by transmission electron microscopy x-ray diffraction spectroscopy fourier transform infrared spectroscopy thermogravimetry analysis and by the measurements of conductivity and stability. The results show that an intercalated nanocomposite with high conductivity and stability is obtained. The synthesis conditions are optimized to obtain the highest conductivity which is 6.80 S cm(-1).

  9. Theoretical investigation of the atomic and electronic structure of Li{sub x}BC{sub 3} intercalated compounds

    SciTech Connect

    Kuzubov, A. A.; Eliseeva, N. S.; Krasnov, P. O.; Tomilin, F. N.; Fedorov, A. S.; Lykhin, A. O.

    2012-06-15

    Li{sub x}BC{sub 3} intercalated compounds with various configurations are studied for their possible application as electrode materials for lithium current sources. For this purpose, the band structure and the density of states were calculated for each structure, and energy stability and possible deformations due to a change in the unit cell volume during intercalation are investigated.

  10. Discovery of Charm

    DOE R&D Accomplishments Database

    Goldhaber, G.

    1984-11-01

    In my talk I will cover the period 1973 to 1976 which saw the discoveries of the J/psi and psi' resonances and most of the Psion spectroscopy, the tau lepton and the D0030099,D0015599 charmed meson doublet. Occasionally I will refer briefly to more recent results. Since this conference is on the history of the weak-interactions I will deal primarily with the properties of naked charm and in particular the weakly decaying doublet of charmed mesons. Most of the discoveries I will mention were made with the SLAC-LBL Magnetic Detector or MARK I which we operated at SPEAR from 1973 to 1976.

  11. Impact of Infralimbic Inputs on Intercalated Amygdale Neurons: A Biophysical Modeling Study

    ERIC Educational Resources Information Center

    Li, Guoshi; Amano, Taiju; Pare, Denis; Nair, Satish S.

    2011-01-01

    Intercalated (ITC) amygdala neurons regulate fear expression by controlling impulse traffic between the input (basolateral amygdala; BLA) and output (central nucleus; Ce) stations of the amygdala for conditioned fear responses. Previously, stimulation of the infralimbic (IL) cortex was found to reduce fear expression and the responsiveness of Ce…

  12. Band-gap engineering by Bi intercalation of graphene on Ir(111)

    NASA Astrophysics Data System (ADS)

    Warmuth, Jonas; Bruix, Albert; Michiardi, Matteo; Hänke, Torben; Bianchi, Marco; Wiebe, Jens; Wiesendanger, Roland; Hammer, Bjørk; Hofmann, Philip; Khajetoorians, Alexander A.

    2016-04-01

    We report on the structural and electronic properties of a single bismuth layer intercalated underneath a graphene layer grown on an Ir(111) single crystal. Scanning tunneling microscopy (STM) reveals a hexagonal surface structure and a dislocation network upon Bi intercalation, which we attribute to a √{3 }×√{3 }R 30∘ Bi structure on the underlying Ir(111) surface. Ab initio calculations show that this Bi structure is the most energetically favorable and illustrate that STM measurements are most sensitive to C atoms in close proximity to intercalated Bi atoms. Additionally, Bi intercalation induces a band gap (Eg=0.42 eV) at the Dirac point of graphene and an overall n doping (˜0.39 eV ) as seen in angular-resolved photoemission spectroscopy. We attribute the emergence of the band gap to the dislocation network which forms favorably along certain parts of the moiré structure induced by the graphene/Ir(111) interface.

  13. Intercalation-controlled cyclodehydration of sorbitol in water over layered-niobium-molybdate solid acid.

    PubMed

    Morita, Yuya; Furusato, Shogo; Takagaki, Atsushi; Hayashi, Shigenobu; Kikuchi, Ryuji; Oyama, S Ted

    2014-03-01

    Layered niobium molybdate (HNbMoO6 ) was used in the aqueous-phase dehydration of sorbitol and was found to exhibit remarkable selectivity toward its monomolecular-dehydrated intermediate 1,4-sorbitan. This was attributed to the selective intercalation of sorbitol within the interlayers with strong Brønsted acid sites.

  14. Intercalation of heavy alkali metals (K, Rb and Cs) in the bundles of single wall nanotubes

    NASA Astrophysics Data System (ADS)

    Duclaux, L.; Méténier, K.; Lauginie, P.; Salvetat, J. P.; Bonnamy, S.; Beguin, F.

    2000-11-01

    The electric-arc discharge carbon deposits (collaret) containing Single Wall Carbon Nanotubes (SWNTs) were heat treated at 1600 °C during 2 days under N2 flow in order to eliminate the Ni catalyst by sublimation, without modifications of the SWNTs ropes. Sorting this deposit by gravity enabled to obtain in the coarsest particles higher amount of SWNTs ropes than in other particle sizes. The coarser particles of the carbon deposits were reacted with the alkali metals vapor giving intercalated samples with a MC8 composition. The intercalation led to an expansion of the 2D lattice of the SWNTs so that the alkali metals were intercalated in between the tubes within the bundles. Disordered lattices were observed after intercalation of Rb and Cs. The simulations of the X-ray diffractograms of SWNTs reacted with K, gave the best fit for three K ions occupying the inter-tubes triangular cavities. The investigations by EPR, and 13C NMR, showed that doped carbon deposits are metallic.

  15. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene)

    NASA Astrophysics Data System (ADS)

    Mashtalir, O.; Lukatskaya, M. R.; Kolesnikov, A. I.; Raymundo-Piñero, E.; Naguib, M.; Barsoum, M. W.; Gogotsi, Y.

    2016-04-01

    Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. The hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g-1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm.Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. The hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g-1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm. Electronic supplementary information (ESI) available: Characterization methods, additional XRD patterns (Fig. S1) and INS spectra (Fig. S2-S4). See DOI: 10.1039/c6nr01462c

  16. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X.

    PubMed

    Wang, Xuefeng; Shen, Xi; Gao, Yurui; Wang, Zhaoxiang; Yu, Richeng; Chen, Liquan

    2015-02-25

    MXenes represent a large family of functionalized two-dimensional (2D) transition-metal carbides and carbonitrides. However, most of the understanding on their unique structures and applications stops at the theoretical suggestion and lack of experimental support. Herein, the surface structure and intercalation chemistry of Ti3C2X are clarified at the atomic scale by aberration-corrected scanning transmission electron microscope (STEM) and density functional theory (DFT) calculations. The STEM studies show that the functional groups (e.g., OH(-), F(-), O(-)) and the intercalated sodium (Na) ions prefer to stay on the top sites of the centro-Ti atoms and the C atoms of the Ti3C2 monolayer, respectively. Double Na-atomic layers are found within the Ti3C2X interlayer upon extensive Na intercalation via two-phase transition and solid-solution reactions. In addition, aluminum (Al)-ion intercalation leads to horizontal sliding of the Ti3C2X monolayer. On the basis of these observations, the previous monolayer surface model of Ti3C2X is modified. DFT calculations using the new modeling help to understand more about their physical and chemical properties. These findings enrich the understanding of the MXenes and shed light on future material design and applications. Moreover, the Ti3C2X exhibits prominent rate performance and long-term cycling stability as an anode material for Na-ion batteries.

  17. Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds

    NASA Astrophysics Data System (ADS)

    Martins, Marcel G.; Martins, Daniel O. T. A.; de Carvalho, Beatriz L. C.; Mercante, Luiza A.; Soriano, Stéphane; Andruh, Marius; Vieira, Méri D.; Vaz, Maria G. F.

    2015-08-01

    In this work montmorillonite (MMT) clay, whose matrix was modified with an ammonium salt (hexadecyltrimethylammonium bromide - CTAB), was employed as an inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange: a nitronyl nitroxide derivative 2-[4-(N-ethyl)-pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (p-EtRad+) and two binuclear coordination compounds, [Ni(valpn)Ln]3+, where H2valpn stands for 1,3-propanediyl-bis(2-iminomethylene-6-methoxy-phenol), and Ln=GdIII; DyIII. The pristine MMT and the intercalated materials were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and magnetic measurements. The X-ray diffraction data analysis showed an increase of the interlamellar space of the intercalated MMT, indicating the intercalation of the magnetic compounds. Furthermore, the magnetic properties of the hybrid compounds were investigated, showing similar behavior as the pure magnetic guest species.

  18. Temperature dependent local atomic displacements in ammonia intercalated iron selenide superconductor.

    PubMed

    Paris, E; Simonelli, L; Wakita, T; Marini, C; Lee, J-H; Olszewski, W; Terashima, K; Kakuto, T; Nishimoto, N; Kimura, T; Kudo, K; Kambe, T; Nohara, M; Yokoya, T; Saini, N L

    2016-06-09

    Recently, ammonia-thermal reaction has been used for molecular intercalation in layered FeSe, resulting a new Lix(NH3)yFe2Se2 superconductor with Tc ~ 45 K. Here, we have used temperature dependent extended x-ray absorption fine structure (EXAFS) to investigate local atomic displacements in single crystals of this new superconductor. Using polarized EXAFS at Fe K-edge we have obtained direct information on the local Fe-Se and Fe-Fe bondlengths and corresponding mean square relative displacements (MSRD). We find that the Se-height in the intercalated system is lower than the one in the binary FeSe, suggesting compressed FeSe4 tetrahedron in the title system. Incidentally, there is hardly any effect of the intercalation on the bondlengths characteristics, revealed by the Einstein temperatures, that are similar to those found in the binary FeSe. Therefore, the molecular intercalation induces an effective compression and decouples the FeSe slabs. Furthermore, the results reveal an anomalous change in the atomic correlations across Tc, appearing as a clear decrease in the MSRD, indicating hardening of the local lattice mode. Similar response of the local lattice has been found in other families of superconductors, e.g., A15-type and cuprates superconductors. This observation suggests that local atomic correlations should have some direct correlation with the superconductivity.

  19. Ca intercalated bilayer graphene as a thinnest limit of superconducting C6Ca.

    PubMed

    Kanetani, Kohei; Sugawara, Katsuaki; Sato, Takafumi; Shimizu, Ryota; Iwaya, Katsuya; Hitosugi, Taro; Takahashi, Takashi

    2012-11-27

    Success in isolating a 2D graphene sheet from bulky graphite has triggered intensive studies of its physical properties as well as its application in devices. Graphite intercalation compounds (GICs) have provided a platform of exotic quantum phenomena such as superconductivity, but it is unclear whether such intercalation is feasible in the thinnest 2D limit (i.e., bilayer graphene). Here we report a unique experimental realization of 2D GIC, by fabricating calcium-intercalated bilayer graphene C(6)CaC(6) on silicon carbide. We have investigated the structure and electronic states by scanning tunneling microscopy and angle-resolved photoemission spectroscopy. We observed a free-electron-like interlayer band at the Brillouin-zone center, which is thought to be responsible for the superconductivity in 3D GICs, in addition to a large π* Fermi surface at the zone boundary. The present success in fabricating Ca-intercalated bilayer graphene would open a promising route to search for other 2D superconductors as well as to explore its application in devices.

  20. Structural and electronic properties of Li-intercalated graphene on SiC(0001)

    NASA Astrophysics Data System (ADS)

    Caffrey, Nuala M.; Johansson, Leif I.; Xia, Chao; Armiento, Rickard; Abrikosov, Igor A.; Jacobi, Chariya

    2016-05-01

    We investigate the structural and electronic properties of Li-intercalated monolayer graphene on SiC(0001) using combined angle-resolved photoemission spectroscopy and first-principles density functional theory. Li intercalates at room temperature both at the interface between the buffer layer and SiC and between the two carbon layers. The graphene is strongly n -doped due to charge transfer from the Li atoms and two π bands are visible at the K ¯ point. After heating the sample to 300 ∘C , these π bands become sharp and have a distinctly different dispersion to that of Bernal-stacked bilayer graphene. We suggest that the Li atoms intercalate between the two carbon layers with an ordered structure, similar to that of bulk LiC6. An AA stacking of these two layers becomes energetically favourable. The π bands around the K ¯ point closely resemble the calculated band structure of a C6LiC6 system, where the intercalated Li atoms impose a superpotential on the graphene electronic structure that opens gaps at the Dirac points of the two π cones.

  1. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Ferencz, Zs.; Szabados, M.; Varga, G.; Csendes, Z.; Kukovecz, Á.; Kónya, Z.; Carlson, S.; Sipos, P.; Pálinkó, I.

    2016-01-01

    A mechanochemical method (grinding the components without added water - dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution - wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure was also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic-inorganic nanocomposites: LDHs intercalated with amino acid anions.

  2. Tris(hydroxymethyl)aminomethane modified layered double hydroxides greatly facilitate polyoxometalate intercalation.

    PubMed

    Chen, Yang; Yan, Dongpeng; Song, Yu-Fei

    2014-10-21

    Polyoxometalate (POM) intercalation to layered double hydroxides (LDHs) has been greatly restricted by the geometry, charge and size of POMs. We report herein, for the first time, the intercalation of Na3[PW12O40]·15H2O into tris(hydroxymethyl)-aminomethane (Tris) modified layered double hydroxides (Tris-LDH-CO3) using an ion exchange method, resulting in the formation of novel intercalated Tris-LDH-PW12 under ambient conditions without the necessity of degassing CO2. Theoretical calculations show the decreased energy and the slightly distorted LDH layer after Tris modification, indicating that the Tris-modified LDH layers greatly facilitate the intercalation of PW12. Further application of Tris-LDH-PW12 for oxygenation of sulfides shows highly efficient and selective catalytic activities under mild conditions. The Tris-LDH-PW12 can be easily recovered and reused for more than 10 times without any obvious decrease of reactivity. This opens a completely new pathway for engineering POM-LDH advanced functional materials.

  3. Structure, molecular simulation, and release of aspirin from intercalated Zn-Al-layered double hydroxides.

    PubMed

    Meng, Zilin; Li, Xiaowei; Lv, Fengzhu; Zhang, Qian; Chu, Paul K; Zhang, Yihe

    2015-11-01

    Aspirin or acetylsalicylic acid (AA), a non-steroidal anti-inflammatory drug, is intercalated into Zn-Al-layered double hydroxides (ZnAl-LDHs) by co-precipitation and reconstruction methods. The composition, structure, and morphology of the intercalated products as well as their release behavior are determined experimentally and theoretically by Material Studio 5.5. Experimental results disclose the strong interaction between the LDHs sheets and AA in the intercalated ZnAl-LDHs produced by co-precipitation and slow release of AA from the intercalated ZnAl-LDHs in both phosphate buffered saline (PBS) and borate buffered saline (BBS) solutions. The percentage of AA released from the ZnAl-LDHs prepared by both methods in PBS (96.87% and 98.12%) are much more than those in BBS (68.59% and 81.22%) implying that both H4BO4(-) and H2PO4(-) can exchange with AA in the ZnAl-LDHs. After AA is released to PBS, ZnAl-LDHs break into small pieces. The experimental results are explained theoretically based on the calculation of the bonding energy between the anions and LDHs sheets as well as the AlO bond length change in the LDHs sheets.

  4. Polarized Rac-dependent protrusions drive epithelial intercalation in the embryonic epidermis of C. elegans.

    PubMed

    Walck-Shannon, Elise; Reiner, David; Hardin, Jeff

    2015-10-15

    Cell intercalation is a fundamental, coordinated cell rearrangement process that shapes tissues throughout animal development. Studies of intercalation within epithelia have focused almost exclusively on the localized constriction of specific apical junctions. Another widely deployed yet poorly understood alternative mechanism of epithelial intercalation relies on basolateral protrusive activity. Using the dorsal embryonic epidermis of Caenorhabditis elegans, we have investigated this alternative mechanism using high-resolution live cell microscopy and genetic analysis. We find that as dorsal epidermal cells migrate past one another they produce F-actin-rich protrusions polarized at their extending (medial) edges. These protrusions are controlled by the C. elegans Rac and RhoG orthologs CED-10 and MIG-2, which function redundantly to polarize actin polymerization upstream of the WAVE complex and WASP, respectively. We also identify UNC-73, the C. elegans ortholog of Trio, as a guanine nucleotide exchange factor (GEF) upstream of both CED-10 and MIG-2. Further, we identify a novel polarizing cue, CRML-1, which is the ortholog of human capping Arp2/3 myosin I linker (CARMIL), that localizes to the nonprotrusive lateral edges of dorsal cells. CRML-1 genetically suppresses UNC-73 function and, indirectly, actin polymerization. This network identifies a novel, molecularly conserved cassette that regulates epithelial intercalation via basolateral protrusive activity.

  5. Synthesis, characterization, and controlled release antibacterial behavior of antibiotic intercalated Mg–Al layered double hydroxides

    SciTech Connect

    Wang, Yi; Zhang, Dun

    2012-11-15

    Graphical abstract: The antibiotic anion released from Mg–Al LDHs provides a controlled release antibacterial activity against the growth of Micrococcus lysodeikticus in 3.5% NaCl solution. Highlights: ► Antibiotic anion intercalated LDHs were synthesized and characterized. ► The ion-exchange one is responsible for the release process. ► The diffusion through particle is the release rate limiting step. ► LDHs loaded with antibiotic anion have high antibacterial capabilities. -- Abstract: Antibiotic–inorganic clay composites including four antibiotic anions, namely, benzoate (BZ), succinate (SU), benzylpenicillin (BP), and ticarcillin (TC) anions, intercalated Mg–Al layered double hydroxides (LDHs) were synthesized via ion-exchange. Powder X-ray diffraction and Fourier transform infrared spectrum analyses showed the successful intercalation of antibiotic anion into the LDH interlayer. BZ and BP anions were accommodated in the interlayer region as a bilayer, whereas SU and TC anions were intercalated in a monolayer arrangement. Kinetic simulation of the release data indicated that ion-exchange was responsible for the release process, and the diffusion through the particles was the rate-limiting step. The antibacterial capabilities of LDHs loaded with antibiotic anion toward Micrococcus lysodeikticus growth were analyzed using a turbidimetric method. Significant high inhibition rate was observed when LDH nanohybrid was introduced in 3.5% NaCl solution. Therefore, this hybrid material may be applied as nanocontainer in active antifouling coating for marine equipment.

  6. Renal intercalated cells are rather energized by a proton than a sodium pump.

    PubMed

    Chambrey, Régine; Kurth, Ingo; Peti-Peterdi, Janos; Houillier, Pascal; Purkerson, Jeffrey M; Leviel, Françoise; Hentschke, Moritz; Zdebik, Anselm A; Schwartz, George J; Hübner, Christian A; Eladari, Dominique

    2013-05-07

    The Na(+) concentration of the intracellular milieu is very low compared with the extracellular medium. Transport of Na(+) along this gradient is used to fuel secondary transport of many solutes, and thus plays a major role for most cell functions including the control of cell volume and resting membrane potential. Because of a continuous leak, Na(+) has to be permanently removed from the intracellular milieu, a process that is thought to be exclusively mediated by the Na(+)/K(+)-ATPase in animal cells. Here, we show that intercalated cells of the mouse kidney are an exception to this general rule. By an approach combining two-photon imaging of isolated renal tubules, physiological studies, and genetically engineered animals, we demonstrate that inhibition of the H(+) vacuolar-type ATPase (V-ATPase) caused drastic cell swelling and depolarization, and also inhibited the NaCl absorption pathway that we recently discovered in intercalated cells. In contrast, pharmacological blockade of the Na(+)/K(+)-ATPase had no effects. Basolateral NaCl exit from β-intercalated cells was independent of the Na(+)/K(+)-ATPase but critically relied on the presence of the basolateral ion transporter anion exchanger 4. We conclude that not all animal cells critically rely on the sodium pump as the unique bioenergizer, but can be replaced by the H(+) V-ATPase in renal intercalated cells. This concept is likely to apply to other animal cell types characterized by plasma membrane expression of the H(+) V-ATPase.

  7. Renal intercalated cells are rather energized by a proton than a sodium pump

    PubMed Central

    Chambrey, Régine; Kurth, Ingo; Peti-Peterdi, Janos; Houillier, Pascal; Purkerson, Jeffrey M.; Leviel, Françoise; Hentschke, Moritz; Zdebik, Anselm A.; Schwartz, George J.; Hübner, Christian A.; Eladari, Dominique

    2013-01-01

    The Na+ concentration of the intracellular milieu is very low compared with the extracellular medium. Transport of Na+ along this gradient is used to fuel secondary transport of many solutes, and thus plays a major role for most cell functions including the control of cell volume and resting membrane potential. Because of a continuous leak, Na+ has to be permanently removed from the intracellular milieu, a process that is thought to be exclusively mediated by the Na+/K+-ATPase in animal cells. Here, we show that intercalated cells of the mouse kidney are an exception to this general rule. By an approach combining two-photon imaging of isolated renal tubules, physiological studies, and genetically engineered animals, we demonstrate that inhibition of the H+ vacuolar-type ATPase (V-ATPase) caused drastic cell swelling and depolarization, and also inhibited the NaCl absorption pathway that we recently discovered in intercalated cells. In contrast, pharmacological blockade of the Na+/K+-ATPase had no effects. Basolateral NaCl exit from β-intercalated cells was independent of the Na+/K+-ATPase but critically relied on the presence of the basolateral ion transporter anion exchanger 4. We conclude that not all animal cells critically rely on the sodium pump as the unique bioenergizer, but can be replaced by the H+ V-ATPase in renal intercalated cells. This concept is likely to apply to other animal cell types characterized by plasma membrane expression of the H+ V-ATPase. PMID:23610411

  8. Combination probes with intercalating anchors and proximal fluorophores for DNA and RNA detection

    PubMed Central

    Qiu, Jieqiong; Wilson, Adam; El-Sagheer, Afaf H.; Brown, Tom

    2016-01-01

    A new class of modified oligonucleotides (combination probes) has been designed and synthesised for use in genetic analysis and RNA detection. Their chemical structure combines an intercalating anchor with a reporter fluorophore on the same thymine nucleobase. The intercalator (thiazole orange or benzothiazole orange) provides an anchor, which upon hybridisation of the probe to its target becomes fluorescent and simultaneously stabilizes the duplex. The anchor is able to communicate via FRET to a proximal reporter dye (e.g. ROX, HEX, ATTO647N, FAM) whose fluorescence signal can be monitored on a range of analytical devices. Direct excitation of the reporter dye provides an alternative signalling mechanism. In both signalling modes, fluorescence in the unhybridised probe is switched off by collisional quenching between adjacent intercalator and reporter dyes. Single nucleotide polymorphisms in DNA and RNA targets are identified by differences in the duplex melting temperature, and the use of short hybridization probes, made possible by the stabilisation provided by the intercalator, enhances mismatch discrimination. Unlike other fluorogenic probe systems, placing the fluorophore and quencher on the same nucleobase facilitates the design of short probes containing multiple modifications. The ability to detect both DNA and RNA sequences suggests applications in cellular imaging and diagnostics. PMID:27369379

  9. Mechanisms of nanoclay-enhanced plastic foaming processes: effects of nanoclay intercalation and exfoliation

    NASA Astrophysics Data System (ADS)

    Wong, Anson; Wijnands, Stephan F. L.; Kuboki, Takashi; Park, Chul B.

    2013-08-01

    The foaming behaviors of high-density polypropylene-nanoclay composites with intercalated and exfoliated nanoclay particles blown with carbon dioxide were examined via in situ observation of the foaming processes in a high-temperature/high-pressure view-cell. The intercalated nanoclay particles were 300-600 nm in length and 50-200 nm in thickness, while the exfoliated nanoclay particles were 100-200 nm in length and 1 nm in thickness. Contrary to common belief, it was discovered that intercalated nanoclay yielded higher cell density than exfoliated nanoclay despite its lower particle density. This was attributed to the higher tensile stresses generated around the larger and stiffer intercalated nanoclay particles, which led to increase in supersaturation level for cell nucleation. Also, the coupling agent used to exfoliate nanoclay would increase the affinity between polymer and surface of nanoclay particles. Consequently, the critical work needed for cell nucleation would be increased; pre-existing microvoids, which could act as seeds for cell nucleation, were also less likely to exist. Meanwhile, exfoliated nanoclay had better cell stabilization ability to prevent cell coalescence and cell coarsening. This investigation clarifies the roles of nanoclay in plastic foaming processes and provides guidance for the advancement of polymer nanocomposite foaming technology.

  10. A novel method to get methotrexatum/layered double hydroxides intercalation compounds and their release properties

    NASA Astrophysics Data System (ADS)

    Qi, Fenglin; Zhang, Xiaoqing; Li, Shuping

    2013-08-01

    In this context, the methotrexatum/layered double hydroxides (MTX/LDHs) intercalation compounds have been synthesized by a mechanochemical-hydrothermal method, which involves a grinding process and subsequent hydrothermal treatment. The influence of R (molar ratio of Mg2+ to Al3+ to MTX) values on the structure and morphology of the intercalation compounds and their release properties were investigated systematically. The resulting compounds were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), inductively coupled plasma (ICP), thermogravimetric (TG) and differential scanning calorimetry (DSC) analysis. All the results indicate that R value has significant influence on the intercalation of MTX anions into LDH interlayer and the optimal R value is 2:1:0.5. Furthermore, four dissolution-diffusion kinetic models were used to fit the in vitro release of MTX from LDH layers. The release process can be divided into two stages: firstly surface diffusion and secondly intraparticle diffusion. The study also revealed that the properties of the intercalation compounds is comparable to that obtained from standard methods such as co-precipitation method, but with time, solvent and energy saving.

  11. Synthesis and investigation of proton conductivity for intercalated kaolinite with 4-amidinopyridinium chloride

    SciTech Connect

    Ren, Li-Te; Li, Xiao-Pei; Liu, Jian-Lan; Ren, Xiao-Ming

    2015-12-15

    The proton-conducting materials have potential application in devices such as fuel cells. In this study, a mineral kaolinite-based proton conducting material, kaolinite-4-amidinopyridinium hydrochloride (K-4-APy–HCl), was synthesized by the intercalated compound kaolinite-4-amidinopyridine (K-4-APy) adsorbing volatilizing HCl. The thermogravimetric analysis (TG), powder X-ray diffraction (PXRD) and IR spectrum confirmed the HCl successfully inserting into the interlayer space of kaolinite and the 4-aminopyridine being protonated. The intercalation efficiency is estimated to be ca. 85.6%. With respect to K-4-APy, the interlayer space expends by 1.53 Å. The thermal decomposition mechanism was studied by PXRD and TG techniques. The K-4-APy–HCl shows proton conductivity with σ=3.379×10{sup −8} S cm{sup −1} at 373 K and E{sub a}=1.159 eV in the anhydrous condition, which are comparable to MOFs-based proton conducting materials. - Graphical abstract: The intercalated hybrid of mineral kaolinite with 4-amidinopyridinium hydrochloride is prepared to use as proton conducting material. - Highlights: • A new strategy is proposed for preparation of kaolinite-based proton conductor. • Intercalatied hybrid was prepared by sequentially inserting 4-amidinopyridine and adsorbing HCl. • The proton conductivity of intercalated hybrid is comparable to MOFs-based proton-conductors.

  12. THz Plasmonics of Quasi-freestanding Bilayer Epitaxial Graphene via H-intercalation

    NASA Astrophysics Data System (ADS)

    Daniels, Kevin; Boyd, Anthony; Nath, Anindya; Jadidi, Mohammad; Sushkov, Andrei; Drew, Dennis; Myers-Ward, Rachael; Gaskill, Kurt

    Graphene plasmonics has attracted attention as a suitable platform for tunable THz optoelectronics. THz plasmonic resonances in conventional large-area graphene, however, suffer from low quality factor (Q) because of high carrier scattering rate. This low Q is attributed to charge carrier induced scattering and lower carrier mobility caused by the partially covalent bonding between the silicon carbide (SiC) substrate and the 6 √3 buffer layer between the substrate and EG. Improving the Q of plasmons makes stronger THz resonance effects and also enable THz optoelectronics with fine tunability in frequency via gating. EG on Si-face, semi-insulating 6H-SiC was intercalated in-situ by hydrogen (H2) , releasing the buffer layer from SiC forming quasi-freestanding bilayer graphene. H-intercalation time was varied from 0 - 75 minutes and structural, electrical and optical properties were explored, revealing at long H-intercalation durations high carrier mobility (3000-4000 cm2/Vs) and high sheet carrier concentration (1E13 cm-2) independent of carrier mobility. Far IR simultaneous transmission/reflection measurements revealed a narrow frequency response with line widths (γ) smaller in H-intercalated EG (30cm-1) than observed in pristine EG (>100cm-1) consistent with the improved mobility.

  13. Copper intercalation at the interface of graphene and Ir(111) studied by scanning tunneling microscopy

    SciTech Connect

    Sicot, M. Fagot-Revurat, Y.; Kierren, B.; Vasseur, G.; Malterre, D.

    2014-11-10

    We report on the intercalation of a submonolayer of copper at 775 K underneath graphene epitaxially grown on Ir(111) studied by means of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) at 77 K. Nucleation and growth dynamics of Cu below graphene have been investigated, and, most importantly, the intercalation mechanism has been identified. First, LEED patterns reveal the pseudomorphic growth of Cu on Ir under the topmost graphene layer resulting in a large Cu in-plane lattice parameter expansion of about 6% compared to Cu(111). Second, large-scale STM topographs as a function of Cu coverage show that Cu diffusion on Ir below graphene exhibits a low energy barrier resulting in Cu accumulation at Ir step edges. As a result, the graphene sheet undergoes a strong edges reshaping. Finally, atomically-resolved STM images reveal a damaged graphene sheet at the atomic scale after metal intercalation. Point defects in graphene were shown to be carbon vacancies. According to these results, a Cu penetration path beneath graphene is proposed to occur via metal aided defect formation with no or poor self healing of the graphene sheet. This work illustrates the fact that Cu intercalation is harmful for graphene grown on Ir(111) at the atomic scale.

  14. Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides

    PubMed Central

    Kostadinova, Dessislava; Cenacchi Pereira, Ana; Lansalot, Muriel; D’Agosto, Franck; Bourgeat-Lami, Elodie; Leroux, Fabrice; Taviot-Guého, Christine; Cadars, Sylvian

    2016-01-01

    Increasing attention has been devoted to the design of layered double hydroxide (LDH)-based hybrid materials. In this work, we demonstrate the intercalation by anion exchange process of poly(acrylic acid) (PAA) and three different hydrophilic random copolymers of acrylic acid (AA) and n-butyl acrylate (BA) with molar masses ranging from 2000 to 4200 g mol−1 synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, into LDH containing magnesium(II) and aluminium(III) intralayer cations and nitrates as counterions (MgAl-NO3 LDH). At basic pH, the copolymer chains (macroRAFT agents) carry negative charges which allowed the establishment of electrostatic interactions with the LDH interlayer and their intercalation. The resulting hybrid macroRAFT/LDH materials displayed an expanded interlamellar domain compared to pristine MgAl-NO3 LDH from 1.36 nm to 2.33 nm. Depending on the nature of the units involved into the macroRAFT copolymer (only AA or AA and BA), the intercalation led to monolayer or bilayer arrangements within the interlayer space. The macroRAFT intercalation and the molecular structure of the hybrid phases were further characterized by Fourier transform infrared (FTIR) and solid-state 13C, 1H and 27Al nuclear magnetic resonance (NMR) spectroscopies to get a better description of the local structure. PMID:28144548

  15. Temperature dependent local atomic displacements in ammonia intercalated iron selenide superconductor

    PubMed Central

    Paris, E.; Simonelli, L.; Wakita, T.; Marini, C.; Lee, J.-H.; Olszewski, W.; Terashima, K.; Kakuto, T.; Nishimoto, N.; Kimura, T.; Kudo, K.; Kambe, T.; Nohara, M.; Yokoya, T.; Saini, N. L.

    2016-01-01

    Recently, ammonia-thermal reaction has been used for molecular intercalation in layered FeSe, resulting a new Lix(NH3)yFe2Se2 superconductor with Tc ~ 45 K. Here, we have used temperature dependent extended x-ray absorption fine structure (EXAFS) to investigate local atomic displacements in single crystals of this new superconductor. Using polarized EXAFS at Fe K-edge we have obtained direct information on the local Fe-Se and Fe-Fe bondlengths and corresponding mean square relative displacements (MSRD). We find that the Se-height in the intercalated system is lower than the one in the binary FeSe, suggesting compressed FeSe4 tetrahedron in the title system. Incidentally, there is hardly any effect of the intercalation on the bondlengths characteristics, revealed by the Einstein temperatures, that are similar to those found in the binary FeSe. Therefore, the molecular intercalation induces an effective compression and decouples the FeSe slabs. Furthermore, the results reveal an anomalous change in the atomic correlations across Tc, appearing as a clear decrease in the MSRD, indicating hardening of the local lattice mode. Similar response of the local lattice has been found in other families of superconductors, e.g., A15-type and cuprates superconductors. This observation suggests that local atomic correlations should have some direct correlation with the superconductivity. PMID:27276997

  16. Direct intercalation of cisplatin into zirconium phosphate nanoplatelets for potential cancer nanotherapy

    NASA Astrophysics Data System (ADS)

    Díaz, Agustín; González, Millie L.; Pérez, Riviam J.; David, Amanda; Mukherjee, Atashi; Báez, Adriana; Clearfield, Abraham; Colón, Jorge L.

    2013-11-01

    We report the use of zirconium phosphate (ZrP) nanoplatelets for the encapsulation of the anticancer drug cisplatin and its delivery to tumor cells. Cisplatin was intercalated into ZrP by direct ion exchange and was tested in vitro for cytotoxicity in the human breast cancer (MCF-7) cell line. The structural characterization of the intercalated cisplatin in ZrP suggests that during the intercalation process, the chloride ligands of the cisplatin complex were substituted by phosphate groups within the layers. Consequently, a new phosphate phase with the platinum complex directly bound to ZrP (cisPt@ZrP) is produced with an interlayer distance of 9.3 Å. The in vitro release profile of the intercalated drug upon a pH stimulus shows that at low pH under lysosomal conditions the platinum complex is released with simultaneous hydrolysis of the zirconium phosphate material, while at higher pH the complex is not released. Experiments with the MCF-7 cell line show that cisPt@ZrP reduced the cell viability up to 40%. The cisPt@ZrP intercalation product is envisioned as a future nanotherapy agent against cancer. Taking advantage of the shape and sizes of the ZrP particles and controlled release of the drug at low pH, it is intended to exploit the enhanced permeability and retention effect of tumors, as well as their intrinsic acidity, for the destruction of malignant cells.We report the use of zirconium phosphate (ZrP) nanoplatelets for the encapsulation of the anticancer drug cisplatin and its delivery to tumor cells. Cisplatin was intercalated into ZrP by direct ion exchange and was tested in vitro for cytotoxicity in the human breast cancer (MCF-7) cell line. The structural characterization of the intercalated cisplatin in ZrP suggests that during the intercalation process, the chloride ligands of the cisplatin complex were substituted by phosphate groups within the layers. Consequently, a new phosphate phase with the platinum complex directly bound to ZrP (cisPt@ZrP) is

  17. New insights into the intercalation chemistry of Al(OH)3.

    PubMed

    Williams, Gareth R; Moorhouse, Saul J; Prior, Timothy J; Fogg, Andrew M; Rees, Nicholas H; O'Hare, Dermot

    2011-06-14

    This paper reports a number of recent developments in the intercalation chemistry of Al(OH)(3). From Rietveld refinement and solid-state NMR, it has been possible to develop a structural model for the recently reported [M(II)Al(4)(OH)(12)](NO(3))(2)·yH(2)O family of layered double hydroxides (LDHs). The M(2+) cations occupy half of the octahedral holes in the Al(OH)(3) layers, and it is thought that there is complete ordering of the metal ions while the interlayer nitrate anions are highly disordered. Filling the remainder of the octahedral holes in the layers proved impossible. While the intercalation of Li salts into Al(OH)(3) is facile, it was found that the intercalation of M(II) salts is much more capricious. Only with Co, Ni, Cu, and Zn nitrates and Zn sulfate were phase-pure LDHs produced. In other cases, there is either no reaction or a phase believed to be an LDH forms concomitantly with impurity phases. Reacting Al(OH)(3) with mixtures of M(II) salts can lead to the production of three-metal M(II)-M(II)'-Al LDHs, but it is necessary to control precisely the starting ratios of the two M(II) salts in the reaction gel because Al(OH)(3) displays selective intercalation of M nitrate (Li > Ni > Co ≈ Zn). The three-metal M(II)-M(II)'-Al LDHs exhibit facile ion exchange intercalation, which has been investigated in the first energy dispersive X-ray diffraction study of a chemical reaction system performed on Beamline I12 of the Diamond Light Source.

  18. Behaviour of kaolinite intercalation compounds with selected ammonium salts in aqueous chromate and arsenate solutions

    NASA Astrophysics Data System (ADS)

    Matusik, Jakub; Matykowska, Lucyna

    2014-08-01

    The removal of aqueous Cr(VI) and As(V) oxyanions from waters by different materials with sorption properties is of environmental importance. In this study, a methoxy-kaolinite derivative was intercalated with benzyltrimethylammonium (B1), tetramethylammonium (TMA), and benzyldimethylhexadecylammonium (B5) chlorides and the interaction of the obtained materials with oxyanions was examined. The PXRD (powder X-ray diffraction) and IR (Infrared spectroscopy) analyses indicated a monolayer arrangement of the B1 and TMA molecules in the interlayer space of the mineral, while a tilted arrangement was noticed in the case of B5. A complete or partial deintercalation of introduced molecules was observed in the reactions with aqueous solutions of Cr(VI) and As(V). In all studied systems a significant improvement of the oxyanions removal was observed as compared to the pure kaolinite. The highest uptake of oxyanions was noticed in the reaction with B5-intercalated material. This was due to precipitation of organic alkyl salts. The formation of alkylchromate was confirmed using FTIR spectroscopy. The lower uptake of oxyanions by the B1- and TMA-intercalated materials was due to lack of new solid precipitation and resulted from the ion-exchange of chlorides initially compensating the ammonia nitrogen charge. The experimental sorption isotherms for all the reactions were best represented by Langmuir equation. A gradual, two-step removal process of Cr(VI) and As(V) by B1- and TMA-intercalated materials was observed. In turn, the precipitation of alkyl salts in reaction with B5-intercalated material resulted in a rapid immobilization of the oxyanions. The kinetic data modelled using pseudo-second order equation showed very good agreement with experimental results.

  19. Scientific Discovery for All

    ERIC Educational Resources Information Center

    Zaikowski, Lori; Lichtman, Paul; Quarless, Duncan

    2007-01-01

    The scientific discovery process comes alive for 70 minority students each year at Uniondale High School in New York where students have won top awards for "in-house" projects. Uniondale High School is in a middle-income school district where over 95% of students are from minority groups. Founded in 2000, the Uniondale High School Research Program…

  20. The Discovery of America

    ERIC Educational Resources Information Center

    Martin, Paul S.

    1973-01-01

    Discusses a model for explaining the spread of human population explosion on North American continent since its discovery 12,000 years ago. The model may help to map the spread of Homo sapiens throughout the New World by using the extinction chronology of the Pleistocene megafauna. (Author/PS)

  1. The Discovery Way

    ERIC Educational Resources Information Center

    Hamlin, Theresa

    2005-01-01

    At the Center for Discovery (The Center), a private, non-profit agency 80 miles northwest of New York City in the Catskill Mountains, children are growing and learning at their own pace, in their own way, with careful attention focused on communication and social/emotional development. Children with autism are being educated to be social beings,…

  2. Birds. Nature Discovery I.

    ERIC Educational Resources Information Center

    Stone, Sally F.

    The birds of New England and their particular habitats are explored in this guide which is part of a series of Nature Discovery publications. The materials are designed to directly supplement the natural science curricula and to complement other subject areas including social studies, language arts, music, and art. The program is designed for…

  3. Historian's Discovery of Childhood

    ERIC Educational Resources Information Center

    Frijhoff, Willem

    2012-01-01

    The "discovery of childhood" is a tricky notion because childhood is as much a fact of a biological and psychological nature as a cultural notion that through the centuries has been the object of changing perceptions, definitions, and images. Children barely speak in history; virtually everything we know about them is mediated by adults. Then how…

  4. Knowledge Discovery in Databases.

    ERIC Educational Resources Information Center

    Norton, M. Jay

    1999-01-01

    Knowledge discovery in databases (KDD) revolves around the investigation and creation of knowledge, processes, algorithms, and mechanisms for retrieving knowledge from data collections. The article is an introductory overview of KDD. The rationale and environment of its development and applications are discussed. Issues related to database design…

  5. Interoperability and information discovery

    USGS Publications Warehouse

    Christian, E.

    2001-01-01

    In the context of information systems, there is interoperability when the distinctions between separate information systems are not a barrier to accomplishing a task that spans those systems. Interoperability so defined implies that there are commonalities among the systems involved and that one can exploit such commonalities to achieve interoperability. The challenge of a particular interoperability task is to identify relevant commonalities among the systems involved and to devise mechanisms that exploit those commonalities. The present paper focuses on the particular interoperability task of information discovery. The Global Information Locator Service (GILS) is described as a policy, standards, and technology framework for addressing interoperable information discovery on a global and long-term basis. While there are many mechanisms for people to discover and use all manner of data and information resources, GILS initiatives exploit certain key commonalities that seem to be sufficient to realize useful information discovery interoperability at a global, long-term scale. This paper describes ten of the specific commonalities that are key to GILS initiatives. It presents some of the practical implications for organizations in various roles: content provider, system engineer, intermediary, and searcher. The paper also provides examples of interoperable information discovery as deployed using GILS in four types of information communities: bibliographic, geographic, environmental, and government.

  6. Discovery Education: A Definition.

    ERIC Educational Resources Information Center

    Wilson, Harold C.

    2002-01-01

    Discovery Education is based on the writings of Henry David Thoreau, an early champion of experiential learning. After 2 months of preparation, 10th-grade students spent 4 days in the wilderness reenacting a piece of history, such as the Lewis and Clark Expedition. The interdisciplinary approach always included journal-writing. Students gained…

  7. New X-ray insight into oxygen intercalation in epitaxial graphene grown on 4H-SiC(0001)

    NASA Astrophysics Data System (ADS)

    Kowalski, G.; Tokarczyk, M.; Dąbrowski, P.; Ciepielewski, P.; MoŻdŻonek, M.; Strupiński, W.; Baranowski, J. M.

    2015-03-01

    Efficient control of intercalation of epitaxial graphene by specific elements is a way to change properties of the graphene. Results of several experimental techniques, such as X-ray photoelectron spectroscopy, micro-Raman mapping, reflectivity, attenuated total reflection, X-ray diffraction, and X-ray reflectometry, gave a new insight into the intercalation of oxygen in the epitaxial graphene grown on 4H-SiC(0001). These results confirmed that oxygen intercalation decouples the graphene buffer layer from the 4H-SiC surface and converts it into the graphene layer. However, in contrast to the hydrogen intercalation, oxygen does not intercalate between carbon planes (in the case of few layer graphene) and the interlayer spacing stays constant at the level of 3.35-3.32 Å. Moreover, X-ray reflectometry showed the presence of an oxide layer having the thickness of about 0.8 Å underneath the graphene layers. Apart from the formation of the nonuniform thin oxide layer, generation of defects in graphene caused by oxygen was also evidenced. Last but not least, water islands underneath defected graphene regions in both intercalated and non-intercalated samples were most probably revealed. These water islands are formed in the case of all the samples stored under ambient laboratory conditions. Water islands can be removed from underneath the few layer graphene stacks by relevant thermal treatment or by UV illumination.

  8. New X-ray insight into oxygen intercalation in epitaxial graphene grown on 4H-SiC(0001)

    SciTech Connect

    Kowalski, G. Tokarczyk, M.; Dąbrowski, P.; Ciepielewski, P.; Możdżonek, M.; Strupiński, W.; Baranowski, J. M.

    2015-03-14

    Efficient control of intercalation of epitaxial graphene by specific elements is a way to change properties of the graphene. Results of several experimental techniques, such as X-ray photoelectron spectroscopy, micro-Raman mapping, reflectivity, attenuated total reflection, X-ray diffraction, and X-ray reflectometry, gave a new insight into the intercalation of oxygen in the epitaxial graphene grown on 4H-SiC(0001). These results confirmed that oxygen intercalation decouples the graphene buffer layer from the 4H-SiC surface and converts it into the graphene layer. However, in contrast to the hydrogen intercalation, oxygen does not intercalate between carbon planes (in the case of few layer graphene) and the interlayer spacing stays constant at the level of 3.35–3.32 Å. Moreover, X-ray reflectometry showed the presence of an oxide layer having the thickness of about 0.8 Å underneath the graphene layers. Apart from the formation of the nonuniform thin oxide layer, generation of defects in graphene caused by oxygen was also evidenced. Last but not least, water islands underneath defected graphene regions in both intercalated and non-intercalated samples were most probably revealed. These water islands are formed in the case of all the samples stored under ambient laboratory conditions. Water islands can be removed from underneath the few layer graphene stacks by relevant thermal treatment or by UV illumination.

  9. The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminium-ion battery.

    PubMed

    Bhauriyal, Preeti; Mahata, Arup; Pathak, Biswarup

    2017-03-15

    Identifying a suitable electrode material with desirable electrochemical properties remains a primary challenge for rechargeable Al-ion batteries. Recently an ultrafast rechargeable Al-ion battery was reported with high charge/discharge rate, (relatively) high discharge voltage and high capacity that uses a graphite-based cathode. Using calculations from first-principles, we have investigated the staging mechanism of AlCl4 intercalation into bulk graphite and evaluated the stability, specific capacity and voltage profile of AlCl4 intercalated compounds. Ab initio molecular dynamics is performed to investigate the thermal stability of AlCl4 intercalated graphite structures. Our voltage profiles show that the first AlCl4 intercalation step could be a more sluggish step than the successive intercalation steps. However, the diffusion of AlCl4 is very fast in the expanded graphite host layers with a diffusion barrier of ∼0.01 eV, which justifies the ultrafast charging rate of a graphite based Al-ion battery. And such an AlCl4 intercalated battery provides an average voltage of 2.01-2.3 V with a maximum specific capacity of 69.62 mA h g(-1), which is excellent for anion intercalated batteries. Our density of states and Bader charge analysis shows that the AlCl4 intercalation into the bulk graphite is a charging process. Hence, we believe that our present study will be helpful in understanding the staging mechanism of AlCl4 intercalation into graphite-like layered electrodes for Al-ion batteries, thus encouraging further experimental work.

  10. High van Hove singularity extension and Fermi velocity increase in epitaxial graphene functionalized by intercalated gold clusters

    NASA Astrophysics Data System (ADS)

    Nair, M. N.; Cranney, M.; Vonau, F.; Aubel, D.; Le Fèvre, P.; Tejeda, A.; Bertran, F.; Taleb-Ibrahimi, A.; Simon, L.

    2012-06-01

    Gold intercalation between a buffer layer and a graphene monolayer of epitaxial graphene on SiC(0001) leads to the formation of small aggregates of clusters. Angle-resolved photoemission spectroscopy measurements reveal that these clusters preserve the linear dispersion of the graphene quasiparticles and surprisingly increase their Fermi velocity. They also strongly modify the band structure of graphene around the van Hove singularities by a strong extension without charge transfer. These results give new insight on the role of the intercalant in the renormalization of the bare electronic band structure of graphene usually observed in graphite and graphene intercalation compounds.

  11. Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces

    SciTech Connect

    Osti, Naresh C.; Naguib, Michael; Ostadhossein, Alireza; Kent, Paul R. C.; Dyatkin, Boris; Rother, Gernot; Heller, William T.; Adri C. T. van Duin; Gogotsi, Yury; Mamontov, Eugene; Xie, Yu

    2016-03-24

    MXenes are a recently discovered class of 2D materials with an excellent potential for energy storage applications. Because MXene surfaces are hydrophilic and attractive interaction forces between the layers are relatively weak, water molecules can spontaneously intercalate at ambient humidity and significantly influence the key properties of this 2D material. Using complementary X-ray and neutron scattering techniques, we demonstrate that intercalation with potassium cations significantly improves structural homogeneity and water stability in MXenes. Furthermore, in agreement with molecular dynamics simulations, intercalated potassium ions reduce the water self-diffusion coefficient by 2 orders of magnitude, suggesting greater stability of hydrated MXene against changing environmental conditions.

  12. Microwave-assisted melt reaction method for the intercalation of carboxylic acid anions into layered double hydroxides.

    PubMed

    Rosa, Roberto; Leonelli, Cristina; Villa, Carla; Priarone, Giulia

    2013-01-01

    Carboxylic acid anions intercalated layered double hydroxides are currently gaining increasing interest due to their potential applications in pharmaceutical field for controlled drug release in novel tunable drug delivery systems. In this work different aliphatic carboxylic acid anions were intercalated into the interlayers of commercial as well as synthetically prepared layered double hydroxides, through a novel microwave mediated melt reaction approach. The volumetric nature of microwave dielectric heating was exploited in order to rapidly heat the intimate mixture of the lamellar inorganic precursor and the appropriate organic acid, at the melting temperature of the particular mono- or dicarboxylic acid used, reaching the intercalation in approximately two hours treatment.

  13. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  14. Recent Discoveries and Bible Translation.

    ERIC Educational Resources Information Center

    Harrelson, Walter

    1990-01-01

    Discusses recent discoveries for "Bible" translation with a focus on the "Dead Sea Scrolls." Examines recent discoveries that provide direct support for alternative reading of biblical passages and those discoveries that have contributed additional insight to knowledge of cultural practices, especially legal and religious…

  15. The Discovery Method in Training.

    ERIC Educational Resources Information Center

    Belbin, R. M.

    In the form of a discussion between faceless people, this booklet concerns discovery learning and its advantages. Subjects covered in the discussions are: Introducing the Discovery Method; An Experiment with British Railways; The OECD Research Projects in U.S.A., Austria, and Sweden; How the Discovery Method Differs from Other Methods; Discovery…

  16. Challenges of Antibacterial Discovery

    PubMed Central

    Silver, Lynn L.

    2011-01-01

    Summary: The discovery of novel small-molecule antibacterial drugs has been stalled for many years. The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort. The major challenges fall into two areas: (i) proper target selection, particularly the necessity of pursuing molecular targets that are not prone to rapid resistance development, and (ii) improvement of chemical libraries to overcome limitations of diversity, especially that which is necessary to overcome barriers to bacterial entry and proclivity to be effluxed, especially in Gram-negative organisms. Failure to address these problems has led to a great deal of misdirected effort. PMID:21233508

  17. [Halogens: discoveries of pharmacists].

    PubMed

    Rabiant, J

    2008-01-01

    The discovery of four halogens is due to pharmacists. Chlorine was isolated by Carl Wilhem Scheele, a Swedish who was first an assistant to a pharmacist, then a pharmacist himself. Bernard Courtois, a pharmacist under the First Empire, the son of a saltpetre worker isolated iodine in I811, after a modification of the ancestral production protocol of potassium nitrate, which is the major component of the gunpowder: he replaced wood ashes by varech ashes which are less expensive. Antoine Jerôme Balard was still an assistant in chemistry and physics when he discovered bromine in the residues of the salt marshes. He became soon after a pharmacist and started a famous career as then he became Professor in the College de France and General Inspector of Higher Education. The last halogen: fluorine was isolated by Henri Moissan who received the Nobel Prize of Chemistry. The discovery will be the subject of our next communication.

  18. Chronicles in drug discovery.

    PubMed

    Davies, Shelley L; Moral, Maria Angels; Bozzo, Jordi

    2007-03-01

    Chronicles in Drug Discovery features special interest reports on advances in drug discovery. This month we highlight agents that target and deplete immunosuppressive regulatory T cells, which are produced by tumor cells to hinder innate immunity against, or chemotherapies targeting, tumor-associated antigens. Antiviral treatments for respiratory syncytial virus, a severe and prevalent infection in children, are limited due to their side effect profiles and cost. New strategies currently under clinical development include monoclonal antibodies, siRNAs, vaccines and oral small molecule inhibitors. Recent therapeutic lines for Huntington's disease include gene therapies that target the mutated human huntingtin gene or deliver neuroprotective growth factors and cellular transplantation in apoptotic regions of the brain. Finally, we highlight the antiinflammatory and antinociceptive properties of new compounds targeting the somatostatin receptor subtype sst4, which warrant further study for their potential application as clinical analgesics.

  19. Discovery with FAST

    NASA Astrophysics Data System (ADS)

    Wilkinson, P.

    2016-02-01

    FAST offers "transformational" performance well-suited to finding new phenomena - one of which might be polarised spectral transients. But discoveries will only be made if "the system" provides its users with the necessary opportunities. In addition to designing in as much observational flexibility as possible, FAST should be operated with a philosophy which maximises its "human bandwidth". This band includes the astronomers of tomorrow - many of whom not have yet started school or even been born.

  20. Discovery management workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Two dozen participants assembled under the direction of the NASA Solar System Exploration Division (SEED) April 13-15, 1993. Participants supported the goals of cheaper and faster solar system exploration. The workshop concluded that the Discovery Program concept and goals are viable. Management concerns are articulated in the final report. Appendix A includes lists of participants in alphabetical order, by functional area, and by organization type. Appendix B includes the agenda for the meeting.

  1. Discovery as a process

    SciTech Connect

    Loehle, C.

    1994-05-01

    The three great myths, which form a sort of triumvirate of misunderstanding, are the Eureka! myth, the hypothesis myth, and the measurement myth. These myths are prevalent among scientists as well as among observers of science. The Eureka! myth asserts that discovery occurs as a flash of insight, and as such is not subject to investigation. This leads to the perception that discovery or deriving a hypothesis is a moment or event rather than a process. Events are singular and not subject to description. The hypothesis myth asserts that proper science is motivated by testing hypotheses, and that if something is not experimentally testable then it is not scientific. This myth leads to absurd posturing by some workers conducting empirical descriptive studies, who dress up their study with a ``hypothesis`` to obtain funding or get it published. Methods papers are often rejected because they do not address a specific scientific problem. The fact is that many of the great breakthroughs in silence involve methods and not hypotheses or arise from largely descriptive studies. Those captured by this myth also try to block funding for those developing methods. The third myth is the measurement myth, which holds that determining what to measure is straightforward, so one doesn`t need a lot of introspection to do science. As one ecologist put it to me ``Don`t give me any of that philosophy junk, just let me out in the field. I know what to measure.`` These myths lead to difficulties for scientists who must face peer review to obtain funding and to get published. These myths also inhibit the study of science as a process. Finally, these myths inhibit creativity and suppress innovation. In this paper I first explore these myths in more detail and then propose a new model of discovery that opens the supposedly miraculous process of discovery to doser scrutiny.

  2. The language of discovery

    PubMed Central

    Souba, Wiley

    2011-01-01

    Discovery, as a public attribution, and discovering, the act of conducting research, are experiences that entail “languaging” the unknown. This distinguishing property of language ‐ its ability to bring forth, out of the unspoken realm, new knowledge, original ideas, and novel thinking – is essential to the discovery process. In sharing their ideas and views, scientists create co‐negotiated linguistic distinctions that prompt the revision of established mental maps and the adoption of new ones. While scientific mastery entails command of the conversational domain unique to a specific discipline, there is an emerging conversational domain that must be mastered that goes beyond the language unique to any particular specialty. Mastery of this new conversational domain gives researchers access to their hidden mental maps that limit their ways of thinking about and doing science. The most effective scientists use language to recontextualize their approach to problem‐solving, which triggers new insights (previously unavailable) that result in new discoveries. While language is not a replacement for intuition and other means of knowing, when we try to understand what’s outside of language we have to use language to do so. PMID:21688238

  3. The investigation of cobalt intercalation underneath epitaxial graphene on 6H-SiC(0 0 0 1)

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxi; Zhang, Hanjie; Cai, Yiliang; Song, Junjie; He, Pimo

    2017-02-01

    The intercalation behaviour of cobalt underneath both epitaxial graphene monolayer and bilayer on 6H-SiC(0001) have been investigated by scanning tunneling microscopy (STM) and density functional theory (DFT). Upon deposition, cobalt atoms prefer to agglomerate into clusters on the epitaxial graphene. After annealing the sample to 850 °C, the intercalation of the adsorbed cobalt atoms into both monolayer and bilayer epitaxial graphene on SiC takes place, as observed by the atomically resolved STM images. Further studies based on DFT modeling and simulated STM images show that, resulting from the interplay between the intercalated cobalt atoms and the carbon layers sandwiching it, the most energetically favourable intercalation sites of cobalt atoms underneath monolayer and bilayer graphene differ. Furthermore, the results show energy barriers of 0.60 eV and 0.41 eV for cobalt penetration through mono-vacancy defects at monolayer and bilayer graphene.

  4. Bifunctional rhodium intercalator conjugates as mismatch-directing DNA alkylating agents.

    PubMed

    Schatzschneider, Ulrich; Barton, Jacqueline K

    2004-07-21

    A conjugate of a DNA mismatch-specific rhodium intercalator, containing the bulky chrysenediimine ligand, and an aniline mustard has been prepared, and targeting of mismatches in DNA by this conjugate has been examined. The preferential alkylation of mismatched over fully matched DNA is found by a mobility shift assay at concentrations where untethered organic mustards show little reaction. The binding site of the Rh intercalator was determined by DNA photocleavage, and the position of covalent modification was established on the basis of the enhanced depurination associated with N-alkylation. The site-selective alkylation at mismatched DNA renders these conjugates useful tools for the covalent tagging of DNA base pair mismatches and new chemotherapeutic design.

  5. Observation of Landau levels in potassium-intercalated graphite under a zero magnetic field.

    PubMed

    Guo, Donghui; Kondo, Takahiro; Machida, Takahiro; Iwatake, Keigo; Okada, Susumu; Nakamura, Junji

    2012-01-01

    The charge carriers in graphene are massless Dirac fermions and exhibit a relativistic Landau-level quantization in a magnetic field. Recently, it has been reported that, without any external magnetic field, quantized energy levels have been also observed from strained graphene nanobubbles on a platinum surface, which were attributed to the Landau levels of massless Dirac fermions in graphene formed by a strain-induced pseudomagnetic field. Here we show the generation of the Landau levels of massless Dirac fermions on a partially potassium-intercalated graphite surface without applying external magnetic field. Landau levels of massless Dirac fermions indicate the graphene character in partially potassium-intercalated graphite. The generation of the Landau levels is ascribed to a vector potential induced by the perturbation of nearest-neighbour hopping, which may originate from a strain or a gradient of on-site potentials at the perimeters of potassium-free domains.

  6. Intercalation of luminescent Europium(III) complexes in layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Sarakha, L.; Forano, C.; Boutinaud, P.

    2009-01-01

    Anionic Europium(III) complexes EuL1, EuL2 and EuL3 (L1 = tris (dipicolinate), L2 = diethylenetriaminepentaacetate, L3 = disulfonated bathophenanthroline tris(dibenzoylmethanate) were intercalated in Zn 2Al(OH) 6Cl, nH 2O and Zn 4Al(OH) 10Cl, nH 2O layered double hydroxides (LDHs). Intercalation was confirmed by X-ray diffraction, vibration spectroscopy and photoluminescence measurements, using Eu(III) as a local structural probe. Information on host-guest interactions in the hybrid materials were deduced by analyzing the intensity parameter Ω 2, the energy position of the 5D 0- 7F 0 transition and the emission decay profile of the prominent hypersensitive red 5D 0- 7F 2 emission.

  7. Transport and thermoelectric properties in Copper intercalated TiS{sub 2} chalcogenide

    SciTech Connect

    Guilmeau, E.; Breard, Y.; Maignan, A.

    2011-08-01

    We report on the thermoelectric properties of Cu{sub x}TiS{sub 2} bulk compounds. Copper cations have been intercalated into the layered chalcogenide TiS{sub 2} by spark plasma sintering. X-ray diffraction analysis coupled to transmission electron microscopy shows that the lattice constant c expands linearly as the Cu content x increases. The Cu-intercalation into TiS{sub 2} leads to substantial decrease in both electrical resistivity and lattice thermal conductivity as compared to those of pristine TiS{sub 2}. The figure of merit, ZT, is increased up to 0.45 at 800 K for x = 0.02. The power factor, PF, reaches 1.7 mW/mK{sup 2} in TiS{sub 2} at 325 K.

  8. Effect of intercalated lithium on the electronic band structure of indium selenide

    NASA Astrophysics Data System (ADS)

    1990-08-01

    The purpose of the project on Superionics supported by DARPA Contract No. N00014-88-K-0392 is to develop a physical understanding of the elements of a solid state battery consisting of a lithium anode, a lithium-doped borate glass separator and a lithium-intercalated InSe cathode. In this report a theoretical analysis based on a tight-binding model is presented for the electronic structure of both pure and lithium-intercalated InSe. An understanding of the electronic structure is necessary for an understanding of the electrical conductivity due to both electronic motion and lithium-ion motion. The conductivity is an important parameter for the performance of the solid state battery.

  9. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene)

    SciTech Connect

    Mashtalir, O.; Lukatskaya, Maria R.; Kolesnikov, Alexander I.; Raymundo-Pinero, E.; Naguib, Michael; Barsoum, M. W.; Gogotsi, Yury G.

    2016-03-25

    Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. Furthermore, the hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g–1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm.

  10. Indirect measurement of N-14 quadrupolar coupling for NH3 intercalated in potassium graphite

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Fronko, R. M.; Resing, H. A.

    1987-01-01

    A method for indirect measurement of the nuclear quadrupolar coupling was developed and applied to NH3 molecules in the graphite intercalation compound K(NH3)4.3C24, which has a layered structure with alternating carbon and intercalant layers. Three triplets were observed in the H-1 NMR spectra of the compound. The value of the N-14 quadrupolar coupling constant of NH3 (3.7 MHz), determined indirectly from the H-1 NMR spectra, was intermediate between the gas value of 4.1 MHz and the solid-state value of 3.2 MHz. The method was also used to deduce the (H-1)-(H-1) and (N-14)-(H-1) dipolar interactions, the H-1 chemical shifts, and the molecular orientations and motions of NH3.

  11. Prediction of above 20 K superconductivity of blue phosphorus bilayer with metal intercalations

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Jie; Dong, Shuai

    2016-09-01

    First-principles calculations predicted monolayer blue phosphorus to be an alternative two-dimensional allotrope of phosphorus, like the recently discovered monolayer black phosphorus. Due to its unique crystalline and electronic structure, blue phosphorus may be a promising candidate as a BCS-superconductor after proper intercalation. In this study, using first-principles calculations, the favorable intercalation sites for some alkali metals and alkaline earths have been identified for Blue-P bilayer and the stacking configuration of bilayer is changed. Then the blue phosphorus bilayer transforms from a semiconductor to a metal due to the charge transfer from metal to phosphorus. Own to the strong electron-phonon coupling, isotropic superconducting state is induced and the calculated transition temperatures are 20.4, 20.1, and 14.4 K for Li-, Na-, and Mg-intercaltion, respectively, which is superior to other predicted or experimentally observed two-dimensional BCS-superconductors.

  12. Intercalation of graphene on SiC(0001) via ion implantation

    NASA Astrophysics Data System (ADS)

    Stöhr, Alexander; Forti, Stiven; Link, Stefan; Zakharov, Alexei A.; Kern, Klaus; Starke, Ulrich; Benia, Hadj M.

    2016-08-01

    Electronic devices based on graphene technology are catching on rapidly and the ability to engineer graphene properties at the nanoscale is becoming, more than ever, indispensable. Here, we present a procedure of graphene functionalization on SiC(0001) that paves the way towards the fabrication of complex graphene electronic chips. The procedure resides on the well-known ion-implantation technique. The efficiency of the working principle is demonstrated by the intercalation of the epitaxial graphene layer on SiC(0001) with Bi atoms, which was not possible following standard procedures. The investigation of the obtained graphene system reveals no clear spin-orbit coupling enhancement expected by theory in addition to the presence of residual structural defects. Our graphene/SiC(0001) intercalation procedure puts forward the ion-beam lithography to nanostructure and functionalize desired graphene chips.

  13. Sorption of benzene and naphthol to organobentonites intercalated with short chain cationic surfactants.

    PubMed

    Shen, Yun-Hwei

    2002-01-01

    This work studies the sorption of benzene and naphthol by bentonites exchanged with quaternary ammonium surfactants tetramethylammonium (TMA) ion, benzyltrimethylammonium (BTMA) ion, tetraethylammonium (TEA) ion, and benzyltriethylammonium (BTEA) ion to elucidate how exchanged short chain organic cations affect the mechanistic function of the modified bentonite. Local high charge density areas are found at interlamellar surfaces of bentonite and intercalated short chain organic cations aggregate preferentially at these sites to form organic carbon phase effective in nonionic organic compounds (NOC) uptake. Experimental results indicate that the amount of benzene uptake decreases as the size of intercalated organic cation increases from TMA to BTMA to TEA to BTEA, presumably due to the different structures of organic carbon phase formed in organobentonite. In addition, benzene sorption capacity of organobentonite modified with short chain organic cation is highly sensitive to the cation exchange capacities (CEC) of bentonite used.

  14. Confinement Effects on the Structure and Dynamics in Intercalated Polymer / Layered Silicates Nanohybrids

    SciTech Connect

    Chrissopoulou, K.; Afratis, A.; Fotiadou, S.; Frick, B.; Anastasiadis, S. H.

    2010-06-02

    The structure and dynamics of PEO/Na{sup +} MMT nanocomposites are investigated by XRD, DSC, and quasielastic neutron scattering (QENS). For concentrations up to 20 wt% the PEO chains within the galleries form either a single- or a double-layered structure of intercalated chains; at higher PEO content only double layers of intercalated PEO chains are formed within the 0.9 nm galleries. Moreover, it is only for polymer content above 70 wt% that peaks corresponding to crystalline PEO and DSC melting transition are observed, indicating that the confined chains remain liquid-like and only the excess polymer outside the completely full galleries can crystallize. QENS investigated the dynamics of PEO in bulk and in confinement. A jump of the bulk PEO dynamics at T{sub m} is observed whereas the dynamics of confined PEO shows only weak wavevector and temperature dependence and goes smoothly through the bulk T{sub m}.

  15. Left-right asymmetric cell intercalation drives directional collective cell movement in epithelial morphogenesis

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Maekawa, Emi; Isomura, Ayako; Shibata, Tatsuo; Kuranaga, Erina

    2015-12-01

    Morphogenetic epithelial movement occurs during embryogenesis and drives complex tissue formation. However, how epithelial cells coordinate their unidirectional movement while maintaining epithelial integrity is unclear. Here we propose a novel mechanism for collective epithelial cell movement based on Drosophila genitalia rotation, in which epithelial tissue rotates clockwise around the genitalia. We found that this cell movement occurs autonomously and requires myosin II. The moving cells exhibit repeated left-right-biased junction remodelling, while maintaining adhesion with their neighbours, in association with a polarized myosin II distribution. Reducing myosinID, known to cause counter-clockwise epithelial-tissue movement, reverses the myosin II distribution. Numerical simulations revealed that a left-right asymmetry in cell intercalation is sufficient to induce unidirectional cellular movement. The cellular movement direction is also associated with planar cell-shape chirality. These findings support a model in which left-right asymmetric cell intercalation within an epithelial sheet drives collective cellular movement in the same direction.

  16. High surface area V-Mo-N materials synthesized from amine intercalated foams

    SciTech Connect

    Krawiec, Piotr; Narayan Panda, Rabi; Kockrick, Emanuel; Geiger, Dorin; Kaskel, Stefan

    2008-04-15

    Nanocrystalline ternary V-Mo nitrides were prepared via nitridation of amine intercalated oxide foams or bulk ternary oxides. Specific surface areas were in the range between 40 and 198 m{sup 2} g{sup -1} and strongly depended on the preparation method (foam or bulk oxide). Foamed precursors were favorable for vanadium rich materials, while for molybdenum rich samples bulk ternary oxides resulted in higher specific surface areas. The materials were characterized via nitrogen physisorption at 77 K, X-ray diffraction patterns, electron microscopy, and elemental analysis. - Graphical abstract: Nanocrystalline ternary V-Mo nitrides were prepared via nitridation of amine intercalated oxide foams or bulk ternary oxides. Foamed precursors were favorable for vanadium rich materials, while for molybdenum rich samples bulk ternary oxides resulted in higher specific surface areas.

  17. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Chen, Zhongxin; Leng, Kai; Zhao, Xiaoxu; Malkhandi, Souradip; Tang, Wei; Tian, Bingbing; Dong, Lei; Zheng, Lirong; Lin, Ming; Yeo, Boon Siang; Loh, Kian Ping

    2017-02-01

    Interface confined reactions, which can modulate the bonding of reactants with catalytic centres and influence the rate of the mass transport from bulk solution, have emerged as a viable strategy for achieving highly stable and selective catalysis. Here we demonstrate that 1T'-enriched lithiated molybdenum disulfide is a highly powerful reducing agent, which can be exploited for the in-situ reduction of metal ions within the inner planes of lithiated molybdenum disulfide to form a zero valent metal-intercalated molybdenum disulfide. The confinement of platinum nanoparticles within the molybdenum disulfide layered structure leads to enhanced hydrogen evolution reaction activity and stability compared to catalysts dispersed on carbon support. In particular, the inner platinum surface is accessible to charged species like proton and metal ions, while blocking poisoning by larger sized pollutants or neutral molecules. This points a way forward for using bulk intercalated compounds for energy related applications.

  18. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide

    PubMed Central

    Chen, Zhongxin; Leng, Kai; Zhao, Xiaoxu; Malkhandi, Souradip; Tang, Wei; Tian, Bingbing; Dong, Lei; Zheng, Lirong; Lin, Ming; Yeo, Boon Siang; Loh, Kian Ping

    2017-01-01

    Interface confined reactions, which can modulate the bonding of reactants with catalytic centres and influence the rate of the mass transport from bulk solution, have emerged as a viable strategy for achieving highly stable and selective catalysis. Here we demonstrate that 1T′-enriched lithiated molybdenum disulfide is a highly powerful reducing agent, which can be exploited for the in-situ reduction of metal ions within the inner planes of lithiated molybdenum disulfide to form a zero valent metal-intercalated molybdenum disulfide. The confinement of platinum nanoparticles within the molybdenum disulfide layered structure leads to enhanced hydrogen evolution reaction activity and stability compared to catalysts dispersed on carbon support. In particular, the inner platinum surface is accessible to charged species like proton and metal ions, while blocking poisoning by larger sized pollutants or neutral molecules. This points a way forward for using bulk intercalated compounds for energy related applications. PMID:28230105

  19. Intercalation of Coordinatively Unsaturated Fe(III) Ion within Interpenetrated Metal-Organic Framework MOF-5.

    PubMed

    Holmberg, Rebecca J; Burns, Thomas; Greer, Samuel M; Kobera, Libor; Stoian, Sebastian A; Korobkov, Ilia; Hill, Stephen; Bryce, David L; Woo, Tom K; Murugesu, Muralee

    2016-06-01

    Coordinatively unsaturated Fe(III) metal sites were successfully incorporated into the iconic MOF-5 framework. This new structure, Fe(III) -iMOF-5, is the first example of an interpenetrated MOF linked through intercalated metal ions. Structural characterization was performed with single-crystal and powder XRD, followed by extensive analysis by spectroscopic methods and solid-state NMR, which reveals the paramagnetic ion through its interaction with the framework. EPR and Mössbauer spectroscopy confirmed that the intercalated ions were indeed Fe(III) , whereas DFT calculations were employed to ascertain the unique pentacoordinate architecture around the Fe(III) ion. Interestingly, this is also the first crystallographic evidence of pentacoordinate Zn(II) within the MOF-5 SBU. This new MOF structure displays the potential for metal-site addition as a framework connector, thus creating further opportunity for the innovative development of new MOF materials.

  20. The effect of length and diameter on the resistivity of bromine intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1989-01-01

    The resistivity of bromine intercalated graphite fibers has been shown to vary with both the diameter and the length of the fibers. This is due to bromine depletion from the fiber surface. Model calculations assuming a 1.0 micron bromine depletion zone for P-100, and 3.0 microns for vapor-grown graphite fibers fit the respective diameter dependence of their resistivities quite well. Length dependence data imply a bromine depletion zone along the length of P-100 fibers which is also a few microns, but that of vapor grown fibers appears to be as large as 300 microns. Despite these values, microfilaments, which are much smaller than the expected depletion zones, do form residual bromine intercalation compounds with resistivities about one-half of their pristine value.

  1. Gate-independent energy gap in noncovalently intercalated bilayer graphene on SiC(0001)

    NASA Astrophysics Data System (ADS)

    Li, Yuanchang

    2016-12-01

    Our first-principles calculations show that an energy gap around 0.12-0.25 eV can be engineered in epitaxial graphene on SiC(0001) through the noncovalent intercalation of transition or alkali metals but originated from the distinct mechanisms. The former is attributed to the combined effects of a metal-induced perpendicular electric field and interaction, while the latter is solely attributed to the built-in electric field. A great advantage of this scheme is that the gap size is almost independent of the gate voltage up to 1 V/nm, thus reserving the electric means to tune the Fermi level of graphene when configured as field-effect transistors. Given the recent progress in experimental techniques for intercalated graphene, our findings provide a practical way to incorporate graphene in the current semiconductor industry.

  2. Methotrexate intercalated layered double hydroxides with the mediation of surfactants: Mechanism exploration and bioassay study.

    PubMed

    Dai, Chao-Fan; Tian, De-Ying; Li, Shu-Ping; Li, Xiao-Dong

    2015-12-01

    Methotrexatum intercalated layered double hydroxides (MTX/LDHs) hybrids were synthesized by the co-precipitation method and three kinds of nonionic surfactants with different hydrocarbon chain lengths were used. The resulting hybrids were then characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). XRD and FTIR investigations manifest the successful intercalation of MTX anions into the interlayer of LDHs. TEM graphs indicate that the morphology of the hybrids changes with the variation of the chain length of the surfactants, i.e., the particles synthesized using polyethylene glycol (PEG-7) present regular disc morphology with good monodispersity, while samples with the mediation of alkyl polyglycoside (APG-14) are heavily aggregated and samples with the addition of polyvinylpyrrolidone (PVP-10) exhibit irregular branches. Furthermore, the release and bioassay experiments show that monodisperse MTX/LDHs present good controlled-release and are more efficient in the suppression of the tumor cells.

  3. MoCl5 intercalation doping and oxygen passivation of submicrometer-sized multilayer graphene

    NASA Astrophysics Data System (ADS)

    Miyazaki, Hisao; Matsumoto, Rika; Katagiri, Masayuki; Yoshida, Takashi; Ueno, Kazuyoshi; Sakai, Tadashi; Kajita, Akihiro

    2017-04-01

    We investigated doping material selection for multilayer graphene (MLG) interconnects and a passivation process to stabilize the doped state. Intercalation doping with Br2, FeCl3, and MoCl5 was compared in terms of doping ability and robustness against environmental effects, which are exacerbated by miniaturization. We found that MoCl5 was advantageous for miniaturization. We hypothesized that environmental stability would be enhanced by partially oxidizing MoCl5 and avoiding hydrolysis by water vapor in air. To test this, we examined a passivation process by dry oxygen exposure. We verified that the doping effect was improved and that intercalated material (MoCl5) was partially oxidized and confined in the MLG.

  4. Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Ding, Zijing; Meng, Sheng

    2013-05-01

    A new form of nanoporous material, metal intercalated covalent organic framework (MCOF) is proposed and its energy storage property revealed. Employing density functional and thermodynamical analysis, we find that stable, chemically active, porous materials could form by stacking covalent organic framework (COF) layers with metals as a gluing agent. Metal acts as active sites, while its aggregation is suppressed by a binding energy significantly larger than the corresponding cohesive energy of bulk metals. Two important parameters, metal binding and metal-metal separation, are tuned by selecting suitable building blocks and linkers when constructing COF layers. Systematic searches among a variety of elements and organic molecules identify Ca-intercalated COF with diphenylethyne units as optimal material for H2 storage, reaching a striking gravimetric density ~ 5 wt% at near-ambient conditions (300 K, 20 bar), in comparison to < 0.1 wt% for bare COF-1 under the same condition.

  5. Enhanced electrochemical performance of ammonium vanadium bronze through sodium cation intercalation and optimization of electrolyte.

    PubMed

    Fei, Hailong; Liu, Xin; Li, Huan; Wei, Mingdeng

    2014-03-15

    A new type of platelet-like ammonium vanadium bronze (NH4)2V6O16 is first used as cathode material for Na-ion battery. The discharge capacity and cycling stability is improved by the intercalation of Na(+) and using NaPF6 as electrolyte. Raman spectrum shows that the crystalline structure of (NH4)2V6O16 is changed after the intercalation of Na(+) to (NH4)2V6O16. Furthermore, the obtained sodium ammonium vanadium bronze shows smaller charge transfer resistance than (NH4)2V6O16, which would favor superior discharge capacity and good cycling stability. Additionally, NaPF6 is prior to NaClO4 as electrolyte for ammonium vanadium bronze cathode materials.

  6. Charge neutrality in epitaxial graphene on 6 H -SiC(0001) via nitrogen intercalation

    NASA Astrophysics Data System (ADS)

    Caffrey, Nuala M.; Armiento, Rickard; Yakimova, Rositsa; Abrikosov, Igor A.

    2015-08-01

    The electronic properties of epitaxial graphene grown on SiC(0001) are known to be impaired relative to those of freestanding graphene. This is due to the formation of a carbon buffer layer between the graphene layers and the substrate, which causes the graphene layers to become strongly n -doped. Charge neutrality can be achieved by completely passivating the dangling bonds of the clean SiC surface using atomic intercalation. So far, only one element, hydrogen, has been identified as a promising candidate. We show, using first-principles density functional calculations, how it can also be accomplished via the growth of a thin layer of silicon nitride on the SiC surface. The subsequently grown graphene layers display the electronic properties associated with charge neutral graphene. We show that the surface energy of this structure is considerably lower than that of others with intercalated atomic nitrogen and determine how its stability depends on the N2 chemical potential.

  7. Mg intercalation in layered and spinel host crystal structures for Mg batteries.

    PubMed

    Emly, Alexandra; Van der Ven, Anton

    2015-05-04

    We investigate electrochemical properties of Mg in layered and spinel intercalation compounds from first-principles using TiS2 as a model system. Our calculations predict that Mg(x)TiS2 in both the layered and spinel crystal structures exhibits sloping voltage profiles with steps at stoichiometric compositions due to Mg-vacancy ordering. Mg ions are predicted to occupy the octahedral sites in both layered and spinel TiS2 with diffusion mediated by hops between octahedral sites that pass through adjacent tetrahedral sites. Predicted migration barriers are substantially higher than typical Li-migration barriers in intercalation compounds. The migration barriers are shown to be very sensitive to lattice parameters of the host crystal structure. We also discuss the possible role of rehybridization between the transition metal and the anion in affecting migration barriers.

  8. In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide.

    PubMed

    Loring, John S; Schaef, Herbert T; Turcu, Romulus V F; Thompson, Christopher J; Miller, Quin R S; Martin, Paul F; Hu, Jianzhi; Hoyt, David W; Qafoku, Odeta; Ilton, Eugene S; Felmy, Andrew R; Rosso, Kevin M

    2012-05-08

    The interaction of anhydrous supercritical CO(2) (scCO(2)) with both kaolinite and ~1W (i.e., close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO(2) molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy, and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO(2) conditions is due to CO(2) migration into the interlayer. Intercalated CO(2) molecules are rotationally constrained and do not appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO(2) does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.

  9. DNA Recognition by a Novel Bis-Intercalator, Potent Anticancer Drug XR5944

    PubMed Central

    Lin, Clement; Yang, Danzhou

    2016-01-01

    XR5944 is a potent anticancer drug with a novel DNA binding mode: DNA bis-intercalationg with major groove binding. XR5944 can bind the estrogen response element (ERE) sequence to block ER-ERE binding and inhibit ERα activities, which may be useful for overcoming drug resistance to currently available antiestrogen treatments. This review discusses the progress relating to the structure and function studies of specific DNA recognition of XR5944. The sites of intercalation within a native promoter sequence appear to be different from the ideal binding site and are context- and sequence- dependent. The structural information may provide insights for rational design of improved ERE-specific XR5944 derivatives, as well as of DNA bis-intercalators in general. PMID:25866279

  10. In Situ Molecular Spectroscopic Evidence for CO2 Intercalation into Montmorillonite in Supercritical Carbon Dioxide

    SciTech Connect

    Loring, John S.; Schaef, Herbert T.; Turcu, Romulus VF; Thompson, Christopher J.; Miller, Quin RS; Martin, Paul F.; Hu, Jian Z.; Hoyt, David W.; Qafoku, Odeta; Ilton, Eugene S.; Felmy, Andrew R.; Rosso, Kevin M.

    2012-04-25

    The interaction of anhydrous supercritical CO2 (scCO2) with both kaolinite and ~1W (i.e. close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO2 molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO2 conditions is due to CO2 migration into the interlayer. Intercalated CO2 molecules are rotationally constrained and do not appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO2 does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.

  11. Intercalation of bis(ethylenedithio)tetrathiafulvalene (ET) into iron oxychloride: A highly conducting low-dimensional system

    SciTech Connect

    Bringley, J.F.; Averill, B.A. ); Fabre, J.M. )

    1990-05-23

    Efforts to prepare new organic conducting materials have focused primarily on the preparation of new organic donors or modification of existing donors. Herein, we report the preparation and preliminary characterization of a new intercalation compound, FeOCl(ET){sub 1/4}, where ET = bis(ethylenedithio)tetrathiafluvalene. Structural and electronic studies show that the material contains stacks that are partially oxidized, resulting in high electrical conductivity due to the intercalated electron donors.

  12. Intercalation Compounds: A New Class of Materials as Advanced Solid Lubricants (Wear Life Studies and Differential Thermal Analysis).

    DTIC Science & Technology

    1983-01-08

    intercalation compounds at metal-to-metal contact junctions where "hot spots can reach temperatures as high as 10000C. The intercalated species which comes out ...lubrication on two relatively moving surfaces under essentially dry condi- tions as opposed to oil or grease lubrication. Molybdenum disulfide ( MoS2 ) and...common usage of solids as lubricants is in the form of bonded films. Typical formulations consist of lubricating pigment ( MoS2 ) incorporating either

  13. Intercalation of WF 6 in the interlayer space of multiwall carbon nanotubes—structural and morphological aspects

    NASA Astrophysics Data System (ADS)

    Claves, D.; Giraudet, J.; Schouler, M. C.; Gadelle, P.; Hamwi, A.

    2004-04-01

    The reactivity of multiwall carbon nanotubes toward WF 6, a strong Lewis acid, has been studied. A material of nominal composition C 36WF 6 has been obtained and characterized by X-ray diffraction. Intercalation between pseudo-graphitic layers has been evidenced, leading to a staging phenomenon at the nanometer scale. A structural model is proposed and the intercalation chemistry of multiwalled carbon nanotubes is discussed.

  14. Intermolecular interactions between imidazole derivatives intercalated in layered solids. Substituent group effect

    SciTech Connect

    González, M.; Lemus-Santana, A.A.; Rodríguez-Hernández, J.; Aguirre-Velez, C.I.; Knobel, M.; Reguera, E.

    2013-08-15

    This study sheds light on the intermolecular interactions between imidazole derive molecules (2-methyl-imidazole, 2-ethyl-imidazole and benzimidazole) intercalated in T[Ni(CN){sub 4}] layers to form a solid of formula unit T(ImD){sub 2}[Ni(CN){sub 4}]. These hybrid inorganic–organic solids were prepared by soft chemical routes and their crystal structures solved and refined from X-ray powder diffraction data. The involved imidazole derivative molecules were found coordinated through the pyridinic N atom to the axial positions for the metal T in the T[Ni(CN){sub 4}] layer. In the interlayers region ligand molecules from neighboring layers remain stacked in a face-to-face configuration through dipole–dipole and quadrupole–quadrupole interactions. These intermolecular interactions show a pronounced dependence on the substituent group and are responsible for an ImD-pillaring concatenation of adjacent layers. This is supported by the structural information and the recorded magnetic data in the 2–300 K temperature range. The samples containing Co and Ni are characterized by presence of spin–orbit coupling and pronounced temperature dependence for the effective magnetic moment except for 2-ethyl-imidazole related to the local distortion for the metal coordination environment. For this last one ligand a weak ferromagnetic ordering ascribed to a super-exchange interaction between T metals from neighboring layers through the ligands π–π interaction was detected. - Graphical abstract: In the interlayers region imidazole derivative molecules are oriented according to their dipolar and quadrupolar interactions and minimizing the steric impediment. Highlights: • Imidazole derivatives intercalation compounds. • Intermolecular interaction between intercalated imidazole derivatives. • Hybrid inorganic–organic solids. • Pi–pi interactions and ferromagnetic coupling. • Dipolar and quadrupolar interactions between intercalated imidazole derivatives.

  15. Structural Consequences of Hydrogen Intercalation of Epitaxial Graphene on SiC(0001)

    DTIC Science & Technology

    2014-10-23

    Structural consequences of hydrogen intercalation of epitaxial graphene on SiC(0001) Jonathan D. Emery,1,a) Virginia H. Wheeler,2 James E. Johns,1...the interface between epitaxial graphene (EG) and its SiC substrate is known to significantly influence the electronic properties of the graphene ...from that of the overlying graphene layers. This newly formed graphene layer becomes decoupled from the SiC substrate and, along with the other graphene

  16. Synthesis of nanoporous spheres of cubic gallium oxynitride and their lithium ion intercalation properties

    NASA Astrophysics Data System (ADS)

    Tang, Chengchun; Bando, Yoshio; Huang, Yang; Zhi, Chunyi; Golberg, Dmitri; Xu, Xuewen; Zhao, Jianling; Li, YangXian

    2010-03-01

    Cubic spinel structured gallium oxynitride has been synthesized through the reaction of metallic gallium and water in the presence of organic ethylenediamine. The relative content of the mixed solvent of water and ethylenediamine controls the product morphology and structure. A novel well-defined nanoporous structure has finally been obtained, whose large surface area and peculiar surface chemistry will generate novel physical and chemical properties. As an example, lithium intercalation properties for prospective applications in lithium ion batteries are demonstrated in this work.

  17. Intercalation between antitumor anthracyclines and DNA as probed by resonance and surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Smulevich, G.; Mantini, A. R.; Casu, M.; Marzocchi, M. P.

    1991-05-01

    The antiturnor anthracyclincs, idarubicin (IDA ), adrianiycin (ADM), epirubicin (EPI), carminomycin (CAR) and 1 1-deoxycarminornycin (DCM), whose siructural formula includes a substituted hydroxyanthraquirionc chrornophore and a sugar residue, form intercalation complexes with DNA. The stacking interaction between the chromophore and the base-pairs of DNA gives rise to noticeable ciTects on resonance Raman (RR) and surface-enhanced resonance Raman (SERRS) scattering as well as on the absorption (ABS), its second derivative (D2) and fluorescence emission (FEM) spectra.

  18. Preparation and lithium intercalation behavior of TiO{sub 2} in aqueous solutions

    SciTech Connect

    Li, Yunjiao Li, Lin; Chen, Lingpeng; Wang, Xuanyu; Xu, Cang

    2014-04-01

    Highlights: • The poor crystalline anatase phase or amorphous TiO{sub 2} was prepared by TiCl{sub 4} hydrolysis under different pH conditions. • Phase transition behavior and lithium intercalation ability of the obtained TiO{sub 2} were found to be related to TiO{sub 2} property. • The results indicate that TiO{sub 2} products obtained from TiCl{sub 4} hydrolysis at lower pH are favorable for lithium intercalation. - Abstract: The low crystalline or amorphous TiO{sub 2} was prepared by TiCl{sub 4} hydrolysis in aqueous solutions under different pH conditions at 45 °C. The products obtained at lower pH (1.23–3.10) appear to be nano-sized particles with poor crystalline anatase structure and an uniform particle size distribution, while the product prepared at pH 4.10 presents in a poor crystalline anatase structure and the regular morphology starts to disappear, and the products obtained at higher pH (>6.00) are amorphous and irregular morphology. The hydrolysis products obtained at pH 2.60 and 8.80 were heat-treated at 300, 400, 600, 700 and 800 °C for 3 h, respectively, to figure out the phase transition. The differences in phase transition process were observed, which verified the properties difference. The lithium intercalation abilities of the obtained TiO{sub 2} were studied. The results indicated that the TiO{sub 2} obtained at lower pH are more favorable for lithium intercalation and are better precursors.

  19. The Study of Band Structure of Graphite Intercalation Compound Containing Sodium Calculated Using Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Nazrul Rosli, Ahmad; Fatimah Wahab, Izzati; Zabidi, Noriza Ahmad; Abu Kassim, Hasan

    2015-06-01

    Sodium intercalation in graphite (GIC-Na) was investigated by the first principle calculation. The structure of GIC-Na was calculated using density functional theory (DFT) with the aid of CASTEP module of Material Studio. The exchange correlation functional has been treat by local density approximation (LDA) and generalized gradient approximation (GGA). It was shown that, unlike potassium GIC and lithium GIC, the band gap of GIC-Na was not induced and has same value of band gap with bulk graphite.

  20. Noble-metal intercalation process leading to a protected adatom in a graphene hollow site

    NASA Astrophysics Data System (ADS)

    Narayanan Nair, M.; Cranney, M.; Jiang, T.; Hajjar-Garreau, S.; Aubel, D.; Vonau, F.; Florentin, A.; Denys, E.; Bocquet, M.-L.; Simon, L.

    2016-08-01

    In previous studies, we have shown that gold deposited on a monolayer (ML) of graphene on SiC(0001) is intercalated below the ML after an annealing procedure and affects the band structure of graphene. Here we prove experimentally and theoretically that some of the gold forms a dispersed phase composed of single adatoms, being intercalated between the ML and the buffer layer and in a hollow position with respect to C atoms of the ML on top. They are freestanding and negatively charged, due to the partial screening of the electron transfer between SiC and the ML, without changing the intrinsic n-type doping of the ML. As these single atoms decouple the ML from the buffer layer, the quasiparticles of graphene are less perturbed, thus increasing their Fermi velocity. Moreover, the hollow position of the intercalated single Au atoms might lead to spin-orbit coupling in the graphene layer covering IC domains. This effect of spin-orbit coupling has been recently observed experimentally in Au-intercalated graphene on SiC(0001) [D. Marchenko, A. Varykhalov, J. Sánchez-Barriga, Th. Seyller, and O. Rader, Appl. Phys. Lett. 108, 172405 (2016), 10.1063/1.4947286] and has been theoretically predicted for heavy atoms, like thallium, in a hollow position on graphene [C. Weeks, J. Hu, J. Alicea, M. Franz, and R. Wu, Phys. Rev. X 1, 021001 (2011), 10.1103/PhysRevX.1.021001; A. Cresti, D. V. Tuan, D. Soriano, A. W. Cummings, and S. Roche, Phys. Rev. Lett. 113, 246603 (2014), 10.1103/PhysRevLett.113.246603].

  1. Resistance to hypertension mediated by intercalated cells of the collecting duct

    PubMed Central

    Chen, Daian; Herrera, Marcela; Sparks, Matthew A.; Gurley, Susan B.

    2017-01-01

    The renal collecting duct (CD), as the terminal segment of the nephron, is responsible for the final adjustments to the amount of sodium excreted in urine. While angiotensin II modulates reabsorptive functions of the CD, the contribution of these actions to physiological homeostasis is not clear. To examine this question, we generated mice with cell-specific deletion of AT1A receptors from the CD. Elimination of AT1A receptors from both principal and intercalated cells (CDKO mice) had no effect on blood pressures at baseline or during successive feeding of low- or high-salt diets. In contrast, the severity of hypertension caused by chronic infusion of angiotensin II was paradoxically exaggerated in CDKO mice compared with controls. In wild-type mice, angiotensin II induced robust expression of cyclooxygenase-2 (COX-2) in renal medulla, primarily localized to intercalated cells. Upregulation of COX-2 was diminished in CDKO mice, resulting in reduced generation of vasodilator prostanoids. This impaired expression of COX-2 has physiological consequences, since administration of a specific COX-2 inhibitor to CDKO and control mice during angiotensin II infusion equalized their blood pressures. Stimulation of COX-2 was also triggered by exposure of isolated preparations of medullary CDs to angiotensin II. Deletion of AT1A receptors from principal cells alone did not affect angiotensin II–dependent COX2 stimulation, implicating intercalated cells as the main source of COX2 in this setting. These findings suggest a novel paracrine role for the intercalated cell to attenuate the severity of hypertension. Strategies for preserving or augmenting this pathway may have value for improving the management of hypertension.

  2. Direct Observation of Reversible Magnesium Ion Intercalation into a Spinel Oxide Host

    SciTech Connect

    Kim, Chunjoong; Phillips, Patrick J.; Key, Baris; Yi, Tanghong; Nordlund, Dennis; Yu, Young-Sang; Bayliss, Ryan D.; Han, Sang-Don; He, Meinan; Zhang, Zhengcheng; Burrell, Anthony K.; Klie, Robert F.; Cabana, Jordi

    2015-06-10

    Direct evidence of Mg2+ intercalation into a spinel-type Mn2O4 is provided. By com­bining tools with different sensitivities, from atomic-resolution X-ray spectro­scopy to bulk X-ray diffraction, it is demonstrated that Mg2+ reversibly occupies the tetrahedral sites of the spinel structure through the reduction of Mn when the electrochemical reaction is performed.

  3. Structural study and crystal chemistry of the first stage calcium graphite intercalation compound

    SciTech Connect

    Emery, Nicolas; Herold, Claire . E-mail: Claire.Herold@lcsm.uhp-nancy.fr; Lagrange, Philippe

    2005-09-15

    A novel and efficient synthesis method concerning the preparation of the first stage calcium graphite intercalation compound is provided. It makes use of a reaction between liquid metallic alloy and pyrolytic graphite. From now on it is especially easy to obtain bulk CaC{sub 6} samples. Thanks to such samples, it was possible to study in detail the crystal structure of this binary intercalation compound. It has been entirely specified, so that we know that CaC{sub 6} crystal is rhombohedral and belongs to the R3-bar m space group with the following parameters: a=517pm and {alpha}=49.55 deg. The elemental unit cell contains one calcium atom and six carbon atoms. In this paper, we show also how the various MC{sub 6} structures evolve according to the size of the intercalated element and to the bond nature that appears in the final compound. CaC{sub 6} is unique, since all the other MC{sub 6} compounds exhibit a hexagonal symmetry.

  4. Cyclic diguanylic acid behaves as a host molecule for planar intercalators.

    PubMed

    Liaw, Y C; Gao, Y G; Robinson, H; Sheldrick, G M; Sliedregt, L A; van der Marel, G A; van Boom, J H; Wang, A H

    1990-05-21

    Cyclic ribodiguanylic acid, c-(GpGp), is the endogenous effector regulator of cellulose synthase. Its three-dimensional structure from two different crystal forms (tetragonal and trigonal) has been determined by X-ray diffraction analysis at 1 A resolution. In both crystal forms, two independent c-(GpGp) molecules associate with each other to form a self-intercalated dimer. A hydrated cobalt ion is found to coordinate to two N7 atoms of adjacent guanines, forcing these two guanines to destack with a large dihedral angle (32 degrees), in the dimer of the tetragonal form. This metal coordination mechanism may be relevant to that of the anticancer drug cisplatin. Moreover, c-(GpGp) exhibits unusual spectral properties not seen in any other cyclic dinucleotide. It interacts with planar organic intercalator molecules in ways similar to double helical DNA. We propose a cage-like model consisting of a tetrameric c-(GpGp) aggregate in which a large cavity ('host') is generated to afford a binding site for certain planar intercalators ('guests').

  5. Sodium-intercalated bulk graphdiyne as an anode material for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Farokh Niaei, Amir H.; Hussain, Tanveer; Hankel, Marlies; Searles, Debra J.

    2017-03-01

    We present the results of a density functional theory study of sodium storage and mobility on graphdiyne (GDY) and consider the applicability of GDY intercalated with sodium (Na) as an anode material for rechargeable batteries. The maximum capacity, energy barriers for Na diffusion throughout the layers, and expansion of the layers due to Na insertion are determined. The calculations indicate that Na intercalates within the GDY bulk layers with a capacity of NaC5.14 without expansion (316 mA h g-1) and NaC2.57 with expansion of 28% (497 mA h g-1). The energy barrier for movement of Na in the slit pore formed by two GDY bulk layers is found to be 0.82 eV for bulk GDY with an AB-2 stacking, and the barrier for movement through a GDY sheet is found to be 0.12 eV. The barrier for movement in the slit pore formed by sheets becomes even lower for AB-3 stacking, with values of 0.68 and 0.40 eV found for different pathways. Movement from one GDY sheet to another for the AB-3 stacking also has a moderate energy of 0.37 eV. Therefore, GDY intercalated with Na is proposed to have potential as an anode material for rechargeable batteries.

  6. Polymer (PTFE) and shape memory alloy (NiTi) intercalated nano-biocomposites

    NASA Astrophysics Data System (ADS)

    Anjum, S. S.; Rao, J.; Nicholls, J. R.

    2012-09-01

    Engineering on a nano-scale has been undertaken to mimic a biomaterial by forming an intercalated nano-composite structure by PVD sputtering of a polymer with a nickel-titanium (NiTi) shape memory alloy (SMA). A PTFE polymer has been selected due to its elastic properties, low interactions with water, optimum surface energies, stability and chemical resistance. NiTi SMAs allow the coatings to be energy absorbent and thus suitable in load bearing situations. The coatings are aimed to constantly withstand variable adverse biological environments whilst maintaining their characteristics. The nano-intercalated structures have been characterised for their wettability, friction coefficients, chemical composition, and morphology. Intercalation of a polymer with energy-absorbing alloys uncovers a set of material systems that will offer characteristics such as self-healing of hierarchal tissue in the body. The reformation of PTFE following sputter deposition was confirmed by FTIR spectra. According to SEM analysis PTFE shows a promising surface interaction with NiTi, forming stable coatings. Surface interactions are evident by the hydrophobic behaviour of films as the composite's water contact angle is around 86° which lies in-between that of PTFE and NiTi. The nano composite films are lubricious and have a measured CoF below 0.2 which does not vary with layer thickness.

  7. Synthesis and reversible hydration behavior of the thiosulfate intercalated layered double hydroxide of Zn and Al

    SciTech Connect

    Radha, S.; Milius, Wolfgang; Breu, Josef; Kamath, P. Vishnu

    2013-08-15

    The thiosulfate-intercalated layered double hydroxide of Zn and Al undergoes reversible hydration with a variation in the relative humidity of the ambient. The hydrated and dehydrated phases, which represent the end members of the hydration cycle, both adopt the structure of the 3R{sub 1} polytype. In the intermediate range of relative humidity values (40–60%), the hydrated and dehydrated phases coexist. The end members of the hydration cycle adopt the structure of the same polytype, and vary only in their basal spacings. This points to the possibility that all the intermediate phases have a kinetic origin. - Graphical abstract: Basal spacing evolution of the thiosulfate ion intercalated [Zn–Al] LDH during one complete hydration–dehydration cycle as a function of relative humidity. Display Omitted - Highlights: • Thiosulfate intercalated [Zn–Al] LDHs were synthesized by co-precipitation. • The LDH exhibits reversible hydration with variation in humidity. • Both the end members of the hydration cycle adopt the same polytype structure. • The interstratified intermediates observed are kinetic in origin.

  8. Effect of Non-ionic Surfactants and Its Role in K Intercalation in Electrolytic Manganese Dioxide

    NASA Astrophysics Data System (ADS)

    Biswal, Avijit; Tripathy, B. C.; Subbaiah, T.; Meyrick, D.; Ionescu, Mihail; Minakshi, Manickam

    2014-09-01

    The effect of non-ionic surface active agents (surfactants) Triton X-100 (TX-100) and Tween-20 (Tw-20) and their role in potassium intercalation in electrolytic manganese dioxide (EMD) produced from manganese cake has been investigated. Electrosynthesis of MnO2 in the absence or presence of surfactant was carried out from acidic MnSO4 solution obtained from manganese cake under optimized conditions. A range of characterization techniques, including field emission scanning electron microscopy, transmission electron microscopy (TEM), Rutherford back scattering (RBS), and BET surface area/porosity studies, was carried out to determine the structural and chemical characteristics of the EMD. Galvanostatic (discharge) and potentiostatic (cyclic voltammetric) studies were employed to evaluate the suitability of EMD in combination with KOH electrolyte for alkaline battery applications. The presence of surfactant played an important role in modifying the physicochemical properties of the EMD by increasing the surface area of the material and hence, enhancing its electrochemical performance. The TEM and RBS analyses of the discharged EMD (γ-MnO2) material showed clear evidence of potassium intercalation or at least the formation of a film on the MnO2 surface. The extent of intercalation was greater for EMD deposited in the presence of TX-100. Discharged MnO2 showed products of Mn2+ intermediates such as MnOOH and Mn3O4.

  9. Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries

    NASA Astrophysics Data System (ADS)

    Yadav, Gautam G.; Gallaway, Joshua W.; Turney, Damon E.; Nyce, Michael; Huang, Jinchao; Wei, Xia; Banerjee, Sanjoy

    2017-03-01

    Manganese dioxide cathodes are inexpensive and have high theoretical capacity (based on two electrons) of 617 mAh g-1, making them attractive for low-cost, energy-dense batteries. They are used in non-rechargeable batteries with anodes like zinc. Only ~10% of the theoretical capacity is currently accessible in rechargeable alkaline systems. Attempts to access the full capacity using additives have been unsuccessful. We report a class of Bi-birnessite (a layered manganese oxide polymorph mixed with bismuth oxide (Bi2O3)) cathodes intercalated with Cu2+ that deliver near-full two-electron capacity reversibly for >6,000 cycles. The key to rechargeability lies in exploiting the redox potentials of Cu to reversibly intercalate into the Bi-birnessite-layered structure during its dissolution and precipitation process for stabilizing and enhancing its charge transfer characteristics. This process holds promise for other applications like catalysis and intercalation of metal ions into layered structures. A large prismatic rechargeable Zn-birnessite cell delivering ~140 Wh l-1 is shown.

  10. Synthesis, characterization and cation adsorption of p-aminobenzoic acid intercalated on calcium phosphate

    SciTech Connect

    Silva, Camila F.N.; Lazarin, Angélica M.; Sernaglia, Rosana L.; Andreotti, Elza I.S.

    2012-06-15

    Graphical abstract: Scanning electron microscopy photographs of calcium phosphate (a) and intercalated with p-aminobenzoic acid (b). Highlights: ► Calcium phosphate was intercalated with p-aminobenzoic acid. ► Guest molecule contains nitrogen and oxygen atoms from amine and carboxylic groups. ► These basic centers are potentially useful for cation coordination in ethanol solution. ► Crystal morphology of compounds is lamellar, it agrees with expected structural characteristics. -- Abstract: Crystalline lamellar calcium phosphate retained 4-aminobenzoic acid inside its cavity without leaching. The intense infrared bands in the 1033 and 1010 cm{sup −1} interval confirmed the presence of the phosphonate groups attached to the inorganic layer, with sharp and intense peaks in X-ray diffraction patterns, which gave basal distances of 712 and 1578 pm for the original and the intercalated compounds, respectively. Solid-state {sup 31}P nuclear magnetic resonance spectra presented only one peak for the phosphate groups attached to the main inorganic polymeric structure near −2.4 ppm. The adsorption isotherms from ethanol gave the maximum adsorption capacities of 6.44 and 3.34 mmol g{sup −1} for nickel and cobalt, respectively, which stability constant and distribution coefficient followed Co > Ni.

  11. Observation of variable hybridized-band gaps in Eu-intercalated graphene.

    PubMed

    Sung, Sijin; Kim, Sooran; Lee, Paengro; Kim, Jingul; Ryu, Min-Tae; Park, Heemin; Kim, Kyoo; Min, Byung; Chung, Jinwook

    2017-03-27

    We report europium (Eu)-induced changes in the π-band of graphene (G) formed on 6H-SiC(0001) surface by a combined study of photoemission measurements and density functional theory (DFT) calculations. Our photoemission data reveal that Eu intercalates upon annealing at 120 °C into the region between graphene and buffer layer (BL) to form a G/Eu/BL system, where a band gap of 0.29 eV opens at room temperature. This band gap is found to increase further to 0.48 eV upon cooling down to 60 K. Our DFT calculations suggest that the increased band gap originates from the enhanced hybridization between graphene π-Eu 4f band due to the increased magnetic ordering upon cooling. These Eu atoms continue to intercalate further down below the BL to produce a bilayer graphene (G/BL/Eu) upon annealing at 300 °C. The π-band stemming from the BL then exhibits another band gap of 0.37 eV, which appears to be a gap due to the strong hybridization between the π-band of the BL and the Eu 4f band. The Eu-intercalated graphene thus illustrates an example of versatile band gaps formed under different thermal treatments, which may play a critical role for future applications in graphene-based electronics.

  12. Effect of Temperature on the Local Structure of Kaolinite Intercalated with Potassium Acetate

    SciTech Connect

    White, Claire E.; Provis, John L.; Gordon, Laura E.; Riley, Daniel P.; Proffen, Thomas; van Deventer, Jannie S.J.

    2011-09-06

    Kaolinite intercalated with potassium acetate is of great interest in the areas of environmental remediation and industrial application; however, its exact atomic structure and the changes which occur when heated have remained largely elusive. Here, neutron pair distribution function analysis is used to investigate the local structural characteristics of this complex material, revealing that hydrated potassium acetate exists as a single layer in the interlamellar spacing of kaolinite. Furthermore, the potassium ions within the intercalated complex are most likely associated with the resonance structure of the acetate molecules, and upon heating (and decomposition of the carbon containing molecules), these ions become strongly associated with the negative charge located on the oxygen atoms in the alumina layers of dehydroxylated kaolinite. Several possible orientations of hydrated potassium acetate within the interlamellar spacing of kaolinite have been proposed and investigated using density functional modeling, revealing the complex nature of this material. Nevertheless, this investigation has shown that the dehydroxylated form of the intercalated compound contains highly strained alumina and available alkali (potassium), making it a viable alternative to traditional aluminosilicates.

  13. Optimization of UV absorptivity of layered double hydroxide by intercalating organic UV-absorbent molecules.

    PubMed

    Mohsin, Sumaiyah Megat Nabil; Hussein, Mohd Zobir; Sarijo, Siti Halimah; Fakurazi, Sharida; Arulselvan, Palanisamy; Taufiq-Yap, Yun Hin

    2014-08-01

    Intercalation of Zn/Al layered double hydroxide (LDH) with benzophenone 9 (B9), a strong ultraviolet (UV) absorber, had been carried out by two different routes; co-precipitation and ion exchange method. Powder X-ray diffraction (PXRD) patterns of co-precipitated (ZB9C) and ion exchanged product (ZB91) showed basal spacing of 15.9 angstrom and 16.6 angstrom, respectively, as a result of the intercalation of B9 anions into the lamellae spaces of LDH. Intercalation was further confirmed by Fourier transform infrared spectra (FTIR), carbon, hydrogen, nitrogen and sulfur (CHNS) and thermogravimetric and differential thermogravimetric (TGA/DTG) studies. UV-vis absorption properties of the nanocomposite was investigated with diffuse reflectance UV-visible spectrometer and showed broader UV absorption range. Furthermore, stability of sunscreen molecules in LDH interlayer space was tested in deionized water, artificial sea water and skin pH condition to show slow deintercalation and high retention in host. Cytotoxicity study of the synthesized nanocomposites on human dermal fibroblast (HDF) cells shows no significant cytotoxicity after 24 h exposure for test concentrations up to 25 microg/mL.

  14. On the correlation between the electroanalytical behavior and crystallographic features of Li-intercalation electrodes

    NASA Astrophysics Data System (ADS)

    Levi, M. D.; Levi, E.; Aurbach, D.; Schmidt, M.; Oesten, R.; Heider, U.

    The electroanalytical behavior of Li xNiO 2 and Li xCo 0.2Ni 0.8O 2 was studied by simultaneous application of slow-scan rate cyclic voltammetry (SSCV), potentiostatic and galvanostatic intermittent titration (PITT and GITT), and electrochemical impedance spectroscopy (EIS). Application of a finite-space diffusion model for treating the results obtained by these techniques allowed us to calculate the diffusion coefficient of Li ions ( D) and the differential (incremental) capacity ( Cint) as functions of the electrode's potential. Our final purpose was to compare D versus E and Cint versus E plots for both the electrodes, in order to correlate the observed difference in their electroanalytical behavior with the clear distinction in the related Li-insertion mechanisms deduced from XRD studies. While Li insertion into Li xCo 0.2Ni 0.8O 2 exhibits a single-phase reaction upon charge in the 3.0-4.08 V (versus Li/Li +) range, Li intercalation into Li xNiO 2 undergoes two-phase transitions in the same potential range. The shape of both plots, D versus E and Cint versus E for these electrodes, is discussed in the framework of a finite-space diffusion model and Li-insertion processes that can be described by Frumkin-type intercalation isotherms with short-range attraction interactions among intercalation sites.

  15. Preparation and enhanced properties of polyaniline/grafted intercalated ZnAl-LDH nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Jinlong; Gan, Mengyu; Ma, Li; Zhang, Jun; Xie, Shuang; Xu, Fenfang; Shen, JiYue Zheng Xiaoyu; Yin, Hui

    2015-02-01

    The polymeric nanocomposites (PANI/AD-LDH) were prepared by in situ polymerization based on polyaniline (PANI) and decavanadate-intercalated and γ-aminopropyltriethoxysilane (APTS)-grafted ZnAl-layered double hydroxide (AD-LDH). FTIR and XRD studies confirm the grafting of APTS with decavanadate-intercalated LDH (D-LDH). The extent of grafting (wt%) has also been estimated on the basis of the residue left in nitrogen atmosphere at 800 °C in TGA. SEM and XPS studies show the partial exfoliation of grafted LDH in the PANI matrix and the interfacial interaction between PANI and grafted LDH, respectively. The grafted intercalated layered double hydroxide in reinforcing the properties of the PANI nanocomposites has also been investigated by open circuit potential (OCP), tafel polarization curves (TAF), electrochemical impendence spectroscopy (EIS), salt spray test and TGA-DTA. The experimental results indicate that the PANI/AD-LDH has a higher thermal stability and anticorrosion properties relative to the PANI.

  16. Intercalation of methotrexatum into layered double hydroxides via exfoliation-reassembly process

    NASA Astrophysics Data System (ADS)

    Liu, Su-Qing; Li, Shu-Ping; Li, Xiao-Dong

    2015-03-01

    In this paper, the intercalation of methotrexatum (MTX) into layered double hydroxides (LDHs) via an exfoliation-reassembly process was reported and the resulting hybrids were then characterized by X-ray diffraction (XRD) patterns, Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) patterns etc. In the synthesis procedure, LDHs particles were firstly delaminated into well-dispersed 2D nanosheets in formamide by ultrasonic treatment at room temperature, and then the resulting LDH nanosheets were reassembled in MTX solution to form MTX intercalated LDH (MTX/LDHs) hybrids. AFM images showed that during the exfoliation process a large part of LDHs particles were delaminated into single and double brucite layers. XRD patterns and FTIR investigations manifested the successful intercalation of MTX anions into LDHs interlayers for the final samples. It was also found out that the drug-loading capacity of the hybrids increased with the concentrations of MTX solutions, while the morphology became even aggregated. At last, the cell cytotoxicity of the hybrids was estimated by MTT assays on the human lung cancer cells (A549), and the results stated that MTX/LDHs hybrids had effective suppress role on the proliferation of cancer cells.

  17. Coexistence of localized and itinerant magnetism in intercalated iron-selenide (Li,Fe)OHFeSe

    NASA Astrophysics Data System (ADS)

    Liu, Da-Yong; Sun, Zhe; Zou, Liang-Jian

    2017-02-01

    The electronic structure and magnetism of a new magnetic intercalation compound (Li0.8Fe0.2)OHFeSe are investigated theoretically. The electronic structure calculations predict that the Fe in the (Li,Fe)OH intercalated layer is in a +2 valence state, i.e. there is electron doping to the FeSe layer, resulting in the shrinking of the Fermi surface (FS) pocket around Γ and a strong suppression of dynamical spin susceptibility at M in comparison with the bulk FeSe compound. The ground state of the FeSe layer is a striped antiferromagnetic (SAFM) metal, while the (Li,Fe)OH layer displays a very weak localized magnetism, with an interlayer ferromagnetic (FM) coupling between the FeSe and intercalated (Li,Fe)OH layers. Moreover, the (Li,Fe)OH is more than a block layer; it is responsible for enhancing the antiferromagnetic (AFM) correlation in the FeSe layer through interlayer magnetic coupling. We propose that the magnetic spacer layer introduces a tuning mechanism for spin fluctuations associated with superconductivity in iron-based superconductors.

  18. Adsorption, intercalation and diffusion of Na on defective bilayer graphene: a computational study

    NASA Astrophysics Data System (ADS)

    Yang, Shaobin; Li, Sinan; Tang, Shuwei; Shen, Ding; Dong, Wei; Sun, Wen

    2017-04-01

    The interaction between inserted/adsorbed Na and the structures of pristine and defective bilayer graphene (BLG) with Stone-Wales (SW), mono-vacancy (MV) and divacancy (DV) defects have been investigated by the first-principles calculations. The computational results show that the intercalation of Na in the interlayer of BLG with DV defects is more energetically favorable than Na adsorption on the surface. The lower formation energies of Na adsorption/intercalation on/in the BLG with DV defect reflect a stronger attraction between Na and DV defects compared with MV and SW defects. A significant charge transfer occurs from Na to near graphene layer(s) of BLG. The adsorption and intercalation of Na not only induce more significant structural distortion into the upper layer graphene with SW defect but also spin polarization for MV and DV defects. The results of migration energy barriers show that Na prefers to diffuse toward the DV site, and the diffusion outward the DV site is more difficult in comparison with the SW and MV defects. As a consequence, more Na atoms would be trapped in the region of the DV defect, leading to larger capacity than SW and MV defects.

  19. Formation of mixed-layer structures in smectites intercalated with tryptone

    NASA Astrophysics Data System (ADS)

    Block, K. A.; Trusiak, A.; Steiner, J. C.; Katz, A.; Gottlieb, P.; Alimova, A.

    2012-12-01

    Stable clay-protein complexes are fundamental to studies of the critical zone, terrestrial ecosystems, pharmacology, and industrial applications such as bioremediation. Two sets of montmorillonite clays were purified and made homoionic for Na and Mg. Mg-montmorillonite and Na-montmorillonite were mixed with tryptone (casein digest) in a 9:1 and 18:1 clay:tryptone ratio, resulting in the formation of reversible intercalated structures. X-ray diffraction analysis of the protein-clay complexes produced profiles consisting of two peaks associated with the smectite 001 reflection and a related tryptone-packet peak similar to that produced by a mixed layer clay structure. Shifts in the 002, 003, and 004 diffraction maxima are attributed to disorder caused by the interaction with the protein. Line broadening in the smectite-tryptone XRD spectra is interpreted to be the result of interlayer absorption. Adsorption produces coherent crystalline packets of regularly interbedded tryptone and smectite platelets. SEM images reveal clay platelets with upwardly rolled edges that tend toward cylindrical structures with the production of occasional tubes in the smaller platelet size range as noted for organic compound-kaolinite intercalation reported by Fenoll Hach-Ali and Weiss (1969). Reference: Fenoll Hach-Ali, P.F., Weiss, A., 1969. Estudio de la reaccion de caolinita y N-metilform- amida. Quimica LXV, 769-790. Scanning electron micrograph of tryptone-intercalated clay platelets exhibiting rolled edge structure.

  20. Enhancing the sorption capacity of CTMA-bentonite by simultaneous intercalation of cationic polyacrylamide.

    PubMed

    Wang, Tong; Zhu, Jianxi; Zhu, Runliang; Ge, Fei; Yuan, Peng; He, Hongping

    2010-06-15

    The saturated level of cationic exchange capacity (CEC) of bentonite by organic cations can significantly influence the sorption capacity of the resulting organobentonites. In this work cationic polyacrylamide (CPAM) was applied to saturate part of the CEC of the cetyltrimethylammonium (CTMA) modified bentonite, with the aim to enhance their sorption capacity. XRD was applied to investigate the basal spacings of the organobentonites with and without CPAM, and the sorption characteristics of the organobentonites towards phenol and nitrobenzene to CTMA-bentonite was also studied. The XRD characterization results showed that the resulting organobentonites (C/P-Bt) had larger basal spacings than the CTMA modified bentonite (C-Bt), which indicated that both CPAM and CTMA could intercalate into the interlayer spaces of C/P-Bt. The saturated CEC of C/P-Bt increased with the intercalated amounts of CPAM. The sorption coefficients (K(d)) of phenol and nitrobenzene on C/P-Bt were shown to first increase with the saturated CEC until the maximum, and then began to decrease as the saturated CEC further increased. The maximum increase of K(d) reached 41% and 23% for phenol and nitrobenzene, respectively, which could be ascribed to the enhanced affinity of the adsorbed CTMA aggregates towards the sorbates. Results of this work showed that the simultaneous intercalation of CPAM could be a novel method to enhance the sorption capacity of the traditional organobentonites.

  1. Controlling the actuation properties of MXene paper electrodes upon cation intercalation

    DOE PAGES

    Come, Jeremy E.; Black, Jennifer M.; Naguib, Michael; ...

    2015-08-05

    Atomic force microscopy was used to monitor the macroscopic deformation in a delaminated Ti₃C₂ paper electrode in-situ, during charge/discharge in a variety of aqueous electrolytes to examine the effect of the cation intercalation on the electrochemical behavior and mechanical response. The results show a strong dependence of the electrode deformation on cation size and charge. The electrode undergoes a large contraction during Li⁺, Na⁺ or Mg²⁺ intercalation, differentiating the Ti₃C₂ paper from conventional electrodes where redox intercalation of ions (e.g. Li⁺) into the bulk phase (e.g. graphite, silicon) results in volumetric expansion. This feature may explain the excellent rate performancemore » and cyclability reported for MXenes. We also demonstrated that the variation of the electromechanical contraction can be easily adjusted by electrolyte exchange, and shows interesting characteristics for the design of actuators based on 2D metal carbides.« less

  2. Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells

    NASA Astrophysics Data System (ADS)

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A.

    2011-08-01

    Fluctuations in the size of the apical cell surface have been associated with apical constriction and tissue invagination. However, it is currently not known if apical oscillatory behaviors are a unique property of constricting cells or if they constitute a universal feature of the force balance between cells in multicellular tissues. Here, we set out to determine whether oscillatory cell behaviors occur in parallel with cell intercalation during the morphogenetic process of axis elongation in the Drosophila embryo. We applied multi-color, time-lapse imaging of living embryos and SIESTA, an integrated tool for automated and semi-automated cell segmentation, tracking, and analysis of image sequences. Using SIESTA, we identified cycles of contraction and expansion of the apical surface in intercalating cells and characterized them at the molecular, cellular, and tissue scales. We demonstrate that apical oscillations are anisotropic, and this anisotropy depends on the presence of intact cell-cell junctions and spatial cues provided by the anterior-posterior patterning system. Oscillatory cell behaviors during axis elongation are associated with the hierarchical assembly and disassembly of contractile actomyosin structures at the medial cortex of the cell, with actin localization preceding myosin II and with the localization of both proteins preceding changes in cell shape. We discuss models to explain how the architecture of cytoskeletal networks regulates their contractile behavior and the mechanisms that give rise to oscillatory cell behaviors in intercalating cells.

  3. Stabilization of battery electrodes through chemical pre-intercalation of layered materials

    NASA Astrophysics Data System (ADS)

    Clites, Mallory; Pomerantseva, Ekaterina

    2016-09-01

    Vanadium oxide with bilayered crystal structure shows high specific capacity in intercalation-based energy storage systems, such as Li-ion and Na-ion batteries. The enhanced charge storage ability is attributed to the high oxidation state of vanadium enabling intercalation of more than one Li+ (or Na+) ion per V2O5 unit cell. In addition, large interlayer spacing of 10-13 Å, typical for the bilayered vanadium oxide, is believed to lead to the facilitated diffusion of charge carrying ions further improving specific capacity of this material. However, we found that initial high capacity of the bilayered V2O5 notably decreases only after a few cycles. In this work, we show results of the capacity stabilization strategy based on inclusion of inorganic ions, other than lithium ion, between the structural layers using chemical pre-intercalation approach. These ions are believed to form bonds with the V-O layered framework improving structural stability of the material during electrochemical cycling, and therefore they are often called stabilizing ions. In this paper we report how electrochemical stability of the AxV2O5 (A = Na, K, Mg, Ca) cathode materials is correlated with the size and charge of the stabilizing ions. Li-preintercalated vanadium oxide (LixV2O5) served as the reference material in this study. We found that chemical insertion of doubly charged, small (r = 0.86 Å) Mg2+ stabilizing ion results in the highest capacity retention.

  4. Spin-induced band modifications of graphene through intercalation of magnetic iron atoms.

    PubMed

    Sung, S J; Yang, J W; Lee, P R; Kim, J G; Ryu, M T; Park, H M; Lee, G; Hwang, C C; Kim, Kwang S; Kim, J S; Chung, J W

    2014-04-07

    Intercalation of magnetic iron atoms through graphene formed on the SiC(0001) surface is found to induce significant changes in the electronic properties of graphene due mainly to the Fe-induced asymmetries in charge as well as spin distribution. From our synchrotron-based photoelectron spectroscopy data together with ab initio calculations, we observe that the Fe-induced charge asymmetry results in the formation of a quasi-free-standing bilayer graphene while the spin asymmetry drives multiple spin-split bands. We find that Fe adatoms are best intercalated upon annealing at 600 °C, exhibiting split linear π-bands, characteristic of a bilayer graphene, but much diffused. Subsequent changes in the C 1s, Si 2p, and Fe 3p core levels are consistently described in terms of Fe-intercalation. Our calculations together with a spin-dependent tight binding model ascribe the diffuse nature of the π-bands to the multiple spin-split bands originated from the spin-injected carbon atoms residing only in the lower graphene layer.

  5. Low-Voltage Voltammetric Electrowetting of Graphite Surfaces by Ion Intercalation/Deintercalation.

    PubMed

    Zhang, Guohui; Walker, Marc; Unwin, Patrick R

    2016-08-02

    We demonstrate low-voltage electrowetting at the surface of freshly cleaved highly oriented pyrolytic graphite (HOPG). Using cyclic voltammetry (CV), electrowetting of a droplet of a sodium perchlorate solution is observed at moderately positive potentials on high-quality (low step edge coverage) HOPG, leading to significant changes in the contact angle and relative contact diameter that are comparable to the results of the widely studied electrowetting on dielectric (EWOD) system, but over a much lower voltage range. The electrowetting behavior is found to be reasonably fast, reversible, and repeatable for at least 20 cyclic scans (maximum tested). In contrast to classical electrowetting, e.g., EWOD, the electrowetting of the droplet on HOPG occurs with the intercalation/deintercalation of anions between the graphene layers of graphite, driven by the applied potential, observed in the CV response, and detected by X-ray photoelectron spectroscopy. The electrowetting behavior is strongly influenced by those factors that affect the extent of the intercalation/deintercalation of ions on graphite, such as potential range scan rate, potential polarity, quality of the HOPG substrate (step edge density and step height), and type of anion in the solution. In addition to perchlorate, sulfate salts also promote electrowetting, but some other salts do not. Our findings suggest a new mechanism for electrowetting based on ion intercalation, and the results are important to fundamental electrochemistry as well as to diversifying the means by which electrowetting can be controlled and applied.

  6. Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries

    PubMed Central

    Yadav, Gautam G.; Gallaway, Joshua W.; Turney, Damon E.; Nyce, Michael; Huang, Jinchao; Wei, Xia; Banerjee, Sanjoy

    2017-01-01

    Manganese dioxide cathodes are inexpensive and have high theoretical capacity (based on two electrons) of 617 mAh g−1, making them attractive for low-cost, energy-dense batteries. They are used in non-rechargeable batteries with anodes like zinc. Only ∼10% of the theoretical capacity is currently accessible in rechargeable alkaline systems. Attempts to access the full capacity using additives have been unsuccessful. We report a class of Bi-birnessite (a layered manganese oxide polymorph mixed with bismuth oxide (Bi2O3)) cathodes intercalated with Cu2+ that deliver near-full two-electron capacity reversibly for >6,000 cycles. The key to rechargeability lies in exploiting the redox potentials of Cu to reversibly intercalate into the Bi-birnessite-layered structure during its dissolution and precipitation process for stabilizing and enhancing its charge transfer characteristics. This process holds promise for other applications like catalysis and intercalation of metal ions into layered structures. A large prismatic rechargeable Zn-birnessite cell delivering ∼140 Wh l−1 is shown. PMID:28262697

  7. Spectroscopic study of the polymerization of intercalated anilinium ions in different montmorillonite clays

    NASA Astrophysics Data System (ADS)

    do Nascimento, Gustavo M.; Temperini, Marcia L. A.

    2011-09-01

    The polymerization of the intercalated aniline ions was studied in three different clays, Swy2-montmorillonite (MMT), synthetic mica-montmorillonite (Syn1) and pillarized Swy2-montmorillonite (PILC). PANI is formed between the MMT and Syn1 clay layers, being confirmed by the shift of d001 peak in the X-ray pattern. X-ray Absorption near to Si K edge (Si K XANES) data show that the structures of clays are preserved after the polymerization process and in addition to the SEM images show that morphologies of the clays are maintained after polymerization, indicating no polymerization in their external surface. UV-vis-NIR and resonance Raman data display that the PANI formed in Syn1 galleries has higher amount of phenazinic rings than observed for PANI intercalated in montmorillonite (MMT) clay. No polymer formation was detected in the PILC. N K XANES and EPR spectroscopies show the presence of azo and radical nitrogen in intercalated PANI chains. Hence, the results are rationalized considering the structural differences between the clays for understanding the role of the anilinium polymerization within the clays galleries.

  8. Properties of hybrid CVD/PAN graphite fibers and their bromine intercalation compounds

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Lake, Max L.; Moinuddin, Alia; Marabito, Mark

    1992-01-01

    A hybrid fiber with a PAN core surrounded by a vapor grown carbon fiber (VGCF) sheath was fabricated using a proprietary process. The density, ultimate tensile strength, Young's modulus, and resistivity of pristine and bromine intercalated fibers made by this technique having diameters varying from 5 to 50 microns were compared with the values predicted from the rule of mixtures model. For both the pristine and intercalated fibers, the density, ultimate tensile strength, and Young's modulus of the fibers were lower than predicted, but the resistivity was measured to be consistent with predictions. The lower than theoretical mechanical properties may be evidence of a low density disordered interface between the core and the sheath which would lower the density and degrade the mechanical properties, but would leave the resistivity nearly unaffected. Intercalation had little if any effect on the ultimate tensile strength and Young's modulus, but raised the density by about 11 pct., and lowered the resistivity by an order of magnitude. The diameter dependence of the resistivity showed evidence of a depletion layer of the type found in VGCF.

  9. Properties of novel CVD graphite fibers and their bromine intercalation compounds

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Lake, Max L.; Moinuddin, Alia; Marabito, Mark

    1991-01-01

    A hybrid fiber with a PAN core surrounded by a vapor grown carbon fiber (VGCF) sheath was fabricated using a proprietary process. The density, ultimate tensile strength, Young's modulus, and resistivity of pristine and bromine intercalated fibers made by this technique having diameters varying from 5 to 50 microns were compared with the values predicted from the rule of mixtures model. For both the pristine and intercalated fibers, the density, ultimate tensile strength, and Young's modulus of the fibers were lower than predicted, but the resistivity was measured to be consistent with predictions. The lower than theoretical mechanical properties may be evidence of a low density disordered interface between the core and the sheath which would lower the density and degrade the mechanical properties, but would leave the resistivity nearly unaffected. Intercalation had little if any effect on the ultimate tensile strength and Young's modulus, but raised the density by about 11 pct., and lowered the resistivity by an order of magnitude. The diameter dependence of the resistivity showed evidence of a depletion layer of the type found in VGCF.

  10. Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions.

    PubMed

    Wang, Nan; Sun, Jianchao; Fan, Hai; Ai, Shiyun

    2016-01-01

    In this work, a novel approach for facile and rapid detection of heavy metal ions using anion-intercalated layered double hydroxides (LDHs) modified test strips is demonstrated. By intercalating Fe(CN)6(4-) or S(2-) anions into the interlayers of LDHs on the filter paper, various heavy metal ions can be easily detected based on the color change before and after reaction between the anions and the heavy metal ions. Upon the dropping of heavy metal ions solutions to the test strips, the colors of the test strips changed instantly, which can be easily observed by naked eyes. With the decrease of the concentration, the color depth changed obviously. The lowest detection concentration can be up to 1×10(-6) mol L(-1). Due to the easily intercalation of anions into the interlayer of the LDHs on test trips, this procedure provides a general method for the construction of LDHs modified test strips for detection of heavy metal ions. The stability of the prepared test strips is investigated. Furthermore, all the results were highly reproducible. The test strips may have potential applications in environmental monitoring fields.

  11. Interplay between intercalated oxygen superstructures and monolayer h -BN on Cu(100)

    DOE PAGES

    Ma, Chuanxu; Park, Jewook; Liu, Lei; ...

    2016-08-18

    The confinement effect of intercalated atoms in van der Waals heterostructures can lead to interesting interactions between the confined atoms or molecules and the overlaying two-dimensional (2D) materials. In this paper, we report the formation of ordered Cu(100) p(2×2) oxygen superstructures by oxygen intercalation under the monolayer hexagonal boron nitride (h-BN) on Cu after annealing. By using scanning tunneling microscopy and x-ray photoelectron spectroscopy, we identify the superstructure and reveal its roles in passivating the exposed Cu surfaces, decoupling h-BN and Cu, and disintegrating h-BN monolayers. The oxygen superstructure appears as a 2D pattern on the exposed Cu surface ormore » quasi-1D stripes of paired oxygen intercalated in the interface of h-BN and Cu predominantly oriented along the moiré modulations. The oxygen superstructure is shown to etch the overlaying h-BN monolayer in a thermal annealing process. After extended annealing, the h-BN monolayer disintegrates into nanoislands with zigzag edges. Finally, we discuss the implications of these findings on the stability and oxidation resistance of h-BN and relate them to challenges in process integration and 2D heterostructures.« less

  12. Intercalation of IR absorber into layered double hydroxides: Preparation, thermal stability and selective IR absorption

    SciTech Connect

    Zhu, Haifeng; Tang, Pinggui; Feng, Yongjun; Wang, Lijing; Li, Dianqing

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer PMIDA anions were intercalated into Mg{sub 2}Al-NO{sub 3} LDH by anion-exchange method. Black-Right-Pointing-Pointer The prepared material has highly selective IR absorption property in 9-11 {mu}m. Black-Right-Pointing-Pointer The obtained material has practical applications as heat-retaining additive. -- Abstract: N-phosphonomethyl aminodiacetic acid (PMIDA) was intercalated into the interlayer spacing of layered double hydroxides (LDH) by an anion-exchange method. The intercalated LDHs were characterized by various techniques such as powder X-ray diffraction (XRD), FT-IR spectroscopy, elemental analysis and simultaneous thermogravimetric and mass spectrometry (TG-MS) in details. The results show the formation of Mg{sub 2}Al-PMIDA LDH based on the expansion of d-spacing from 0.89 nm to 1.22 nm and the disappearance of the characteristic IR absorption band at 1384 cm{sup -1} for NO{sub 3}{sup -} anions. The incorporation of Mg{sub 2}Al-PMIDA LDH into the low density polyethylene (LDPE) as an additive enhances the selectivity of IR absorption in the main wavelength region 9-11 {mu}m for radiant heat loss at night. Mg{sub 2}Al-PMIDA LDH as a heat-retaining additive has practical application in agricultural plastic films.

  13. Effect of length of chopped pristine and intercalated graphite fibers on the resistivity of fiber networks

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Stahl, Mark

    1988-01-01

    Samples of Amoco P-100 fibers were chopped to lengths of 3.14, 2.53, 1.90, 1.27, 0.66 mm, or milled for 2 hours. The two-point resistivity of compacts of these fibers were measured as a function of pressure from 34 kPa to 143 MPa. Samples of each fiber length were intercalated with bromine at room temperature and similarly measured. The low pressure resistivity of the compacts decreased with increasing fiber length. Intercalation lowered the resistivity of each of the chopped length compacts, but raised the resistivity of the milled fiber compacts. Bulk resistivity of all samples decreased with increasing pressure at similar rates. Even though fiber volumes were as low as 5 percent, all measurements exhibited measurable resistivity. A greater change with pressure in the resistance was observed for shorter fibers than for longer, probably an indication of tighter fiber packing. Intercalation appeared to have no effect on the fiber to fiber contact resistance.

  14. Adsorption and kinetic studies of the intercalation of some organic compounds onto Na+-montmorillonite.

    PubMed

    Gemeay, A H; El-Sherbiny, A S; Zaki, A B

    2002-01-01

    The adsorption and the kinetics of the intercalation of metanil yellow dye, p-aminodiphenylamine (p-NH(2)-DPA), and benzidine by colloidally dispersed Na(+)-montmorillonte (Na(+)-MMT) have been studied. The adsorption isotherm parameters confirmed the occurrence of chemical adsorption that is based on the cation-exchange process. The selectivity of these compounds toward Na(+)-MMT follows the order metanil yellowintercalates. The attainment of sorption equilibrium and the diffusion coefficient follows the order metanil yellow>p-NH(2)-DPA>benzidine. The rate of oxidation has been quantitatively measured using a stopped-flow spectrophotometer. The rate constant follows the order benzidineintercalation process.

  15. Optical properties of tungsten oxide thin films with protons intercalated during sputtering

    SciTech Connect

    Yamada, Y.; Tajima, K.; Bao, S.; Okada, M.; Yoshimura, K.; Roos, A.

    2008-03-15

    Tungsten oxide thin films with protons intercalated during deposition (H{sub x}WO{sub 3}) were prepared using reactive direct-current-magnetron sputtering in a gas mixture of argon, oxygen, and hydrogen. The as-deposited films fabricated under suitable conditions were colored due to the formation of tungsten bronze. The concentration of intercalated protons, given by the x values in H{sub x}WO{sub 3}, was evaluated by ejecting protons electrochemically from the films. The x value of the films prepared at a constant working pressure was found to be proportional to the hydrogen flow ratio during deposition. On the other hand, the x value of the films prepared at a constant hydrogen flow ratio decreased sharply with increasing working pressure during deposition. The dispersion of the extinction coefficient ({kappa}) of the films was estimated by analyzing the experimental spectra of {psi} and {delta} measured with spectroscopic ellipsometry using the model composed of a homogeneous tungsten bronze layer with an additional surface roughness layer. As a result of this analysis, the {kappa} value was found to increase sharply with the number of intercalated protons. There was a linear dependence between the {kappa} value and the x value for x<0.2, while for x>0.3, the absorption saturated. This indicates that it is possible to evaluate the x value of H{sub x}WO{sub 3} films using spectroscopic ellipsometry.

  16. Vacuum-Deposited Porphyrin Protective Films on Graphite: Electrochemical Atomic Force Microscopy Investigation during Anion Intercalation.

    PubMed

    Yivlialin, Rossella; Bussetti, Gianlorenzo; Penconi, Marta; Bossi, Alberto; Ciccacci, Franco; Finazzi, Marco; Duò, Lamberto

    2017-02-01

    The development of graphene products promotes a renewed interest toward the use of graphite in addition to the historical one for its proven viability as battery electrode. However, when exposed to harsh conditions, the graphite surface ages in ways that still need to be fully characterized. In applications to batteries, to optimize the electrode performances in acid solutions, different surface functionalizations have been studied. Among them, aromatic molecules have been recently proposed. In this communication, we report on the protective effect exerted by a physical-vapor-deposited porphyrin layer. Metal-free tetra-phenyl-porphyrins were deposited on a highly oriented pyrolytic graphite crystal to study the modifications that occur during anion intercalation in graphite. The graphite electrode was plunged in an electrolyte solution of 1 M sulfuric acid and subjected to cyclic voltammetry. The results indicate that blister formation, the characteristic swelling of graphite surface induced by anion intercalation, is significantly perturbed by the porphyrin overlayer; the process is inhibited in those areas where the protective porphyrin film is present. We ascribe the inhibition of the anion intercalation to the protective porphyrin wetting layer.

  17. Adsorption of the harmful hormone ethinyl estradiol inside hydrophobic cavities of CTA(+) intercalated montmorillonite.

    PubMed

    Burgos, A E; Ribeiro-Santos, Tatiana A; Lago, Rochel M

    Hydrophobic cavities produced by cetyltrimethylammonium cation (CTA(+)) exchanged and trapped in the interlayer space of montmorillonite were used to remove the harmful hormone contaminant ethinyl estradiol (EE2) from water. X-ray diffraction, thermogravimetry/derivative thermogravimetry, elemental analysis (carbon, hydrogen, nitrogen), Fourier transform infrared, scanning electron microscopy/energy dispersive spectroscopy, Brunauer-Emmett-Teller and contact angle analyses showed that the intercalation of 9, 16 and 34 wt% CTA(+) in the montmorillonite resulted in the d001 expansion from 1.37 to 1.58, 2.09 and 2.18 nm, respectively. EE2 adsorption experiments showed that the original clay montmorillonite does not remove EE2 from water whereas the intercalated composites showed high efficiency with adsorption capacities of 4.3, 8.8 and 7.3 mg g(-1) for M9CTA(+), M16CTA(+) and M34CTA(+), respectively. Moreover, experiments with montmorillonite simply impregnated with cetyltrimethylammonium bromide showed that the intercalation of CTA(+) to form the hydrophobic cavity is very important for the adsorption properties. Simple solvent extraction can be used to remove the adsorbed EE2 without significant loss of CTA(+), which allows the recovery and reuse of the adsorbent for at least five times.

  18. Preparation of poly(aniline-co-o-anisidine)-intercalated mesostructured manganese oxide composites by exchange reaction

    SciTech Connect

    Wang Gengchao Yang Zhenyu; Li Xingwei; Li Chunzhong; Yuan Weikang

    2008-08-04

    Layered mesostructured manganese oxide (mesostructured MnO{sub 2}) was synthesized using manganese chloride and lithium hydroxide as the raw materials and cetyltrimethylammonium bromide (CTAB) as the structure-directing agent. Poly(aniline-co-o-anisidine)-intercalated mesostructured MnO{sub 2} composites (P(An-co-oAs)/MnO{sub 2}) were synthesized in an organic solvent through the exchange reaction between the CTAB in MnO{sub 2} gallery and the P(An-co-oAs). The interlayer spacing (I{sub c} values) of mesostructured MnO{sub 2} enlarged from 2.52 to 4.41 nm as the added amount of P(An-co-oAs) increased from 0 to 0.5 g per 0.5 g of mesostructured MnO{sub 2}. The regularity of the layered structure of the composites was firstly decreased due to intercalation of low amounts of P(An-co-oAs). However, with increasing the intercalated amount of P(An-co-oAs) the layered structure of the composites becomes more regular. The electrical conductivity of the composites is 10{sup 2} to 10{sup 3} times higher than that of the mesostructured MnO{sub 2}.

  19. Preparation of graphite oxide by sodium cholate intercalation and sonication from Indonesian natural graphite

    NASA Astrophysics Data System (ADS)

    Panatarani, Camellia; Maulana, Ayu Oktama; Rianto, Anton; Joni, I. Made

    2016-02-01

    Graphite oxide is widely use in renewable energy application such as solar cells, fuel-cells, battery electrodes, catalyst support, etc. This paper reports the preparation of graphite oxide from Indonesian natural graphite by sodium cholate intercalation. The enrichment process of as received graphite with carbon content of 60% was carried out by using acid leaching (HF) method. The enrichment process successfully obtained graphite with carbon content 95.61% with contaminant minerals observed by EDS were magnesium and aluminum. Purified graphite was then intercalated by sodium cholate at various concentration and sonication time. The XRD results shows that preparation with concentration of sodium cholate 2 Wt.% and sonication 10 hours formed a peak characteristic of graphite oxide at 2θ=15°. In addition, the successful oxidation process designated by the C/O ratio of 15.75 observed from EDS and supported by the present of functional C-H and C-O obtained from the FTIR observation. It is concluded that the graphite oxide successfully prepared by intercalation using sodium cholate and sonication.

  20. Intercalation synthesis of graphene-capped iron silicide atop Ni(111): Evolution of electronic structure and ferromagnetic ordering

    NASA Astrophysics Data System (ADS)

    Grebenyuk, G. S.; Vilkov, O. Yu.; Rybkin, A. G.; Gomoyunova, M. V.; Senkovskiy, B. V.; Usachov, D. Yu.; Vyalikh, D. V.; Molodtsov, S. L.; Pronin, I. I.

    2017-01-01

    A new method for synthesis of graphene-protected iron silicides has been tested, which consists in formation of graphene on Ni(111) followed by two-step intercalation of the system with Fe and Si. Characterization of the samples was performed in situ by low-energy electron diffraction, angular-resolved photoelectron spectroscopy, core-level photoelectron spectroscopy with synchrotron radiation and magnetic linear dichroism in photoemission of Fe 3p electrons. It is shown, that at 400 °C the intercalation of graphene/Ni(111) with iron occurs in a range up to 14 ML. The graphene layer strongly interacts with the topmost Fe atoms and stabilizes the fcc structure of the film. The in-plane ferromagnetic ordering of the film has a threshold nature and arises after the intercalation of 5 ML Fe due to the thickness-driven spin reorientation transition. Subsequent intercalation of graphene/Fe/Ni(111) with Si leads to the formation of the inhomogeneous system consisted of intercalated and nonintercalated areas. The intercalated islands coalesce at 2 ML Si when a Fe-Si solid solution covered with the Fe3Si surface silicide is formed. The Fe3Si silicide is ferromagnetic and has an ordered (√3 × √3)R30° structure. The graphene layer is weakly electronically coupled to the silicide phase keeping its remarkable properties ready for use.

  1. Anode-electrolyte double-layer of Li-ion batteries: Structure and Li-ion intercalation

    NASA Astrophysics Data System (ADS)

    Wipf, David O.; Abou Hamad, Ibrahim; Rikvold, Per Arne; Novotny, Mark A.

    2011-03-01

    The electrochemical double-layer structure plays an important role in Li-ion intercalation during charging of Li-ion batteries with a graphite anode. In our recent Molecular Dynamics studies of a proposed accelerated charging method [I. Abou Hamad~et al., Phys. Chem. Chem. Phys. 12, 2740-2743 (2010)], we notice that ethylene carbonate and propylene carbonate molecules of the electrolyte assemble themselves in a preferred orientation at the electrode-electrolyte interface. On the other hand, they are randomly oriented in the bulk electrolyte. We show that the structure of the double layer is affected by the intercalating Li-ion: while the dipole moments of double-layer molecules far from the intercalating Li-ion point toward the graphite sheets of the anode, they point away from the intercalation site close to the intercalating Li-ion. This observation should contribute to a better understanding of the intercalation process. This work was supported in part by NSF Grant No. DMR-0802288.

  2. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 Å and its rearrangement upon peroxide treatment

    NASA Astrophysics Data System (ADS)

    Zsirka, Balázs; Horváth, Erzsébet; Szabó, Péter; Juzsakova, Tatjána; Szilágyi, Róbert K.; Fertig, Dávid; Makó, Éva; Varga, Tamás; Kónya, Zoltán; Kukovecz, Ákos; Kristóf, János

    2017-03-01

    Surface modification of the halloysite-10 Å mineral with tubular morphology can be achieved by slightly modified procedures developed for the delamination of kaolinite minerals. The resulting delaminated halloysite nanoparticles have unexpected surface/morphological properties that display, new potentials in catalyst development. In this work, a four-step intercalation/delamination procedure is described for the preparation of thin-walled nanoscrolls from the multi-layered hydrated halloysite mineral that consists of (1) intercalation of halloysite with potassium acetate, (2) replacement intercalation with ethylene glycol, (3) replacement intercalation with hexylamine, and (4) delamination with toluene. The intercalation steps were followed by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, thermogravimetry, and infrared spectroscopy. Delamination eliminated the crystalline order and the crystallite size along the 'c'-axis, increased the specific surface area, greatly decreased the thickness of the mineral tubes to a monolayer, and shifted the pore diameter toward the micropore region. Unexpectedly, the removal of residual organics from intercalation steps adsorbed at the nanoscroll surface with a peroxide treatment resulted in partial recovery of crystallinity and increase of crystallite size along the 'c'-crystal direction. The d(001) value showed a diffuse pattern at 7.4-7.7 Å due to the rearrangement of the thin-walled nanoscrolls toward the initial tubular morphology of the dehydrated halloysite-7 Å mineral.

  3. Layered double hydroxide intercalated with p-methylbenzoate and p-bromobenzoate: molecular simulations and XRD analysis.

    PubMed

    Kovár, Petr; Melánová, Klára; Zima, Vítezslav; Benes, Ludvík; Capková, Pavla

    2008-03-01

    Samples of Mg4Al2 layered double hydroxide (LDH) intercalated with p-methylbenzoate and p-bromobenzoate anions were prepared by reconstruction of calcined LDH. The interlayer arrangement of guests was investigated by molecular modeling combined with X-ray powder diffraction and thermogravimetry. Molecular modeling was carried out in a Cerius2 modeling environment. In both structures the guest anions adopt a nearly perpendicular arrangement of their long axis with respect to the host layers and they are anchored to the OH groups of the layers through COO* groups via electrostatic interactions. Molecular modeling revealed that both structures of the intercalates exhibit a certain disorder of guest anions in the interlayer space. In the case of LDH-p-methylbenzoate intercalate the anions tend to be situated in disordered rows, and the LDH-p-bromobenzoate intercalate exhibits a total disorientation of guest anions. A good agreement between calculated and measured X-ray diffraction patterns and between experimental and calculated basal spacings was obtained. In the LDH-p-methylbenzoate intercalate d exp=16.96 A and d calc=16.97 A, and in the case of LDH-p-bromobenzoate intercalate d exp=17.19 A and d calc=17.40 A.

  4. 14 CFR 406.143 - Discovery.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... after a complaint has been filed. (b) Methods of discovery. The following methods of discovery are... discovery methods permitted under this section; or (4) The method or scope of discovery requested by the... method of discovery; or (3) Limit the scope of discovery or preclude any inquiry into certain...

  5. The Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Millis, R. L.; Dunham, E. W.; Sebring, T. A.; Smith, B. W.; de Kock, M.; Wiecha, O.

    2004-11-01

    The Discovery Channel Telescope (DCT) is a 4.2-m telescope to be built at a new site near Happy Jack, Arizona. The DCT features a large prime focus mosaic CCD camera with a 2-degree-diameter field of view especially designed for surveys of KBOs, Centaurs, NEAs and other moving or time-variable targets. The telescope can be switched quickly to a Ritchey-Chretien configuration for optical/IR spectroscopy or near-IR imaging. This flexibility allows timely follow-up physical studies of high priority objects discovered in survey mode. The ULE (ultra-low-expansion) meniscus primary and secondary mirror blanks for the telescope are currently in fabrication by Corning Glass. Goodrich Aerospace, Vertex RSI, M3 Engineering and Technology Corp., and e2v Technologies have recently completed in-depth conceptual design studies of the optics, mount, enclosure, and mosaic focal plane, respectively. The results of these studies were subjected to a formal design review in July, 2004. Site testing at the 7760-ft altitude Happy Jack site began in 2001. Differential image motion observations from 117 nights since January 1, 2003 gave median seeing of 0.84 arcsec FWHM, and the average of the first quartile was 0.62 arcsec. The National Environmental Policy Act (NEPA) process for securing long-term access to this site on the Coconino National Forest is nearing completion and ground breaking is expected in the spring of 2005. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately undertaken with the DCT. An additional partner can be accommodated in the project. Interested parties should contact the lead author.

  6. Chronicles in drug discovery.

    PubMed

    Khurdayan, V; Bozzo, J; Sorbera, L

    2005-06-01

    Chronicles in Drug Discovery is a series of brief reports on timely topics in the field of drug R&D. This month's chronicles contain the following reports: Targeting DNA repair enzymes instead of viral proteins provides a great advantage in preventing the emergence of resistant mutants. A striking increase in therapeutic approaches for the treatment of IBD has been fueled by an improved understanding of the mechanisms that underlie its pathophysiology. Peptide deformylase inhibitors are under active investigation for bacterial infections and cancer treatment. Dopamine D3 receptors present an attractive target for alcoholism therapy since they are involved in the mechanisms of alcohol dependency and abuse.

  7. Research Discoveries After Kubin.

    PubMed

    Vensko, Nancy W; Ferguson, Steven M

    2010-01-01

    This paper will discuss commercializing discoveries made at research organizations, particularly with a view to the In re Kubin case, decided April 3, 2009, by the Federal Circuit. Here, the existence of a general method of isolating DNA molecules was held to be relevant to the question whether the DNA molecules themselves would have been obvious under § 103 of the patent act. How are DNA inventions patented anyway? What does it take for academic research to reach patients? How might the decision of In re Kubin effect research commercialization and technology transfer?

  8. Drug discovery in jeopardy

    PubMed Central

    Cuatrecasas, Pedro

    2006-01-01

    Despite striking advances in the biomedical sciences, the flow of new drugs has slowed to a trickle, impairing therapeutic advances as well as the commercial success of drug companies. Reduced productivity in the drug industry is caused mainly by corporate policies that discourage innovation. This is compounded by various consequences of mega-mergers, the obsession for blockbuster drugs, the shift of control of research from scientists to marketers, the need for fast sales growth, and the discontinuation of development compounds for nontechnical reasons. Lessons from the past indicate that these problems can be overcome, and herein, new and improved directions for drug discovery are suggested. PMID:17080187

  9. Research Discoveries After Kubin

    PubMed Central

    Vensko, Nancy W.; Ferguson, Steven M.

    2010-01-01

    This paper will discuss commercializing discoveries made at research organizations, particularly with a view to the In re Kubin case, decided April 3, 2009, by the Federal Circuit. Here, the existence of a general method of isolating DNA molecules was held to be relevant to the question whether the DNA molecules themselves would have been obvious under § 103 of the patent act. How are DNA inventions patented anyway? What does it take for academic research to reach patients? How might the decision of In re Kubin effect research commercialization and technology transfer? PMID:20543971

  10. Causality discovery technology

    NASA Astrophysics Data System (ADS)

    Chen, M.; Ertl, T.; Jirotka, M.; Trefethen, A.; Schmidt, A.; Coecke, B.; Bañares-Alcántara, R.

    2012-11-01

    Causality is the fabric of our dynamic world. We all make frequent attempts to reason causation relationships of everyday events (e.g., what was the cause of my headache, or what has upset Alice?). We attempt to manage causality all the time through planning and scheduling. The greatest scientific discoveries are usually about causality (e.g., Newton found the cause for an apple to fall, and Darwin discovered natural selection). Meanwhile, we continue to seek a comprehensive understanding about the causes of numerous complex phenomena, such as social divisions, economic crisis, global warming, home-grown terrorism, etc. Humans analyse and reason causality based on observation, experimentation and acquired a priori knowledge. Today's technologies enable us to make observations and carry out experiments in an unprecedented scale that has created data mountains everywhere. Whereas there are exciting opportunities to discover new causation relationships, there are also unparalleled challenges to benefit from such data mountains. In this article, we present a case for developing a new piece of ICT, called Causality Discovery Technology. We reason about the necessity, feasibility and potential impact of such a technology.

  11. Automated Supernova Discovery (Abstract)

    NASA Astrophysics Data System (ADS)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  12. Discovery Planetary Mission Operations Concepts

    NASA Technical Reports Server (NTRS)

    Coffin, R.

    1994-01-01

    The NASA Discovery Program of small planetary missions will provide opportunities to continue scientific exploration of the solar system in today's cost-constrained environment. Using a multidisciplinary team, JPL has developed plans to provide mission operations within the financial parameters established by the Discovery Program. This paper describes experiences and methods that show promise of allowing the Discovery Missions to operate within the program cost constraints while maintaining low mission risk, high data quality, and reponsive operations.

  13. Discovery and Classification in Astronomy

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2012-01-01

    Three decades after Martin Harwit's pioneering Cosmic Discovery (1981), and following on the recent IAU Symposium "Accelerating the Rate of Astronomical Discovery,” we have revisited the problem of discovery in astronomy, emphasizing new classes of objects. 82 such classes have been identified and analyzed, including 22 in the realm of the planets, 36 in the realm of the stars, and 24 in the realm of the galaxies. We find an extended structure of discovery, consisting of detection, interpretation and understanding, each with its own nuances and a microstructure including conceptual, technological and social roles. This is true with a remarkable degree of consistency over the last 400 years of telescopic astronomy, ranging from Galileo's discovery of satellites, planetary rings and star clusters, to the discovery of quasars and pulsars. Telescopes have served as "engines of discovery” in several ways, ranging from telescope size and sensitivity (planetary nebulae and spiral galaxies), to specialized detectors (TNOs) and the opening of the electromagnetic spectrum for astronomy (pulsars, pulsar planets, and most active galaxies). A few classes (radiation belts, the solar wind and cosmic rays), were initially discovered without the telescope. Classification also plays an important role in discovery. While it might seem that classification marks the end of discovery, or a post-discovery phase, in fact it often marks the beginning, even a pre-discovery phase. Nowhere is this more clearly seen than in the classification of stellar spectra, long before dwarfs, giants and supergiants were known, or their evolutionary sequence recognized. Classification may also be part of a post-discovery phase, as in the MK system of stellar classification, constructed after the discovery of stellar luminosity classes. Some classes are declared rather than discovered, as in the case of gas and ice giant planets, and, infamously, Pluto as a dwarf planet.

  14. Optogenetics enlightens neuroscience drug discovery.

    PubMed

    Song, Chenchen; Knöpfel, Thomas

    2016-02-01

    Optogenetics - the use of light and genetics to manipulate and monitor the activities of defined cell populations - has already had a transformative impact on basic neuroscience research. Now, the conceptual and methodological advances associated with optogenetic approaches are providing fresh momentum to neuroscience drug discovery, particularly in areas that are stalled on the concept of 'fixing the brain chemistry'. Optogenetics is beginning to translate and transit into drug discovery in several key domains, including target discovery, high-throughput screening and novel therapeutic approaches to disease states. Here, we discuss the exciting potential of optogenetic technologies to transform neuroscience drug discovery.

  15. Bioanalysis in oncology drug discovery.

    PubMed

    Srinivas, Nuggehally R; Mullangi, Ramesh

    2015-01-01

    Bioanalysis is an important aspect of drug discovery process regardless of the chosen therapeutic area. There is a general misconception that bioanalysis is seldom important during the drug discovery process because there is no scrutiny of the data from a regulatory perspective. However, bioanalytical data gathered during the discovery stage enable several key decision(s) inclusive of termination of the program and/or creating adequate differentiation from the lead competitive molecules. The review covers various stage gate screens and experimental designs where bioanalytical data are extensively used for making an informed decision during the process of drug discovery.

  16. Hubble: 20 Years of Discovery

    NASA Video Gallery

    Hubble's discoveries have revolutionized nearly all areas of current astronomical research from planetary science to cosmology. Actor and writer Brent Spiner narrates a visual journey back in time ...

  17. Mutagenicity of N-acyloxy-N-alkoxyamides as an indicator of DNA intercalation part 1: evidence for naphthalene as a DNA intercalator.

    PubMed

    Banks, Tony M; Clay, Samuel F; Glover, Stephen A; Schumacher, Rhiannon R

    2016-04-12

    N-Acyloxy-N-alkoxyamides are direct-acting mutagens in S. typhimurium TA100 with a linear dependence upon log P that maximises at log P0 = 6.4. Eight N-acyloxy-N-alkoxyamides (2-9) bearing a naphthalene group on any of the three side-chains and with log P0 < 6.4 have been demonstrated to be significantly and uniformly more mutagenic towards S. typhimurium TA100 than 50 mutagens without naphthalene. The activity enhancement of 2-9 is likely due to intercalative binding of naphthalene to bacterial DNA as a number are also active in TA98, a frame-shift strain of S. typhimurium, which is modified by intercalators. DNA damage profiles for naphthalene-bearing mutagens confirm enhanced reactivity with DNA when naphthalene is incorporated and a different binding mode when compared to mutagens without naphthalene. The effect is independent of whether the naphthalene is attached to an electron-donating alkyl or electron-withdrawing acyl group, alkyl tether length or, in the case of 6 and 7, the point of attachment to naphthalene. A new quantitative structure activity relationship has been constructed for all 58 congeners incorporating log P and an indicator variable, I, for the presence (I = 1) or absence (I = 0) of naphthalene and from which the activity enhancing effect of a naphthalene has been quantified at between three and four log P units. Contrary to conventional views, simple naphthalene groups could target molecules to DNA through intercalation.

  18. Drug discovery FAQs: workflows for answering multidomain drug discovery questions.

    PubMed

    Chichester, Christine; Digles, Daniela; Siebes, Ronald; Loizou, Antonis; Groth, Paul; Harland, Lee

    2015-04-01

    Modern data-driven drug discovery requires integrated resources to support decision-making and enable new discoveries. The Open PHACTS Discovery Platform (http://dev.openphacts.org) was built to address this requirement by focusing on drug discovery questions that are of high priority to the pharmaceutical industry. Although complex, most of these frequently asked questions (FAQs) revolve around the combination of data concerning compounds, targets, pathways and diseases. Computational drug discovery using workflow tools and the integrated resources of Open PHACTS can deliver answers to most of these questions. Here, we report on a selection of workflows used for solving these use cases and discuss some of the research challenges. The workflows are accessible online from myExperiment (http://www.myexperiment.org) and are available for reuse by the scientific community.

  19. [My accidental discovery].

    PubMed

    Nakamura, Tatsuya

    2008-10-01

    We wonder what we should do in medical care besides daily routine work as a laboratory technician. I made a discovery in my routine laboratory work, which gave me a theme for my research. This led to me successfully completing a number of scientific research projects, and these experiences have enabled me to be able to give advice on appropriate treatments for infectious diseases in medical care. It was March 1999 when I identified Escherichia coli (E. coli) in an intra-abdominal abscess resistant to antibacterial agents. The E. coli was producing an enzyme, extended-spectrum-beta-lactamase (ESBL), that breaks down cefem-group antibiotics often used in Japan. Therefore, it was resistant to those antimicrobial agents. Detailed analysis was performed by us and researchers of the National Institute of Infectious Diseases, which revealed that the E. coli had a SHV12 genotype of ESBL. It was the first case report of this type of ESBL-producing E. coli infection in Japan. After this experience, I became interested in searching for the mechanism of resistance to antibiotics with various kinds of approaches, such as a method involving genomic analysis by the polymerase-chain reaction (PCR), therapeutic management of drug-resistant bacterial infection, and so on, through which I learned a series of investigative approaches. Since I had plenty of data and experiences generated from routine work, I could perform novel studies and obtained many interesting findings. I am feeding back these findings to routine work in order to improve my performance. From my experience, we should look for the seeds for research from routine work as much as possible, and knowledge and experience generated by resolving problems teaches us how to perform in a clinical setting. This may lead to the further development of our research, which, in turn, promotes the accumulation of knowledge and experience. This feed-forward cycle enables laboratory technicians to improve their quality of work. This I

  20. Crystal structure of DNA-bound Co(III)·bleomycin B[subscript 2]: Insights on intercalation and minor groove binding

    SciTech Connect

    Goodwin, Kristie D.; Lewis, Mark A.; Long, Eric C.; Georgiadis, Millie M.

    2008-07-21

    Bleomycins constitute a widely studied class of complex DNA cleaving natural products that are used to treat various cancers. Since their first isolation, the bleomycins have provided a paradigm for the development and discovery of additional DNA-cleaving chemotherapeutic agents. The bleomycins consist of a disaccharide-modified metal-binding domain connected to a bithiazole/C-terminal tail via a methylvalerate-Thr linker and induce DNA damage after oxygen activation through site-selective cleavage of duplex DNA at 5'-GT/C sites. Here, we present crystal structures of two different 5'-GT containing oligonucleotides in both the presence and absence of bound Co(III){center_dot}bleomycin B2. Several findings from our studies impact the current view of bleomycin binding to DNA. First, we report that the bithiazole intercalates in two distinct modes and can do so independently of well ordered minor groove binding of the metal binding/disaccharide domains. Second, the Co(III)-coordinating equatorial ligands in our structure include the imidazole, histidine amide, pyrimidine N1, and the secondary amine of the {beta} aminoalanine, whereas the primary amine acts as an axial ligand. Third, minor groove binding of Co(III){center_dot}bleomycin involves direct hydrogen bonding interactions of the metal binding domain and disaccharide with the DNA. Finally, modeling of a hydroperoxide ligand coordinated to Co(III) suggests that it is ideally positioned for initiation of C4'-H abstraction.

  1. High-resolution {sup 13}C nuclear magnetic resonance evidence of phase transition of Rb,Cs-intercalated single-walled nanotubes

    SciTech Connect

    Bouhrara, M.; Saih, Y.; Waagberg, T.; Goze-Bac, C.; Abou-Hamad, E.

    2011-09-01

    We present 13 C high-resolution magic-angle-turning (MAT) and magic angle spinning nuclear magnetic resonance data of Cs and Rb intercalated single walled carbon nanotubes. We find two distinct phases at different intercalation levels. A simple charge transfer is applicable at low intercalation level. The new phase at high intercalation level is accompanied by a hybridization of alkali (s) orbitals with the carbon (sp2) orbitals of the single walled nanotubes, which indicate bundle surface sites is the most probable alkali site.

  2. Intercalation reactions of the neptunyl(VI) dication with hydrogen uranyl phosphate and hydrogen neptunyl phosphate host lattices

    SciTech Connect

    Dorhout, P.K. ); Kissane, R.J.; Abney, K.D.; Avens, L.R.; Eller, P.G.; Ellis, A.B. )

    1989-07-26

    The hydrated layered solids hydrogen uranyl phosphate, HUO{sub 2}PO{sub 4}, HUP, and its isostructural neptunyl analogue, HNpO{sub 2}PO{sub 4}, HNpP, can be intercalated with UO{sub 2}{sup 2+} and NpO{sub 2}{sup 2+} ions to yield a family of layered, hydrated solids that have been characterized by x-ray powder diffraction and by infrared, Raman, and electronic spectroscopy. Aqueous reactions of HUP with UO{sub 2}{sup 2+} and HNpP with NpO{sub 2}{sup 2+} lead to hydrated layered solids (UO{sub 2}){sub 3}(PO{sub 4}){sub 2}, UP, and (NpO{sub 2}){sub 3}(PO{sub 4}){sub 2}, NpP; preparation of UP from HUP and of NpP from HNpP can also be effected by thermal decomposition of the parent solids, thus affording a set of self-intercalation reactions that are reversible. Cross-intercalation reactions (UO{sub 2}{sup 2+} into HNpP; NpO{sub 2}{sup 2+} into HUP) also proceed under stoichiometric conditions. Conducting the cross-intercalation reactions with high concentrations of intercalating ion leads to substantial substitution of actinyl ions in the host lattice sheets. The intercalation reactions of HUP and HNpP are shown to be selective by the marked preference found for intercalating Np(VI) over Np(V), as evidenced by the lack of reactivity of NpO{sub 2}{sup +} toward either host. Characterization by x-ray powder diffraction revealed that all of the solids could be indexed on the basis of tetragonal unit cells; the a lattice constant is {approx} 6.95 {angstrom} in all samples, but intercalation of actinyl ions increases the interlamellar spacing, c/2, from {approx} 8.7 {angstrom} in HUP and HNpP to {approx} 11.2 {angstrom}. Vibrational and optical properties of the intercalated solids are derived from transitions characteristic of the actinyl ions comprising the solids. 24 refs., 5 figs., 1 tab.

  3. One-pot formation of multifunctional Pt-conducting polymer intercalated nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Lu, Ning; Poyraz, Selcuk; Wang, Xiaolong; Yu, Yajiao; Scott, Julie; Smith, James; Kim, Moon J.; Zhang, Xinyu

    2013-04-01

    A novel multifunctional Pt nanoparticle@PPy nanofiber intercalated structure (Pt NP@PPy NF) has been synthesized facilely in one-pot. Pt NPs, with size and facet control, were nicely assembled and embedded into the polymer nanofiber network. Polyvinylpyrrolidone (PVP) was used during the synthesis process which would assist the self-assembly of the metal nanoparticles and polymer backbones into the intercalated structure. Space-confined distribution of the Pt NPs was achieved within the large dimension PPy nanofiber network, which could enhance the interfacial electron transfer process as well as diminish the catalyst deformation. The as-formed Pt NPs have a cluster-like structure and are mainly composed of 3.5 nm primary Pt particles with (100) surface atoms. Enhanced electrocatalytic properties were shown by the Pt NP@PPy NF intercalated structure, with sufficiently high enzyme-less glucose biosensitivity and a long linear range from 1-30 mM (R = 0.9995). High electrochemical cycling stability, chloride (Cl-) tolerance and good selectivity are also obtained for the Pt NP@PPy NF structure, as the electrode showed no obvious response to the common interfering agents, such as ascorbic acid (AA), uric acid (UA), and 4-acetamidophenol (AP). Furthermore, the Pt NP@PPy NF showed excellent catalytic activity for the methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR), which displayed sufficient CO tolerance, and higher activity compared to the commercial Pt/C catalyst. This intrinsically multifunctional Pt NP@PPy NF with well-controlled Pt facets thus could serve as an advanced electrocatalyst for biosensing and fuel cell applications, surpassing the performance of many existing materials.A novel multifunctional Pt nanoparticle@PPy nanofiber intercalated structure (Pt NP@PPy NF) has been synthesized facilely in one-pot. Pt NPs, with size and facet control, were nicely assembled and embedded into the polymer nanofiber network. Polyvinylpyrrolidone (PVP

  4. Discovery Learning Strategies in English

    ERIC Educational Resources Information Center

    Singaravelu, G.

    2012-01-01

    The study substantiates that the effectiveness of Discovery Learning method in learning English Grammar for the learners at standard V. Discovery Learning is particularly beneficial for any student learning a second language. It promotes peer interaction and development of the language and the learning of concepts with content. Reichert and…

  5. Discovery Reconceived: Product before Process

    ERIC Educational Resources Information Center

    Abrahamson, Dor

    2012-01-01

    Motivated by the question, "What exactly about a mathematical concept should students discover, when they study it via discovery learning?", I present and demonstrate an interpretation of discovery pedagogy that attempts to address its criticism. My approach hinges on decoupling the solution process from its resultant product. Whereas theories of…

  6. Self Assessment and Discovery Learning

    ERIC Educational Resources Information Center

    McDonald, Betty

    2011-01-01

    Discovery learning in higher education has been reported to be effective in assisting learners to understand difficult concepts and retain long term information. This paper seeks to illustrate how one self assessment model may be used to demonstrate discovery learning in a collaborative atmosphere of students sharing and getting to know each…

  7. Rontgen's Discovery of X Rays

    ERIC Educational Resources Information Center

    Thumm, Walter

    1975-01-01

    Relates the story of Wilhelm Conrad Rontgen and presents one view of the extent to which the discovery of the x-ray was an accident. Reconstructs the sequence of events that led to the discovery and includes photographs of the lab where he worked and replicas of apparatus used. (GS)

  8. Hydrogen intercalation of single and multiple layer graphene synthesized on Si-terminated SiC(0001) surface

    SciTech Connect

    Sołtys, Jakub; Piechota, Jacek; Ptasinska, Maria; Krukowski, Stanisław

    2014-08-28

    Ab initio density functional theory simulations were used to investigate the influence of hydrogen intercalation on the electronic properties of single and multiple graphene layers deposited on the SiC(0001) surface (Si-face). It is shown that single carbon layer, known as a buffer layer, covalently bound to the SiC substrate, is liberated after hydrogen intercalation, showing characteristic Dirac cones in the band structure. This is in agreement with the results of angle resolved photoelectron spectroscopy measurements of hydrogen intercalation of SiC-graphene samples. In contrast to that hydrogen intercalation has limited impact on the multiple sheet graphene, deposited on Si-terminated SiC surface. The covalently bound buffer layer is liberated attaining its graphene like structure and dispersion relation typical for multilayer graphene. Nevertheless, before and after intercalation, the four layer graphene preserved the following dispersion relations in the vicinity of K point: linear for (AAAA) stacking, direct parabolic for Bernal (ABAB) stacking and “wizard hat” parabolic for rhombohedral (ABCA) stacking.

  9. Thermodynamic and structural study of pyrene-1-carboxaldehyde/DNA interactions by molecular spectroscopy: Probing intercalation and binding properties

    NASA Astrophysics Data System (ADS)

    Grueso, E.; Prado-Gotor, R.

    2010-08-01

    The binding of pyrene-1-carboxaldehyde (1-PyCHO) with ctDNA was investigated through absorption, intrinsic and induced circular dichroism, viscosity measurements and steady-state fluorescence. The binding and the number of monomer units of the polymer involved in the binding of one dye molecule (site size) have been quantified. The results indicated that the 1-PyCHO molecule binds to the ctDNA in an intercalative mode. The spectroscopic evidence of this intercalation process is also corroborated by the effect of urea, iodide-induced fluorescence quenching of pyrene-1-carboxaldehyde and competitive binding using a fluorescent intercalator, SYBR Green I (SG). The induced circular dichroism (ICD) spectra of pyrene-1-carboxaldehyde complexed with ctDNA show that pyrene-1-carboxaldehyde intercalates into ctDNA and that the intercalation orientation of pyrene to the DNA base-pairs long axis is heterogeneous. On the other hand, the intrinsic circular dichroism (CD) spectra show a stabilization of the right-handed B form of ctDNA, due to the intercalation process.

  10. Use of Fe(3+) ion probe to study the stability of urea-intercalated kaolinite by electron paramagnetic resonance.

    PubMed

    Budziak Fukamachi, Cristiane Regina; Wypych, Fernando; Mangrich, Antonio Salvio

    2007-09-15

    The effect of mechanical and chemical activation in processes of urea intercalation in the interlayer spacing of kaolinite and the effect of varying the temperature of the intercalation product between 100 and 200 degrees C were studied using Fe(3+) ions as a probe in electron paramagnetic resonance (EPR) spectroscopy. Other techniques were also used to characterize the samples. Monitoring the heating of urea-intercalated kaolinite, FTIR, and XRD revealed that the product obtained was stable up to a temperature of 150-160 degrees C. The EPR data indicated that the intercalation process promoted an approximation and increase of the magnetic interactions among the Fe(3+) ions. The DRUV-vis analysis of the product before heating showed an absorption band at 680 nm that was absent in the raw kaolinite. This band was attributed to the transition A(1)6-->T(2)4(G4) in the adjacent Fe(3+) ions, intensified by magnetic coupling among these ions. We suggest that intercalated urea forms hydrogen bonds between the carbonyl's oxygen and the hydroxyls bound to the Fe(3+) ions of the kaolinite structure. This would cause the approximation of the Fe(3+) ions, maximizing magnetic couplings and intensifying concentrated centers of Fe(3+), as was visible by EPR spectroscopy.

  11. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound

    PubMed Central

    2013-01-01

    Background Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Results Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Conclusions Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems. PMID:23849189

  12. Synthesis and investigation of magnetic nanocomposite of Fe3O4 with cetirizine-intercalated layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Nejati, K.; Davaran, S.; Baggalzadeh, R.

    2014-11-01

    In this research work the nanocomposite CT-LDH/Fe3O4 was prepared by deposition of cetirizine (CT) intercalated-Mg-Al layered double hydroxide (LDH) on Fe3O4 using a co-precipitation method for sustained drug-targeting delivery. The obtained products were characterized by the variety of methods such as (XRD), (FT-IR), (TG) and the elemental analysis. The size and morphology of nanoparticles were examined by the transmission electron microscopy (TEM). The XRD results, showed the coexistence of the strong diffractions of Fe3O4 and cetirizine intercalated LDH. Also, after intercalation, the basal spacing of LDH increased from 0.88 nm to 2.52 nm, indicating that cetirizine anions were successfully intercalated into the interlayer space of LDH as a monolayer. The thermal gravimetric studies indicate the thermal stability of cetirizine molecule has increased with intercalation. In vitro drug release experiments in phosphate buffer solution (pH = 7.4) have been investigated. Magnetic measurements revealed that the nanocomposite displayed superparamagnetic properties at room temperature.

  13. The organization of adherens junctions and desmosomes at the cardiac intercalated disc is independent of gap junctions.

    PubMed

    Gutstein, David E; Liu, Fang-Yu; Meyers, Marian B; Choo, Andrew; Fishman, Glenn I

    2003-03-01

    Adherens junctions and desmosomes are responsible for mechanically coupling myocytes in the heart and are found closely apposed to gap junction plaques at the intercalated discs of cardiomyocytes. It is not known whether loss of cardiac gap junctions, such as described in cardiac disease states, may influence the expression patterns of other intercalated disc-associated proteins. We investigated whether the major cardiac gap junction protein connexin43 (Cx43) may be responsible for regulating adherens junctions, desmosomes and their associated catenins, in terms of abundance and localization at the intercalated discs of cardiomyocytes. In order to study the effect of loss of cardiac gap junctions on the intercalated disc-associated proteins, we used a combination of immunoblotting, immunofluorescence with confocal microscopy and electron microscopy to evaluate heart tissue from mice with cardiac-specific conditional knockout of Cx43. We found that the cardiac adherens junctions, desmosomes and their associated catenins, as well as vinculin and ZO-1, maintain their normal abundance, structural appearance and localization in the absence of Cx43. We conclude from these data that Cx43 is not required for the organization of the cell adhesion junctions and their associated catenins at the intercalated disc in the adult cardiac myocyte.

  14. Rare earth and zinc layered hydroxide salts intercalated with the 2-aminobenzoate anion as organic luminescent sensitizer

    SciTech Connect

    Cursino, Ana Cristina Trindade; Rives, Vicente; Trujillano, Raquel

    2015-10-15

    Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide salts intercalated with nitrate anions were synthesized, followed by exchange with 2-aminobenzoate. The UV absorption ability was improved after intercalation/grafting in relation to that shown by the parent material. - Highlights: • Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide were synthesized. • Intercalated nitrate anions were exchanged by 2-aminobenzoate. • In all the 2-aminobenzoate containing compounds, the grafting reaction was detected. • The UV absorption ability was improved after the exchange reactions. • Rare earth hydroxide salts are potential matrixes to produce luminescent materials. - Abstract: Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide salts intercalated with nitrate anions were synthesized, followed by exchange with 2-aminobenzoate. The obtained compounds were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) and ultraviolet visible (UV–vis) spectroscopies, fluorescence measurements and thermal analysis (TGA/DTA). The results from FTIR spectroscopy suggest a direct coordination of 2-aminobenzoate to the metal cations of the inorganic layered structure. The organic derivative products from the intercalation reactions absorb a broader range of UV-light in relation to that shown by the parent material; the photoluminescence measurements present a strong violet, blue and green luminescence under UV-light excitation for layered compounds with, Zn, Y and Tb, respectively. Rare earth hydroxide salts (RE-LHS) are potential alternative matrices for the immobilization of organic species to produce luminescent materials.

  15. Hydrogen intercalation of single and multiple layer graphene synthesized on Si-terminated SiC(0001) surface

    NASA Astrophysics Data System (ADS)

    Sołtys, Jakub; Piechota, Jacek; Ptasinska, Maria; Krukowski, Stanisław

    2014-08-01

    Ab initio density functional theory simulations were used to investigate the influence of hydrogen intercalation on the electronic properties of single and multiple graphene layers deposited on the SiC(0001) surface (Si-face). It is shown that single carbon layer, known as a buffer layer, covalently bound to the SiC substrate, is liberated after hydrogen intercalation, showing characteristic Dirac cones in the band structure. This is in agreement with the results of angle resolved photoelectron spectroscopy measurements of hydrogen intercalation of SiC-graphene samples. In contrast to that hydrogen intercalation has limited impact on the multiple sheet graphene, deposited on Si-terminated SiC surface. The covalently bound buffer layer is liberated attaining its graphene like structure and dispersion relation typical for multilayer graphene. Nevertheless, before and after intercalation, the four layer graphene preserved the following dispersion relations in the vicinity of K point: linear for (AAAA) stacking, direct parabolic for Bernal (ABAB) stacking and "wizard hat" parabolic for rhombohedral (ABCA) stacking.

  16. Stability of bromine, iodine monochloride, copper (II) chloride, and nickel (II) chloride intercalated pitch-based graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.; Shaffer, Nanette

    1987-01-01

    Four different grades of pitch-based graphite fibers (Amoco P-55, P-75, P-100. and P-120) were intercalated with each of four different intercalates: bromine (Br2), iodine monochloride (ICl), copper (II) chloride (CuCl2), and nickel (II) chloride (NiCl2). The P-55 fibers did not react with Br2 or NiCl2, and the P-75 did not react with NiCl2. The stability of the electrical resistance of the intercalated fibers was monitored over long periods of time in ambient, high humidity (100 percent at 60 C), vacuum (10 to the -6 torr), and high temperature (up to 400 C) conditions. Fibers with lower graphitization form graphite intercalation compounds (GIC's) which are more stable than those with higher graphitization (i.e., P-55 (most stable) greater than P-75 greater than P-100 greater than P-120 (least stable). Br2 formed the most stable GIC's followed in order of decreasing stability by ICl, CuCl2, and NiCl2. While Br2 GIC's had the most stability, ICl had the advantages of forming GIC's with slightly greater reduction in resistance (by about 10%) than Br2, and the ability to intercalate P-55 fiber. Transition metal chlorides are susceptible to water vapor and high temperature. The stability of fibers in composites differs.

  17. Influence of thermal treatment applied to Fe(III) polyhydroxy cation intercalated vermiculite on the adsorption of atrazine.

    PubMed

    Abate, Gilberto; Masini, Jorge C

    2007-05-02

    Intercalation of vermiculite with Fe(III) polyhydroxy cations at 1:1 and 2:1 [OH-]/[Fe(III)] molar ratios increases the affinity of the clay mineral toward atrazine in comparison with potassium saturated vermiculite. The present paper describes the effects of thermal treatments applied to Fe(III) polyhydroxy cations modified vermiculite on the adsorption properties of the clay mineral. Only small changes in the textural characteristics were observed for the materials intercalated with either 1:1 or 2:1 [OH-]/[Fe(III)] molar ratios treated at 100 and 250 degrees C. In comparison with potassium saturated vermiculite, or intercalated vermiculite treated at 100 degrees C, a significant enhancement in the adsorption of atrazine was observed for the materials treated at 250 and 400 degrees C, which removed more than 95.8 and 99.5% of the herbicide initially present in a 50.0 microg L-1 aqueous solution, respectively. In comparison with potassium saturated vermiculite and intercalated vermiculite treated at 100 degrees C, a lower desorption degree of preadsorbed atrazine was observed for both intercalated materials treated at 250 and 400 degrees C. These findings suggest that the thermal treatment produced modified vermiculite materials with a high adsorption capacity and high affinity toward atrazine, with potential application in the removal of this herbicide, as well as other triazines, from aqueous medium.

  18. Size-controlled Intercalation to Conversion Transition in Lithiation of Transition-Metal Chalcogenides – NbSe3

    SciTech Connect

    Luo, Langli; Zhao, Benliang; Xiang, Bin; Wang, Chong M.

    2016-01-23

    Transition metal chalcogenides (TMCs) can either be used as intercalation cathodes or as conversion type anodes for lithium ion batteries, for which two distinctively different lithiation reaction mechanisms govern the electrochemical performance of TMCs. However, it remains elusive that what controls the transition of lithiation mechanisms. Herein, we investigated the lithiation process of NbSe3 ribbons using in situ transmission electron microscopy (TEM) and observed a size dependent transition from intercalation to conversion reaction. The large NbSe3 ribbons can accommodate high concentration of Li+ through intercalation by relaxing its internal spacing, while lithiation of small NbSe3 ribbons proceeds readily to full conversion reaction. We find that the size dependent variation of lithiation mechanism is attributed to the Li+ diffusion in NbSe3 and the accommodation of newly formed phases, i.e., insufficient Li+ diffusion and limited space for accommodating the volume expansion induced by forming new phases in large size ribbons both impede the intercalation-to-conversion transition. These results demonstrate the inherent structural instability of NbSe3 as an intercalation cathode and fast lithiation rate as a promising conversion type anode.

  19. 19 CFR 207.109 - Discovery.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Committee Proceedings § 207.109 Discovery. (a) Discovery methods. All parties may obtain discovery under such terms and limitations as the administrative law judge may order. Discovery may be by one or... 19 Customs Duties 3 2010-04-01 2010-04-01 false Discovery. 207.109 Section 207.109 Customs...

  20. 14 CFR 13.220 - Discovery.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (b) Methods of discovery. The following methods of discovery are permitted under this section... obtain the information through other discovery methods permitted under this section; or (4) The method or... or a determination of the method of discovery; or (3) Limit the scope of discovery or preclude...