Science.gov

Sample records for intercellurar calcium signals

  1. Calcium signaling and epilepsy.

    PubMed

    Steinlein, Ortrud K

    2014-08-01

    Calcium signaling is involved in a multitude of physiological and pathophysiological mechanisms. Over the last decade, it has been increasingly recognized as an important factor in epileptogenesis, and it is becoming obvious that the excess synchronization of neurons that is characteristic for seizures can be linked to various calcium signaling pathways. These include immediate effects on membrane excitability by calcium influx through ion channels as well as delayed mechanisms that act through G-protein coupled pathways. Calcium signaling is able to cause hyperexcitability either by direct modulation of neuronal activity or indirectly through calcium-dependent gliotransmission. Furthermore, feedback mechanisms between mitochondrial calcium signaling and reactive oxygen species are able to cause neuronal cell death and seizures. Unravelling the complexity of calcium signaling in epileptogenesis is a daunting task, but it includes the promise to uncover formerly unknown targets for the development of new antiepileptic drugs.

  2. Calcium signaling and cytotoxicity.

    PubMed Central

    Kass, G E; Orrenius, S

    1999-01-01

    The divalent calcium cation Ca(2+) is used as a major signaling molecule during cell signal transduction to regulate energy output, cellular metabolism, and phenotype. The basis to the signaling role of Ca(2+) is an intricate network of cellular channels and transporters that allow a low resting concentration of Ca(2+) in the cytosol of the cell ([Ca(2+)]i) but that are also coupled to major dynamic and rapidly exchanging stores. This enables extracellular signals from hormones and growth factors to be transduced as [Ca(2+)]i spikes that are amplitude and frequency encoded. There is considerable evidence that a number of toxic environmental chemicals target these Ca(2+) signaling processes, alter them, and induce cell death by apoptosis. Two major pathways for apoptosis will be considered. The first one involves Ca(2+)-mediated expression of ligands that bind to and activate death receptors such as CD95 (Fas, APO-1). In the second pathway, Ca(2+) has a direct toxic effect and its primary targets include the mitochondria and the endoplasmic reticulum (ER). Mitochondria may respond to an apoptotic Ca(2+) signal by the selective release of cytochrome c or through enhanced production of reactive oxygen species and opening of an inner mitochondrial membrane pore. Toxic agents such as the environmental pollutant tributyltin or the natural plant product thapsigargin, which deplete the ER Ca(2+) stores, will induce as a direct result of this effect the opening of plasma membrane Ca(2+) channels and an ER stress response. In contrast, under some conditions, Ca(2+) signals may be cytoprotective and antagonize the apoptotic machinery. Images Figure 1 Figure 2 Figure 3 PMID:10229704

  3. Calcium signaling in taste cells.

    PubMed

    Medler, Kathryn F

    2015-09-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  4. Calcium Signaling in Taste Cells

    PubMed Central

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  5. Calcium signaling and cell proliferation.

    PubMed

    Pinto, Mauro Cunha Xavier; Kihara, Alexandre Hiroaki; Goulart, Vânia A M; Tonelli, Fernanda M P; Gomes, Katia N; Ulrich, Henning; Resende, Rodrigo R

    2015-11-01

    Cell proliferation is orchestrated through diverse proteins related to calcium (Ca(2+)) signaling inside the cell. Cellular Ca(2+) influx that occurs first by various mechanisms at the plasma membrane, is then followed by absorption of Ca(2+) ions by mitochondria and endoplasmic reticulum, and, finally, there is a connection of calcium stores to the nucleus. Experimental evidence indicates that the fluctuation of Ca(2+) from the endoplasmic reticulum provides a pivotal and physiological role for cell proliferation. Ca(2+) depletion in the endoplasmatic reticulum triggers Ca(2+) influx across the plasma membrane in an phenomenon called store-operated calcium entries (SOCEs). SOCE is activated through a complex interplay between a Ca(2+) sensor, denominated STIM, localized in the endoplasmic reticulum and a Ca(2+) channel at the cell membrane, denominated Orai. The interplay between STIM and Orai proteins with cell membrane receptors and their role in cell proliferation is discussed in this review.

  6. Calcium signaling in neocortical development.

    PubMed

    Uhlén, Per; Fritz, Nicolas; Smedler, Erik; Malmersjö, Seth; Kanatani, Shigeaki

    2015-04-01

    The calcium ion (Ca(2+) ) is an essential second messenger that plays a pivotal role in neurogenesis. In the ventricular zone (VZ) of the neocortex, neural stem cells linger to produce progenitor cells and subsequently neurons and glial cells, which together build up the entire adult brain. The radial glial cells, with their characteristic radial fibers that stretch from the inner ventricular wall to the outer cortex, are known to be the neural stem cells of the neocortex. Migrating neurons use these radial fibers to climb from the proliferative VZ in the inner part of the brain to the outer layers of the cortex, where differentiation processes continue. To establish the complex structures that constitute the adult cerebral cortex, proliferation, migration, and differentiation must be tightly controlled by various signaling events, including cytosolic Ca(2+) signaling. During development, cells regularly exhibit spontaneous Ca(2+) activity that stimulates downstream effectors, which can elicit these fundamental cell processes. Spontaneous Ca(2+) activity during early neocortical development depends heavily on gap junctions and voltage dependent Ca(2+) channels, whereas later in development neurotransmitters and synapses exert an influence. Here, we provide an overview of the literature on Ca(2+) signaling and its impact on cell proliferation, migration, and differentiation in the neocortex. We point out important historical studies and review recent progress in determining the role of Ca(2+) signaling in neocortical development.

  7. Altered calcium signaling in cancer cells.

    PubMed

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  8. Oxysterols and calcium signal transduction.

    PubMed

    Mackrill, John J

    2011-09-01

    Ionised calcium (Ca(2+)) is a key second messenger, regulating almost every cellular process from cell death to muscle contraction. Cytosolic levels of this ion can be increased via gating of channel proteins located in the plasma membrane, endoplasmic reticulum and other membrane-delimited organelles. Ca(2+) can be removed from cells by extrusion across the plasma membrane, uptake into organelles and buffering by anionic components. Ca(2+) channels and extrusion mechanisms work in concert to generate diverse spatiotemporal patterns of this second messenger, the distinct profiles of which determine different cellular outcomes. Increases in cytoplasmic Ca(2+) concentration are one of the most rapid cellular responses upon exposure to certain oxysterol congeners or to oxidised low-density lipoprotein, occurring within seconds of addition and preceding increases in levels of reactive oxygen species, or changes in gene expression. Furthermore, exposure of cells to oxysterols for periods of hours to days modulates Ca(2+) signal transduction, with these longer-term alterations in cellular Ca(2+) homeostasis potentially underlying pathological events within atherosclerotic lesions, such as hyporeactivity to vasoconstrictors observed in vascular smooth muscle, or ER stress-induced cell death in macrophages. Despite their candidate roles in physiology and disease, little is known about the molecular mechanisms that couple changes in oxysterol concentrations to alterations in Ca(2+) signalling. This review examines the ways in which oxysterols could influence Ca(2+) signal transduction and the potential roles of this in health and disease. PMID:21513705

  9. Calcium signaling in trypanosomatid parasites.

    PubMed

    Docampo, Roberto; Huang, Guozhong

    2015-03-01

    Calcium ion (Ca(2+)) is an important second messenger in trypanosomatids and essential for their survival although prolonged high intracellular Ca(2+) levels lead to cell death. As other eukaryotic cells, trypanosomes use two sources of Ca(2+) for generating signals: Ca(2+) release from intracellular stores and Ca(2+) entry across the plasma membrane. Ca(2+) release from intracellular stores is controlled by the inositol 1,4,5-trisphosphate receptor (IP3R) that is located in acidocalcisomes, acidic organelles that are the primary Ca(2+) reservoir in these cells. A plasma membrane Ca(2+)-ATPase controls the cytosolic Ca(2+) levels and a number of pumps and exchangers are responsible for Ca(2+) uptake and release from intracellular compartments. The trypanosomatid genomes contain a wide variety of signaling and regulatory proteins that bind Ca(2+) as well as many Ca(2+)-binding proteins that await further characterization. The mitochondrial Ca(2+) transporters of trypanosomatids have an important role in the regulation of cell bioenergetics and flagellar Ca(2+) appears to have roles in sensing the environment. In trypanosomatids in which an intracellular life cycle is present, Ca(2+) signaling is important for host cell invasion. PMID:25468729

  10. Store-operated calcium signaling in neutrophils.

    PubMed

    Clemens, Regina A; Lowell, Clifford A

    2015-10-01

    Calcium signals in neutrophils are initiated by a variety of cell-surface receptors, including formyl peptide and other GPCRs, FcRs, and integrins. The predominant pathway by which calcium enters immune cells is termed SOCE, whereby plasma membrane CRAC channels allow influx of extracellular calcium into the cytoplasm when intracellular ER stores are depleted. The identification of 2 key families of SOCE regulators, STIM calcium "sensors" and ORAI calcium channels, has allowed for genetic manipulation of SOCE pathways and provided valuable insight into the molecular mechanism of calcium signaling in immune cells, including neutrophils. This review focuses on our current knowledge of the molecules involved in neutrophil SOCE and how study of these molecules has further informed our understanding of the role of calcium signaling in neutrophil activation.

  11. Plant organellar calcium signalling: an emerging field

    PubMed Central

    Stael, Simon; Wurzinger, Bernhard; Mair, Andrea; Mehlmer, Norbert; Vothknecht, Ute C.; Teige, Markus

    2014-01-01

    This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except for the nucleus. Therefore, a brief overview on the main calcium stores in plants—the vacuole, the endoplasmic reticulum, and the apoplast—is provided and knowledge on the regulation of calcium concentrations in different cellular compartments is summarized. The main focus of the review will be the calcium handling properties of chloroplasts, mitochondria, and peroxisomes. Recently, it became clear that these organelles not only undergo calcium regulation themselves, but are able to influence the Ca2+ signalling pathways of the cytoplasm and the entire cell. Furthermore, the relevance of recent discoveries in the animal field for the regulation of organellar calcium signals will be discussed and conclusions will be drawn regarding potential homologous mechanisms in plant cells. Finally, a short overview on bacterial calcium signalling is included to provide some ideas on the question where this typically eukaryotic signalling mechanism could have originated from during evolution. PMID:22200666

  12. Source of nuclear calcium signals.

    PubMed Central

    Allbritton, N L; Oancea, E; Kuhn, M A; Meyer, T

    1994-01-01

    Transient increases of Ca2+ concentration in the nucleus regulate gene expression and other nuclear processes. We investigated whether nuclear Ca2+ signals could be regulated independently of the cytoplasm or were controlled by cytoplasmic Ca2+ signals. A fluorescent Ca2+ indicator that is targeted to the nucleus was synthesized by coupling a nuclear localization peptide to Calcium Green dextran, a 70-kDa Ca2+ indicator. Stimulation of rat basophilic leukemia cells by antigen or by photolytic uncaging of inositol 1,4,5-trisphosphate induced transient increases in nuclear and cytosolic Ca2+ concentrations. Elevations in the nuclear Ca2+ concentration followed those in the nearby perinuclear cytosol within 200 ms. Heparin-dextran, an inhibitor of the inositol 1,4,5-trisphosphate receptor that is excluded from the nucleus, was synthesized to specifically block the release of Ca2+ from cytosolic stores. Addition of this inhibitor suppressed Ca2+ transients in the nucleus and the cytosol. We conclude that the Ca2+ level in the nucleus is not independently controlled. Rather, nuclear Ca2+ increases follow cytosolic Ca2+ increases with a short delay most likely due to Ca2+ diffusion from the cytosol through the nuclear pores. Images Fig. 1 Fig. 3 Fig. 4 PMID:7809059

  13. Calcium signaling in pluripotent stem cells.

    PubMed

    Apáti, Ágota; Pászty, Katalin; Erdei, Zsuzsa; Szebényi, Kornélia; Homolya, László; Sarkadi, Balázs

    2012-04-28

    Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced pluripotent stem cells and in their differentiated offspring. This is partly due to the special culturing conditions of these cell types, the rapid morphological and functional changes in heterogeneous cell populations during early differentiation, and methodological problems in cellular calcium measurements. In this paper, we review the currently available data in the literature on calcium signaling in pluripotent stem cells and discuss the potential shortcomings of these studies. Various assay methods are surveyed for obtaining reliable data both in undifferentiated embryonic stem cells and in specific, stem cell-derived human tissues. In this paper, we present the modulation of calcium signaling in human embryonic stem cells (hESC) and in their derivates; mesenchymal stem cell like (MSCl) cells and cardiac tissues using the fluorescent calcium indicator Fluo-4 and confocal microscopy. LPA, trypsin and angiotensin II were effective in inducing calcium signals both in HUES9 and MSCl cells. Histamine and thrombin induced calcium signal exclusively in the MSCl cells, while ATP was effective only in HUES9 cells. There was no calcium signal evoked by GABA, even at relatively high concentrations. In stem cell-derived cardiomyocytes a rapid increase in the beating rate and an increase of the calcium signal peaks could be observed after the addition of adrenaline, while verapamil led to a strong decrease in cellular calcium and stopped spontaneous contractions in a relaxed state.

  14. Extracellular calcium sensing and extracellular calcium signaling

    NASA Technical Reports Server (NTRS)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    , localized changes in Ca(o)(2+) within the ECF can originate from several mechanisms, including fluxes of calcium ions into or out of cellular or extracellular stores or across epithelium that absorb or secrete Ca(2+). In any event, the CaR and other receptors/sensors for Ca(o)(2+) and probably for other extracellular ions represent versatile regulators of numerous cellular functions and may serve as important therapeutic targets.

  15. Presynaptic Calcium Signalling in Cerebellar Mossy Fibres

    PubMed Central

    Thomsen, Louiza B.; Jörntell, Henrik; Midtgaard, Jens

    2009-01-01

    Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX)-sensitive fast Na+ spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers. Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none TTX-sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon appeared to be isolated from one another in terms of calcium signalling. CGP55845 application showed that GABA B receptors mediated presynaptic inhibition of the calcium signal over the entire firing frequency range of mossy fibres. A paired-pulse depression of the calcium signal lasting more than 1 s affected burst firing in mossy fibres; this paired-pulse depression was reduced by GABA B antagonists. While our results indicated that a presynaptic rosette electrophysiologically functioned as a unit, topical GABA application showed that calcium signals in the branches of complex rosettes could be modulated locally, suggesting that cerebellar glomeruli may be dynamically sub-compartmentalized due to ongoing inhibition mediated by Golgi cells. This could provide a fine-grained control of mossy fibre-granule cell information transfer and synaptic plasticity within a mossy fibre rosette. PMID:20162034

  16. Calcium Signaling Is Required for Erythroid Enucleation.

    PubMed

    Wölwer, Christina B; Pase, Luke B; Russell, Sarah M; Humbert, Patrick O

    2016-01-01

    Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation.

  17. Calcium Signaling Is Required for Erythroid Enucleation

    PubMed Central

    Russell, Sarah M.; Humbert, Patrick O.

    2016-01-01

    Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation. PMID:26731108

  18. Calcium signals and calcium channels in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Akanbi, K. A.; Farach-Carson, M. C.

    1998-01-01

    Calcium (Ca2+) channels are present in non-excitable as well as in excitable cells. In bone cells of the osteoblast lineage, Ca2+ channels play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. They are also proposed to modulate paracrine signaling between bone-forming osteoblasts and bone-resorbing osteoclasts at local sites of bone remodeling. Calcium signals are characterized by transient increases in intracellular Ca2+ levels that are associated with activation of intracellular signaling pathways that control cell behavior and phenotype, including patterns of gene expression. Development of Ca2+ signals is a tightly regulated cellular process that involves the concerted actions of plasma membrane and intracellular Ca2+ channels, along with Ca2+ pumps and exchangers. This review summarizes the current state of knowledge concerning the structure, function, and role of Ca2+ channels and Ca2+ signals in bone cells, focusing on the osteoblast.

  19. Stochastic models of intracellular calcium signals

    NASA Astrophysics Data System (ADS)

    Rüdiger, Sten

    2014-01-01

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels-one of the most important cellular signaling mechanisms-feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction-diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker-Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed.

  20. Calcium signals in olfactory neurons.

    PubMed

    Tareilus, E; Noé, J; Breer, H

    1995-11-01

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness. PMID:7488645

  1. Calcium signals in olfactory neurons.

    PubMed

    Tareilus, E; Noé, J; Breer, H

    1995-11-01

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  2. Calcium Signaling in the Liver

    PubMed Central

    Amaya, Maria Jimena; Nathanson, Michael H.

    2014-01-01

    Intracellular free Ca2+ ([Ca2+]i) is a highly versatile second messenger that regulates a wide range of functions in every type of cell and tissue. To achieve this versatility, the Ca2+ signaling system operates in a variety of ways to regulate cellular processes that function over a wide dynamic range. This is particularly well exemplified for Ca2+ signals in the liver, which modulate diverse and specialized functions such as bile secretion, glucose metabolism, cell proliferation, and apoptosis. These Ca2+ signals are organized to control distinct cellular processes through tight spatial and temporal coordination of [Ca2+]i signals, both within and between cells. This article will review the machinery responsible for the formation of Ca2+ signals in the liver, the types of subcellular, cellular, and intercellular signals that occur, the physiological role of Ca2+ signaling in the liver, and the role of Ca2+ signaling in liver disease. PMID:23720295

  3. Astrocyte calcium signaling: the third wave.

    PubMed

    Bazargani, Narges; Attwell, David

    2016-02-01

    The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.

  4. Calcium signaling in membrane repair

    PubMed Central

    Cheng, Xiping; Zhang, Xiaoli; Yu, Lu; Xu, Haoxing

    2015-01-01

    Resealing allows cells to mend damaged membranes rapidly when plasma membrane (PM) disruptions occur. Models of PM repair mechanisms include the “lipid-patch”, “endocytic removal”, and “macro-vesicle shedding” models, all of which postulate a dependence on local increases in intracellular Ca2+ at injury sites. Multiple calcium sensors, including synaptotagmin (Syt) VII, dysferlin, and apoptosis-linked gene-2 (ALG-2), are involved in PM resealing, suggesting that Ca2+ may regulate multiple steps of the repair process. Although earlier studies focused exclusively on external Ca2+, recent studies suggest that Ca2+ release from intracellular stores may also be important for PM resealing. Hence, depending on injury size and the type of injury, multiple sources of Ca2+ may be recruited to trigger and orchestrate repair processes. In this review, we discuss the mechanisms by which the resealing process is promoted by vesicular Ca2+ channels and Ca2+ sensors that accumulate at damage sites. PMID:26519113

  5. Calcium signaling in lacrimal glands.

    PubMed

    Putney, James W; Bird, Gary S

    2014-06-01

    Lacrimal glands provide the important function of lubricating and protecting the ocular surface. Failure of proper lacrimal gland function results in a number of debilitating dry eye diseases. Lacrimal glands secrete lipids, mucins, proteins, salts and water and these secretions are at least partially regulated by neurotransmitter-mediated cell signaling. The predominant signaling mechanism for lacrimal secretion involves activation of phospholipase C, generation of the Ca(2+)-mobilizing messenger, IP3, and release of Ca(2+) stored in the endoplasmic reticulum. The loss of Ca(2+) from the endoplasmic reticulum then triggers a process known as store-operated Ca(2+) entry, involving a Ca(2+) sensor in the endoplasmic reticulum, STIM1, which activates plasma membrane store-operated channels comprised of Orai subunits. Recent studies with deletions of the channel subunit, Orai1, confirm the important role of SOCE in both fluid and protein secretion in lacrimal glands, both in vivo and in vitro.

  6. Calcium Signals from the Vacuole

    PubMed Central

    Schönknecht, Gerald

    2013-01-01

    The vacuole is by far the largest intracellular Ca2+ store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca2+ release and Ca2+ uptake is summarized, and how different vacuolar Ca2+ channels and Ca2+ pumps may contribute to Ca2+ signaling in plant cells is discussed. To provide a phylogenetic perspective, the distribution of potential vacuolar Ca2+ transporters is compared for different clades of photosynthetic eukaryotes. There are several candidates for vacuolar Ca2+ channels that could elicit cytosolic [Ca2+] transients. Typical second messengers, such as InsP3 and cADPR, seem to trigger vacuolar Ca2+ release, but the molecular mechanism of this Ca2+ release still awaits elucidation. Some vacuolar Ca2+ channels have been identified on a molecular level, the voltage-dependent SV/TPC1 channel, and recently two cyclic-nucleotide-gated cation channels. However, their function in Ca2+ signaling still has to be demonstrated. Ca2+ pumps in addition to establishing long-term Ca2+ homeostasis can shape cytosolic [Ca2+] transients by limiting their amplitude and duration, and may thus affect Ca2+ signaling. PMID:27137394

  7. Calcium, channels, intracellular signaling and autoimmunity.

    PubMed

    Izquierdo, Jorge-Hernán; Bonilla-Abadía, Fabio; Cañas, Carlos A; Tobón, Gabriel J

    2014-01-01

    Calcium (Ca²⁺) is an important cation able to function as a second messenger in different cells of the immune system, particularly in B and T lymphocytes, macrophages and mastocytes, among others. Recent discoveries related to the entry of Ca²⁺ through the store-operated calcium entry (SOCE) has opened a new investigation area about the cell destiny regulated by Ca²⁺ especially in B and T lymphocytes. SOCE acts through calcium-release-activated calcium (CRAC) channels. The function of CRAC depends of two recently discovered regulators: the Ca²⁺ sensor in the endoplasmic reticulum or stromal interaction molecule (STIM-1) and one subunit of CRAC channels called Orai1. This review focuses on the role of Ca²⁺ signals in B and T lymphocytes functions, the signalling pathways leading to Ca²⁺ influx, and the relationship between Ca²⁺ signals and autoimmune diseases.

  8. Calcium signaling in diabetic cardiomyocytes.

    PubMed

    Pereira, Laetitia; Ruiz-Hurtado, Gema; Rueda, Angélica; Mercadier, Jean-Jacques; Benitah, Jean-Pierre; Gómez, Ana María

    2014-11-01

    Diabetes mellitus is one of the most common medical conditions. It is associated to medical complications in numerous organs and tissues, of which the heart is one of the most important and most prevalent organs affected by this disease. In fact, cardiovascular complications are the most common cause of death among diabetic patients. At the end of the 19th century, the weakness of the heart in diabetes was noted as part of the general muscular weakness that exists in that disease. However, it was only in the eighties that diabetic cardiomyopathy was recognized, which comprises structural and functional abnormalities in the myocardium in diabetic patients even in the absence of coronary artery disease or hypertension. This disorder has been associated with both type 1 and type 2 diabetes, and is characterized by early-onset diastolic dysfunction and late-onset systolic dysfunction, in which alteration in Ca(2+) signaling is of major importance, since it controls not only contraction, but also excitability (and therefore is involved in rhythmic disorder), enzymatic activity, and gene transcription. Here we attempt to give a brief overview of Ca(2+) fluxes alteration reported on diabetes, and provide some new data on differential modulation of Ca(2+) handling alteration in males and females type 2 diabetic mice to promote further research. Due to space limitations, we apologize for those authors whose important work is not cited.

  9. Fast kinetics of calcium signaling and sensor design.

    PubMed

    Tang, Shen; Reddish, Florence; Zhuo, You; Yang, Jenny J

    2015-08-01

    Fast calcium signaling is regulated by numerous calcium channels exhibiting high spatiotemporal profiles which are currently measured by fluorescent calcium sensors. There is still a strong need to improve the kinetics of genetically encoded calcium indicators (sensors) to capture calcium dynamics in the millisecond time frame. In this review, we summarize several major fast calcium signaling pathways and discuss the recent developments and application of genetically encoded calcium indicators to detect these pathways. A new class of genetically encoded calcium indicators designed with site-directed mutagenesis on the surface of beta-barrel fluorescent proteins to form a pentagonal bipyramidal-like calcium binding domain dramatically accelerates calcium binding kinetics. Furthermore, novel genetically encoded calcium indicators with significantly increased fluorescent lifetime change are advantageous in deep-field imaging with high light-scattering and notable morphology change.

  10. Calcium binding proteins and calcium signaling in prokaryotes.

    PubMed

    Domínguez, Delfina C; Guragain, Manita; Patrauchan, Marianna

    2015-03-01

    With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.

  11. Collective Calcium Signaling of Defective Multicellular Networks

    NASA Astrophysics Data System (ADS)

    Potter, Garrett; Sun, Bo

    2015-03-01

    A communicating multicellular network processes environmental cues into collective cellular dynamics. We have previously demonstrated that, when excited by extracellular ATP, fibroblast monolayers generate correlated calcium dynamics modulated by both the stimuli and gap junction communication between the cells. However, just as a well-connected neural network may be compromised by abnormal neurons, a tissue monolayer can also be defective with cancer cells, which typically have down regulated gap junctions. To understand the collective cellular dynamics in a defective multicellular network we have studied the calcium signaling of co-cultured breast cancer cells and fibroblast cells in various concentrations of ATP delivered through microfluidic devices. Our results demonstrate that cancer cells respond faster, generate singular spikes, and are more synchronous across all stimuli concentrations. Additionally, fibroblast cells exhibit persistent calcium oscillations that increase in regularity with greater stimuli. To interpret these results we quantitatively analyzed the immunostaining of purigenic receptors and gap junction channels. The results confirm our hypothesis that collective dynamics are mainly determined by the availability of gap junction communications.

  12. The spatial pattern of atrial cardiomyocyte calcium signalling modulates contraction.

    PubMed

    Mackenzie, Lauren; Roderick, H Llewelyn; Berridge, Michael J; Conway, Stuart J; Bootman, Martin D

    2004-12-15

    We examined the regulation of calcium signalling in atrial cardiomyocytes during excitation-contraction coupling, and how changes in the distribution of calcium impacts on contractility. Under control conditions, calcium transients originated in subsarcolemmal locations and showed local regeneration through activation of calcium-induced calcium release from ryanodine receptors. Despite functional ryanodine receptors being expressed at regular (approximately 2 microm) intervals throughout atrial myocytes, the subsarcolemmal calcium signal did not spread in a fully regenerative manner through the interior of a cell. Rather, there was a diminishing centripetal propagation of calcium. The lack of regeneration was due to mitochondria and SERCA pumps preventing the inward movement of calcium. Inhibiting these calcium buffering mechanisms allowed the globalisation of action potential-evoked responses. In addition, physiological positive inotropic agents, such as endothelin-1 and beta-adrenergic agonists, as well as enhanced calcium current, calcium store loading and inositol 1,4,5-trisphosphate infusion also led to regenerative global responses. The consequence of globalising calcium signals was a significant increase in cellular contraction. These data indicate how calcium signals and their consequences are determined by the interplay of multiple subcellular calcium management systems.

  13. Calcium-Mediated Abiotic Stress Signaling in Roots.

    PubMed

    Wilkins, Katie A; Matthus, Elsa; Swarbreck, Stéphanie M; Davies, Julia M

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium's other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  14. Calcium-Mediated Abiotic Stress Signaling in Roots

    PubMed Central

    Wilkins, Katie A.; Matthus, Elsa; Swarbreck, Stéphanie M.; Davies, Julia M.

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium’s other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  15. Calcium-Mediated Abiotic Stress Signaling in Roots

    PubMed Central

    Wilkins, Katie A.; Matthus, Elsa; Swarbreck, Stéphanie M.; Davies, Julia M.

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium’s other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response.

  16. Calcium-Dependent Signaling and Kinases in Apicomplexan Parasites

    PubMed Central

    Billker, Oliver; Lourido, Sebastian; Sibley, L. David

    2009-01-01

    Summary Calcium controls many critical events in the complex life cycles of apicomplexan parasites including protein secretion, motility, and development. Calcium levels are normally tightly regulated and rapid release of calcium into the cytosol activates a family of calcium-dependent protein kinases (CDPKs), which are normally characteristic of plants. CDPKs present in apicomplexans have acquired a number of unique domain structures likely reflecting their diverse functions. Calcium regulation in parasites is closely linked to signaling by cyclic nucleotides and their associated kinases. This review summarizes the pivotal roles that calcium-and cyclic nucleotide-dependent kinases play in unique aspects of parasite biology. PMID:19527888

  17. Calcium signals and oocyte maturation in marine invertebrates.

    PubMed

    Deguchi, Ryusaku; Takeda, Noriyo; Stricker, Stephen A

    2015-01-01

    In various oocytes and eggs of animals, transient elevations in cytoplasmic calcium ion concentrations are known to regulate key processes during fertilization and the completion of meiosis. However, whether or not calcium transients also help to reinitiate meiotic progression at the onset of oocyte maturation remains controversial. This article summarizes reports of calcium signals playing essential roles during maturation onset (=germinal vesicle breakdown, GVBD) in several kinds of marine invertebrate oocytes. Conversely, other data from the literature, as well as previously unpublished findings for jellyfish oocytes, fail to support the view that calcium signals are required for GVBD. In addition to assessing the effects of calcium transients on GVBD in marine invertebrate oocytes, the ability of maturing oocytes to enhance their calcium-releasing capabilities after GVBD is also reviewed. Furthermore, possible explanations are proposed for the contradictory results that have been obtained regarding calcium signals during oocyte maturation in marine invertebrates. PMID:26679945

  18. Calcium signals and oocyte maturation in marine invertebrates.

    PubMed

    Deguchi, Ryusaku; Takeda, Noriyo; Stricker, Stephen A

    2015-01-01

    In various oocytes and eggs of animals, transient elevations in cytoplasmic calcium ion concentrations are known to regulate key processes during fertilization and the completion of meiosis. However, whether or not calcium transients also help to reinitiate meiotic progression at the onset of oocyte maturation remains controversial. This article summarizes reports of calcium signals playing essential roles during maturation onset (=germinal vesicle breakdown, GVBD) in several kinds of marine invertebrate oocytes. Conversely, other data from the literature, as well as previously unpublished findings for jellyfish oocytes, fail to support the view that calcium signals are required for GVBD. In addition to assessing the effects of calcium transients on GVBD in marine invertebrate oocytes, the ability of maturing oocytes to enhance their calcium-releasing capabilities after GVBD is also reviewed. Furthermore, possible explanations are proposed for the contradictory results that have been obtained regarding calcium signals during oocyte maturation in marine invertebrates.

  19. Calcium signaling in plant cells in microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E.

    Changes in the intracellular Ca 2 + concentration in altered gravity (microgravity and clinostating) evidence that Ca2 + signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in eighties, a review highlighting the performed research and the possible significance of such Ca 2 + changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumably specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2 + ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravis ensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane

  20. Slow Calcium Signals after Tetanic Electrical Stimulation in Skeletal Myotubes

    PubMed Central

    Eltit, José M.; Hidalgo, Jorge; Liberona, José L.; Jaimovich, Enrique

    2004-01-01

    The fluorescent calcium signal from rat myotubes in culture was monitored after field-stimulation with tetanic protocols. After the calcium signal sensitive to ryanodine and associated to the excitation-contraction coupling, a second long-lasting calcium signal refractory to ryanodine was consistently found. The onset kinetics of this slow signal were slightly modified in nominally calcium-free medium, as were both the frequency and number of pulses during tetanus. No signal was detected in the presence of tetrodotoxin. The participation of the dihydropyridine receptor (DHPR) as the voltage sensor for this signal was assessed by treatment with agonist and antagonist dihydropyridines (Bay K 8644 and nifedipine), showing an enhanced and inhibitory response, respectively. In the dysgenic GLT cell line, which lacks the α1S subunit of the DHPR, the signal was absent. Transfection of these cells with the α1S subunit restored the slow signal. In myotubes, the inositol 1,4,5-trisphosphate (IP3) mass increase induced by a tetanus protocol preceded in time the slow calcium signal. Both an IP3 receptor blocker and a phospholipase C inhibitor (xestospongin C and U73122, respectively) dramatically inhibit this signal. Long-lasting, IP3-generated slow calcium signals appear to be a physiological response to activity-related fluctuations in membrane potential sensed by the DHPR. PMID:15111418

  1. The calcium-signaling toolkit: Updates needed.

    PubMed

    Dubois, Charlotte; Prevarskaya, Natalia; Vanden Abeele, Fabien

    2016-06-01

    Here, we review the role of Ca(2+) in apoptosis, namely that ER Ca(2+) depletion or a sustained elevation of cytosolic or mitochondrial Ca(2+) concentration are sufficient to trigger apoptosis. These concepts have emerged by the use of ER stressor agents that decrease the ER Ca(2+) pool by inhibiting SERCA pumps. However, aside from their well-known actions on Ca(2+) homeostasis disruption leading to apoptosis, new evidence show that some ER Ca(2+) modulators have significant implications in other Ca(2+)-mediated or Ca(2+)-independent pathways determining cell fate suggesting a more complex regulation of apoptosis by intracellular Ca(2+). Here, we discuss the crucial interplay between Ca(2+) mediated apoptosis, the Unfold Protein Response and autophagy determining cell fate, and the molecular compounds that have been used to depict these pathways. This review of the literature clearly shows the need for new inhibitors that do not interfere concomitantly with autophagy and Ca(2+) signaling. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  2. Analysis of Intracellular Calcium Signaling in Human Embryonic Stem Cells.

    PubMed

    Péntek, Adrienn; Pászty, Katalin; Apáti, Ágota

    2016-01-01

    Measurement of changes in intracellular calcium concentration is one of the most common and useful tools for studying signal transduction pathways or cellular responses in basic research and drug screening purposes as well. Increasing number of such applications using human pluripotent stem cells and their derivatives requires development of calcium signal measurements for this special cell type. Here we describe a modified protocol for analysis of calcium signaling events in human embryonic stem cells, which can be used for other pluripotent cell types (such as iPSC) or their differentiated offspring as well.

  3. Calcium/calmodulin-mediated signal network in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2003-01-01

    Various extracellular stimuli elicit specific calcium signatures that can be recognized by different calcium sensors. Calmodulin, the predominant calcium receptor, is one of the best-characterized calcium sensors in eukaryotes. In recent years, completion of the Arabidopsis genome project and advances in functional genomics have helped to identify and characterize numerous calmodulin-binding proteins in plants. There are some similarities in Ca(2+)/calmodulin-mediated signaling in plants and animals. However, plants possess multiple calmodulin genes and many calmodulin target proteins, including unique protein kinases and transcription factors. Some of these proteins are likely to act as "hubs" during calcium signal transduction. Hence, a better understanding of the function of these calmodulin target proteins should help in deciphering the Ca(2+)/calmodulin-mediated signal network and its role in plant growth, development and response to environmental stimuli.

  4. Calcium Channel Signaling Complexes with Receptors and Channels.

    PubMed

    Zamponi, Gerald W

    2015-01-01

    Voltage-gated calcium channels are not only mediators of cell signalling events, but also are recipients of signalling inputs from G protein coupled receptors (GPCRs) and their associated second messenger pathways. The coupling of GPCRs to calcium channels is optimized through the formation of receptor-channel complexes. In addition, this provides a mechanism for receptorchannel co-trafficking to and from the plasma membrane. On the other hand, voltage-gated calcium channel activity affects other types of ion channels such as voltage-and calcium-activated potassium channels. Coupling efficiency between these two families of channels is also enhanced through the formation of channel-channel complexes. This review provides a concise overview of the current state of knowledge on the physical interactions between voltage-gated calcium channels and members of the GPCR family, and with other types of ion channels.

  5. Disturbed calcium signaling in spinocerebellar ataxias and Alzheimer's disease.

    PubMed

    Egorova, Polina; Popugaeva, Elena; Bezprozvanny, Ilya

    2015-04-01

    Neurodegenerative disorders, such as spinocerebellar ataxias (SCAs) and Alzheimer's disease (AD) represent a huge scientific and medical question, but the molecular mechanisms of these diseases are still not clear. There is increasing evidence that neuronal calcium signaling is abnormal in many neurodegenerative disorders. Abnormal neuronal calcium release from the endoplasmic reticulum may result in disturbances of cell homeostasis, synaptic dysfunction, and eventual cell death. Neuronal loss is observed in most cases of neurodegenerative diseases. Recent experimental evidence supporting the role of neuronal calcium signaling in the pathogenesis of SCAs and AD is discussed in this review.

  6. Control of Intracellular Calcium Signaling as a Neuroprotective Strategy

    PubMed Central

    Duncan, R. Scott; Goad, Daryl L.; Grillo, Michael A.; Kaja, Simon; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Both acute and chronic degenerative diseases of the nervous system reduce the viability and function of neurons through changes in intracellular calcium signaling. In particular, pathological increases in the intracellular calcium concentration promote such pathogenesis. Disease involvement of numerous regulators of intracellular calcium signaling located on the plasma membrane and intracellular organelles has been documented. Diverse groups of chemical compounds targeting ion channels, G-protein coupled receptors, pumps and enzymes have been identified as potential neuroprotectants. The present review summarizes the discovery, mechanisms and biological activity of neuroprotective molecules targeting proteins that control intracellular calcium signaling to preserve or restore structure and function of the nervous system. Disease relevance, clinical applications and new technologies for the identification of such molecules are being discussed. PMID:20335972

  7. Calcium signaling mediates cold sensing in insect tissues.

    PubMed

    Teets, Nicholas M; Yi, Shu-Xia; Lee, Richard E; Denlinger, David L

    2013-05-28

    The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 °C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms.

  8. Calcium signaling mediates cold sensing in insect tissues

    PubMed Central

    Teets, Nicholas M.; Yi, Shu-Xia; Lee, Richard E.; Denlinger, David L.

    2013-01-01

    The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 °C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms. PMID:23671084

  9. Calcium signaling mediates cold sensing in insect tissues.

    PubMed

    Teets, Nicholas M; Yi, Shu-Xia; Lee, Richard E; Denlinger, David L

    2013-05-28

    The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 °C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms. PMID:23671084

  10. Lipid body accumulation alters calcium signaling dynamics in immune cells.

    PubMed

    Greineisen, William E; Speck, Mark; Shimoda, Lori M N; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J; Turner, Helen

    2014-09-01

    There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets.

  11. Lipid body accumulation alters calcium signaling dynamics in immune cells.

    PubMed

    Greineisen, William E; Speck, Mark; Shimoda, Lori M N; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J; Turner, Helen

    2014-09-01

    There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets. PMID:25016314

  12. Cellular Architecture Regulates Collective Calcium Signaling and Cell Contractility

    PubMed Central

    Hoying, James B.; Deymier, Pierre A.; Zhang, Donna D.; Wong, Pak Kin

    2016-01-01

    A key feature of multicellular systems is the ability of cells to function collectively in response to external stimuli. However, the mechanisms of intercellular cell signaling and their functional implications in diverse vascular structures are poorly understood. Using a combination of computational modeling and plasma lithography micropatterning, we investigate the roles of structural arrangement of endothelial cells in collective calcium signaling and cell contractility. Under histamine stimulation, endothelial cells in self-assembled and microengineered networks, but not individual cells and monolayers, exhibit calcium oscillations. Micropatterning, pharmacological inhibition, and computational modeling reveal that the calcium oscillation depends on the number of neighboring cells coupled via gap junctional intercellular communication, providing a mechanistic basis of the architecture-dependent calcium signaling. Furthermore, the calcium oscillation attenuates the histamine-induced cytoskeletal reorganization and cell contraction, resulting in differential cell responses in an architecture-dependent manner. Taken together, our results suggest that endothelial cells can sense and respond to chemical stimuli according to the vascular architecture via collective calcium signaling. PMID:27196735

  13. Towards the Physics of Calcium Signalling in Plants

    PubMed Central

    Vaz Martins, Teresa; Evans, Matthew J.; Woolfenden, Hugh C.; Morris, Richard J.

    2013-01-01

    Calcium is an abundant element with a wide variety of important roles within cells. Calcium ions are inter- and intra-cellular messengers that are involved in numerous signalling pathways. Fluctuating compartment-specific calcium ion concentrations can lead to localised and even plant-wide oscillations that can regulate downstream events. Understanding the mechanisms that give rise to these complex patterns that vary both in space and time can be challenging, even in cases for which individual components have been identified. Taking a systems biology approach, mathematical and computational techniques can be employed to produce models that recapitulate experimental observations and capture our current understanding of the system. Useful models make novel predictions that can be investigated and falsified experimentally. This review brings together recent work on the modelling of calcium signalling in plants, from the scale of ion channels through to plant-wide responses to external stimuli. Some in silico results that have informed later experiments are highlighted. PMID:27137393

  14. Probing the Complexities of Astrocyte Calcium Signaling.

    PubMed

    Shigetomi, Eiji; Patel, Sandip; Khakh, Baljit S

    2016-04-01

    Astrocytes are abundant glial cells that tile the entire central nervous system and mediate well-established functions for neurons, blood vessels, and other glia. These ubiquitous cells display intracellular Ca(2+) signals, which have been intensely studied for 25 years. Recently, the use of improved methods has unearthed the panoply of astrocyte Ca(2+) signals and a variable landscape of basal Ca(2+) levels. In vivo studies have started to reveal the settings under which astrocytes display behaviorally relevant Ca(2+) signaling. Studies in mice have emphasized how astrocyte Ca(2+) signaling is altered in distinct neurodegenerative diseases. Progress in the past few years, fueled by methodological advances, has thus reignited interest in astrocyte Ca(2+) signaling for brain function and dysfunction. PMID:26896246

  15. Calcium signaling in UV-induced damage

    NASA Astrophysics Data System (ADS)

    Sun, Dan; Zhang, Su-juan; Li, Yuan-yuan; Qu, Ying; Ren, Zhao-Yu

    2007-05-01

    Hepa1-6 cells were irradiated with UV and incubated for varying periods of time. [Ca 2+] i (intracellular calcium concentration) of UV-irradiated cell was measured by ratio fluorescence imaging system. The comet assay was used to determine DNA damage. During the UVB-irradiation, [Ca 2+] i had an ascending tendency from 0.88 J/m2 to 92.4J/m2. Comet assay instant test indicated that when the irradiation dosage was above 0.88J/m2, DNA damage was observed. Even after approximate 2 h of incubation, DNA damage was still not detected by 0.88J/m2 of UVB irradiation. During UVA-irradiation, the elevation of [Ca 2+] i was not dose-dependent in a range of 1200 J/m2-6000J/m2 and DNA damage was not observed by comet assay. These results suggested that several intracellular UV receptors might induce [Ca 2+] i rising by absorption of the UV energy. Just [Ca 2+] i rising can't induce DNA damage certainly, it is very likely that the breakdown of calcium steady state induces DNA damage.u

  16. Calcium and signal transduction in plants

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Reddy, A. S.

    1993-01-01

    Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.

  17. The symphony of autophagy and calcium signaling.

    PubMed

    Yao, Zhiyuan; Klionsky, Daniel J

    2015-01-01

    Posttranslational regulation of macroautophagy (hereafter autophagy), including phosphorylating and dephosphorylating components of the autophagy-related (Atg) core machinery and the corresponding upstream transcriptional factors, is important for the precise modulation of autophagy levels. Several kinases that are involved in phosphorylating autophagy-related proteins have been identified in both yeast and mammalian cells. However, there has been much less research published with regard to the identification of the complementary phosphatases that function in autophagy. A recent study identified PPP3/calcineurin, a calcium-dependent phosphatase, as a regulator of autophagy, and demonstrated that one of the key targets of PPP3/calcineurin is TFEB, a master transcriptional factor that controls autophagy and lysosomal function in mammalian cells.

  18. Calcium Signaling in Oomycetes: An Evolutionary Perspective.

    PubMed

    Zheng, Limian; Mackrill, John J

    2016-01-01

    Oomycetes are a family of eukaryotic microbes that superficially resemble fungi, but which are phylogenetically distinct from them. These organisms cause major global economic losses to agriculture and fisheries, with representative pathogens being Phytophthora infestans, the cause of late potato blight and Saprolegnia diclina, the instigator of "cotton molds" in fish. As in all eukaryotes, cytoplasmic Ca(2+) is a key second messenger in oomycetes, regulating life-cycle transitions, controlling motility and chemotaxis and, in excess, leading to cell-death. Despite this, little is known about the molecular mechanisms regulating cytoplasmic Ca(2+) concentrations in these organisms. Consequently, this review analyzed the presence of candidate calcium channels encoded within the nine oomycete genomes that are currently available. This revealed key differences between oomycetes and other eukaryotes, in particular the expansion and loss of different channel families, and the presence of a phylum-specific group of proteins, termed the polycystic kidney disease tandem ryanodine receptor domain (PKDRR) channels. PMID:27092083

  19. Calcium signaling differentiation during Xenopus oocyte maturation.

    PubMed

    El-Jouni, Wassim; Jang, Byungwoo; Haun, Shirley; Machaca, Khaled

    2005-12-15

    Ca(2+) is the universal signal for egg activation at fertilization in all sexually reproducing species. The Ca(2+) signal at fertilization is necessary for egg activation and exhibits specialized spatial and temporal dynamics. Eggs acquire the ability to produce the fertilization-specific Ca(2+) signal during oocyte maturation. However, the mechanisms regulating Ca(2+) signaling differentiation during oocyte maturation remain largely unknown. At fertilization, Xenopus eggs produce a cytoplasmic Ca(2+) (Ca(2+)(cyt)) rise that lasts for several minutes, and is required for egg activation. Here, we show that during oocyte maturation Ca(2+) transport effectors are tightly modulated. The plasma membrane Ca(2+) ATPase (PMCA) is completely internalized during maturation, and is therefore unable to extrude Ca(2+) out of the cell. Furthermore, IP(3)-dependent Ca(2+) release is required for the sustained Ca(2+)(cyt) rise in eggs, showing that Ca(2+) that is pumped into the ER leaks back out through IP(3) receptors. This apparent futile cycle allows eggs to maintain elevated cytoplasmic Ca(2+) despite the limited available Ca(2+) in intracellular stores. Therefore, Ca(2+) signaling differentiates in a highly orchestrated fashion during Xenopus oocyte maturation endowing the egg with the capacity to produce a sustained Ca(2+)(cyt) transient at fertilization, which defines the egg's competence to activate and initiate embryonic development.

  20. Calcium Signaling in Oomycetes: An Evolutionary Perspective

    PubMed Central

    Zheng, Limian; Mackrill, John J.

    2016-01-01

    Oomycetes are a family of eukaryotic microbes that superficially resemble fungi, but which are phylogenetically distinct from them. These organisms cause major global economic losses to agriculture and fisheries, with representative pathogens being Phytophthora infestans, the cause of late potato blight and Saprolegnia diclina, the instigator of “cotton molds” in fish. As in all eukaryotes, cytoplasmic Ca2+ is a key second messenger in oomycetes, regulating life-cycle transitions, controlling motility and chemotaxis and, in excess, leading to cell-death. Despite this, little is known about the molecular mechanisms regulating cytoplasmic Ca2+ concentrations in these organisms. Consequently, this review analyzed the presence of candidate calcium channels encoded within the nine oomycete genomes that are currently available. This revealed key differences between oomycetes and other eukaryotes, in particular the expansion and loss of different channel families, and the presence of a phylum-specific group of proteins, termed the polycystic kidney disease tandem ryanodine receptor domain (PKDRR) channels. PMID:27092083

  1. Role of calcium signaling in epithelial bicarbonate secretion.

    PubMed

    Jung, Jinsei; Lee, Min Goo

    2014-06-01

    Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis.

  2. Two distinct phases of calcium signalling under flow

    PubMed Central

    Liu, Bo; Lu, Shaoying; Zheng, Shuai; Jiang, Zonglai; Wang, Yingxiao

    2011-01-01

    Aims High shear stress (HSS) can have significant impact on angiogenesis and atherosclerosis in collateral arteries near the bifurcation and curvature regions. Here, we investigate the spatiotemporal pattern of HSS-induced intracellular calcium alteration. Methods and results Genetically encoded biosensors based on fluorescence resonance energy transfer were targeted in the cytoplasm and the endoplasmic reticulum (ER) to visualize the subcellular calcium dynamics in bovine aortic endothelial cells under HSS (65 dyn/cm2). Upon HSS application, the intracellular Ca2+ concentration ([Ca2+]i) increased immediately and maintained a sustained high level, while the ER-stored calcium had a significant decrease only after 300 s. The perturbation of calcium influx across the plasma membrane (PM) by the removal of extracellular calcium or the blockage of membrane channels inhibited the early phase of [Ca2+]i increase upon HSS application, which was further shown to be sensitive to the magnitudes of shear stress and the integrity of cytoskeletal support. In contrast, Src, phospholipase C(PLC), and the inositol 1,4,5-trisphosphate receptor (IP3R) can regulate the late phase of HSS-induced [Ca2+]i increase via the promotion of the ER calcium efflux. Conclusion The HSS-induced [Ca2+]i increase consists of two well-co-ordinated phases with different sources and mechanisms: (i) an early phase due to the calcium influx across the PM which is dependent on the mechanical impact and cytoskeletal support and (ii) a late phase originated from the ER-calcium efflux which is regulated by the Src, PLC, and IP3R signalling pathway. Therefore, our work presented new molecular-level insights into systematic understanding of mechanotransduction in cardiovascular systems. PMID:21285296

  3. Calcium Signals Driven by Single Channel Noise

    PubMed Central

    Skupin, Alexander; Kettenmann, Helmut; Falcke, Martin

    2010-01-01

    Usually, the occurrence of random cell behavior is appointed to small copy numbers of molecules involved in the stochastic process. Recently, we demonstrated for a variety of cell types that intracellular Ca2+ oscillations are sequences of random spikes despite the involvement of many molecules in spike generation. This randomness arises from the stochastic state transitions of individual Ca2+ release channels and does not average out due to the existence of steep concentration gradients. The system is hierarchical due to the structural levels channel - channel cluster - cell and a corresponding strength of coupling. Concentration gradients introduce microdomains which couple channels of a cluster strongly. But they couple clusters only weakly; too weak to establish deterministic behavior on cell level. Here, we present a multi-scale modelling concept for stochastic hierarchical systems. It simulates active molecules individually as Markov chains and their coupling by deterministic diffusion. Thus, we are able to follow the consequences of random single molecule state changes up to the signal on cell level. To demonstrate the potential of the method, we simulate a variety of experiments. Comparisons of simulated and experimental data of spontaneous oscillations in astrocytes emphasize the role of spatial concentration gradients in Ca2+ signalling. Analysis of extensive simulations indicates that frequency encoding described by the relation between average and standard deviation of interspike intervals is surprisingly robust. This robustness is a property of the random spiking mechanism and not a result of control. PMID:20700497

  4. Calcium signaling and T-type calcium channels in cancer cell cycling

    PubMed Central

    Taylor, James T; Zeng, Xiang-Bin; Pottle, Jonathan E; Lee, Kevin; Wang, Alun R; Yi, Stephenie G; Scruggs, Jennifer A S; Sikka, Suresh S; Li, Ming

    2008-01-01

    Regulation of intracellular calcium is an important signaling mechanism for cell proliferation in both normal and cancerous cells. In normal epithelial cells, free calcium concentration is essential for cells to enter and accomplish the S phase and the M phase of the cell cycle. In contrast, cancerous cells can pass these phases of the cell cycle with much lower cytoplasmic free calcium concentrations, indicating an alternative mechanism has developed for fulfilling the intracellular calcium requirement for an increased rate of DNA synthesis and mitosis of fast replicating cancerous cells. The detailed mechanism underlying the altered calcium loading pathway remains unclear; however, there is a growing body of evidence that suggests the T-type Ca2+ channel is abnormally expressed in cancerous cells and that blockade of these channels may reduce cell proliferation in addition to inducing apoptosis. Recent studies also show that the expression of T-type Ca2+ channels in breast cancer cells is proliferation state dependent, i.e. the channels are expressed at higher levels during the fast-replication period, and once the cells are in a non-proliferation state, expression of this channel is minimal. Therefore, selectively blocking calcium entry into cancerous cells may be a valuable approach for preventing tumor growth. Since T-type Ca2+ channels are not expressed in epithelial cells, selective T-type Ca2+ channel blockers may be useful in the treatment of certain types of cancers. PMID:18763278

  5. Vasopressin and disruption of calcium signalling in polycystic kidney disease.

    PubMed

    Chebib, Fouad T; Sussman, Caroline R; Wang, Xiaofang; Harris, Peter C; Torres, Vicente E

    2015-08-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease and is responsible for 5-10% of cases of end-stage renal disease worldwide. ADPKD is characterized by the relentless development and growth of cysts, which cause progressive kidney enlargement associated with hypertension, pain, reduced quality of life and eventual kidney failure. Mutations in the PKD1 or PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively, cause ADPKD. However, neither the functions of these proteins nor the molecular mechanisms of ADPKD pathogenesis are well understood. Here, we review the literature that examines how reduced levels of functional PC1 or PC2 at the primary cilia and/or the endoplasmic reticulum directly disrupts intracellular calcium signalling and indirectly disrupts calcium-regulated cAMP and purinergic signalling. We propose a hypothetical model in which dysregulated metabolism of cAMP and purinergic signalling increases the sensitivity of principal cells in collecting ducts and of tubular epithelial cells in the distal nephron to the constant tonic action of vasopressin. The resulting magnified response to vasopressin further enhances the disruption of calcium signalling that is initiated by mutations in PC1 or PC2, and activates downstream signalling pathways that cause impaired tubulogenesis, increased cell proliferation, increased fluid secretion and interstitial inflammation.

  6. Evolution of the Calcium-Based Intracellular Signaling System

    PubMed Central

    Marchadier, Elodie; Oates, Matt E.; Fang, Hai; Donoghue, Philip C.J.; Hetherington, Alistair M.; Gough, Julian

    2016-01-01

    To progress our understanding of molecular evolution from a collection of well-studied genes toward the level of the cell, we must consider whole systems. Here, we reveal the evolution of an important intracellular signaling system. The calcium-signaling toolkit is made up of different multidomain proteins that have undergone duplication, recombination, sequence divergence, and selection. The picture of evolution, considering the repertoire of proteins in the toolkit of both extant organisms and ancestors, is radically different from that of other systems. In eukaryotes, the repertoire increased in both abundance and diversity at a far greater rate than general genomic expansion. We describe how calcium-based intracellular signaling evolution differs not only in rate but in nature, and how this correlates with the disparity of plants and animals. PMID:27358427

  7. Calcium signaling and secretion in cholangiocytes.

    PubMed

    Guerra, Mateus T; Nathanson, Michael H

    2015-07-01

    Alcoholic hepatitis affects up to one-third of individuals who abuse alcohol and can be associated with high mortality. Although this disorder is characterized by hepatocellular damage, steatosis and neutrophil infiltration, recent evidence suggests that cholestasis or impaired bile secretion may be a frequent occurrence as well. Bile secretion results from the concerted activity of hepatocytes and cholangiocytes, the epithelial cells that line the bile ducts. Hepatocytes secrete bile acids and conjugated products into the bile canaliculi, which then are modified by cholangiocytes through secretion of bicarbonate and water to give rise to the final secreted bile. Here the molecular mechanisms regulating bile secretion in cholangiocytes are reviewed. Moreover, we discuss how the expression of intracellular Ca(2+) channels might be regulated in cholangiocytes, plus evidence that components of the Ca(2+) signaling machinery are altered in a range of cholestatic diseases of the bile ducts. PMID:26100660

  8. Calcium Signaling in Intact Dorsal Root Ganglia

    PubMed Central

    Gemes, Geza; Rigaud, Marcel; Koopmeiners, Andrew S.; Poroli, Mark J.; Zoga, Vasiliki; Hogan, Quinn H.

    2013-01-01

    Background Ca2+ is the dominant second messenger in primary sensory neurons. In addition, disrupted Ca2+ signaling is a prominent feature in pain models involving peripheral nerve injury. Standard cytoplasmic Ca2+ recording techniques use high K+ or field stimulation and dissociated neurons. To compare findings in intact dorsal root ganglia, we used a method of simultaneous electrophysiologic and microfluorimetric recording. Methods Dissociated neurons were loaded by bath-applied Fura-2-AM and subjected to field stimulation. Alternatively, we adapted a technique in which neuronal somata of intact ganglia were loaded with Fura-2 through an intracellular microelectrode that provided simultaneous membrane potential recording during activation by action potentials (APs) conducted from attached dorsal roots. Results Field stimulation at levels necessary to activate neurons generated bath pH changes through electrolysis and failed to predictably drive neurons with AP trains. In the intact ganglion technique, single APs produced measurable Ca2+ transients that were fourfold larger in presumed nociceptive C-type neurons than in nonnociceptive Aβ-type neurons. Unitary Ca2+ transients summated during AP trains, forming transients with amplitudes that were highly dependent on stimulation frequency. Each neuron was tuned to a preferred frequency at which transient amplitude was maximal. Transients predominantly exhibited monoexponential recovery and had sustained plateaus during recovery only with trains of more than 100 APs. Nerve injury decreased Ca2+ transients in C-type neurons, but increased transients in Aβ-type neurons. Conclusions Refined observation of Ca2+ signaling is possible through natural activation by conducted APs in undissociated sensory neurons and reveals features distinct to neuronal types and injury state. PMID:20526180

  9. Plastid-nucleus communication involves calcium-modulated MAPK signalling

    PubMed Central

    Guo, Hailong; Feng, Peiqiang; Chi, Wei; Sun, Xuwu; Xu, Xiumei; Li, Yuan; Ren, Dongtao; Lu, Congming; David Rochaix, Jean; Leister, Dario; Zhang, Lixin

    2016-01-01

    Chloroplast retrograde signals play important roles in coordinating the plastid and nuclear gene expression and are critical for proper chloroplast biogenesis and for maintaining optimal chloroplast functions in response to environmental changes in plants. Until now, the signals and the mechanisms for retrograde signalling remain poorly understood. Here we identify factors that allow the nucleus to perceive stress conditions in the chloroplast and to respond accordingly by inducing or repressing specific nuclear genes encoding plastid proteins. We show that ABI4, which is known to repress the LHCB genes during retrograde signalling, is activated through phosphorylation by the MAP kinases MPK3/MPK6 and the activity of these kinases is regulated through 14-3-3ω-mediated Ca2+-dependent scaffolding depending on the chloroplast calcium sensor protein CAS. These findings uncover an additional mechanism in which chloroplast-modulated Ca2+ signalling controls the MAPK pathway for the activation of critical components of the retrograde signalling chain. PMID:27399341

  10. Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli.

    PubMed

    Jin, Xingjian; Mohieldin, Ashraf M; Muntean, Brian S; Green, Jill A; Shah, Jagesh V; Mykytyn, Kirk; Nauli, Surya M

    2014-06-01

    Primary cilia with a diameter of ~200 nm have been implicated in development and disease. Calcium signaling within a primary cilium has never been directly visualized and has therefore remained a speculation. Fluid-shear stress and dopamine receptor type-5 (DR5) agonist are among the few stimuli that require cilia for intracellular calcium signal transduction. However, it is not known if these stimuli initiate calcium signaling within the cilium or if the calcium signal originates in the cytoplasm. Using an integrated single-cell imaging technique, we demonstrate for the first time that calcium signaling triggered by fluid-shear stress initiates in the primary cilium and can be distinguished from the subsequent cytosolic calcium response through the ryanodine receptor. Importantly, this flow-induced calcium signaling depends on the ciliary polycystin-2 calcium channel. While DR5-specific agonist induces calcium signaling mainly in the cilioplasm via ciliary CaV1.2, thrombin specifically induces cytosolic calcium signaling through the IP3 receptor. Furthermore, a non-specific calcium ionophore triggers both ciliary and cytosolic calcium responses. We suggest that cilia not only act as sensory organelles but also function as calcium signaling compartments. Cilium-dependent signaling can spread to the cytoplasm or be contained within the cilioplasm. Our study thus provides the first model to understand signaling within the cilioplasm of a living cell.

  11. Presenilins and calcium signaling – systems biology to the rescue

    PubMed Central

    Bezprozvanny, Ilya

    2016-01-01

    Mutations in presenilins result in familial Alzheimer’s disease (FAD). Presenilins encode a catalytic subunit of γ-secretase complex, and FAD mutations in presenilins alter γ-secretase activity. Many FAD mutations in presenilins also affect intracellular calcium signaling. To explain these results it was proposed that presenilins encode endoplasmic reticulum (ER) calcium leak channels, and that this function is disrupted by FAD mutations. This hypothesis has been controversial. Two recent reports provide new evidence for the calcium leak channel hypothesis. One group reported the presence of putative ion-conduction pore in the high resolution crystal structure of bacterial presenilin homologue PSH1. Another group identified an essential role of presenilins in mediating ER calcium leak in unbiased cell-based screen for calcium homeostasis modulators. These results should enable the field to move forward and to focus on exploring connections between FAD mutations in presenilins, changes in γ-secretase and ER Ca2+ leak functions and development of the disease. PMID:23838181

  12. Regulation of PKC mediated signaling by calcium during visceral leishmaniasis.

    PubMed

    Roy, Nivedita; Chakraborty, Supriya; Paul Chowdhury, Bidisha; Banerjee, Sayantan; Halder, Kuntal; Majumder, Saikat; Majumdar, Subrata; Sen, Parimal C

    2014-01-01

    Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA) and Sarco/endoplasmic reticulum calcium ATPase (SERCA) which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis. PMID:25329062

  13. Calcium signal induced by mechanical perturbation of osteoclasts.

    PubMed

    Xia, S L; Ferrier, J

    1995-06-01

    Multinucleated osteoclasts from rabbit long bone, 1-6 days in culture, respond to mechanical perturbation with a transient increase of intracellular calcium concentration ([Ca2+]i), as measured with the fluorescent indicator fluo-3 on a confocal laser scanning microscope. In experiments with different extracellular calcium concentrations (from 11.8 mM to calcium-free), the incidence, the magnitude, and the duration of [Ca2+]i responses decreases with decreasing bathing [Ca2+]. Following mechanical perturbation, a thapsigargin-induced [Ca2+]i response has a lower magnitude than the thapsigargin-induced response without mechanical perturbation. In thapsigargin-pretreated osteoclasts the mechanical perturbation-induced rise in [Ca2+]i is larger and longer than in control cells. Ni2+ inhibits the incidence and decreases both the magnitude and the duration of the responses, while nifedipine, verapamil, and Gd3+ have no effect. These measurements show that rabbit osteoclasts transduce a mechanical perturbation of the cell membrane into a [Ca2+]i signal via both a calcium influx and an internal calcium release.

  14. L-type calcium channels: on the fast track to nuclear signaling.

    PubMed

    D'Arco, Marianna; Dolphin, Annette C

    2012-08-14

    Calcium signaling resulting from depolarization of neurons can trigger changes in transcription, and this response has been called excitation-transcription (E-T) coupling. In neurons, voltage-gated and ligand-gated calcium-permeable channels contribute to the increase in intracellular calcium. It appears that calcium signals mediated by specific voltage-gated calcium channels may have distinct roles in E-T coupling.

  15. Can calcium signaling be harnessed for cancer immunotherapy?

    PubMed

    Rooke, Ronald

    2014-10-01

    Experimental evidence shows the importance of the immune system in controlling tumor appearance and growth. Immunotherapy is defined as the treatment of a disease by inducing, enhancing or suppressing an immune response. In the context of cancer treatment, it involves breaking tolerance to a cancer-specific self-antigen and/or enhancing the existing anti-tumor immune response, be it specific or not. Part of the complexity in developing such treatment is that cancers are selected to escape adaptive or innate immune responses. These escape mechanisms are numerous and they may cumulate in one cancer. Moreover, different cancers of a same type may present different combinations of escape mechanisms. The limited success of immunotherapeutics in the clinic as stand-alone products may in part be explained by the fact that most of them only activate one facet of the immune response. It is important to identify novel methods to broaden the efficacy of immunotherapeutics. Calcium signaling is central to numerous cellular processes, leading to immune responses, cancer growth and apoptosis induced by cancer treatments. Calcium signaling in cancer therapy and control will be integrated to current cancer immunotherapy approaches. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.

  16. Resveratrol and calcium signaling: molecular mechanisms and clinical relevance.

    PubMed

    McCalley, Audrey E; Kaja, Simon; Payne, Andrew J; Koulen, Peter

    2014-06-05

    Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol's mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol's actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.

  17. Can calcium signaling be harnessed for cancer immunotherapy?

    PubMed

    Rooke, Ronald

    2014-10-01

    Experimental evidence shows the importance of the immune system in controlling tumor appearance and growth. Immunotherapy is defined as the treatment of a disease by inducing, enhancing or suppressing an immune response. In the context of cancer treatment, it involves breaking tolerance to a cancer-specific self-antigen and/or enhancing the existing anti-tumor immune response, be it specific or not. Part of the complexity in developing such treatment is that cancers are selected to escape adaptive or innate immune responses. These escape mechanisms are numerous and they may cumulate in one cancer. Moreover, different cancers of a same type may present different combinations of escape mechanisms. The limited success of immunotherapeutics in the clinic as stand-alone products may in part be explained by the fact that most of them only activate one facet of the immune response. It is important to identify novel methods to broaden the efficacy of immunotherapeutics. Calcium signaling is central to numerous cellular processes, leading to immune responses, cancer growth and apoptosis induced by cancer treatments. Calcium signaling in cancer therapy and control will be integrated to current cancer immunotherapy approaches. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau. PMID:24524821

  18. GPCR and voltage-gated calcium channels (VGCC) signaling complexes.

    PubMed

    Altier, Christophe

    2012-01-01

    Voltage-gated ion channels are transmembrane proteins that control nerve impulses and cell homeostasis. Signaling molecules that regulate ion channel activity and density at the plasma membrane must be specifically and efficiently coupled to these channels in order to control critical physiological functions such as action potential propagation. Although their regulation by G-protein receptor activation has been extensively explored, the assembly of ion channels into signaling complexes of GPCRs plays a fundamental role, engaging specific downstream -signaling pathways that trigger precise downstream effectors. Recent work has confirmed that GPCRs can intimately interact with ion channels and serve as -chaperone proteins that finely control their gating and trafficking in subcellular microdomains. This chapter aims to describe examples of GPCR-ion channel co-assembly, focusing mainly on signaling complexes between GPCRs and voltage-gated calcium channels.

  19. Calcium signaling as a mediator of cell energy demand and a trigger to cell death.

    PubMed

    Bhosale, Gauri; Sharpe, Jenny A; Sundier, Stephanie Y; Duchen, Michael R

    2015-09-01

    Calcium signaling is pivotal to a host of physiological pathways. A rise in calcium concentration almost invariably signals an increased cellular energy demand. Consistent with this, calcium signals mediate a number of pathways that together serve to balance energy supply and demand. In pathological states, calcium signals can precipitate mitochondrial injury and cell death, especially when coupled to energy depletion and oxidative or nitrosative stress. This review explores the mechanisms that couple cell signaling pathways to metabolic regulation or to cell death. The significance of these pathways is exemplified by pathological case studies, such as those showing loss of mitochondrial calcium uptake 1 in patients and ischemia/reperfusion injury.

  20. Calcium signaling as a mediator of cell energy demand and a trigger to cell death

    PubMed Central

    Bhosale, Gauri; Sharpe, Jenny A.; Sundier, Stephanie Y.

    2015-01-01

    Calcium signaling is pivotal to a host of physiological pathways. A rise in calcium concentration almost invariably signals an increased cellular energy demand. Consistent with this, calcium signals mediate a number of pathways that together serve to balance energy supply and demand. In pathological states, calcium signals can precipitate mitochondrial injury and cell death, especially when coupled to energy depletion and oxidative or nitrosative stress. This review explores the mechanisms that couple cell signaling pathways to metabolic regulation or to cell death. The significance of these pathways is exemplified by pathological case studies, such as those showing loss of mitochondrial calcium uptake 1 in patients and ischemia/reperfusion injury. PMID:26375864

  1. Ion channels and calcium signaling in motile cilia

    PubMed Central

    Doerner, Julia F; Delling, Markus; Clapham, David E

    2015-01-01

    The beating of motile cilia generates fluid flow over epithelia in brain ventricles, airways, and Fallopian tubes. Here, we patch clamp single motile cilia of mammalian ependymal cells and examine their potential function as a calcium signaling compartment. Resting motile cilia calcium concentration ([Ca2+] ~170 nM) is only slightly elevated over cytoplasmic [Ca2+] (~100 nM) at steady state. Ca2+ changes that arise in the cytoplasm rapidly equilibrate in motile cilia. We measured CaV1 voltage-gated calcium channels in ependymal cells, but these channels are not specifically enriched in motile cilia. Membrane depolarization increases ciliary [Ca2+], but only marginally alters cilia beating and cilia-driven fluid velocity within short (~1 min) time frames. We conclude that beating of ependymal motile cilia is not tightly regulated by voltage-gated calcium channels, unlike that of well-studied motile cilia and flagella in protists, such as Paramecia and Chlamydomonas. DOI: http://dx.doi.org/10.7554/eLife.11066.001 PMID:26650848

  2. Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks.

    PubMed

    Niggli, E

    1999-01-01

    Subcellularly localized Ca2+ signals in cardiac and skeletal muscle have recently been identified as elementary Ca2+ signaling events. The signals, termed Ca2+ sparks and Ca2+ quarks, represent openings of Ca2+ release channels located in the membrane of the sarcoplasmic reticulum (SR). In cardiac muscle, the revolutionary discovery of Ca2+ sparks has allowed the development of a fundamentally different concept for the amplification of Ca2+ signals by Ca(2+)-induced Ca2+ release. In such a system, a graded amplification of the triggering Ca2+ signal entering the myocyte via L-type Ca2+ channels is accomplished by a recruitment process whereby individual SR Ca2+ release units are locally controlled by L-type Ca2+ channels. In skeletal muscle, the initial SR Ca2+ release is governed by voltage-sensors but subsequently activates additional Ca2+ sparks by Ca(2+)-induced Ca2+ release from the SR. Results from studies on elementary Ca2+ release events will improve our knowledge of muscle Ca2+ signaling at all levels of complexity, from the molecule to normal cellular function, and from the regulation of cardiac and skeletal muscle force to the pathophysiology of excitation-contraction coupling.

  3. Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors

    PubMed Central

    Szikra, Tamas; Cusato, Karen; Thoreson, Wallace B; Barabas, Peter; Bartoletti, Theodore M; Krizaj, David

    2008-01-01

    Tonic synapses are specialized for sustained calcium entry and transmitter release, allowing them to operate in a graded fashion over a wide dynamic range. We identified a novel plasma membrane calcium entry mechanism that extends the range of rod photoreceptor signalling into light-adapted conditions. The mechanism, which shares molecular and physiological characteristics with store-operated calcium entry (SOCE), is required to maintain baseline [Ca2+]i in rod inner segments and synaptic terminals. Sustained Ca2+ entry into rod cytosol is augmented by store depletion, blocked by La3+ and Gd3+ and suppressed by organic antagonists MRS-1845 and SKF-96365. Store depletion and the subsequent Ca2+ influx directly stimulated exocytosis in terminals of light-adapted rods loaded with the activity-dependent dye FM1–43. Moreover, SOCE blockers suppressed rod-mediated synaptic inputs to horizontal cells without affecting presynaptic voltage-operated Ca2+ entry. Silencing of TRPC1 expression with small interference RNA disrupted SOCE in rods, but had no effect on cone Ca2+ signalling. Rods were immunopositive for TRPC1 whereas cone inner segments immunostained with TRPC6 channel antibodies. Thus, SOCE modulates Ca2+ homeostasis and light-evoked neurotransmission at the rod photoreceptor synapse mediated by TRPC1. PMID:18755743

  4. The ancient roots of calcium signalling evolutionary tree.

    PubMed

    Plattner, Helmut; Verkhratsky, Alexei

    2015-03-01

    Molecular cascades of calcium homeostasis and signalling (Ca(2+) pumps, channels, cation exchangers, and Ca(2+)-binding proteins) emerged in prokaryotes and further developed at the unicellular stage of eukaryote evolution. With progressive evolution, mechanisms of signalling became diversified reflecting multiplication and specialisation of Ca(2+)-regulated cellular activities. Recent genomic analysis of organisms from different systematic positions, combined with proteomic and functional probing invigorated expansion in our understanding of the evolution of Ca(2+) signalling. Particularly impressive is the consistent role of Ca(2+)-ATPases/pumps, calmodulin and calcineurin from very early stages of eukaryotic evolution, although with interspecies differences. Deviations in Ca(2+) handling and signalling are observed between vertebrates and flowering plants as well as between protists at the basis of the two systematic categories, Unikonta (for example choanoflagellates) and Bikonta (for example ciliates). Only the B-subunit of calcineurin, for instance, is maintained to regulate highly diversified protein kinases for stress defence in flowering plants, whereas the complete dimeric protein, in vertebrates up to humans, regulates gene transcription, immune-defence and plasticity of the brain. Calmodulin is similarly maintained throughout evolution, but in plants a calmoldulin-like domain is integrated into protein kinase molecules. The eukaryotic cell has inherited and invented many mechanisms to exploit the advantages of signalling by Ca(2+), and there is considerable overall similarity in basic processes of Ca(2+) regulation and signalling during evolution, although some details may vary.

  5. Involvement of aberrant calcium signalling in herpetic neuralgia.

    PubMed

    Warwick, Rebekah A; Hanani, Menachem

    2016-03-01

    Alpha-herpesviruses, herpes simplex viruses (HSV) and varicella zoster virus (VZV), are pathogens of the peripheral nervous system. After primary infection, these viruses establish latency within sensory ganglia, while retaining the ability to reactivate. Reactivation of VZV results in herpes zoster, a condition characterized by skin lesions that leads to post-herpetic neuralgia. Recurrent reactivations of HSV, which cause mucocutaneous lesions, may also result in neuralgia. During reactivation of alpha-herpesviruses, satellite glial cells (SGCs), which surround neurons in sensory ganglia, become infected with the replicating virus. SGCs are known to contribute to neuropathic pain in a variety of animal pain models. Here we investigated how infection of short-term cultures of mouse trigeminal ganglia with HSV-1 affects communication between SGCs and neurons, and how this altered communication may increase neuronal excitability, thus contributing to herpetic neuralgia. Mechanical stimulation of single neurons or SGCs resulted in intercellular calcium waves, which were larger in cultures infected with HSV-1. Two differences were observed between control and HSV-1 infected cultures that could account for this augmentation. Firstly, HSV-1 infection induced cell fusion among SGCs and neurons, which would facilitate the spread of calcium signals over farther distances. Secondly, using calcium imaging and intracellular electrical recordings, we found that neurons in the HSV-1 infected cultures exhibited augmented influx of calcium upon depolarization. These virally induced changes may not only cause more neurons in the sensory ganglia to fire action potentials, but may also increase neurotransmitter release at the presynaptic terminals in the spinal cord. They are therefore likely to be contributing factors to herpetic neuralgia. PMID:26684187

  6. Involvement of aberrant calcium signalling in herpetic neuralgia.

    PubMed

    Warwick, Rebekah A; Hanani, Menachem

    2016-03-01

    Alpha-herpesviruses, herpes simplex viruses (HSV) and varicella zoster virus (VZV), are pathogens of the peripheral nervous system. After primary infection, these viruses establish latency within sensory ganglia, while retaining the ability to reactivate. Reactivation of VZV results in herpes zoster, a condition characterized by skin lesions that leads to post-herpetic neuralgia. Recurrent reactivations of HSV, which cause mucocutaneous lesions, may also result in neuralgia. During reactivation of alpha-herpesviruses, satellite glial cells (SGCs), which surround neurons in sensory ganglia, become infected with the replicating virus. SGCs are known to contribute to neuropathic pain in a variety of animal pain models. Here we investigated how infection of short-term cultures of mouse trigeminal ganglia with HSV-1 affects communication between SGCs and neurons, and how this altered communication may increase neuronal excitability, thus contributing to herpetic neuralgia. Mechanical stimulation of single neurons or SGCs resulted in intercellular calcium waves, which were larger in cultures infected with HSV-1. Two differences were observed between control and HSV-1 infected cultures that could account for this augmentation. Firstly, HSV-1 infection induced cell fusion among SGCs and neurons, which would facilitate the spread of calcium signals over farther distances. Secondly, using calcium imaging and intracellular electrical recordings, we found that neurons in the HSV-1 infected cultures exhibited augmented influx of calcium upon depolarization. These virally induced changes may not only cause more neurons in the sensory ganglia to fire action potentials, but may also increase neurotransmitter release at the presynaptic terminals in the spinal cord. They are therefore likely to be contributing factors to herpetic neuralgia.

  7. Novel frontiers in calcium signaling: A possible target for chemotherapy.

    PubMed

    Bonora, Massimo; Giorgi, Carlotta; Pinton, Paolo

    2015-09-01

    Intracellular calcium (Ca(2+)) is largely known as a second messenger that is able to drive effects ranging from vesicle formation to muscle contraction, energy production and much more. In spite of its physiological regulation, Ca(2+) is a strategic tool for regulating apoptosis, especially during transmission between the endoplasmic reticulum and the mitochondria. Contact sites between these organelles are well-defined as signaling platforms where oncogenes and oncosuppressors can exert anti/pro-apoptotic activities. Recent advances from in vivo investigations into these regions highlight the role of the master oncosuppressor p53 in regulating Ca(2+) transmission and apoptosis, and we propose that Ca(2+) signals are relevant targets when developing new therapeutic approaches.

  8. CREB modulates calcium signaling in cAMP-induced bone marrow stromal cells (BMSCs).

    PubMed

    Zhang, Linxia; Liu, Li; Thompson, Ryan; Chan, Christina

    2014-10-01

    Calcium signaling has a versatile role in many important cellular functions. Despite its importance, regulation of calcium signaling in bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) has not been explored extensively. Our previous study revealed that cyclic adenosine monophosphate (cAMP) enabled BMSCs to generate calcium signal upon stimulation by dopamine, KCl and glutamate. Concurrently, cAMP transiently activated the transcription factor cAMP response element binding protein (CREB) in BMSCs. Activity of CREB can be modulated by the calcium/calmodulin-dependent kinase signaling pathway, however, whether the calcium signaling observed in cAMP-induced BMSCs requires CREB has not been investigated. In an effort to uncover the role of CREB in the generation of calcium signaling in response to modulators such as dopamine and KCl, we knocked down CREB activity in BMSCs. Our study indicated that BMSCs, but not its close relative fibroblasts, are responsive to dopamine and KCl after cAMP treatment. Calcium signal elicited by dopamine depends, in part, on calcium influx whereas that elicited by KCl depends completely on calcium influx. Knock-down of CREB activity significantly reduced or abolished the cAMP-induced calcium response, and reintroducing a constitutively active CREB partially restored the calcium response.

  9. CREB modulates calcium signaling in cAMP-induced bone marrow stromal cells (BMSCs)

    PubMed Central

    Zhang, Linxia; Liu, Li; Thompson, Ryan; Chan, Christina

    2014-01-01

    Calcium signaling has a versatile role in many important cellular functions. Despite its importance, regulation of calcium signaling in bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) has not been explored extensively. Our previous study revealed that cyclic adenosine monophosphate (cAMP) enabled BMSCs to generate calcium signal upon stimulation by dopamine, KCl and glutamate. Concurrently, cAMP transiently activated the transcription factor cAMP response element binding protein (CREB) in BMSCs. Activity of CREB can be modulated by the calcium/calmodulin-dependent kinase signaling pathway, however, whether the calcium signaling observed in cAMP-induced BMSCs requires CREB has not been investigated. In an effort to uncover the role of CREB in the generation of calcium signaling in response to modulators such as dopamine and KCl, we knocked down CREB activity in BMSCs. Our study indicated that BMSCs, but not its close relative fibroblasts, are responsive to dopamine and KCl after cAMP treatment. Calcium signal elicited by dopamine depends, in part, on calcium influx whereas that elicited by KCl depends completely on calcium influx. Knock-down of CREB activity significantly reduced or abolished the cAMP-induced calcium response, and reintroducing a constitutively active CREB partially restored the calcium response. PMID:25154887

  10. Calcium signaling during reproduction and biotrophic fungal interactions in plants.

    PubMed

    Chen, Junyi; Gutjahr, Caroline; Bleckmann, Andrea; Dresselhaus, Thomas

    2015-04-01

    Many recent studies have indicated that cellular communications during plant reproduction, fungal invasion, and defense involve identical or similar molecular players and mechanisms. Indeed, pollen tube invasion and sperm release shares many common features with infection of plant tissue by fungi and oomycetes, as a tip-growing intruder needs to communicate with the receptive cells to gain access into a cell and tissue. Depending on the compatibility between cells, interactions may result in defense, invasion, growth support, or cell death. Plant cells stimulated by both pollen tubes and fungal hyphae secrete, for example, small cysteine-rich proteins and receptor-like kinases are activated leading to intracellular signaling events such as the production of reactive oxygen species (ROS) and the generation of calcium (Ca(2+)) transients. The ubiquitous and versatile second messenger Ca(2+) thereafter plays a central and crucial role in modulating numerous downstream signaling processes. In stimulated cells, it elicits both fast and slow cellular responses depending on the shape, frequency, amplitude, and duration of the Ca(2+) transients. The various Ca(2+) signatures are transduced into cellular information via a battery of Ca(2+)-binding proteins. In this review, we focus on Ca(2+) signaling and discuss its occurrence during plant reproduction and interactions of plant cells with biotrophic filamentous microbes. The participation of Ca(2+) in ROS signaling pathways is also discussed.

  11. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum

    PubMed Central

    Echevarría, Wihelma; Leite, M. Fatima; Guerra, Mateus T.; Zipfel, Warren R.; Nathanson, Michael H.

    2013-01-01

    Calcium is a second messenger in virtually all cells and tissues1. Calcium signals in the nucleus have effects on gene transcription and cell growth that are distinct from those of cytosolic calcium signals; however, it is unknown how nuclear calcium signals are regulated. Here we identify a reticular network of nuclear calcium stores that is continuous with the endoplasmic reticulum and the nuclear envelope. This network expresses inositol 1,4,5-trisphosphate (InsP3) receptors, and the nuclear component of InsP3-mediated calcium signals begins in its locality. Stimulation of these receptors with a little InsP3 results in small calcium signals that are initiated in this region of the nucleus. Localized release of calcium in the nucleus causes nuclear protein kinase C (PKC) to translocate to the region of the nuclear envelope, whereas release of calcium in the cytosol induces translocation of cytosolic PKC to the plasma membrane. Our findings show that the nucleus contains a nucleoplasmic reticulum with the capacity to regulate calcium signals in localized subnuclear regions. The presence of such machinery provides a potential mechanism by which calcium can simultaneously regulate many independent processes in the nucleus. PMID:12717445

  12. Molecular Basis of Calcium Signaling in Lymphocytes: STIM and ORAI

    PubMed Central

    Hogan, Patrick G.; Lewis, Richard S.; Rao, Anjana

    2010-01-01

    Ca2+ entry into cells of the peripheral immune system occurs through highly Ca2+-selective channels known as CRAC (calcium release-activated calcium) channels. CRAC channels are a very well-characterized example of store-operated Ca2+ channels, so designated because they open when the endoplasmic reticulum (ER) Ca2+ store becomes depleted. Physiologically, Ca2+ is released from the ER lumen into the cytoplasm when activated receptors couple to phospholipase C and trigger production of the second messenger inositol 1,4,5-trisphosphate (IP3). IP3 binds to IP3 receptors in the ER membrane and activates Ca2+ release. The proteins STIM and ORAI were discovered through limited and genome-wide RNAi screens, respectively, performed in Drosophila cells and focused on identifying modulators of store-operated Ca2+ entry. STIM1 and STIM2 sense the depletion of ER Ca2+ stores, whereas ORAI1 is a pore subunit of the CRAC channel. In this review, we discuss selected aspects of Ca2+ signaling in cells of the immune system, focusing on the roles of STIM and ORAI proteins in store-operated Ca2+ entry. PMID:20307213

  13. Calcium and cell death signaling in neurodegeneration and aging.

    PubMed

    Smaili, Soraya; Hirata, Hanako; Ureshino, Rodrigo; Monteforte, Priscila T; Morales, Ana P; Muler, Mari L; Terashima, Juliana; Oseki, Karen; Rosenstock, Tatiana R; Lopes, Guiomar S; Bincoletto, Claudia

    2009-09-01

    Transient increase in cytosolic (Cac2+) and mitochondrial Ca2+ (Ca m2+) are essential elements in the control of many physiological processes. However, sustained increases in Ca c2+ and Ca m2+ may contribute to oxidative stress and cell death. Several events are related to the increase in Ca m2+, including regulation and activation of a number of Ca2+ dependent enzymes, such as phospholipases, proteases and nucleases. Mitochondria and endoplasmic reticulum (ER) play pivotal roles in the maintenance of intracellular Ca2+ homeostasis and regulation of cell death. Several lines of evidence have shown that, in the presence of some apoptotic stimuli, the activation of mitochondrial processes may lead to the release of cytochrome c followed by the activation of caspases, nuclear fragmentation and apoptotic cell death. The aim of this review was to show how changes in calcium signaling can be related to the apoptotic cell death induction. Calcium homeostasis was also shown to be an important mechanism involved in neurodegenerative and aging processes.

  14. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines.

    PubMed

    Chalifoux, Jason R; Carter, Adam G

    2010-04-15

    Metabotropic GABA(B) receptors play a fundamental role in modulating the excitability of neurons and circuits throughout the brain. These receptors influence synaptic transmission by inhibiting presynaptic release or activating postsynaptic potassium channels. However, their ability to directly influence different types of postsynaptic glutamate receptors remains unresolved. Here we examine GABA(B) receptor modulation in layer 2/3 pyramidal neurons from the mouse prefrontal cortex. We use two-photon laser-scanning microscopy to study synaptic modulation at individual dendritic spines. Using two-photon optical quantal analysis, we first demonstrate robust presynaptic modulation of multivesicular release at single synapses. Using two-photon glutamate uncaging, we then reveal that GABA(B) receptors strongly inhibit NMDA receptor calcium signals. This postsynaptic modulation occurs via the PKA pathway and does not affect synaptic currents mediated by AMPA or NMDA receptors. This form of GABA(B) receptor modulation has widespread implications for the control of calcium-dependent neuronal function.

  15. Calcium signalling in human neutrophil cell lines is not affected by low-frequency electromagnetic fields.

    PubMed

    Golbach, Lieke A; Philippi, John G M; Cuppen, Jan J M; Savelkoul, Huub F J; Verburg-van Kemenade, B M Lidy

    2015-09-01

    We are increasingly exposed to low-frequency electromagnetic fields (LF EMFs) by electrical devices and power lines, but if and how these fields interact with living cells remains a matter of debate. This study aimed to investigate the potential effect of LF EMF exposure on calcium signalling in neutrophils. In neutrophilic granulocytes, activation of G-protein coupled receptors leads to efflux of calcium from calcium stores and influx of extracellular calcium via specialised calcium channels. The cytoplasmic rise of calcium induces cytoskeleton rearrangements, modified gene expression patterns, and cell migration. If LF EMF modulates intracellular calcium signalling, this will influence cellular behaviour and may eventually lead to health problems. We found that calcium mobilisation upon chemotactic stimulation was not altered after a short 30 min or long-term LF EMF exposure in human neutrophil-like cell lines HL-60 or PLB-985. Neither of the two investigated wave forms (Immunent and 50 Hz sine wave) at three magnetic flux densities (5 μT, 300 μT, and 500 μT) altered calcium signalling in vitro. Gene-expression patterns of calcium-signalling related genes also did not show any significant changes after exposure. Furthermore, analysis of the phenotypical appearance of microvilli by scanning electron microscopy revealed no alterations induced by LF EMF exposure. The findings above indicate that exposure to 50 Hz sinusoidal or Immunent LF EMF will not affect calcium signalling in neutrophils in vitro.

  16. Calcium store-mediated signaling in sustentacular cells of the mouse olfactory epithelium.

    PubMed

    Hegg, Colleen Cosgrove; Irwin, Mavis; Lucero, Mary T

    2009-04-15

    Sustentacular cells have structural features that allude to functions of secretion, absorption, phagocytosis, maintenance of extracellular ionic gradients, metabolism of noxious chemicals, and regulation of cell turnover. We present data detailing their dynamic activity. We show, using a mouse olfactory epithelium slice model, that sustentacular cells are capable of generating two types of calcium signals: intercellular calcium waves where elevations in intracellular calcium propagate between neighboring cells, and intracellular calcium oscillations consisting of repetitive elevations in intracellular calcium confined to single cells. Sustentacular cells exhibited rapid, robust increases in intracellular calcium in response to G-protein coupled muscarinic and purinergic receptor stimulation. In a subpopulation of sustentacular cells, oscillatory calcium transients were evoked. We pharmacologically characterized the properties of purinergic-evoked increases in intracellular calcium. Calcium transients were elicited by release from intracellular stores and were not dependent on extracellular calcium. BAPTA-AM, a cytosolic calcium chelator, and cyclopiazonic acid, an endoplasmic reticulum Ca(2+)-ATPase inhibitor irreversibly blocked the purinergic-induced calcium transient. Phospholipase C antagonist U73122 inhibited the purinergic-evoked calcium transient. 2-Aminoethoxydiphenyl borate, an inositol-1,4,5-trisphosphate (IP(3)) receptor antagonist, and the ryanodine receptor (RyR) antagonists tetracaine and ryanodine, inhibited the UTP-induced calcium transients. Collectively, these data suggest that activation of the phospholipase C pathway, IP(3)-mediated calcium release, and subsequent calcium-induced-calcium release is involved in ATP-elicited increases in intracellular calcium. Our findings indicate that sustentacular cells are not static support cells, and, like glia in the central nervous system, have complex calcium signaling.

  17. Estimating firing rates from calcium signals in locust projection neurons in vivo.

    PubMed

    Moreaux, Laurent; Laurent, Gilles

    2007-01-01

    Combining intracellular electrophysiology and multi-photon calcium imaging in vivo, we studied the relationship between calcium signals (sampled at 500-750 Hz) and spike output in principal neurons in the locust antennal lobe. Our goal was to determine whether the firing rate of individual neurons can be estimated in vivo with calcium imaging and, if so, to measure directly the accuracy and resolution of our estimates. Using the calcium indicator Oregon Green BAPTA-1, we describe a simple method to reconstruct firing rates from dendritic calcium signals with 80-90% accuracy and 50 ms temporal resolution.

  18. Calcium signaling regulates trafficking of familial hypocalciuric hypercalcemia (FHH) mutants of the calcium sensing receptor.

    PubMed

    Grant, Michael P; Stepanchick, Ann; Breitwieser, Gerda E

    2012-12-01

    Calcium-sensing receptors (CaSRs) regulate systemic Ca(2+) homeostasis. Loss-of-function mutations cause familial benign hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism (NSHPT). FHH/NSHPT mutations can reduce trafficking of CaSRs to the plasma membrane. CaSR signaling is potentiated by agonist-driven anterograde CaSR trafficking, leading to a new steady state level of plasma membrane CaSR, which is maintained, with minimal functional desensitization, as long as extracellular Ca(2+) is elevated. This requirement for CaSR signaling to drive CaSR trafficking to the plasma membrane led us to reconsider the mechanism(s) contributing to dysregulated trafficking of FHH/NSHPT mutants. We simultaneously monitored dynamic changes in plasma membrane levels of CaSR and intracellular Ca(2+), using a chimeric CaSR construct, which allowed explicit tracking of plasma membrane levels of mutant or wild-type CaSRs in the presence of nonchimeric partners. Expression of mutants alone revealed severe defects in plasma membrane targeting and Ca(2+) signaling, which were substantially rescued by coexpression with wild-type CaSR. Biasing toward heterodimerization of wild-type and FHH/NSHPT mutants revealed that intracellular Ca(2+) oscillations were insufficient to rescue plasma membrane targeting. Coexpression of the nonfunctional mutant E297K with the truncation CaSRΔ868 robustly rescued trafficking and Ca(2+) signaling, whereas coexpression of distinct FHH/NSHPT mutants rescued neither trafficking nor signaling. Our study suggests that rescue of FHH/NSHPT mutants requires a steady state intracellular Ca(2+) response when extracellular Ca(2+) is elevated and argues that Ca(2+) signaling by wild-type CaSRs rescues FHH mutant trafficking to the plasma membrane.

  19. Calcium and protein phosphorylation in the transduction of gravity signal in corn roots

    NASA Technical Reports Server (NTRS)

    Friedmann, M.; Poovaiah, B. W.

    1991-01-01

    The involvement of calcium and protein phosphorylation in the transduction of gravity signal was studied using corn roots of a light-insensitive variety (Zea mays L., cv. Patriot). The gravitropic response was calcium-dependent. Horizontal placement of roots preloaded with 32P for three minutes resulted in changes in protein phosphorylation of polypeptides of 32 and 35 kD. Calcium depletion resulted in decreased phosphorylation of these phosphoproteins and replenishment of calcium restored the phosphorylation.

  20. Calcium Signaling throughout the Toxoplasma gondii Lytic Cycle: A STUDY USING GENETICALLY ENCODED CALCIUM INDICATORS.

    PubMed

    Borges-Pereira, Lucas; Budu, Alexandre; McKnight, Ciara A; Moore, Christina A; Vella, Stephen A; Hortua Triana, Miryam A; Liu, Jing; Garcia, Celia R S; Pace, Douglas A; Moreno, Silvia N J

    2015-11-01

    Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca(2+) oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca(2+) enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca(2+) changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca(2+) oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca(2+) influx. This is the first study showing, in real time, Ca(2+) signals preceding egress and their direct link with motility, an essential virulence trait.

  1. Cell-type-specific modelling of intracellular calcium signalling: a urothelial cell model.

    PubMed

    Appleby, Peter A; Shabir, Saqib; Southgate, Jennifer; Walker, Dawn

    2013-09-01

    Calcium signalling plays a central role in regulating a wide variety of cell processes. A number of calcium signalling models exist in the literature that are capable of reproducing a variety of experimentally observed calcium transients. These models have been used to examine in more detail the mechanisms underlying calcium transients, but very rarely has a model been directly linked to a particular cell type and experimentally verified. It is important to show that this can be achieved within the general theoretical framework adopted by these models. Here, we develop a framework designed specifically for modelling cytosolic calcium transients in urothelial cells. Where possible, we draw upon existing calcium signalling models, integrating descriptions of components known to be important in this cell type from a number of studies in the literature. We then add descriptions of several additional pathways that play a specific role in urothelial cell signalling, including an explicit ionic influx term and an active pumping mechanism that drives the cytosolic calcium concentration to a target equilibrium. The resulting one-pool model of endoplasmic reticulum (ER)-dependent calcium signalling relates the cytosolic, extracellular and ER calcium concentrations and can generate a wide range of calcium transients, including spikes, bursts, oscillations and sustained elevations in the cytosolic calcium concentration. Using single-variate robustness and multivariate sensitivity analyses, we quantify how varying each of the parameters of the model leads to changes in key features of the calcium transient, such as initial peak amplitude and the frequency of bursting or spiking, and in the transitions between bursting- and plateau-dominated modes. We also show that, novel to our urothelial cell model, the ionic and purinergic P2Y pathways make distinct contributions to the calcium transient. We then validate the model using human bladder epithelial cells grown in monolayer cell

  2. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells.

    PubMed

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S

    2015-12-01

    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner.

  3. Calcium signaling in plant cells in altered gravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.

    2003-10-01

    Changes in the intracellular Ca 2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca 2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80 th, a review highlighting the performed research and the possible significance of such Ca 2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface

  4. Requirement for nuclear calcium signaling in Drosophila long-term memory.

    PubMed

    Weislogel, Jan-Marek; Bengtson, C Peter; Müller, Michaela K; Hörtzsch, Jan N; Bujard, Martina; Schuster, Christoph M; Bading, Hilmar

    2013-05-07

    Calcium is used throughout evolution as an intracellular signal transducer. In the mammalian central nervous system, calcium mediates the dialogue between the synapse and the nucleus that is required for transcription-dependent persistent neuronal adaptations. A role for nuclear calcium signaling in similar processes in the invertebrate brain has yet to be investigated. Here, we show by in vivo calcium imaging of adult brain neurons of the fruit fly Drosophila melanogaster, that electrical foot shocks used in olfactory avoidance conditioning evoked transient increases in cytosolic and nuclear calcium concentrations in neurons. These calcium signals were detected in Kenyon cells of the flies' mushroom bodies, which are sites of learning and memory related to smell. Acute blockade of nuclear calcium signaling during conditioning selectively and reversibly abolished the formation of long-term olfactory avoidance memory, whereas short-term, middle-term, or anesthesia-resistant olfactory memory remained unaffected. Thus, nuclear calcium signaling is required in flies for the progression of memories from labile to transcription-dependent long-lasting forms. These results identify nuclear calcium as an evolutionarily conserved signal needed in both invertebrate and vertebrate brains for transcription-dependent memory consolidation.

  5. The effect of compressive loading magnitude on in situ chondrocyte calcium signaling.

    PubMed

    Madden, Ryan M J; Han, Sang-Kuy; Herzog, Walter

    2015-01-01

    Chondrocyte metabolism is stimulated by deformation and is associated with structural changes in the cartilage extracellular matrix (ECM), suggesting that these cells are involved in maintaining tissue health and integrity. Calcium signaling is an initial step in chondrocyte mechanotransduction that has been linked to many cellular processes. Previous studies using isolated chondrocytes proposed loading magnitude as an important factor regulating this response. However, calcium signaling in the intact cartilage differs compared to isolated cells. The purpose of this study was to investigate the effect of loading magnitude on chondrocyte calcium signaling in intact cartilage. We hypothesized that the percentage of cells exhibiting at least one calcium signal increases with increasing load. Fully intact rabbit femoral condyle and patellar bone/cartilage samples were incubated in calcium-sensitive dyes and imaged continuously under compressive loads of 10-40 % strain. Calcium signaling was primarily associated with the dynamic loading phase and greatly increased beyond a threshold deformation of about 10 % nominal tissue strain. There was a trend toward more cells exhibiting calcium signaling as loading magnitude increased (p = 0.133). These results provide novel information toward identifying mechanisms underlying calcium-dependent signaling pathways related to cartilage homeostasis and possibly the onset and progression of osteoarthritis.

  6. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells

    PubMed Central

    Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I

    2015-01-01

    A central question is how specificity in cellular responses to the eukaryotic second messenger Ca2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca2+-dependent and Ca2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca2+-signaling on a cellular, genetic, and biochemical level. DOI: http://dx.doi.org/10.7554/eLife.03599.001 PMID:26192964

  7. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells.

    PubMed

    Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I

    2015-07-20

    A central question is how specificity in cellular responses to the eukaryotic second messenger Ca(2+) is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca(2+)-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca(2+)-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca(2+)-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca(2+)-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca(2+)-dependent and Ca(2+)-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca(2+)-signaling on a cellular, genetic, and biochemical level.

  8. Differential Calcium Signaling Mediated by Voltage-Gated Calcium Channels in Rat Retinal Ganglion Cells and Their Unmyelinated Axons

    PubMed Central

    Sargoy, Allison; Sun, Xiaoping

    2014-01-01

    Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs) in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC) regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury. PMID:24416240

  9. Calcium signaling orchestrates glioblastoma development: Facts and conjunctures.

    PubMed

    Leclerc, Catherine; Haeich, Jacques; Aulestia, Francisco J; Kilhoffer, Marie-Claude; Miller, Andrew L; Néant, Isabelle; Webb, Sarah E; Schaeffer, Etienne; Junier, Marie-Pierre; Chneiweiss, Hervé; Moreau, Marc

    2016-06-01

    While it is a relatively rare disease, glioblastoma multiform (GBM) is one of the more deadly adult cancers. Following current interventions, the tumor is never eliminated whatever the treatment performed; whether it is radiotherapy, chemotherapy, or surgery. One hypothesis to explain this poor outcome is the "cancer stem cell" hypothesis. This concept proposes that a minority of cells within the tumor mass share many of the properties of adult neural stem cells and it is these that are responsible for the growth of the tumor and its resistance to existing therapies. Accumulating evidence suggests that Ca(2+) might also be an important positive regulator of tumorigenesis in GBM, in processes involving quiescence, maintenance, proliferation, or migration. Glioblastoma tumors are generally thought to develop by co-opting pathways that are involved in the formation of an organ. We propose that the cells initiating the tumor, and subsequently the cells of the tumor mass, must hijack the different checkpoints that evolution has selected in order to prevent the pathological development of an organ. In this article, two main points are discussed. (i) The first is the establishment of a so-called "cellular society," which is required to create a favorable microenvironment. (ii) The second is that GBM can be considered to be an organism, which fights to survive and develop. Since GBM evolves in a limited space, its only chance of development is to overcome the evolutionary checkpoints. For example, the deregulation of the normal Ca(2+) signaling elements contributes to the progression of the disease. Thus, by manipulating the Ca(2+) signaling, the GBM cells might not be killed, but might be reprogrammed toward a new fate that is either easy to cure or that has no aberrant functioning. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  10. Calcium signaling orchestrates glioblastoma development: Facts and conjunctures.

    PubMed

    Leclerc, Catherine; Haeich, Jacques; Aulestia, Francisco J; Kilhoffer, Marie-Claude; Miller, Andrew L; Néant, Isabelle; Webb, Sarah E; Schaeffer, Etienne; Junier, Marie-Pierre; Chneiweiss, Hervé; Moreau, Marc

    2016-06-01

    While it is a relatively rare disease, glioblastoma multiform (GBM) is one of the more deadly adult cancers. Following current interventions, the tumor is never eliminated whatever the treatment performed; whether it is radiotherapy, chemotherapy, or surgery. One hypothesis to explain this poor outcome is the "cancer stem cell" hypothesis. This concept proposes that a minority of cells within the tumor mass share many of the properties of adult neural stem cells and it is these that are responsible for the growth of the tumor and its resistance to existing therapies. Accumulating evidence suggests that Ca(2+) might also be an important positive regulator of tumorigenesis in GBM, in processes involving quiescence, maintenance, proliferation, or migration. Glioblastoma tumors are generally thought to develop by co-opting pathways that are involved in the formation of an organ. We propose that the cells initiating the tumor, and subsequently the cells of the tumor mass, must hijack the different checkpoints that evolution has selected in order to prevent the pathological development of an organ. In this article, two main points are discussed. (i) The first is the establishment of a so-called "cellular society," which is required to create a favorable microenvironment. (ii) The second is that GBM can be considered to be an organism, which fights to survive and develop. Since GBM evolves in a limited space, its only chance of development is to overcome the evolutionary checkpoints. For example, the deregulation of the normal Ca(2+) signaling elements contributes to the progression of the disease. Thus, by manipulating the Ca(2+) signaling, the GBM cells might not be killed, but might be reprogrammed toward a new fate that is either easy to cure or that has no aberrant functioning. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen. PMID:26826650

  11. Light-driven calcium signals in mouse cone photoreceptors.

    PubMed

    Wei, Tao; Schubert, Timm; Paquet-Durand, François; Tanimoto, Naoyuki; Chang, Le; Koeppen, Katja; Ott, Thomas; Griesbeck, Oliver; Seeliger, Mathias W; Euler, Thomas; Wissinger, Bernd

    2012-05-16

    Calcium mediates various neuronal functions. The complexity of neuronal Ca²⁺ signaling is well exemplified by retinal cone photoreceptors, which, with their distinct compartmentalization, offer unique possibilities for studying the diversity of Ca²⁺ functions in a single cell. Measuring subcellular Ca²⁺ signals in cones under physiological conditions is not only fundamental for understanding cone function, it also bears important insights into pathophysiological processes governing retinal neurodegeneration. However, due to the proximity of light-sensitive outer segments to other cellular compartments, optical measurements of light-evoked Ca²⁺ responses in cones are challenging. We addressed this problem by generating a transgenic mouse (HR2.1:TN-XL) in which both short- and middle-wavelength-sensitive cones selectively express the genetically encoded ratiometric Ca²⁺ biosensor TN-XL. We show that HR2.1:TN-XL allows recording of light-evoked Ca²⁺ responses using two-photon imaging in individual cone photoreceptor terminals and to probe phototransduction and its diverse regulatory mechanisms with pharmacology at subcellular resolution. To further test this system, we asked whether the classical, nitric oxide (NO)-soluble guanylyl-cyclase (sGC)-cGMP pathway could modulate Ca²⁺ in cone terminals. Surprisingly, NO reduced Ca²⁺ resting levels in mouse cones, without evidence for direct sGC involvement. In conclusion, HR2.1:TN-XL mice offer unprecedented opportunities to elucidate light-driven Ca²⁺ dynamics and their (dys)regulation in cone photoreceptors.

  12. Yeast Gdt1 is a Golgi-localized calcium transporter required for stress-induced calcium signaling and protein glycosylation

    PubMed Central

    Colinet, Anne-Sophie; Sengottaiyan, Palanivelu; Deschamps, Antoine; Colsoul, Marie-Lise; Thines, Louise; Demaegd, Didier; Duchêne, Marie-Clémence; Foulquier, François; Hols, Pascal; Morsomme, Pierre

    2016-01-01

    Calcium signaling depends on a tightly regulated set of pumps, exchangers, and channels that are responsible for controlling calcium fluxes between the different subcellular compartments of the eukaryotic cell. We have recently reported that two members of the highly-conserved UPF0016 family, human TMEM165 and budding yeast Gdt1p, are functionally related and might form a new group of Golgi-localized cation/Ca2+ exchangers. Defects in the human protein TMEM165 are known to cause a subtype of Congenital Disorders of Glycosylation. Using an assay based on the heterologous expression of GDT1 in the bacterium Lactococcus lactis, we demonstrated the calcium transport activity of Gdt1p. We observed a Ca2+ uptake activity in cells expressing GDT1, which was dependent on the external pH, indicating that Gdt1p may act as a Ca2+/H+ antiporter. In yeast, we found that Gdt1p controls cellular calcium stores and plays a major role in the calcium response induced by osmotic shock when the Golgi calcium pump, Pmr1p, is absent. Importantly, we also discovered that, in the presence of a high concentration of external calcium, Gdt1p is required for glycosylation of carboxypeptidase Y and the glucanosyltransferase Gas1p. Finally we showed that glycosylation process is restored by providing more Mn2+ to the cells. PMID:27075443

  13. Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum.

    PubMed

    Hutchins, B Ian; Li, Li; Kalil, Katherine

    2012-01-10

    Wnt5a gradients guide callosal axons by repulsion through Ryk receptors in vivo. We recently found that Wnt5a repels cortical axons and promotes axon outgrowth through calcium signaling in vitro. Here, using cortical slices, we show that Wnt5a signals through Ryk to guide and promote outgrowth of callosal axons after they cross the midline. Calcium transient frequencies in callosal growth cones positively correlate with axon outgrowth rates in vitro. In cortical slices, calcium release through inositol 1,4,5-trisphosphate (IP(3)) receptors and calcium entry through transient receptor potential channels modulate axon growth and guidance. Knocking down Ryk inhibits calcium signaling in cortical axons, reduces rates of axon outgrowth subsequent to midline crossing, and causes axon guidance defects. Calcium- and calmodulin-dependent protein kinase II (CaMKII) is required downstream of Wnt-induced calcium signaling for postcrossing callosal axon growth and guidance. Taken together, these results suggest that growth and guidance of postcrossing callosal axons by Wnt-Ryk-calcium signaling involves axon repulsion through CaMKII.

  14. Cross-talk between calcium signalling and protein phosphorylation at the thylakoid

    PubMed Central

    Stael, Simon; Rocha, Agostinho G.; Wimberger, Terje; Anrather, Dorothea; Vothknecht, Ute C.; Teige, Markus

    2014-01-01

    The role of protein phosphorylation for adjusting chloroplast functions to changing environmental needs is well established, whereas calcium signalling in the chloroplast is only recently becoming appreciated. The work presented here explores the potential cross-talk between calcium signalling and protein phosphorylation in chloroplasts and provides the first evidence for targets of calcium-dependent protein phosphorylation at the thylakoid membrane. Thylakoid proteins were screened for calcium-dependent phosphorylation by 2D gel electrophoresis combined with phospho-specific labelling and PsaN, CAS, and VAR1, among other proteins, were identified repeatedly by mass spectrometry. Subsequently their calcium-dependent phosphorylation was confirmed in kinase assays using the purified proteins and chloroplast extracts. This is the first report on the protein targets of calcium-dependent phosphorylation of thylakoid proteins and provides ground for further studies in this direction. PMID:22197893

  15. A simple method to reconstruct firing rates from dendritic calcium signals.

    PubMed

    Moreaux, Laurent; Laurent, Gilles

    2008-12-01

    Calcium imaging using fluorescent reporters is the most widely used optical approach to investigate activity in intact neuronal circuits with single-cell resolution. Calcium signals, however, are often difficult to interpret, especially if the desired output quantity is membrane voltage or instantaneous firing rates. Combining dendritic intracellular electrophysiology and multi-photon calcium imaging in vivo, we recently investigated the relationship between optical signals recorded with the fluorescent calcium indicator Oregon Green BAPTA-1 (OGB-1) and spike output in principal neurons in the locust antennal lobe. We derived from these experiments a simple, empirical and easily adaptable method requiring minimal calibration to reconstruct firing rates from calcium signals with good accuracy and 50-ms temporal resolution.

  16. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  17. Oxidative stress-induced calcium signalling in Aspergillus nidulans.

    PubMed

    Greene, Vilma; Cao, Hong; Schanne, Francis A X; Bartelt, Diana C

    2002-05-01

    The effects of oxidative stress on levels of calcium ion (Ca(2+)) in Aspergillus nidulans were measured using strains expressing aequorin in the cytoplasm (Aeq(cyt)) and mitochondria (Aeq(mt)). When oxidative stress was induced by exposure to 10-mM H(2)O(2), the mitochondrial calcium response (Ca(mt)(2+)) was greater than the change in cytoplasmic calcium (Ca(c)(2+)). The Ca(mt)(2+) response to H(2)O(2) was dose dependent, while the increase in [Ca(c)(2+)] did not change with increasing H(2)O(2). The increase in both [Ca(c)(2+)] and [Ca(mt)(2+)] in response to oxidative stress was enhanced by exposure of cells to Ca(2+). The presence of chelator in the external medium only partially inhibited the Ca(mt)(2+) and Ca(c)(2+) responses to oxidative stress. Reagents that alter calcium fluxes had varied effects on the Ca(mt)(2+) response to peroxide. Ruthenium red blocked the increase in [Ca(mt)(2+)], while neomycin caused an even greater increase in [Ca(mt)(2+)]. Treatment with ruthenium red and neomycin had no effect on the Ca(c)(2+) response. Bafilomycin A and oligomycin had no effect on either the mitochondrial or cytoplasmic response. Inhibitors of both voltage-regulated calcium channels and intracellular calcium release channels inhibited the Ca(2+)-dependent component of the Ca(mt)(2+) response to oxidative stress. We conclude that the more significant Ca(2+) response to oxidative stress occurs in the mitochondria and that both intracellular and extracellular calcium pools can contribute to the increases in [Ca(c)(2+)] and [Ca(mt)(2+)] induced by oxidative stress.

  18. Disturbed calcium signaling in spinocerebellar ataxias and Alzheimer’s disease

    PubMed Central

    Egorova, Polina; Popugaeva, Elena; Bezprozvanny, Ilya

    2015-01-01

    Neurodegenerative disorders, such as spinocerebellar ataxias (SCAs) and Alzheimer’s disease (AD) represent a huge scientific and medical question, but the molecular mechanisms of these diseases are still not clear. There is increasing evidence that neuronal calcium signaling is abnormal in many neurodegenerative disorders. Abnormal neuronal calcium release from the endoplasmic reticulum may result in disturbances of cell homeostasis, synaptic dysfunction, and eventual cell death. Neuronal loss is observed in most cases of neurodegenerative diseases. Recent experimental evidence supporting the role of neuronal calcium signaling in the pathogenesis of SCAs and AD is discussed in this review. PMID:25846864

  19. Nuclear calcium signaling induces expression of the synaptic organizers Lrrtm1 and Lrrtm2.

    PubMed

    Hayer, Stefanie N; Bading, Hilmar

    2015-02-27

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2-4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca(2+)/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2.

  20. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.

  1. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification

    PubMed Central

    Schumacher, Jennifer A.; Wang, Xiaohong; Merrill, Sean A.; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M.; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons. PMID:26771544

  2. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels.

    PubMed

    Jung, Hyungjin; Best, Makenzie; Akkus, Ozan

    2015-07-01

    Mechanisms by which bone microdamage triggers repair response are not completely understood. It has been shown that calcium efflux ([Ca(2+)]E) occurs from regions of bone undergoing microdamage. Such efflux has also been shown to trigger intracellular calcium signaling ([Ca(2+)]I) in MC3T3-E1 cells local to damaged regions. Voltage-gated calcium channels (VGCCs) are implicated in the entry of [Ca(2+)]E to the cytoplasm. We investigated the involvement of VGCC in the extracellular calcium induced intracellular calcium response (ECIICR). MC3T3-E1 cells were subjected to one dimensional calcium efflux from their basal aspect which results in an increase in [Ca(2+)]I. This increase was concomitant with membrane depolarization and it was significantly reduced in the presence of Bepridil, a non-selective VGCC inhibitor. To identify specific type(s) of VGCC in ECIICR, the cells were treated with selective inhibitors for different types of VGCC. Significant changes in the peak intensity and the number of [Ca(2+)]I oscillations were observed when L-type and T-type specific VGCC inhibitors (Verapamil and NNC55-0396, respectively) were used. So as to confirm the involvement of L- and T-type VGCC in the context of microdamage, cells were seeded on devitalized notched bone specimen, which were loaded to induce microdamage in the presence and absence of Verapamil and NNC55-0396. The results showed significant decrease in [Ca(2+)]I activity of cells in the microdamaged regions of bone when L- and T-type blockers were applied. This study demonstrated that extracellular calcium increase in association with damage depolarizes the cell membrane and the calcium ions enter the cell cytoplasm by L- and T-type VGCCs.

  3. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling

    PubMed Central

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I.

    2015-01-01

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na+/Ca2+ exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies. PMID:26234466

  4. Redox Nanodomains Are Induced by and Control Calcium Signaling at the ER-Mitochondrial Interface.

    PubMed

    Booth, David M; Enyedi, Balázs; Geiszt, Miklós; Várnai, Péter; Hajnóczky, György

    2016-07-21

    The ER-mitochondrial interface is central to calcium signaling, organellar dynamics, and lipid biosynthesis. The ER and mitochondrial membranes also host sources and targets of reactive oxygen species (ROS), but their local dynamics and relevance remained elusive since measurement and perturbation of ROS at the organellar interface has proven difficult. Employing drug-inducible synthetic ER-mitochondrial linkers, we overcame this problem and demonstrate that the ER-mitochondrial interface hosts a nanodomain of H2O2, which is induced by cytoplasmic [Ca(2+)] spikes and exerts a positive feedback on calcium oscillations. H2O2 nanodomains originate from the mitochondrial cristae, which are compressed upon calcium signal propagation to the mitochondria, likely due to Ca(2+)-induced K(+) and concomitant water influx to the matrix. Thus, ER-mitochondrial H2O2 nanodomains represent a component of inter-organelle communication, regulating calcium signaling and mitochondrial activities.

  5. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish.

    PubMed

    Yoo, Sa Kan; Freisinger, Christina M; LeBert, Danny C; Huttenlocher, Anna

    2012-10-15

    Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H(2)O(2) at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H(2)O(2). A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate "wound signals" that integrate early wound responses and late epimorphic regeneration.

  6. Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications.

    PubMed

    Hidalgo, Cecilia; Donoso, Paulina

    2008-07-01

    Studies done many years ago established unequivocally the key role of calcium as a universal second messenger. In contrast, the second messenger roles of reactive oxygen and nitrogen species have emerged only recently. Therefore, their contributions to physiological cell signaling pathways have not yet become universally accepted, and many biological researchers still regard them only as cellular noxious agents. Furthermore, it is becoming increasingly apparent that there are significant interactions between calcium and redox species, and that these interactions modify a variety of proteins that participate in signaling transduction pathways and in other fundamental cellular functions that determine cell life or death. This review article addresses first the central aspects of calcium and redox signaling pathways in animal cells, and continues with the molecular mechanisms that underlie crosstalk between calcium and redox signals under a number of physiological or pathological conditions. To conclude, the review focuses on conditions that, by promoting cellular oxidative stress, lead to the generation of abnormal calcium signals, and how this calcium imbalance may cause a variety of human diseases including, in particular, degenerative diseases of the central nervous system and cardiac pathologies. PMID:18377233

  7. Molecular mechanisms of corticotropin-releasing factor receptor-induced calcium signaling.

    PubMed

    Gutknecht, Eric; Van der Linden, Ilse; Van Kolen, Kristof; Verhoeven, Kim F C; Vauquelin, Georges; Dautzenberg, Frank M

    2009-03-01

    The molecular mechanisms governing calcium signal transduction of corticotropin-releasing factor (CRF) receptors CRF(1) and CRF(2(a)) stably expressed in human embryonic kidney (HEK) 293 cells were investigated. Calcium signaling strictly depended on intracellular calcium sources, and this is the first study to establish a prominent contribution of the three major G-protein families to CRF receptor-mediated calcium signaling. Overexpression of Galpha(q/11) and Galpha(16) led to leftward shifts of the agonist concentration-response curves. Blockade of Galpha(q/11) proteins by the small interfering RNA (siRNA) technology partially reduced agonist-mediated calcium responses in CRF(1)- and CRF(2(a))-expressing HEK293 cells, thereby proving a contribution of the G(q) protein family. A small but significant inhibition of calcium signaling was recorded by pharmacological inhibition of G(i/o) proteins with pertussis toxin treatment. This effect was mediated by direct binding of Gbetagamma subunits to phospholipase C. G(i/o) inhibition also elevated cAMP responses in CRF receptor-overexpressing HEK293 cells and in Y79 retinoblastoma cells endogenously expressing human CRF(1) and CRF(2(a)) receptors, thereby demonstrating natural coupling of G(i) proteins to both CRF receptors. The strongest reduction of CRF receptor-mediated calcium mobilization was noted when blocking the G(s) signaling protein either by cholera toxin or by siRNA. It is noteworthy that simultaneous inhibition of two G-proteins shed light on the additive effects of G(s) and G(q) on the calcium signaling and, hence, that they act in parallel. On the other hand, G(i) coupling required prior G(s) activation. PMID:19098121

  8. Spatiotemporal calcium signaling in a Drosophila melanogaster cell line stably expressing a Drosophila muscarinic acetylcholine receptor.

    PubMed

    Cordova, D; Delpech, V Raymond; Sattelle, D B; Rauh, J J

    2003-11-01

    A muscarinic acetylcholine receptor (mAChR), DM1, expressed in the nervous system of Drosophila melanogaster, has been stably expressed in a Drosophila S2 cell line (S2-DM1) and used to investigate spatiotemporal calcium changes following agonist activation. Carbamylcholine (CCh) and oxotremorine are potent agonists, whereas application of the vertebrate M1 mAChR agonist, McN-A-343, results in a weak response. Activation of S2-DM1 receptors using CCh resulted in an increase in intracellular calcium ([Ca(2+)](i)) that was biphasic. Two distinct calcium sources were found to contribute to calcium signaling: (1) internal stores that are sensitive to both thapsigargin and 2-aminoethoxydiphenyl borate and (2) capacitative calcium entry. Spatiotemporal imaging of individual S2-DM1 cells showed that the CCh-induced [Ca(2+)](i) transient resulted from a homogeneous calcium increase throughout the cell, indicative of calcium release from internal stores. In contrast, ionomycin induced the formation of a "calcium ring" at the cell periphery, consistent with external calcium influx. PMID:12827518

  9. Spontaneous and CRH-Induced Excitability and Calcium Signaling in Mice Corticotrophs Involves Sodium, Calcium, and Cation-Conducting Channels.

    PubMed

    Zemkova, Hana; Tomić, Melanija; Kucka, Marek; Aguilera, Greti; Stojilkovic, Stanko S

    2016-04-01

    Transgenic mice expressing the tdimer2(12) form of Discosoma red fluorescent protein under control of the proopiomelanocortin gene's regulatory elements are a useful model for studying corticotrophs. Using these mice, we studied the ion channels and mechanisms controlling corticotroph excitability. Corticotrophs were either quiescent or electrically active, with a 22-mV difference in the resting membrane potential (RMP) between the 2 groups. In quiescent cells, CRH depolarized the membrane, leading to initial single spiking and sustained bursting; in active cells, CRH further facilitated or inhibited electrical activity and calcium spiking, depending on the initial activity pattern and CRH concentration. The stimulatory but not inhibitory action of CRH on electrical activity was mimicked by cAMP independently of the presence or absence of arachidonic acid. Removal of bath sodium silenced spiking and hyperpolarized the majority of cells; in contrast, the removal of bath calcium did not affect RMP but reduced CRH-induced depolarization, which abolished bursting electrical activity and decreased the spiking frequency but not the amplitude of single spikes. Corticotrophs with inhibited voltage-gated sodium channels fired calcium-dependent action potentials, whereas cells with inhibited L-type calcium channels fired sodium-dependent spikes; blockade of both channels abolished spiking without affecting the RMP. These results indicate that the background voltage-insensitive sodium conductance influences RMP, the CRH-depolarization current is driven by a cationic conductance, and the interplay between voltage-gated sodium and calcium channels plays a critical role in determining the status and pattern of electrical activity and calcium signaling.

  10. Calcium signaling is gated by a mechanical threshold in three-dimensional environments

    NASA Astrophysics Data System (ADS)

    Ruder, Warren C.; Pratt, Erica D.; Brandy, Nailah Z. D.; Lavan, David A.; Leduc, Philip R.; Antaki, James F.

    2012-08-01

    Cells interpret their mechanical environment using diverse signaling pathways that affect complex phenotypes. These pathways often interact with ubiquitous 2nd-messengers such as calcium. Understanding mechanically-induced calcium signaling is especially important in fibroblasts, cells that exist in three-dimensional fibrous matrices, sense their mechanical environment, and remodel tissue morphology. Here, we examined calcium signaling in fibroblasts using a minimal-profile, three-dimensional (MP3D) mechanical assay system, and compared responses to those elicited by conventional, two-dimensional magnetic tensile cytometry and substratum stretching. Using the MP3D system, we observed robust mechanically-induced calcium responses that could not be recreated using either two-dimensional technique. Furthermore, we used the MP3D system to identify a critical displacement threshold governing an all-or-nothing mechanically-induced calcium response. We believe these findings significantly increase our understanding of the critical role of calcium signaling in cells in three-dimensional environments with broad implications in development and disease.

  11. Rapid, Long-Distance Electrical and Calcium Signaling in Plants.

    PubMed

    Choi, Won-Gyu; Hilleary, Richard; Swanson, Sarah J; Kim, Su-Hwa; Gilroy, Simon

    2016-04-29

    Plants integrate activities throughout their bodies using long-range signaling systems in which stimuli sensed by just a few cells are translated into mobile signals that can influence the activities in distant tissues. Such signaling can travel at speeds well in excess of millimeters per second and can trigger responses as diverse as changes in transcription and translation levels, posttranslational regulation, alterations in metabolite levels, and even wholesale reprogramming of development. In addition to the use of mobile small molecules and hormones, electrical signals have long been known to propagate throughout the plant. This electrical signaling network has now been linked to waves of Ca(2+) and reactive oxygen species that traverse the plant and trigger systemic responses. Analysis of cell type specificity in signal propagation has revealed the movement of systemic signals through specific cell types, suggesting that a rapid signaling network may be hardwired into the architecture of the plant. PMID:27023742

  12. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    ERIC Educational Resources Information Center

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  13. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish

    PubMed Central

    Yoo, Sa Kan; Freisinger, Christina M.; LeBert, Danny C.

    2012-01-01

    Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H2O2 at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H2O2. A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate “wound signals” that integrate early wound responses and late epimorphic regeneration. PMID:23045550

  14. Measurement and analysis of calcium signaling in heterogeneous cell cultures.

    PubMed

    Richards, Gillian R; Jack, Andrew D; Platts, Amy; Simpson, Peter B

    2006-01-01

    High-content imaging platforms capable of studying kinetic responses at a single-cell level have elevated kinetic recording techniques from labor-intensive low-throughput experiments to potential high-throughput screening assays. We have applied this technology to the investigation of heterogeneous cell cultures derived from primary neural tissue. The neuronal cultures mature into a coupled network and display spontaneous oscillations in intracellular calcium, which can be modified by the addition of pharmacological agents. We have developed algorithms to perform Fourier analysis and quantify both the degree of synchronization and the effects of modulators on the oscillations. Functional and phenotypic experiments can be combined using this approach. We have used post-hoc immunolabeling to identify subpopulations of cells in cocultures and to dissect the calcium responses of these cells from the population response. The combination of these techniques represents a powerful tool for drug discovery.

  15. Anti-cancer drugs interfere with intracellular calcium signaling.

    PubMed

    Florea, Ana-Maria; Büsselberg, Dietrich

    2009-09-01

    (Neuro-)toxicity of metal and metal compounds is frequently highlighted. While specific metals or metal compounds are essential for cellular function, other metals are toxic and/or carcinogens. Metals can trigger accidental cell death in the form of necrosis, or activate programmed cell death in the form of apoptosis. The aim of anti-cancer therapy is induction of apoptosis in tumor cells. Therefore, there is an interesting twist in the toxicity of metals and metal compounds (e.g., arsenic trioxide, cisplatin); since they have a higher specificity to induce apoptosis in cancer cells (possibly due to the high turnover in these cells) they are used to cure some forms of cancer. A body of evidence suggests that second messengers, such as modulations in the intracellular calcium concentration, could be involved in metals induced toxicity as well as in the beneficial effects shown by anti-cancer drugs. Here we review the influence on calcium homeostasis induced by some metallic compounds: cisplatin, arsenic trioxide and trimethyltin chloride.

  16. Calcium signaling mediates antifungal activity of triazole drugs in the Aspergilli.

    PubMed

    Liu, Fei-fei; Pu, Li; Zheng, Qing-qing; Zhang, Yuan-wei; Gao, Rong-sui; Xu, Xu-shi; Zhang, Shi-zhu; Lu, Ling

    2015-08-01

    Azoles are widely applied and largely effective as antifungals; however, the increasing prevalence of clinically resistant isolates has yet to be matched by approaches to improve the efficacy of antimicrobial therapy. In this study, using the model fungus Aspergillus nidulans and one of the most common human pathogen Aspergillus fumigatus as research materials, we present the evidence that calcium signaling is involved in the azole-antifungals-induced stress-response reactions. In normal media, antifungal-itraconazole (ITZ) is able to induce the [Ca(2+)]c increased sharply but the addition of calcium chelator-EGTA or BAPTA almost blocks the calcium influx responses, resulted in the dramatically decreasing of [Ca(2+)]c transient. Real-time PCR analysis verified that six-tested Ca(2+)-inducible genes-two calcium channels (cchA/midA), a calmodulin-dependent phosphatase-calcineurin (cnaA), a transcription factor-crzA, and two calcium transporters (pmrA/pmcA)-could be transiently up-regulated by adding ITZ, indicating these components are involved in the azole stress-response reaction. Defect of cnaA or crzA caused more susceptibility to azole antifungals than did single mutants or double deletions of midA and cchA. Notably, EGTA may influence Rh123 accumulation as an azole-mimicking substrate through the process of the drug absorption. In vivo studies of a Galleria mellonella model identified that the calcium chelator works as an adjunct antifungal agent with azoles for invasive aspergillosis. Most importantly, combination of ITZ and EGTA or ITZ with calcium signaling inhibitor-FK506 greatly enhances the ITZ efficacy. Thus, our study provides potential clues that specific inhibitors of calcium signaling could be clinically useful adjuncts to conventional azole antifungals in the Aspergilli.

  17. Disruption of Vitamin D and Calcium Signaling in Keratinocytes Predisposes to Skin Cancer

    PubMed Central

    Bikle, Daniel D.; Jiang, Yan; Nguyen, Thai; Oda, Yuko; Tu, Chia-ling

    2016-01-01

    1,25 dihydroxyvitamin D (1,25(OH)2D), the active metabolite of vitamin D, and calcium regulate epidermal differentiation. 1,25(OH)2D exerts its effects through the vitamin D receptor (VDR), a transcription factor in the nuclear hormone receptor family, whereas calcium acts through the calcium sensing receptor (Casr), a membrane bound member of the G protein coupled receptor family. We have developed mouse models in which the Vdr and Casr have been deleted in the epidermis (epidVdr−∕− and epidCasr−∕−). Both genotypes show abnormalities in calcium induced epidermal differentiation in vivo and in vitro, associated with altered hedgehog (HH) and β–catenin signaling that when abnormally expressed lead to basal cell carcinomas (BCC) and trichofolliculomas, respectively. The Vdr−∕− mice are susceptible to tumor formation following UVB or chemical carcinogen exposure. More recently we found that the keratinocytes from these mice over express long non-coding RNA (lncRNA) oncogenes such as H19 and under express lncRNA tumor suppressors such as lincRNA-21. Spontaneous tumors have not been observed in either the epidVdr−∕− or epidCasr−∕−. But in mice with epidermal specific deletion of both Vdr and Casr (epidVdr−∕−/epidCasr−∕− [DKO]) tumor formation occurs spontaneously when the DKO mice are placed on a low calcium diet. These results demonstrate important interactions between vitamin D and calcium signaling through their respective receptors that lead to cancer when these signals are disrupted. The roles of the β–catenin, hedgehog, and lncRNA pathways in predisposing the epidermis to tumor formation when vitamin D and calcium signaling are disrupted will be discussed. PMID:27462278

  18. Disruption of Vitamin D and Calcium Signaling in Keratinocytes Predisposes to Skin Cancer.

    PubMed

    Bikle, Daniel D; Jiang, Yan; Nguyen, Thai; Oda, Yuko; Tu, Chia-Ling

    2016-01-01

    1,25 dihydroxyvitamin D (1,25(OH)2D), the active metabolite of vitamin D, and calcium regulate epidermal differentiation. 1,25(OH)2D exerts its effects through the vitamin D receptor (VDR), a transcription factor in the nuclear hormone receptor family, whereas calcium acts through the calcium sensing receptor (Casr), a membrane bound member of the G protein coupled receptor family. We have developed mouse models in which the Vdr and Casr have been deleted in the epidermis ((epid) Vdr (-∕-) and (epid) Casr (-∕-)). Both genotypes show abnormalities in calcium induced epidermal differentiation in vivo and in vitro, associated with altered hedgehog (HH) and β-catenin signaling that when abnormally expressed lead to basal cell carcinomas (BCC) and trichofolliculomas, respectively. The Vdr (-∕-) mice are susceptible to tumor formation following UVB or chemical carcinogen exposure. More recently we found that the keratinocytes from these mice over express long non-coding RNA (lncRNA) oncogenes such as H19 and under express lncRNA tumor suppressors such as lincRNA-21. Spontaneous tumors have not been observed in either the (epid) Vdr (-∕-) or (epid) Casr (-∕-). But in mice with epidermal specific deletion of both Vdr and Casr ((epid) Vdr (-∕-)/(epid) Casr (-∕-) [DKO]) tumor formation occurs spontaneously when the DKO mice are placed on a low calcium diet. These results demonstrate important interactions between vitamin D and calcium signaling through their respective receptors that lead to cancer when these signals are disrupted. The roles of the β-catenin, hedgehog, and lncRNA pathways in predisposing the epidermis to tumor formation when vitamin D and calcium signaling are disrupted will be discussed. PMID:27462278

  19. Calcium signaling dysfunction in schizophrenia: a unifying approach.

    PubMed

    Lidow, Michael S

    2003-09-01

    The present paper demonstrates a remarkable pervasiveness of underlying Ca(2+) signaling motifs among the available biochemical findings in schizophrenic patients and among the major molecular hypotheses of this disease. In addition, the paper reviews the findings suggesting that Ca(2+) is capable of inducing structural and cognitive deficits seen in schizophrenia. The evidence of the ability of antipsychotic drugs to affect Ca(2+) signaling is also presented. Based on these data, it is proposed that altered Ca(2+) signaling may constitute the central unifying molecular pathology in schizophrenia. According to this hypothesis schizophrenia can result from alterations in multiple proteins and other molecules as long as these alterations lead to abnormalities in certain key aspects of intracellular Ca(2+) signaling cascades. PMID:14499463

  20. Calcium Signals: The Lead Currency of Plant Information Processing

    PubMed Central

    Kudla, Jörg; Batistič, Oliver; Hashimoto, Kenji

    2010-01-01

    Ca2+ signals are core transducers and regulators in many adaptation and developmental processes of plants. Ca2+ signals are represented by stimulus-specific signatures that result from the concerted action of channels, pumps, and carriers that shape temporally and spatially defined Ca2+ elevations. Cellular Ca2+ signals are decoded and transmitted by a toolkit of Ca2+ binding proteins that relay this information into downstream responses. Major transduction routes of Ca2+ signaling involve Ca2+-regulated kinases mediating phosphorylation events that orchestrate downstream responses or comprise regulation of gene expression via Ca2+-regulated transcription factors and Ca2+-responsive promoter elements. Here, we review some of the remarkable progress that has been made in recent years, especially in identifying critical components functioning in Ca2+ signal transduction, both at the single-cell and multicellular level. Despite impressive progress in our understanding of the processing of Ca2+ signals during the past years, the elucidation of the exact mechanistic principles that underlie the specific recognition and conversion of the cellular Ca2+ currency into defined changes in protein–protein interaction, protein phosphorylation, and gene expression and thereby establish the specificity in stimulus response coupling remain to be explored. PMID:20354197

  1. Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer.

    PubMed

    Raynal, Noël J-M; Lee, Justin T; Wang, Youjun; Beaudry, Annie; Madireddi, Priyanka; Garriga, Judith; Malouf, Gabriel G; Dumont, Sarah; Dettman, Elisha J; Gharibyan, Vazganush; Ahmed, Saira; Chung, Woonbok; Childers, Wayne E; Abou-Gharbia, Magid; Henry, Ryan A; Andrews, Andrew J; Jelinek, Jaroslav; Cui, Ying; Baylin, Stephen B; Gill, Donald L; Issa, Jean-Pierre J

    2016-03-15

    Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer.

  2. Bcl-2 proteins and calcium signaling: complexity beneath the surface.

    PubMed

    Vervliet, T; Parys, J B; Bultynck, G

    2016-09-29

    Antiapoptotic Bcl-2-family members are well known for their 'mitochondrial' functions as critical neutralizers of proapoptotic Bcl-2-family members, including the executioner multidomain proteins Bax and Bak and the BH3-only proteins. It has been clear for more than 20 years that Bcl-2 proteins can impact intracellular Ca(2+) homeostasis and dynamics. Moreover, altered Ca(2+) signaling is increasingly linked to oncogenic behavior. Specifically targeting the Ca(2+)-signaling machinery may thus prove to be a valuable strategy for cancer treatment. Over 10 years ago a major controversy was recognized concerning whether or not Bcl-2 proteins exerted their antiapoptotic functions via Ca(2+) signaling through lowering the filling state of the endoplasmic reticulum (ER) Ca(2+) stores or by suppressing Ca(2+) release from the ER without affecting the filling state of this Ca(2+) store. Further research from different laboratories indicated a wide variety of mechanisms by which Bcl-2-family members can impact Ca(2+) signaling. In this review, we propose that antiapoptotic Bcl-2-family members are multimodal regulators of intracellular Ca(2+)-signaling events in cell survival and cell death. We will discuss how different Bcl-2-family members impact cell survival and cell death by regulating Ca(2+) transport systems at the ER, mitochondria and plasma membrane and by impacting the organization of organelles and how these insights can be exploited for causing cell death in cancer cells. Finally, we propose that the existing controversy reflects the diversity of links between Bcl-2 proteins and Ca(2+) signaling, as certainly not all targets or mechanisms will be operative in every cell type and every condition.

  3. The signaling mechanisms of long distance intercellular calcium waves (far waves) in cultured human uterine myocytes.

    PubMed

    Young, Roger C; Schumann, Ralph; Zhang, Peisheng

    2002-01-01

    Cultured human myocytes exhibit intercellular calcium waves that travel farther than 100 microm ('far waves'). This work investigates the mechanism of far wave propagation. Culture lines were initiated from myometrial biopsies of term pregnant women. Calcium green-1 was used as a fluorescence probe for intracellular free calcium. Serial imaging was performed at a frame rate of 0.83 frames/s. Intercellular calcium waves were mechanically initiated by atraumatically applying small drops of mineral oil onto the surface of the monolayer. Each intercellular calcium wave was scored using a standardized grid, and points were assigned depending upon the distance the wave traveled and the fluorescent intensity observed within each region. Experiments were performed in the presence of inhibitors of gap junctions and connexin hemichannels (octanol), ATP (apyrase and MDL 12330 A), prostaglandins (indomethacin, high concentrations of lanthanum), the prostaglandin transporter, PGT (DIDS), and transmembrane calcium flux (low concentrations of lanthanum). Octanol, apyrase and MDL 12330 A failed to modify the far waves, indicating gap junctions, connexin hemichannels and ATP do not participate in the paracrine mechanism. Indomethacin at 30, 100 and 300 microM, in a dose dependent manner, reduced the far wave score to 0, suggesting a prostaglandin was critically involved in the mechanism. DIDS reduced the far wave score, but did not fully inhibit wave propagation, suggesting the presence of PGT-dependent and -independent components to the mechanism. Lanthanum at 0.1 mM had no effect, but at 1 mM, reduced the far wave score. These results are consistent with PGF2alpha and/or PGE2 being the signal molecule for the PGT-dependent component. Taken together, these data indicate that long distance intercellular calcium waves in cultured human myocytes utilizes a paracrine signaling mechanism, but with more than one extracellular signaling compound.

  4. Synaptic plasticity and calcium signaling in Purkinje cells of the central cerebellar lobes of mormyrid fish.

    PubMed

    Han, Victor Z; Zhang, Yueping; Bell, Curtis C; Hansel, Christian

    2007-12-01

    Climbing fiber (CF)-evoked calcium transients play a key role in plasticity at parallel fiber (PF) to Purkinje cell synapses in the mammalian cerebellum. Whereas PF activation alone causes long-term potentiation (LTP), coactivation of the heterosynaptic CF input, which evokes large dendritic calcium transients, induces long-term depression (LTD). This unique type of heterosynaptic interaction is a hallmark feature of synaptic plasticity in mammalian Purkinje cells. Purkinje cells in the cerebellum of mormyrid electric fish are characterized by a different architecture of their dendritic trees and by a more pronounced separation of CF and PF synaptic contact sites. We therefore examined the conditions for bidirectional plasticity at PF synapses onto Purkinje cells in the mormyrid cerebellum in vitro. PF stimulation at elevated frequencies induces LTP, whereas LTD results from PF stimulation at enhanced intensities and depends on dendritic calcium influx and metabotropic glutamate receptor type 1 activation. LTD can also be observed after pairing of low intensity PF stimulation with CF stimulation. Using a combination of whole-cell patch-clamp recordings and fluorometric calcium imaging, we characterized calcium transients in Purkinje cell dendrites. CF activation elicits calcium transients not only within the CF input territory (smooth proximal dendrites) but also within the PF input territory (spiny palisade dendrites). Paired PF and CF activation elicits larger calcium transients than stimulation of either input alone. A major source for dendritic calcium signaling is provided by P/Q-type calcium channels. Our data show that despite the spatial separation between the two inputs CF activity facilitates LTD induction at PF synapses.

  5. The cytotoxic and proapoptotic activities of hypnophilin are associated with calcium signaling in UACC-62 cells.

    PubMed

    Pinto, Mauro C X; Cota, Betania B; Rodrigues, Michele A; Leite, Maria F; de Souza-Fagundes, Elaine M

    2013-11-01

    Hypnophilin (HNP) is a sesquiterpene that is isolated from Lentinus cf. strigosus and has cytotoxic activities. Here, we studied the calcium signaling and cytotoxic effects of HNP in UACC-62 cells, a human skin melanoma cell line. HNP was able to increase the intracellular calcium concentration in UACC-62 cells, which was blocked in cells stimulated in Ca(2+) -free media. HNP treatment with BAPTA-AM, an intracellular Ca(2+) chelator, caused an increase in calcium signals. HNP showed cytotoxicity against UACC-62 cells in which it induced DNA fragmentation and morphological alterations, including changes in the nuclear chromatin profile and increased cytoplasmatic vacuolization, but it had no effect on the plasma membrane integrity. These data suggest that cytotoxicity in UACC-62 cells, after treatment with HNP, is associated with Ca(2+) influx. Together, these findings suggest that HNP is a relevant tool for the further investigation of new anticancer approaches.

  6. Intra- and intercellular calcium signaling in human neuroepithelioma cells.

    PubMed

    Palmer, R K; Yule, D I; McEwen, E L; Williams, J A; Fisher, S K

    1996-09-01

    The characteristics of intra- and intercellular Ca2+ signaling in human SK-N-MCIXC neuroepithelioma cells have been examined by means of Fura-2 digital imaging microfluorimetry. When cells were exposed to maximally effective concentrations of either endothelin-1, ATP, norepinephrine or oxotremorine-M, the Ca2+ signals that accompany an increase in phosphoinositide turnover could be differentiated on the basis of their magnitude, shape and duration. When individual cells were microinjected with inositol 1,4,5-trisphosphate, a rise in [Ca2+]i was observed not only in the target cell, but also in neighboring cells. This intercellular propagation of Ca2+ signals was found to be mediated via the release of nucleotide di- and triphosphates which subsequently activate purinergic receptors linked to Ca2+ homeostasis on neighboring cells. These results indicate: (1) that agonist-specific Ca2+ 'signatures' are generated in SK-N-MCIXC cells; and (2) that an intercellular propagation of Ca2+ signals is triggered by a rise in [Ca2+]i.

  7. Calcium signaling and amyloid toxicity in Alzheimer disease.

    PubMed

    Demuro, Angelo; Parker, Ian; Stutzmann, Grace E

    2010-04-23

    Intracellular Ca(2+) signaling is fundamental to neuronal physiology and viability. Because of its ubiquitous roles, disruptions in Ca(2+) homeostasis are implicated in diverse disease processes and have become a major focus of study in multifactorial neurodegenerative diseases such as Alzheimer disease (AD). A hallmark of AD is the excessive production of beta-amyloid (Abeta) and its massive accumulation in amyloid plaques. In this minireview, we highlight the pathogenic interactions between altered cellular Ca(2+) signaling and Abeta in its different aggregation states and how these elements coalesce to alter the course of the neurodegenerative disease. Ca(2+) and Abeta intersect at several functional levels and temporal stages of AD, thereby altering neurotransmitter receptor properties, disrupting membrane integrity, and initiating apoptotic signaling cascades. Notably, there are reciprocal interactions between Ca(2+) pathways and amyloid pathology; altered Ca(2+) signaling accelerates Abeta formation, whereas Abeta peptides, particularly in soluble oligomeric forms, induce Ca(2+) disruptions. A degenerative feed-forward cycle of toxic Abeta generation and Ca(2+) perturbations results, which in turn can spin off to accelerate more global neuropathological cascades, ultimately leading to synaptic breakdown, cell death, and devastating memory loss. Although no cause or cure is currently known, targeting Ca(2+) dyshomeostasis as an underlying and integral component of AD pathology may result in novel and effective treatments for AD.

  8. Calcium signalling in pancreatic stellate cells: Mechanisms and potential roles.

    PubMed

    Gryshchenko, Oleksiy; Gerasimenko, Julia V; Gerasimenko, Oleg V; Petersen, Ole H

    2016-03-01

    Hepatic and pancreatic stellate cells may or may not be regarded as stem cells, but they are capable of remarkable transformations. There is less information about stellate cells in the pancreas than in the liver, where they were discovered much earlier and therefore have been studied longer and more intensively than in the pancreas. Most of the work on pancreatic stellate cells has been carried out in studies on cell cultures, but in this review we focus attention on Ca(2+) signalling in stellate cells in their real pancreatic environment. We review current knowledge on patho-physiologically relevant Ca(2+) signalling events and their underlying mechanisms. We focus on the effects of bradykinin in the initial stages of acute pancreatitis, an often fatal disease in which the pancreas digests itself and its surroundings. Ca(2+) signals, elicited in the stellate cells by the action of bradykinin, may have a negative effect on the outcome of the acute disease process and promote the development of chronic pancreatitis. The bradykinin-elicited Ca(2+) signals can be inhibited by blockade of type 2 receptors and also by blockade of Ca(2+)-release activated Ca(2+) channels. The potential benefits of such pharmacological inhibition for the treatment of pancreatitis are reviewed. PMID:26960936

  9. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    PubMed Central

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  10. Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks

    PubMed Central

    Koreshkov, R. N.; Brazhe, N. A.; Brazhe, A. R.; Sosnovtseva, O. V.

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission in astrocytic–neuronal networks. We reproduce local and global dynamical patterns observed experimentally. PMID:19669421

  11. Intracellular calcium signaling regulates autophagy via calcineurin-mediated TFEB dephosphorylation

    PubMed Central

    Tong, Yanju; Song, Fuyong

    2015-01-01

    The transcription-regulating activity of TFEB is dependent on its phosphorylation modification, but the phosphatase(s) involved in TFEB dephosphorylation have remained elusive. It has now become clear that lysosomal calcium signaling activates calcineurin, an endogenous serine/threonine phosphatase, which dephosphorylate TFEB leading to upregulation of autophagy. PMID:26043755

  12. Signal analysis and classification methods for the calcium transient data of stem cell-derived cardiomyocytes.

    PubMed

    Juhola, Martti; Penttinen, Kirsi; Joutsijoki, Henry; Varpa, Kirsi; Saarikoski, Jyri; Rasku, Jyrki; Siirtola, Harri; Iltanen, Kati; Laurikkala, Jorma; Hyyrö, Heikki; Hyttinen, Jari; Aalto-Setälä, Katriina

    2015-06-01

    Calcium cycling is crucial in the excitation-contraction coupling of cardiomyocytes, and therefore has a key role in cardiac functionality. Cardiac disorders and different drugs alter the calcium transients of cardiomyocytes and can cause serious dysfunction of the heart. New insights into this biochemical phenomena can be achieved by studying and analyzing calcium transients. Calcium transients of spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes were recorded for a data set of 280 signals. Our objective was to develop and program procedures: (1) to automatically detect cycling peaks from signals and to classify the peaks of signals as either normal or abnormal, and (2) on the basis of the preceding peak detection results, to classify the entire signals into either a normal class or an abnormal class. We obtained a classification accuracy of approximately 80% compared to class decisions made separately by an experienced researcher, which is promising for the further development of an automatic classification approach. Automated classification software would be beneficial in the future for analyzing cardiomyocyte functionality on a large scale when screening for the adverse cardiac effects of new potential compounds, and also in future clinical applications.

  13. Mitochondrial transporters as novel targets for intracellular calcium signaling.

    PubMed

    Satrústegui, Jorgina; Pardo, Beatriz; Del Arco, Araceli

    2007-01-01

    Ca(2+) signaling in mitochondria is important to tune mitochondrial function to a variety of extracellular stimuli. The main mechanism is Ca(2+) entry in mitochondria via the Ca(2+) uniporter followed by Ca(2+) activation of three dehydrogenases in the mitochondrial matrix. This results in increases in mitochondrial NADH/NAD ratios and ATP levels and increased substrate uptake by mitochondria. We review evidence gathered more than 20 years ago and recent work indicating that substrate uptake, mitochondrial NADH/NAD ratios, and ATP levels may be also activated in response to cytosolic Ca(2+) signals via a mechanism that does not require the entry of Ca(2+) in mitochondria, a mechanism depending on the activity of Ca(2+)-dependent mitochondrial carriers (CaMC). CaMCs fall into two groups, the aspartate-glutamate carriers (AGC) and the ATP-Mg/P(i) carriers, also named SCaMC (for short CaMC). The two mammalian AGCs, aralar and citrin, are members of the malate-aspartate NADH shuttle, and citrin, the liver AGC, is also a member of the urea cycle. Both types of CaMCs are activated by Ca(2+) in the intermembrane space and function together with the Ca(2+) uniporter in decoding the Ca(2+) signal into a mitochondrial response.

  14. Calcium signaling and the MAPK cascade are required for sperm activation in Caenorhabditis elegans.

    PubMed

    Liu, Zhiyu; Wang, Bin; He, Ruijun; Zhao, Yanmei; Miao, Long

    2014-02-01

    In nematode, sperm activation (or spermiogenesis), a process in which the symmetric and non-motile spermatids transform into polarized and crawling spermatozoa, is critical for sperm cells to acquire fertilizing competence. SPE-8 dependent and SPE-8 independent pathways function redundantly during sperm activation in both males and hermaphrodites of Caenorhabditis elegans. However, the downstream signaling for both pathways remains unclear. Here we show that calcium signaling and the MAPK cascade are required for both SPE-8 dependent and SPE-8 independent sperm activation, implying that both pathways share common downstream signaling components during sperm activation. We demonstrate that activation of the MAPK cascade is sufficient to activate spermatids derived from either wild-type or spe-8 group mutant males and that activation of the MAPK cascade bypasses the requirement of calcium signal to induce sperm activation, indicating that the MAPK cascade functions downstream of or parallel with the calcium signaling during sperm activation. Interestingly, the persistent activation of MAPK in activated spermatozoa inhibits Major Sperm Protein (MSP)-based cytoskeleton dynamics. We demonstrate that MAPK plays dual roles in promoting pseudopod extension during sperm activation but also blocking the MSP-based, amoeboid motility of the spermatozoa. Thus, though nematode sperm are crawling cells, morphologically distinct from flagellated sperm, and the molecular machinery for motility of amoeboid and flagellated sperm is different, both types of sperm might utilize conserved signaling pathways to modulate sperm maturation.

  15. Calcium

    MedlinePlus

    ... milligrams) of calcium each day. Get it from: Dairy products. Low-fat milk, yogurt, cheese, and cottage ... lactase that helps digest the sugar (lactose) in dairy products, and may have gas, bloating, cramps, or ...

  16. Calcium

    MedlinePlus

    ... supplements and fortified foods include gluconate, lactate, and phosphate. Calcium absorption is best when a person consumes ... also interfere with the body's ability to absorb iron and zinc, but this effect is not well ...

  17. Fluoxetine suppresses calcium signaling in human T lymphocytes through depletion of intracellular calcium stores.

    PubMed

    Gobin, V; De Bock, M; Broeckx, B J G; Kiselinova, M; De Spiegelaere, W; Vandekerckhove, L; Van Steendam, K; Leybaert, L; Deforce, D

    2015-09-01

    Selective serotonin reuptake inhibitors, such as fluoxetine, have recently been shown to exert anti-inflammatory and immunosuppressive effects. Although the effects on cytokine secretion, proliferation and viability of T lymphocytes have been extensively characterized, little is known about the mechanism behind these effects. It is well known that Ca(2+) signaling is an important step in the signaling transduction pathway following T cell receptor activation. Therefore, we investigated if fluoxetine interferes with Ca(2+) signaling in Jurkat T lymphocytes. Fluoxetine was found to suppress Ca(2+) signaling in response to T cell receptor activation. Moreover, fluoxetine was found to deplete intracellular Ca(2+) stores, thereby leaving less Ca(2+) available for release upon IP3- and ryanodine-receptor activation. The Ca(2+)-modifying effects of fluoxetine are not related to its capability to block the serotonin transporter, as even a large excess of 5HT did not abolish the effects. In conclusion, these data show that fluoxetine decreases IP3- and ryanodine-receptor mediated Ca(2+) release in Jurkat T lymphocytes, an effect likely to be at the basis of the observed immunosuppression.

  18. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    SciTech Connect

    Sirvent, P.; Fabre, O.; Bordenave, S.; Hillaire-Buys, D.; Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J.

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  19. Voltage-dependent calcium signaling in rat cerebellar unipolar brush cells.

    PubMed

    Birnstiel, S; Slater, N T; McCrimmon, D R; Mugnaini, E; Hartell, N A

    2009-09-01

    Unipolar brush cells (UBCs) are a class of excitatory interneuron found in the granule cell layer of the vestibulocerebellum. Mossy fibers form excitatory inputs on to the paint brush shaped dendrioles in the form of giant, glutamatergic synapses, activation of which results in prolonged bursts of action potentials in the postsynaptic UBC. The axons of UBCs themselves form mossy fiber contacts with other UBCs and granule cells, forming an excitatory, intrinsic cerebellar network that has the capacity to synchronize and amplify mossy fiber inputs to potentially large populations of granule cells. In this paper, we demonstrate that UBCs in rat cerebellar slices express low voltage activated (LVA) fast-inactivating and high voltage activated (HVA) slowly inactivating calcium channels. LVA calcium currents are mediated by T-type calcium channels and they are associated with calcium increases in the dendrites and to a lesser extent the cell soma. HVA currents, mediated by L-type calcium channels, are slowly inactivating and they produce larger overall increases in intracellular calcium but with a similar distribution pattern. We review these observations alongside several recent papers that examine how intrinsic membrane properties influence UBCs firing patterns and we discuss how UBC signaling may affect downstream cerebellar processing. PMID:19409228

  20. Control of insulin secretion by cytochrome C and calcium signaling in islets with impaired metabolism.

    PubMed

    Rountree, Austin M; Neal, Adam S; Lisowski, Mark; Rizzo, Norma; Radtke, Jared; White, Sarah; Luciani, Dan S; Kim, Francis; Hampe, Christiane S; Sweet, Ian R

    2014-07-01

    The aim of the study was to assess the relative control of insulin secretion rate (ISR) by calcium influx and signaling from cytochrome c in islets where, as in diabetes, the metabolic pathways are impaired. This was achieved either by culturing isolated islets at low (3 mm) glucose or by fasting rats prior to the isolation of the islets. Culture in low glucose greatly reduced the glucose response of cytochrome c reduction and translocation and ISR, but did not affect the response to the mitochondrial fuel α-ketoisocaproate. Unexpectedly, glucose-stimulated calcium influx was only slightly reduced in low glucose-cultured islets and was not responsible for the impairment in glucose-stimulated ISR. A glucokinase activator acutely restored cytochrome c reduction and translocation and ISR, independent of effects on calcium influx. Islets from fasted rats had reduced ISR and cytochrome c reduction in response to both glucose and α-ketoisocaproate despite normal responses of calcium. Our data are consistent with the scenario where cytochrome c reduction and translocation are essential signals in the stimulation of ISR, the loss of which can result in impaired ISR even when calcium response is normal.

  1. Integration of gene expression and GWAS results supports involvement of calcium signaling in Schizophrenia.

    PubMed

    Hertzberg, L; Katsel, P; Roussos, P; Haroutunian, V; Domany, E

    2015-05-01

    The number of Genome Wide Association Studies (GWAS) of schizophrenia is rapidly growing. However, the small effect of individual genes limits the number of reliably implicated genes, which are too few and too diverse to perform reliable pathway analysis; hence the biological roles of the genes implicated in schizophrenia are unclear. To overcome these limitations we combine GWAS with genome-wide expression data from human post-mortem brain samples of schizophrenia patients and controls, taking these steps: 1) Identify 36 GWAS-based genes which are expressed in our dataset. 2) Find a cluster of 19 genes with highly correlated expression. We show that this correlation pattern is robust and statistically significant. 3) GO-enrichment analysis of these 19 genes reveals significant enrichment of ion channels and calcium-related processes. This finding (based on analyzing a small number of coherently expressed genes) is validated and enhanced in two ways: First, the emergence of calcium channels and calcium signaling is corroborated by identifying proteins that interact with those encoded by the cluster of 19. Second, extend the 19 cluster genes into 1028 genes, whose expression is highly correlated with the cluster's average profile. When GO-enrichment analysis is performed on this extended set, many schizophrenia related pathways appear, with calcium-related processes enriched with high statistical significance. Our results give further, expression-based validation to GWAS results, support a central role of calcium-signaling in the pathogenesis of schizophrenia, and point to additional pathways potentially related to the disease.

  2. Scrophularia orientalis extract induces calcium signaling and apoptosis in neuroblastoma cells

    PubMed Central

    LANGE, INGO; MOSCHNY, JULIA; TAMANYAN, KAMILLA; KHUTSISHVILI, MANANA; ATHA, DANIEL; BORRIS, ROBERT P.; KOOMOA, DANA-LYNN

    2016-01-01

    Effective neuroblastoma (NB) treatments are still limited despite treatment options available today. Therefore, this study attempted to identify novel plant extracts that have anticancer effects. Cytotoxicity and increased intracellular calcium levels were determined using the Sulforhodamine B (SRB) assay and Fluo4-AM (acetoxymethyl) staining and fluorescence microscopy in NB cells in order to screen a library of plant extracts. The current study examined the anticancer effects of a dichloromethane extract from Scrophularia orientalis L. (Scrophulariaceae), a plant that has been used in Traditional Chinese Medicine. This extract contained highly potent agents that significantly reduced cell survival and increased calcium levels in NB cells. Further analysis revealed that cell death induced by this extract was associated with intracellular calcium release, opening of the MPTP, caspase 3- and PARP-cleavage suggesting that this extract induced aberrant calcium signaling that resulted in apoptosis via the mitochondrial pathway. Therefore, agents from Scrophularia orientalis may have the potential to lead to new chemo therapeutic anticancer drugs. Furthermore, targeting intracellular calcium signaling may be a novel strategy to develop more effective treatments for NB. PMID:26848085

  3. Nuclear proton dynamics and interactions with calcium signaling.

    PubMed

    Hulikova, Alzbeta; Swietach, Pawel

    2016-07-01

    Biochemical signals acting on the nucleus can regulate gene expression. Despite the inherent affinity of nucleic acids and nuclear proteins (e.g. transcription factors) for protons, little is known about the mechanisms that regulate nuclear pH (pHnuc), and how these could be exploited to control gene expression. Here, we show that pHnuc dynamics can be imaged using the DNA-binding dye Hoechst 33342. Nuclear pores allow the passage of medium-sized molecules (calcein), but protons must first bind to mobile buffers in order to gain access to the nucleoplasm. Fixed buffering residing in the nucleus of permeabilized cells was estimated to be very weak on the basis of the large amplitude of pHnuc transients evoked by photolytic H(+)-uncaging or exposure to weak acids/bases. Consequently, the majority of nuclear pH buffering is sourced from the cytoplasm in the form of mobile buffers. Effective proton diffusion was faster in nucleoplasm than in cytoplasm, in agreement with the higher mobile-to-fixed buffering ratio in the nucleus. Cardiac myocyte pHnuc changed in response to maneuvers that alter nuclear Ca(2+) signals. Blocking Ca(2+) release from inositol-1,4,5-trisphosphate receptors stably alkalinized the nucleus. This Ca(2+)-pH interaction may arise from competitive binding to common chemical moieties. Competitive binding to mobile buffers may couple the efflux of Ca(2+)via nuclear pores with a counterflux of protons. This would generate a stable pH gradient between cytoplasm and nucleus that is sensitive to the state of nuclear Ca(2+) signaling. The unusual behavior of protons in the nucleus provides new mechanisms for regulating cardiac nuclear biology. PMID:26183898

  4. Nuclear proton dynamics and interactions with calcium signaling.

    PubMed

    Hulikova, Alzbeta; Swietach, Pawel

    2016-07-01

    Biochemical signals acting on the nucleus can regulate gene expression. Despite the inherent affinity of nucleic acids and nuclear proteins (e.g. transcription factors) for protons, little is known about the mechanisms that regulate nuclear pH (pHnuc), and how these could be exploited to control gene expression. Here, we show that pHnuc dynamics can be imaged using the DNA-binding dye Hoechst 33342. Nuclear pores allow the passage of medium-sized molecules (calcein), but protons must first bind to mobile buffers in order to gain access to the nucleoplasm. Fixed buffering residing in the nucleus of permeabilized cells was estimated to be very weak on the basis of the large amplitude of pHnuc transients evoked by photolytic H(+)-uncaging or exposure to weak acids/bases. Consequently, the majority of nuclear pH buffering is sourced from the cytoplasm in the form of mobile buffers. Effective proton diffusion was faster in nucleoplasm than in cytoplasm, in agreement with the higher mobile-to-fixed buffering ratio in the nucleus. Cardiac myocyte pHnuc changed in response to maneuvers that alter nuclear Ca(2+) signals. Blocking Ca(2+) release from inositol-1,4,5-trisphosphate receptors stably alkalinized the nucleus. This Ca(2+)-pH interaction may arise from competitive binding to common chemical moieties. Competitive binding to mobile buffers may couple the efflux of Ca(2+)via nuclear pores with a counterflux of protons. This would generate a stable pH gradient between cytoplasm and nucleus that is sensitive to the state of nuclear Ca(2+) signaling. The unusual behavior of protons in the nucleus provides new mechanisms for regulating cardiac nuclear biology.

  5. Calcium signaling in insulin action on striated muscle.

    PubMed

    Contreras-Ferrat, A; Lavandero, S; Jaimovich, E; Klip, A

    2014-11-01

    Striated muscles (skeletal and cardiac) are major physiological targets of insulin and this hormone triggers complex signaling pathways regulating cell growth and energy metabolism. Insulin increases glucose uptake into muscle cells by stimulating glucose transporter (GLUT4) translocation from intracellular compartments to the cell surface. The canonical insulin-triggered signaling cascade controlling this process is constituted by well-mapped tyrosine, lipid and serine/threonine phosphorylation reactions. In parallel to these signals, recent findings reveal insulin-dependent Ca(2+) mobilization in skeletal muscle cells and cardiomyocytes. Specifically, insulin activates the sarco-endoplasmic reticulum (SER) channels that release Ca(2+) into the cytosol i.e., the Ryanodine Receptor (RyR) and the inositol 1,4,5-triphosphate receptor (IP3R). In skeletal muscle cells, a rapid, insulin-triggered Ca(2+) release occurs through RyR, that is brought about upon S-glutathionylation of cysteine residues in the channel by reactive oxygen species (ROS) produced by the early activation of the NADPH oxidase (NOX2). In cardiomyocytes insulin induces a fast and transient increase in cytoplasmic [Ca(2+)]i trough L-type Ca(2+) channels activation. In both cell types, a relatively slower Ca(2+) release also occurs through IP3R activation, and is required for GLUT4 translocation and glucose uptake. The insulin-dependent Ca(2+) released from IP3R of skeletal muscle also promotes mitochondrial Ca(2+) uptake. We review here these actions of insulin on intracellular Ca(2+) channel activation and their impact on GLUT4 traffic in muscle cells, as well as other implications of insulin-dependent Ca(2+) release from the SER. PMID:25224502

  6. Differential regulation of cone calcium signals by different horizontal cell feedback mechanisms in the mouse retina.

    PubMed

    Kemmler, Robin; Schultz, Konrad; Dedek, Karin; Euler, Thomas; Schubert, Timm

    2014-08-27

    Controlling neurotransmitter release by modulating the presynaptic calcium level is a key mechanism to ensure reliable signal transmission from one neuron to the next. In this study, we investigated how the glutamatergic output of cone photoreceptors (cones) in the mouse retina is shaped by different feedback mechanisms from postsynaptic GABAergic horizontal cells (HCs) using a combination of two-photon calcium imaging and pharmacology at the level of individual cone axon terminals. We provide evidence that hemichannel-mediated (putative ephaptic) feedback sets the cone output gain by defining the basal calcium level, a mechanism that may be crucial for adapting cones to the ambient light level. In contrast, pH-mediated feedback did not modulate the cone basal calcium level but affected the size and shape of light-evoked cone calcium signals in a contrast-dependent way: low-contrast light responses were amplified, whereas high-contrast light responses were reduced. Finally, we provide functional evidence that GABA shapes light-evoked calcium signals in cones. Because we could not localize ionotropic GABA receptors on cone axon terminals using electron microscopy, we suggest that GABA may act through GABA autoreceptors on HCs, thereby possibly modulating hemichannel- and/or pH-mediated feedback. Together, our results suggest that at the cone synapse, hemichannel-mediated (ephaptic) and pH-mediated feedback fulfill distinct functions to adjust the output of cones to changing ambient light levels and stimulus contrasts and that the efficacy of these feedback mechanisms is likely modulated by GABA release in the outer retina.

  7. Differential effects of arsenic on calcium signaling in primary keratinocytes and malignant (HSC-1) cells.

    PubMed

    Hsu, W L; Tsai, M H; Lin, M W; Chiu, Y C; Lu, J H; Chang, C H; Yu, H S; Yoshioka, T

    2012-08-01

    Arsenic is highly toxic to living cells, especially skin, and skin cancer is induced by drinking water containing arsenic. The molecular mechanisms of arsenic-induced cancer, however, are not well understood. To examine the initial processes in the development of arsenic-induced cancer, we analyzed calcium signaling at an early stage of arsenic treatment of human primary cells and compared the effects with those observed with arsenic treatment in carcinoma-derived cells. We found that arsenic inhibited inositol trisphosphate receptor (IP3R) function in the endoplasmic reticulum by inducing phosphorylation, which led to decreased intracellular calcium levels. Blockade of IP3R phosphorylation by the serine/threonine protein kinase Akt inhibitor wortmannin rescued calcium signaling. In contrast, arsenic treatment of cells derived from a carcinoma (human squamous carcinoma; HSC-1) for 1h had no obvious effect. Taken together, these results suggest that arsenic-induced reduction in calcium signaling is one of the initial mechanisms underlying the malignant transformation in the development of skin cancer.

  8. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1.

    PubMed

    Sveshnikova, Anastasia N; Ataullakhanov, Fazoil I; Panteleev, Mikhail A

    2015-04-01

    Blood platelets need to undergo activation to carry out their function of stopping bleeding. Different activation degrees lead to a stepped hierarchy of responses: ability to aggregate, granule release, and, in a fraction of platelets, phosphatidylserine (PS) exposure. This suggests the existence of decision-making mechanisms in the platelet intracellular signaling network. To identify and investigate them, we developed a computational model of PAR1-stimulated platelet signal transduction that included a minimal set of major players in the calcium signaling network. The model comprised three intracellular compartments: cytosol, dense tubular system (DTS) and mitochondria and extracellular space. Computer simulations showed that the stable resting state of platelets is maintained via a balance between calcium pumps and leaks through the DTS and plasma membranes. Stimulation of PAR1 induced oscillations in the cytosolic calcium concentrations, in good agreement with experimental observations. Further increase in the agonist level activated the mitochondrial uniporter leading to calcium uptake by mitochondria, which caused the collapse of mitochondrial membrane potential in a fraction of platelets leading to the PS exposure. The formation of this subpopulation was shown to be a stochastic process determined by the small number of activated PAR1 receptors and by heterogeneity in the number of ion pumps. These results demonstrate how a gradual increase of the activation degree can be converted into a stepped response hierarchy ultimately leading to formation of two distinct subpopulations from an initially homogeneous population. PMID:25627921

  9. Regulation of chondrogenesis by protein kinase C: Emerging new roles in calcium signalling.

    PubMed

    Matta, Csaba; Mobasheri, Ali

    2014-05-01

    During chondrogenesis, complex intracellular signalling pathways regulate an intricate series of events including condensation of chondroprogenitor cells and nodule formation followed by chondrogenic differentiation. Reversible phosphorylation of key target proteins is of particular importance during this process. Among protein kinases known to be involved in these pathways, protein kinase C (PKC) subtypes play pivotal roles. However, the precise function of PKC isoenzymes during chondrogenesis and in mature articular chondrocytes is still largely unclear. In this review, we provide a historical overview of how the concept of PKC-mediated chondrogenesis has evolved, starting from the first discoveries of PKC isoform expression and activity. Signalling components upstream and downstream of PKC, leading to the stimulation of chondrogenic differentiation, are also discussed. Although it is evident that we are only at the beginning to understand what roles are assigned to PKC subtypes during chondrogenesis and how they are regulated, there are many yet unexplored aspects in this area. There is evidence that calcium signalling is a central regulator in differentiating chondroprogenitors; still, clear links between intracellular calcium signalling and prototypical calcium-dependent PKC subtypes such as PKCalpha have not been established. Exploiting putative connections and shedding more light on how exactly PKC signalling pathways influence cartilage formation should open new perspectives for a better understanding of healthy as well as pathological differentiation processes of chondrocytes, and may also lead to the development of novel therapeutic approaches. PMID:24440668

  10. Label-Free Imaging of Dynamic and Transient Calcium Signaling in Single Cells.

    PubMed

    Lu, Jin; Li, Jinghong

    2015-11-01

    Cell signaling consists of diverse events that occur at various temporal and spatial scales, ranging from milliseconds to hours and from single biomolecules to cell populations. The pathway complexities require the development of new techniques that detect the overall signaling activities and are not limited to quantifying a single event. A plasmonic-based electrochemical impedance microscope (P-EIM) that can provide such data with excellent temporal and spatial resolution and does not require the addition of any labels for detection has now been developed. The highly dynamic and transient calcium signaling activities at the early stage of G-protein-coupled receptor (GPCR) stimulation were thus studied. It could be shown that a subpopulation of cells is more responsive towards agonist stimulation, and the heterogeneity of the local distributions and the transient activities of the ion channels during agonist-activated calcium flux in single HeLa cells were investigated.

  11. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Swinteck, N.; Runge, K.; Deymier-Black, A.; Hoying, J. B.

    2015-11-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  12. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    PubMed

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  13. Plants, symbiosis and parasites: a calcium signalling connection.

    PubMed

    Harper, Jeffrey F; Harmon, Alice

    2005-07-01

    A unique family of protein kinases has evolved with regulatory domains containing sequences that are related to Ca(2+)-binding EF-hands. In this family, the archetypal Ca(2+)-dependent protein kinases (CDPKs) have been found in plants and some protists, including the malarial parasite, Plasmodium falciparum. Recent genetic evidence has revealed isoform-specific functions for a CDPK that is essential for Plasmodium berghei gametogenesis, and for a related chimeric Ca(2+) and calmodulin-dependent protein kinase (CCaMK) that is essential to the formation of symbiotic nitrogen-fixing nodules in plants. In Arabidopsis thaliana, the analysis of 42 isoforms of CDPK and related kinases is expected to delineate Ca(2+) signalling pathways in all aspects of plant biology.

  14. Biphasic Role of Calcium in Mouse Sperm Capacitation Signaling Pathways

    PubMed Central

    Alvau, Antonio; Escoffier, Jessica; Krapf, Dario; Sánchez-Cárdenas, Claudia; Salicioni, Ana M.; Darszon, Alberto; Visconti, Pablo E.

    2016-01-01

    Mammalian sperm acquire fertilizing ability in the female tract in a process known as capacitation. At the molecular level, capacitation is associated with up-regulation of a cAMP-dependent pathway, changes in intracellular pH, intracellular Ca2+ and an increase in tyrosine phosphorylation. How these signaling systems interact during capacitation is not well understood. Results presented in this study indicate that Ca2+ ions have a biphasic role in the regulation of cAMP-dependent signaling. Media without added Ca2+ salts (nominal zero Ca2+) still contain micromolar concentrations of this ion. Sperm incubated in this medium did not undergo PKA activation or the increase in tyrosine phosphorylation suggesting that these phosphorylation pathways require Ca2+. However, chelation of the extracellular Ca2+ traces by EGTA induced both cAMP-dependent phosphorylation and the increase in tyrosine phosphorylation. The EGTA effect in nominal zero Ca2+ media was mimicked by two calmodulin antagonists, W7 and calmidazolium, and by the calcineurin inhibitor cyclosporine A. These results suggest that Ca2+ ions regulate sperm cAMP and tyrosine phosphorylation pathways in a biphasic manner and that some of its effects are mediated by calmodulin. Interestingly, contrary to wild type mouse sperm, sperm from CatSper1 KO mice underwent PKA activation and an increase in tyrosine phosphorylation upon incubation in nominal zero Ca2+ media. Therefore, sperm lacking Catsper Ca2+ channels behave as wild-type sperm incubated in the presence of EGTA. This latter result suggests that Catsper transports the Ca2+ involved in the regulation of cAMP-dependent and tyrosine phosphorylation pathways required for sperm capacitation. PMID:25597298

  15. Characterization of NAADP-mediated calcium signaling in human spermatozoa

    SciTech Connect

    Sánchez-Tusie, A.A.; Vasudevan, S.R.; Churchill, G.C.; Nishigaki, T.; Treviño, C.L.

    2014-01-10

    Highlights: •Human sperm cells synthesize NAADP. •NAADP-AM mediates [Ca{sup 2+}]{sub i} increases in human sperm in the absence of [Ca{sup 2+}]{sub o}. •Human sperm have two acidic compartments located in the head and midpiece. -- Abstract: Ca{sup 2+} signaling in spermatozoa plays a crucial role during processes such as capacitation and release of the acrosome, but the underlying molecular mechanisms still remain unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca{sup 2+}-releasing second messenger in a variety of cellular processes. The presence of a NAADP synthesizing enzyme in sea urchin sperm has been previously reported, suggesting a possible role of NAADP in sperm Ca{sup 2+} signaling. In this work we used in vitro enzyme assays to show the presence of a novel NAADP synthesizing enzyme in human sperm, and to characterize its sensitivity to Ca{sup 2+} and pH. Ca{sup 2+} fluorescence imaging studies demonstrated that the permeable form of NAADP (NAADP-AM) induces intracellular [Ca{sup 2+}] increases in human sperm even in the absence of extracellular Ca{sup 2+}. Using LysoTracker®, a fluorescent probe that selectively accumulates in acidic compartments, we identified two such stores in human sperm cells. Their acidic nature was further confirmed by the reduction in staining intensity observed upon inhibition of the endo-lysosomal proton pump with Bafilomycin, or after lysosomal bursting with glycyl-L-phenylalanine-2-naphthylamide. The selective fluorescent NAADP analog, Ned-19, stained the same subcellular regions as LysoTracker®, suggesting that these stores are the targets of NAADP action.

  16. Effect of TGFβ on calcium signaling in megakaryocytes

    SciTech Connect

    Yan, Jing; Schmid, Evi; Almilaji, Ahmad; Shumilina, Ekaterina; Borst, Oliver; Laufer, Stefan; Gawaz, Meinrad; Lang, Florian

    2015-05-22

    TGFβ is a powerful regulator of megakaryocyte maturation and platelet formation. As previously shown for other cell types, TGFβ may up-regulate the expression of the serum & glucocorticoid inducible kinase SGK1, an effect requiring p38 kinase. SGK1 has in turn recently been shown to participate in the regulation of cytosolic Ca{sup 2+} activity ([Ca{sup 2+}]{sub i}) in megakaryocytes and platelets. SGK1 phosphorylates the IκB kinase (IKKα/β), which in turn phosphorylates the inhibitor protein IκBα resulting in nuclear translocation of nuclear factor NFκB. Genes up-regulated by NFκB include Orai1, the pore forming ion channel subunit accomplishing store operated Ca{sup 2+} entry (SOCE). The present study explored whether TGFβ influences Ca{sup 2+} signaling in megakaryocytes. [Ca{sup 2+}]{sub i} was determined by Fura-2 fluorescence and SOCE from the increase of [Ca{sup 2+}]{sub i} following re-addition of extracellular Ca{sup 2+} after store depletion by removal of extracellular Ca{sup 2+} and inhibition of the sarcoendoplasmatic Ca{sup 2+} ATPase (SERCA) with thapsigargin (1 μM). As a result, TGFβ (60 ng, 24 h) increased SOCE, an effect significantly blunted by p38 kinase inhibitor Skepinone-L (1 μM), SGK1 inhibitor EMD638683 (50 μM) and NFκB inhibitor wogonin (100 μM). In conclusion, TGFβ is a powerful regulator of store operated Ca{sup 2+} entry into megakaryocytes, an effect mediated by a signaling cascade involving p38 kinase, SGK1 and NFκB. - Highlights: • TGFβ up-regulates store operated Ca{sup 2+} entry (SOCE) in megakaryocytes. • The effect of TGFβ on SOCE is blunted by p38 kinase inhibitor Skepinone-L. • The effect of TGFβ on SOCE is virtually abrogated by SGK1 inhibitor EMD638683. • The effect of TGFβ on SOCE is almost abolished by NFκB inhibitor wogonin. • The effect of TGFβ is expected to enhance sensitivity of platelets to activation.

  17. Aurora A kinase activity influences calcium signaling in kidney cells.

    PubMed

    Plotnikova, Olga V; Pugacheva, Elena N; Golemis, Erica A

    2011-06-13

    Most studies of Aurora A (AurA) describe it as a mitotic centrosomal kinase. However, we and others have recently identified AurA functions as diverse as control of ciliary resorption, cell differentiation, and cell polarity control in interphase cells. In these activities, AurA is transiently activated by noncanonical signals, including Ca(2+)-dependent calmodulin binding. These and other observations suggested that AurA might be involved in pathological conditions, such as polycystic kidney disease (PKD). In this paper, we show that AurA is abundant in normal kidney tissue but is also abnormally expressed and activated in cells lining PKD-associated renal cysts. PKD arises from mutations in the PKD1 or PKD2 genes, encoding polycystins 1 and 2 (PC1 and PC2). AurA binds, phosphorylates, and reduces the activity of PC2, a Ca(2+)-permeable nonselective cation channel and, thus, limits the amplitude of Ca(2+) release from the endoplasmic reticulum. These and other findings suggest AurA may be a relevant new biomarker or target in the therapy of PKD.

  18. Calcium.

    PubMed

    Williams, Robert J P

    2002-01-01

    This chapter describes the chemical and biological value of the calcium ion. In calcium chemistry, our main interest is in equilibria within static, nonflowing systems. Hence, we examined the way calcium formed precipitates and complex ions in solution. We observed thereafter its uses by humankind in a vast number of materials such as minerals, e.g., marble, concrete, mortars, which parallel the biological use in shells and bones. In complex formation, we noted that many combinations were of anion interaction with calcium for example in the uses of detergents and medicines. The rates of exchange of calcium from bound states were noted but they had little application. Calcium ions do not act as catalysts of organic reactions. In biological systems, interest is in the above chemistry, but extends to the fact that Ca2+ ions can carry information by flowing in one solution or from one solution to another through membranes. Hence, we became interested in the details of rates of calcium exchange. The fast exchange of this divalent ion from most organic binding sites has allowed it to develop as the dominant second messenger. Now the flow can be examined in vitro as calcium binds particular isolated proteins, which it activates as seen in physical mechanical changes or chemical changes and this piece-by-piece study of cells is common. Here, however, we have chosen to stress the whole circuit of Ca2+ action indicating that the cell is organized both at a basal and an activated state kinetic level by the steady state flow of the ion (see Fig. 11). Different time constants of exchange utilizing very similar binding constants lead to: 1) fast responses as in the muscle of an animal; or 2) slower change as in differentiation of an egg or seed. Many other changes of state may relate to Ca2+ steady-state levels of flow in the circuitry and here we point to two: 1) dormancy in reptiles and animals; and 2) sporulation in both bacteria and lower plants. In the other chapters of

  19. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death

    PubMed Central

    Duchen, Michael R

    1999-01-01

    Over recent years, it has become clear that mitochondria play a central role in many key aspects of animal physiology and pathophysiology. Their central and ubiquitous task is clearly the production of ATP. Nevertheless, they also play subtle roles in glucose homeostasis, acting as the sensor for substrate supply in the transduction pathway that promotes insulin secretion by the pancreatic β-cell and that modulates the excitability of the hypothalamic glucose-sensitive neurons involved in appetite control. Mitochondria may also act as sensors of availability of oxygen, the other major mitochondrial substrate, in the regulation of respiration. Mitochondria take up calcium, and the high capacity mitochondrial calcium uptake pathway provides a mechanism that couples energy demand to increased ATP production through the calcium-dependent upregulation of mitochondrial enzyme activity. Mitochondrial calcium accumulation may also have a substantial impact on the spatiotemporal dynamics of cellular calcium signals, with subtle differences of detail in different cell types. Recent work has also revealed the centrality of mitochondrial dysfunction as an irreversible step in the pathway to both necrotic and apoptotic cell death. This review looks at recent developments in these rapidly evolving areas of cell physiology in an attempt to draw together disparate areas of research into a common theme. PMID:10066918

  20. Structural basis of Sorcin-mediated calcium-dependent signal transduction

    PubMed Central

    Ilari, Andrea; Fiorillo, Annarita; Poser, Elena; Lalioti, Vasiliki S.; Sundell, Gustav N.; Ivarsson, Ylva; Genovese, Ilaria; Colotti, Gianni

    2015-01-01

    Sorcin is an essential penta-EF hand calcium binding protein, able to confer the multi-drug resistance phenotype to drug-sensitive cancer cells and to reduce Endoplasmic Reticulum stress and cell death. Sorcin silencing blocks cell cycle progression in mitosis and induces cell death by triggering apoptosis. Sorcin participates in the modulation of calcium homeostasis and in calcium-dependent cell signalling in normal and cancer cells. The molecular basis of Sorcin action is yet unknown. The X-ray structures of Sorcin in the apo (apoSor) and in calcium bound form (CaSor) reveal the structural basis of Sorcin action: calcium binding to the EF1-3 hands promotes a large conformational change, involving a movement of the long D-helix joining the EF1-EF2 sub-domain to EF3 and the opening of EF1. This movement promotes the exposure of a hydrophobic pocket, which can accommodate in CaSor the portion of its N-terminal domain displaying the consensus binding motif identified by phage display experiments. This domain inhibits the interaction of sorcin with PDCD6, a protein that carries the Sorcin consensus motif, co-localizes with Sorcin in the perinuclear region of the cell and in the midbody and is involved in the onset of apoptosis. PMID:26577048

  1. ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct.

    PubMed

    Svenningsen, Per; Burford, James L; Peti-Peterdi, János

    2013-01-01

    ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD) and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30(-/-) mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca(2+)]i) signaling in the CD. Cortical CDs (CCDs) from wild type and Cx30(-/-) mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca(2+)]i in wild type CCDs. This response was blunted in Cx30(-/-) CCDs ([Ca(2+)]i increased only 1.2-fold, p < 0.0001 vs. WT, n = 6 each). To further test our hypothesis we performed CD [Ca(2+)]i imaging in intact mouse kidneys in vivo using multiphoton microscopy and micropuncture delivery of the calcium-sensitive fluorophore Rhod-2. We found intrinsic, spontaneous [Ca(2+)]i oscillations in free-flowing CDs of wild type but not Cx30(-/-) mice. The [Ca(2+)]i oscillations were sensitive also to P2-receptor inhibition by suramin. Taken together, these data confirm that mechanosensitive Cx30 hemichannels mediate tubular ATP release and purinergic calcium signaling in the CD which mechanism plays an important role in the regulation of CD salt and water reabsorption. PMID:24137132

  2. The Calcium Signaling Toolkit of the Apicomplexan Parasites Toxoplasma gondii and Plasmodium spp

    PubMed Central

    Lourido, Sebastian; Moreno, Silvia N.J.

    2015-01-01

    Apicomplexan parasites have complex life cycles, frequently split between different hosts and reliant on rapid responses as the parasites react to changing environmental conditions. Calcium ion (Ca2+) signaling is consequently essential for the cellular and developmental changes that support apicomplexan parasitism. Apicomplexan genomes reveal a rich repertoire of genes involved in calcium signaling, although many of the genes responsible for observed physiological changes remain unknown. There is evidence, for example, for the presence of a nifedipine-sensitive calcium entry mechanism in Toxoplasma, but the molecular components involved in Ca2+ entry in both Toxoplasma and Plasmodium, have not been identified. The major calcium stores are the endoplasmic reticulum (ER), the acidocalcisomes, and the plant-like vacuole in Toxoplasma, or the food vacuole in Plasmodium spp. Pharmacological evidence suggests that Ca2+ release from intracellular stores may be mediated by inositol 1,4,5-trisphosphate (IP3) or cyclic ADP ribose (cADPR) although there is no molecular evidence for the presence of receptors for these second messengers in the parasites. Several Ca2+-ATPases are present in apicomplexans and a putative mitochondrial Ca2+/H+ exchanger has been identified. Apicomplexan genomes contain numerous genes encoding Ca2+-binding proteins, with the notable expansion of calcium-dependent protein kinases (CDPKs), whose study has revealed novel roles in gliding motility, microneme secretion, host cell invasion and egress, and parasite differentiation. Microneme secretion has also been shown to depend on the C2 domain containing protein DOC2 in both Plasmodium spp. and Toxoplasma, providing further evidence for the complex transduction of Ca2+ signals in these organisms. The characterization of these pathways could lead to the discovery of novel drug targets and to a better understanding of the role of Ca2+ in these parasites. PMID:25605521

  3. Role of calcium in polycystic kidney disease: From signaling to pathology

    PubMed Central

    Mangolini, Alessandra; de Stephanis, Lucia; Aguiari, Gianluca

    2016-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited monogenic kidney disease. Characterized by the development and growth of cysts that cause progressive kidney enlargement, it ultimately leads to end-stage renal disease. Approximately 85% of ADPKD cases are caused by mutations in the PKD1 gene, while mutations in the PKD2 gene account for the remaining 15% of cases. The PKD1 gene encodes for polycystin-1 (PC1), a large multi-functional membrane receptor protein able to regulate ion channel complexes, whereas polycystin-2 (PC2), encoded by the PKD2 gene, is an integral membrane protein that functions as a calcium-permeable cation channel, located mainly in the endoplasmic reticulum (ER). In the primary cilia of the epithelial cells, PC1 interacts with PC2 to form a polycystin complex that acts as a mechanosensor, regulating signaling pathways involved in the differentiation of kidney tubular epithelial cells. Despite progress in understanding the function of these proteins, the molecular mechanisms associated with the pathogenesis of ADPKD remain unclear. In this review we discuss how an imbalance between functional PC1 and PC2 proteins may disrupt calcium channel activities in the cilium, plasma membrane and ER, thereby altering intracellular calcium signaling and leading to the aberrant cell proliferation and apoptosis associated with the development and growth of renal cysts. Research in this field could lead to the discovery of new molecules able to rebalance intracellular calcium, thereby normalizing cell proliferation and reducing kidney cyst progression. PMID:26788466

  4. Role of calcium in polycystic kidney disease: From signaling to pathology.

    PubMed

    Mangolini, Alessandra; de Stephanis, Lucia; Aguiari, Gianluca

    2016-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited monogenic kidney disease. Characterized by the development and growth of cysts that cause progressive kidney enlargement, it ultimately leads to end-stage renal disease. Approximately 85% of ADPKD cases are caused by mutations in the PKD1 gene, while mutations in the PKD2 gene account for the remaining 15% of cases. The PKD1 gene encodes for polycystin-1 (PC1), a large multi-functional membrane receptor protein able to regulate ion channel complexes, whereas polycystin-2 (PC2), encoded by the PKD2 gene, is an integral membrane protein that functions as a calcium-permeable cation channel, located mainly in the endoplasmic reticulum (ER). In the primary cilia of the epithelial cells, PC1 interacts with PC2 to form a polycystin complex that acts as a mechanosensor, regulating signaling pathways involved in the differentiation of kidney tubular epithelial cells. Despite progress in understanding the function of these proteins, the molecular mechanisms associated with the pathogenesis of ADPKD remain unclear. In this review we discuss how an imbalance between functional PC1 and PC2 proteins may disrupt calcium channel activities in the cilium, plasma membrane and ER, thereby altering intracellular calcium signaling and leading to the aberrant cell proliferation and apoptosis associated with the development and growth of renal cysts. Research in this field could lead to the discovery of new molecules able to rebalance intracellular calcium, thereby normalizing cell proliferation and reducing kidney cyst progression.

  5. Role of calcium in polycystic kidney disease: From signaling to pathology.

    PubMed

    Mangolini, Alessandra; de Stephanis, Lucia; Aguiari, Gianluca

    2016-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited monogenic kidney disease. Characterized by the development and growth of cysts that cause progressive kidney enlargement, it ultimately leads to end-stage renal disease. Approximately 85% of ADPKD cases are caused by mutations in the PKD1 gene, while mutations in the PKD2 gene account for the remaining 15% of cases. The PKD1 gene encodes for polycystin-1 (PC1), a large multi-functional membrane receptor protein able to regulate ion channel complexes, whereas polycystin-2 (PC2), encoded by the PKD2 gene, is an integral membrane protein that functions as a calcium-permeable cation channel, located mainly in the endoplasmic reticulum (ER). In the primary cilia of the epithelial cells, PC1 interacts with PC2 to form a polycystin complex that acts as a mechanosensor, regulating signaling pathways involved in the differentiation of kidney tubular epithelial cells. Despite progress in understanding the function of these proteins, the molecular mechanisms associated with the pathogenesis of ADPKD remain unclear. In this review we discuss how an imbalance between functional PC1 and PC2 proteins may disrupt calcium channel activities in the cilium, plasma membrane and ER, thereby altering intracellular calcium signaling and leading to the aberrant cell proliferation and apoptosis associated with the development and growth of renal cysts. Research in this field could lead to the discovery of new molecules able to rebalance intracellular calcium, thereby normalizing cell proliferation and reducing kidney cyst progression. PMID:26788466

  6. NG2 glial cells integrate synaptic input in global and dendritic calcium signals

    PubMed Central

    Sun, Wenjing; Matthews, Elizabeth A; Nicolas, Vicky; Schoch, Susanne; Dietrich, Dirk

    2016-01-01

    Synaptic signaling to NG2-expressing oligodendrocyte precursor cells (NG2 cells) could be key to rendering myelination of axons dependent on neuronal activity, but it has remained unclear whether NG2 glial cells integrate and respond to synaptic input. Here we show that NG2 cells perform linear integration of glutamatergic synaptic inputs and respond with increasing dendritic calcium elevations. Synaptic activity induces rapid Ca2+ signals mediated by low-voltage activated Ca2+ channels under strict inhibitory control of voltage-gated A-type K+ channels. Ca2+ signals can be global and originate throughout the cell. However, voltage-gated channels are also found in thin dendrites which act as compartmentalized processing units and generate local calcium transients. Taken together, the activity-dependent control of Ca2+ signals by A-type channels and the global versus local signaling domains make intracellular Ca2+ in NG2 cells a prime signaling molecule to transform neurotransmitter release into activity-dependent myelination. DOI: http://dx.doi.org/10.7554/eLife.16262.001 PMID:27644104

  7. Acoustic tweezers for studying intracellular calcium signaling in SKBR-3 human breast cancer cells.

    PubMed

    Hwang, Jae Youn; Yoon, Chi Woo; Lim, Hae Gyun; Park, Jin Man; Yoon, Sangpil; Lee, Jungwoo; Shung, K Kirk

    2015-12-01

    Extracellular matrix proteins such as fibronectin (FNT) play crucial roles in cell proliferation, adhesion, and migration. For better understanding of these associated cellular activities, various microscopic manipulation tools have been used to study their intracellular signaling pathways. Recently, it has appeared that acoustic tweezers may possess similar capabilities in the study. Therefore, we here demonstrate that our newly developed acoustic tweezers with a high-frequency lithium niobate ultrasonic transducer have potentials to study intracellular calcium signaling by FNT-binding to human breast cancer cells (SKBR-3). It is found that intracellular calcium elevations in SKBR-3 cells, initially occurring on the microbead-contacted spot and then eventually spreading over the entire cell, are elicited by attaching an acoustically trapped FNT-coated microbead. Interestingly, they are suppressed by either extracellular calcium elimination or phospholipase C (PLC) inhibition. Hence, this suggests that our acoustic tweezers may serve as an alternative tool in the study of intracellular signaling by FNT-binding activities.

  8. The role of calcium in hypoxia-induced signal transduction and gene expression.

    PubMed

    Seta, Karen A; Yuan, Yong; Spicer, Zachary; Lu, Gang; Bedard, James; Ferguson, Tsuneo K; Pathrose, Peterson; Cole-Strauss, Allyson; Kaufhold, Alexa; Millhorn, David E

    2004-01-01

    Mammalian cells require a constant supply of oxygen in order to maintain adequate energy production, which is essential for maintaining normal function and for ensuring cell survival. Sustained hypoxia can result in cell death. Sophisticated mechanisms have therefore evolved which allow cells to respond and adapt to hypoxia. Specialized oxygen-sensing cells have the ability to detect changes in oxygen tension and transduce this signal into organ system functions that enhance the delivery of oxygen to tissue in a wide variety of different organisms. An increase in intracellular calcium levels is a primary response of many cell types to hypoxia/ischemia. The response to hypoxia is complex and involves the regulation of multiple signaling pathways and coordinated expression of perhaps hundreds of genes. This review discusses the role of calcium in hypoxia-induced regulation of signal transduction pathways and gene expression. An understanding of the molecular events initiated by changes in intracellular calcium will lead to the development of therapeutic approaches toward the treatment of hypoxic/ischemic diseases and tumors. PMID:15261489

  9. From contraction to gene expression: nanojunctions of the sarco/endoplasmic reticulum deliver site- and function-specific calcium signals.

    PubMed

    Evans, A Mark; Fameli, Nicola; Ogunbayo, Oluseye A; Duan, Jingxian; Navarro-Dorado, Jorge

    2016-08-01

    Calcium signals determine, for example, smooth muscle contraction and changes in gene expression. How calcium signals select for these processes is enigmatic. We build on the "panjunctional sarcoplasmic reticulum" hypothesis, describing our view that different calcium pumps and release channels, with different kinetics and affinities for calcium, are strategically positioned within nanojunctions of the SR and help demarcate their respective cytoplasmic nanodomains. SERCA2b and RyR1 are preferentially targeted to the sarcoplasmic reticulum (SR) proximal to the plasma membrane (PM), i.e., to the superficial buffer barrier formed by PM-SR nanojunctions, and support vasodilation. In marked contrast, SERCA2a may be entirely restricted to the deep, perinuclear SR and may supply calcium to this sub-compartment in support of vasoconstriction. RyR3 is also preferentially targeted to the perinuclear SR, where its clusters associate with lysosome-SR nanojunctions. The distribution of RyR2 is more widespread and extends from this region to the wider cell. Therefore, perinuclear RyR3s most likely support the initiation of global calcium waves at L-SR junctions, which subsequently propagate by calcium-induced calcium release via RyR2 in order to elicit contraction. Data also suggest that unique SERCA and RyR are preferentially targeted to invaginations of the nuclear membrane. Site- and function-specific calcium signals may thus arise to modulate stimulus-response coupling and transcriptional cascades.

  10. CASK regulates CaMKII autophosphorylation in neuronal growth, calcium signaling, and learning

    PubMed Central

    Gillespie, John M.; Hodge, James J. L.

    2013-01-01

    Calcium (Ca2+)/calmodulin (CaM)-dependent kinase II (CaMKII) activity plays a fundamental role in learning and memory. A key feature of CaMKII in memory formation is its ability to be regulated by autophosphorylation, which switches its activity on and off during synaptic plasticity. The synaptic scaffolding protein CASK (calcium (Ca2+)/calmodulin (CaM) associated serine kinase) is also important for learning and memory, as mutations in CASK result in intellectual disability and neurological defects in humans. We show that in Drosophila larvae, CASK interacts with CaMKII to control neuronal growth and calcium signaling. Furthermore, deletion of the CaMK-like and L27 domains of CASK (CASK β null) or expression of overactive CaMKII (T287D) produced similar effects on synaptic growth and Ca2+ signaling. CASK overexpression rescues the effects of CaMKII overactivity, consistent with the notion that CASK and CaMKII act in a common pathway that controls these neuronal processes. The reduction in Ca2+ signaling observed in the CASK β null mutant caused a decrease in vesicle trafficking at synapses. In addition, the decrease in Ca2+ signaling in CASK mutants was associated with an increase in Ether-à-go-go (EAG) potassium (K+) channel localization to synapses. Reducing EAG restored the decrease in Ca2+ signaling observed in CASK mutants to the level of wildtype, suggesting that CASK regulates Ca2+ signaling via EAG. CASK knockdown reduced both appetitive associative learning and odor evoked Ca2+ responses in Drosophila mushroom bodies, which are the learning centers of Drosophila. Expression of human CASK in Drosophila rescued the effect of CASK deletion on the activity state of CaMKII, suggesting that human CASK may also regulate CaMKII autophosphorylation. PMID:24062638

  11. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor

    PubMed Central

    Zhang, Chen; Miller, Cassandra L.; Gorkhali, Rakshya; Zou, Juan; Huang, Kenneth; Brown, Edward M.; Yang, Jenny J.

    2016-01-01

    Ca2+-sensing receptors (CaSRs) play a central role in regulating extracellular calcium concentration ([Ca2+]o) homeostasis and many (patho)physiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids, and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT) domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR's cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs) in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics. PMID:27746744

  12. Influence of zinc on calcium-dependent signal transduction pathways during aluminium-induced neurodegeneration.

    PubMed

    Singla, Neha; Dhawan, D K

    2014-10-01

    Metals perform important functions in the normal physiological system, and alterations in their levels may lead to a number of diseases. Aluminium (Al) has been implicated as a major risk factor, which is linked to several neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. On the other hand, zinc (Zn) is considered as a neuromodulator and an essential dietary element that regulates a number of biological activities in our body. The aim of the present study was to investigate the effects of Zn supplementation, if any, in ameliorating the changes induced by Al on calcium signalling pathway. Male Sprague Dawley rats weighing 140-160 g were divided into four different groups viz.: normal control, aluminium treated (100 mg/kg b.wt./day via oral gavage), zinc treated (227 mg/l in drinking water) and combined aluminium and zinc treated. All the treatments were carried out for a total duration of 8 weeks. Al treatment decreased the Ca(2+) ATPase activity whereas increased the levels of 3', 5'-cyclic adenosine monophosphate, intracellular calcium and total calcium content in both the cerebrum and cerebellum, which, however, were modulated upon Zn supplementation. Al treatment exhibited a significant elevation in the protein expressions of phospholipase C, inositol triphosphate and protein kinase A but decreased the expression of protein kinase C, which, however, was reversed upon Zn co-treatment. Al treatment also revealed alterations in neurohistoarchitecture in the form of calcium deposits, which were improved upon zinc co-administration. The present study, therefore, suggests that zinc regulates the intracellular calcium signalling pathway during aluminium-induced neurodegeneration.

  13. Detergent resistant membrane fractions are involved in calcium signaling in Müller glial cells of retina.

    PubMed

    Krishnan, Gopinath; Chatterjee, Nivedita

    2013-08-01

    Compartmentalization of the plasma membrane into lipid microdomains promotes efficient cellular processes by increasing local molecular concentrations. Calcium signaling, either as transients or propagating waves require integration of complex macromolecular machinery. Calcium waves represent a form of intercellular signaling in the central nervous system and the retina. We hypothesized that the mechanism for calcium waves would require effector proteins to aggregate at the plasma membrane in lipid microdomains. The current study shows that in Müller glia of the retina, proteins involved in calcium signaling aggregate in detergent resistant membranes identifying rafts and respond by redistributing on stimulation. We have investigated Purinoreceptor-1 (P2Y1), Ryanodine receptor (RyR), and Phospholipase C (PLC-β1). P2Y1, RyR and PLC-β1, redistribute from caveolin-1 and flotillin-1 positive fractions on stimulation with the agonists, ATP, 2MeS-ATP and Thapsigargin, an inhibitor of sarcoplasmic-endoplasmic reticulum Ca-ATPase (SERCA). Redistribution is absent on treatment with cyclopiazonic acid, another SERCA inhibitor. Disruption of rafts by removing cholesterol cause proteins involved in this machinery to redistribute and change agonist-induced calcium signaling. Cholesterol depletion from raft lead to increase in time to peak of calcium levels in agonist-evoked calcium signals in all instances, as seen by live imaging. This study emphasizes the necessity of a sub-population of proteins to cluster in specialized lipid domains. The requirement for such an organization at the raft-like microdomains may have implications on intercellular communication in the retina. Such concerted interaction at the rafts can regulate calcium dynamics and could add another layer of complexity to calcium signaling in cells.

  14. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    PubMed Central

    Schaal, Courtney; Padmanabhan, Jaya; Chellappan, Srikumar

    2015-01-01

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer. PMID:26264026

  15. Shuffling the cards in signal transduction: Calcium, arachidonic acid and mechanosensitivity

    PubMed Central

    Munaron, Luca

    2011-01-01

    Cell signaling is a very complex network of biochemical reactions triggered by a huge number of stimuli coming from the external medium. The function of any single signaling component depends not only on its own structure but also on its connections with other biomolecules. During prokaryotic-eukaryotic transition, the rearrangement of cell organization in terms of diffusional compartmentalization exerts a deep change in cell signaling functional potentiality. In this review I briefly introduce an intriguing ancient relationship between pathways involved in cell responses to chemical agonists (growth factors, nutrients, hormones) as well as to mechanical forces (stretch, osmotic changes). Some biomolecules (ion channels and enzymes) act as “hubs”, thanks to their ability to be directly or indirectly chemically/mechanically co-regulated. In particular calcium signaling machinery and arachidonic acid metabolism are very ancient networks, already present before eukaryotic appearance. A number of molecular “hubs”, including phospholipase A2 and some calcium channels, appear tightly interconnected in a cross regulation leading to the cellular response to chemical and mechanical stimulations. PMID:21537474

  16. Approaches and tools for modeling signaling pathways and calcium dynamics in neurons

    PubMed Central

    Blackwell, KT

    2013-01-01

    Signaling pathways are cascades of intracellular biochemical reactions that are activated by transmembrane receptors, and ultimately lead to transcription in the nucleus. In neurons, both calcium permeable synaptic and ionic channels as well as G protein coupled receptors initiate activation of signaling pathway molecules that interact with electrical activity at multiple spatial and time scales. At small temporal and spatial scales, calcium modifies the properties of ionic channels, whereas at larger temporal and spatial scales, various kinases and phosphatases modify the properties of ionic channels, producing phenomena such as synaptic plasticity and homeostatic plasticity. The elongated structure of neuronal dendrites and the organization of multi-protein complexes by anchoring proteins implies that the spatial dimension must be explicit. Therefore, modeling signaling pathways in neurons utilizes algorithms for both diffusion and reactions. The small size of spines coupled with small concentrations of some molecules implies that some reactions occur stochastically. The need for stochastic simulation of many reaction and diffusion events coupled with the multiple temporal and spatial scales makes modeling of signaling pathways a difficult problem. Several different software programs have achieved different aspects of these capabilities. This review explains some of the mathematical formulas used for modeling reactions and diffusion. In addition, it briefly presents the simulators used for modeling reaction-diffusion systems in neurons, together with scientific problems addressed. PMID:23743449

  17. Cadmium Induces Apoptosis in Freshwater Crab Sinopotamon henanense through Activating Calcium Signal Transduction Pathway

    PubMed Central

    Wang, Jinxiang; Zhang, Pingping; Liu, Na; Wang, Qian; Luo, Jixian; Wang, Lan

    2015-01-01

    Calcium ion (Ca2+) is one of the key intracellular signals, which is implicated in the regulation of cell functions such as impregnation, cell proliferation, differentiation and death. Cadmium (Cd) is a toxic environmental pollutant that can disturb cell functions and even lead to cell death. Recently, we have found that Cd induced apoptosis in gill cells of the freshwater crab Sinopotamon henanense via caspase activation. In the present study, we further investigated the role of calcium signaling in the Cd-induced apoptosis in the animals. Our data showed that Cd triggered gill cell apoptosis which is evidenced by apoptotic DNA fragmentation, activations of caspases-3, -8 and -9 and the presence of apoptotic morphological features. Moreover, Cd elevated the intracellular concentration of Ca2+, the protein concentration of calmodulin (CaM) and the activity of Ca2+-ATPase in the gill cells of the crabs. Pretreatment of the animals with ethylene glycol-bis-(b-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA), Ca2+ chelator, inhibited Cd-induced activation of caspases-3, -8 and -9 as well as blocked the Cd-triggered apoptotic DNA fragmentation. The apoptotic morphological features were no longer observed in gill cells pretreated with the Ca2+ signaling inhibitors before Cd treatment. Our results indicate that Cd evokes gill cell apoptosis through activating Ca2+-CaM signaling transduction pathway. PMID:26714174

  18. Identification of a Calcium Signalling Pathway of S-[6]-Gingerol in HuH-7 Cells

    PubMed Central

    McGrath, Kristine C. Y.; Tran, Van H.; Li, Yi-Ming; Duke, Colin C.; Heather, Alison K.; Roufogalis, Basil D.

    2013-01-01

    Calcium signals in hepatocytes control cell growth, proliferation, and death. Members of the transient receptor potential (TRP) cation channel superfamily are candidate calcium influx channels. NFκB activation strictly depends on calcium influx and often induces antiapoptotic genes favouring cell survival. Previously, we reported that S-[6]-gingerol is an efficacious agonist of the transient receptor potential cation channel subfamily V member 1 (TRPV1) in neurones. In this study, we tested the effect of S-[6]-gingerol on HuH-7 cells using the Fluo-4 calcium assay, RT-qPCR, transient cell transfection, and luciferase measurements. We found that S-[6]-gingerol induced a transient rise in [Ca2+]i in HuH-7 cells. The increase in [Ca2+]i induced by S-[6]-gingerol was abolished by preincubation with EGTA and was also inhibited by the TRPV1 channel antagonist capsazepine. Expression of TRPV1 in HuH-7 cells was confirmed by mRNA analysis as well as a test for increase of [Ca2+]i by TRPV1 agonist capsaicin and its inhibition by capsazepine. We found that S-[6]-gingerol induced rapid NFκB activation through TRPV1 in HuH-7 cells. Furthermore, S-[6]-gingerol-induced NFκB activation was dependent on the calcium gradient and TRPV1. The rapid NFκB activation by S-[6]-gingerol was associated with an increase in mRNA levels of NFκB-target genes: cIAP-2, XIAP, and Bcl-2 that encode antiapoptotic proteins. PMID:23956783

  19. Signal processing by T-type calcium channel interactions in the cerebellum.

    PubMed

    Engbers, Jordan D T; Anderson, Dustin; Zamponi, Gerald W; Turner, Ray W

    2013-11-27

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (I T) and hyperpolarization-activated cation current (I H) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with I T generating a rebound burst and I H controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing I H to increase the efficacy of I T and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  20. Signal processing by T-type calcium channel interactions in the cerebellum

    PubMed Central

    Engbers, Jordan D. T.; Anderson, Dustin; Zamponi, Gerald W.; Turner, Ray W.

    2013-01-01

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT) and hyperpolarization-activated cation current (IH) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  1. Calcium supplementation during sepsis exacerbates organ failure and mortality via calcium/calmodulin-dependent protein kinase kinase (CaMKK) signaling

    PubMed Central

    Collage, Richard D.; Howell, Gina M.; Zhang, Xianghong; Stripay, Jennifer L.; Lee, Janet S.; Angus, Derek C.; Rosengart, Matthew R.

    2013-01-01

    . This altered calcium signaling, transduced by the CaMKK cascade, mediates heightened inflammation and vascular leak that culminates in elevated organ dysfunction and mortality. In the clinical management of septic patients calcium supplementation provides no benefit and may impose harm. PMID:23887235

  2. Early pre- and postsynaptic calcium signaling abnormalities mask underlying synaptic depression in presymptomatic Alzheimer’s disease mice

    PubMed Central

    Chakroborty, Shreaya; Kim, Joyce; Schneider, Corinne; Jacobson, Christopher; Molgó, Jordi; Stutzmann, Grace E.

    2012-01-01

    Alzheimer’s disease (AD)-linked presenilin mutations result in pronounced endoplasmic reticulum (ER) calcium disruptions that occur prior to detectable histopathology and cognitive deficits. More subtly, these early AD-linked calcium alterations also reset neurophysiological homeostasis, such that calcium-dependent pre- and postsynaptic signaling appear functionally normal yet are actually operating under aberrant calcium signaling systems. In these 3xTg-AD mouse brains, upregulated RyR activity is associated with a shift towards synaptic depression, likely through a reduction in presynaptic vesicle stores and increased postsynaptic outward currents through SK2 channels. The deviant RyR-calcium involvement in the 3xTg-AD mice also compensates for an intrinsic predisposition for hippocampal LTD and reduced LTP. In this study we detail the impact of disrupted ryanodine receptor (RyR)-mediated calcium stores on synaptic transmission properties, long term depression (LTD) and calcium-activated membrane channels of hippocampal CA1 pyramidal neurons in presymptomatic 3xTg-AD mice. Using electrophysiological recordings in young 3xTg-AD and NonTg hippocampal slices, we show that increased RyR-evoked calcium release in 3xTg-AD mice ‘normalizes’ an altered synaptic transmission system operating under a shifted homeostatic state that is not present in NonTg mice. In the process, we uncover compensatory signaling mechanisms recruited early in the disease process which counterbalance the disrupted RyR-calcium dynamics, namely increases in presynaptic spontaneous vesicle release, altered probability of vesicle release, and upregulated postsynaptic SK channel activity. As AD is increasingly recognized as a ‘synaptic disease’, calcium-mediated signaling alterations may serve as a proximal trigger for the synaptic degradation driving the cognitive loss in AD. PMID:22699914

  3. Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour.

    PubMed

    Vogel, David; Nicolis, Stamatios C; Perez-Escudero, Alfonso; Nanjundiah, Vidyanand; Sumpter, David J T; Dussutour, Audrey

    2015-11-22

    Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: 'slow-regular-social', 'fast-regular-social' and 'fast-irregular-asocial'. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms. PMID:26609088

  4. Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour.

    PubMed

    Vogel, David; Nicolis, Stamatios C; Perez-Escudero, Alfonso; Nanjundiah, Vidyanand; Sumpter, David J T; Dussutour, Audrey

    2015-11-22

    Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: 'slow-regular-social', 'fast-regular-social' and 'fast-irregular-asocial'. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms.

  5. Molecular and functional profiling of histamine receptor-mediated calcium ion signals in different cell lines.

    PubMed

    Meisenberg, Annika; Kaschuba, Dagmar; Balfanz, Sabine; Jordan, Nadine; Baumann, Arnd

    2015-10-01

    Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses.

  6. Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization.

    PubMed

    Edel, Kai H; Kudla, Jörg

    2015-03-01

    Calcium serves as a versatile messenger in adaptation reactions and developmental processes in plants and animals. Eukaryotic cells generate cytosolic Ca(2+) signals via Ca(2+) conducting channels. Ca(2+) signals are represented in form of stimulus-specific spatially and temporally defined Ca(2+) signatures. These Ca(2+) signatures are detected, decoded and transmitted to downstream responses by an elaborate toolkit of Ca(2+) binding proteins that function as Ca(2+) sensors. In this article, we examine the distribution and evolution of Ca(2+)-conducting channels and Ca(2+) decoding proteins in the plant lineage. To this end, we have in addition to previously studied genomes of plant species, identified and analyzed the Ca(2+)-signaling components from species that hold key evolutionary positions like the filamentous terrestrial algae Klebsormidium flaccidum and Amborella trichopoda, the single living representative of the sister lineage to all other extant flowering plants. Plants and animals exhibit substantial differences in their complements of Ca(2+) channels and Ca(2+) binding proteins. Within the plant lineage, remarkable differences in the evolution of complexity between different families of Ca(2+) signaling proteins are observable. Using the CBL/CIPK Ca(2+) sensor/kinase signaling network as model, we attempt to link evolutionary tendencies to functional predictions. Our analyses, for example, suggest Ca(2+) dependent regulation of Na(+) homeostasis as an evolutionary most ancient function of this signaling network. Overall, gene families of Ca(2+) signaling proteins have significantly increased in their size during plant evolution reaching an extraordinary complexity in angiosperms.

  7. Components of the Calcium-Calcineurin Signaling Pathway in Fungal Cells and Their Potential as Antifungal Targets

    PubMed Central

    Liu, Shuyuan; Hou, Yinglong; Liu, Weiguo; Lu, Chunyan; Wang, Weixin

    2015-01-01

    In recent years, the emergence of fungal resistance has become frequent, partly due to the widespread clinical use of fluconazole, which is minimally toxic and effective in the prevention and treatment of Candida albicans infections. The limited selection of antifungal drugs for clinical fungal infection therapy has prompted us to search for new antifungal drug targets. Calcium, which acts as the second messenger in both mammals and fungi, plays a direct role in controlling the expression patterns of its signaling systems and has important roles in cell survival. In addition, calcium and some of the components, mainly calcineurin, in the fungal calcium signaling pathway mediate fungal resistance to antifungal drugs. Therefore, an overview of the components of the fungal calcium-calcineurin signaling network and their potential roles as antifungal targets is urgently needed. The calcium-calcineurin signaling pathway consists of various channels, transporters, pumps, and other proteins or enzymes. Many transcriptional profiles have indicated that mutant strains that lack some of these components are sensitized to fluconazole or other antifungal drugs. In addition, many researchers have identified efficient compounds that exhibit antifungal activity by themselves or in combination with antifungal drugs by targeting some of the components in the fungal calcium-calcineurin signaling pathway. This targeting disrupts Ca2+ homeostasis, which suggests that this pathway contains potential targets for the development of new antifungal drugs. PMID:25636321

  8. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.

    PubMed

    Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong

    2015-03-01

    Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway.

  9. Tonic BCR signaling represses receptor editing via Raf- and calcium-dependent signaling pathways.

    PubMed

    Ramsey, Laura B; Vegoe, Amanda L; Miller, Andrew T; Cooke, Michael P; Farrar, Michael A

    2011-03-30

    Light chain receptor editing is an important mechanism that prevents B cell self-reactivity. We have previously shown that tonic signaling through the BCR represses RAG expression at the immature B cell stage, and that initiation of light chain rearrangements occurs in the absence of these tonic signals in an in vitro model of B cell development. To further test our hypothesis we studied the effect of itpkb deficiency (itpkb(-/-) mice) or Raf hyper-activation (Raf-CAAX transgenic mice), two mutations that enhance BCR signaling, on receptor editing in an in vivo model. This model relies on transferring bone marrow from wild-type or mutant mice into mice expressing an anti-kappa light chain transgene. The anti-kappa transgene induces receptor editing of all kappa light chain expressing B cells, leading to a high frequency of lambda light chain expressing B cells. Anti-κ transgenic recipients of bone marrow from itpkb(-/-) or Raf-CAAX mice showed lower levels of editing to λ light chain than did non-transgenic control recipients. These results provide evidence in an in vivo model that enhanced BCR signaling at the immature B cell stage of development suppresses light chain receptor editing.

  10. Modelling intracellular competition for calcium: kinetic and thermodynamic control of different molecular modes of signal decoding

    PubMed Central

    Antunes, Gabriela; Roque, Antonio C.; Simoes de Souza, Fabio M.

    2016-01-01

    Frequently, a common chemical entity triggers opposite cellular processes, which implies that the components of signalling networks must detect signals not only through their chemical natures, but also through their dynamic properties. To gain insights on the mechanisms of discrimination of the dynamic properties of cellular signals, we developed a computational stochastic model and investigated how three calcium ion (Ca2+)-dependent enzymes (adenylyl cyclase (AC), phosphodiesterase 1 (PDE1), and calcineurin (CaN)) differentially detect Ca2+ transients in a hippocampal dendritic spine. The balance among AC, PDE1 and CaN might determine the occurrence of opposite Ca2+-induced forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD). CaN is essential for LTD. AC and PDE1 regulate, indirectly, protein kinase A, which counteracts CaN during LTP. Stimulations of AC, PDE1 and CaN with artificial and physiological Ca2+ signals demonstrated that AC and CaN have Ca2+ requirements modulated dynamically by different properties of the signals used to stimulate them, because their interactions with Ca2+ often occur under kinetic control. Contrarily, PDE1 responds to the immediate amplitude of different Ca2+ transients and usually with the same Ca2+ requirements observed under steady state. Therefore, AC, PDE1 and CaN decode different dynamic properties of Ca2+ signals. PMID:27033299

  11. Regulation of Angiogenic Functions by Angiopoietins through Calcium-Dependent Signaling Pathways

    PubMed Central

    Pafumi, Irene; Favia, Annarita; Gambara, Guido; Papacci, Francesca; Ziparo, Elio; Palombi, Fioretta; Filippini, Antonio

    2015-01-01

    Angiopoietins are vascular factors essential for blood vessel assembly and correct organization and maturation. This study describes a novel calcium-dependent machinery activated through Angiopoietin-1/2-Tie receptor system in HUVECs monolayer. Both cytokines were found to elicit intracellular calcium mobilization. Targeting intracellular Ca2+ signaling, antagonizing IP3 with 2-APB or cADPR with 8Br-cADPR, was found to modulate in vitro angiogenic responses to Angiopoietins in a specific way. 2-APB and 8Br-cADPR impaired the phosphorylation of AKT and FAK induced by Ang-1 and Ang-2. On the other hand, phosphorylation of ERK1/2 and p38, as well as cell proliferation, was not affected by either inhibitor. The ability of ECs to migrate following Angs stimulation, evaluated by “scratch assay,” was reduced by either 2-APB or 8Br-cADPR following Ang-2 stimulation and only slightly affected by 2-APB in cells stimulated with Ang-1. These results identify a novel calcium-dependent machinery involved in the complex interplay regulating angiogenic processes showing that IP3- and cADPR-induced Ca2+ release specifically regulates distinct Angs-mediated angiogenic steps. PMID:26146638

  12. Intracellular calcium signals display an avalanche-like behavior over multiple lengthscales

    PubMed Central

    Lopez, Lucía; Piegari, Estefanía; Sigaut, Lorena; Ponce Dawson, Silvina

    2012-01-01

    Many natural phenomena display “self-organized criticality” (SOC), (Bak et al., 1987). This refers to spatially extended systems for which patterns of activity characterized by different lengthscales can occur with a probability density that follows a power law with pattern size. Differently from power laws at phase transitions, systems displaying SOC do not need the tuning of an external parameter. Here we analyze intracellular calcium (Ca2+) signals, a key component of the signaling toolkit of almost any cell type. Ca2+ signals can either be spatially restricted (local) or propagate throughout the cell (global). Different models have suggested that the transition from local to global signals is similar to that of directed percolation. Directed percolation has been associated, in turn, to the appearance of SOC. In this paper we discuss these issues within the framework of simple models of Ca2+ signal propagation. We also analyze the size distribution of local signals (“puffs”) observed in immature Xenopus Laevis oocytes. The puff amplitude distribution obtained from observed local signals is not Gaussian with a noticeable fraction of large size events. The experimental distribution of puff areas in the spatio-temporal record of the image has a long tail that is approximately log-normal. The distribution can also be fitted with a power law relationship albeit with a smaller goodness of fit. The power law behavior is encountered within a simple model that includes some coupling among individual signals for a wide range of parameter values. An analysis of the model shows that a global elevation of the Ca2+ concentration plays a major role in determining whether the puff size distribution is long-tailed or not. This suggests that Ca2+-clearing from the cytosol is key to determine whether IP3-mediated Ca2+ signals can display a SOC-like behavior or not. PMID:22969730

  13. Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling

    PubMed Central

    Missiroli, Sonia; Poletti, Federica; Ramirez, Fabian Galindo; Morciano, Giampaolo; Morganti, Claudia; Pandolfi, Pier Paolo; Mammano, Fabio; Pinton, Paolo

    2015-01-01

    One challenge in biology is signal transduction monitoring in a physiological context. Intravital imaging techniques are revolutionizing our understanding of tumor and host cell behaviors in the tumor environment. However, these deep tissue imaging techniques have not yet been adopted to investigate the second messenger calcium (Ca2+). In the present study, we established conditions that allow the in vivo detection of Ca2+ signaling in three-dimensional tumor masses in mouse models. By combining intravital imaging and a skinfold chamber technique, we determined the ability of photodynamic cancer therapy to induce an increase in intracellular Ca2+ concentrations and, consequently, an increase in cell death in a p53-dependent pathway. PMID:25544762

  14. Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling.

    PubMed

    Giorgi, Carlotta; Bonora, Massimo; Missiroli, Sonia; Poletti, Federica; Ramirez, Fabian Galindo; Morciano, Giampaolo; Morganti, Claudia; Pandolfi, Pier Paolo; Mammano, Fabio; Pinton, Paolo

    2015-01-30

    One challenge in biology is signal transduction monitoring in a physiological context. Intravital imaging techniques are revolutionizing our understanding of tumor and host cell behaviors in the tumor environment. However, these deep tissue imaging techniques have not yet been adopted to investigate the second messenger calcium (Ca²⁺). In the present study, we established conditions that allow the in vivo detection of Ca²⁺ signaling in three-dimensional tumor masses in mouse models. By combining intravital imaging and a skinfold chamber technique, we determined the ability of photodynamic cancer therapy to induce an increase in intracellular Ca²⁺ concentrations and, consequently, an increase in cell death in a p53-dependent pathway.

  15. Extracellular matrix stiffness modulates VEGF calcium signaling in endothelial cells: individual cell and population analysis.

    PubMed

    Derricks, Kelsey E; Trinkaus-Randall, Vickery; Nugent, Matthew A

    2015-09-01

    Vascular disease and its associated complications are the number one cause of death in the Western world. Both extracellular matrix stiffening and dysfunctional endothelial cells contribute to vascular disease. We examined endothelial cell calcium signaling in response to VEGF as a function of extracellular matrix stiffness. We developed a new analytical tool to analyze both population based and individual cell responses. Endothelial cells on soft substrates, 4 kPa, were the most responsive to VEGF, whereas cells on the 125 kPa substrates exhibited an attenuated response. Magnitude of activation, not the quantity of cells responding or the number of local maximums each cell experienced distinguished the responses. Individual cell analysis, across all treatments, identified two unique cell clusters. One cluster, containing most of the cells, exhibited minimal or slow calcium release. The remaining cell cluster had a rapid, high magnitude VEGF activation that ultimately defined the population based average calcium response. Interestingly, at low doses of VEGF, the high responding cell cluster contained smaller cells on average, suggesting that cell shape and size may be indicative of VEGF-sensitive endothelial cells. This study provides a new analytical tool to quantitatively analyze individual cell signaling response kinetics, that we have used to help uncover outcomes that are hidden within the average. The ability to selectively identify highly VEGF responsive cells within a population may lead to a better understanding of the specific phenotypic characteristics that define cell responsiveness, which could provide new insight for the development of targeted anti- and pro-angiogenic therapies.

  16. Extracellular Matrix Stiffness Modulates VEGF Calcium Signaling in Endothelial Cells: Individual Cell and Population Analysis

    PubMed Central

    Derricks, Kelsey E.; Trinkaus-Randall, Vickery; Nugent, Matthew A.

    2015-01-01

    Vascular disease and its associated complications are the number one cause of death in the Western world. Both extracellular matrix stiffening and dysfunctional endothelial cells contribute to vascular disease. We examined endothelial cell calcium signaling in response to VEGF as a function of extracellular matrix stiffness. We developed a new analytical tool to analyze both population based and individual cell responses. Endothelial cells on soft substrates, 4 kPa, were the most responsive to VEGF, whereas cells on the 125 kPa substrates exhibited an attenuated response. Magnitude of activation, not the quantity of cells responding or the number of local maximums each cell experienced distinguished the responses. Individual cell analysis, across all treatments, identified two unique cell clusters. One cluster, containing most of the cells, exhibited minimal or slow calcium release. The remaining cell cluster had a rapid, high magnitude VEGF activation that ultimately defined the population based average calcium response. Interestingly, at low doses of VEGF, the high responding cell cluster contained smaller cells on average, suggesting that cell shape and size may be indicative of VEGF-sensitive endothelial cells. This study provides a new analytical tool to quantitatively analyze individual cell signaling response kinetics, that we have used to help uncover outcomes that are hidden within the average. The ability to selectively identify highly VEGF responsive cells within a population may lead to a better understanding of the specific phenotypic characteristics that define cell responsiveness, which could provide new insight for the development of targeted anti- and pro-angiogenic therapies. PMID:26183123

  17. Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium

    PubMed Central

    Niu, Lijuan; Liao, Weibiao

    2016-01-01

    Hydrogen peroxide (H2O2), as a reactive oxygen species, is widely generated in many biological systems. It has been considered as an important signaling molecule that mediates various physiological and biochemical processes in plants. Normal metabolism in plant cells results in H2O2 generation, from a variety of sources. Also, it is now clear that nitric oxide (NO) and calcium (Ca2+) function as signaling molecules in plants. Both H2O2 and NO are involved in plant development and abiotic responses. A wide range of evidences suggest that NO could be generated under similar stress conditions and with similar kinetics as H2O2. The interplay between H2O2 and NO has important functional implications to modulate transduction processes in plants. Moreover, close interaction also exists between H2O2 and Ca2+ in response to development and abiotic stresses in plants. Cellular responses to H2O2 and Ca2+ signaling systems are complex. There is quite a bit of interaction between H2O2 and Ca2+ signaling in responses to several stimuli. This review aims to introduce these evidences in our understanding of the crosstalk among H2O2, NO, and Ca2+ signaling which regulates plant growth and development, and other cellular and physiological responses to abiotic stresses. PMID:26973673

  18. Graded boosting of synaptic signals by low-threshold voltage-activated calcium conductance

    PubMed Central

    Carbó Tano, Martín; Vilarchao, María Eugenia

    2015-01-01

    Low-threshold voltage-activated calcium conductances (LT-VACCs) play a substantial role in shaping the electrophysiological attributes of neurites. We have investigated how these conductances affect synaptic integration in a premotor nonspiking (NS) neuron of the leech nervous system. These cells exhibit an extensive neuritic tree, do not fire Na+-dependent spikes, but express an LT-VACC that was sensitive to 250 μM Ni2+ and 100 μM NNC 55-0396 (NNC). NS neurons responded to excitation of mechanosensory pressure neurons with depolarizing responses for which amplitude was a linear function of the presynaptic firing frequency. NNC decreased these synaptic responses and abolished the concomitant widespread Ca2+ signals. Coherent with the interpretation that the LT-VACC amplified signals at the postsynaptic level, this conductance also amplified the responses of NS neurons to direct injection of sinusoidal current. Synaptic amplification thus is achieved via a positive feedback in which depolarizing signals activate an LT-VACC that, in turn, boosts these signals. The wide distribution of LT-VACC could support the active propagation of depolarizing signals, turning the complex NS neuritic tree into a relatively compact electrical compartment. PMID:25972583

  19. Chronic exposure to paclitaxel diminishes phosphoinositide signaling by calpain-mediated neuronal calcium sensor-1 degradation.

    PubMed

    Boehmerle, Wolfgang; Zhang, Kun; Sivula, Michael; Heidrich, Felix M; Lee, Yashang; Jordt, Sven-Eric; Ehrlich, Barbara E

    2007-06-26

    Paclitaxel (Taxol) is a well established chemotherapeutic agent for the treatment of solid tumors, but it is limited in its usefulness by the frequent induction of peripheral neuropathy. We found that prolonged exposure of a neuroblastoma cell line and primary rat dorsal root ganglia with therapeutic concentrations of Taxol leads to a reduction in inositol trisphosphate (InsP(3))-mediated Ca(2+) signaling. We also observed a Taxol-specific reduction in neuronal calcium sensor 1 (NCS-1) protein levels, a known modulator of InsP(3) receptor (InsP(3)R) activity. This reduction was also found in peripheral neuronal tissue from Taxol treated animals. We further observed that short hairpin RNA-mediated NCS-1 knockdown had a similar effect on phosphoinositide-mediated Ca(2+) signaling. When NCS-1 protein levels recovered, so did InsP(3)-mediated Ca(2+) signaling. Inhibition of the Ca(2+)-activated protease mu-calpain prevented alterations in phosphoinositide-mediated Ca(2+) signaling and NCS-1 protein levels. We also found that NCS-1 is readily degraded by mu-calpain in vitro and that mu-calpain activity is increased in Taxol but not vehicle-treated cells. From these results, we conclude that prolonged exposure to Taxol activates mu-calpain, which leads to the degradation of NCS-1, which, in turn, attenuates InsP(3)mediated Ca(2+) signaling. These findings provide a previously undescribed approach to understanding and treating Taxol-induced peripheral neuropathy. PMID:17581879

  20. The mutant Moonwalker TRPC3 channel links calcium signaling to lipid metabolism in the developing cerebellum.

    PubMed

    Dulneva, Anna; Lee, Sheena; Oliver, Peter L; Di Gleria, Katalin; Kessler, Benedikt M; Davies, Kay E; Becker, Esther B E

    2015-07-15

    The Moonwalker (Mwk) mouse is a model of dominantly inherited cerebellar ataxia caused by a gain-of-function mutation in the transient receptor potential (TRP) channel TRPC3. Here, we report impairments in dendritic growth and synapse formation early on during Purkinje cell development in the Mwk cerebellum that are accompanied by alterations in calcium signaling. To elucidate the molecular effector pathways that regulate Purkinje cell dendritic arborization downstream of mutant TRPC3, we employed transcriptomic analysis of developing Purkinje cells isolated by laser-capture microdissection. We identified significant gene and protein expression changes in molecules involved in lipid metabolism. Consistently, lipid homeostasis in the Mwk cerebellum was found to be disturbed, and treatment of organotypic cerebellar slices with ceramide significantly improved dendritic outgrowth of Mwk Purkinje cells. These findings provide the first mechanistic insights into the TRPC3-dependent mechanisms, by which activated calcium signaling is coupled to lipid metabolism and the regulation of Purkinje cell development in the Mwk cerebellum.

  1. Calcium-dependent regulation of tumour necrosis factor-alpha receptor signalling by copine.

    PubMed Central

    Tomsig, Jose Luis; Sohma, Hitoshi; Creutz, Carl E

    2004-01-01

    The role of copines in regulating signalling from the TNF-alpha (tumour necrosis factor-alpha) receptor was probed by the expression of a copine dominant-negative construct in HEK293 (human embryonic kidney 293) cells. The construct was found to reduce activation of the transcription factor NF-kappaB (nuclear factor-kappaB) by TNF-alpha. The introduction of calcium into HEK293 cells either through the activation of muscarinic cholinergic receptors or through the application of the ionophore A23187 was found to enhance TNF-alpha-dependent activation of NF-kappaB. This effect of calcium was completely blocked by the copine dominant-negative construct. TNF-alpha was found to greatly enhance the expression of endogenous copine I, and the responsiveness of the TNF-alpha signalling pathway to muscarinic stimulation increased in parallel with the increased copine I expression. The copine dominant-negative construct also inhibited the TNF-alpha-dependent degradation of IkappaB, a regulator of NF-kappaB. All of the effects of the dominant-negative construct could be reversed by overexpression of full-length copine I, suggesting that the construct acts specifically through competitive inhibition of copine. One of the identified targets of copine I is the NEDD8-conjugating enzyme UBC12 (ubiquitin C12), that promotes the degradation of IkappaB through the ubiquitin ligase enzyme complex SCF(betaTrCP). Therefore the copine dominant-negative construct might inhibit TNF-alpha signalling by dysregulation or mislocalization of UBC12. Based on these results, a hypothesis is presented for possible roles of copines in regulating other signalling pathways in animals, plants and protozoa. PMID:14674885

  2. Basic Calcium Phosphate Crystals Activate c-fos Expression Through a Ras/ERK Dependent Signaling Mechanism

    PubMed Central

    Major, Michael L.; Cheung, Herman S.; Misra, Ravi P.

    2007-01-01

    Diseases caused by calcium pyrophosphate dihydrate (CPPD) and basic calcium phosphate (BCP) crystals occur frequently in osteoarthritic joints. Both crystals induce mitogenesis, metalloproteinase synthesis and secretion by fibroblasts and chondrocytes, promoting degradation of articular tissue. We investigated the mechanism by which BCP activates the c-fos proto-oncogene, which has been shown to activate various matrix metalloproteinases (MMPs). We demonstrate that BCP crystals induce c-fos expression primarily through a Ras/ERK dependent signaling mechanism targeting two highly conserved regulatory binding sites, the serum response element (SRE) and the cAMP response element (CRE). These results establish a calcium crystal induced, calcium/Calmodulin independent, signaling pathway in which BCP crystals activate Ras/MAPK, which can directly target an SRF-containing transcription factor complex, to induce fibroblasts to secrete metalloproteinases. PMID:17307136

  3. The Impact of Vitamin D3 Supplementation on Mechanisms of Cell Calcium Signaling in Chronic Kidney Disease.

    PubMed

    Lajdova, Ingrid; Spustova, Viera; Oksa, Adrian; Kaderjakova, Zuzana; Chorvat, Dusan; Morvova, Marcela; Sikurova, Libusa; Marcek Chorvatova, Alzbeta

    2015-01-01

    Intracellular calcium concentration in peripheral blood mononuclear cells (PBMCs) of patients with chronic kidney disease (CKD) is significantly increased, and the regulatory mechanisms maintaining cellular calcium homeostasis are impaired. The purpose of this study was to examine the effect of vitamin D3 on predominant regulatory mechanisms of cell calcium homeostasis. The study involved 16 CKD stages 2-3 patients with vitamin D deficiency treated with cholecalciferol 7000-14000 IU/week for 6 months. The regulatory mechanisms of calcium signaling were studied in PBMCs and red blood cells. After vitamin D3 supplementation, serum concentration of 25(OH)D3 increased (P < 0.001) and [Ca(2+)]i decreased (P < 0.001). The differences in [Ca(2+)]i were inversely related to differences in 25(OH)D3 concentration (P < 0.01). Vitamin D3 supplementation decreased the calcium entry through calcium release activated calcium (CRAC) channels and purinergic P2X7 channels. The function of P2X7 receptors was changed in comparison with their baseline status, and the expression of these receptors was reduced. There was no effect of vitamin D3 on P2X7 pores and activity of plasma membrane Ca(2+)-ATPases. Vitamin D3 supplementation had a beneficial effect on [Ca(2+)]i decreasing calcium entry via CRAC and P2X7 channels and reducing P2X7 receptors expression.

  4. Osteoprotegerin induces podosome disassembly in osteoclasts through calcium, ERK, and p38 MAPK signaling pathways.

    PubMed

    Zhao, Hongyan; Liu, Xuezhong; Zou, Hui; Dai, Nannan; Yao, Lulian; Gao, Qian; Liu, Wei; Gu, Jianhong; Yuan, Yan; Bian, Jianchun; Liu, Zongping

    2015-02-01

    Osteoclasts are critical for bone resorption and use podosomes to attach to bone matrix. Osteoprotegerin (OPG) is a negative regulator of osteoclast function that can affect the formation and function of podosomes. However, the signaling pathways that link OPG to podosome function have not been well characterized. Therefore, this study examined the roles of intracellular calcium and MAPKs in OPG-induced podosome disassembly in osteoclasts. We assessed the effects of the intracellular calcium chelator Bapta-AM, ERK inhibitor U0126, and p38 inhibitor SB202190 on OPG-treated osteoclast differentiation, adhesion structures, intracellular free Ca(2+) concentration and the phosphorylation state of podosome associated proteins (Pyk2 and Src). Mouse monocytic RAW 264.7 cells were differentiated to osteoclasts using RANKL (30ng/mL) and M-CSF (25ng/mL). The cells were pretreated with Bapta-AM (5μM), U0126 (5μM), or SB202190 (10μM) for 30min, followed by 40ng/mL OPG for 3h. Osteoclastogenesis, adhesion structure, viability and morphology, intracellular free Ca(2+) concentration and the phosphorylation state of Pyk2 and Src were measured by TRAP staining, scanning electron microscopy, real-time cell analyzer, flow cytometry and western blotting, respectively. OPG significantly inhibited osteoclastogenesis, the formation of adhesion structures, and reduced the amount of phosphorylated Pyk2 and Src-pY527, but increased phosphorylation of Src-pY416. Bapta-AM, U0126, and SB202190 partially restored osteoclast differentiation and adhesion structures. Both Bapta-AM and U0126, but not SB202190, restored the levels of intracellular free Ca(2+) concentration, phosphorylated Pyk2 and Src-pY527. All three inhibitors blocked OPG-induced phosphorylation at Src-pY416. These results suggest OPG disrupts the attachment structures of osteoclasts and activates Src as an adaptor protein that competes for the reduced amount of phosphorylated Pyk2 through calcium- and ERK-dependent signaling

  5. Calcium signaling of pancreatic acinar cells in the pathogenesis of pancreatitis.

    PubMed

    Li, Jun; Zhou, Rui; Zhang, Jian; Li, Zong-Fang

    2014-11-21

    Pancreatitis is an increasingly common and sometimes severe disease that lacks a specific therapy. The pathogenesis of pancreatitis is still not well understood. Calcium (Ca(2+)) is a versatile carrier of signals regulating many aspects of cellular activity and plays a central role in controlling digestive enzyme secretion in pancreatic acinar cells. Ca(2+) overload is a key early event and is crucial in the pathogenesis of many diseases. In pancreatic acinar cells, pathological Ca(2+) signaling (stimulated by bile, alcohol metabolites and other causes) is a key contributor to the initiation of cell injury due to prolonged and global Ca(2+) elevation that results in trypsin activation, vacuolization and necrosis, all of which are crucial in the development of pancreatitis. Increased release of Ca(2+) from stores in the intracellular endoplasmic reticulum and/or increased Ca(2+) entry through the plasma membrane are causes of such cell damage. Failed mitochondrial adenosine triphosphate (ATP) production reduces re-uptake and extrusion of Ca(2+) by the sarco/endoplasmic reticulum Ca(2+)-activated ATPase and plasma membrane Ca(2+)-ATPase pumps, which contribute to Ca(2+) overload. Current findings have provided further insight into the roles and mechanisms of abnormal pancreatic acinar Ca(2+) signals in pancreatitis. The lack of available specific treatments is therefore an objective of ongoing research. Research is currently underway to establish the mechanisms and interactions of Ca(2+) signals in the pathogenesis of pancreatitis.

  6. Engendering biased signalling from the calcium-sensing receptor for the pharmacotherapy of diverse disorders

    PubMed Central

    Leach, K; Sexton, P M; Christopoulos, A; Conigrave, A D

    2014-01-01

    The human calcium-sensing receptor (CaSR) is widely expressed in the body, where its activity is regulated by multiple orthosteric and endogenous allosteric ligands. Each ligand stabilizes a unique subset of conformational states, which enables the CaSR to couple to distinct intracellular signalling pathways depending on the extracellular milieu in which it is bathed. Differential signalling arising from distinct receptor conformations favoured by each ligand is referred to as biased signalling. The outcome of CaSR activation also depends on the cell type in which it is expressed. Thus, the same ligand may activate diverse pathways in distinct cell types. Given that the CaSR is implicated in numerous physiological and pathophysiological processes, it is an ideal target for biased ligands that could be rationally designed to selectively regulate desired signalling pathways in preferred cell types. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:24111791

  7. Prolonged Oxaliplatin Exposure Alters Intracellular Calcium Signaling: A New Mechanism To Explain Oxaliplatin-Associated Peripheral Neuropathy

    PubMed Central

    Schulze, Christin; McGowan, Margit; Jordt, Sven; Ehrlich, Barbara E

    2012-01-01

    Oxaliplatin is a platinum based cytotoxic agent commonly used to treat colorectal cancers. Despite its effectiveness, oxaliplatin administration is associated with the development of cold-induced peripheral neuropathy. This potentially permanent side effect is provoked by cold exposure and can range from mild and self limited to severe and debilitating. Even with tumor shrinkage, these painful side effects can force dose-reduction or discontinuation of treatment. Neither the mechanism of action of oxaliplatin nor that of cold-induced neuropathy is understood. Paclitaxel, an entirely different chemotherapeutic agent used to treat a variety of malignancies, also is associated with the development of peripheral neuropathy. Unlike oxaliplatin, neurotoxicity arising from paclitaxel treatment is better understood and was found to have profound effects on intracellular calcium signaling (1,2). In this study we examined the effects of oxaliplatin on calcium signaling pathways and found that acute exposure of either a neuroblastoma cell line or primary neurons with therapeutic concentrations of oxaliplatin had no effect on intracellular calcium signaling. We also found that cellular temperature sensors (TRP channels) were also not activated by oxaliplatin. Interestingly, prolonged exposure of oxaliplatin sensitized cells to subsequent stimuli and enhanced the magnitude of intracellular calcium responses. Taken together, our results suggest that acute oxaliplatin exposure will not induce abnormal calcium signaling but oxaliplatin-primed cells do exhibit enhanced sensitivity. These findings provide new insight to the mechanism behind oxaliplatin-induced neuropathy. PMID:21859566

  8. Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures.

    PubMed

    Singh, Ajay V; Raymond, Michael; Pace, Fabiano; Certo, Anthony; Zuidema, Jonathan M; McKay, Christopher A; Gilbert, Ryan J; Lu, X Lucas; Wan, Leo Q

    2015-01-01

    Following central nervous system (CNS) injury, activated astrocytes form glial scars, which inhibit axonal regeneration, leading to long-term functional deficits. Engineered nanoscale scaffolds guide cell growth and enhance regeneration within models of spinal cord injury. However, the effects of micro-/nanosize scaffolds on astrocyte function are not well characterized. In this study, a high throughput (HTP) microscale platform was developed to study astrocyte cell behavior on micropatterned surfaces containing 1 μm spacing grooves with a depth of 250 or 500 nm. Significant changes in cell and nuclear elongation and alignment on patterned surfaces were observed, compared to on flat surfaces. The cytoskeleton components (particularly actin filaments and focal adhesions) and nucleus-centrosome axis were aligned along the grooved direction as well. More interestingly, astrocytes on micropatterned surfaces showed enhanced mitochondrial activity with lysosomes localized at the lamellipodia of the cells, accompanied by enhanced adenosine triphosphate (ATP) release and calcium activities. These data indicate that the lysosome-mediated ATP exocytosis and calcium signaling may play an important role in astrocytic responses to substrate topology. These new findings have furthered our understanding of the biomechanical regulation of astrocyte cell-substrate interactions, and may benefit the optimization of scaffold design for CNS healing. PMID:25597401

  9. Spatiotemporal patterns of voltage and calcium signaling in heart cells and tissue

    NASA Astrophysics Data System (ADS)

    Karma, Alain

    2009-03-01

    This talk will describe recent progress made in understanding oscillatory patterns of voltage and calcium signals that precede the onset of electromechanical wave turbulence in the main chambers of the heart. Results will illustrate how both physiologically detailed and abstract models have proven useful to cope with the bewildering molecular complexity of cardiac biology and to bridge phenomena on cellular and tissue scales. A main conclusion is that those oscillatory patterns can be self-organized, resulting from symmetry-breaking linear instabilities, or/and a manifestation of underling tissue heterogeneities. Thus studying the evolution of those patterns provides a valuable indirect probe of complex physiological processes that render the heart susceptible to the sudden onset of lethal heart rhythm disorders.

  10. Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica.

    PubMed

    Fang, Huihui; Jing, Tao; Liu, Zhiqiang; Zhang, Liping; Jin, Zhuping; Pei, Yanxi

    2014-12-01

    The oscillation of intracellular calcium (Ca(2+)) concentration is a primary event in numerous biological processes in plants, including stress response. Hydrogen sulfide (H2S), an emerging gasotransmitter, was found to have positive effects in plants responding to chromium (Cr(6+)) stress through interacting with Ca(2+) signaling. While Ca(2+) resemblances H2S in mediating biotic and abiotic stresses, crosstalk between the two pathways remains unclear. In this study, Ca(2+) signaling interacted with H2S to produce a complex physiological response, which enhanced the Cr(6+) tolerance in foxtail millet (Setaria italica). Results indicate that Cr(6+) stress activated endogenous H2S synthesis as well as Ca(2+) signaling. Moreover, toxic symptoms caused by Cr(6+) stress were strongly moderated by 50μM H2S and 20mM Ca(2+). Conversely, treatments with H2S synthesis inhibitor and Ca(2+) chelators prior to Cr(6+)-exposure aggravated these toxic symptoms. Interestingly, Ca(2+) upregulated expression of two important factors in metal metabolism, MT3A and PCS, which participated in the biosynthesis of heavy metal chelators, in a H2S-dependent manner to cope with Cr(6+) stress. These findings also suggest that the H2S dependent pathway is a component of the Ca(2+) activating antioxidant system and H2S partially contributes Ca(2+)-activating antioxidant system.

  11. The Calcium Ion Is a Second Messenger in the Nitrate Signaling Pathway of Arabidopsis.

    PubMed

    Riveras, Eleodoro; Alvarez, José M; Vidal, Elena A; Oses, Carolina; Vega, Andrea; Gutiérrez, Rodrigo A

    2015-10-01

    Understanding how plants sense and respond to changes in nitrogen availability is the first step toward developing strategies for biotechnological applications, such as improvement of nitrogen use efficiency. However, components involved in nitrogen signaling pathways remain poorly characterized. Calcium is a second messenger in signal transduction pathways in plants, and it has been indirectly implicated in nitrate responses. Using aequorin reporter plants, we show that nitrate treatments transiently increase cytoplasmic Ca(2+) concentration. We found that nitrate also induces cytoplasmic concentration of inositol 1,4,5-trisphosphate. Increases in inositol 1,4,5-trisphosphate and cytoplasmic Ca(2+) levels in response to nitrate treatments were blocked by U73122, a pharmacological inhibitor of phospholipase C, but not by the nonfunctional phospholipase C inhibitor analog U73343. In addition, increase in cytoplasmic Ca(2+) levels in response to nitrate treatments was abolished in mutants of the nitrate transceptor NITRATE TRANSPORTER1.1/Arabidopsis (Arabidopsis thaliana) NITRATE TRANSPORTER1 PEPTIDE TRANSPORTER FAMILY6.3. Gene expression of nitrate-responsive genes was severely affected by pretreatments with Ca(2+) channel blockers or phospholipase C inhibitors. These results indicate that Ca(2+) acts as a second messenger in the nitrate signaling pathway of Arabidopsis. Our results suggest a model where NRT1.1/AtNPF6.3 and a phospholipase C activity mediate the increase of Ca(2+) in response to nitrate required for changes in expression of prototypical nitrate-responsive genes. PMID:26304850

  12. The Calcium Ion Is a Second Messenger in the Nitrate Signaling Pathway of Arabidopsis1

    PubMed Central

    Riveras, Eleodoro; Alvarez, José M.; Vidal, Elena A.; Oses, Carolina; Vega, Andrea; Gutiérrez, Rodrigo A.

    2015-01-01

    Understanding how plants sense and respond to changes in nitrogen availability is the first step toward developing strategies for biotechnological applications, such as improvement of nitrogen use efficiency. However, components involved in nitrogen signaling pathways remain poorly characterized. Calcium is a second messenger in signal transduction pathways in plants, and it has been indirectly implicated in nitrate responses. Using aequorin reporter plants, we show that nitrate treatments transiently increase cytoplasmic Ca2+ concentration. We found that nitrate also induces cytoplasmic concentration of inositol 1,4,5-trisphosphate. Increases in inositol 1,4,5-trisphosphate and cytoplasmic Ca2+ levels in response to nitrate treatments were blocked by U73122, a pharmacological inhibitor of phospholipase C, but not by the nonfunctional phospholipase C inhibitor analog U73343. In addition, increase in cytoplasmic Ca2+ levels in response to nitrate treatments was abolished in mutants of the nitrate transceptor NITRATE TRANSPORTER1.1/Arabidopsis (Arabidopsis thaliana) NITRATE TRANSPORTER1 PEPTIDE TRANSPORTER FAMILY6.3. Gene expression of nitrate-responsive genes was severely affected by pretreatments with Ca2+ channel blockers or phospholipase C inhibitors. These results indicate that Ca2+ acts as a second messenger in the nitrate signaling pathway of Arabidopsis. Our results suggest a model where NRT1.1/AtNPF6.3 and a phospholipase C activity mediate the increase of Ca2+ in response to nitrate required for changes in expression of prototypical nitrate-responsive genes. PMID:26304850

  13. From calcium to NF-kappa B signaling pathways in neurons.

    PubMed

    Lilienbaum, Alain; Israël, Alain

    2003-04-01

    NF-kappa B plays crucial roles in the nervous system, including potential roles in long-term responses to synaptic plasticity, pro- or antiapoptotic effects during developmental cell death, and neurodegenerative disorders. We report here the characterization of signaling pathways leading to the constitutive activation of NF-kappa B in primary cultures of neonatal cerebellar granule neurons, consecutive to calcium entry into the cytosol. We found that opening of calcium channels at the plasma membrane and at intracellular stores is indispensable for the basal NF-kappa B activity. We demonstrated further that three cellular sensors of the cytosolic Ca(2+) levels, calmodulin, protein kinases C (PKCs), and the p21(ras)/phosphatidylinositol 3-kinase (PI3K)/Akt pathway are simultaneously involved in the steps linking the Ca(2+) second messenger to NF-kappa B activity. Calmodulin triggers the activity of calcineurin, a phosphatase which plays a role in the basal NF-kappa B activity, while stimulation of both the calmodulin kinase II and Akt kinase pathways results in the up-regulation of the transcriptional potential of the p65 subunit of NF-kappa B. Finally, using pharmacological and molecular approaches, we analyze interactions between these three pathways at different levels and demonstrate a connection between PKCs and PI3K. All three components converge towards NF-kappa B, at the level of both nuclear translocation and transcriptional activity. These results stand in contrast to the situation in nonneuronal cells, which either do not respond to Ca(2+) or do not simultaneously activate all three cascades. By using a global approach in studying signaling pathways in neurons, these results provide further evidence to validate the concept of networks of transducing cascades, specific to cells and to physiological situations.

  14. Evidence for inositol triphosphate as a second messenger for glucose-induced calcium signalling in budding yeast.

    PubMed

    Tisi, Renata; Belotti, Fiorella; Wera, Stefaan; Winderickx, Joris; Thevelein, Johan M; Martegani, Enzo

    2004-02-01

    The Saccharomyces cerevisiae phospholipase C Plc1 is involved in cytosolic transient glucose-induced calcium increase, which also requires the Gpr1/Gpa2 receptor/G protein complex and glucose hexokinases. Differing from mammalian cells, this increase in cytosolic calcium concentration is mainly due to an influx from the external medium. No inositol triphosphate receptor homologue has been identified in the S. cerevisiae genome; and, therefore, the transduction mechanism from Plc1 activation to calcium flux generation still has to be identified. Inositol triphosphate (IP(3)) in yeast is rapidly transformed into IP(4) and IP(5) by a dual kinase, Arg82. Then another kinase, Ipk1, phosphorylates the IP(5) into IP(6). In mutant cells that do not express either of these kinases, the glucose-induced calcium signal was not only detectable but was even wider than in the wild-type strain. IP(3) accumulation upon glucose addition was completely absent in the plc1Delta strain and was amplified both by deletion of either ARG82 or IPK1 genes and by overexpression of PLC1. These results taken together suggest that Plc1p activation by glucose, leading to cleavage of PIP(2) and generation of IP(3), seems to be sufficient for raising the calcium level in the cytosol. This is the first indication for a physiological role of IP(3) signalling in S. cerevisiae. Many aspects about the signal transduction mechanism and the final effectors require further study.

  15. Capsaicin mimics mechanical load-induced intracellular signaling events: involvement of TRPV1-mediated calcium signaling in induction of skeletal muscle hypertrophy.

    PubMed

    Ito, Naoki; Ruegg, Urs T; Kudo, Akira; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2013-01-01

    Mechanical load-induced intracellular signaling events are important for subsequent skeletal muscle hypertrophy. We previously showed that load-induced activation of the cation channel TRPV1 caused an increase in intracellular calcium concentrations ([Ca ( 2+) ]i) and that this activated mammalian target of rapamycin (mTOR) and promoted muscle hypertrophy. However, the link between mechanical load-induced intracellular signaling events, and the TRPV1-mediated increases in [Ca ( 2+) ]i are not fully understood. Here we show that administration of the TRPV1 agonist, capsaicin, induces phosphorylation of mTOR, p70S6K, S6, Erk1/2 and p38 MAPK, but not Akt, AMPK or GSK3β. Furthermore, the TRPV1-induced phosphorylation patterns resembled those induced by mechanical load. Our results continue to highlight the importance of TRPV1-mediated calcium signaling in load-induced intracellular signaling pathways.

  16. The non-excitable smooth muscle: Calcium signaling and phenotypic switching during vascular disease

    PubMed Central

    House, Suzanne J.; Potier, Marie; Bisaillon, Jonathan; Singer, Harold A.

    2008-01-01

    Calcium (Ca2+) is a highly versatile second messenger that controls vascular smooth muscle cell (VSMC) contraction, proliferation, and migration. By means of Ca2+ permeable channels, Ca2+ pumps and channels conducting other ions such as potassium and chloride, VSMC keep intracellular Ca2+ levels under tight control. In healthy quiescent contractile VSMC, two important components of the Ca2+ signaling pathways that regulate VSMC contraction are the plasma membrane voltage-operated Ca2+ channel of the high voltage-activated type (L-type) and the sarcoplasmic reticulum Ca2+ release channel, Ryanodine Receptor (RyR). Injury to the vessel wall is accompanied by VSMC phenotype switch from a contractile quiescent to a proliferative motile phenotype (synthetic phenotype) and by alteration of many components of VSMC Ca2+ signaling pathways. Specifically, this switch that culminates in a VSMC phenotype reminiscent of a non-excitable cell is characterized by loss of L-type channels expression and increased expression of the low voltage-activated (T-type) Ca2+ channels and the canonical transient receptor potential (TRPC) channels. The expression levels of intracellular Ca2+ release channels, pumps and Ca2+-activated proteins are also altered: the proliferative VSMC lose the RyR3 and the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase isoform 2a pump and reciprocally regulate isoforms of the ca2+/calmodulin-dependent protein kinase II. This review focuses on the changes in expression of Ca2+ signaling proteins associated with VSMC proliferation both in vitro and in vivo. The physiological implications of the altered expression of these Ca2+ signaling molecules, their contribution to VSMC dysfunction during vascular disease and their potential as targets for drug therapy will be discussed. PMID:18365243

  17. Effects of differentiation on purinergic and neurotensin-mediated calcium signaling in human HT-29 colon cancer cells.

    PubMed

    Chowdhury, Mohammad A; Peters, Amelia A; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2013-09-13

    Calcium signaling is a key regulator of processes important in differentiation. In colon cancer cells differentiation is associated with altered expression of specific isoforms of calcium pumps of the endoplasmic reticulum and the plasma membrane, suggesting that differentiation of colon cancer cells is associated with a major remodeling of calcium homeostasis. Purinergic and neurotensin receptor activation are known regulators of cytosolic free Ca(2+) levels in colon cancer cells. This study aimed to assess changes in cytosolic free Ca(2+) levels in response to ATP and neurotensin with differentiation induced by sodium butyrate or culturing post-confluence. Parameters assessed included peak cytosolic free Ca(2+) level after activation; time to reach peak cytosolic free Ca(2+) and the EC50 of dose response curves. Our results demonstrate that differentiation of HT-29 colon cancer cells is associated with a remodeling of both ATP and neurotensin mediated Ca(2+) signaling. Neurotensin-mediated calcium signaling appeared more sensitive to differentiation than ATP-mediated Ca(2+) signaling.

  18. Depolarizing chloride gradient in developing cochlear nucleus neurons: underlying mechanism and implication for calcium signaling.

    PubMed

    Witte, M; Reinert, T; Dietz, B; Nerlich, J; Rübsamen, R; Milenkovic, I

    2014-03-01

    Precise regulation of the chloride homeostasis crucially determines the action of inhibitory transmitters GABA and glycine and thereby endows neurons or even discrete neuronal compartments with distinct physiological responses to the same transmitters. In mammals, the signaling mediated by GABAA/glycine receptors shifts during early postnatal life from depolarization to hyperpolarization, due to delayed maturation of the chloride homeostasis system. While the activity of the secondary active, K(+)-Cl(-)-extruding cotransporter KCC2, renders GABA/glycine hyperpolarizing in auditory brainstem nuclei of altricial rodents, the mechanisms contributing to the initially depolarizing transmembrane gradient for Cl(-) in respective neurons remained unknown. Here we used gramicidin-perforated patch recordings, non-invasive Cl(-) and Ca(2+) imaging, and immunohistochemistry to identify the Cl(-)-loading transporter that renders depolarizing effects of GABA/glycine in early postnatal life of spherical bushy cells in the cochlear nucleus of gerbil. Our data identify the 1Na(+):1K(+):2Cl(-) cotransporter 1 (NKCC1) as the major Cl(-)-loader responsible for depolarizing action of GABA/glycine at postnatal days 3-5 (P3-5). Extracellular GABA/muscimol elicited calcium signaling through R-, L-, and T-type channels, which was dependent on bumetanide- and [Na(+)]e-sensitive Cl(-) accumulation. The "adult like", low intracellular Cl(-) concentration is established during the second postnatal week, through a mechanism engaging the NKCC1-down regulation between P5 and P15 and ongoing KCC2-mediated Cl(-)-extrusion.

  19. Depolarizing chloride gradient in developing cochlear nucleus neurons: underlying mechanism and implication for calcium signaling.

    PubMed

    Witte, M; Reinert, T; Dietz, B; Nerlich, J; Rübsamen, R; Milenkovic, I

    2014-03-01

    Precise regulation of the chloride homeostasis crucially determines the action of inhibitory transmitters GABA and glycine and thereby endows neurons or even discrete neuronal compartments with distinct physiological responses to the same transmitters. In mammals, the signaling mediated by GABAA/glycine receptors shifts during early postnatal life from depolarization to hyperpolarization, due to delayed maturation of the chloride homeostasis system. While the activity of the secondary active, K(+)-Cl(-)-extruding cotransporter KCC2, renders GABA/glycine hyperpolarizing in auditory brainstem nuclei of altricial rodents, the mechanisms contributing to the initially depolarizing transmembrane gradient for Cl(-) in respective neurons remained unknown. Here we used gramicidin-perforated patch recordings, non-invasive Cl(-) and Ca(2+) imaging, and immunohistochemistry to identify the Cl(-)-loading transporter that renders depolarizing effects of GABA/glycine in early postnatal life of spherical bushy cells in the cochlear nucleus of gerbil. Our data identify the 1Na(+):1K(+):2Cl(-) cotransporter 1 (NKCC1) as the major Cl(-)-loader responsible for depolarizing action of GABA/glycine at postnatal days 3-5 (P3-5). Extracellular GABA/muscimol elicited calcium signaling through R-, L-, and T-type channels, which was dependent on bumetanide- and [Na(+)]e-sensitive Cl(-) accumulation. The "adult like", low intracellular Cl(-) concentration is established during the second postnatal week, through a mechanism engaging the NKCC1-down regulation between P5 and P15 and ongoing KCC2-mediated Cl(-)-extrusion. PMID:24388924

  20. Fungal genes related to calcium homeostasis and signalling are upregulated in symbiotic arbuscular mycorrhiza interactions.

    PubMed

    Liu, Yi; Gianinazzi-Pearson, Vivienne; Arnould, Christine; Wipf, Daniel; Zhao, Bin; van Tuinen, Diederik

    2013-01-01

    Fluctuations in intracellular calcium levels generate signalling events and regulate different cellular processes. Whilst the implication of Ca(2+) in plant responses during arbuscular mycorrhiza (AM) interactions is well documented, nothing is known about the regulation or role of this secondary messenger in the fungal symbiont. The spatio-temporal expression pattern of putatively Ca(2+)-related genes of Glomus intraradices BEG141 encoding five proteins involved in membrane transport and one nuclear protein kinase, was investigated during the AM symbiosis. Expression profiles related to successful colonization of host roots were observed in interactions of G. intraradices with roots of wild-type Medicago truncatula (line J5) compared to the mycorrhiza-defective mutant dmi3/Mtsym13. Symbiotic fungal activity was monitored using stearoyl-CoA desaturase and phosphate transporter genes. Laser microdissection based-mapping of fungal gene expression in mycorrhizal root tissues indicated that the Ca(2+)-related genes were differentially upregulated in arbuscules and/or in intercellular hyphae. The spatio-temporal variations in gene expression suggest that the encoded proteins may have different functions in fungal development or function during symbiosis development. Full-length cDNA obtained for two genes with interesting expression profiles confirmed a close similarity with an endoplasmic reticulum P-type ATPase and a Vcx1-like vacuolar Ca(2+) ion transporter functionally characterized in other fungi and involved in the regulation of cell calcium pools. Possible mechanisms are discussed in which Ca(2+)-related proteins G. intraradices BEG141 may play a role in mobilization and perception of the intracellular messenger by the AM fungus during symbiotic interactions with host roots.

  1. Computational modeling of calcium signaling from the nanoscale to multicellular systems

    NASA Astrophysics Data System (ADS)

    Ullah, Ghanim

    Calcium signaling is one of the most important signaling mechanisms controlling e.g. the contraction of muscle cells, the release of neurotransmitter from neurons and astrocytes, transcription inside the nucleus and metabolic processes in liver and pancreas [8, 44, 36]. Due to the general importance in cell biology, Ca2+ signals of a variety of forms have been the subject of much recent experimental research. A recent and particularly powerful approach towards the understanding of Ca2+ signaling is the combination of highly resolved fluorescent imaging methods and detailed mathematical modeling. Models for Ca2+ signaling are probably the most advanced and realistic modes in all areas of biological physics. Hence theoretical predictions are quantitative in nature and allow direct comparison with experiments. Ca2+ signaling patterns exhibit a hierarchical structure varying from single-channel release events (10's of nanometers) to Ca2+ waves sweeping over entire organs like the liver to globally orchestrate the efficient release of enzymes [48]. This multi-scale organization renders it an ideal tool for studying basic concepts of pattern formation, especially since access to the most important experimental parameters is given. The aim of this dissertation is to develop mathematical models that quantitatively describe the characteristics of elementary Ca2+ elements (called Ca2+ -puffs) on the nano-scale as well as the organization of global waves and oscillations on the cell and organ scale. We used oocytes, eggs and astrocytes as model cells for our theoretical studies. Particularly on the microscopic scale we report significant progress in modeling Ca 2+ release events that are accurate in time course and spatial shape. Experimental investigations have revealed recently that Ca 2+ signaling differentiates during the development of oocytes into mature eggs. The fertilization specific Ca2+ signal in mature eggs is characterized by a fast rise of intracellular Ca2+ and

  2. Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias.

    PubMed

    Kasumu, Adebimpe; Bezprozvanny, Ilya

    2012-09-01

    Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 30 autosomal-dominant genetic and neurodegenerative disorders. SCAs are generally characterized by progressive ataxia and cerebellar atrophy. Although all SCA patients present with the phenotypic overlap of cerebellar atrophy and ataxia, 17 different gene loci have so far been implicated as culprits in these SCAs. It is not currently understood how mutations in these 17 proteins lead to the cerebellar atrophy and ataxia. Several pathogenic mechanisms have been studied in SCAs but there is yet to be a promising target for successful treatment of SCAs. Emerging research suggests that a fundamental cellular signaling pathway is disrupted by a majority of these mutated genes, which could explain the characteristic death of Purkinje cells, cerebellar atrophy, and ataxia that occur in many SCAs. We propose that mutations in SCA genes cause disruptions in multiple cellular pathways but the characteristic SCA pathogenesis does not begin until calcium signaling pathways are disrupted in cerebellar Purkinje cells either as a result of an excitotoxic increase or a compensatory suppression of calcium signaling. We argue that disruptions in Purkinje cell calcium signaling lead to initial cerebellar dysfunction and ataxic sympoms and eventually proceed to Purkinje cell death. Here, we discuss a calcium hypothesis of Purkinje cell neurodegeneration in SCAs by primarily focusing on an example of spinocerebellar ataxia 2 (SCA2). We will also present evidence linking deranged calcium signaling to the pathogenesis of other SCAs (SCA1, 3, 5, 6, 14, 15/16) that lead to significant Purkinje cell dysfunction and loss in patients.

  3. Effects of Transmitters and Amyloid-Beta Peptide on Calcium Signals in Rat Cortical Astrocytes: Fura-2AM Measurements and Stochastic Model Simulations

    PubMed Central

    Toivari, Eeva; Manninen, Tiina; Nahata, Amit K.; Jalonen, Tuula O.; Linne, Marja-Leena

    2011-01-01

    Background To better understand the complex molecular level interactions seen in the pathogenesis of Alzheimer's disease, the results of the wet-lab and clinical studies can be complemented by mathematical models. Astrocytes are known to become reactive in Alzheimer's disease and their ionic equilibrium can be disturbed by interaction of the released and accumulated transmitters, such as serotonin, and peptides, including amyloid- peptides (A). We have here studied the effects of small amounts of A25–35 fragments on the transmitter-induced calcium signals in astrocytes by Fura-2AM fluorescence measurements and running simulations of the detected calcium signals. Methodology/Principal Findings Intracellular calcium signals were measured in cultured rat cortical astrocytes following additions of serotonin and glutamate, or either of these transmitters together with A25–35. A25–35 increased the number of astrocytes responding to glutamate and exceedingly increased the magnitude of the serotonin-induced calcium signals. In addition to A25–35-induced effects, the contribution of intracellular calcium stores to calcium signaling was tested. When using higher stimulus frequency, the subsequent calcium peaks after the initial peak were of lower amplitude. This may indicate inadequate filling of the intracellular calcium stores between the stimuli. In order to reproduce the experimental findings, a stochastic computational model was introduced. The model takes into account the major mechanisms known to be involved in calcium signaling in astrocytes. Model simulations confirm the principal experimental findings and show the variability typical for experimental measurements. Conclusions/Significance Nanomolar A25–35 alone does not cause persistent change in the basal level of calcium in astrocytes. However, even small amounts of A25–35, together with transmitters, can have substantial synergistic effects on intracellular calcium signals. Computational modeling

  4. Modeling of [Formula: see text]-mediated calcium signaling in vascular endothelial cells induced by fluid shear stress and ATP.

    PubMed

    Li, Long-Fei; Xiang, Cheng; Qin, Kai-Rong

    2015-10-01

    The calcium signaling plays a vital role in flow-dependent vascular endothelial cell (VEC) physiology. Variations in fluid shear stress and ATP concentration in blood vessels can activate dynamic responses of cytosolic-free [Formula: see text] through various calcium channels on the plasma membrane. In this paper, a novel dynamic model has been proposed for transient receptor potential vanilloid 4 [Formula: see text]-mediated intracellular calcium dynamics in VECs induced by fluid shear stress and ATP. Our model includes [Formula: see text] signaling pathways through P2Y receptors and [Formula: see text] channels (indirect mechanism) and captures the roles of the [Formula: see text] compound channels in VEC [Formula: see text] signaling in response to fluid shear stress (direct mechanism). In particular, it takes into account that the [Formula: see text] compound channels are regulated by intracellular [Formula: see text] and [Formula: see text] concentrations. The simulation studies have demonstrated that the dynamic responses of calcium concentration produced by the proposed model correlate well with the existing experimental observations. We also conclude from the simulation studies that endogenously released ATP may play an insignificant role in the process of intracellular [Formula: see text] response to shear stress.

  5. Amyloid β Peptide Enhances RANKL-Induced Osteoclast Activation through NF-κB, ERK, and Calcium Oscillation Signaling

    PubMed Central

    Li, Shangfu; Yang, Bu; Teguh, Dian; Zhou, Lin; Xu, Jiake; Rong, Limin

    2016-01-01

    Osteoporosis and Alzheimer’s disease (AD) are common chronic degenerative disorders which are strongly associated with advanced age. We have previously demonstrated that amyloid beta peptide (Aβ), one of the pathological hallmarks of AD, accumulated abnormally in osteoporotic bone specimens in addition to having an activation effect on osteoclast (Bone 2014,61:164-75). However, the underlying molecular mechanisms remain unclear. Activation of NF-κB, extracellular signal-regulated kinase (ERK) phosphorylates, and calcium oscillation signaling pathways by receptor activator NF-κB ligand (RANKL) plays a pivotal role in osteoclast activation. Targeting this signaling to modulate osteoclast function has been a promising strategy for osteoclast-related diseases. In this study, we investigated the effects of Aβ on RANKL-induced osteoclast signaling pathways in vitro. In mouse bone marrow monocytes (BMMs), Aβ exerted no effect on RANKL-induced osteoclastogenesis but promoted osteoclastic bone resorption. In molecular levels, Aβ enhanced NF-κB activity and IκB-α degradation, activated ERK phosphorylation and stimulated calcium oscillation, thus leading to upregulation of NFAT-c1 expression during osteoclast activation. Taken together, our data demonstrate that Aβ enhances RANKL-induced osteoclast activation through IκB-α degradation, ERK phosphorylation, and calcium oscillation signaling pathways and that Aβ may be a promising agent in the treatment of osteoclast-related disease such as osteoporosis. PMID:27735865

  6. Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors.

    PubMed

    Hamby, Mary E; Coppola, Giovanni; Ao, Yan; Geschwind, Daniel H; Khakh, Baljit S; Sofroniew, Michael V

    2012-10-17

    Inflammation features in CNS disorders such as stroke, trauma, neurodegeneration, infection, and autoimmunity in which astrocytes play critical roles. To elucidate how inflammatory mediators alter astrocyte functions, we examined effects of transforming growth factor-β1 (TGF-β1), lipopolysaccharide (LPS), and interferon-gamma (IFNγ), alone and in combination, on purified, mouse primary cortical astrocyte cultures. We used microarrays to conduct whole-genome expression profiling, and measured calcium signaling, which is implicated in mediating dynamic astrocyte functions. Combinatorial exposure to TGF-β1, LPS, and IFNγ significantly modulated astrocyte expression of >6800 gene probes, including >380 synergistic changes not predicted by summing individual treatment effects. Bioinformatic analyses revealed significantly and markedly upregulated molecular networks and pathways associated in particular with immune signaling and regulation of cell injury, death, growth, and proliferation. Highly regulated genes included chemokines, growth factors, enzymes, channels, transporters, and intercellular and intracellular signal transducers. Notably, numerous genes for G-protein-coupled receptors (GPCRs) and G-protein effectors involved in calcium signaling were significantly regulated, mostly down (for example, Cxcr4, Adra2a, Ednra, P2ry1, Gnao1, Gng7), but some up (for example, P2ry14, P2ry6, Ccrl2, Gnb4). We tested selected cases and found that changes in GPCR gene expression were accompanied by significant, parallel changes in astrocyte calcium signaling evoked by corresponding GPCR-specific ligands. These findings identify pronounced changes in the astrocyte transcriptome induced by TGF-β1, LPS, and IFNγ, and show that these inflammatory stimuli upregulate astrocyte molecular networks associated with immune- and injury-related functions and significantly alter astrocyte calcium signaling stimulated by multiple GPCRs.

  7. Determinants of the membrane orientation of a calcium signaling enzyme CD38.

    PubMed

    Zhao, Yong Juan; Zhu, Wen Jie; Wang, Xian Wang; Zhang, Li-He; Lee, Hon Cheung

    2015-09-01

    CD38 catalyzes the synthesis of two structurally distinct messengers for Ca²⁺-mobilization, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), from cytosolic substrates, NAD and NADP, respectively. CD38 is generally thought of as a type II membrane protein with its catalytic site facing outside. We recently showed that CD38 exists, instead, in two opposite membrane orientations. The determinant for the membrane topology is unknown. Here, specific antibodies against type III CD38 were designed and produced. We show that mutating the positively charged residues in the N-terminal tail of CD38 converted its orientation to type III, with the catalytic domain facing the cytosol and it was fully active in producing intracellular cADPR. Changing the serine residues to aspartate, which is functionally equivalent to phosphorylation, had a similar effect. The mutated CD38 was expressed intracellularly and was un-glycosylated. The membrane topology could also be modulated by changing the highly conserved di-cysteine. The results indicate that the net charge of the N-terminal segment is important in determining the membrane topology of CD38 and that the type III orientation can be a functional form of CD38 for Ca²⁺-signaling. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  8. Analysing calcium signalling of cells under high shear flows using discontinuous dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Soffe, Rebecca; Baratchi, Sara; Tang, Shi-Yang; Nasabi, Mahyar; McIntyre, Peter; Mitchell, Arnan; Khoshmanesh, Khashayar

    2015-07-01

    Immobilisation of cells is an important feature of many cellular assays, as it enables the physical/chemical stimulation of cells; whilst, monitoring cellular processes using microscopic techniques. Current approaches for immobilising cells, however, are hampered by time-consuming processes, the need for specific antibodies or coatings, and adverse effects on cell integrity. Here, we present a dielectrophoresis-based approach for the robust immobilisation of cells, and analysis of their responses under high shear flows. This approach is quick and label-free, and more importantly, minimises the adverse effects of electric field on the cell integrity, by activating the field for a short duration of 120 s, just long enough to immobilise the cells, after which cell culture media (such as HEPES) is flushed through the platform. In optimal conditions, at least 90% of the cells remained stably immobilised, when exposed to a shear stress of 63 dyn/cm2. This approach was used to examine the shear-induced calcium signalling of HEK-293 cells expressing a mechanosensitive ion channel, transient receptor potential vaniloid type 4 (TRPV4), when exposed to the full physiological range of shear stress.

  9. Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2

    PubMed Central

    Anyatonwu, Georgia I.; Estrada, Manuel; Tian, Xin; Somlo, Stefan; Ehrlich, Barbara E.

    2007-01-01

    Mutations in polycystin-2 (PC2) cause autosomal dominant polycystic kidney disease. A function for PC2 in the heart has not been described. Here, we show that PC2 coimmunoprecipitates with the cardiac ryanodine receptor (RyR2) from mouse heart. Biochemical assays showed that the N terminus of PC2 binds the RyR2, whereas the C terminus only binds to RyR2 in its open state. Lipid bilayer electrophysiological experiments indicated that the C terminus of PC2 functionally inhibited RyR2 channel activity in the presence of calcium (Ca2+). Pkd2−/− cardiomyocytes had a higher frequency of spontaneous Ca2+ oscillations, reduced Ca2+ release from the sarcoplasmic reticulum stores, and reduced Ca2+ content compared with Pkd2+/+ cardiomyocytes. In the presence of caffeine, Pkd2−/− cardiomyocytes exhibited decreased peak fluorescence, a slower rate of rise, and a longer duration of Ca2+ transients compared with Pkd2+/+. These data suggest that PC2 is important for regulation of RyR2 function and that loss of this regulation of RyR2, as occurs when PC2 is mutated, results in altered Ca2+ signaling in the heart. PMID:17404231

  10. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling

    PubMed Central

    Shih, Yu-Ru V.; Hwang, YongSung; Phadke, Ameya; Kang, Heemin; Hwang, Nathaniel S.; Caro, Eduardo J.; Nguyen, Steven; Siu, Michael; Theodorakis, Emmanuel A.; Gianneschi, Nathan C.; Vecchio, Kenneth S.; Chien, Shu; Lee, Oscar K.; Varghese, Shyni

    2014-01-01

    Synthetic matrices emulating the physicochemical properties of tissue-specific ECMs are being developed at a rapid pace to regulate stem cell fate. Biomaterials containing calcium phosphate (CaP) moieties have been shown to support osteogenic differentiation of stem and progenitor cells and bone tissue formation. By using a mineralized synthetic matrix mimicking a CaP-rich bone microenvironment, we examine a molecular mechanism through which CaP minerals induce osteogenesis of human mesenchymal stem cells with an emphasis on phosphate metabolism. Our studies show that extracellular phosphate uptake through solute carrier family 20 (phosphate transporter), member 1 (SLC20a1) supports osteogenic differentiation of human mesenchymal stem cells via adenosine, an ATP metabolite, which acts as an autocrine/paracrine signaling molecule through A2b adenosine receptor. Perturbation of SLC20a1 abrogates osteogenic differentiation by decreasing intramitochondrial phosphate and ATP synthesis. Collectively, this study offers the demonstration of a previously unknown mechanism for the beneficial role of CaP biomaterials in bone repair and the role of phosphate ions in bone physiology and regeneration. These findings also begin to shed light on the role of ATP metabolism in bone homeostasis, which may be exploited to treat bone metabolic diseases. PMID:24395775

  11. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR{sub 1} activation

    SciTech Connect

    Blanc-Brude, Olivier P. . E-mail: olivier.blanc-brude@larib.inserm.fr; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-03-10

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR{sub 1}). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR{sub 1}-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR{sub 1}-specific agonists and inhibitors were used to demonstrate that PAR{sub 1} mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR{sub 1} and not PAR{sub 2}. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.

  12. A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death

    PubMed Central

    Wang, Z; Liu, D; Varin, A; Nicolas, V; Courilleau, D; Mateo, P; Caubere, C; Rouet, P; Gomez, A-M; Vandecasteele, G; Fischmeister, R; Brenner, C

    2016-01-01

    Although cardiac cytosolic cyclic 3′,5′-adenosine monophosphate (cAMP) regulates multiple processes, such as beating, contractility, metabolism and apoptosis, little is known yet on the role of this second messenger within cardiac mitochondria. Using cellular and subcellular approaches, we demonstrate here the local expression of several actors of cAMP signaling within cardiac mitochondria, namely a truncated form of soluble AC (sACt) and the exchange protein directly activated by cAMP 1 (Epac1), and show a protective role for sACt against cell death, apoptosis as well as necrosis in primary cardiomyocytes. Upon stimulation with bicarbonate (HCO3−) and Ca2+, sACt produces cAMP, which in turn stimulates oxygen consumption, increases the mitochondrial membrane potential (ΔΨm) and ATP production. cAMP is rate limiting for matrix Ca2+ entry via Epac1 and the mitochondrial calcium uniporter and, as a consequence, prevents mitochondrial permeability transition (MPT). The mitochondrial cAMP effects involve neither protein kinase A, Epac2 nor the mitochondrial Na+/Ca2+ exchanger. In addition, in mitochondria isolated from failing rat hearts, stimulation of the mitochondrial cAMP pathway by HCO3− rescued the sensitization of mitochondria to Ca2+-induced MPT. Thus, our study identifies a link between mitochondrial cAMP, mitochondrial metabolism and cell death in the heart, which is independent of cytosolic cAMP signaling. Our results might have implications for therapeutic prevention of cell death in cardiac pathologies. PMID:27100892

  13. P2Y1 receptor inhibits GABA transport through a calcium signalling-dependent mechanism in rat cortical astrocytes.

    PubMed

    Jacob, Pedro F; Vaz, Sandra H; Ribeiro, Joaquim A; Sebastião, Ana M

    2014-08-01

    Astrocytes express a variety of purinergic (P2) receptors, involved in astrocytic communication through fast increases in [Ca(2+) ]i . Of these, the metabotropic ATP receptors (P2Y) regulate cytoplasmic Ca(2+) levels through the PLC-PKC pathway. GABA transporters are a substrate for a number of Ca(2+) -related kinases, raising the possibility that calcium signalling in astrocytes impact the control of extracellular levels of the major inhibitory transmitter in the brain. To access this possibility we tested the influence of P2Y receptors upon GABA transport into astrocytes. Mature primary cortical astroglial-enriched cultures expressed functional P2Y receptors, as evaluated through Ca(2+) imaging, being P2Y1 the predominant P2Y receptor subtype. ATP (100 μM, for 1 min) caused an inhibition of GABA transport through either GAT-1 or GAT-3 transporters, decreasing the Vmax kinetic constant. ATP-induced inhibition of GATs activity was still evident in the presence of adenosine deaminase, precluding an adenosine-mediated effect. This, was mimicked by a specific agonist for the P2Y1,12,13 receptor (2-MeSADP). The effect of 2-MeSADP on GABA transport was blocked by the P2 (PPADS) and P2Y1 selective (MRS2179) receptor antagonists, as well as by the PLC inhibitor (U73122). 2-MeSADP failed to inhibit GABA transport in astrocytes where intracellular calcium had been chelated (BAPTA-AM) or where calcium stores were depleted (α-cyclopiazonic acid, CPA). In conclusion, P2Y1 receptors in astrocytes inhibit GABA transport through a mechanism dependent of P2Y1 -mediated calcium signalling, suggesting that astrocytic calcium signalling, which occurs as a consequence of neuronal firing, may operate a negative feedback loop to enhance extracellular levels of GABA. PMID:24733747

  14. The role of extracellular free-calcium gradients in gravitropic signalling in maize roots

    NASA Technical Reports Server (NTRS)

    Bjorkman, T.; Cleland, R. E.

    1991-01-01

    Gravitropism in roots has been proposed to depend on a downward redistribution of calcium across the root cap. However, because of the many calcium-binding sites in the apoplast, redistribution might not result in a physiologically effective change in the apoplasmic calcium activity. To test whether there is such a change, we measured the effect of gravistimulation on the calcium activity of statocyte cell walls with calcium-specific microelectrodes. Such a measurement must be made on a tissue with gravity sensing cells at the surface. To obtain such a tissue, decapped maize roots (Zea mays L. cv. Golden Cross Bantam) were grown for 31 h to regenerate gravitropic sensitivity, but not root caps. The calcium activity in the apoplasm surrounding the gravity-sensing cells could then be measured. The initial pCa was 2.60 +/- 0.28 (approx 2.5 mM). The calcium activity on the upper side of the root tip remained constant for 10 min after gravistimulation, then decreased 1.7-fold. On the lower side, after a similar lag the calcium activity increased 1.6-fold. Control roots, which were decapped but measured before recovering gravisensitivity (19 h), showed no change in calcium activity. To test whether this gradient is necessary for gravitropic curvature, we eliminated the calcium activity gradient during gravitropism by applying a mobile calcium-binding site (dinitro-BAPTA; 1,2-bis(2-amino-5-nitro-phenoxy)ethane-N,N,N',N'-tetraacetic acid) to the root cap; this treatment eliminated gravicurvature. A calcium gradient may be formed by proton-induced calcium desorption if there is a proton gradient. Preventing the formation of apoplastic pH gradients, using 10 and 50 mM 2-(N-morpholino)ethanesulfonic acid (Mes) buffer or 10 mM fusicoccin to stimulate proton excretion maximally, did not inhibit curvature; therefore the calcium gradient is not a secondary effect of a proton gradient. We have found a distinct and rapid differential in the apoplasmic calcium activity between the

  15. Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design

    SciTech Connect

    Akerboom, Jasper; Velez Rivera, Jonathan D.; Rodriguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Hernandez, Hector H.; Tian, Lin; Hires, S. Andrew; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.

    2009-03-16

    The genetically encoded calcium indicator GCaMP2 shows promise for neural network activity imaging, but is currently limited by low signal-to-noise ratio. We describe x-ray crystal structures as well as solution biophysical and spectroscopic characterization of GCaMP2 in the calcium-free dark state, and in two calcium-bound bright states: a monomeric form that dominates at intracellular concentrations observed during imaging experiments and an unexpected domain-swapped dimer with decreased fluorescence. This series of structures provides insight into the mechanism of Ca{sup 2+}-induced fluorescence change. Upon calcium binding, the calmodulin (CaM) domain wraps around the M13 peptide, creating a new domain interface between CaM and the circularly permuted enhanced green fluorescent protein domain. Residues from CaM alter the chemical environment of the circularly permuted enhanced green fluorescent protein chromophore and, together with flexible inter-domain linkers, block solvent access to the chromophore. Guided by the crystal structures, we engineered a series of GCaMP2 point mutants to probe the mechanism of GCaMP2 function and characterized one mutant with significantly improved signal-to-noise. The mutation is located at a domain interface and its effect on sensor function could not have been predicted in the absence of structural data.

  16. Decoding of calcium signal through calmodulin: calmodulin-binding proteins in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many abiotic and biotic stimuli such as heat, cold, drought, salt, light, wind, touch, wounding, symbionts and pathogens as well as growth, developmental and hormonal cues can quickly induce cytosolic calcium increases. Calmodulin, the most thoroughly studied calcium sensor, mediates interpretation...

  17. The role of intracellular calcium signals in inflammatory responses of polarised cystic fibrosis human airway epithelia.

    PubMed

    Ribeiro, Carla Maria Pedrosa

    2006-01-01

    Hyperinflammatory host responses to bacterial infection have been postulated to be a key step in the pathogenesis of cystic fibrosis (CF) lung disease. Previous studies have indicated that the CF airway epithelium itself contributes to the hyperinflammation of CF airways via an excessive inflammatory response to bacterial infection. However, it has been controversial whether the hyperinflammation of CF epithelia results from mutations in the CF transmembrane conductance regulator (CFTR) and/or is a consequence of persistent airways infection. Recent studies have demonstrated that intracellular calcium (Ca2+i) signals consequent to activation of apical G protein-coupled receptors (GPCRs) by pro-inflammatory mediators are increased in CF airway epithelia. Because of the relationship between Ca2+i mobilisation and inflammatory responses, the mechanism for the increased Ca2+i signals in CF was investigated and found to result from endoplasmic reticulum (ER) Ca2+ store expansion. The ER Ca2+ store expansion imparts a hyperinflammatory phenotype to chronically infected airway epithelia as a result of the larger Ca2+i mobilisation coupled to an excessive inflammatory response following GPCR activation. The ER expansion is not dependent on ER retention of misfolded DeltaF508 CFTR, but reflects an epithelial response acquired following persistent luminal airway infection. With respect to the mechanism of ER expansion in CF, the current view is that chronic airway epithelial infection triggers an unfolded protein response as a result of the increased flux of newly synthesised inflammatory mediators and defensive factors into the ER compartment. This unfolded protein response is coupled to X-box binding protein 1 (XBP-1) mRNA splicing and transcription of genes associated with the expansion of the protein-folding capacity of the ER (e.g. increases in ER chaperones and ER membranes). These studies have revealed a novel adaptive response in chronically infected airway epithelia

  18. Modeling of progesterone-induced intracellular calcium signaling in human spermatozoa.

    PubMed

    Li, Long-Fei; Xiang, Cheng; Zhu, Ya-Bing; Qin, Kai-Rong

    2014-06-21

    Calcium ion is a secondary messenger of mammalian spermatozoa. The dynamic change of its concentration plays a vital role in the process of sperm motility, capacitation, acrosome and fertilization. Progesterone released by the cumulus cells, as a potent stimulator of fertilization, can activate the calcium channels on the plasma membrane, which in turn triggers the dynamic change of intracellular calcium concentration. In this paper, a mathematical model of calcium dynamic response in mammalian spermatozoa induced by progesterone is proposed and numerical simulation of the dynamic model is conducted. The results show that the dynamic response of calcium concentration predicted by the model is in accordance with experimental evidence. The proposed dynamic model can be used to explain the phenomena observed in the experiments and predict new phenomena to be revealed by experimental investigations, which will provide the basis to quantitatively investigate the fluid mechanics and biochemistry for the sperm motility induced by progesterone.

  19. Enlightenment on the aequorin-based platform for screening Arabidopsis stress sensory channels related to calcium signaling.

    PubMed

    Yu, Zhiming; Taylor, Jemma L; He, Yue; Ni, Jun

    2015-01-01

    Free calcium ions (Ca(2+)) are an important signal molecule in response to a large array of external stimuli encountered by plants. Using the aequorin-based Ca(2+) recording system, tremendous progress has been made in understanding the Ca(2+) responses to biotic or abiotic stresses in dicotyledonous Arabidopsis. However, due to the lack of a similar detection system, little information has been obtained from the monocotyledonous rice (Oryza sativa). Recombinant aequorin has been introduced into rice, and the Ca(2+) responses to NaCl and H2O2 in rice roots were characterized. Although rice calcium signal sensor research has just started, the transgenic rice expressing aequorin provides a good platform to study rice adapted to different environmental conditions.

  20. Enlightenment on the aequorin-based platform for screening Arabidopsis stress sensory channels related to calcium signaling.

    PubMed

    Yu, Zhiming; Taylor, Jemma L; He, Yue; Ni, Jun

    2015-01-01

    Free calcium ions (Ca(2+)) are an important signal molecule in response to a large array of external stimuli encountered by plants. Using the aequorin-based Ca(2+) recording system, tremendous progress has been made in understanding the Ca(2+) responses to biotic or abiotic stresses in dicotyledonous Arabidopsis. However, due to the lack of a similar detection system, little information has been obtained from the monocotyledonous rice (Oryza sativa). Recombinant aequorin has been introduced into rice, and the Ca(2+) responses to NaCl and H2O2 in rice roots were characterized. Although rice calcium signal sensor research has just started, the transgenic rice expressing aequorin provides a good platform to study rice adapted to different environmental conditions. PMID:26336841

  1. Calcium-signaling components in rat insulinoma β-cells (INS-1) and pancreatic islets are differentially influenced by melatonin.

    PubMed

    Bazwinsky-Wutschke, Ivonne; Mühlbauer, Eckhard; Albrecht, Elke; Peschke, Elmar

    2014-05-01

    The pineal secretory product melatonin exerts its influence on the insulin secretion of pancreatic islets by different signaling pathways. The purpose of this study was to analyze the impact of melatonin on calcium-signaling components under different conditions. In a transfected INS-1 cell line overexpressing the human MT2 receptor (hMT2-INS-1), melatonin treatment induced even stronger depressive effects on calcium/calmodulin-dependent kinase 2d and IV (Camk2d, CamkIV) transcripts during 3-isobutyl-1-methylxanthine (IBMX) treatment than in normal INS-1 cells, indicating a crucial influence of melatonin receptor density on transcript-level regulation. In addition, melatonin induced a significant downregulation of calmodulin (Calm1) in IBMX-treated hMT2-INS-1 cells. Long-term administration of melatonin alone reduced CamkIV transcript levels in INS-1 cells; however, transcript levels of Camk2d remained unchanged. The release of insulin was diminished under long-term melatonin treatment. The impact of melatonin also involved reductions in CAMK2D protein during IBMX or forskolin treatments in INS-1 cells, as measured by an enzyme-linked immunosorbent assay, indicating a functional significance of transcriptional changes in pancreatic islets. Furthermore, analysis of melatonin receptor knockout mice showed that the transcript levels of Camk2d, CamkIV, and Calm1 were differentially influenced according to the melatonin receptor subtype deleted. In conclusion, this study provides evidence that melatonin has different impacts on the regulation of Calm1 and Camk. These calcium-signaling components are known as participants in the calcium/calmodulin pathway, which plays an important functional role in the modulation of the β-cell signaling pathways leading to insulin secretion.

  2. Plasmonic activation of gold nanorods for remote stimulation of calcium signaling and protein expression in HEK 293T cells.

    PubMed

    Sanchez-Rodriguez, Sandra P; Sauer, Jeremy P; Stanley, Sarah A; Qian, Xi; Gottesdiener, Andrew; Friedman, Jeffrey M; Dordick, Jonathan S

    2016-10-01

    Remote activation of specific cells of a heterogeneous population can provide a useful research tool for clinical and therapeutic applications. Here, we demonstrate that photostimulation of gold nanorods (AuNRs) using a tunable near-infrared (NIR) laser at specific longitudinal surface plasmon resonance wavelengths can induce the selective and temporal internalization of calcium in HEK 293T cells. Biotin-PEG-Au nanorods coated with streptavidin Alexa Fluor-633 and biotinylated anti-His antibodies were used to decorate cells genetically modified with His-tagged TRPV1 temperature-sensitive ion channel and AuNRs conjugated to biotinylated RGD peptide were used to decorate integrins in unmodified cells. Plasmonic activation can be stimulated at weak laser power (0.7-4.0 W/cm(2) ) without causing cell damage. Selective activation of TRPV1 channels could be controlled by laser power between 1.0 and 1.5 W/cm(2) . Integrin targeting robustly stimulated calcium signaling due to a dense cellular distribution of nanoparticles. Such an approach represents a functional tool for combinatorial activation of cell signaling in heterogeneous cell populations. Our results suggest that it is possible to induce cell activation via NIR-induced gold nanorod heating through the selective targeting of membrane proteins in unmodified cells to produce calcium signaling and downstream expression of specific genes with significant relevance for both in vitro and therapeutic applications. Biotechnol. Bioeng. 2016;113: 2228-2240. © 2016 Wiley Periodicals, Inc. PMID:27563853

  3. In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in the drosophila brain (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiying; Rao, Bin; Rong, Haoyang; Raman, Baranidharan; Wang, Lihong V.

    2016-03-01

    Neural scientists can benefit greatly from imaging tools that can penetrate thick brain tissue. Compared with traditional optical microscopy methods, photoacoustic imaging can beat the optical diffusion limit and achieve such deep tissue imaging with high spatial resolution. In this study, we used an optical-resolution photoacoustic microscope to image the odor-evoked neuronal activities in a drosophila model. Drosophila brain neurons stably express GCaMP5G, a calcium-sensitive fluorescent protein whose optical absorption coefficient changes with calcium influx during action potentials. We recorded an ~20% odor-evoked fractional photoacoustic signal increase at all depths of the drosophila brain in vivo, with and without removal of the brain cuticle, at a recording rate of 1 kHz. Our results were confirmed by concurrent fluorescent recordings. Furthermore, by performing fast 2D scanning, we imaged the antenna lobe region, which is of particular interest in neuroscience, at a volumetric rate of ~1 Hz with a sub-neuron resolution of 3 μm. Unlike optical imaging, which requires surgical removal of the scattering brain cuticle, our photoacoustic system can image through the cuticle and measure neuronal signals of the whole drosophila brain without invasive surgery, enabling minimal disturbance to the animal's behaviors. In conclusion, we have demonstrated photoacoustic imaging of calcium signals in drosophila brains for the first time. Utilizing the deep imaging capability of photoacoustic tomography, our methods could potentially be extended to in vivo imaging of neuronal activities from deep brains in other animal models.

  4. Plasmonic activation of gold nanorods for remote stimulation of calcium signaling and protein expression in HEK 293T cells.

    PubMed

    Sanchez-Rodriguez, Sandra P; Sauer, Jeremy P; Stanley, Sarah A; Qian, Xi; Gottesdiener, Andrew; Friedman, Jeffrey M; Dordick, Jonathan S

    2016-10-01

    Remote activation of specific cells of a heterogeneous population can provide a useful research tool for clinical and therapeutic applications. Here, we demonstrate that photostimulation of gold nanorods (AuNRs) using a tunable near-infrared (NIR) laser at specific longitudinal surface plasmon resonance wavelengths can induce the selective and temporal internalization of calcium in HEK 293T cells. Biotin-PEG-Au nanorods coated with streptavidin Alexa Fluor-633 and biotinylated anti-His antibodies were used to decorate cells genetically modified with His-tagged TRPV1 temperature-sensitive ion channel and AuNRs conjugated to biotinylated RGD peptide were used to decorate integrins in unmodified cells. Plasmonic activation can be stimulated at weak laser power (0.7-4.0 W/cm(2) ) without causing cell damage. Selective activation of TRPV1 channels could be controlled by laser power between 1.0 and 1.5 W/cm(2) . Integrin targeting robustly stimulated calcium signaling due to a dense cellular distribution of nanoparticles. Such an approach represents a functional tool for combinatorial activation of cell signaling in heterogeneous cell populations. Our results suggest that it is possible to induce cell activation via NIR-induced gold nanorod heating through the selective targeting of membrane proteins in unmodified cells to produce calcium signaling and downstream expression of specific genes with significant relevance for both in vitro and therapeutic applications. Biotechnol. Bioeng. 2016;113: 2228-2240. © 2016 Wiley Periodicals, Inc.

  5. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    PubMed

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early

  6. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    PubMed

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early

  7. Calcium signalling indicates bilateral power balancing in the Drosophila flight muscle during manoeuvring flight.

    PubMed

    Lehmann, Fritz-Olaf; Skandalis, Dimitri A; Berthé, Ruben

    2013-05-01

    Manoeuvring flight in animals requires precise adjustments of mechanical power output produced by the flight musculature. In many insects such as fruit flies, power generation is most likely varied by altering stretch-activated tension, that is set by sarcoplasmic calcium levels. The muscles reside in a thoracic shell that simultaneously drives both wings during wing flapping. Using a genetically expressed muscle calcium indicator, we here demonstrate in vivo the ability of this animal to bilaterally adjust its calcium activation to the mechanical power output required to sustain aerodynamic costs during flight. Motoneuron-specific comparisons of calcium activation during lift modulation and yaw turning behaviour suggest slightly higher calcium activation for dorso-longitudinal than for dorsoventral muscle fibres, which corroborates the elevated need for muscle mechanical power during the wings' downstroke. During turning flight, calcium activation explains only up to 54 per cent of the required changes in mechanical power, suggesting substantial power transmission between both sides of the thoracic shell. The bilateral control of muscle calcium runs counter to the hypothesis that the thorax of flies acts as a single, equally proportional source for mechanical power production for both flapping wings. Collectively, power balancing highlights the precision with which insects adjust their flight motor to changing energetic requirements during aerial steering. This potentially enhances flight efficiency and is thus of interest for the development of technical vehicles that employ bioinspired strategies of power delivery to flapping wings.

  8. Calcium signalling indicates bilateral power balancing in the Drosophila flight muscle during manoeuvring flight.

    PubMed

    Lehmann, Fritz-Olaf; Skandalis, Dimitri A; Berthé, Ruben

    2013-05-01

    Manoeuvring flight in animals requires precise adjustments of mechanical power output produced by the flight musculature. In many insects such as fruit flies, power generation is most likely varied by altering stretch-activated tension, that is set by sarcoplasmic calcium levels. The muscles reside in a thoracic shell that simultaneously drives both wings during wing flapping. Using a genetically expressed muscle calcium indicator, we here demonstrate in vivo the ability of this animal to bilaterally adjust its calcium activation to the mechanical power output required to sustain aerodynamic costs during flight. Motoneuron-specific comparisons of calcium activation during lift modulation and yaw turning behaviour suggest slightly higher calcium activation for dorso-longitudinal than for dorsoventral muscle fibres, which corroborates the elevated need for muscle mechanical power during the wings' downstroke. During turning flight, calcium activation explains only up to 54 per cent of the required changes in mechanical power, suggesting substantial power transmission between both sides of the thoracic shell. The bilateral control of muscle calcium runs counter to the hypothesis that the thorax of flies acts as a single, equally proportional source for mechanical power production for both flapping wings. Collectively, power balancing highlights the precision with which insects adjust their flight motor to changing energetic requirements during aerial steering. This potentially enhances flight efficiency and is thus of interest for the development of technical vehicles that employ bioinspired strategies of power delivery to flapping wings. PMID:23486171

  9. Calcium signalling indicates bilateral power balancing in the Drosophila flight muscle during manoeuvring flight

    PubMed Central

    Lehmann, Fritz-Olaf; Skandalis, Dimitri A.; Berthé, Ruben

    2013-01-01

    Manoeuvring flight in animals requires precise adjustments of mechanical power output produced by the flight musculature. In many insects such as fruit flies, power generation is most likely varied by altering stretch-activated tension, that is set by sarcoplasmic calcium levels. The muscles reside in a thoracic shell that simultaneously drives both wings during wing flapping. Using a genetically expressed muscle calcium indicator, we here demonstrate in vivo the ability of this animal to bilaterally adjust its calcium activation to the mechanical power output required to sustain aerodynamic costs during flight. Motoneuron-specific comparisons of calcium activation during lift modulation and yaw turning behaviour suggest slightly higher calcium activation for dorso-longitudinal than for dorsoventral muscle fibres, which corroborates the elevated need for muscle mechanical power during the wings’ downstroke. During turning flight, calcium activation explains only up to 54 per cent of the required changes in mechanical power, suggesting substantial power transmission between both sides of the thoracic shell. The bilateral control of muscle calcium runs counter to the hypothesis that the thorax of flies acts as a single, equally proportional source for mechanical power production for both flapping wings. Collectively, power balancing highlights the precision with which insects adjust their flight motor to changing energetic requirements during aerial steering. This potentially enhances flight efficiency and is thus of interest for the development of technical vehicles that employ bioinspired strategies of power delivery to flapping wings. PMID:23486171

  10. Calcium puffs are generic InsP(3)-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses.

    PubMed

    Tovey, S C; de Smet, P; Lipp, P; Thomas, D; Young, K W; Missiaen, L; De Smedt, H; Parys, J B; Berridge, M J; Thuring, J; Holmes, A; Bootman, M D

    2001-11-01

    Elementary Ca(2+) signals, such as "Ca(2+) puffs", which arise from the activation of inositol 1,4,5-trisphosphate receptors, are building blocks for local and global Ca(2+) signalling. We characterized Ca(2+) puffs in six cell types that expressed differing ratios of the three inositol 1,4,5-trisphosphate receptor isoforms. The amplitudes, spatial spreads and kinetics of the events were similar in each of the cell types. The resemblance of Ca(2+) puffs in these cell types suggests that they are a generic elementary Ca(2+) signal and, furthermore, that the different inositol 1,4,5-trisphosphate isoforms are functionally redundant at the level of subcellular Ca(2+) signalling. Hormonal stimulation of SH-SY5Y neuroblastoma cells and HeLa cells for several hours downregulated inositol 1,4,5-trisphosphate expression and concomitantly altered the properties of the Ca(2+) puffs. The amplitude and duration of Ca(2+) puffs were substantially reduced. In addition, the number of Ca(2+) puff sites active during the onset of a Ca(2+) wave declined. The consequence of the changes in Ca(2+) puff properties was that cells displayed a lower propensity to trigger regenerative Ca(2+) waves. Therefore, Ca(2+) puffs underlie inositol 1,4,5-trisphosphate signalling in diverse cell types and are focal points for regulation of cellular responses.

  11. Antagonizing amyloid-β/calcium-sensing receptor signaling in human astrocytes and neurons: a key to halt Alzheimer's disease progression?

    PubMed Central

    Dal Prà, Ilaria; Chiarini, Anna; Armato, Ubaldo

    2015-01-01

    Astrocytes’ roles in late-onset Alzheimer's disease (LOAD) promotion are important, since they survive soluble or fibrillar amyloid-β peptides (Aβs) neurotoxic effects, undergo alterations of intracellular and intercellular Ca2+ signaling and gliotransmitters release via the Aβ/α7-nAChR (α7-nicotinic acetylcholine receptor) signaling, and overproduce/oversecrete newly synthesized Aβ42 oligomers, NO, and VEGF-A via the Aβ/CaSR (calcium-sensing receptor) signaling. Recently, it was suggested that the NMDAR (N-methyl-D-aspartate receptor) inhibitor nitromemantine would block the synapse-destroying effects of Aβ/α7-nAChR signaling. Yet, this and the progressive extracellular accrual and spreading of Aβ42 oligomers would be stopped well upstream by NPS 2143, an allosteric CaSR antagonist (calcilytic). PMID:25883618

  12. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    SciTech Connect

    Magno, Aaron L.; Ingley, Evan; Brown, Suzanne J.; Conigrave, Arthur D.; Ratajczak, Thomas; Ward, Bryan K.

    2011-09-09

    Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  13. Osteogenic Differentiation of MSC through Calcium Signaling Activation: Transcriptomics and Functional Analysis

    PubMed Central

    Viti, Federica; Landini, Martina; Mezzelani, Alessandra; Petecchia, Loredana; Milanesi, Luciano; Scaglione, Silvia

    2016-01-01

    The culture of progenitor mesenchymal stem cells (MSC) onto osteoconductive materials to induce a proper osteogenic differentiation and mineralized matrix regeneration represents a promising and widely diffused experimental approach for tissue-engineering (TE) applications in orthopaedics. Among modern biomaterials, calcium phosphates represent the best bone substitutes, due to their chemical features emulating the mineral phase of bone tissue. Although many studies on stem cells differentiation mechanisms have been performed involving calcium-based scaffolds, results often focus on highlighting production of in vitro bone matrix markers and in vivo tissue ingrowth, while information related to the biomolecular mechanisms involved in the early cellular calcium-mediated differentiation is not well elucidated yet. Genetic programs for osteogenesis have been just partially deciphered, and the description of the different molecules and pathways operative in these differentiations is far from complete, as well as the activity of calcium in this process. The present work aims to shed light on the involvement of extracellular calcium in MSC differentiation: a better understanding of the early stage osteogenic differentiation program of MSC seeded on calcium-based biomaterials is required in order to develop optimal strategies to promote osteogenesis through the use of new generation osteoconductive scaffolds. A wide spectrum of analysis has been performed on time-dependent series: gene expression profiles are obtained from samples (MSC seeded on calcium-based scaffolds), together with related microRNAs expression and in vivo functional validation. On this basis, and relying on literature knowledge, hypotheses are made on the biomolecular players activated by the biomaterial calcium-phosphate component. Interestingly, a key role of miR-138 was highlighted, whose inhibition markedly increases osteogenic differentiation in vitro and enhance ectopic bone formation in vivo

  14. Cytosolic and nuclear calcium signaling in atrial myocytes: IP3-mediated calcium release and the role of mitochondria.

    PubMed

    Hohendanner, Felix; Maxwell, Joshua T; Blatter, Lothar A

    2015-01-01

    In rabbit atrial myocytes Ca signaling has unique features due to the lack of transverse (t) tubules, the spatial arrangement of mitochondria and the contribution of inositol-1,4,5-trisphosphate (IP3) receptor-induced Ca release (IICR). During excitation-contraction coupling action potential-induced elevation of cytosolic [Ca] originates in the cell periphery from Ca released from the junctional sarcoplasmic reticulum (j-SR) and then propagates by Ca-induced Ca release from non-junctional (nj-) SR toward the cell center. The subsarcolemmal region between j-SR and the first array of nj-SR Ca release sites is devoid of mitochondria which results in a rapid propagation of activation through this domain, whereas the subsequent propagation through the nj-SR network occurs at a velocity typical for a propagating Ca wave. Inhibition of mitochondrial Ca uptake with the Ca uniporter blocker Ru360 accelerates propagation and increases the amplitude of Ca transients (CaTs) originating from nj-SR. Elevation of cytosolic IP3 levels by rapid photolysis of caged IP3 has profound effects on the magnitude of subcellular CaTs with increased Ca release from nj-SR and enhanced CaTs in the nuclear compartment. IP3 uncaging restricted to the nucleus elicites 'mini'-Ca waves that remain confined to this compartment. Elementary IICR events (Ca puffs) preferentially originate in the nucleus in close physical association with membrane structures of the nuclear envelope and the nucleoplasmic reticulum. The data suggest that in atrial myocytes the nucleus is an autonomous Ca signaling domain where Ca dynamics are primarily governed by IICR. PMID:25891132

  15. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants.

    PubMed

    Sinha, Deepak K; Chandran, Predeesh; Timm, Alicia E; Aguirre-Rojas, Lina; Smith, C Michael

    2016-01-01

    The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI) metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion.

  16. Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells.

    PubMed

    Centuori, Sara M; Gomes, Cecil J; Trujillo, Jesse; Borg, Jamie; Brownlee, Joshua; Putnam, Charles W; Martinez, Jesse D

    2016-07-01

    Obesity and a western diet have been linked to high levels of bile acids and the development of colon cancer. Specifically, increased levels of the bile acid deoxycholic acid (DCA), an established tumor promoter, has been shown to correlate with increased development of colorectal adenomas and progression to carcinoma. Herein we investigate the mechanism by which DCA leads to EGFR-MAPK activation, a candidate mechanism by which DCA may promote colorectal tumorigenesis. DCA treated colon cancer cells exhibited strong and prolonged activation of ERK1/2 when compared to EGF treatment alone. We also showed that DCA treatment prevents EGFR degradation as opposed to the canonical EGFR recycling observed with EGF treatment. Moreover, the combination of DCA and EGF treatment displayed synergistic activity, suggesting DCA activates MAPK signaling in a non-canonical manner. Further evaluation showed that DCA treatment increased intracellular calcium levels and CAMKII phosphorylation, and that blocking calcium with BAPTA-AM abrogated MAPK activation induced by DCA, but not by EGF. Finally we showed that DCA-induced CAMKII leads to MAPK activation through the recruitment of c-Src. Taken together, we demonstrated that DCA regulates MAPK activation through calcium signaling, an alternative mechanism not previously recognized in human colon cancer cells. Importantly, this mechanism allows for EGFR to escape degradation and thus achieve a constitutively active state, which may explain its tumor promoting effects.

  17. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants.

    PubMed

    Sinha, Deepak K; Chandran, Predeesh; Timm, Alicia E; Aguirre-Rojas, Lina; Smith, C Michael

    2016-01-01

    The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI) metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion. PMID:26815857

  18. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants

    PubMed Central

    Sinha, Deepak K.; Chandran, Predeesh; Timm, Alicia E.; Aguirre-Rojas, Lina; Smith, C. Michael

    2016-01-01

    The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI) metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion. PMID:26815857

  19. Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells.

    PubMed

    Centuori, Sara M; Gomes, Cecil J; Trujillo, Jesse; Borg, Jamie; Brownlee, Joshua; Putnam, Charles W; Martinez, Jesse D

    2016-07-01

    Obesity and a western diet have been linked to high levels of bile acids and the development of colon cancer. Specifically, increased levels of the bile acid deoxycholic acid (DCA), an established tumor promoter, has been shown to correlate with increased development of colorectal adenomas and progression to carcinoma. Herein we investigate the mechanism by which DCA leads to EGFR-MAPK activation, a candidate mechanism by which DCA may promote colorectal tumorigenesis. DCA treated colon cancer cells exhibited strong and prolonged activation of ERK1/2 when compared to EGF treatment alone. We also showed that DCA treatment prevents EGFR degradation as opposed to the canonical EGFR recycling observed with EGF treatment. Moreover, the combination of DCA and EGF treatment displayed synergistic activity, suggesting DCA activates MAPK signaling in a non-canonical manner. Further evaluation showed that DCA treatment increased intracellular calcium levels and CAMKII phosphorylation, and that blocking calcium with BAPTA-AM abrogated MAPK activation induced by DCA, but not by EGF. Finally we showed that DCA-induced CAMKII leads to MAPK activation through the recruitment of c-Src. Taken together, we demonstrated that DCA regulates MAPK activation through calcium signaling, an alternative mechanism not previously recognized in human colon cancer cells. Importantly, this mechanism allows for EGFR to escape degradation and thus achieve a constitutively active state, which may explain its tumor promoting effects. PMID:27086143

  20. Up-regulation of ryanodine receptor expression increases the calcium-induced calcium release and spontaneous calcium signals in cerebral arteries from hindlimb unloaded rats.

    PubMed

    Morel, Jean-Luc; Dabertrand, Fabrice; Porte, Yves; Prevot, Anne; Macrez, Nathalie

    2014-08-01

    Microgravity induces a redistribution of blood volume. Consequently, astronauts' body pressure is modified so that the upright blood pressure gradient is abolished, thereby inducing a modification in cerebral blood pressure. This effect is mimicked in the hindlimb unloaded rat model. After a duration of 8 days of unloading, Ca2+ signals activated by depolarization and inositol-1,4,5-trisphosphate intracellular release were increased in cerebral arteries. In the presence of ryanodine and thapsigargin, the depolarization-induced Ca2+ signals remained increased in hindlimb suspended animals, indicating that Ca2+ influx and Ca2+-induced Ca2+ release mechanism were both increased. Spontaneous Ca2+ waves and localized Ca2+ events were also investigated. Increases in both amplitude and frequency of spontaneous Ca2+ waves were measured in hindlimb suspension conditions. After pharmacological segregation of Ca2+ sparks and Ca2+ sparklets, their kinetic parameters were characterized. Hindlimb suspension induced an increase in the frequencies of both Ca2+ localized events, suggesting an increase of excitability. Labeling with bodipy compounds suggested that voltage-dependent Ca2+ channels and ryanodine receptor expressions were increased. Finally, the expression of the ryanodine receptor subtype 1 (RyR1) was increased in hindlimb unloading conditions. Taken together, these results suggest that RyR1 expression and voltage-dependent Ca2+ channels activity are the focal points of the regulation of Ca2+ signals activated by vasoconstriction in rat cerebral arteries with an increase of the voltage-dependent Ca2+ influx. PMID:24233561

  1. The effect of chemically defined medium on spontaneous calcium signaling of in situ chondrocytes during long-term culture.

    PubMed

    Zhou, Yilu; Park, Miri; Cheung, Enoch; Wang, Liyun; Lu, X Lucas

    2015-04-13

    Chemically defined serum-free medium has been shown to better maintain the mechanical integrity of articular cartilage explants than serum-supplemented medium during long-term in vitro culture, but little is known about its effect on cellular mechanisms. We hypothesized that the chemically defined culture medium could regulate the spontaneous calcium signaling of in situ chondrocytes, which may modulate the cellular metabolic activities. Bovine cartilage explants were cultured in chemically defined serum-free or serum-supplemented medium for four weeks. The spontaneous intracellular calcium ([Ca(2+)]i) signaling of in situ chondrocytes was longitudinally measured together along with the biomechanical properties of the explants. The spontaneous [Ca(2+)]i oscillations in chondrocytes were enhanced at the initial exposure of serum-supplemented medium, but were significantly dampened afterwards. In contrast, cartilage explants in chemically defined medium preserved the level of calcium signaling, and showed more responsive cells with higher and more frequent [Ca(2+)]i peaks throughout the four week culture in comparison to those in serum medium. Regardless of the culture medium that the explants were exposed, a positive correlation was detected between the [Ca(2+)]i responsive rate and the stiffness of cartilage (Spearman's rank correlation coefficient=0.762). A stable pattern of [Ca(2+)]i peaks was revealed for each chondrocyte, i.e., the spatiotemporal features of [Ca(2+)]i peaks from a cell were highly consistent during the observation period (15 min). This study showed that the beneficial effect of chemically defined culture of cartilage explants is associated with the spontaneous [Ca(2+)]i signaling of chondrocytes in cartilage.

  2. The Effect of Chemically Defined Medium on Spontaneous Calcium Signaling of In Situ Chondrocytes during Long-term Culture

    PubMed Central

    Zhou, Yilu; Park, Miri; Cheung, Enoch; Wang, Liyun; Lu, X. Lucas

    2015-01-01

    Chemically defined serum-free medium has been shown to maintain the mechanical integrity of articular cartilage explants better than serum-supplemented medium during long-term in vitro culture, but little is known about its effect on cellular mechanisms. We hypothesized that the chemically defined culture medium can regulate the spontaneous calcium signaling of in situ chondrocytes, which may modulate the cellular metabolic activities. Bovine cartilage explants were cultured in chemically defined serum-free or serum-supplemented medium for four weeks. The spontaneous intracellular calcium ([Ca2+]i) signaling of in situ chondrocytes was longitudinally measured together along with the biomechanical properties of the explants. The spontaneous [Ca2+]i oscillations in chondrocytes were enhanced at the initial exposure of serum-supplemented medium, but were significantly dampened afterwards. In contrast, cartilage explants in chemically defined medium preserved the level of calcium signaling, and showed more responsive cells with higher and more frequent [Ca2+]i peaks after one to four week culture in comparison to those in serum medium. Regardless of the culture medium that the explants were exposed, a positive correlation was detected between the [Ca2+]i responsive rate and the stiffness of cartilage (Spearman's rank correlation coefficient = 0.762). A stable pattern of [Ca2+]i peaks was revealed for each chondrocyte, i.e., the spatiotemporal features of [Ca2+]i peaks from a cell were highly consistent during the observation period (15 minutes). This study showed that the beneficial effect of chemically defined culture of cartilage explants is associated with the spontaneous [Ca2+]i signaling of chondrocytes in cartilage. PMID:25700610

  3. The signaling module cAMP/Epac/Rap1/PLCε/IP3 mobilizes acrosomal calcium during sperm exocytosis.

    PubMed

    Lucchesi, Ornella; Ruete, María C; Bustos, Matías A; Quevedo, María F; Tomes, Claudia N

    2016-04-01

    Exocytosis of the sperm's single secretory granule, or acrosome, is a regulated exocytosis triggered by components of the egg's investments. In addition to external calcium, sperm exocytosis (termed the acrosome reaction) requires cAMP synthesized endogenously and calcium mobilized from the acrosome through IP3-sensitive channels. The relevant cAMP target is Epac. In the first part of this paper, we present a novel tool (the TAT-cAMP sponge) to investigate cAMP-related signaling pathways in response to progesterone as acrosome reaction trigger. The TAT-cAMP sponge consists of the cAMP-binding sites of protein kinase A regulatory subunit RIβ fused to the protein transduction domain TAT of the human immunodeficiency virus-1. The sponge permeated into sperm, sequestered endogenous cAMP, and blocked exocytosis. Progesterone increased the population of sperm with Rap1-GTP, Rab3-GTP, and Rab27-GTP in the acrosomal region; pretreatment with the TAT-cAMP sponge prevented the activation of all three GTPases. In the second part of this manuscript, we show that phospholipase Cε (PLCε) is required for the acrosome reaction downstream of Rap1 and upstream of intra-acrosomal calcium mobilization. Last, we present direct evidence that cAMP, Epac, Rap1, and PLCε are necessary for calcium mobilization from sperm's secretory granule. In summary, we describe here a pathway that connects cAMP to calcium mobilization from the acrosome during sperm exocytosis. Never before had direct evidence for each step of the cascade been put together in the same study.

  4. Cytosolic calcium signals elicited by the pathogen-associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature.

    PubMed

    Thor, Kathrin; Peiter, Edgar

    2014-12-01

    Changes in cytosolic free calcium ([Ca(2+)]cyt) are an early and essential element of signalling networks activated by the perception of pathogen-associated molecular patterns (PAMPs), such as flg22. The flg22-induced calcium signal has been described on whole-plant, but not on single-cell scale so far. Also, the Ca(2+) sources and channels contributing to its generation are still obscure. Ratiometric fluorescence imaging employing the calcium reporter Yellow Cameleon 3.6 was performed to analyse the flg22-induced calcium signature in single guard cells of Arabidopsis thaliana. Calcium stores and channel types involved in its generation were determined by a pharmacological approach. In contrast to the calcium signal determined on whole-plant level, the signature on single-cell level is not characterized by one sustained response, but by oscillations in [Ca(2+)]cyt. These oscillations were abolished by EGTA and lanthanum, as well as by U73122, neomycin and TMB-8, but only partially or not at all affected by inhibitors of glutamate receptor-like channels and cyclic nucleotide-gated channels. Our analyses suggest that the response observed on whole-plant level is the summary of oscillations occurring in single cells. Parallel to external calcium, influx via channels located at internal stores contributes to the signal.

  5. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    PubMed Central

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal

  6. A calcium sensor - protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species.

    PubMed

    Beckmann, Linda; Edel, Kai H; Batistič, Oliver; Kudla, Jörg

    2016-01-01

    Calcium (Ca(2+)) signaling is a universal mechanism of signal transduction and involves Ca(2+) signal formation and decoding of information by Ca(2+) binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca(2+) binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca(2+) signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca(2+) signaling specificity. PMID:27538881

  7. Calcium Signalling Triggered by NAADP in T Cells Determines Cell Shape and Motility During Immune Synapse Formation

    PubMed Central

    Nebel, Merle; Zhang, Bo; Odoardi, Francesca; Flügel, Alexander; Potter, Barry V. L.; Guse, Andreas H.

    2016-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) has been implicated as an initial Ca2+ trigger in T cell Ca2+ signalling, but its role in formation of the immune synapse in CD4+ effector T cells has not been analysed. CD4+ T cells are activated by the interaction with peptide-MHCII complexes on the surface of antigen-presenting cells. Establishing a two-cell system including primary rat CD4+ T cells specific for myelin basic protein and rat astrocytes enabled us to mirror this activation process in vitro and to analyse Ca2+ signalling, cell shape changes and motility in T cells during formation and maintenance of the immune synapse. After immune synapse formation, T cells showed strong, antigen-dependent increases in free cytosolic calcium concentration ([Ca2+]i). Analysis of cell shape and motility revealed rounding and immobilization of T cells depending on the amplitude of the Ca2+ signal. NAADP-antagonist BZ194 effectively blocked Ca2+ signals in T cells evoked by the interaction with antigen-presenting astrocytes. BZ194 reduced the percentage of T cells showing high Ca2+ signals thereby supporting the proposed trigger function of NAADP for global Ca2+ signalling. Taken together, the NAADP signalling pathway is further confirmed as a promising target for specific pharmacological intervention to modulate T cell activation. PMID:27747143

  8. A calcium sensor – protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species

    PubMed Central

    Beckmann, Linda; Edel, Kai H.; Batistič, Oliver; Kudla, Jörg

    2016-01-01

    Calcium (Ca2+) signaling is a universal mechanism of signal transduction and involves Ca2+ signal formation and decoding of information by Ca2+ binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca2+ binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca2+ signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca2+ signaling specificity. PMID:27538881

  9. Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors.

    PubMed

    Hamada, Kozo; Terauchi, Akiko; Nakamura, Kyoko; Higo, Takayasu; Nukina, Nobuyuki; Matsumoto, Nagisa; Hisatsune, Chihiro; Nakamura, Takeshi; Mikoshiba, Katsuhiko

    2014-09-23

    The inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum mediates calcium signaling that impinges on intracellular processes. IP3Rs are allosteric proteins comprising four subunits that form an ion channel activated by binding of IP3 at a distance. Defective allostery in IP3R is considered crucial to cellular dysfunction, but the specific mechanism remains unknown. Here we demonstrate that a pleiotropic enzyme transglutaminase type 2 targets the allosteric coupling domain of IP3R type 1 (IP3R1) and negatively regulates IP3R1-mediated calcium signaling and autophagy by locking the subunit configurations. The control point of this regulation is the covalent posttranslational modification of the Gln2746 residue that transglutaminase type 2 tethers to the adjacent subunit. Modification of Gln2746 and IP3R1 function was observed in Huntington disease models, suggesting a pathological role of this modification in the neurodegenerative disease. Our study reveals that cellular signaling is regulated by a new mode of posttranslational modification that chronically and enzymatically blocks allosteric changes in the ligand-gated channels that relate to disease states.

  10. A new system for profiling drug-induced calcium signal perturbation in human embryonic stem cell-derived cardiomyocytes.

    PubMed

    Lewis, Kimberley J; Silvester, Nicole C; Barberini-Jammaers, Steven; Mason, Sammy A; Marsh, Sarah A; Lipka, Magdalena; George, Christopher H

    2015-03-01

    The emergence of human stem cell-derived cardiomyocyte (hSCCM)-based assays in the cardiovascular (CV) drug discovery sphere requires the development of improved systems for interrogating the rich information that these cell models have the potential to yield. We developed a new analytical framework termed SALVO (synchronization, amplitude, length, and variability of oscillation) to profile the amplitude and temporal patterning of intra- and intercellular calcium signals in hSCCM. SALVO quantified drug-induced perturbations in the calcium signaling "fingerprint" in spontaneously contractile hSCCM. Multiparametric SALVO outputs were integrated into a single index of in vitro cytotoxicity that confirmed the rank order of perturbation as astemizole > thioridazine > cisapride > flecainide > valdecoxib > sotalol > nadolol ≈ control. This rank order of drug-induced Ca(2+) signal disruption is in close agreement with the known arrhythmogenic liabilities of these compounds in humans. Validation of the system using a second set of compounds and hierarchical cluster analysis demonstrated the utility of SALVO to discriminate drugs based on their mechanisms of action. We discuss the utility of this new mechanistically agnostic system for the evaluation of in vitro drug cytotoxicity in hSCCM syncytia and the potential placement of SALVO in the early stage drug screening framework. PMID:25367900

  11. A New System for Profiling Drug-Induced Calcium Signal Perturbation in Human Embryonic Stem Cell–Derived Cardiomyocytes

    PubMed Central

    Lewis, Kimberley J.; Silvester, Nicole C.; Barberini-Jammaers, Steven; Mason, Sammy A.; Marsh, Sarah A.; Lipka, Magdalena

    2015-01-01

    The emergence of human stem cell–derived cardiomyocyte (hSCCM)–based assays in the cardiovascular (CV) drug discovery sphere requires the development of improved systems for interrogating the rich information that these cell models have the potential to yield. We developed a new analytical framework termed SALVO (synchronization, amplitude, length, and variability of oscillation) to profile the amplitude and temporal patterning of intra- and intercellular calcium signals in hSCCM. SALVO quantified drug-induced perturbations in the calcium signaling “fingerprint” in spontaneously contractile hSCCM. Multiparametric SALVO outputs were integrated into a single index of in vitro cytotoxicity that confirmed the rank order of perturbation as astemizole > thioridazine > cisapride > flecainide > valdecoxib > sotalol > nadolol ≈ control. This rank order of drug-induced Ca2+ signal disruption is in close agreement with the known arrhythmogenic liabilities of these compounds in humans. Validation of the system using a second set of compounds and hierarchical cluster analysis demonstrated the utility of SALVO to discriminate drugs based on their mechanisms of action. We discuss the utility of this new mechanistically agnostic system for the evaluation of in vitro drug cytotoxicity in hSCCM syncytia and the potential placement of SALVO in the early stage drug screening framework. PMID:25367900

  12. Pathway Network Analyses for Autism Reveal Multisystem Involvement, Major Overlaps with Other Diseases and Convergence upon MAPK and Calcium Signaling.

    PubMed

    Wen, Ya; Alshikho, Mohamad J; Herbert, Martha R

    2016-01-01

    We used established databases in standard ways to systematically characterize gene ontologies, pathways and functional linkages in the large set of genes now associated with autism spectrum disorders (ASDs). These conditions are particularly challenging--they lack clear pathognomonic biological markers, they involve great heterogeneity across multiple levels (genes, systemic biological and brain characteristics, and nuances of behavioral manifestations)-and yet everyone with this diagnosis meets the same defining behavioral criteria. Using the human gene list from Simons Foundation Autism Research Initiative (SFARI) we performed gene set enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database, and then derived a pathway network from pathway-pathway functional interactions again in reference to KEGG. Through identifying the GO (Gene Ontology) groups in which SFARI genes were enriched, mapping the coherence between pathways and GO groups, and ranking the relative strengths of representation of pathway network components, we 1) identified 10 disease-associated and 30 function-associated pathways 2) revealed calcium signaling pathway and neuroactive ligand-receptor interaction as the most enriched, statistically significant pathways from the enrichment analysis, 3) showed calcium signaling pathways and MAPK signaling pathway to be interactive hubs with other pathways and also to be involved with pervasively present biological processes, 4) found convergent indications that the process "calcium-PRC (protein kinase C)-Ras-Raf-MAPK/ERK" is likely a major contributor to ASD pathophysiology, and 5) noted that perturbations associated with KEGG's category of environmental information processing were common. These findings support the idea that ASD-associated genes may contribute not only to core features of ASD themselves but also to vulnerability to other chronic and systemic problems potentially including cancer, metabolic conditions

  13. Pathway Network Analyses for Autism Reveal Multisystem Involvement, Major Overlaps with Other Diseases and Convergence upon MAPK and Calcium Signaling.

    PubMed

    Wen, Ya; Alshikho, Mohamad J; Herbert, Martha R

    2016-01-01

    We used established databases in standard ways to systematically characterize gene ontologies, pathways and functional linkages in the large set of genes now associated with autism spectrum disorders (ASDs). These conditions are particularly challenging--they lack clear pathognomonic biological markers, they involve great heterogeneity across multiple levels (genes, systemic biological and brain characteristics, and nuances of behavioral manifestations)-and yet everyone with this diagnosis meets the same defining behavioral criteria. Using the human gene list from Simons Foundation Autism Research Initiative (SFARI) we performed gene set enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database, and then derived a pathway network from pathway-pathway functional interactions again in reference to KEGG. Through identifying the GO (Gene Ontology) groups in which SFARI genes were enriched, mapping the coherence between pathways and GO groups, and ranking the relative strengths of representation of pathway network components, we 1) identified 10 disease-associated and 30 function-associated pathways 2) revealed calcium signaling pathway and neuroactive ligand-receptor interaction as the most enriched, statistically significant pathways from the enrichment analysis, 3) showed calcium signaling pathways and MAPK signaling pathway to be interactive hubs with other pathways and also to be involved with pervasively present biological processes, 4) found convergent indications that the process "calcium-PRC (protein kinase C)-Ras-Raf-MAPK/ERK" is likely a major contributor to ASD pathophysiology, and 5) noted that perturbations associated with KEGG's category of environmental information processing were common. These findings support the idea that ASD-associated genes may contribute not only to core features of ASD themselves but also to vulnerability to other chronic and systemic problems potentially including cancer, metabolic conditions

  14. Pathway Network Analyses for Autism Reveal Multisystem Involvement, Major Overlaps with Other Diseases and Convergence upon MAPK and Calcium Signaling

    PubMed Central

    Wen, Ya; Alshikho, Mohamad J.; Herbert, Martha R.

    2016-01-01

    We used established databases in standard ways to systematically characterize gene ontologies, pathways and functional linkages in the large set of genes now associated with autism spectrum disorders (ASDs). These conditions are particularly challenging—they lack clear pathognomonic biological markers, they involve great heterogeneity across multiple levels (genes, systemic biological and brain characteristics, and nuances of behavioral manifestations)—and yet everyone with this diagnosis meets the same defining behavioral criteria. Using the human gene list from Simons Foundation Autism Research Initiative (SFARI) we performed gene set enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database, and then derived a pathway network from pathway-pathway functional interactions again in reference to KEGG. Through identifying the GO (Gene Ontology) groups in which SFARI genes were enriched, mapping the coherence between pathways and GO groups, and ranking the relative strengths of representation of pathway network components, we 1) identified 10 disease-associated and 30 function-associated pathways 2) revealed calcium signaling pathway and neuroactive ligand-receptor interaction as the most enriched, statistically significant pathways from the enrichment analysis, 3) showed calcium signaling pathways and MAPK signaling pathway to be interactive hubs with other pathways and also to be involved with pervasively present biological processes, 4) found convergent indications that the process “calcium-PRC (protein kinase C)-Ras-Raf-MAPK/ERK” is likely a major contributor to ASD pathophysiology, and 5) noted that perturbations associated with KEGG’s category of environmental information processing were common. These findings support the idea that ASD-associated genes may contribute not only to core features of ASD themselves but also to vulnerability to other chronic and systemic problems potentially including cancer, metabolic

  15. Transient coupling of Ng-CAM expression to NgCAM-dependent calcium signaling during migration of new neurons in the adult songbird brain.

    PubMed

    Goldman, S A; Williams, S; Barami, K; Lemmon, V; Nedergaard, M

    1996-01-01

    The adult avian forebrain continues to generate neurons from subependymal zone (SZ) precursor cells, whose neuronal progeny migrate into the brain upon radial guide fibers. These neurons express the immunoglobulin-family adhesion molecule NgCAM, and their migration in culture is disrupted by anti-NgCAM Fab. Confocal imaging of adult zebra finch SZ loaded with the calcium indicator fluo-3, as well as ratio imaging with the indicator fura-2, revealed that migrating new neurons responded to microgram amounts of NgCAM with reversible increments in cytosolic calcium. The calcium response to NgCAM antigen was developmentally restricted, in that it was only manifested by neurons for roughly the 3- to 4-day period between 6 and 9 DIV, even though NgCAM expression persisted tonically thereafter. The period during which NgCAM elicited a calcium signal corresponded to the postmitotic age at which new, bipolar neurons leave the adult SZ to enter the brain parenchyma in vivo. Accordingly, the calcium response to NgCAM was largely limited to morphologically bipolar cells. Anti-NgCAM IgG also evoked a neuronal calcium signal over the same restricted period that NgCAM protein exerted its effect. These findings suggest a dynamic coupling and uncoupling of calcium-dependent signal transduction pathways to a stably expressed surface adhesion molecule, whose function in a given neuron may therefore evolve with cellular maturation.

  16. Calcium signaling, excitability, and synaptic plasticity defects in a mouse model of Alzheimer's disease.

    PubMed

    Zhang, Hua; Liu, Jie; Sun, Suya; Pchitskaya, Ekaterina; Popugaeva, Elena; Bezprozvanny, Ilya

    2015-01-01

    Alzheimer's disease (AD) and aging result in impaired ability to store memories, but the cellular mechanisms responsible for these defects are poorly understood. Presenilin 1 (PS1) mutations are responsible for many early-onset familial AD (FAD) cases. The phenomenon of hippocampal long-term potentiation (LTP) is widely used in studies of memory formation and storage. Recent data revealed long-term LTP maintenance (L-LTP) is impaired in PS1-M146V knock-in (KI) FAD mice. To understand the basis for this phenomenon, in the present study we analyzed structural synaptic plasticity in hippocampal cultures from wild type (WT) and KI mice. We discovered that exposure to picrotoxin induces formation of mushroom spines in both WT and KI cultures, but the maintenance of mushroom spines is impaired in KI neurons. This maintenance defect can be explained by an abnormal firing pattern during the consolidation phase of structural plasticity in KI neurons. Reduced frequency of neuronal firing in KI neurons is caused by enhanced calcium-induced calcium release (CICR), enhanced activity of calcium-activated potassium channels, and increased afterhyperpolarization. As a result, "consolidation" pattern of neuronal activity converted to "depotentiation" pattern of neuronal activity in KI neurons. Consistent with this model, we demonstrated that pharmacological inhibitors of CICR (dantrolene), of calcium-activated potassium channels (apamin), and of calcium-dependent phosphatase calcineurin (FK506) are able to rescue structural plasticity defects in KI neurons. Furthermore, we demonstrate that incubation with dantrolene or apamin also rescued L-LTP defects in KI hippocampal slices, suggesting a role for a similar mechanism. This proposed mechanism may be responsible for memory defects in AD but also for age-related memory decline.

  17. Aluminum Chloride Induces Osteoblasts Apoptosis via Disrupting Calcium Homeostasis and Activating Ca(2+)/CaMKII Signal Pathway.

    PubMed

    Cao, Zheng; Liu, Dawei; Zhang, Qiuyue; Sun, Xudong; Li, Yanfei

    2016-02-01

    Aluminum promotes osteoblast (OB) apoptosis. Apoptosis is induced by the disordered calcium homeostasis. Therefore, to investigate the relationship between Al-induced OB apoptosis and calcium homeostasis, calvarium OBs from neonatal rats (3-4 days) were cultured and exposed to 0.048-mg/mL Al(3+) or 0.048-mg/mL Al(3+) combined with 5 μM BAPTA-AM (OBs were pretreated with 5 μM BAPTA-AM for 1 h, then added 0.048 mg/mL Al(3+)), respectively. Then OB apoptosis rate, intracellular calcium ions concentration ([Ca(2+)]i), mRNA expression level of calmodulin (CaM), and protein expression levels of CaM and p-CaMKII in OBs were examined. The result showed that AlCl3 increased OB apoptosis rate, and [Ca(2+)]i and p-CaMKII expression levels and decreased CaM expression levels, whereas BAPTA-AM relieved the effects. These results proved that AlCl3 induced OB apoptosis by disrupting the intracellular Ca(2+) homeostasis and activating the Ca(2+)/CaMKII signal pathway. Our findings can provide new insights for revealing the apoptosis mechanism of OBs exposed to AlCl3.

  18. Calcium-sensing receptors signal constitutive macropinocytosis and facilitate the uptake of NOD2 ligands in macrophages.

    PubMed

    Canton, Johnathan; Schlam, Daniel; Breuer, Christian; Gütschow, Michael; Glogauer, Michael; Grinstein, Sergio

    2016-01-01

    Macropinocytosis can be induced in several cell types by stimulation with growth factors. In selected cell types, notably macrophages and dendritic cells, macropinocytosis occurs constitutively, supporting the uptake of antigens for subsequent presentation. Despite their different mode of initiation and contrasting physiological roles, it is tacitly assumed that both types of macropinocytosis are mechanistically identical. We report that constitutive macropinocytosis is stringently calcium dependent, while stimulus-induced macropinocytosis is not. Extracellular calcium is sensed by G-protein-coupled calcium-sensing receptors (CaSR) that signal macropinocytosis through Gα-, phosphatidylinositol 3-kinase and phospholipase C. These pathways promote the recruitment of exchange factors that stimulate Rac and/or Cdc42, driving actin-dependent formation of ruffles and macropinosomes. In addition, the heterologous expression of CaSR in HEK293 cells confers on them the ability to perform constitutive macropinocytosis. Finally, we show that CaSR-induced constitutive macropinocytosis facilitates the sentinel function of macrophages, promoting the efficient delivery of ligands to cytosolic pattern-recognition receptors. PMID:27050483

  19. A molecular signaling model of platelet phosphoinositide and calcium regulation during homeostasis and P2Y1 activation

    PubMed Central

    Purvis, Jeremy E.; Chatterjee, Manash S.; Brass, Lawrence F.

    2008-01-01

    To quantify how various molecular mechanisms are integrated to maintain platelet homeostasis and allow responsiveness to adenosine diphosphate (ADP), we developed a computational model of the human platelet. Existing kinetic information for 77 reactions, 132 fixed kinetic rate constants, and 70 species was combined with electrochemical calculations, measurements of platelet ultrastructure, novel experimental results, and published single-cell data. The model accurately predicted: (1) steady-state resting concentrations for intracellular calcium, inositol 1,4,5-trisphosphate, diacylglycerol, phosphatidic acid, phosphatidylinositol, phosphatidylinositol phosphate, and phosphatidylinositol 4,5-bisphosphate; (2) transient increases in intracellular calcium, inositol 1,4,5-trisphosphate, and Gq-GTP in response to ADP; and (3) the volume of the platelet dense tubular system. A more stringent test of the model involved stochastic simulation of individual platelets, which display an asynchronous calcium spiking behavior in response to ADP. Simulations accurately reproduced the broad frequency distribution of measured spiking events and demonstrated that asynchronous spiking was a consequence of stochastic fluctuations resulting from the small volume of the platelet. The model also provided insights into possible mechanisms of negative-feedback signaling, the relative potency of platelet agonists, and cell-to-cell variation across platelet populations. This integrative approach to platelet biology offers a novel and complementary strategy to traditional reductionist methods. PMID:18596227

  20. Caveolin-rich lipid rafts of the plasma membrane of mature cerebellar granule neurons are microcompartments for calcium/reactive oxygen and nitrogen species cross-talk signaling.

    PubMed

    Marques-da-Silva, D; Gutierrez-Merino, C

    2014-08-01

    In previous works, we have shown that L-type voltage-operated calcium channels, N-methyl-d-aspartate receptors (NMDAr), neuronal nitric oxide synthase (nNOS) and cytochrome b5 reductase (Cb5R) co-localize within the same lipid rafts-associated nanodomains in mature cerebellar granule neurons (CGN). In this work, we show that the calcium transport systems of the plasma membrane extruding calcium from the cytosol, plasma membrane calcium pumps (PMCA) and sodium-calcium exchangers (NCX), are also associated with these nanodomains. All these proteins were found to co-immunoprecipitate with caveolin-1 after treatment with 25mM methyl-β-cyclodextrin, a lipid rafts solubilizing agent. However, the treatment of CGN with methyl-β-cyclodextrin largely attenuated the rise of cytosolic calcium induced by l-glutamate through NMDAr. Fluorescence energy transfer imaging revealed that all of them are present in sub-microdomains of a size smaller than 200nm, with a peripheral distribution of the calcium extrusion systems PMCA and NCX. Fluorescence microscopy images analysis revealed high calcium dynamic sub-microcompartments near the plasma membrane in fura-2-loaded CGN at short times after addition of l-glutamate. In addition, the close proximity between sources of nitric oxide (nNOS) and superoxide anion (Cb5R) suggests that these nanodomains are involved in the fast and efficient cross-talk between calcium and redox signaling in neurons. PMID:24996880

  1. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    PubMed

    Nishitani, Wagner Shin; Alencar, Adriano Mesquita; Wang, Yingxiao

    2015-01-01

    A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7) expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount) and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment) and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  2. Calcium Signaling Involvement in Cadmium-Induced Astrocyte Cytotoxicity and Cell Death Through Activation of MAPK and PI3K/Akt Signaling Pathways.

    PubMed

    Jiang, Jiao Hua; Ge, Guo; Gao, Kai; Pang, Ying; Chai, Rui Chao; Jia, Xi Hua; Kong, Jin Ge; Yu, Albert Cheung-Hoi

    2015-09-01

    Cadmium (Cd), a highly ubiquitous toxic heavy metal, can contaminate the environment, including agricultural soil, water and air, via industrial runoff and other sources of pollution. Cd accumulated in the body via direct exposure or through the food chain results in neurodegeneration and many other diseases. Previous studies on its toxicity in the central nervous system (CNS) focused mainly on neurons. To obtain a more comprehensive understanding of Cd toxicity for the CNS, we investigated how astrocytes respond to acute and chronic Cd exposure and its toxic molecular mechanisms. When primary cultures of cerebral cortical astrocytes incubated with 1-300 μM CdCl2, morphological changes, LDH release and cell death were observed in a time and dose-dependent manner. Further studies demonstrated that acute and chronic Cd treatment phosphorylated JNK, p38 and Akt to different degrees, while ERK1/2 was only phosphorylated under low doses of Cd (10 μM) exposure. Inhibition of JNK and PI3K/Akt, but not of p38, could partially protect astrocyte from cytotoxicity in chronic and acute Cd exposure. Moreover, Cd also induced a strong calcium signal, while BAPTA, a specific intracellular calcium (Ca(2+)) chelator, prevented Cd-induced intracellular increase of calcium levels in astrocytes; inhibited the Cd-induced activation of ERK1/2, JNK, p38 and Akt; and also significantly reduced astrocyte cell death. All of these results suggested that the Cd-Ca(2+)-MAPK and PI3K/Akt signaling pathways were involved in Cd-induced toxicity in astrocytes. This toxicity involvement indicates that these pathways may be exploited as a target for the prevention of Cd-induced neurodegenerative diseases. PMID:26248512

  3. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system

    PubMed Central

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E. F.; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V. L.; Guse, Andreas H.

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate/calcium

  4. Fc receptor-mediated phagocytosis, superoxide production and calcium signaling of beta 2 integrin-deficient bovine neutrophils.

    PubMed

    Nagahata, H; Sawada, C; Higuchi, H; Teraoka, H; Yamaguchi, M

    1997-01-01

    Fc receptor for immunoglobulin G-mediated phagocytosis, superoxide production and intracellular calcium ([Ca2+]i) signaling of complement receptor type 3 (CR3)-deficient neutrophils from a heifer with leukocyte adhesion deficiency (BLAD) were compared to those of control heifers. The mean phagocytic activity of IgG-coated yeasts and aggregated bovine IgG (Agg-IgG)-induced superoxide production of CR3-deficient neutrophils were 10% and 77.9%, respectively, of those of control neutrophils. The [Ca2+]i signals in CR3-deficient neutrophils stimulated with Agg-IgG or concanavalin A were different with mean peak [Ca2+]i concentrations of 78% and 41.9%, respectively, of those of control neutrophils. These findings suggest that Fc receptor-mediated neutrophil functions are closely dependent on the presence of CR3 (CD11b/CD18) on the neutrophil cell surfaces. PMID:9343828

  5. Hypermuscular mice with mutation in the myostatin gene display altered calcium signalling

    PubMed Central

    Bodnár, Dóra; Geyer, Nikolett; Ruzsnavszky, Olga; Oláh, Tamás; Hegyi, Bence; Sztretye, Mónika; Fodor, János; Dienes, Beatrix; Balogh, Ágnes; Papp, Zoltán; Szabó, László; Müller, Géza; Csernoch, László; Szentesi, Péter

    2014-01-01

    Myostatin, a member of the transforming growth factor β family, is a potent negative regulator of skeletal muscle growth, as myostatin-deficient mice show a great increase in muscle mass. Yet the physical performance of these animals is reduced. As an explanation for this, alterations in the steps in excitation–contraction coupling were hypothesized and tested for in mice with the 12 bp deletion in the propeptide region of the myostatin precursor (MstnCmpt-dl1Abc or Cmpt). In voluntary wheel running, control C57BL/6 mice performed better than the mutant animals in both maximal speed and total distance covered. Despite the previously described lower specific force of Cmpt animals, the pCa–force relationship, determined on chemically permeabilized fibre segments, did not show any significant difference between the two mouse strains. While resting intracellular Ca2+ concentration ([Ca2+]i) measured on single intact flexor digitorum brevis (FDB) muscle fibres using Fura-2 AM was similar to control (72.0 ± 1.7 vs. 78.1 ± 2.9 nm, n = 38 and 45), the amplitude of KCl-evoked calcium transients was smaller (360 ± 49 vs. 222 ± 45 nm, n = 22) in the mutant strain. Similar results were obtained using tetanic stimulation and Rhod-2 AM, which gave calcium transients that were smaller (2.42 ± 0.11 vs. 2.06 ± 0.10 ΔF/F0, n = 14 and 13, respectively) on Cmpt mice. Sarcoplasmic reticulum (SR) calcium release flux calculated from these transients showed a reduced peak (23.7 ± 3.0 vs. 15.8 ± 2.1 mMs−1) and steady level (5.7 ± 0.7 vs. 3.7 ± 0.5 mm s−1) with no change in the peak-to-steady ratio. The amplitude and spatial spread of calcium release events detected on permeabilized FDB fibres were also significantly smaller in mutant mice. These results suggest that reduced SR calcium release underlies the reduced muscle force in Cmpt animals. PMID:24445322

  6. Nitric oxide signals are interlinked with calcium signals in normal pancreatic stellate cells upon oxidative stress and inflammation

    PubMed Central

    2016-01-01

    The mammalian diffuse stellate cell system comprises retinoid-storing cells capable of remarkable transformations from a quiescent to an activated myofibroblast-like phenotype. Activated pancreatic stellate cells (PSCs) attract attention owing to the pivotal role they play in development of tissue fibrosis in chronic pancreatitis and pancreatic cancer. However, little is known about the actual role of PSCs in the normal pancreas. These enigmatic cells have recently been shown to respond to physiological stimuli in a manner that is markedly different from their neighbouring pancreatic acinar cells (PACs). Here, we demonstrate the capacity of PSCs to generate nitric oxide (NO), a free radical messenger mediating, for example, inflammation and vasodilatation. We show that production of cytosolic NO in PSCs is unambiguously related to cytosolic Ca2+ signals. Only stimuli that evoke Ca2+ signals in the PSCs elicit consequent NO generation. We provide fresh evidence for the striking difference between signalling pathways in PSCs and adjacent PACs, because PSCs, in contrast to PACs, generate substantial Ca2+-mediated and NOS-dependent NO signals. We also show that inhibition of NO generation protects both PSCs and PACs from necrosis. Our results highlight the interplay between Ca2+ and NO signalling pathways in cell–cell communication, and also identify a potential therapeutic target for anti-inflammatory therapies. PMID:27488376

  7. The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins.

    PubMed

    Mola, Maria Grazia; Sparaneo, Angelo; Gargano, Concetta Domenica; Spray, David C; Svelto, Maria; Frigeri, Antonio; Scemes, Eliana; Nicchia, Grazia Paola

    2016-01-01

    Regulatory volume decrease (RVD) is a process by which cells restore their original volume in response to swelling. In this study, we have focused on the role played by two different Aquaporins (AQPs), Aquaporin-4 (AQP4), and Aquaporin-1 (AQP1), in triggering RVD and in mediating calcium signaling in astrocytes under hypotonic stimulus. Using biophysical techniques to measure water flux through the plasma membrane of wild-type (WT) and AQP4 knockout (KO) astrocytes and of an astrocyte cell line (DI TNC1) transfected with AQP4 or AQP1, we here show that AQP-mediated fast swelling kinetics play a key role in triggering and accelerating RVD. Using calcium imaging, we show that AQP-mediated fast swelling kinetics also significantly increases the amplitude of calcium transients inhibited by Gadolinium and Ruthenium Red, two inhibitors of the transient receptor potential vanilloid 4 (TRPV4) channels, and prevented by removing extracellular calcium. Finally, inhibition of TRPV4 or removal of extracellular calcium does not affect RVD. All together our study provides evidence that (1) AQP influenced swelling kinetics is the main trigger for RVD and in mediating calcium signaling after hypotonic stimulus together with TRPV4, and (2) calcium influx from the extracellular space and/or TRPV4 are not essential for RVD to occur in astrocytes.

  8. Imaging long distance propagating calcium signals in intact plant leaves with the BRET-based GFP-aequorin reporter.

    PubMed

    Xiong, Tou Cheu; Ronzier, Elsa; Sanchez, Frédéric; Corratgé-Faillie, Claire; Mazars, Christian; Thibaud, Jean-Baptiste

    2014-01-01

    Calcium (Ca(2+)) is a second messenger involved in many plant signaling processes. Biotic and abiotic stimuli induce Ca(2+) signals within plant cells, which, when decoded, enable these cells to adapt in response to environmental stresses. Multiple examples of Ca(2+) signals from plants containing the fluorescent yellow cameleon sensor (YC) have contributed to the definition of the Ca(2+) signature in some cell types such as root hairs, pollen tubes and guard cells. YC is, however, of limited use in highly autofluorescent plant tissues, in particular mesophyll cells. Alternatively, the bioluminescent reporter aequorin enables Ca(2+) imaging in the whole plant, including mesophyll cells, but this requires specific devices capable of detecting the low amounts of emitted light. Another type of Ca(2+) sensor, referred to as GFP-aequorin (G5A), has been engineered as a chimeric protein, which combines the two photoactive proteins from the jellyfish Aequorea victoria, the green fluorescent protein (GFP) and the bioluminescent protein aequorin. The Ca(2+)-dependent light-emitting property of G5A is based on a bioluminescence resonance energy transfer (BRET) between aequorin and GFP. G5A has been used for over 10 years for enhanced in vivo detection of Ca(2+) signals in animal tissues. Here, we apply G5A in Arabidopsis and show that G5A greatly improves the imaging of Ca(2+) dynamics in intact plants. We describe a simple method to image Ca(2+) signals in autofluorescent leaves of plants with a cooled charge-coupled device (cooled CCD) camera. We present data demonstrating how plants expressing the G5A probe can be powerful tools for imaging of Ca(2+) signals. It is shown that Ca(2+) signals propagating over long distances can be visualized in intact plant leaves and are visible mainly in the veins. PMID:24600459

  9. Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology.

    PubMed

    Nomura, Hironari; Shiina, Takashi

    2014-07-01

    Recent studies have demonstrated that chloroplasts and mitochondria evoke specific Ca(2+) signals in response to biotic and abiotic stresses in a stress-dependent manner. The identification of Ca(2+) transporters and Ca(2+) signaling molecules in chloroplasts and mitochondria implies that they play roles in controlling not only intra-organellar functions, but also extra-organellar processes such as plant immunity and stress responses. It appears that organellar Ca(2+) signaling might be more important to plant cell functions than previously thought. This review briefly summarizes what is known about the molecular basis of Ca(2+) signaling in plant mitochondria and chloroplasts.

  10. Calcium signalling through nucleotide receptor P2Y2 in cultured human vascular endothelium.

    PubMed

    Viana, F; de Smedt, H; Droogmans, G; Nilius, B

    1998-08-01

    Microfluorometric measurements in Fura-2-loaded single cultured human vascular endothelial cells were used to characterize the intracellular calcium [Ca2+]i responses triggered by extracellular application of adenosine 5'-triphosphate (ATP) and other nucleotides. Application of ATP or uridine 5'-triphosphate (UTP) gave rise to dose-dependent elevations of [Ca2+]i in all the cells tested. At saturating concentrations of agonist, the [Ca2+]i response was biphasic, with an early peak and a sustained plateau. Unlike peak responses, the sustained Ca2+ plateau was sensitive to removal of Ca2+ from the external medium. Mn2+ quenching revealed the presence of Ca2+ influx during the agonist-induced calcium plateau. The agonist-evoked calcium plateau was inhibited in a dose-dependent manner by the Cl-channel blocker NPPB, by the divalent cation Ni2+ and by the imidazole antimycotic econazole. Previously, these compounds have been shown to block store-operated Ca2+ entry. The two phases of the agonist-evoked [Ca2+]i response were blocked by the specific phospholipase C inhibitor U-73122 and by intracellular injection of low molecular weight heparin, suggesting the involvement of IP3-sensitive intracellular Ca2+ stores. The pharmacological profile of the response, using different nucleotides and analogues, ATP = UTP > ADP = UDP, and no responses to P2X1 and P2Y1 agonists, suggested the involvement of P2Y2 receptors. The expression of mRNA for the P2Y2 receptor was detected by RT-PCR analysis. These results indicate that P2Y2 receptors linked to intracellular Ca2+ mobilization are present in human vascular endothelial cells. The initial [Ca2+]i mobilization is followed by a phase of elevated [Ca2+]i influx.

  11. Large-Conductance Calcium-Activated Potassium Channels in Glomerulus: From Cell Signal Integration to Disease

    PubMed Central

    Tao, Jie; Lan, Zhen; Wang, Yunman; Hei, Hongya; Tian, Lulu; Pan, Wanma; Zhang, Xuemei; Peng, Wen

    2016-01-01

    Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca2+, possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus. PMID:27445840

  12. Large-Conductance Calcium-Activated Potassium Channels in Glomerulus: From Cell Signal Integration to Disease.

    PubMed

    Tao, Jie; Lan, Zhen; Wang, Yunman; Hei, Hongya; Tian, Lulu; Pan, Wanma; Zhang, Xuemei; Peng, Wen

    2016-01-01

    Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca(2+), possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus. PMID:27445840

  13. Differential volume regulation and calcium signaling in two ciliary body cell types is subserved by TRPV4 channels

    PubMed Central

    Jo, Andrew O.; Lakk, Monika; Frye, Amber M.; Phuong, Tam T. T.; Redmon, Sarah N.; Roberts, Robin; Berkowitz, Bruce A.; Yarishkin, Oleg; Križaj, David

    2016-01-01

    Fluid secretion by the ciliary body plays a critical and irreplaceable function in vertebrate vision by providing nutritive support to the cornea and lens, and by maintaining intraocular pressure. Here, we identify TRPV4 (transient receptor potential vanilloid isoform 4) channels as key osmosensors in nonpigmented epithelial (NPE) cells of the mouse ciliary body. Hypotonic swelling and the selective agonist GSK1016790A (EC50 ∼33 nM) induced sustained transmembrane cation currents and cytosolic [Ca2+]i elevations in dissociated and intact NPE cells. Swelling had no effect on [Ca2+]i levels in pigment epithelial (PE) cells, whereas depolarization evoked [Ca2+]i elevations in both NPE and PE cells. Swelling-evoked [Ca2+]i signals were inhibited by the TRPV4 antagonist HC067047 (IC50 ∼0.9 μM) and were absent in Trpv4−/− NPE. In NPE, but not PE, swelling-induced [Ca2+]i signals required phospholipase A2 activation. TRPV4 localization to NPE was confirmed with immunolocalization and excitation mapping approaches, whereas in vivo MRI analysis confirmed TRPV4-mediated signals in the intact mouse ciliary body. Trpv2 and Trpv4 were the most abundant vanilloid transcripts in CB. Overall, our results support a model whereby TRPV4 differentially regulates cell volume, lipid, and calcium signals in NPE and PE cell types and therefore represents a potential target for antiglaucoma medications. PMID:27006502

  14. Bimatoprost and prostaglandin F(2 alpha) selectively stimulate intracellular calcium signaling in different cat iris sphincter cells.

    PubMed

    Spada, Clayton S; Krauss, Achim H-P; Woodward, David F; Chen, June; Protzman, Charles E; Nieves, Amelia L; Wheeler, Larry A; Scott, David F; Sachs, George

    2005-01-01

    Bimatoprost is a synthetic analog of prostaglandin F(2 alpha) ethanolamide (prostamide F(2 alpha)), and shares a pharmacological profile consistent with that of the prostamides. Like prostaglandin F(2 alpha) carboxylic acid, bimatoprost potently lowers intraocular pressure in dogs, primates and humans. In order to distinguish its mechanism of action from prostaglandin F(2 alpha), fluorescence confocal microscopy was used to examine the effects of bimatoprost, prostaglandin F(2 alpha) and 17-phenyl prostaglandin F(2 alpha) on calcium signaling in resident cells of digested cat iris sphincter, a tissue which exhibits contractile responses to both agonists. Constant superfusion conditions obviated effective conversion of bimatoprost. Serial challenge with 100 nM bimatoprost and prostaglandin F(2 alpha) consistently evoked responses in different cells within the same tissue preparation, whereas prostaglandin F(2 alpha) and 17-phenyl prostaglandin F(2 alpha) elicited signaling responses in the same cells. Bimatoprost-sensitive cells were consistently re-stimulated with bimatoprost only, and prostaglandin F(2 alpha) sensitive cells could only be re-stimulated with prostaglandin F(2 alpha). The selective stimulation of different cells in the same cat iris sphincter preparation by bimatoprost and prostaglandin F(2 alpha), along with the complete absence of observed instances in which the same cells respond to both agonists, strongly suggests the involvement of distinct receptors for prostaglandin F(2 alpha) and bimatoprost. Further, prostaglandin F(2 alpha) but not bimatoprost potently stimulated calcium signaling in isolated human embryonic kidney cells stably transfected with the feline- and human-prostaglandin F(2 alpha) FP-receptor and in human dermal fibroblast cells, and only prostaglandin F(2 alpha) competed with radioligand binding in HEK-feFP cells. These studies provide further evidence for the existence of a bimatoprost-sensitive receptor that is distinct from

  15. Molecular mechanisms of calcium-sensing receptor-mediated calcium signaling in the modulation of epithelial ion transport and bicarbonate secretion.

    PubMed

    Xie, Rui; Dong, Xiao; Wong, Chase; Vallon, Volker; Tang, Bo; Sun, Jun; Yang, Shiming; Dong, Hui

    2014-12-12

    Epithelial ion transport is mainly under the control of intracellular cAMP and Ca(2+) signaling. Although the molecular mechanisms of cAMP-induced epithelial ion secretion are well defined, those induced by Ca(2+) signaling remain poorly understood. Because calcium-sensing receptor (CaSR) activation results in an increase in cytosolic Ca(2+) ([Ca(2+)]cyt) but a decrease in cAMP levels, it is a suitable receptor for elucidating the mechanisms of [Ca(2+)]cyt-mediated epithelial ion transport and duodenal bicarbonate secretion (DBS). CaSR proteins have been detected in mouse duodenal mucosae and human intestinal epithelial cells. Spermine and Gd(3+), two CaSR activators, markedly stimulated DBS without altering duodenal short circuit currents in wild-type mice but did not affect DBS and duodenal short circuit currents in cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice. Clotrimazole, a selective blocker of intermediate conductance Ca(2+)-activated K(+) channels but not chromanol 293B, a selective blocker of cAMP-activated K(+) channels (KCNQ1), significantly inhibited CaSR activator-induced DBS, which was similar in wild-type and KCNQ1 knockout mice. HCO3 (-) fluxes across epithelial cells were activated by a CFTR activator, but blocked by a CFTR inhibitor. CaSR activators induced HCO3 (-) fluxes, which were inhibited by a receptor-operated channel (ROC) blocker. Moreover, CaSR activators dose-dependently raised cellular [Ca(2+)]cyt, which was abolished in Ca(2+)-free solutions and inhibited markedly by selective CaSR antagonist calhex 231, and ROC blocker in both animal and human intestinal epithelial cells. Taken together, CaSR activation triggers Ca(2+)-dependent DBS, likely through the ROC, intermediate conductance Ca(2+)-activated K(+) channels, and CFTR channels. This study not only reveals that [Ca(2+)]cyt signaling is critical to modulate DBS but also provides novel insights into the molecular mechanisms of CaSR-mediated Ca(2+)-induced

  16. Intracellular calcium signals regulate growth of hepatic stellate cells via specific effects on cell cycle progression

    PubMed Central

    Soliman, Elwy M.; Rodrigues, Michele Angela; Gomes, Dawidson Assis; Sheung, Nina; Yu, Jin; Amaya, Maria Jimina; Nathanson, Michael H.; Dranoff, Jonathan A.

    2010-01-01

    Hepatic stellate cells (HSC) are important mediators of liver fibrosis. Hormones linked to downstream intracellular Ca2+ signals upregulate HSC proliferation, but the mechanisms by which this occurs are unknown. Nuclear and cytosolic Ca2+ signals may have distinct effects on cell proliferation, so we expressed plasmid and adenoviral constructs containing the Ca2+ chelator parvalbumin (PV) linked to either a nuclear localization sequence (NLS) or a nuclear export sequence (NES) to block Ca2+ signals in distinct compartments within LX-2 immortalized human HSC and primary rat HSC. PV-NLS and PV-NES constructs each targeted to the appropriate intracellular compartment and blocked Ca2+ signals only within that compartment. PV-NLS and PV-NES constructs inhibited HSC growth. Furthermore, blockade of nuclear or cytosolic Ca2+ signals arrested growth at the G2/mitosis (G2/M) cell-cycle interface and prevented the onset of mitosis. Blockade of nuclear or cytosolic Ca2+ signals downregulated phosphorylation of the G2/M checkpoint phosphatase Cdc25C. Inhibition of calmodulin kinase II (CaMK II) had identical effects on LX-2 growth and Cdc25C phosphorylation. We propose that nuclear and cytosolic Ca2+ are critical signals that regulate HSC growth at the G2/M checkpoint via CaMK II-mediated regulation of Cdc25C phosphorylation. These data provide a new logical target for pharmacological therapy directed against progression of liver fibrosis. PMID:19131107

  17. Reactive oxygen species and nitric oxide mediate plasticity of neuronal calcium signaling

    NASA Astrophysics Data System (ADS)

    Yermolaieva, Olena; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2000-01-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are important participants in signal transduction that could provide the cellular basis for activity-dependent regulation of neuronal excitability. In young rat cortical brain slices and undifferentiated PC12 cells, paired application of depolarization/agonist stimulation and oxidation induces long-lasting potentiation of subsequent Ca2+ signaling that is reversed by hypoxia. This potentiation critically depends on NO production and involves cellular ROS utilization. The ability to develop the Ca2+ signal potentiation is regulated by the developmental stage of nerve tissue, decreasing markedly in adult rat cortical neurons and differentiated PC12 cells.

  18. Metabotropic glutamate 2 receptors modulate synaptic inputs and calcium signals in striatal cholinergic interneurons.

    PubMed

    Pisani, Antonio; Bonsi, Paola; Catania, Maria Vincenza; Giuffrida, Raffaella; Morari, Michele; Marti, Matteo; Centonze, Diego; Bernardi, Giorgio; Kingston, Ann E; Calabresi, Paolo

    2002-07-15

    Striatal cholinergic interneurons were recorded from a rat slice preparation. Synaptic potentials evoked by intrastriatal stimulation revealed three distinct components: a glutamatergic EPSP, a GABA(A)-mediated depolarizing potential, and an acetylcholine (ACh)-mediated IPSP. The responses to group II metabotropic glutamate (mGlu) receptor activation were investigated on the isolated components of the synaptic potentials. Each pharmacologically isolated component was reversibly reduced by bath-applied LY379268 and ((2S,1'R,2'R,3'R)-2-(2,3-dicarboxylcyclopropyl)-glycine, group II agonists. In an attempt to define the relevance of group II mGlu receptor activation on cholinergic transmission, we focused on the inhibitory effect on the IPSP, which was mimicked and occluded by omega-agatoxin IVA (omega-Aga-IVA), suggesting a modulation on P-type high-voltage-activated calcium channels. Spontaneous calcium-dependent plateau-potentials (PPs) were recorded with cesium-filled electrodes plus tetraethylammonium and TTX in the perfusing solution, and measurements of intracellular calcium [Ca2+]i changes were obtained simultaneously. PPs and the concomitant [Ca2+]i elevations were significantly reduced in amplitude and duration by LY379268. The mGlu-mediated inhibitory effect on PPs was mimicked by omega-Aga-IVA, suggesting an involvement of P-type channels. Moreover, electrically induced ACh release from striatal slices was reduced by mGlu2 receptor agonists and occluded by omega-Aga-IVA in a dose-dependent manner. Finally, double-labeling experiments combining mGlu2 receptor in situ hybridization and choline acetyltransferase immunocytochemistry revealed a strong mGlu2 receptor labeling on cholinergic interneurons, whereas single-label isotopic in situ hybridization for mGlu3 receptors did not show any labeling in these large striatal interneurons. These results suggest that the mGlu2 receptor-mediated modulatory action on cell excitability would tune striatal ACh release

  19. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view.

    PubMed

    Cai, Xinjiang; Wang, Xiangbing; Patel, Sandip; Clapham, David E

    2015-03-01

    The basic principles of Ca(2+) regulation emerged early in prokaryotes. Ca(2+) signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca(2+) concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca(2+) signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca(2+) exchangers and four-domain voltage-gated Ca(2+) channels. Newly identified evolutionary evidence suggests that the distinct Ca(2+) signaling machineries in animals, plants and fungi likely originated from an ancient Ca(2+) signaling machinery prior to early eukaryotic radiation.

  20. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view.

    PubMed

    Cai, Xinjiang; Wang, Xiangbing; Patel, Sandip; Clapham, David E

    2015-03-01

    The basic principles of Ca(2+) regulation emerged early in prokaryotes. Ca(2+) signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca(2+) concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca(2+) signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca(2+) exchangers and four-domain voltage-gated Ca(2+) channels. Newly identified evolutionary evidence suggests that the distinct Ca(2+) signaling machineries in animals, plants and fungi likely originated from an ancient Ca(2+) signaling machinery prior to early eukaryotic radiation. PMID:25498309

  1. The Intermediate Conductance Calcium-activated Potassium Channel KCa3.1 Regulates Vascular Smooth Muscle Cell Proliferation via Controlling Calcium-dependent Signaling*

    PubMed Central

    Bi, Dan; Toyama, Kazuyoshi; Lemaître, Vincent; Takai, Jun; Fan, Fan; Jenkins, David P.; Wulff, Heike; Gutterman, David D.; Park, Frank; Miura, Hiroto

    2013-01-01

    The intermediate conductance calcium-activated potassium channel KCa3.1 contributes to a variety of cell activation processes in pathologies such as inflammation, carcinogenesis, and vascular remodeling. We examined the electrophysiological and transcriptional mechanisms by which KCa3.1 regulates vascular smooth muscle cell (VSMC) proliferation. Platelet-derived growth factor-BB (PDGF)-induced proliferation of human coronary artery VSMCs was attenuated by lowering intracellular Ca2+ concentration ([Ca2+]i) and was enhanced by elevating [Ca2+]i. KCa3.1 blockade or knockdown inhibited proliferation by suppressing the rise in [Ca2+]i and attenuating the expression of phosphorylated cAMP-response element-binding protein (CREB), c-Fos, and neuron-derived orphan receptor-1 (NOR-1). This antiproliferative effect was abolished by elevating [Ca2+]i. KCa3.1 overexpression induced VSMC proliferation, and potentiated PDGF-induced proliferation, by inducing CREB phosphorylation, c-Fos, and NOR-1. Pharmacological stimulation of KCa3.1 unexpectedly suppressed proliferation by abolishing the expression and activity of KCa3.1 and PDGF β-receptors and inhibiting the rise in [Ca2+]i. The stimulation also attenuated the levels of phosphorylated CREB, c-Fos, and cyclin expression. After KCa3.1 blockade, the characteristic round shape of VSMCs expressing high l-caldesmon and low calponin-1 (dedifferentiation state) was maintained, whereas KCa3.1 stimulation induced a spindle-shaped cellular appearance, with low l-caldesmon and high calponin-1. In conclusion, KCa3.1 plays an important role in VSMC proliferation via controlling Ca2+-dependent signaling pathways, and its modulation may therefore constitute a new therapeutic target for cell proliferative diseases such as atherosclerosis. PMID:23609438

  2. Internal noise induced pattern formation and spatial coherence resonance for calcium signals of diffusively coupled cells

    NASA Astrophysics Data System (ADS)

    Wang, Maosheng; Sun, Runzhi; Huang, Wanxia; Tu, Yubing

    2014-01-01

    The effects of internal noise in a square-lattice Höfer calcium oscillation system have been studied numerically in the context of chemical Langevin equations. It was found that spatial pattern can be induced by internal noise and, interestingly, an optimal internal noise strength (or optimal cell size) exists which maximizes the spatial coherence of pattern, indicating the occurrence of spatial coherence resonance. The effects of control parameter and coupling strength on system’s spatial coherence have also been investigated. We found that larger internal noise strength is needed to induce spatial pattern for a small control parameter or a stronger coupling strength, and spatial coherence can be enhanced by coupling.

  3. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization

    PubMed Central

    Arking, Dan E.; Pulit, Sara L.; Crotti, Lia; van der Harst, Pim; Munroe, Patricia B.; Koopmann, Tamara T.; Sotoodehnia, Nona; Rossin, Elizabeth J.; Morley, Michael; Wang, Xinchen; Johnson, Andrew D.; Lundby, Alicia; Gudbjartsson, Daníel F.; Noseworthy, Peter A.; Eijgelsheim, Mark; Bradford, Yuki; Tarasov, Kirill V.; Dörr, Marcus; Müller-Nurasyid, Martina; Lahtinen, Annukka M.; Nolte, Ilja M.; Smith, Albert Vernon; Bis, Joshua C.; Isaacs, Aaron; Newhouse, Stephen J.; Evans, Daniel S.; Post, Wendy S.; Waggott, Daryl; Lyytikäinen, Leo-Pekka; Hicks, Andrew A.; Eisele, Lewin; Ellinghaus, David; Hayward, Caroline; Navarro, Pau; Ulivi, Sheila; Tanaka, Toshiko; Tester, David J.; Chatel, Stéphanie; Gustafsson, Stefan; Kumari, Meena; Morris, Richard W.; Naluai, Åsa T.; Padmanabhan, Sandosh; Kluttig, Alexander; Strohmer, Bernhard; Panayiotou, Andrie G.; Torres, Maria; Knoflach, Michael; Hubacek, Jaroslav A.; Slowikowski, Kamil; Raychaudhuri, Soumya; Kumar, Runjun D.; Harris, Tamara B.; Launer, Lenore J.; Shuldiner, Alan R.; Alonso, Alvaro; Bader, Joel S.; Ehret, Georg; Huang, Hailiang; Kao, W.H. Linda; Strait, James B.; Macfarlane, Peter W.; Brown, Morris; Caulfield, Mark J.; Samani, Nilesh J.; Kronenberg, Florian; Willeit, Johann; Smith, J. Gustav; Greiser, Karin H.; zu Schwabedissen, Henriette Meyer; Werdan, Karl; Carella, Massimo; Zelante, Leopoldo; Heckbert, Susan R.; Psaty, Bruce M.; Rotter, Jerome I.; Kolcic, Ivana; Polašek, Ozren; Wright, Alan F.; Griffin, Maura; Daly, Mark J.; Arnar, David O.; Hólm, Hilma; Thorsteinsdottir, Unnur; Denny, Joshua C.; Roden, Dan M.; Zuvich, Rebecca L.; Emilsson, Valur; Plump, Andrew S.; Larson, Martin G.; O'Donnell, Christopher J.; Yin, Xiaoyan; Bobbo, Marco; D'Adamo, Adamo P.; Iorio, Annamaria; Sinagra, Gianfranco; Carracedo, Angel; Cummings, Steven R.; Nalls, Michael A.; Jula, Antti; Kontula, Kimmo K.; Marjamaa, Annukka; Oikarinen, Lasse; Perola, Markus; Porthan, Kimmo; Erbel, Raimund; Hoffmann, Per; Jöckel, Karl-Heinz; Kälsch, Hagen; Nöthen, Markus M.; consortium, HRGEN; den Hoed, Marcel; Loos, Ruth J.F.; Thelle, Dag S.; Gieger, Christian; Meitinger, Thomas; Perz, Siegfried; Peters, Annette; Prucha, Hanna; Sinner, Moritz F.; Waldenberger, Melanie; de Boer, Rudolf A.; Franke, Lude; van der Vleuten, Pieter A.; Beckmann, Britt Maria; Martens, Eimo; Bardai, Abdennasser; Hofman, Nynke; Wilde, Arthur A.M.; Behr, Elijah R.; Dalageorgou, Chrysoula; Giudicessi, John R.; Medeiros-Domingo, Argelia; Barc, Julien; Kyndt, Florence; Probst, Vincent; Ghidoni, Alice; Insolia, Roberto; Hamilton, Robert M.; Scherer, Stephen W.; Brandimarto, Jeffrey; Margulies, Kenneth; Moravec, Christine E.; Fabiola Del, Greco M.; Fuchsberger, Christian; O'Connell, Jeffrey R.; Lee, Wai K.; Watt, Graham C.M.; Campbell, Harry; Wild, Sarah H.; El Mokhtari, Nour E.; Frey, Norbert; Asselbergs, Folkert W.; Leach, Irene Mateo; Navis, Gerjan; van den Berg, Maarten P.; van Veldhuisen, Dirk J.; Kellis, Manolis; Krijthe, Bouwe P.; Franco, Oscar H.; Hofman, Albert; Kors, Jan A.; Uitterlinden, André G.; Witteman, Jacqueline C.M.; Kedenko, Lyudmyla; Lamina, Claudia; Oostra, Ben A.; Abecasis, Gonçalo R.; Lakatta, Edward G.; Mulas, Antonella; Orrú, Marco; Schlessinger, David; Uda, Manuela; Markus, Marcello R.P.; Völker, Uwe; Snieder, Harold; Spector, Timothy D.; Ärnlöv, Johan; Lind, Lars; Sundström, Johan; Syvänen, Ann-Christine; Kivimaki, Mika; Kähönen, Mika; Mononen, Nina; Raitakari, Olli T.; Viikari, Jorma S.; Adamkova, Vera; Kiechl, Stefan; Brion, Maria; Nicolaides, Andrew N.; Paulweber, Bernhard; Haerting, Johannes; Dominiczak, Anna F.; Nyberg, Fredrik; Whincup, Peter H.; Hingorani, Aroon; Schott, Jean-Jacques; Bezzina, Connie R.; Ingelsson, Erik; Ferrucci, Luigi; Gasparini, Paolo; Wilson, James F.; Rudan, Igor; Franke, Andre; Mühleisen, Thomas W.; Pramstaller, Peter P.; Lehtimäki, Terho J.; Paterson, Andrew D.; Parsa, Afshin; Liu, Yongmei; van Duijn, Cornelia; Siscovick, David S.; Gudnason, Vilmundur; Jamshidi, Yalda; Salomaa, Veikko; Felix, Stephan B.; Sanna, Serena; Ritchie, Marylyn D.; Stricker, Bruno H.; Stefansson, Kari; Boyer, Laurie A.; Cappola, Thomas P.; Olsen, Jesper V.; Lage, Kasper; Schwartz, Peter J.; Kääb, Stefan; Chakravarti, Aravinda; Ackerman, Michael J.; Pfeufer, Arne; de Bakker, Paul I.W.; Newton-Cheh, Christopher

    2014-01-01

    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal Mendelian Long QT Syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals we identified 35 common variant QT interval loci, that collectively explain ∼8-10% of QT variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 novel QT loci in 298 unrelated LQTS probands identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode for proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies novel candidate genes for ventricular arrhythmias, LQTS,and SCD. PMID:24952745

  4. The plasma membrane calcium ATPase 4 signalling in cardiac fibroblasts mediates cardiomyocyte hypertrophy

    PubMed Central

    Mohamed, Tamer M. A.; Abou-Leisa, Riham; Stafford, Nicholas; Maqsood, Arfa; Zi, Min; Prehar, Sukhpal; Baudoin-Stanley, Florence; Wang, Xin; Neyses, Ludwig; Cartwright, Elizabeth J.; Oceandy, Delvac

    2016-01-01

    The heart responds to pathological overload through myocyte hypertrophy. Here we show that this response is regulated by cardiac fibroblasts via a paracrine mechanism involving plasma membrane calcium ATPase 4 (PMCA4). Pmca4 deletion in mice, both systemically and specifically in fibroblasts, reduces the hypertrophic response to pressure overload; however, knocking out Pmca4 specifically in cardiomyocytes does not produce this effect. Mechanistically, cardiac fibroblasts lacking PMCA4 produce higher levels of secreted frizzled related protein 2 (sFRP2), which inhibits the hypertrophic response in neighbouring cardiomyocytes. Furthermore, we show that treatment with the PMCA4 inhibitor aurintricarboxylic acid (ATA) inhibits and reverses cardiac hypertrophy induced by pressure overload in mice. Our results reveal that PMCA4 regulates the development of cardiac hypertrophy and provide proof of principle for a therapeutic approach to treat this condition. PMID:27020607

  5. Amplified RLR signaling activation through an interferon-stimulated gene-endoplasmic reticulum stress-mitochondrial calcium uniporter protein loop.

    PubMed

    Cheng, Jinbo; Liao, Yajin; Zhou, Lujun; Peng, Shengyi; Chen, Hong; Yuan, Zengqiang

    2016-01-01

    Type I interferon (IFN-I) is critical for a host against viral and bacterial infections via induction of hundreds of interferon-stimulated genes (ISGs), but the mechanism underlying the regulation of IFN-I remains largely unknown. In this study, we first demonstrate that ISG expression is required for optimal IFN-β levels, an effect that is further enhanced by endoplasmic reticulum (ER) stress. Furthermore, we identify mitochondrial calcium uniporter protein (MCU) as a mitochondrial antiviral signaling protein (MAVS)-interacting protein that is important for ER stress induction and amplified MAVS signaling activation. In addition, by performing an ectopic expression assay to screen a library of 117 human ISGs for effects on IFN-β levels, we found that tumor necrosis factor receptor 1 (TNFR1) significantly increases IFN-β levels independent of ER stress. Altogether, our findings suggest that MCU and TNFR1 are involved in the regulation of RIG-I-like receptors (RLR) signaling. PMID:26892273

  6. THE ROLE OF INTRACELLULAR SODIUM (Na+) IN THE REGULATION OF CALCIUM (Ca2+)-MEDIATED SIGNALING AND TOXICITY

    PubMed Central

    Yu, Xian-Min; Groveman, Bradley R; Fang, Xiao-Qian; Lin, Shuang-Xiu

    2010-01-01

    It is known that activated N-methyl-D-aspartate receptors (NMDARs) are a major route of excessive calcium ion (Ca2+) entry in central neurons, which may activate degradative processes and thereby cause cell death. Therefore, NMDARs are now recognized to play a key role in the development of many diseases associated with injuries to the central nervous system (CNS). However, it remains a mystery how NMDAR activity is recruited in the cellular processes leading to excitotoxicity and how NMDAR activity can be controlled at a physiological level. The sodium ion (Na+) is the major cation in extracellular space. With its entry into the cell, Na+ can act as a critical intracellular second messenger that regulates many cellular functions. Recent data have shown that intracellular Na+ can be an important signaling factor underlying the up-regulation of NMDARs. While Ca2+ influx during the activation of NMDARs down-regulates NMDAR activity, Na+ influx provides an essential positive feedback mechanism to overcome Ca2+-induced inhibition and thereby potentiate both NMDAR activity and inward Ca2+ flow. Extensive investigations have been conducted to clarify mechanisms underlying Ca2+-mediated signaling. This review focuses on the roles of Na+ in the regulation of Ca2+-mediated NMDAR signaling and toxicity. PMID:21243124

  7. Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization

    PubMed Central

    Weber, K. Scott; Hildner, Kai; Murphy, Kenneth M.; Allen, Paul M.

    2010-01-01

    T helper cell subsets have unique calcium (Ca2+) signals when activated with identical stimuli. The regulation of these Ca2+ signals and their correlation to the biological function of each T cell subset remains unclear. Trpm4 is a Ca2+-activated cation channel that we found is expressed at higher levels in Th2 cells compared to Th1 cells. Inhibition of Trpm4 expression increased Ca2+ influx and oscillatory levels in Th2 cells and decreased influx and oscillations in Th1 cells. This inhibition of Trpm4 expression also significantly altered T cell cytokine production and motility. Our experiments revealed that decreasing Trpm4 levels divergently regulates nuclear localization of NFATc1. Consistent with this, gene profiling did not show Trpm4 dependent transcriptional regulation and T-bet and GATA-3 levels remain identical. Thus, Trpm4 is expressed at different levels on T helper cells and plays a distinctive role in T cell function by differentially regulating Ca2+ signaling and NFATc1 localization. PMID:20656926

  8. Global calcium transducer P-type Ca²⁺-ATPases open new avenues for agriculture by regulating stress signalling.

    PubMed

    Huda, Kazi Md Kamrul; Banu, Mst Sufara Akhter; Tuteja, Renu; Tuteja, Narendra

    2013-08-01

    Food security is in danger under the continuous growing threat of various stresses including climate change and global warming, which ultimately leads to a reduction in crop yields. Calcium plays a very important role in many signal transduction pathways including stress signalling. Different extracellular stimuli trigger increases in cytosolic calcium, which is detrimental to plants. To cope with such stresses, plants need to develop efficient efflux mechanisms to maintain ionic homeostasis. The Ca(2+)-ATPases are members of the P-type ATPase superfamily, which perform many fundamental processes in organisms by actively transporting ions across cellular membranes. In recent years, many studies have revealed that, as well as efflux mechanisms, Ca(2+)-ATPases also play critical roles in sensing calcium fluctuations and relaying downstream signals by activating definitive targets, thus modulating corresponding metabolic pathways. As calcium-activated calmodulin (CaM) is reported to play vital roles in stress tolerance, the presence of a unique CaM-binding site in type IIB Ca(2+)-ATPases indicates their potential role in biotic as well as abiotic stress tolerance. The key roles of Ca(2+)-ATPases in transport systems and stress signalling in cellular homeostasis are addressed in this review. A complete understanding of plant defence mechanisms under stress will allow bioengineering of improved crop plants, which will be crucial for food security currently observed worldwide in the context of global climate changes. Overall, this article covers classification, evolution, structural aspects of Ca(2+)-ATPases, and their emerging roles in plant stress signalling.

  9. Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling

    PubMed Central

    2010-01-01

    Background Plant Ca2+ signals are involved in a wide array of intracellular signaling pathways after pest invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate the signaling following Ca2+ influx after insect herbivory. However, until now this prediction was not testable. Results To investigate the roles CPKs play in a herbivore response-signaling pathway, we screened the characteristics of Arabidopsis CPK mutants damaged by a feeding generalist herbivore, Spodoptera littoralis. Following insect attack, the cpk3 and cpk13 mutants showed lower transcript levels of plant defensin gene PDF1.2 compared to wild-type plants. The CPK cascade was not directly linked to the herbivory-induced signaling pathways that were mediated by defense-related phytohormones such as jasmonic acid and ethylene. CPK3 was also suggested to be involved in a negative feedback regulation of the cytosolic Ca2+ levels after herbivory and wounding damage. In vitro kinase assays of CPK3 protein with a suite of substrates demonstrated that the protein phosphorylates transcription factors (including ERF1, HsfB2a and CZF1/ZFAR1) in the presence of Ca2+. CPK13 strongly phosphorylated only HsfB2a, irrespective of the presence of Ca2+. Furthermore, in vivo agroinfiltration assays showed that CPK3-or CPK13-derived phosphorylation of a heat shock factor (HsfB2a) promotes PDF1.2 transcriptional activation in the defense response. Conclusions These results reveal the involvement of two Arabidopsis CPKs (CPK3 and CPK13) in the herbivory-induced signaling network via HsfB2a-mediated regulation of the defense-related transcriptional machinery. This cascade is not involved in the phytohormone-related signaling pathways, but rather directly impacts transcription factors for defense responses. PMID:20504319

  10. GABA-A receptor inhibition of local calcium signaling in spines and dendrites.

    PubMed

    Marlin, Joseph J; Carter, Adam G

    2014-11-26

    Cortical interneurons activate GABA-A receptors to rapidly control electrical and biochemical signaling at pyramidal neurons. Different populations of interneurons are known to uniquely target the soma and dendrites of pyramidal neurons. However, the ability of these interneurons to inhibit Ca(2+) signaling at spines and dendrites is largely unexplored. Here we use whole-cell recordings, two-photon microscopy, GABA uncaging and optogenetics to study dendritic inhibition at layer 5 (L5) pyramidal neurons in slices of mouse PFC. We first show that GABA-A receptors strongly inhibit action potential (AP)-evoked Ca(2+) signals at both spines and dendrites. We find robust inhibition over tens of milliseconds that spreads along the dendritic branch. However, we observe no difference in the amount of inhibition at neighboring spines and dendrites. We then examine the influence of interneurons expressing parvalbumin (PV), somatostatin (SOM), or 5HT3a receptors. We determine that these populations of interneurons make unique contacts onto the apical and basal dendrites of L5 pyramidal neurons. We also show that SOM and 5HT3a but not PV interneurons potently inhibit AP Ca(2+) signals via GABA-A receptors at both spines and dendrites. These findings reveal how multiple interneurons regulate local Ca(2+) signaling in pyramidal neurons, with implications for cortical function and disease.

  11. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome.

    PubMed

    Horng, Tiffany

    2014-06-01

    The NLRP3 inflammasome is a cytosolic complex that activates Caspase-1, leading to maturation of interleukin-1β (IL-1β) and IL-18 and induction of proinflammatory cell death in sentinel cells of the innate immune system. Diverse stimuli have been shown to activate the NLRP3 inflammasome during infection and metabolic diseases, implicating the pathway in triggering both adaptive and maladaptive inflammation in various clinically important settings. Here I discuss the emerging model that signals associated with mitochondrial destabilization may critically activate the NLRP3 inflammasome. Together with studies indicating an important role for Ca2+ signaling, these findings suggest that many stimuli engage Ca2+ signaling as an intermediate step to trigger mitochondrial destabilization, generating the mitochondrion-associated ligands that activate the NLRP3 inflammasome.

  12. Unique Responsiveness of Angiosperm Stomata to Elevated CO2 Explained by Calcium Signalling

    PubMed Central

    Brodribb, Timothy J.; McAdam, Scott A. M.

    2013-01-01

    Angiosperm and conifer tree species respond differently when exposed to elevated CO2, with angiosperms found to dynamically reduce water loss while conifers appear insensitive. Such distinct responses are likely to affect competition between these tree groups as atmospheric CO2 concentration rises. Seeking the mechanism behind this globally important phenomenon we targeted the Ca2+-dependent signalling pathway, a mediator of stomatal closure in response to elevated CO2, as a possible explanation for the differentiation of stomatal behaviours. Sampling across the diversity of vascular plants including lycophytes, ferns, gymnosperms and angiosperms we show that only angiosperms possess the stomatal behaviour and prerequisite genetic coding, linked to Ca2+-dependent stomatal signalling. We conclude that the evolution of Ca2+-dependent stomatal signalling gives angiosperms adaptive benefits in terms of highly efficient water use, but that stomatal sensitivity to high CO2 may penalise angiosperm productivity relative to other plant groups in the current era of soaring atmospheric CO2. PMID:24278470

  13. NF-kappaB activation by depolarization of skeletal muscle cells depends on ryanodine and IP3 receptor-mediated calcium signals.

    PubMed

    Valdés, Juan Antonio; Hidalgo, Jorge; Galaz, José Luis; Puentes, Natalia; Silva, Mónica; Jaimovich, Enrique; Carrasco, M Angélica

    2007-05-01

    Depolarization of skeletal muscle cells by either high external K(+) or repetitive extracellular field potential pulses induces calcium release from internal stores. The two components of this release are mediated by either ryanodine receptors or inositol 1,4,5-trisphosphate (IP(3)) receptors and show differences in kinetics, amplitude, and subcellular localization. We have reported that the transcriptional regulators including ERKs, cAMP/Ca(2+)-response element binding protein, c-fos, c-jun, and egr-1 are activated by K(+)-induced depolarization and that their activation requires IP(3)-dependent calcium release. We presently describe the activation of the nuclear transcription factor NF-kappaB in response to depolarization by either high K(+) (chronic) or electrical pulses (fluctuating). Calcium transients of relative short duration activate an NF-kappaB reporter gene to an intermediate level, whereas long-lasting calcium increases obtained by prolonged electrical stimulation protocols of various frequencies induce maximal activation of NF-kappaB. This activation is independent of extracellular calcium, whereas calcium release mediated by either ryanodine or IP(3) receptors contribute in all conditions tested. NF-kappaB activation is mediated by IkappaBalpha degradation and p65 translocation to the nucleus. Partial blockade by N-acetyl-l-cysteine, a general antioxidant, suggests the participation of reactive oxygen species. Calcium-dependent signaling pathways such as those linked to calcineurin and PKC also contribute to NF-kappaB activation by depolarization, as assessed by blockade through pharmacological agents. These results suggest that NF-kappaB activation in skeletal muscle cells is linked to membrane depolarization and depends on the duration of elevated intracellular calcium. It can be regulated by sequential activation of calcium release mediated by the ryanodine and by IP(3) receptors. PMID:17215326

  14. Calcium signaling in response to fluid flow by chondrocytes in 3D alginate culture.

    PubMed

    Degala, Satish; Williams, Rebecca; Zipfel, Warren; Bonassar, Lawrence J

    2012-05-01

    Quantifying the effects of mechanical loading on the metabolic response of chondrocytes is difficult due to complicated structure of cartilage ECM and the coupled nature of the mechanical stimuli presented to the cells. In this study we describe the effects of fluid flow, particularly hydrostatic pressure and wall shear stress, on the Ca(2+) signaling response of bovine articular chondrocytes in 3D culture. Using well-established alginate hydrogel system to maintain spherical chondrocyte morphology, we altered solid volume fraction to change scaffold mechanics. Fluid velocities in the bulk of the scaffolds were directly measured via an optical technique and scaffold permeability and aggregate modulus was characterized to quantify the mechanical stimuli presented to cells. Ca(2+) signaling response to direct perfusion of chondrocyte-seeded scaffolds increased monotonically with flow rate and was found more directly dependent on fluid velocity rather than shear stress or hydrostatic pressure. Chondrocytes in alginate scaffolds responded to fluid flow at velocities and shear stresses 2-3 orders of magnitude lower than seen in previous monolayer studies. Our data suggest that flow-induced Ca(2+) signaling response of chondrocytes in alginate culture may be due to mechanical signaling pathways, which is influenced by the 3D nature of cell shape.

  15. Shared functional defect in IP3R-mediated calcium signaling in diverse monogenic autism syndromes

    PubMed Central

    Schmunk, G; Boubion, B J; Smith, I F; Parker, I; Gargus, J J

    2015-01-01

    Autism spectrum disorder (ASD) affects 2% of children, and is characterized by impaired social and communication skills together with repetitive, stereotypic behavior. The pathophysiology of ASD is complex due to genetic and environmental heterogeneity, complicating the development of therapies and making diagnosis challenging. Growing genetic evidence supports a role of disrupted Ca2+ signaling in ASD. Here, we report that patient-derived fibroblasts from three monogenic models of ASD—fragile X and tuberous sclerosis TSC1 and TSC2 syndromes—display depressed Ca2+ release through inositol trisphosphate receptors (IP3Rs). This was apparent in Ca2+ signals evoked by G protein-coupled receptors and by photoreleased IP3 at the levels of both global and local elementary Ca2+ events, suggesting fundamental defects in IP3R channel activity in ASD. Given the ubiquitous involvement of IP3R-mediated Ca2+ signaling in neuronal excitability, synaptic plasticity, gene expression and neurodevelopment, we propose dysregulated IP3R signaling as a nexus where genes altered in ASD converge to exert their deleterious effect. These findings highlight potential pharmaceutical targets, and identify Ca2+ screening in skin fibroblasts as a promising technique for early detection of individuals susceptible to ASD. PMID:26393489

  16. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    PubMed

    Arking, Dan E; Pulit, Sara L; Crotti, Lia; van der Harst, Pim; Munroe, Patricia B; Koopmann, Tamara T; Sotoodehnia, Nona; Rossin, Elizabeth J; Morley, Michael; Wang, Xinchen; Johnson, Andrew D; Lundby, Alicia; Gudbjartsson, Daníel F; Noseworthy, Peter A; Eijgelsheim, Mark; Bradford, Yuki; Tarasov, Kirill V; Dörr, Marcus; Müller-Nurasyid, Martina; Lahtinen, Annukka M; Nolte, Ilja M; Smith, Albert Vernon; Bis, Joshua C; Isaacs, Aaron; Newhouse, Stephen J; Evans, Daniel S; Post, Wendy S; Waggott, Daryl; Lyytikäinen, Leo-Pekka; Hicks, Andrew A; Eisele, Lewin; Ellinghaus, David; Hayward, Caroline; Navarro, Pau; Ulivi, Sheila; Tanaka, Toshiko; Tester, David J; Chatel, Stéphanie; Gustafsson, Stefan; Kumari, Meena; Morris, Richard W; Naluai, Åsa T; Padmanabhan, Sandosh; Kluttig, Alexander; Strohmer, Bernhard; Panayiotou, Andrie G; Torres, Maria; Knoflach, Michael; Hubacek, Jaroslav A; Slowikowski, Kamil; Raychaudhuri, Soumya; Kumar, Runjun D; Harris, Tamara B; Launer, Lenore J; Shuldiner, Alan R; Alonso, Alvaro; Bader, Joel S; Ehret, Georg; Huang, Hailiang; Kao, W H Linda; Strait, James B; Macfarlane, Peter W; Brown, Morris; Caulfield, Mark J; Samani, Nilesh J; Kronenberg, Florian; Willeit, Johann; Smith, J Gustav; Greiser, Karin H; Meyer Zu Schwabedissen, Henriette; Werdan, Karl; Carella, Massimo; Zelante, Leopoldo; Heckbert, Susan R; Psaty, Bruce M; Rotter, Jerome I; Kolcic, Ivana; Polašek, Ozren; Wright, Alan F; Griffin, Maura; Daly, Mark J; Arnar, David O; Hólm, Hilma; Thorsteinsdottir, Unnur; Denny, Joshua C; Roden, Dan M; Zuvich, Rebecca L; Emilsson, Valur; Plump, Andrew S; Larson, Martin G; O'Donnell, Christopher J; Yin, Xiaoyan; Bobbo, Marco; D'Adamo, Adamo P; Iorio, Annamaria; Sinagra, Gianfranco; Carracedo, Angel; Cummings, Steven R; Nalls, Michael A; Jula, Antti; Kontula, Kimmo K; Marjamaa, Annukka; Oikarinen, Lasse; Perola, Markus; Porthan, Kimmo; Erbel, Raimund; Hoffmann, Per; Jöckel, Karl-Heinz; Kälsch, Hagen; Nöthen, Markus M; den Hoed, Marcel; Loos, Ruth J F; Thelle, Dag S; Gieger, Christian; Meitinger, Thomas; Perz, Siegfried; Peters, Annette; Prucha, Hanna; Sinner, Moritz F; Waldenberger, Melanie; de Boer, Rudolf A; Franke, Lude; van der Vleuten, Pieter A; Beckmann, Britt Maria; Martens, Eimo; Bardai, Abdennasser; Hofman, Nynke; Wilde, Arthur A M; Behr, Elijah R; Dalageorgou, Chrysoula; Giudicessi, John R; Medeiros-Domingo, Argelia; Barc, Julien; Kyndt, Florence; Probst, Vincent; Ghidoni, Alice; Insolia, Roberto; Hamilton, Robert M; Scherer, Stephen W; Brandimarto, Jeffrey; Margulies, Kenneth; Moravec, Christine E; del Greco M, Fabiola; Fuchsberger, Christian; O'Connell, Jeffrey R; Lee, Wai K; Watt, Graham C M; Campbell, Harry; Wild, Sarah H; El Mokhtari, Nour E; Frey, Norbert; Asselbergs, Folkert W; Mateo Leach, Irene; Navis, Gerjan; van den Berg, Maarten P; van Veldhuisen, Dirk J; Kellis, Manolis; Krijthe, Bouwe P; Franco, Oscar H; Hofman, Albert; Kors, Jan A; Uitterlinden, André G; Witteman, Jacqueline C M; Kedenko, Lyudmyla; Lamina, Claudia; Oostra, Ben A; Abecasis, Gonçalo R; Lakatta, Edward G; Mulas, Antonella; Orrú, Marco; Schlessinger, David; Uda, Manuela; Markus, Marcello R P; Völker, Uwe; Snieder, Harold; Spector, Timothy D; Ärnlöv, Johan; Lind, Lars; Sundström, Johan; Syvänen, Ann-Christine; Kivimaki, Mika; Kähönen, Mika; Mononen, Nina; Raitakari, Olli T; Viikari, Jorma S; Adamkova, Vera; Kiechl, Stefan; Brion, Maria; Nicolaides, Andrew N; Paulweber, Bernhard; Haerting, Johannes; Dominiczak, Anna F; Nyberg, Fredrik; Whincup, Peter H; Hingorani, Aroon D; Schott, Jean-Jacques; Bezzina, Connie R; Ingelsson, Erik; Ferrucci, Luigi; Gasparini, Paolo; Wilson, James F; Rudan, Igor; Franke, Andre; Mühleisen, Thomas W; Pramstaller, Peter P; Lehtimäki, Terho J; Paterson, Andrew D; Parsa, Afshin; Liu, Yongmei; van Duijn, Cornelia M; Siscovick, David S; Gudnason, Vilmundur; Jamshidi, Yalda; Salomaa, Veikko; Felix, Stephan B; Sanna, Serena; Ritchie, Marylyn D; Stricker, Bruno H; Stefansson, Kari; Boyer, Laurie A; Cappola, Thomas P; Olsen, Jesper V; Lage, Kasper; Schwartz, Peter J; Kääb, Stefan; Chakravarti, Aravinda; Ackerman, Michael J; Pfeufer, Arne; de Bakker, Paul I W; Newton-Cheh, Christopher

    2014-08-01

    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.

  17. Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures

    PubMed Central

    Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi

    2013-01-01

    Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks. PMID:24385953

  18. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    PubMed

    Arking, Dan E; Pulit, Sara L; Crotti, Lia; van der Harst, Pim; Munroe, Patricia B; Koopmann, Tamara T; Sotoodehnia, Nona; Rossin, Elizabeth J; Morley, Michael; Wang, Xinchen; Johnson, Andrew D; Lundby, Alicia; Gudbjartsson, Daníel F; Noseworthy, Peter A; Eijgelsheim, Mark; Bradford, Yuki; Tarasov, Kirill V; Dörr, Marcus; Müller-Nurasyid, Martina; Lahtinen, Annukka M; Nolte, Ilja M; Smith, Albert Vernon; Bis, Joshua C; Isaacs, Aaron; Newhouse, Stephen J; Evans, Daniel S; Post, Wendy S; Waggott, Daryl; Lyytikäinen, Leo-Pekka; Hicks, Andrew A; Eisele, Lewin; Ellinghaus, David; Hayward, Caroline; Navarro, Pau; Ulivi, Sheila; Tanaka, Toshiko; Tester, David J; Chatel, Stéphanie; Gustafsson, Stefan; Kumari, Meena; Morris, Richard W; Naluai, Åsa T; Padmanabhan, Sandosh; Kluttig, Alexander; Strohmer, Bernhard; Panayiotou, Andrie G; Torres, Maria; Knoflach, Michael; Hubacek, Jaroslav A; Slowikowski, Kamil; Raychaudhuri, Soumya; Kumar, Runjun D; Harris, Tamara B; Launer, Lenore J; Shuldiner, Alan R; Alonso, Alvaro; Bader, Joel S; Ehret, Georg; Huang, Hailiang; Kao, W H Linda; Strait, James B; Macfarlane, Peter W; Brown, Morris; Caulfield, Mark J; Samani, Nilesh J; Kronenberg, Florian; Willeit, Johann; Smith, J Gustav; Greiser, Karin H; Meyer Zu Schwabedissen, Henriette; Werdan, Karl; Carella, Massimo; Zelante, Leopoldo; Heckbert, Susan R; Psaty, Bruce M; Rotter, Jerome I; Kolcic, Ivana; Polašek, Ozren; Wright, Alan F; Griffin, Maura; Daly, Mark J; Arnar, David O; Hólm, Hilma; Thorsteinsdottir, Unnur; Denny, Joshua C; Roden, Dan M; Zuvich, Rebecca L; Emilsson, Valur; Plump, Andrew S; Larson, Martin G; O'Donnell, Christopher J; Yin, Xiaoyan; Bobbo, Marco; D'Adamo, Adamo P; Iorio, Annamaria; Sinagra, Gianfranco; Carracedo, Angel; Cummings, Steven R; Nalls, Michael A; Jula, Antti; Kontula, Kimmo K; Marjamaa, Annukka; Oikarinen, Lasse; Perola, Markus; Porthan, Kimmo; Erbel, Raimund; Hoffmann, Per; Jöckel, Karl-Heinz; Kälsch, Hagen; Nöthen, Markus M; den Hoed, Marcel; Loos, Ruth J F; Thelle, Dag S; Gieger, Christian; Meitinger, Thomas; Perz, Siegfried; Peters, Annette; Prucha, Hanna; Sinner, Moritz F; Waldenberger, Melanie; de Boer, Rudolf A; Franke, Lude; van der Vleuten, Pieter A; Beckmann, Britt Maria; Martens, Eimo; Bardai, Abdennasser; Hofman, Nynke; Wilde, Arthur A M; Behr, Elijah R; Dalageorgou, Chrysoula; Giudicessi, John R; Medeiros-Domingo, Argelia; Barc, Julien; Kyndt, Florence; Probst, Vincent; Ghidoni, Alice; Insolia, Roberto; Hamilton, Robert M; Scherer, Stephen W; Brandimarto, Jeffrey; Margulies, Kenneth; Moravec, Christine E; del Greco M, Fabiola; Fuchsberger, Christian; O'Connell, Jeffrey R; Lee, Wai K; Watt, Graham C M; Campbell, Harry; Wild, Sarah H; El Mokhtari, Nour E; Frey, Norbert; Asselbergs, Folkert W; Mateo Leach, Irene; Navis, Gerjan; van den Berg, Maarten P; van Veldhuisen, Dirk J; Kellis, Manolis; Krijthe, Bouwe P; Franco, Oscar H; Hofman, Albert; Kors, Jan A; Uitterlinden, André G; Witteman, Jacqueline C M; Kedenko, Lyudmyla; Lamina, Claudia; Oostra, Ben A; Abecasis, Gonçalo R; Lakatta, Edward G; Mulas, Antonella; Orrú, Marco; Schlessinger, David; Uda, Manuela; Markus, Marcello R P; Völker, Uwe; Snieder, Harold; Spector, Timothy D; Ärnlöv, Johan; Lind, Lars; Sundström, Johan; Syvänen, Ann-Christine; Kivimaki, Mika; Kähönen, Mika; Mononen, Nina; Raitakari, Olli T; Viikari, Jorma S; Adamkova, Vera; Kiechl, Stefan; Brion, Maria; Nicolaides, Andrew N; Paulweber, Bernhard; Haerting, Johannes; Dominiczak, Anna F; Nyberg, Fredrik; Whincup, Peter H; Hingorani, Aroon D; Schott, Jean-Jacques; Bezzina, Connie R; Ingelsson, Erik; Ferrucci, Luigi; Gasparini, Paolo; Wilson, James F; Rudan, Igor; Franke, Andre; Mühleisen, Thomas W; Pramstaller, Peter P; Lehtimäki, Terho J; Paterson, Andrew D; Parsa, Afshin; Liu, Yongmei; van Duijn, Cornelia M; Siscovick, David S; Gudnason, Vilmundur; Jamshidi, Yalda; Salomaa, Veikko; Felix, Stephan B; Sanna, Serena; Ritchie, Marylyn D; Stricker, Bruno H; Stefansson, Kari; Boyer, Laurie A; Cappola, Thomas P; Olsen, Jesper V; Lage, Kasper; Schwartz, Peter J; Kääb, Stefan; Chakravarti, Aravinda; Ackerman, Michael J; Pfeufer, Arne; de Bakker, Paul I W; Newton-Cheh, Christopher

    2014-08-01

    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD. PMID:24952745

  19. Requirement for non-regulated, constitutive calcium influx in macrophage survival signaling

    SciTech Connect

    Tano, Jean-Yves; Vazquez, Guillermo

    2011-04-08

    Highlights: {yields} We examine the role of constitutive Ca{sup 2+} influx in macrophage survival. {yields} Survival signaling exhibits a mandatory requirement for constitutive Ca{sup 2+} influx. {yields} CAM/CAMKII couples constitutive Ca{sup 2+} influx to survival signaling. -- Abstract: The phosphatidylinositol-3-kinase (PI3K)/AKT axis and the Nuclear Factor kappa B (NF{kappa}B) pathway play critical roles in macrophage survival. In cells other than macrophages proper operation of those two pathways requires Ca{sup 2+} influx into the cell, but if that is the case in macrophages remains unexplored. In the present work we used THP-1-derived macrophages and a pharmacological approach to examine for the first time the role of constitutive, non-regulated Ca{sup 2+} influx in PI3K/AKT and NF{kappa}B signaling. Blocking constitutive function of Ca{sup 2+}-permeable channels with the organic channel blocker SKF96365 completely prevented phosphorylation of I{kappa}B{alpha}, AKT and its downstream target BAD in TNF{alpha}-treated macrophages. A similar effect was observed upon treating macrophages with the calmodulin (CAM) inhibitor W-7 or the calmodulin-dependent kinase II (CAMKII) inhibitor KN-62. In addition, pre-treating macrophages with SKF96365 significantly enhanced TNF{alpha}-induced apoptosis. Our findings suggest that in THP-1-derived macrophages survival signaling depends, to a significant extent, on constitutive Ca{sup 2+} influx presumably through a mechanism that involves the CAM/CAMKII axis as a coupling component between constitutive Ca{sup 2+} influx and activation of survival signaling.

  20. Reactive oxygen species and calcium signals in skeletal muscle: A crosstalk involved in both normal signaling and disease.

    PubMed

    Espinosa, Alejandra; Henríquez-Olguín, Carlos; Jaimovich, Enrique

    2016-09-01

    Reactive Oxygen Species (ROS) have been profusely studied as agents of potential damage to living cells and they have been related to a number of pathological processes. Increasing evidence points to a more positive role of ROS in cell signaling and the detailed mechanism that regulates the precise amount of ROS needed for cell functioning without the deleterious effects of excess ROS still needs to be resolved in detail. In skeletal muscle the main source of ROS during normal functioning appears to be NADPH oxidase 2 (NOX2), which is activated by electrical stimuli (or exercise) through a cascade of events that include ATP release through pannexin1 channels. NOX2 is a protein complex that assembles in the T-tubule membrane before activation and ROS production by NOX2 appears to be important for muscle adaptation through gene expression and mitochondrial biogenesis as well as for improving glucose transport after insulin action. Excess ROS production (or diminished antioxidant defenses) plays a role in a number of pathological processes in skeletal muscle. Together with increased reactive nitrogen species, an increase in ROS appears to have a deleterious role in a model of Duchenne muscular dystrophy as well as muscle wasting in other diseases such as aging sarcopenia and cancer cachexia. In addition, ROS is involved in obesity and muscle insulin resistance, both of which are causally related to type 2 diabetes. A detailed description of the fine-tuning of ROS (including all sources of ROS) in skeletal muscle in health and disease will significantly contribute to our knowledge of both muscle adaptation and muscle related pathologies.

  1. Reactive oxygen species and calcium signals in skeletal muscle: A crosstalk involved in both normal signaling and disease.

    PubMed

    Espinosa, Alejandra; Henríquez-Olguín, Carlos; Jaimovich, Enrique

    2016-09-01

    Reactive Oxygen Species (ROS) have been profusely studied as agents of potential damage to living cells and they have been related to a number of pathological processes. Increasing evidence points to a more positive role of ROS in cell signaling and the detailed mechanism that regulates the precise amount of ROS needed for cell functioning without the deleterious effects of excess ROS still needs to be resolved in detail. In skeletal muscle the main source of ROS during normal functioning appears to be NADPH oxidase 2 (NOX2), which is activated by electrical stimuli (or exercise) through a cascade of events that include ATP release through pannexin1 channels. NOX2 is a protein complex that assembles in the T-tubule membrane before activation and ROS production by NOX2 appears to be important for muscle adaptation through gene expression and mitochondrial biogenesis as well as for improving glucose transport after insulin action. Excess ROS production (or diminished antioxidant defenses) plays a role in a number of pathological processes in skeletal muscle. Together with increased reactive nitrogen species, an increase in ROS appears to have a deleterious role in a model of Duchenne muscular dystrophy as well as muscle wasting in other diseases such as aging sarcopenia and cancer cachexia. In addition, ROS is involved in obesity and muscle insulin resistance, both of which are causally related to type 2 diabetes. A detailed description of the fine-tuning of ROS (including all sources of ROS) in skeletal muscle in health and disease will significantly contribute to our knowledge of both muscle adaptation and muscle related pathologies. PMID:26965208

  2. One-way calcium spill-over during signal transduction in Paramecium cells: from the cell cortex into cilia, but not in the reverse direction.

    PubMed

    Husser, Marc R; Hardt, Martin; Blanchard, Marie-Pierre; Hentschel, Joachim; Klauke, Norbert; Plattner, Helmut

    2004-11-01

    We asked to what extent Ca(2+) signals in two different domains of Paramecium cells remain separated during different stimulations. Wild-type (7S) and pawn cells (strain d4-500r, without ciliary voltage-dependent Ca(2+)-channels) were stimulated for trichocyst exocytosis within 80 ms by quenched-flow preparation and analysed by energy-dispersive X-ray microanalysis (EDX), paralleled by fast confocal fluorochrome analysis. We also analysed depolarisation-dependent calcium signalling during ciliary beat rerversal, also by EDX, after 80-ms stimulation in the quenched-flow mode. EDX and fluorochrome analysis enable to register total and free intracellular calcium concentrations, [Ca] and [Ca(2+)], respectively. After exocytosis stimulation we find by both methods that the calcium signal sweeps into the basis of cilia, not only in 7S but also in pawn cells which then also perform ciliary reversal. After depolarisation we see an increase of [Ca] along cilia selectively in 7S, but not in pawn cells. Opposite to exocytosis stimulation, during depolarisation no calcium spill-over into the nearby cytosol and no exocytosis occurs. In sum, we conclude that cilia must contain a very potent Ca(2+) buffering system and that ciliary reversal induction, much more than exocytosis stimulation, involves strict microdomain regulation of Ca(2+) signals.

  3. CD95-Mediated Calcium Signaling Promotes T Helper 17 Trafficking to Inflamed Organs in Lupus-Prone Mice.

    PubMed

    Poissonnier, Amanda; Sanséau, Doriane; Le Gallo, Matthieu; Malleter, Marine; Levoin, Nicolas; Viel, Roselyne; Morere, Lucie; Penna, Aubin; Blanco, Patrick; Dupuy, Alain; Poizeau, Florence; Fautrel, Alain; Seneschal, Julien; Jouan, Florence; Ritz, Jerome; Forcade, Edouard; Rioux, Nathalie; Contin-Bordes, Cécile; Ducret, Thomas; Vacher, Anne-Marie; Barrow, Paul A; Flynn, Robin J; Vacher, Pierre; Legembre, Patrick

    2016-07-19

    CD95 ligand (CD95L) is expressed by immune cells and triggers apoptotic death. Metalloprotease-cleaved CD95L (cl-CD95L) is released into the bloodstream but does not trigger apoptotic signaling. Hence, the pathophysiological role of cl-CD95L remains unclear. We observed that skin-derived endothelial cells from systemic lupus erythematosus (SLE) patients expressed CD95L and that after cleavage, cl-CD95L promoted T helper 17 (Th17) lymphocyte transmigration across the endothelial barrier at the expense of T regulatory cells. T cell migration relied on a direct interaction between the CD95 domain called calcium-inducing domain (CID) and the Src homology 3 domain of phospholipase Cγ1. Th17 cells stimulated with cl-CD95L produced sphingosine-1-phosphate (S1P), which promoted endothelial transmigration by activating the S1P receptor 3. We generated a cell-penetrating CID peptide that prevented Th17 cell transmigration and alleviated clinical symptoms in lupus mice. Therefore, neutralizing the CD95 non-apoptotic signaling pathway could be an attractive therapeutic approach for SLE treatment. PMID:27438772

  4. Paracrine mediation of calcium signaling in human SK-N-MCIXC neuroepithelioma cells.

    PubMed

    Palmer, R K; Yule, D I; Shewach, D S; Williams, J A; Fisher, S K

    1996-07-01

    Paracrine-mediated Ca2+ signaling in SK-N-MCIXC neuroepithelioma cells was evaluated by means of two experimental paradigms. In the first, single SK-N-MCIXC cells were microinjected with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and cytoplasmic Ca2+ was monitored by fura 2 digital-imaging microfluorometry. In response to Ins(1,4,5)P3 or CaCl2, but not inositol 1,3,4-trisphosphate, an increase in cytoplasmic Ca2+ concentration ([Ca2+]i) was observed in injected cells and also in neighboring cells. The direction of intercellular propagation of Ca2+ signals was influenced by the presence of a flow in the extracellular medium and occurred in the absence of any detectable gap-junctional communication. The P2 purinoceptor antagonist suramin, but not antagonists of other phosphoinositide-linked receptors, blocked cell-to-cell Ca2+ signaling initiated by microinjections of Ins(1,4,5)P3. In the second paradigm, conditioned medium (CM) obtained from monolayers of SK-N-MCIXC cells elicited increases in [Ca2+]i when reapplied to cells on coverslips. The Ca(2+)-mobilizing activity of CM was reversibly antagonized by suramin and abolished by pretreatment with apyrase. The presence of nucleotide di- and triphosphates in CM was confirmed by high-performance liquid chromatography. We conclude that SK-N-MCIXC cells release nucleotides that then activate specific receptors on neighboring cells. A rise in [Ca2+]i in these cells, and subsequent additional release of nucleotides, serves to further the propagation of intercellular Ca2+ signals.

  5. Sphingosine-1-Phosphate Elicits Receptor-Dependent Calcium Signaling in Retinal Amacrine Cells

    PubMed Central

    Crousillac, Scott; Colonna, Jeremy; McMains, Emily; Dewey, Jill Sayes

    2009-01-01

    Evidence is emerging indicating that sphingosine-1-phosphate (S1P) participates in signaling in the retina. To determine whether S1P might be involved in signaling in the inner retina specifically, we examine the effects of this sphingolipid on cultured retinal amacrine cells. Whole cell voltage-clamp recordings reveal that S1P activates a cation current that is dependent on signaling through Gi and phospholipase C. These observations are consistent with the involvement of members of the S1P receptor family of G-protein-coupled receptors in the production of the current. Immunocytochemistry and PCR amplification provide evidence for the expression of S1P1R and S1P3R in amacrine cells. The receptor-mediated channel activity is shown to be highly sensitive to blockade by lanthanides consistent with the behavior of transient receptor potential canonical (TRPC) channels. PCR products amplified from amacrine cells reveal that TRPCs 1 and 3–7 channel subunits have the potential to be expressed. Because TRPC channels provide a Ca2+ entry pathway, we asked whether S1P caused cytosolic Ca2+ elevations in amacrine cells. We show that S1P-dependent Ca2+ elevations do occur in these cells and that they might be mediated by S1P1R and S1P3R. The Ca2+ elevations are partially due to release from internal stores, but the largest contribution is from influx across the plasma membrane. The effect of inhibition of sphingosine kinase suggests that the production of cytosolic S1P underlies the sustained nature of the Ca2+ elevations. Elucidation of the downstream effects of these signals will provide clues to the role of S1P in regulating inner retinal function. PMID:19776367

  6. Impairment of in vivo calcium signaling in amyloid plaque-associated microglia.

    PubMed

    Brawek, Bianca; Schwendele, Bernd; Riester, Karin; Kohsaka, Shinichi; Lerdkrai, Chommanad; Liang, Yajie; Garaschuk, Olga

    2014-04-01

    Neuroinflammation is a hallmark of Alzheimer's disease (AD) both in man and in multiple mouse models, and epidemiological studies link the use of anti-inflammatory drugs with a reduced risk of developing the disease. AD-related neuroinflammation is largely mediated by microglia, the main immune cells of the central nervous system. In vitro, executive functions of microglia are regulated by intracellular Ca(2+) signals, but little is known about microglial Ca(2+) signaling in vivo. Here we analyze in vivo properties of these cells in two mouse models of AD. In both strains plaque-associated microglia had hypertrophic/amoeboid morphology and were strongly positive for markers of activation such as CD11b and CD68. Activated microglia failed to respond reliably to extracellular release of adenosine triphosphate (ATP, mimicking tissue damage) and showed an increased incidence of spontaneous intracellular Ca(2+) transients. These Ca(2+) transients required activation of ATP receptors and Ca(2+) release from the intracellular Ca(2+) stores, and were not induced by neuronal or astrocytic hyperactivity. Neuronal silencing, however, selectively increased the frequency of Ca(2+) transients in plaque-associated microglia. Thus, our in vivo data reveal substantial dysfunction of plaque-associated microglia and identify a novel Ca(2+) signal possibly triggering a Ca(2+)-dependent release of toxic species in the plaque vicinity.

  7. Regulator of G-protein signaling 2 (RGS2) suppresses premature calcium release in mouse eggs.

    PubMed

    Bernhardt, Miranda L; Lowther, Katie M; Padilla-Banks, Elizabeth; McDonough, Caitlin E; Lee, Katherine N; Evsikov, Alexei V; Uliasz, Tracy F; Chidiac, Peter; Williams, Carmen J; Mehlmann, Lisa M

    2015-08-01

    During oocyte maturation, capacity and sensitivity of Ca(2+) signaling machinery increases dramatically, preparing the metaphase II (MII)-arrested egg for fertilization. Upon sperm-egg fusion, Ca(2+) release from IP3-sensitive endoplasmic reticulum stores results in cytoplasmic Ca(2+) oscillations that drive egg activation and initiate early embryo development. Premature Ca(2+) release can cause parthenogenetic activation prior to fertilization; thus, preventing inappropriate Ca(2+) signaling is crucial for ensuring robust MII arrest. Here, we show that regulator of G-protein signaling 2 (RGS2) suppresses Ca(2+) release in MII eggs. Rgs2 mRNA was recruited for translation during oocyte maturation, resulting in ∼ 20-fold more RGS2 protein in MII eggs than in fully grown immature oocytes. Rgs2-siRNA-injected oocytes matured to MII; however, they had increased sensitivity to low pH and acetylcholine (ACh), which caused inappropriate Ca(2+) release and premature egg activation. When matured in vitro, RGS2-depleted eggs underwent spontaneous Ca(2+) increases that were sufficient to cause premature zona pellucida conversion. Rgs2(-/-) females had reduced litter sizes, and their eggs had increased sensitivity to low pH and ACh. Rgs2(-/-) eggs also underwent premature zona pellucida conversion in vivo. These findings indicate that RGS2 functions as a brake to suppress premature Ca(2+) release in eggs that are poised on the brink of development.

  8. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling

    PubMed Central

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A.; Rodriguez, Pedro L.; Albert, Armando

    2016-01-01

    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca2+ are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca2+ signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca2+-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca2+ sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca2+-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. PMID:26719420

  9. A mutation in TRPV4 results in altered chondrocyte calcium signaling in severe metatropic dysplasia.

    PubMed

    Hurd, Lauren; Kirwin, Susan M; Boggs, Mary; Mackenzie, William G; Bober, Michael B; Funanage, Vicky L; Duncan, Randall L

    2015-10-01

    Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is a polymodal modulated non-selective cation channel required for normal development and maintenance of bone and cartilage. Heterozygous mutations of this channel cause a variety of channelopathies, including metatropic dysplasia (MD). We analyzed the effect of a novel TRPV4 mutation c.2398G>A, p.Gly800Asp on intracellular calcium ([Ca(2+) ]i ) regulation in chondrocytes and compared this response to chondrocytes with a frequently observed mutation, c.2396C>T, p.Pro799Leu. We observed temperature-dependent [Ca(2+) ]i oscillations in both intact and MD chondrocytes however, MD mutations exhibited increased peak magnitudes of [Ca(2+) ]i during oscillations. We also found increased baseline [Ca(2+) ]i in MD primary cells, as well as increased [Ca(2+) ]i response to either hypotonic swelling or the TRVP4-specific agonist, GSK1016790A. Oscillations and stimulation responses were blocked with the TRPV4-specific antagonist, GSK205. Analysis of [Ca(2+) ]i response kinetics showed that MD chondrocytes had increased frequency of temperature-sensitive oscillations, and the magnitude and duration of [Ca(2+) ]i responses to given stimuli. Duration of the response of the p.Gly800Asp mutation to stimulation was greater than for the p.Pro799Leu mutation. These experiments show that this region of the channel is essential for proper [Ca(2+) ]i regulation. These studies of primary cells from patients show how both mutant and WT TRPV4 channels regulate cartilage and bone development. © 2015 Wiley Periodicals, Inc.

  10. Single-cell mechanics and calcium signalling in organotypic slices of human myometrium☆

    PubMed Central

    Loftus, Fiona C.; Richardson, Magnus J.E.; Shmygol, Anatoly

    2015-01-01

    Elucidation of cellular mechanisms regulating myometrial contractility is crucial for improvement in management of many obstetric abnormalities, such as premature delivery, uterine dystocia and post-partum haemorrhage. Myometrial contractions are triggered by periodic synchronous rises in intracellular calcium concentration ([Ca2+]i) elicited by spontaneously generated action potentials propagating throughout the entire myometrium. During labour, hormones like oxytocin and prostaglandins potentiate uterine contractions by increasing their duration, strength and frequency. The most informative approach to studying the mechanisms underlying hormonal modulation of uterine contractility is to record [Ca2+]i responses to hormones in intact myometrial samples that have not been subjected to enzymatic treatment for cell isolation or cell culture conditions. However, the spatio-temporal resolution of such recording is limited due to the motion artifacts occurring in contracting tissue. Here we describe the application of our newly developed motion correction algorithm to investigate the [Ca2+]i dynamics in control and oxytocin stimulated slices of human myometrium on a cellular level. We present evidence that oxytocin induces asynchronous [Ca2+]i oscillations in individual myocytes within intact myometrium which are similar to those observed in cultured cells. The oscillations occur between synchronous action potential-driven [Ca2+]i transients but appear to be unrelated to contractions. Furthermore, the oxytocin-triggered [Ca2+]i oscillations wane within 30–50 min of hormone application, while the action potential induced [Ca2+]i transients remain augmented. We conclude that oxytocin-induced [Ca2+]i oscillations are not relevant to the acute regulation of myometrial contractility but may play a role in longer-term regulatory processes, for example, by triggering gene expression. PMID:25702249

  11. Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling

    PubMed Central

    Fameli, Nicola; Ogunbayo, Oluseye A.

    2014-01-01

    Herein we demonstrate how nanojunctions between lysosomes and sarcoplasmic reticulum (L-SR junctions) serve to couple lysosomal activation to regenerative, ryanodine receptor-mediated cellular Ca 2+ waves. In pulmonary artery smooth muscle cells (PASMCs) it has been proposed that nicotinic acid adenine dinucleotide phosphate (NAADP) triggers increases in cytoplasmic Ca 2+ via L-SR junctions, in a manner that requires initial Ca 2+ release from lysosomes and subsequent Ca 2+-induced Ca 2+ release (CICR) via ryanodine receptor (RyR) subtype 3 on the SR membrane proximal to lysosomes. L-SR junction membrane separation has been estimated to be < 400 nm and thus beyond the resolution of light microscopy, which has restricted detailed investigations of the junctional coupling process. The present study utilizes standard and tomographic transmission electron microscopy to provide a thorough ultrastructural characterization of the L-SR junctions in PASMCs. We show that L-SR nanojunctions are prominent features within these cells and estimate that the junctional membrane separation and extension are about 15 nm and 300 nm, respectively. Furthermore, we develop a quantitative model of the L-SR junction using these measurements, prior kinetic and specific Ca 2+ signal information as input data. Simulations of NAADP-dependent junctional Ca 2+ transients demonstrate that the magnitude of these signals can breach the threshold for CICR via RyR3. By correlation analysis of live cell Ca 2+ signals and simulated Ca 2+ transients within L-SR junctions, we estimate that “trigger zones” comprising 60–100 junctions are required to confer a signal of similar magnitude. This is compatible with the 110 lysosomes/cell estimated from our ultrastructural observations. Most importantly, our model shows that increasing the L-SR junctional width above 50 nm lowers the magnitude of junctional [Ca 2+] such that there is a failure to breach the threshold for CICR via RyR3. L-SR junctions are

  12. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling.

    PubMed

    Weckwerth, Philipp; Ehlert, Britta; Romeis, Tina

    2015-03-01

    Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize.

  13. Gestational Diabetes Is Characterized by Reduced Mitochondrial Protein Expression and Altered Calcium Signaling Proteins in Skeletal Muscle

    PubMed Central

    Boyle, Kristen E.; Hwang, Hyonson; Janssen, Rachel C.; DeVente, James M.; Barbour, Linda A.; Hernandez, Teri L.; Mandarino, Lawrence J.; Lappas, Martha; Friedman, Jacob E.

    2014-01-01

    The rising prevalence of gestational diabetes mellitus (GDM) affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM) and obese pregnant women with normal glucose tolerance (ONGT). Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I) subunits (NDUFS3, NDUFV2) and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4) in OGDM (n = 6) vs. ONGT (n = 6). Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (−60–75%) in the OGDM (n = 8) compared with ONGT (n = 10) subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum. PMID:25216282

  14. Calcium signaling and endoplasmic reticulum dynamics during fertilization in marine protostome worms belonging to the phylum Nemertea.

    PubMed

    Stricker, Stephen A

    2014-08-01

    Metaphase-I-arrested eggs of marine protostome worms in the phylum Nemertea generate a series of point-source calcium waves during fertilization. Such calcium oscillations depend on inositol-1,4,5-trisphosphate-mediated calcium release from endoplasmic reticulum (ER) stores that undergo structural reorganizations prior to and after fertilization. This article reviews fertilization-induced calcium transients and ER dynamics in nemertean eggs and compares these topics to what has been reported for other animals in order to identify unifying characteristics and distinguishing features of calcium responses during fertilization across the animal kingdom.

  15. Reciprocal Regulation of Mitochondrial Dynamics and Calcium Signaling in Astrocyte Processes

    PubMed Central

    Jackson, Joshua G.

    2015-01-01

    We recently showed that inhibition of neuronal activity, glutamate uptake, or reversed-Na+/Ca2+-exchange with TTX, TFB-TBOA, or YM-244769, respectively, increases mitochondrial mobility in astrocytic processes. In the present study, we examined the interrelationships between mitochondrial mobility and Ca2+ signaling in astrocyte processes in organotypic cultures of rat hippocampus. All of the treatments that increase mitochondrial mobility decreased basal Ca2+. As recently reported, we observed spontaneous Ca2+ spikes with half-lives of ∼1 s that spread ∼6 μm and are almost abolished by a TRPA1 channel antagonist. Virtually all of these Ca2+ spikes overlap mitochondria (98%), and 62% of mitochondria are overlapped by these spikes. Although tetrodotoxin, TFB-TBOA, or YM-244769 increased Ca2+ signaling, the specific effects on peak, decay time, and/or frequency were different. To more specifically manipulate mitochondrial mobility, we explored the effects of Miro motor adaptor proteins. We show that Miro1 and Miro2 are both expressed in astrocytes and that exogenous expression of Ca2+-insensitive Miro mutants (KK) nearly doubles the percentage of mobile mitochondria. Expression of Miro1KK had a modest effect on the frequency of these Ca2+ spikes but nearly doubled the decay half-life. The mitochondrial proton ionophore, FCCP, caused a large, prolonged increase in cytosolic Ca2+ followed by an increase in the decay time and the spread of the spontaneous Ca2+ spikes. Photo-ablation of mitochondria in individual astrocyte processes has similar effects on Ca2+. Together, these studies show that Ca2+ regulates mitochondrial mobility, and mitochondria in turn regulate Ca2+ signals in astrocyte processes. SIGNIFICANCE STATEMENT In neurons, the movement and positioning of mitochondria at sites of elevated activity are important for matching local energy and Ca2+ buffering capacity. Previously, we demonstrated that mitochondria are immobilized in astrocytes in response

  16. Circadian profiles in the embryonic chick heart: L-type voltage-gated calcium channels and signaling pathways.

    PubMed

    Ko, Michael L; Shi, Liheng; Grushin, Kirill; Nigussie, Fikru; Ko, Gladys Y-P

    2010-10-01

    Circadian clocks exist in the heart tissue and modulate multiple physiological events, from cardiac metabolism to contractile function and expression of circadian oscillator and metabolic-related genes. Ample evidence has demonstrated that there are endogenous circadian oscillators in adult mammalian cardiomyocytes. However, mammalian embryos cannot be entrained independently to light-dark (LD) cycles in vivo without any maternal influence, but circadian genes are well expressed and able to oscillate in embryonic stages. The authors took advantage of using chick embryos that are independent of maternal influences to investigate whether embryonic hearts could be entrained under LD cycles in ovo. The authors found circadian regulation of L-type voltage-gated calcium channels (L-VGCCs), the ion channels responsible for the production of cardiac muscle contraction in embryonic chick hearts. The mRNA levels and protein expression of VGCCα1C and VGCCα1D are under circadian control, and the average L-VGCC current density is significantly larger when cardiomyocytes are recorded during the night than day. The phosphorylation states of several kinases involved in insulin signaling and cardiac metabolism, including extracellular signal-regulated kinase (Erk), stress-activated protein kinase (p38), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK-3β), are also under circadian control. Both Erk and p38 have been implicated in regulating cardiac contractility and in the development of various pathological states, such as cardiac hypertrophy and heart failure. Even though both Erk and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways participate in complex cellular processes regarding physiological or pathological states of cardiomyocytes, the circadian oscillators in the heart regulate these pathways independently, and both pathways contribute to the circadian regulation of L-VGCCs.

  17. Intestinal Stem Cells: Got Calcium?

    PubMed

    Nászai, Máté; Cordero, Julia B

    2016-02-01

    Calcium ions are well-known intracellular signalling molecules. A new study identifies local cytoplasmic calcium as a central integrator of metabolic and proliferative signals in Drosophila intestinal stem cells. PMID:26859268

  18. Calcium-independent activation of extracellular signal-regulated kinases 1 and 2 by cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Sumpio, B. E.

    1998-01-01

    We have previously demonstrated that cyclic strain induces extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in endothelial cells (EC). The aim of this study was to investigate the effect of Ca2+ on the activation of ERK1/2. Bovine aortic EC were pretreated with a chelator of extracellular Ca2+, ethylaneglycol-bis(aminoethylether)-tetra-acetate (EGTA), a depleter of Ca2+ pools, 2,5-Di-(tert-butyl)-1,4-benzohydroquinone (BHQ), or a Ca2+ channel blocker, GdCl3, and subjected to an average 10 % strain at a rate of 60 cycles/min for 10 min. BHQ and GdCl3 did not inhibit the strain-induced ERK1/2 activation. Chelation of normal extracellular Ca2+ (1.8 mM) medium with EGTA (3 mM) acutely stimulated baseline phosphorylation and activation of ERK1/2, thereby obscuring any strain-induced activation of ERK1/2. However, in EC preincubated for 24 hours in Ca2+-free medium, elevated baseline phosphorylation was minimally activated by EGTA (200 microM) such that cyclic strain stimulated ERK1/2 in the presence or absence of BHQ. These results suggest a Ca2+ independence of the ERK1/2 signaling pathway by cyclic strain. Copyright 1998 Academic Press.

  19. Targeting myocardial beta-adrenergic receptor signaling and calcium cycling for heart failure gene therapy.

    PubMed

    Pleger, Sven T; Boucher, Matthieu; Most, Patrick; Koch, Walter J

    2007-06-01

    Heart failure (HF) is a leading cause of morbidity and mortality in Western countries and projections reveal that HF incidence in the coming years will rise significantly because of an aging population. Pharmacologic therapy has considerably improved HF treatment during the last 2 decades, but fails to rescue failing myocardium and to increase global cardiac function. Therefore, novel therapeutic approaches to target the underlying molecular defects of ventricular dysfunction and to increase the outcome of patients in HF are needed. Failing myocardium generally exhibits distinct changes in beta-adrenergic receptor (betaAR) signaling and intracellular Ca2+-handling providing opportunities for research. Recent advances in transgenic and gene therapy techniques have presented novel therapeutic strategies to alter myocardial function and to target both betaAR signaling and Ca2+-cycling. In this review, we will discuss functional alterations of the betaAR system and Ca2+-handling in HF as well as corresponding therapeutic strategies. We will then focus on recent in vivo gene therapy strategies using the targeted inhibition of the betaAR kinase (betaARK1 or GRK2) and the restoration of S100A1 protein expression to support the injured heart and to reverse or prevent HF.

  20. Signaling Network of Environmental Sensing and Adaptation in Plants:. Key Roles of Calcium Ion

    NASA Astrophysics Data System (ADS)

    Kurusu, Takamitsu; Kuchitsu, Kazuyuki

    2011-01-01

    Considering the important issues concerning food, environment, and energy that humans are facing in the 21st century, humans mostly depend on plants. Unlike animals which move from an inappropriate environment, plants do not move, but rapidly sense diverse environmental changes or invasion by other organisms such as pathogens and insects in the place they root, and adapt themselves by changing their own bodies, through which they developed adaptability. Whole genetic information corresponding to the blueprints of many biological systems has recently been analyzed, and comparative genomic studies facilitated tracing strategies of each organism in their evolutional processes. Comparison of factors involved in intracellular signal transduction between animals and plants indicated diversification of different gene sets. Reversible binding of Ca2+ to sensor proteins play key roles as a molecular switch both in animals and plants. Molecular mechanisms for signaling network of environmental sensing and adaptation in plants will be discussed with special reference to Ca2+ as a key element in information processing.

  1. Vitamin D, reactive oxygen species and calcium signalling in ageing and disease.

    PubMed

    Berridge, Michael J

    2016-08-01

    Vitamin D is a hormone that maintains healthy cells. It functions by regulating the low resting levels of cell signalling components such as Ca(2+) and reactive oxygen species (ROS). Its role in maintaining phenotypic stability of these signalling pathways depends on the ability of vitamin D to control the expression of those components that act to reduce the levels of both Ca(2+) and ROS. This regulatory role of vitamin D is supported by both Klotho and Nrf2. A decline in the vitamin D/Klotho/Nrf2 regulatory network may enhance the ageing process, and this is well illustrated by the age-related decline in cognition in rats that can be reversed by administering vitamin D. A deficiency in vitamin D has also been linked to two of the major diseases in man: heart disease and Alzheimer's disease (AD). In cardiac cells, this deficiency alters the Ca(2+) transients to activate the gene transcriptional events leading to cardiac hypertrophy and the failing heart. In the case of AD, it is argued that vitamin D deficiency results in the Ca(2+) landscape that initiates amyloid formation, which then elevates the resting level of Ca(2+) to drive the memory loss that progresses to neuronal cell death and dementia.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377727

  2. STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice.

    PubMed

    Dramane, Gado; Abdoul-Azize, Souleymane; Hichami, Aziz; Vögtle, Timo; Akpona, Simon; Chouabe, Christophe; Sadou, Hassimi; Nieswandt, Bernhard; Besnard, Philippe; Khan, Naim Akhtar

    2012-06-01

    Understanding the mechanisms underlying oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. The lipid-binding glycoprotein CD36, which is expressed by circumvallate papillae (CVP) of the mouse tongue, has been implicated in oro-gustatory perception of dietary lipids. Here, we demonstrate that stromal interaction molecule 1 (STIM1), a sensor of Ca(2+) depletion in the endoplasmic reticulum, mediates fatty acid-induced Ca(2+) signaling in the mouse tongue and fat preference. We showed that linoleic acid (LA) induced the production of arachidonic acid (AA) and lysophosphatidylcholine (Lyso-PC) by activating multiple phospholipase A2 isoforms via CD36. This activation triggered Ca(2+) influx in CD36-positive taste bud cells (TBCs) purified from mouse CVP. LA also induced the production of Ca(2+) influx factor (CIF). STIM1 was found to regulate LA-induced CIF production and the opening of multiple store-operated Ca(2+) (SOC) channels. Furthermore, CD36-positive TBCs from Stim1-/- mice failed to release serotonin, and Stim1-/- mice lost the spontaneous preference for fat that was observed in wild-type animals. Our results suggest that fatty acid-induced Ca(2+) signaling, regulated by STIM1 via CD36, might be implicated in oro-gustatory perception of dietary lipids and the spontaneous preference for fat. PMID:22546859

  3. STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice

    PubMed Central

    Dramane, Gado; Abdoul-Azize, Souleymane; Hichami, Aziz; VÖgtle, Timo; Akpona, Simon; Chouabe, Christophe; Sadou, Hassimi; Nieswandt, Bernhard; Besnard, Philippe; Khan, Naim Akhtar

    2012-01-01

    Understanding the mechanisms underlying oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. The lipid-binding glycoprotein CD36, which is expressed by circumvallate papillae (CVP) of the mouse tongue, has been implicated in oro-gustatory perception of dietary lipids. Here, we demonstrate that stromal interaction molecule 1 (STIM1), a sensor of Ca2+ depletion in the endoplasmic reticulum, mediates fatty acid–induced Ca2+ signaling in the mouse tongue and fat preference. We showed that linoleic acid (LA) induced the production of arachidonic acid (AA) and lysophosphatidylcholine (Lyso-PC) by activating multiple phospholipase A2 isoforms via CD36. This activation triggered Ca2+ influx in CD36-positive taste bud cells (TBCs) purified from mouse CVP. LA also induced the production of Ca2+ influx factor (CIF). STIM1 was found to regulate LA-induced CIF production and the opening of multiple store-operated Ca2+ (SOC) channels. Furthermore, CD36-positive TBCs from Stim1–/– mice failed to release serotonin, and Stim1–/– mice lost the spontaneous preference for fat that was observed in wild-type animals. Our results suggest that fatty acid–induced Ca2+ signaling, regulated by STIM1 via CD36, might be implicated in oro-gustatory perception of dietary lipids and the spontaneous preference for fat. PMID:22546859

  4. Catalysis-based inhibitors of the calcium signaling function of CD38.

    PubMed

    Kwong, Anna Ka Yee; Chen, Zhe; Zhang, HongMin; Leung, Fung Ping; Lam, Connie Mo Ching; Ting, Kai Yiu; Zhang, Liangren; Hao, Quan; Zhang, Li-He; Lee, Hon Cheung

    2012-01-10

    CD38 is a signaling enzyme responsible for catalyzing the synthesis of cyclic ADP ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate; both are universal Ca(2+) messenger molecules. Ablation of the CD38 gene in mice causes multiple physiological defects, including impaired oxytocin release, that result in altered social behavior. A series of catalysis-based inhibitors of CD38 were designed and synthesized, starting with arabinosyl-2'-fluoro-2'-deoxynicotinamide mononucleotide. Structure-function relationships were analyzed to assess the structural determinants important for inhibiting the NADase activity of CD38. X-ray crystallography was used to reveal the covalent intermediates that were formed with the catalytic residue, Glu226. Metabolically stable analogues that were resistant to inactivation by phosphatase and esterase were synthesized and shown to be effective in inhibiting intracellular cADPR production in human HL-60 cells during induction of differentiation by retinoic acid. The inhibition was species-independent, and the analogues were similarly effective in blocking the cyclization reaction of CD38 in rat ventricular tissue extracts, as well as inhibiting the α-agonist-induced constriction in rat mesentery arteries. These compounds thus represent the first generally applicable and catalysis-based inhibitors of the Ca(2+) signaling function of CD38.

  5. Anabolic androgenic steroids and intracellular calcium signaling: a mini review on mechanisms and physiological implications.

    PubMed

    Vicencio, J M; Estrada, M; Galvis, D; Bravo, R; Contreras, A E; Rotter, D; Szabadkai, G; Hill, J A; Rothermel, B A; Jaimovich, E; Lavandero, S

    2011-05-01

    Increasing evidence suggests that nongenomic effects of testosterone and anabolic androgenic steroids (AAS) operate concertedly with genomic effects. Classically, these responses have been viewed as separate and independent processes, primarily because nongenomic responses are faster and appear to be mediated by membrane androgen receptors, whereas long-term genomic effects are mediated through cytosolic androgen receptors regulating transcriptional activity. Numerous studies have demonstrated increases in intracellular Ca2+ in response to AAS. These Ca2+ mediated responses have been seen in a diversity of cell types, including osteoblasts, platelets, skeletal muscle cells, cardiac myocytes and neurons. The versatility of Ca2+ as a second messenger provides these responses with a vast number of pathophysiological implications. In cardiac cells, testosterone elicits voltage-dependent Ca2+ oscillations and IP3R-mediated Ca2+ release from internal stores, leading to activation of MAPK and mTOR signaling that promotes cardiac hypertrophy. In neurons, depending upon concentration, testosterone can provoke either physiological Ca2+ oscillations, essential for synaptic plasticity, or sustained, pathological Ca2+ transients that lead to neuronal apoptosis. We propose therefore, that Ca2+ acts as an important point of crosstalk between nongenomic and genomic AAS signaling, representing a central regulator that bridges these previously thought to be divergent responses.

  6. Modulation of Calcium Signaling of Angiotensin AT1, Endothelin ETA, and ETB Receptors by Silibinin, Quercetin, Crocin, Diallyl Sulfides, and Ginsenoside Rb1.

    PubMed

    Bahem, Ruba; Hoffmann, Anja; Azonpi, Arnaud; Caballero-George, Catherina; Vanderheyden, Patrick

    2015-06-01

    Angiotensin II and endothelin-1 are potent vasoconstrictive peptides that play a central role in blood pressure regulation. Both peptides exert their pleiotropic effects via binding to their respective G-protein-coupled receptors, i.e., angiotensin AT1 and endothelin type A and type B receptors. In the present study, we have selected six structurally different plant-derived compounds with known cardioprotective properties to evaluate their ability to modulate calcium signaling of the above-mentioned receptors. For this purpose, we used and validated a cellular luminescence-based read-out system in which we measured intracellular calcium signaling in Chinese hamster ovary cells that express the calcium sensitive apo-aequorin protein. Firstly, silibinin, a flavanolignan that occurs in milk thistle (Silybum marianum), was investigated and found to be an antagonist for the human angiotensin AT1 receptor with an affinity constant of about 9 µM, while it had no effect on endothelin type A or type B receptor activation. Quercetin and crocin partially impeded intracellular calcium signaling resulting in a non-receptor-related reduction of the responses recorded for the three investigated G-protein-coupled receptors. Two organosulfur compounds, diallyl disulfide and diallyl trisulfide, as well as the triterpene saponin ginsenoside Rb1 did not affect the activation of the angiotensin AT1 and endothelin type A and type B receptors. In conclusion, we were able, by using a nonradioactive cellular read-out system, to identify a novel pharmacological property of the flavanolignan silibinin.

  7. Hormone-Mediated Intercellular Calcium Signalling in an Insect Salivary Gland Pathways and Mechanisms

    NASA Astrophysics Data System (ADS)

    Zimmermann, Bernhard; Walz, Bernd

    The salivary glands of the blowfly Calliphora vicina are a favourable preparation for investigations into spatio-temporal Ca 2+ dynamics in an intact miniorgan by using Ca 2+-sensitive indicator dyes and digital imaging techniques, including confocal microscopy, in combination with pharmacological approaches. The review summarizes the available data on the spatio-temporal patterns of the hormone-induced and IP 3-mediated Ca 2+ dynamics at both the intracellular and the intercellular level (intra- and intercellular Ca 2+ waves). The underlying signaling mechanisms are addressed, as well as the pathways of intercellular communication responsible for the complex spatio-temporal Ca 2+ dynamics. In addition, we review evidence for the exchange of Ca 2+ between IP 3 sensitive intracellular Ca 2+ stores and mitochondria including a modulatory effect of mitochondrial Ca 2+ uptake on the frequency of IP 3-induced Ca 2+ spiking.

  8. Disruption of Calcium Signaling in Fibroblasts and Attenuation of Bleomycin-Induced Fibrosis by Nifedipine.

    PubMed

    Mukherjee, Subhendu; Ayaub, Ehab A; Murphy, James; Lu, Chao; Kolb, Martin; Ask, Kjetil; Janssen, Luke J

    2015-10-01

    Fibrotic lung disease afflicts millions of people; the central problem is progressive lung destruction and remodeling. We have shown that external growth factors regulate fibroblast function not only through canonical signaling pathways but also through propagation of periodic oscillations in Ca(2+). In this study, we characterized the pharmacological sensitivity of the Ca(2+)oscillations and determined whether a blocker of those oscillations can prevent the progression of fibrosis in vivo. We found Ca(2+) oscillations evoked by exogenously applied transforming growth factor β in normal human fibroblasts were substantially reduced by 1 μM nifedipine or 1 μM verapamil (both L-type blockers), by 2.7 μM mibefradil (a mixed L-/T-type blocker), by 40 μM NiCl2 (selective at this concentration against T-type current), by 30 mM KCl (which partially depolarizes the membrane and thereby fully inactivates T-type current but leaves L-type current intact), or by 1 mM NiCl2 (blocks both L- and T-type currents). In our in vivo study in mice, nifedipine prevented bleomycin-induced fibrotic changes (increased lung stiffness, overexpression of smooth muscle actin, increased extracellular matrix deposition, and increased soluble collagen and hydroxyproline content). Nifedipine had little or no effect on lung inflammation, suggesting its protective effect on lung fibrosis was not due to an antiinflammatory effect but rather was due to altering the profibrotic response to bleomycin. Collectively, these data show that nifedipine disrupts Ca(2+) oscillations in fibroblasts and prevents the impairment of lung function in the bleomycin model of pulmonary fibrosis. Our results provide compelling proof-of-principle that interfering with Ca(2+) signaling may be beneficial against pulmonary fibrosis.

  9. Imaging calcium signals in vivo: a powerful tool in physiology and pharmacology

    PubMed Central

    Russell, James T

    2011-01-01

    The design and engineering of organic fluorescent Ca2+ indicators approximately 30 years ago opened the door for imaging cellular Ca2+ signals with a high degree of temporal and spatial resolution. Over this time, Ca2+ imaging has revolutionized our approaches for tissue-level spatiotemporal analysis of functional organization and has matured into a powerful tool for in situ imaging of cellular activity in the living animal. In vivo Ca2+ imaging with temporal resolution at the millisecond range and spatial resolution at micrometer range has been achieved through novel designs of Ca2+ sensors, development of modern microscopes and powerful imaging techniques such as two-photon microscopy. Imaging Ca2+ signals in ensembles of cells within tissue in 3D allows for analysis of integrated cellular function, which, in the case of the brain, enables recording activity patterns in local circuits. The recent development of miniaturized compact, fibre-optic-based, mechanically flexible microendoscopes capable of two-photon microscopy opens the door for imaging activity in awake, behaving animals. This development is poised to open a new chapter in physiological experiments and for pharmacological approaches in the development of novel therapies. LINKED ARTICLES This article is part of a themed section on Imaging. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2011.163.issue-8BJP has previously published an Imaging in Pharmacology themed section, edited by A Davenport and C Daly. To view this section visit http://dx.doi.org/10.1111/bph.2010.159.issue-4 PMID:20718728

  10. Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice

    PubMed Central

    Hernández-Ochoa, Erick O; Pratt, Stephen J P; Garcia-Pelagio, Karla P; Schneider, Martin F; Lovering, Richard M

    2015-01-01

    Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild-type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high-speed confocal microscopy and the voltage-sensitive indicator di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS) to assess the action potential (AP) properties. We also examined AP-induced Ca2+ transients using high-speed confocal microscopy with rhod-2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP-induced Ca2+ transients, with a further Ca2+ transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca2+ signals suggest changes in excitability and remodeling of the global Ca2+ signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles. PMID:25907787

  11. Sumatriptan inhibition of N-type calcium channel mediated signaling in dural CGRP terminal fibres

    PubMed Central

    Baillie, Landon D.; Ahn, Andrew H.; Mulligan, Sean J.

    2012-01-01

    The selective 5-HT1 receptor agonist sumatriptan is an effective therapeutic for migraine pain yet the antimigraine mechanisms of action remain controversial. Pain-responsive fibres containing calcitonin gene-related peptide (CGRP) densely innervating the cranial dura mater are widely believed to be an essential anatomical substrate for the development of migraine pain. 5HT1 receptors in the dura colocalize with CGRP fibres in high density and thus provide a possible peripheral site of action for sumatriptan. In the present study, we used high-resolution optical imaging selectively within individual mouse dural CGRP nociceptive fibre terminations and found that application of sumatriptan caused a rapid, reversible dose-dependent inhibition in the amplitude of single action potential evoked Ca2+ transients. Pre-application of the 5-HT1 antagonist GR127935 or the selective 5-HT1D antagonist BRL 15572 prevented inhibition while the selective 5-HT1B antagonist SB 224289 did not, suggesting this effect was mediated selectively through the 5-HT1D receptor subtype. Sumatriptan inhibition of the action potential evoked Ca2+ signaling was mediated selectively through N-type Ca2+ channels. Although the T-type Ca2+ channel accounted for a greater proportion of the Ca2+ signal it did not mediate any of the sumatriptan inhibition. Our findings support a peripheral site of action for sumatriptan in inhibiting the activity of dural pain fibres selectively through a single Ca2+ channel subtype. This finding adds to our understanding of the mechanisms that underlie the clinical effectiveness of 5HT1 receptor agonists such as sumatriptan and may provide insight for the development of novel peripherally targeted therapeutics for mitigating the pain of migraine. PMID:22691374

  12. Quantification of calcium signal transmission from sarco-endoplasmic reticulum to the mitochondria

    PubMed Central

    Pacher, Pál; Csordás, György; Schneider, Timothy G; Hajnóczky, György

    2000-01-01

    Recent studies have shown that ryanodine and IP3 receptor (RyR/IP3R)-mediated cytosolic Ca2+ signals propagate to the mitochondria, initiating chains of events vital in the regulation of different cellular functions. However, the fraction of released Ca2+ utilized by the mitochondria during these processes has not been quantified. To measure the amount of Ca2+ taken up by the mitochondria, we used a novel approach that involves simultaneous fluorescence imaging of mitochondrial and cytosolic [Ca2+] in permeabilized H9c2 myotubes and RBL-2H3 mast cells. Communication between sarco-endoplasmic reticulum (SR/ER) and mitochondria is maintained in these permeabilized cells, as evidenced by the large RyR/IP3R-driven mitochondrial matrix [Ca2+] and NAD(P)H signals and also by preservation of the morphology of the SR/ER-mitochondrial junctions. Ca2+ was released from the SR/ER by addition of saturating caffeine or IP3 and subsequently thapsigargin (Tg), an inhibitor of SR/ER Ca2+ pumps. The amount of Ca2+ transmitted to the mitochondria was determined by measuring increases of global [Ca2+] in the incubation medium (cytosolic [Ca2+] ([Ca2+]c)). Mitochondrial Ca2+ uptake was calculated from the difference between [Ca2+]c responses recorded in the absence and presence of uncoupler or from [Ca2+]c elevations evoked by uncoupler or ionophore applied after complete Ca2+ mobilization from the SR/ER. [Ca2+]c increases were calibrated by adding Ca2+ pulses to the permeabilized cells. In H9c2 cells, caffeine induced partial mobilization of SR Ca2+ and mitochondria accumulated 26% of the released Ca2+. Sequential application of caffeine and Tg elicited complete discharge of SR Ca2+ without further increase in mitochondrial Ca2+ uptake. In RBL-2H3 mast cells, IP3 by itself elicited complete discharge of the ER Ca2+ store and the increase of the ionophore-releasable mitochondrial Ca2+ content reached 50% of the Ca2+ amount mobilized by IP3+ Tg. Thus, RyR/IP3R direct a substantial

  13. Signal Transduction in Barley Aleurone Protoplasts Is Calcium Dependent and Independent.

    PubMed Central

    Gilroy, S.

    1996-01-01

    Gibberellic acid (GA) increases Ca2+ and calmodulin (CaM) levels in barley aleurone cells, and abscisic acid (ABA) antagonizes the GA effect. These alterations in cytoplasmic Ca2+ and CaM have been suggested to be central regulators of the secretory response of the barley aleurone. Using microinjection of caged Ca2+, Ca2+ chelators, and CaM, we mimicked or blocked these hormonally induced changes in Ca2+ and CaM and assessed their effects on GA and ABA action. Although mimicking GA-induced changes in Ca2+ and CaM did not mimic GA action, blocking these changes did prevent GA stimulation of secretion. The induction of the amylase gene by GA was, however, unaffected. Similarly, blocking the decrease in Ca2+ normally caused by ABA in these cells blocked ABA action, except that induction of Em gene transcription by ABA was unaffected. These results suggest that GA and ABA signals are transduced by Ca2+- and CaM-dependent and Ca2+- and CaM-independent systems in the aleurone cell. PMID:12239376

  14. Electromagnetic field effects on cells of the immune system: The role of calcium signalling

    SciTech Connect

    Walleczek, J.

    1991-07-01

    During the past decade considerable evidence has accumulated demonstrating the exposures of cells of the immune system to relatively weak extremely-low-frequency (ELF) electromagnetic fields (< 300 Hz) can elicit cellular changes which might be relevant to in-vivo immune activity. However, knowledge about the underlying biological mechanisms by which weak fields induce cellular changes is still very limited. It is generally believed that the cell membrane and Ca{sup 2+} regulated activity is involved in bioactive ELF field-coupling to living systems. This article begins with a short review of the current state of knowledge concerning the effects of nonthermal levels of ELF electromagnetic fields on the biochemistry and activity of immune cells, and then closely examines new results which suggest a role for Ca{sup 2+} in the induction of these cellular field effects. Based on these findings it is proposed that membrane-mediated Ca{sup 2+} signalling processes are involved in the mediation of field effects on the immune system. 64 refs., 2 tabs.

  15. Ouabain rescues rat nephrogenesis during intrauterine growth restriction by regulating the complement and coagulation cascades and calcium signaling pathway.

    PubMed

    Chen, L; Yue, J; Han, X; Li, J; Hu, Y

    2016-02-01

    Intrauterine growth restriction (IUGR) is associated with a reduction in the numbers of nephrons in neonates, which increases the risk of hypertension. Our previous study showed that ouabain protects the development of the embryonic kidney during IUGR. To explore this molecular mechanism, IUGR rats were induced by protein and calorie restriction throughout pregnancy, and ouabain was delivered using a mini osmotic pump. RNA sequencing technology was used to identify the differentially expressed genes (DEGs) of the embryonic kidneys. DEGs were submitted to the Database for Annotation and Visualization and Integrated Discovery, and gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted. Maternal malnutrition significantly reduced fetal weight, but ouabain treatment had no significant effect on body weight. A total of 322 (177 upregulated and 145 downregulated) DEGs were detected between control and the IUGR group. Meanwhile, 318 DEGs were found to be differentially expressed (180 increased and 138 decreased) between the IUGR group and the ouabain-treated group. KEGG pathway analysis indicated that maternal undernutrition mainly disrupts the complement and coagulation cascades and the calcium signaling pathway, which could be protected by ouabain treatment. Taken together, these two biological pathways may play an important role in nephrogenesis, indicating potential novel therapeutic targets against the unfavorable effects of IUGR.

  16. Calcium and calcineurin-NFAT signaling regulate granulocyte-monocyte progenitor cell cycle via Flt3-L.

    PubMed

    Fric, Jan; Lim, Clarice X F; Mertes, Alexandra; Lee, Bernett T K; Viganò, Elena; Chen, Jinmiao; Zolezzi, Francesca; Poidinger, Michael; Larbi, Anis; Strobl, Herbert; Zelante, Teresa; Ricciardi-Castagnoli, Paola

    2014-12-01

    Maintenance of myeloid progenitor cells is controlled by complex regulatory mechanisms and is orchestrated by multiple different transcription factors. Here, we report that the activation of the transcription factor nuclear factor of activated T cells (NFAT) by calcium-sensing protein calcineurin inhibits the proliferation of myeloid granulocyte-monocyte progenitors (GMPs). Myeloid progenitor subtypes exhibit variable sensitivity to induced Ca(2+) entry and consequently display differential engagement of the calcineurin-NFAT pathway. This study shows that inhibition of the calcineurin-NFAT pathway enhances the proliferation of GMPs both in vitro and in vivo and demonstrates that calcineurin-NFAT signaling in GMPs is initiated by Flt3-L. Inhibition of the calcineurin-NFAT pathway modified expression of the cell cycle regulation genes Cdk4, Cdk6, and Cdkn1a (p21), thus enabling rapid cell cycle progression specifically in GMPs. NFAT inhibitor drugs are extensively used in the clinic to restrict the pathological activation of lymphoid cells, and our data reveal for the first time that these therapies also exert potent effects on maintenance of the myeloid cell compartment through specific regulation of GMP proliferation.

  17. Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo

    PubMed Central

    Deneux, Thomas; Kaszas, Attila; Szalay, Gergely; Katona, Gergely; Lakner, Tamás; Grinvald, Amiram; Rózsa, Balázs; Vanzetta, Ivo

    2016-01-01

    Extracting neuronal spiking activity from large-scale two-photon recordings remains challenging, especially in mammals in vivo, where large noises often contaminate the signals. We propose a method, MLspike, which returns the most likely spike train underlying the measured calcium fluorescence. It relies on a physiological model including baseline fluctuations and distinct nonlinearities for synthetic and genetically encoded indicators. Model parameters can be either provided by the user or estimated from the data themselves. MLspike is computationally efficient thanks to its original discretization of probability representations; moreover, it can also return spike probabilities or samples. Benchmarked on extensive simulations and real data from seven different preparations, it outperformed state-of-the-art algorithms. Combined with the finding obtained from systematic data investigation (noise level, spiking rate and so on) that photonic noise is not necessarily the main limiting factor, our method allows spike extraction from large-scale recordings, as demonstrated on acousto-optical three-dimensional recordings of over 1,000 neurons in vivo. PMID:27432255

  18. VSNL1 Co-Expression Networks in Aging Include Calcium Signaling, Synaptic Plasticity, and Alzheimer's Disease Pathways.

    PubMed

    Lin, Chien-Wei; Chang, Lun-Ching; Tseng, George C; Kirkwood, Caitlin M; Sibille, Etienne L; Sweet, Robert A

    2015-01-01

    The visinin-like 1 (VSNL1) gene encodes visinin-like protein 1, a peripheral biomarker for Alzheimer disease (AD). Little is known, however, about normal VSNL1 expression in brain and the biologic networks in which it participates. Frontal cortex gray matter obtained from 209 subjects without neurodegenerative or psychiatric illness, ranging in age from 16 to 91, was processed on Affymetrix GeneChip 1.1 ST and Human SNP Array 6.0. VSNL1 expression was unaffected by age and sex, and not significantly associated with SNPs in cis or trans. VSNL1 was significantly co-expressed with genes in pathways for calcium signaling, AD, long-term potentiation, long-term depression, and trafficking of AMPA receptors. The association with AD was driven, in part, by correlation with amyloid precursor protein (APP) expression. These findings provide an unbiased link between VSNL1 and molecular mechanisms of AD, including pathways implicated in synaptic pathology in AD. Whether APP may drive increased VSNL1 expression, VSNL1 drives increased APP expression, or both are downstream of common pathogenic regulators will need to be evaluated in model systems. PMID:25806004

  19. Calcium and Calcineurin-NFAT Signaling Regulate Granulocyte-Monocyte Progenitor Cell Cycle via Flt3-L

    PubMed Central

    Fric, Jan; Lim, Clarice XF; Mertes, Alexandra; Lee, Bernett TK; Viganò, Elena; Chen, Jinmiao; Zolezzi, Francesca; Poidinger, Michael; Larbi, Anis; Strobl, Herbert; Zelante, Teresa; Ricciardi-Castagnoli, Paola

    2014-01-01

    Abstract Maintenance of myeloid progenitor cells is controlled by complex regulatory mechanisms and is orchestrated by multiple different transcription factors. Here, we report that the activation of the transcription factor nuclear factor of activated T cells (NFAT) by calcium-sensing protein calcineurin inhibits the proliferation of myeloid granulocyte–monocyte progenitors (GMPs). Myeloid progenitor subtypes exhibit variable sensitivity to induced Ca2+ entry and consequently display differential engagement of the calcineurin-NFAT pathway. This study shows that inhibition of the calcineurin-NFAT pathway enhances the proliferation of GMPs both in vitro and in vivo and demonstrates that calcineurin-NFAT signaling in GMPs is initiated by Flt3-L. Inhibition of the calcineurin-NFAT pathway modified expression of the cell cycle regulation genes Cdk4, Cdk6, and Cdkn1a (p21), thus enabling rapid cell cycle progression specifically in GMPs. NFAT inhibitor drugs are extensively used in the clinic to restrict the pathological activation of lymphoid cells, and our data reveal for the first time that these therapies also exert potent effects on maintenance of the myeloid cell compartment through specific regulation of GMP proliferation. Stem Cells 2014;32:3232–3244 PMID:25100642

  20. Stimulation of Odontogenesis and Angiogenesis via Bioactive Nanocomposite Calcium Phosphate Cements Through Integrin and VEGF Signaling Pathways.

    PubMed

    Lee, Sang-Im; Lee, Eui-Suk; El-Fiqi, Ahmed; Lee, So-Youn; Eun-Cheol Kim; Kim, Hae-Won

    2016-05-01

    Formulating self-setting calcium phosphate cements (CPCs) with secondary phases particularly in the nanoscale order holds great promise to improve biological properties. Here, we focus on the effect that bioactive glass nanoparticles (BGN) incorporated in CPC compositions can have on the proliferation, odontogenic differentiation, and angiogenic stimulation of stem cells derived from human dental pulp (HDPSCs). These odontogenic and angiogenic events are of special importance in the dentin-pulp regeneration processes. In comparison to pure CPCs, nanocomposite cements exhibit a significantly improved proliferation of HDPSCs, and the improvement is more significant as the BGN content increases. The nanocomposite cements substantially enhance the adhesion of cells, and significantly up-regulate odontogenic differentiation, including alkaline phosphatase (ALP) activity and the expressions of odontogenic genes (sialophosphoprotein, dentin matrix protein I, ALP, osteopontin and osteocalcin). Furthermore, the use of nanocomposite cements result in stimulation of angiogenic gene expression (VEGF, FGF-2, VEGFRs, PECAM-1, and VE-cadherin) and protein production (VEGF, VEGFR-1). The angiogenic stimulation by the HDPSCs significantly affects the endothelial cell behaviors, that is, the endothelial cell migration and the tubular network formation are substantially improved when treated with HDPSC-conditioned medium, particularly with the help of nanocomposite cements. The integrin and VEGF signaling pathways are reasoned for the stimulation of the odontogenesis and angiogenesis of cells, where the nanocomposite cements up-regulate the integrin subsets α1, α2, α3, and β1, and activate the integrin downstream signal pathways, such as p-FAK, p-Akt, p-paxillin, JNK, EK, and NF-κB, as well as other nuclear transcriptional factors, including CREB, STAT-3, and ELK-1. The current results indicate that the new formulation of the nanocomposite self-setting cements might provide some

  1. The calcium ATPase SERCA2 regulates desmoplakin dynamics and intercellular adhesive strength through modulation of PKCα signaling

    PubMed Central

    Hobbs, Ryan P.; Amargo, Evangeline V.; Somasundaram, Agila; Simpson, Cory L.; Prakriya, Murali; Denning, Mitchell F.; Green, Kathleen J.

    2011-01-01

    Darier's disease (DD) is an inherited autosomal-dominant skin disorder characterized histologically by loss of adhesion between keratinocytes. DD is typically caused by mutations in sarcoendoplasmic reticulum Ca2+-ATPase isoform 2 (SERCA2), a major regulator of intracellular Ca2+ homeostasis in the skin. However, a defined role for SERCA2 in regulating intercellular adhesion remains poorly understood. We found that diminution of SERCA2 function by pharmacological inhibition or siRNA silencing in multiple human epidermal-derived cell lines was sufficient to disrupt desmosome assembly and weaken intercellular adhesive strength. Specifically, SERCA2-deficient cells exhibited up to a 60% reduction in border translocation of desmoplakin (DP), the desmosomal cytolinker protein necessary for intermediate filament (IF) anchorage to sites of robust cell-cell adhesion. In addition, loss of SERCA2 impaired the membrane translocation of protein kinase C α (PKCα), a known regulator of DP-IF association and desmosome assembly, to the plasma membrane by up to 70%. Exogenous activation of PKCα in SERCA2-deficient cells was sufficient to rescue the defective DP localization, desmosome assembly, and intercellular adhesive strength to levels comparable to controls. Our findings indicate that SERCA2-deficiency is sufficient to impede desmosome assembly and weaken intercellular adhesive strength via a PKCα-dependent mechanism, implicating SERCA2 as a novel regulator of PKCα signaling.—Hobbs, R. P., Amargo, E. V., Somasundaram, A., Simpson, C. L., Prakriya, M., Denning, M. F., Green, K. J. The calcium ATPase SERCA2 regulates desmoplakin dynamics and intercellular adhesive strength through modulation of PKCα signaling. PMID:21156808

  2. Defective FcgammaRIIb1 signaling contributes to enhanced calcium response in B cells from patients with systemic lupus erythematosus.

    PubMed

    Enyedy, E J; Mitchell, J P; Nambiar, M P; Tsokos, G C

    2001-11-01

    B lymphocytes from patients with systemic lupus erythematosus (SLE) display enhanced B cell antigen receptor (BCR)-mediated early signal transduction events, including increased fluxes of intracytoplasmic calcium ([Ca(2+)](i)). Because crosslinking of FcgammaRIIb1 (CD32) in normal B cells suppresses the BCR-initiated signal transduction process, we investigated whether the increased BCR-initiated [Ca(2+)](i) response in SLE B cells is the consequence of decreased FcgammaRIIb1-mediated suppression. To this end, we used flow cytometry to study the [Ca(2+)](i) responses of indo-1-loaded negatively gated B cells stimulated with F(ab')(2) fragments or whole IgG anti-human micro Ab. We found that the ratio of F(ab')(2) to whole anti-micro Ab [Ca(2+)](i) response was significantly lower in SLE B cells compared to B cells from patients with other systemic rheumatic diseases or normal individuals (P < 0.01). Because the surface expressions of FcgammaRIIb1 and surface IgM were similar in B cells from SLE patients and disease and normal controls, these data indicate a decrease in FcgammaRIIb-mediated suppression in SLE B cells. In addition, the whole IgG anti-micro Ab but not its F(ab')(2) fragment caused increased redistribution of SH2 domain-containing inositol 5'phosphatase in SLE compared to normal and disease control B cells. In conclusion, deficient FcgammaRIIb1-mediated suppression contributes to the augmented [Ca(2+)](i) responses of human SLE B cells.

  3. Stimulation of Odontogenesis and Angiogenesis via Bioactive Nanocomposite Calcium Phosphate Cements Through Integrin and VEGF Signaling Pathways.

    PubMed

    Lee, Sang-Im; Lee, Eui-Suk; El-Fiqi, Ahmed; Lee, So-Youn; Eun-Cheol Kim; Kim, Hae-Won

    2016-05-01

    Formulating self-setting calcium phosphate cements (CPCs) with secondary phases particularly in the nanoscale order holds great promise to improve biological properties. Here, we focus on the effect that bioactive glass nanoparticles (BGN) incorporated in CPC compositions can have on the proliferation, odontogenic differentiation, and angiogenic stimulation of stem cells derived from human dental pulp (HDPSCs). These odontogenic and angiogenic events are of special importance in the dentin-pulp regeneration processes. In comparison to pure CPCs, nanocomposite cements exhibit a significantly improved proliferation of HDPSCs, and the improvement is more significant as the BGN content increases. The nanocomposite cements substantially enhance the adhesion of cells, and significantly up-regulate odontogenic differentiation, including alkaline phosphatase (ALP) activity and the expressions of odontogenic genes (sialophosphoprotein, dentin matrix protein I, ALP, osteopontin and osteocalcin). Furthermore, the use of nanocomposite cements result in stimulation of angiogenic gene expression (VEGF, FGF-2, VEGFRs, PECAM-1, and VE-cadherin) and protein production (VEGF, VEGFR-1). The angiogenic stimulation by the HDPSCs significantly affects the endothelial cell behaviors, that is, the endothelial cell migration and the tubular network formation are substantially improved when treated with HDPSC-conditioned medium, particularly with the help of nanocomposite cements. The integrin and VEGF signaling pathways are reasoned for the stimulation of the odontogenesis and angiogenesis of cells, where the nanocomposite cements up-regulate the integrin subsets α1, α2, α3, and β1, and activate the integrin downstream signal pathways, such as p-FAK, p-Akt, p-paxillin, JNK, EK, and NF-κB, as well as other nuclear transcriptional factors, including CREB, STAT-3, and ELK-1. The current results indicate that the new formulation of the nanocomposite self-setting cements might provide some

  4. Npas4 Transcription Factor Expression Is Regulated by Calcium Signaling Pathways and Prevents Tacrolimus-induced Cytotoxicity in Pancreatic Beta Cells.

    PubMed

    Speckmann, Thilo; Sabatini, Paul V; Nian, Cuilan; Smith, Riley G; Lynn, Francis C

    2016-02-01

    Cytosolic calcium influx activates signaling pathways known to support pancreatic beta cell function and survival by modulating gene expression. Impaired calcium signaling leads to decreased beta cell mass and diabetes. To appreciate the causes of these cytotoxic perturbations, a more detailed understanding of the relevant signaling pathways and their respective gene targets is required. In this study, we examined the calcium-induced expression of the cytoprotective beta cell transcription factor Npas4. Pharmacological inhibition implicated the calcineurin, Akt/protein kinase B, and Ca(2+)/calmodulin-dependent protein kinase signaling pathways in the regulation of Npas4 transcription and translation. Both Npas4 mRNA and protein had high turnover rates, and, at the protein level, degradation was mediated via the ubiquitin-proteasome pathway. Finally, beta cell cytotoxicity of the calcineurin inhibitor and immunosuppressant tacrolimus (FK-506) was prevented by Npas4 overexpression. These results delineate the pathways regulating Npas4 expression and stability and demonstrate its importance in clinical settings such as islet transplantation.

  5. Effects of calcium signaling on coagulation factor VIIa-induced proliferation and migration of the SW620 colon cancer cell line.

    PubMed

    Wu, Ying; Wang, Jing; Zhou, Hong; Yu, Xiaoyan; Hu, Lichao; Meng, Fanlu; Jiang, Shuanghong

    2014-12-01

    Tissue factor (TF)/VIIa/protease‑activated receptor 2 (PAR2) has been shown to trigger the ERK1/2 signaling pathway. This was shown to be closely associated with the proliferation and migration of SW620 colon cancer cells; however, the detailed mechanisms remain unclear. The aim of the present study was to elucidate the effects of calcium signaling on the proliferation and migration of SW620 cells induced by coagulation factor VIIa. The results demonstrated that VIIa and PAR2 agonist PAR2‑AP increased [Ca2+]i in SW620 cells. In addition, VIIa‑and PAR2‑AP‑induced ERK1/2 activation was inhibited by thapsigargin (TG)‑induced depletion of intracellular Ca2+ stores and EGTA‑mediated removal of extracellular Ca2+. It was also identified that VIIa and PAR2‑AP‑induced proliferation and migration of SW620 cells was modulated by EGTA and TG. Taken together, the present results indicate that VIIa triggers calcium signaling in SW620 cells, in a TF‑dependent manner, which is critical for VIIa‑induced ERK1/2 activation in SW620 cells. These results suggested that calcium signaling had a vital role in the proliferation and migration of SW620 cells.

  6. Calcium signalling mediated by the α9 acetylcholine receptor in a cochlear cell line from the Immortomouse

    PubMed Central

    Jagger, D J; Griesinger, C B; Rivolta, M N; Holley, M C; Ashmore, J F

    2000-01-01

    We have investigated the characteristics of the α9 acetylcholine receptor (α9AChR) expressed in hair cell precursors in an immortalized cell line UB/OC-2 developed from the organ of Corti of the transgenic H-2Kb-tsA58 mouse (the Immortomouse) using both calcium imaging and whole-cell recording. Ratiometric measurements of fura-2 fluorescence revealed an increase of intracellular calcium concentration in cells when challenged with 10 μM ACh. The calcium increase was seen in 66 % of the cells grown at 39 °C in differentiated conditions. A smaller fraction (34 %) of cells grown at 33 °C in proliferative conditions responded. Caffeine (10 mM) elevated cell calcium. In the absence of caffeine, the majority of imaged cells responded only once to ACh. A small proportion (< 2 % of the total) responded with an increase in intracellular calcium to multiple ACh presentations. Pretreatment with caffeine inhibited all calcium responses to ACh. In whole-cell tight-seal recordings 10 μM ACh activated an inward, non-selective cation current. The reversal potential of the ACh-activated inward current was dependent on the extracellular calcium concentration with an estimated PCa/PNa of 80 for the α9 receptor at physiological calcium levels. The data indicate that ACh activates a calcium-permeable channel α9AChR in UB/OC-2 cells and that the channel has a significantly higher calcium permeability than other AChRs. The results indicate that the α9AChR may be able to elevate intracellular calcium levels in hair cells both directly and via store release. PMID:10944169

  7. Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design*S⃞

    PubMed Central

    Akerboom, Jasper; Rivera, Jonathan D. Vélez; Guilbe, María M. Rodríguez; Malavé, Elisa C. Alfaro; Hernandez, Hector H.; Tian, Lin; Hires, S. Andrew; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.

    2009-01-01

    The genetically encoded calcium indicator GCaMP2 shows promise for neural network activity imaging, but is currently limited by low signal-to-noise ratio. We describe x-ray crystal structures as well as solution biophysical and spectroscopic characterization of GCaMP2 in the calcium-free dark state, and in two calcium-bound bright states: a monomeric form that dominates at intracellular concentrations observed during imaging experiments and an unexpected domain-swapped dimer with decreased fluorescence. This series of structures provides insight into the mechanism of Ca2+-induced fluorescence change. Upon calcium binding, the calmodulin (CaM) domain wraps around the M13 peptide, creating a new domain interface between CaM and the circularly permuted enhanced green fluorescent protein domain. Residues from CaM alter the chemical environment of the circularly permuted enhanced green fluorescent protein chromophore and, together with flexible inter-domain linkers, block solvent access to the chromophore. Guided by the crystal structures, we engineered a series of GCaMP2 point mutants to probe the mechanism of GCaMP2 function and characterized one mutant with significantly improved signal-to-noise. The mutation is located at a domain interface and its effect on sensor function could not have been predicted in the absence of structural data. PMID:19098007

  8. Neuronal Expression of the Human Neuropeptide S Receptor NPSR1 Identifies NPS-Induced Calcium Signaling Pathways

    PubMed Central

    Erdmann, Frank; Kügler, Sebastian; Blaesse, Peter; Lange, Maren D.; Skryabin, Boris V.; Pape, Hans-Christian; Jüngling, Kay

    2015-01-01

    The neuropeptide S (NPS) system was discovered as a novel neurotransmitter system a decade ago and has since been identified as a key player in the modulation of fear and anxiety. Genetic variations of the human NPS receptor (NPSR1) have been associated with pathologies like panic disorders. However, details on the molecular fundamentals of NPSR1 activity in neurons remained elusive. We expressed NPSR1 in primary hippocampal cultures. Using single-cell calcium imaging we found that NPSR1 stimulation induced calcium mobilization from the endoplasmic reticulum via activation of IP3 and ryanodine receptors. Store-operated calcium channels were activated in a downstream process mediating entry of extracellular calcium. We provide the first detailed analysis of NPSR1 activity and the underlying intracellular pathways with respect to calcium mobilization in neurons. PMID:25714705

  9. Arabidopsis Histone Methylase CAU1/PRMT5/SKB1 Acts as an Epigenetic Suppressor of the Calcium Signaling Gene CAS to Mediate Stomatal Closure in Response to Extracellular Calcium[W

    PubMed Central

    Fu, Yan-Lei; Zhang, Guo-Bin; Lv, Xin-Fang; Guan, Yuan; Yi, Hong-Ying; Gong, Ji-Ming

    2013-01-01

    Elevations in extracellular calcium ([Ca2+]o) are known to stimulate cytosolic calcium ([Ca2+]cyt) oscillations to close stomata. However, the underlying mechanisms regulating this process remain largely to be determined. Here, through the functional characterization of the calcium underaccumulation mutant cau1, we report that the epigenetic regulation of CAS, a putative Ca2+ binding protein proposed to be an external Ca2+ sensor, is involved in this process. cau1 mutant plants display increased drought tolerance and stomatal closure. A mutation in CAU1 significantly increased the expression level of the calcium signaling gene CAS, and functional disruption of CAS abolished the enhanced drought tolerance and stomatal [Ca2+]o signaling in cau1. Map-based cloning revealed that CAU1 encodes the H4R3sme2 (for histone H4 Arg 3 with symmetric dimethylation)-type histone methylase protein arginine methytransferase5/Shk1 binding protein1. Chromatin immunoprecipitation assays showed that CAU1 binds to the CAS promoter and modulates the H4R3sme2-type histone methylation of the CAS chromatin. When exposed to elevated [Ca2+]o, the protein levels of CAU1 decreased and less CAU1 bound to the CAS promoter. In addition, the methylation level of H4R3sme2 decreased in the CAS chromatin. Together, these data suggest that in response to increases in [Ca2+]o, fewer CAU1 protein molecules bind to the CAS promoter, leading to decreased H4R3sme2 methylation and consequent derepression of the expression of CAS to mediate stomatal closure and drought tolerance. PMID:23943859

  10. Allosteric Modulation of the Calcium-sensing Receptor Rectifies Signaling Abnormalities Associated with G-protein α-11 Mutations Causing Hypercalcemic and Hypocalcemic Disorders.

    PubMed

    Babinsky, Valerie N; Hannan, Fadil M; Gorvin, Caroline M; Howles, Sarah A; Nesbit, M Andrew; Rust, Nigel; Hanyaloglu, Aylin C; Hu, Jianxin; Spiegel, Allen M; Thakker, Rajesh V

    2016-05-13

    Germline loss- and gain-of-function mutations of G-protein α-11 (Gα11), which couples the calcium-sensing receptor (CaSR) to intracellular calcium (Ca(2+) i) signaling, lead to familial hypocalciuric hypercalcemia type 2 (FHH2) and autosomal dominant hypocalcemia type 2 (ADH2), respectively, whereas somatic Gα11 mutations mediate uveal melanoma development by constitutively up-regulating MAPK signaling. Cinacalcet and NPS-2143 are allosteric CaSR activators and inactivators, respectively, that ameliorate signaling disturbances associated with CaSR mutations, but their potential to modulate abnormalities of the downstream Gα11 protein is unknown. This study investigated whether cinacalcet and NPS-2143 may rectify Ca(2+) i alterations associated with FHH2- and ADH2-causing Gα11 mutations, and evaluated the influence of germline gain-of-function Gα11 mutations on MAPK signaling by measuring ERK phosphorylation, and assessed the effect of NPS-2143 on a uveal melanoma Gα11 mutant. WT and mutant Gα11 proteins causing FHH2, ADH2 or uveal melanoma were transfected in CaSR-expressing HEK293 cells, and Ca(2+) i and ERK phosphorylation responses measured by flow-cytometry and Alphascreen immunoassay following exposure to extracellular Ca(2+) (Ca(2+) o) and allosteric modulators. Cinacalcet and NPS-2143 rectified the Ca(2+) i responses of FHH2- and ADH2-associated Gα11 loss- and gain-of-function mutations, respectively. ADH2-causing Gα11 mutations were demonstrated not to be constitutively activating and induced ERK phosphorylation following Ca(2+) o stimulation only. The increased ERK phosphorylation associated with ADH2 and uveal melanoma mutants was rectified by NPS-2143. These findings demonstrate that CaSR-targeted compounds can rectify signaling disturbances caused by germline and somatic Gα11 mutations, which respectively lead to calcium disorders and tumorigenesis; and that ADH2-causing Gα11 mutations induce non-constitutive alterations in MAPK signaling

  11. Calcium supplements

    MedlinePlus

    ... TYPES OF CALCIUM SUPPLEMENTS Forms of calcium include: Calcium carbonate: Over-the-counter (OTC) antacid products, such as Tums and Rolaids, contain calcium carbonate. These sources of calcium do not cost much. ...

  12. Evidence that the cADPR signalling pathway controls calcium-mediated microneme secretion in Toxoplasma gondii

    PubMed Central

    2005-01-01

    The protozoan parasite Toxoplasma gondii relies on calcium-mediated exocytosis to secrete adhesins on to its surface where they can engage host cell receptors. Increases in intracellular calcium occur in response to Ins(1,4,5)P3 and caffeine, an agonist of ryanodine-responsive calcium-release channels. We examined lysates and microsomes of T. gondii and detected evidence of cADPR (cyclic ADP ribose) cyclase and hydrolase activities, the two enzymes that control the second messenger cADPR, which causes calcium release from RyR (ryanodine receptor). We also detected endogenous levels of cADPR in extracts of T. gondii. Furthermore, T. gondii microsomes that were loaded with 45Ca2+ released calcium when treated with cADPR, and the RyR antagonists 8-bromo-cADPR and Ruthenium Red blocked this response. Although T. gondii microsomes also responded to Ins(1,4,5)P3, the inhibition profiles of these calcium-release channels were mutually exclusive. The RyR antagonists 8-bromo-cADPR and dantrolene inhibited protein secretion and motility in live parasites. These results indicate that RyR calcium-release channels that respond to the second-messenger cADPR play an important role in regulating intracellular Ca2+, and hence host cell invasion, in protozoan parasites. PMID:15773818

  13. Contribution of calcium ions and hydrogen ions to the signal transduction chain in phytochrome-mediated spore germination. [Onoclea sensibilis L

    SciTech Connect

    Wayne, R.

    1985-01-01

    Red light stimulates germination in the spores of Onoclea sensibilis L. Phytochrome is confirmed to be the photoreceptor pigment in the germination response by demonstrating red-far-red photoreversibility. External Ca/sup 2 +/ is required for this response with a threshold at a submicromolar concentration. Red light stimulates an increase in the total concentration of intracellular calcium in the spores as determined by atomic absorption spectroscopy. Subsequent exposure to far-red light inhibits the red light-induced increase in intracellular calcium. The majority of the increase occurs 5 minutes after the onset of irradiation. The calcium-antagonist, La/sup 3 +/ inhibits both germination and the red light-induced increase in intracellular calcium. Using /sup 31/P-nuclear magnetic resonance spectroscopy, the author tested the hypothesis that a sustained increase in intracellular pH contributes to the signal transduction chain. He never detected a red light-induced increase in intracellular pH or a change in portion efflux. An artificially induced change in intracellular pH of greater than 1 pH unit (5.8-7.2) has no effect on germination. Although the intracellular pH can be varied in magnitude greater than it would be expected to change if it were acting as an intracellular signal, germination of Onoclea spores is independent of intracellular pH in this range. These data indicate that a sustained increase in intracellular pH does not contribute to the single transduction chain phytochrome-mediated fern spore germination. Therefore, Ca/sup 2 +/, but not pH, contributes to the signal transduction chain in phytochrome-mediated fern spore germination.

  14. Fibronectin-induced proliferation in thyroid cells is mediated by alphavbeta3 integrin through Ras/Raf-1/MEK/ERK and calcium/CaMKII signals.

    PubMed

    Illario, Maddalena; Cavallo, Anna Lina; Monaco, Sara; Di Vito, Ennio; Mueller, Frank; Marzano, Luigi A; Troncone, Giancarlo; Fenzi, Gianfranco; Rossi, Guido; Vitale, Mario

    2005-05-01

    We recently demonstrated in an immortalized thyroid cell line that integrin stimulation by fibronectin (FN) simultaneously activates two signaling pathways: Ras/Raf/MAPK kinase (Mek)/Erk and calcium Ca2+/calcium calmodulin-dependent kinase II (CaMKII). Both signals are necessary to stimulate Erk phosphorylation because CaMKII modulates Ras-induced Raf-1 activity. In this study we present evidence that extends these findings to normal human thyroid cells in primary culture, demonstrating its biological significance in a more physiological cell model. In normal thyroid cells, immobilized FN-induced activation of p21Ras and Erk phosphorylation. This pathway was responsible for FN-induced cell proliferation. Concurrent increase of intracellular Ca2+ concentration and CaMKII activation was observed. Both induction of p21Ras activity and increase of intracellular Ca2+ concentration were mediated by FN binding to alphavbeta3 integrin. Inhibition of the Ca2+/CaMKII signal pathway by calmodulin or CaMKII inhibitors completely abolished the FN-induced Erk phosphorylation. Binding to FN induced Raf-1 and CaMKII to form a protein complex, indicating that intersection between Ras/Raf/Mek/Erk and Ca2+/CaMKII signaling pathways occurred at Raf-1 level. Interruption of the Ca2+/CaMKII signal pathway arrested cell proliferation induced by FN. We also analyzed thyroid tumor cell lines that displayed concomitant aberrant integrin expression and signal transduction. These data confirm that integrin activation by FN in normal thyroid cells generates Ras/Raf/Mek/Erk and Ca2+/CaMKII signaling pathways and that both are necessary to stimulate cell proliferation, whereas in thyroid tumors integrin signaling is altered.

  15. Photoreception and signal transduction in corals: proteomic and behavioral evidence for cytoplasmic calcium as a mediator of light responsivity.

    PubMed

    Hilton, J Daniel; Brady, Aisling K; Spaho, Skender A; Vize, Peter D

    2012-12-01

    Little is known about how corals sense and respond to light. In this report the proteome of coral is explored using 2D protein electrophoresis in two species, Montastraea cavernosa and Acropora millepora. Multiple protein species have major shifts in abundance in both species when sampled in daylight compared to corals sampled late in the night. These changes were observed both in larvae lacking zooxanthellae and in adult tissue containing zooxanthellae, including both Pacific and Caribbean corals. When larvae kept in the dark were treated with either thapsigargin or ionomycin, compounds that raise the level of cytoplasmic calcium, the night pattern of proteins shifted to the day pattern. This implies that photoreceptors responding to light elevate calcium levels and that calcium acts as the second messenger relaying light responses in corals. Corals spawn at night, and spawning can be delayed by exposure to light or pushed forward by early artificial sunsets. In a series of behavioral experiments, treatment of corals with ionomycin or thapsigargin was found to delay broadcast spawning in M. franksi, demonstrating that pharmacologically altering cytoplasmic calcium levels generates the same response as light exposure. Together these results show that the photo-responsive cells of corals detect and respond to light by altering cytoplasmic calcium levels, similarly to the transduction pathways in complex invertebrate eyes. The primacy of cytoplasmic calcium levels in light responsivity has broad implications for coral reproduction, including predicting how different species spawn at different times after sunset and how reproductive isolation is achieved during coral speciation.

  16. Peripheral μ-opioid receptor mediated inhibition of calcium signaling and action potential-evoked calcium fluorescent transients in primary afferent CGRP nociceptive terminals.

    PubMed

    Baillie, Landon D; Schmidhammer, Helmut; Mulligan, Sean J

    2015-06-01

    While μ-opioid receptor (MOR) agonists remain the most powerful analgesics for the treatment of severe pain, serious adverse side effects that are secondary to their central nervous system actions pose substantial barriers to therapeutic use. Preclinical and clinical evidence suggest that peripheral MORs play an important role in opioid analgesia, particularly under inflammatory conditions. However, the mechanisms of peripheral MOR signaling in primary afferent pain fibres remain to be established. We have recently introduced a novel ex vivo optical imaging approach that, for the first time, allows the study of physiological functioning within individual peripheral nociceptive fibre free nerve endings in mice. In the present study, we found that MOR activation in selectively identified, primary afferent CGRP nociceptive terminals caused inhibition of N-type Ca(2+) channel signaling and suppression of action potential-evoked Ca(2+) fluorescent transients mediated by 'big conductance' Ca(2+)-activated K(+) channels (BKCa). In the live animal, we showed that the peripherally acting MOR agonist HS-731 produced analgesia and that BKCa channels were the major effectors of the peripheral MOR signaling. We have identified two key molecular transducers of MOR activation that mediate significant inhibition of nociceptive signaling in primary afferent terminals. Understanding the mechanisms of peripheral MOR signaling may promote the development of pathway selective μ-opioid drugs that offer improved therapeutic profiles for achieving potent analgesia while avoiding serious adverse central side effects. PMID:25721395

  17. Effect of a high dose of simvastatin on muscle mitochondrial metabolism and calcium signaling in healthy volunteers

    SciTech Connect

    Galtier, F.; Mura, T.; Raynaud de Mauverger, E.; Chevassus, H.; Farret, A.; Gagnol, J.-P.; Costa, F.; Dupuy, A.; and others

    2012-09-15

    Statin use may be limited by muscle side effects. Although incompletely understood to date, their pathophysiology may involve oxidative stress and impairments of mitochondrial function and of muscle Ca{sup 2+} homeostasis. In order to simultaneously assess these mechanisms, 24 male healthy volunteers were randomized to receive either simvastatin for 80 mg daily or placebo for 8 weeks. Blood and urine samples and a stress test were performed at baseline and at follow-up, and mitochondrial respiration and Ca{sup 2+} spark properties were evaluated on a muscle biopsy 4 days before the second stress test. Simvastatin-treated subjects were separated according to their median creatine kinase (CK) increase. Simvastatin treatment induced a significant elevation of aspartate amino transferase (3.38 ± 5.68 vs − 1.15 ± 4.32 UI/L, P < 0.001) and CK (− 24.3 ± 99.1 ± 189.3vs 48.3 UI/L, P = 0.01) and a trend to an elevation of isoprostanes (193 ± 408 vs12 ± 53 pmol/mmol creatinine, P = 0.09) with no global change in mitochondrial respiration, lactate/pyruvate ratio or Ca{sup 2+} sparks. However, among statin-treated subjects, those with the highest CK increase displayed a significantly lower Vmax rotenone succinate and an increase in Ca{sup 2+} spark amplitude vs both subjects with the lowest CK increase and placebo-treated subjects. Moreover, Ca{sup 2+} spark amplitude was positively correlated with treatment-induced CK increase in the whole group (r = 0.71, P = 0.0045). In conclusion, this study further supports that statin induced muscular toxicity may be related to alterations in mitochondrial respiration and muscle calcium homeostasis independently of underlying disease or concomitant medication. -- Highlights: ► Statin use may be limited by side effects, particularly myopathy. ► Statins might impair mitochondrial function and muscle Ca2+ signaling in muscle. ► This was tested among healthy volunteers receiving simvastatin 80 mg daily for 8 weeks. ► CK

  18. [Calmodulin inhibitors suppress a calcium signal from serotonin receptors in smooth muscle cells and remove the vasoconstrictive response upon intravenous introduction of serotonin].

    PubMed

    Kozhevnikova, L M; Zharkikh, I L; Avdonin, P V

    2013-01-01

    Comparative study of the effect of calmodulin inhibitors (trifluoperazine, W-12, and W-13) and the TRPVI channel blocker (capsazepine) on receptor-dependent calcium exchange in smooth muscle cells of the rat aorta and on the contractility of the isolated aorta was conducted. It was determined that trifluoperazine almost completely removes an increase in the concentration of calcium ions in the cytoplasm of smooth muscle cells (isolated from the rat aorta) and smooth muscle cells of the A7r5 line in response to serotonin and does not influence the cell response to vasopressin and angiotensin II. W-12 and W-13 also do not reduce calcium ion concentration increase (induced by vasopressin and angiotensin II) but reduces by two times its rise in response to serotonin. It was found that the efficiency of calcium exchange suppression by calmodulin inhibitors correlates with the intensity at which they inhibit the contractile response of the aorta on the effect of serotonin. It was detected that the inhibiting effect of calmodulin blockers on calcium exchange in smooth muscle cells and the contractility of the rat isolated aorta during the activation of serotonin vasoconstrictive receptors are realized by a TRPV1-independent mechanism. It was demonstrated in experiments in vivo that trifluoperazine does not influence hypotensive reaction in rats (normally observed in response to intravenous serotonin introduction), but removes the hypertensive effect of this neurotransmitter in rats after chronic introduction of dexamethasone. The results obtained confirm the hypothesis (that we previously stated) about the direct involvement of calmodulin in signal transmission from vasoconstrictive serotonin receptors.

  19. Calcium-mediated repression of β-catenin and its transcriptional signaling mediates neural crest cell death in an avian model of fetal alcohol syndrome.

    PubMed

    Flentke, George R; Garic, Ana; Amberger, Ed; Hernandez, Marcos; Smith, Susan M

    2011-07-01

    Fetal alcohol syndrome (FAS) is a common birth defect in many societies. Affected individuals have neurodevelopmental disabilities and a distinctive craniofacial dysmorphology. These latter deficits originate during early development from the ethanol-mediated apoptotic depletion of cranial facial progenitors, a population known as the neural crest. We showed previously that this apoptosis is caused because acute ethanol exposure activates G-protein-dependent intracellular calcium within cranial neural crest progenitors, and this calcium transient initiates the cell death. The dysregulated signals that reside downstream of ethanol's calcium transient and effect neural crest death are unknown. Here we show that ethanol's repression of the transcriptional effector β-catenin causes the neural crest losses. Clinically relevant ethanol concentrations (22-78 mM) rapidly deplete nuclear β-catenin from neural crest progenitors, with accompanying losses of β-catenin transcriptional activity and downstream genes that govern neural crest induction, expansion, and survival. Using forced expression studies, we show that β-catenin loss of function (via dominant-negative T cell transcription factor [TCF]) recapitulates ethanol's effects on neural crest apoptosis, whereas β-catenin gain-of-function in ethanol's presence preserves neural crest survival. Blockade of ethanol's calcium transient using Bapta-AM normalizes β-catenin activity and prevents the neural crest losses, whereas ionomycin treatment is sufficient to destabilize β-catenin. We propose that ethanol's repression of β-catenin causes the neural crest losses in this model of FAS. β-Catenin is a novel target for ethanol's teratogenicity. β-Catenin/Wnt signals participate in many developmental events and its rapid and persistent dysregulation by ethanol may explain why the latter is such a potent teratogen.

  20. Impaired endothelial calcium signaling is responsible for the defective dilation of mesenteric resistance arteries from db/db mice to acetylcholine.

    PubMed

    Chen, Hua; Kold-Petersen, Henrik; Laher, Ismael; Simonsen, Ulf; Aalkjaer, Christian

    2015-11-15

    We aimed at assessing the role of endothelial cell calcium for the endothelial dysfunction of mesenteric resistance arteries of db/db mice (a model of type 2 diabetes) and determine whether treatment with sulfaphenazole, improves endothelial calcium signaling and function. Pressure myography was used to study acetylcholine (ACh) -induced vasodilation. Intracellular calcium ([Ca(2+)]i) transients was measured by confocal laser scanning microscopy and smooth muscle membrane potential with sharp microelectrodes. The impaired dilation to ACh observed in mesenteric resistance arteries from db/db mice was improved by treatment of the mice with sulfaphenazole for 8 weeks. The impaired dilation to ACh was associated with decreased endothelial [Ca(2+)]i and smooth muscle hyperpolarization. Sulfaphenazole applied in vitro improved endothelial mediated dilation of arteries from db/db mice both in the absence and the presence of inhibitors of nitric oxide and cyclooxygenase. Sulfaphenazole also increased the percentage of endothelial cells with ACh induced increases of [Ca(2+)]i. The study shows that impaired endothelial [Ca(2+)]i control can explain the reduced endothelial function in arteries from diabetic mice and that sulfaphenazole treatment improves endothelial [Ca(2+)]i responses to ACh and consequently endothelium-dependent vasodilation. These observations provide mechanistic insight into endothelial dysfunction in diabetes.

  1. Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus

    PubMed

    Xu; Heath

    1998-04-01

    The hypersensitive response (HR) of disease-resistant plant cells to fungal invasion is a rapid cell death that has some features in common with programmed cell death (apoptosis) in animals. We investigated the role of cytosolic free calcium ([Ca2+]i) in the HR of cowpea to the cowpea rust fungus. By using confocal laser scanning microscopy in conjunction with a calcium reporter dye, we found a slow, prolonged elevation of [Ca2+]i in epidermal cells of resistant but not susceptible plants as the fungus grew through the cell wall. [Ca2+]i levels declined to normal levels as the fungus entered and grew within the cell lumen. This elevation was related to the stage of fungal growth and not to the speed of initiation of subsequent cell death. Elevated [Ca2+]i levels also represent the first sign of the HR detectable in this cowpea-cowpea rust fungus system. The increase in [Ca2+]i was prevented by calcium channnel inhibitors. This effect was consistent with pharmacological tests in which these inhibitors delayed the HR. The data suggest that elevation of [Ca2+]i is involved in signal transduction leading to the HR during rust fungal infection.

  2. Characterization of Helicobacter pylori VacA-containing vacuoles (VCVs), VacA intracellular trafficking and interference with calcium signalling in T lymphocytes.

    PubMed

    Kern, Beate; Jain, Utkarsh; Utsch, Ciara; Otto, Andreas; Busch, Benjamin; Jiménez-Soto, Luisa; Becher, Dörte; Haas, Rainer

    2015-12-01

    The human pathogen Helicobacter pylori colonizes half of the global population. Residing at the stomach epithelium, it contributes to the development of diseases such as gastritis, duodenal and gastric ulcers, and gastric cancer. A major factor is the secreted vacuolating toxin VacA, which forms anion-selective channels in the endosome membrane that cause the compartment to swell, but the composition and purpose of the resulting VacA-containing vacuoles (VCVs) are still unknown. VacA exerts influence on the host immune response in various ways, including inhibition of T-cell activation and proliferation and suppression of the host immune response. In this study, for the first time the composition of VCVs from T cells was comprehensively analysed to investigate VCV function. VCVs were successfully isolated via immunomagnetic separation, and the purified vacuoles were analysed by mass spectrometry. We detected a set of 122 VCV-specific proteins implicated among others in immune response, cell death and cellular signalling processes, all of which VacA is known to influence. One of the individual proteins studied further was stromal interaction molecule (STIM1), a calcium sensor residing in the endoplasmic reticulum (ER) that is important in store-operated calcium entry. Live cell imaging microscopy data demonstrated colocalization of VacA with STIM1 in the ER and indicated that VacA may interfere with the movement of STIM1 towards the plasma membrane-localized calcium release activated calcium channel protein ORAI1 in response to Ca(2+) store depletion. Furthermore, VacA inhibited the increase of cytosolic-free Ca(2+) in the Jurkat E6-1 T-cell line and human CD4(+) T cells. The presence of VacA in the ER and its trafficking to the Golgi apparatus was confirmed in HeLa cells, identifying these two cellular compartments as novel VacA target structures.

  3. Inhibition of the Inositol Kinase Itpkb Augments Calcium Signaling in Lymphocytes and Reveals a Novel Strategy to Treat Autoimmune Disease

    PubMed Central

    Miller, Andrew T.; Dahlberg, Carol; Sandberg, Mark L.; Wen, Ben G.; Beisner, Daniel R.; Hoerter, John A. H.; Parker, Albert; Schmedt, Christian; Stinson, Monique; Avis, Jacqueline; Cienfuegos, Cynthia; McPate, Mark; Tranter, Pamela; Gosling, Martin; Groot-Kormelink, Paul J.; Dawson, Janet; Pan, Shifeng; Tian, Shin-Shay; Seidel, H. Martin; Cooke, Michael P.

    2015-01-01

    Emerging approaches to treat immune disorders target positive regulatory kinases downstream of antigen receptors with small molecule inhibitors. Here we provide evidence for an alternative approach in which inhibition of the negative regulatory inositol kinase Itpkb in mature T lymphocytes results in enhanced intracellular calcium levels following antigen receptor activation leading to T cell death. Using Itpkb conditional knockout mice and LMW Itpkb inhibitors these studies reveal that Itpkb through its product IP4 inhibits the Orai1/Stim1 calcium channel on lymphocytes. Pharmacological inhibition or genetic deletion of Itpkb results in elevated intracellular Ca2+ and induction of FasL and Bim resulting in T cell apoptosis. Deletion of Itpkb or treatment with Itpkb inhibitors blocks T-cell dependent antibody responses in vivo and prevents T cell driven arthritis in rats. These data identify Itpkb as an essential mediator of T cell activation and suggest Itpkb inhibition as a novel approach to treat autoimmune disease. PMID:26121493

  4. Microtubule-based localization of a synaptic calcium-signaling complex is required for left-right neuronal asymmetry in C. elegans.

    PubMed

    Chang, Chieh; Hsieh, Yi-Wen; Lesch, Bluma J; Bargmann, Cornelia I; Chuang, Chiou-Fen

    2011-08-01

    The axons of C. elegans left and right AWC olfactory neurons communicate at synapses through a calcium-signaling complex to regulate stochastic asymmetric cell identities called AWC(ON) and AWC(OFF). However, it is not known how the calcium-signaling complex, which consists of UNC-43/CaMKII, TIR-1/SARM adaptor protein and NSY-1/ASK1 MAPKKK, is localized to postsynaptic sites in the AWC axons for this lateral interaction. Here, we show that microtubule-based localization of the TIR-1 signaling complex to the synapses regulates AWC asymmetry. Similar to unc-43, tir-1 and nsy-1 loss-of-function mutants, specific disruption of microtubules in AWC by nocodazole generates two AWC(ON) neurons. Reduced localization of UNC-43, TIR-1 and NSY-1 proteins in the AWC axons strongly correlates with the 2AWC(ON) phenotype in nocodazole-treated animals. We identified kinesin motor unc-104/kif1a mutants for enhancement of the 2AWC(ON) phenotype of a hypomorphic tir-1 mutant. Mutations in unc-104, like microtubule depolymerization, lead to a reduced level of UNC-43, TIR-1 and NSY-1 proteins in the AWC axons. In addition, dynamic transport of TIR-1 in the AWC axons is dependent on unc-104, the primary motor required for the transport of presynaptic vesicles. Furthermore, unc-104 acts non-cell autonomously in the AWC(ON) neuron to regulate the AWC(OFF) identity. Together, these results suggest a model in which UNC-104 may transport some unknown presynaptic factor(s) in the future AWC(ON) cell that non-cell autonomously control the trafficking of the TIR-1 signaling complex to postsynaptic regions of the AWC axons to regulate the AWC(OFF) identity.

  5. Calcium storage and release properties of F-actin: evidence for the involvement of F-actin in cellular calcium signaling.

    PubMed

    Lange, K; Brandt, U

    1996-10-21

    slow rate. Short ultrasonic pulses rapidly elevated free Ca2+ from about 50 nM up to 500 nM. (6) Small amounts of profilin, an actin-binding protein, released Ca2+ both from Ca- and Mg/Ca-F-actin and also inhibited uptake of Ca2+ into Mg/Ca-F-actin. (7) Phalloidin completely inhibited Ca-uptake into Mg/Ca-F-actin even during ultrasonic treatment. These findings suggest that Ca2+ storage may occur by addition of Ca-ATP-actin monomers to reactive ends of the polymer and emptying of this store by profilin-stimulated release of Ca-ADP-actin. Thus, receptor-operated Ca2+ signaling, initiated by phospholipase C activation, may proceed via the well-known phosphatidylinositol phosphate-regulated profilin/gelsolin pathway of actin reorganization/depolymerization. The importance of the proposed microvillar Ca2+ signaling system for living cells remains to be established. PMID:8898081

  6. Calcium signaling and the novel anti-proliferative effect of the UTP-sensitive P2Y11 receptor in rat cardiac myofibroblasts.

    PubMed

    Certal, Mariana; Vinhas, Adriana; Pinheiro, Ana Rita; Ferreirinha, Fátima; Barros-Barbosa, Aurora Raquel; Silva, Isabel; Costa, Maria Adelina; Correia-de-Sá, Paulo

    2015-11-01

    During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membrane-bound P2 purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and α-smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca(2+)]i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y4 agonist, MRS4062, caused a fast desensitizing [Ca(2+)]i rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca(2+) in the extracellular fluid. The biphasic [Ca(2+)]i response to UTP was attenuated respectively by P2Y4 blockers, like reactive blue-2 and suramin, and by the P2Y11 antagonist, NF340. UTP and the P2Y2 receptor agonist MRS2768 increased, whereas the selective P2Y11 agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y11 receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y2, P2Y4 and P2Y11 receptors. Data indicate that besides P2Y4 and P2Y2 receptors which are responsible for UTP-induced [Ca(2+)]i transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y11 receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.

  7. Calcium Carbonate

    MedlinePlus

    Calcium carbonate is a dietary supplement used when the amount of calcium taken in the diet is not ... for healthy bones, muscles, nervous system, and heart. Calcium carbonate also is used as an antacid to relieve ...

  8. Calcium - urine

    MedlinePlus

    High levels of urine calcium (above 300 mg/day) may be due to: Chronic kidney disease High vitamin D levels Leaking of calcium from the kidneys into the urine, which causes calcium kidney stones Sarcoidosis Taking ...

  9. Calcium-mediated mechanisms of cystic expansion

    PubMed Central

    Abdul-Majeed, Shakila; Nauli, Surya M.

    2010-01-01

    In this review, we will discuss several well-accepted signaling pathways toward calcium-mediated mechanisms of cystic expansion. The second messenger calcium ion has contributed to a vast diversity of signal transduction pathways. We will dissect calcium signaling as a possible mechanism that contributes to renal cyst formation. Because cytosolic calcium also regulates an array of signaling pathways, we will first discuss cilia-induced calcium fluxes, followed by Wnt signaling that has attributed to much-discussed planar cell polarity. We will then look at the relationship between cytosolic calcium and cAMP as one of the most important aspects of cyst progression. The signaling of cAMP on MAPK and mTOR will also be discussed. We infer that while cilia-induced calcium fluxes may be the initial signaling messenger for various cellular pathways, no single signaling mediator or pathway is implicated exclusively in the progression of the cystic expansion. PMID:20932898

  10. A rendezvous with the queen of ion channels: Three decades of ion channel research by David T Yue and his Calcium Signals Laboratory

    PubMed Central

    Dick, Ivy E; Limpitikul, Worawan B; Niu, Jacqueline; Banerjee, Rahul; Issa, John B; Ben-Johny, Manu; Adams, Paul J; Kang, Po Wei; Lee, Shin Rong; Sang, Lingjie; Yang, Wanjun; Babich, Jennifer; Zhang, Manning; Bazazzi, Hojjat; Yue, Nancy C; Tomaselli, Gordon F

    2016-01-01

    David T. Yue was a renowned biophysicist who dedicated his life to the study of Ca2+ signaling in cells. In the wake of his passing, we are left not only with a feeling of great loss, but with a tremendous and impactful body of work contributed by a remarkable man. David's research spanned the spectrum from atomic structure to organ systems, with a quantitative rigor aimed at understanding the fundamental mechanisms underlying biological function. Along the way he developed new tools and approaches, enabling not only his own research but that of his contemporaries and those who will come after him. While we cannot hope to replicate the eloquence and style we are accustomed to in David's writing, we nonetheless undertake a review of David's chosen field of study with a focus on many of his contributions to the calcium channel field. PMID:26176690

  11. Fruit Calcium: Transport and Physiology.

    PubMed

    Hocking, Bradleigh; Tyerman, Stephen D; Burton, Rachel A; Gilliham, Matthew

    2016-01-01

    Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium

  12. Fruit Calcium: Transport and Physiology

    PubMed Central

    Hocking, Bradleigh; Tyerman, Stephen D.; Burton, Rachel A.; Gilliham, Matthew

    2016-01-01

    Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium

  13. Computational biology analysis of platelet signaling reveals roles of feedbacks through phospholipase C and inositol 1,4,5-trisphosphate 3-kinase in controlling amplitude and duration of calcium oscillations.

    PubMed

    Balabin, Fedor A; Sveshnikova, Anastasia N

    2016-06-01

    Blood platelet activation is required to allow their participation in hemostasis and thrombosis. It is regulated by a complicated signaling network, whose functioning has been recently attracting attention for basic research and pharmacological purposes. Phospholipase С (PLC) is an enzyme playing an important role in platelet calcium signaling and responsible for release of inositol triphosphate (IP3) into platelet cytoplasm thus controlling intracellular calcium concentration. Using a comprehensive computational model of platelet calcium signaling, we studied the influence of the positive feedback executed by cytosolic calcium on the PLC isoform β2 during platelet activation. With the positive feedback, the model predicted hyperintensive response to platelet activation by thrombin, where non-physiologically high calcium concentrations arose. However, if one took into account a negative feedback determined by IP3 3-kinase (IP3K), combination of the feedback resulted in the formation of a stepped response (with a stable oscillation amplitude and activation-dependent duration). Stochastic simulations confirmed that PLC and IP3K should act in pair to ensure platelet's "all-or-none" response to activation, when the activation level sets the probability of platelet activation, but not its intensity.

  14. MuSK is a BMP co-receptor that shapes BMP responses and calcium signaling in muscle cells.

    PubMed

    Yilmaz, Atilgan; Kattamuri, Chandramohan; Ozdeslik, Rana N; Schmiedel, Carolyn; Mentzer, Sarah; Schorl, Christoph; Oancea, Elena; Thompson, Thomas B; Fallon, Justin R

    2016-01-01

    Bone morphogenetic proteins (BMPs) function in most tissues but have cell type-specific effects. Given the relatively small number of BMP receptors, this exquisite signaling specificity requires additional molecules to regulate this pathway's output. The receptor tyrosine kinase MuSK (muscle-specific kinase) is critical for neuromuscular junction formation and maintenance. Here, we show that MuSK also promotes BMP signaling in muscle cells. MuSK bound to BMP4 and related BMPs with low nanomolar affinity in vitro and to the type I BMP receptors ALK3 and ALK6 in a ligand-independent manner both in vitro and in cultured myotubes. High-affinity binding to BMPs required the third, alternatively spliced MuSK immunoglobulin-like domain. In myoblasts, endogenous MuSK promoted BMP4-dependent phosphorylation of SMADs and transcription of Id1, which encodes a transcription factor involved in muscle differentiation. Gene expression profiling showed that MuSK was required for the BMP4-induced expression of a subset of genes in myoblasts, including regulator of G protein signaling 4 (Rgs4). In myotubes, MuSK enhanced the BMP4-induced expression of a distinct set of genes, including transcripts characteristic of slow muscle. MuSK-mediated stimulation of BMP signaling required type I BMP receptor activity but was independent of MuSK tyrosine kinase activity. MuSK-dependent expression of Rgs4 resulted in the inhibition of Ca(2+) signaling induced by the muscarinic acetylcholine receptor in myoblasts. These findings establish that MuSK has dual roles in muscle cells, acting both as a tyrosine kinase-dependent synaptic organizing molecule and as a BMP co-receptor that shapes BMP transcriptional output and cholinergic signaling. PMID:27601729

  15. A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae.

    PubMed

    Zelter, Alex; Bencina, Mojca; Bowman, Barry J; Yarden, Oded; Read, Nick D

    2004-09-01

    A large number of Ca2+ -signaling proteins have been previously identified and characterized in Saccharomyces cerevisiae but relatively few have been discovered in filamentous fungi. In this study, a detailed, comparative genomic analysis of Ca2+ -signaling proteins in Neurospora crassa, Magnaporthe grisea, and S. cerevisiae has been made. Our BLAST analysis identified 48, 42, and 40 Ca2+ -signaling proteins in N. crassa, M. grisea, and S. cerevisiae, respectively. In N. crassa, M. grisea, and S. cerevisiae, 79, 100, and 13% of these proteins, respectively, were previously unknown. For N. crassa, M. grisea, and S. cerevisiae, respectively, we have identified: three Ca2+ -permeable channels in each species; 9, 12, and 5 Ca2+/cation-ATPases; eight, six, and four Ca2+ -exchangers; four, four, and two phospholipase C's; one calmodulin in each species; and 23, 21, and 29 Ca2+/calmodulin-regulated proteins. Homologs of a number of key proteins involved in the release of Ca2+ from intracellular stores, and in the sensing of extracellular Ca2+, in animal and plant cells, were not identified. The greater complexity of the Ca2+ -signaling machinery in N. crassa and M. grisea over that in S. cerevisiae probably reflects their more complex cellular organization and behavior, and the greater range of external signals which filamentous fungi have to respond to in their natural habitats. To complement the data presented in this paper, a comprehensive web-based database resource (http://www.fungalcell.org/fdf/) of all Ca2+ -signaling proteins identified in N. crassa, M. grisea, and S. cerevisiae has been provided.

  16. The role of calcium and cyclic nucleotide signaling in cerebellar granule cell migration under normal and pathological conditions.

    PubMed

    Komuro, Yutaro; Galas, Ludovic; Lebon, Alexis; Raoult, Emilie; Fahrion, Jennifer K; Tilot, Amanda; Kumada, Tasturo; Ohno, Nobuhiko; Vaudry, David; Komuro, Hitoshi

    2015-04-01

    In the developing brain, immature neurons migrate from their sites of origin to their final destination, where they reside for the rest of their lives. This active movement of immature neurons is essential for the formation of normal neuronal cytoarchitecture and proper differentiation. Deficits in migration result in the abnormal development of the brain, leading to a variety of neurological disorders. A myriad of extracellular guidance molecules and intracellular effector molecules is involved in controlling the migration of immature neurons in a cell type, cortical layer and birth-date-specific manner. To date, little is known about how extracellular guidance molecules transfer their information to the intracellular effector molecules, which regulate the migration of immature neurons. In this article, to fill the gap between extracellular guidance molecules and intracellular effector molecules, using the migration of cerebellar granule cells as a model system of neuronal cell migration, we explore the role of second messenger signaling (specifically Ca(2+) and cyclic nucleotide signaling) in the regulation of neuronal cell migration. We will, first, describe the cortical layer-specific changes in granule cell migration. Second, we will discuss the roles of Ca(2+) and cyclic nucleotide signaling in controlling granule cell migration. Third, we will present recent studies showing the roles of Ca(2+) and cyclic nucleotide signaling in the deficits in granule cell migration in mouse models of fetal alcohol spectrum disorders and fetal Minamata disease.

  17. Mitochondrial control of calcium-channel gating: A mechanism for sustained signaling and transcriptional activation in T lymphocytes

    PubMed Central

    Hoth, Markus; Button, Donald C.; Lewis, Richard S.

    2000-01-01

    In addition to their well-known functions in cellular energy transduction, mitochondria play an important role in modulating the amplitude and time course of intracellular Ca2+ signals. In many cells, mitochondria act as Ca2+ buffers by taking up and releasing Ca2+, but this simple buffering action by itself often cannot explain the organelle's effects on Ca2+ signaling dynamics. Here we describe the functional interaction of mitochondria with store-operated Ca2+ channels in T lymphocytes as a mechanism of mitochondrial Ca2+ signaling. In Jurkat T cells with functional mitochondria, prolonged depletion of Ca2+ stores causes sustained activation of the store-operated Ca2+ current, ICRAC (CRAC, Ca2+ release-activated Ca2+). Inhibition of mitochondrial Ca2+ uptake by compounds that dissipate the intramitochondrial potential unmasks Ca2+-dependent inactivation of ICRAC. Thus, functional mitochondria are required to maintain CRAC-channel activity, most likely by preventing local Ca2+ accumulation near sites that govern channel inactivation. In cells stimulated through the T-cell antigen receptor, acute blockade of mitochondrial Ca2+ uptake inhibits the nuclear translocation of the transcription factor NFAT in parallel with CRAC channel activity and [Ca2+]i elevation, indicating a functional link between mitochondrial regulation of ICRAC and T-cell activation. These results demonstrate a role for mitochondria in controlling Ca2+ channel activity and signal transmission from the plasma membrane to the nucleus. PMID:10973476

  18. The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans.

    PubMed

    Hsieh, Yi-Wen; Chang, Chieh; Chuang, Chiou-Fen

    2012-01-01

    The Caenorhabditis elegans left and right AWC olfactory neurons communicate to establish stochastic asymmetric identities, AWC(ON) and AWC(OFF), by inhibiting a calcium-mediated signaling pathway in the future AWC(ON) cell. NSY-4/claudin-like protein and NSY-5/innexin gap junction protein are the two parallel signals that antagonize the calcium signaling pathway to induce the AWC(ON) fate. However, it is not known how the calcium signaling pathway is downregulated by nsy-4 and nsy-5 in the AWC(ON) cell. Here we identify a microRNA, mir-71, that represses the TIR-1/Sarm1 adaptor protein in the calcium signaling pathway to promote the AWC(ON) identity. Similar to tir-1 loss-of-function mutants, overexpression of mir-71 generates two AWC(ON) neurons. tir-1 expression is downregulated through its 3' UTR in AWC(ON), in which mir-71 is expressed at a higher level than in AWC(OFF). In addition, mir-71 is sufficient to inhibit tir-1 expression in AWC through the mir-71 complementary site in the tir-1 3' UTR. Our genetic studies suggest that mir-71 acts downstream of nsy-4 and nsy-5 to promote the AWC(ON) identity in a cell autonomous manner. Furthermore, the stability of mature mir-71 is dependent on nsy-4 and nsy-5. Together, these results provide insight into the mechanism by which nsy-4 and nsy-5 inhibit calcium signaling to establish stochastic asymmetric AWC differentiation.

  19. Amino Alcohol- (NPS-2143) and Quinazolinone-Derived Calcilytics (ATF936 and AXT914) Differentially Mitigate Excessive Signalling of Calcium-Sensing Receptor Mutants Causing Bartter Syndrome Type 5 and Autosomal Dominant Hypocalcemia

    PubMed Central

    Letz, Saskia; Haag, Christine; Schulze, Egbert; Frank-Raue, Karin; Raue, Friedhelm; Hofner, Benjamin; Mayr, Bernhard; Schöfl, Christof

    2014-01-01

    Introduction Activating calcium sensing receptor (CaSR) mutations cause autosomal dominant hypocalcemia (ADH) characterized by low serum calcium, inappropriately low PTH and relative hypercalciuria. Four activating CaSR mutations cause additional renal wasting of sodium, chloride and other salts, a condition called Bartter syndrome (BS) type 5. Until today there is no specific medical treatment for BS type 5 and ADH. We investigated the effects of different allosteric CaSR antagonists (calcilytics) on activating CaSR mutants. Methods All 4 known mutations causing BS type 5 and five ADH mutations were expressed in HEK 293T cells and receptor signalling was studied by measurement of intracellular free calcium in response to extracellular calcium ([Ca2+]o). To investigate the effect of calcilytics, cells were stimulated with 3 mM [Ca2+]o in the presence or absence of NPS-2143, ATF936 or AXT914. Results All BS type 5 and ADH mutants showed enhanced signalling activity to [Ca2+]o with left shifted dose response curves. In contrast to the amino alcohol NPS-2143, which was only partially effective, the quinazolinone calcilytics ATF936 and AXT914 significantly mitigated excessive cytosolic calcium signalling of all BS type 5 and ADH mutants studied. When these mutants were co-expressed with wild-type CaSR to approximate heterozygosity in patients, ATF936 and AXT914 were also effective on all mutants. Conclusion The calcilytics ATF936 and AXT914 are capable of attenuating enhanced cytosolic calcium signalling activity of CaSR mutations causing BS type 5 and ADH. Quinazolinone calcilytics might therefore offer a novel treatment option for patients with activating CaSR mutations. PMID:25506941

  20. Protein kinase A signaling and calcium ions are major players in PAF mediated toxicity against Aspergillus niger

    PubMed Central

    Binder, Ulrike; Benčina, Mojca; Fizil, Ádám; Batta, Gyula; Chhillar, Anil K.; Marx, Florentine

    2015-01-01

    The Penicillium chrysogenum antifungal protein PAF is toxic against potentially pathogenic Ascomycetes. We used the highly sensitive aequorin-expressing model Aspergillus niger to identify a defined change in cytoplasmic free Ca2+ dynamics in response to PAF. This Ca2+ signature depended on an intact positively charged lysine-rich PAF motif. By combining Ca2+ measurements in A. niger mutants with deregulated cAMP/protein kinase A (PKA) signaling, we proved the interconnection of Ca2+ perturbation and cAMP/PKA signaling in the mechanistic function of PAF. A deep understanding of the mode of action of PAF is an invaluable prerequisite for its future application as new antifungal drug. PMID:25882631

  1. Binding of Alphaherpesvirus Glycoprotein H to Surface α4β1-Integrins Activates Calcium-Signaling Pathways and Induces Phosphatidylserine Exposure on the Plasma Membrane

    PubMed Central

    Gramatica, Andrea; Herrmann, Andreas; Osterrieder, Nikolaus

    2015-01-01

    ABSTRACT Intracellular signaling connected to integrin activation is known to induce cytoplasmic Ca2+ release, which in turn mediates a number of downstream signals. The cellular entry pathways of two closely related alphaherpesviruses, equine herpesviruses 1 and 4 (EHV-1 and EHV-4), are differentially regulated with respect to the requirement of interaction of glycoprotein H (gH) with α4β1-integrins. We show here that binding of EHV-1, but not EHV-4, to target cells resulted in a rapid and significant increase in cytosolic Ca2+ levels. EHV-1 expressing EHV-4 gH (gH4) in lieu of authentic gH1 failed to induce Ca2+ release, while EHV-4 with gH1 triggered significant Ca2+ release. Blocking the interaction between gH1 and α4β1-integrins, inhibiting phospholipase C (PLC) activation, or blocking binding of inositol 1,4,5-triphosphate (IP3) to its receptor on the endoplasmic reticulum (ER) abrogated Ca2+ release. Interestingly, phosphatidylserine (PS) was exposed on the plasma membrane in response to cytosolic calcium increase after EHV-1 binding through a scramblase-dependent mechanism. Inhibition of both Ca2+ release from the ER and scramblase activation blocked PS scrambling and redirected virus entry to the endocytic pathway, indicating that PS may play a role in facilitating virus entry directly at the plasma membrane. PMID:26489864

  2. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1.

    PubMed

    Tang, Tie-Shan; Tu, Huiping; Chan, Edmond Y W; Maximov, Anton; Wang, Zhengnan; Wellington, Cheryl L; Hayden, Michael R; Bezprozvanny, Ilya

    2003-07-17

    Huntington's disease (HD) is caused by polyglutamine expansion (exp) in huntingtin (Htt). The type 1 inositol (1,4,5)-triphosphate receptor (InsP3R1) is an intracellular calcium (Ca2+) release channel that plays an important role in neuronal function. In a yeast two-hybrid screen with the InsP3R1 carboxy terminus, we isolated Htt-associated protein-1A (HAP1A). We show that an InsP3R1-HAP1A-Htt ternary complex is formed in vitro and in vivo. In planar lipid bilayer reconstitution experiments, InsP3R1 activation by InsP3 is sensitized by Httexp, but not by normal Htt. Transfection of full-length Httexp or caspase-resistant Httexp, but not normal Htt, into medium spiny striatal neurons faciliates Ca2+ release in response to threshold concentrations of the selective mGluR1/5 agonist 3,5-DHPG. Our findings identify a novel molecular link between Htt and InsP3R1-mediated neuronal Ca2+ signaling and provide an explanation for the derangement of cytosolic Ca2+ signaling in HD patients and mouse models.

  3. Calcium affects OX1 orexin (hypocretin) receptor responses by modifying both orexin binding and the signal transduction machinery

    PubMed Central

    Putula, Jaana; Pihlajamaa, Tero; Kukkonen, Jyrki P

    2014-01-01

    Background and Purpose One of the major responses upon orexin receptor activation is Ca2+ influx, and this influx seems to amplify the other responses mediated by orexin receptors. However, the reduction in Ca2+, often used to assess the importance of Ca2+ influx, might affect other properties, like ligand−receptor interactions, as suggested for some GPCR systems. Hence, we investigated the role of the ligand−receptor interaction and Ca2+ signal cascades in the apparent Ca2+ requirement of orexin-A signalling. Experimental Approach Receptor binding was assessed in CHO cells expressing human OX1 receptors with [125I]-orexin-A by conventional ligand binding as well as scintillation proximity assays. PLC activity was determined by chromatography. Key Results Both orexin receptor binding and PLC activation were strongly dependent on the extracellular Ca2+ concentration. The relationship between Ca2+ concentration and receptor binding was the same as that for PLC activation. However, when Ca2+ entry was reduced by depolarizing the cells or by inhibiting the receptor-operated Ca2+ channels, orexin-A-stimulated PLC activity was much more strongly inhibited than orexin-A binding. Conclusions and Implications Ca2+ plays a dual role in orexin signalling by being a prerequisite for both ligand−receptor interaction and amplifying orexin signals via Ca2+ influx. Some previous results obtained utilizing Ca2+ chelators have to be re-evaluated based on the results of the current study. From a drug discovery perspective, further experiments need to identify the target for Ca2+ in orexin-A−OX1 receptor interaction and its mechanism of action. PMID:25132134

  4. Relationship between nitric oxide- and calcium-dependent signal transduction pathways in growth hormone release from dispersed goldfish pituitary cells.

    PubMed

    Chang, John P; Sawisky, Grant R; Davis, Philip J; Pemberton, Joshua G; Rieger, Aja M; Barreda, Daniel R

    2014-09-15

    Nitric oxide (NO) and Ca(2+) are two of the many intracellular signal transduction pathways mediating the control of growth hormone (GH) secretion from somatotropes by neuroendocrine factors. We have previously shown that the NO donor sodium nitroprusside (SNP) elicits Ca(2+) signals in identified goldfish somatotropes. In this study, we examined the relationships between NO- and Ca(2+)-dependent signal transduction mechanisms in GH secretion from primary cultures of dispersed goldfish pituitary cells. Morphologically identified goldfish somatotropes stained positively for an NO-sensitive dye indicating they may be a source of NO production. In 2h static incubation experiments, GH release responses to the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) were attenuated by CoCl2, nifedipine, verapamil, TMB-8, BHQ, and KN62. In column perifusion experiments, the ability of SNP to induce GH release was impaired in the presence of TMB-8, BHQ, caffeine, and thapsigargin, but not ryanodine. Caffeine-elicited GH secretion was not affected by the NO scavenger PTIO. These results suggest that NO-stimulated GH release is dependent on extracellular Ca(2+) availability and voltage-sensitive Ca(2+) channels, as well as intracellular Ca(2+) store(s) that possess BHQ- and/or thapsigargin-inhibited sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases, as well as TMB-8- and/or caffeine-sensitive, but not ryanodine-sensitive, Ca(2+)-release channels. Calmodulin kinase-II also likely participates in NO-elicited GH secretion but caffeine-induced GH release is not upstream of NO production. These findings provide insights into how NO actions many integrate with Ca(2+)-dependent signalling mechanisms in goldfish somatotropes and how such interactions may participate in the GH-releasing actions of regulators that utilize both NO- and Ca(2+)-dependent transduction pathways. PMID:25038498

  5. Investigation of the role of sigma1-receptors in inositol 1,4,5-trisphosphate dependent calcium signaling in hepatocytes.

    PubMed

    Abou-Lovergne, A; Collado-Hilly, M; Monnet, F P; Koukoui, O; Prigent, S; Coquil, J F; Dupont, G; Combettes, L

    2011-07-01

    In hepatocytes, as in other cell types, Ca(2+) signaling is subject to complex regulations, which result largely from the intrinsic characteristics of the different inositol 1,4,5-trisphosphate receptor (InsP(3)R) isoforms and from their interactions with other proteins. Although sigma1 receptors (Sig-1Rs) are widely expressed in the liver, their involvement in hepatic Ca(2+) signaling remains unknown. We here report that in this cell type Sig-1R interact with type 1 isoforms of the InsP(3) receptors (InsP(3)R-1). These results obtained by immunoprecipitation experiments are confirmed by the observation that Sig-1R proteins and InsP(3)R-1 colocalize in hepatocytes. However, Sig-1R ligands have no effect on InsP(3)-induced Ca(2+) release in hepatocytes. This can be explained by the rather low expression level expression of InsP(3)R-1. In contrast, we find that Sig-1R ligands can inhibit agonist-induced Ca(2+) signaling via an inhibitory effect on InsP(3) synthesis. We show that this inhibition is due to the stimulation of PKC activity by Sig-1R, resulting in the well-known down-regulation of the signaling pathway responsible for the transduction of the extracellular stimulus into InsP(3) synthesis. The PKC sensitive to Sig-1R activity belongs to the family of conventional PKC, but the precise molecular mechanism of this regulation remains to be elucidated.

  6. Relationship between nitric oxide- and calcium-dependent signal transduction pathways in growth hormone release from dispersed goldfish pituitary cells.

    PubMed

    Chang, John P; Sawisky, Grant R; Davis, Philip J; Pemberton, Joshua G; Rieger, Aja M; Barreda, Daniel R

    2014-09-15

    Nitric oxide (NO) and Ca(2+) are two of the many intracellular signal transduction pathways mediating the control of growth hormone (GH) secretion from somatotropes by neuroendocrine factors. We have previously shown that the NO donor sodium nitroprusside (SNP) elicits Ca(2+) signals in identified goldfish somatotropes. In this study, we examined the relationships between NO- and Ca(2+)-dependent signal transduction mechanisms in GH secretion from primary cultures of dispersed goldfish pituitary cells. Morphologically identified goldfish somatotropes stained positively for an NO-sensitive dye indicating they may be a source of NO production. In 2h static incubation experiments, GH release responses to the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) were attenuated by CoCl2, nifedipine, verapamil, TMB-8, BHQ, and KN62. In column perifusion experiments, the ability of SNP to induce GH release was impaired in the presence of TMB-8, BHQ, caffeine, and thapsigargin, but not ryanodine. Caffeine-elicited GH secretion was not affected by the NO scavenger PTIO. These results suggest that NO-stimulated GH release is dependent on extracellular Ca(2+) availability and voltage-sensitive Ca(2+) channels, as well as intracellular Ca(2+) store(s) that possess BHQ- and/or thapsigargin-inhibited sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases, as well as TMB-8- and/or caffeine-sensitive, but not ryanodine-sensitive, Ca(2+)-release channels. Calmodulin kinase-II also likely participates in NO-elicited GH secretion but caffeine-induced GH release is not upstream of NO production. These findings provide insights into how NO actions many integrate with Ca(2+)-dependent signalling mechanisms in goldfish somatotropes and how such interactions may participate in the GH-releasing actions of regulators that utilize both NO- and Ca(2+)-dependent transduction pathways.

  7. Effects of exogenous hydrogen sulphide on calcium signalling, background (TASK) K channel activity and mitochondrial function in chemoreceptor cells.

    PubMed

    Buckler, Keith J

    2012-04-01

    It has been proposed that endogenous H(2)S mediates oxygen sensing in chemoreceptors; this study investigates the mechanisms by which H(2)S excites carotid body type 1 cells. H(2)S caused a rapid reversible increase in intracellular calcium with EC(50) ≈ 6 μM. This [Ca(2+)](i) response was abolished in Ca-free Tyrode. In perforated patch current clamp recordings, H(2)S depolarised type 1 cells from -59 to -35 mV; this was accompanied by a robust increase in [Ca(2+)](i). Voltage clamping at the resting membrane potential abolished the H(2)S-induced rise in [Ca(2+)](i). H(2)S inhibited background K(+) current in whole cell perforated patch and reduced background K(+) channel activity in cell-attached patch recordings. It is concluded that H(2)S excites type 1 cells through the inhibition of background (TASK) potassium channels leading to membrane depolarisation and voltage-gated Ca(2+) entry. These effects mimic those of hypoxia. H(2)S also inhibited mitochondrial function over a similar concentration range as assessed by NADH autofluorescence and measurement of intracellular magnesium (an index of decline in MgATP). Cyanide inhibited background K channels to a similar extent to H(2)S and prevented H(2)S exerting any further influence over channel activity. These data indicate that the effects of H(2)S on background K channels are a consequence of inhibition of oxidative phosphorylation. Whilst this does not preclude a role for endogenous H(2)S in oxygen sensing via the inhibition of cytochrome oxidase, the levels of H(2)S required raise questions as to the viability of such a mechanism.

  8. Inhibition of Extracellular Calcium Influx Results in Enhanced IL-12 Production in LPS-Treated Murine Macrophages by Downregulation of the CaMKKβ-AMPK-SIRT1 Signaling Pathway

    PubMed Central

    Zhu, Yuanfeng; Yang, Yongjun; Chen, Xiaoli; Fan, Shijun; Chen, Qian; Zheng, Jiang

    2016-01-01

    Activated macrophages are the primary sources of IL-12, a key cytokine bridging innate and adaptive immunity. However, macrophages produce low amounts of IL-12 upon stimulation and the underlying regulatory mechanism remains unclear. In this study, we found a new calcium-dependent mechanism that controlled IL-12 production in LPS-treated murine macrophages. First, LPS was demonstrated to induce extracellular calcium entry in murine peritoneal macrophages and inhibition of calcium influx resulted in marked enhancement in IL-12 production. Then, withdrawal of extracellular calcium was found to suppress CaMKKβ and AMPK activation triggered by LPS while chemical inhibition or genetic knockdown of these two kinases augmented LPS induced IL-12 production. AMPK activation increased the NAD+/NADH ratio and activated Sirtuin 1 (SIRT1), a NAD+-dependent deacetylating enzyme and negative regulator of inflammation. Chemical inhibitor or siRNA of SIRT1 enhanced IL-12 release while its agonist suppressed IL-12 production. Finally, it was found that SIRT1 selectively affected the transcriptional activity of NF-κB which thereby inhibited IL-12 production. Overall, our study demonstrates a new role of transmembrane calcium mobilization in immunity modulation such that inhibition of calcium influx leads to impaired activation of CaMKKβ-AMPK-SIRT1 signaling pathway which lifts restriction on NF-κB activation and results in enhanced IL-12 production. PMID:27313401

  9. Biosynthesis of B2-integrin, intracellular calcium signalling and functional responses of normal and CD18-deficient bovine neutrophils.

    PubMed

    Nagahata, H; Higuchi, H; Nochi, H; Tamoto, K; Araiso, T; Noda, H; Kociba, G J

    1996-09-01

    1Biosynthesis of CD11/CD18 in bovine leucocytes, intracellular Ca2+ ([Ca2+]i) signalling, chemiluminescent responses and membrane fluidity of neutrophils and the effects of D-mannose on neutrophils from control heifers and a heifer with bovine leucocyte adhesion deficiency (BLAD) were measured. The synthesis of CD11/CD18 complex was clearly detected in leucocytes from a normal heifer, but not in a BLAD-affected heifer. The transient phase of increased [Ca2+]i was clearly detected in neutrophils from a heifer with BLAD stimulated with opsonised zymosan, aggregated bovine immunoglobulin G or concanavalin A, whereas the sustained phase was deficient or significantly decreased compared with control heifers. [Ca2+]i signalling of neutrophils from control heifers and a heifer with BLAD stimulated with phorbol myristate acetate via an 11b/CD18-independent pathway showed no transient phase, and the subsequent increase in [Ca2+]i was almost identical in neutrophils from affected and control heifers. [Ca2+]i concentration and chemiluminescent responses of neutrophils from a control heifer were clearly decreased by treatment with anti-CD18 and anti-IgG antibodies. No differences in membrane fluidity were detected between neutrophils derived from control and CD18-deficient cattle. D-mannose binds mainly to Fc rather than CD18 receptors, and decreased Agg-IgG induced [Ca2+]i and the chemiluminescent response of neutrophils. The [Ca2+]i responses and Agg-IgG induced chemiluminescent responses of neutrophils from control heifers and a BLAD-affected heifer were inhibited by D-mannose. The characteristic changes of [Ca2+]i signalling and functional responses of B2-integrin-deficient neutrophils were demonstrated. PMID:8880976

  10. CML42-Mediated Calcium Signaling Coordinates Responses to Spodoptera Herbivory and Abiotic Stresses in Arabidopsis1[W][OA

    PubMed Central

    Vadassery, Jyothilakshmi; Reichelt, Michael; Hause, Bettina; Gershenzon, Jonathan; Boland, Wilhelm; Mithöfer, Axel

    2012-01-01

    In the interaction between Arabidopsis (Arabidopsis thaliana) and the generalist herbivorous insect Spodoptera littoralis, little is known about early events in defense signaling and their link to downstream phytohormone pathways. S. littoralis oral secretions induced both Ca2+ and phytohormone elevation in Arabidopsis. Plant gene expression induced by oral secretions revealed up-regulation of a gene encoding a calmodulin-like protein, CML42. Functional analysis of cml42 plants revealed more resistance to herbivory than in the wild type, because caterpillars gain less weight on the mutant, indicating that CML42 negatively regulates plant defense; cml42 also showed increased aliphatic glucosinolate content and hyperactivated transcript accumulation of the jasmonic acid (JA)-responsive genes VSP2 and Thi2.1 upon herbivory, which might contribute to increased resistance. CML42 up-regulation is negatively regulated by the jasmonate receptor Coronatine Insensitive1 (COI1), as loss of functional COI1 resulted in prolonged CML42 activation. CML42 thus acts as a negative regulator of plant defense by decreasing COI1-mediated JA sensitivity and the expression of JA-responsive genes and is independent of herbivory-induced JA biosynthesis. JA-induced Ca2+ elevation and root growth inhibition were more sensitive in cml42, also indicating higher JA perception. Our results indicate that CML42 acts as a crucial signaling component connecting Ca2+ and JA signaling. CML42 is localized to cytosol and nucleus. CML42 is also involved in abiotic stress responses, as kaempferol glycosides were down-regulated in cml42, and impaired in ultraviolet B resistance. Under drought stress, the level of abscisic acid accumulation was higher in cml42 plants. Thus, CML42 might serve as a Ca2+ sensor having multiple functions in insect herbivory defense and abiotic stress responses. PMID:22570470

  11. Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling

    PubMed Central

    Li, Zhou; Zhang, Yan; Peng, Dandan; Wang, Xiaojuan; Peng, Yan; He, Xiaoshuang; Zhang, Xinquan; Ma, Xiao; Huang, Linkai; Yan, Yanhong

    2015-01-01

    Endogenous polyamine (PA) may play a critical role in tolerance to water stress in plants acting as a signaling molecule activator. Water stress caused increases in endogenous PA content in leaves, including putrescine (Put), spermidine (Spd), and spermine (Spm). Exogenous application of Spd could induce the instantaneous H2O2 burst and accumulation of cytosolic free Ca2+, and activate NADPH oxidase and CDPK gene expression in cells. To a great extent, PA biosynthetic inhibitor reduced the water stress-induced H2O2 accumulation, free cytosolic Ca2+ release, antioxidant enzyme activities and genes expression leading to aggravate water stress-induced oxidative damage, while these suppressing effects were alleviated by the addition of exogenous Spd, indicating PA was involved in water stress-induced H2O2 and cytosolic free Ca2+ production as well as stress tolerance. Dehydrin genes (Y2SK, Y2K, and SK2) were showed to be highly responsive to exogenous Spd. PA-induced antioxidant defense and dehydrin genes expression could be blocked by the scavenger of H2O2 and the inhibitors of H2O2 generation or Ca2+ channels blockers, a calmodulin antagonist, as well as the inhibitor of CDPK. These findings suggested that PA regulated tolerance to water stress in white clover associated with antioxidant defenses and dehydrins via involvement in the calcium messenger system and H2O2 signaling pathways. PA-induced H2O2 production required Ca2+ release, while PA-induced Ca2+ release was also essential for H2O2 production, suggesting an interaction between PA-induced H2O2 and Ca2+ signaling. PMID:26528187

  12. Electrical stimulation modulates Wnt signaling and regulates genes for the motor endplate and calcium binding in muscle of rats with spinal cord transection

    PubMed Central

    2013-01-01

    Background Spinal cord injury (SCI) results in muscle atrophy and a shift of slow oxidative to fast glycolytic fibers. Electrical stimulation (ES) at least partially restores muscle mass and fiber type distribution. The objective of this study was to was to characterize the early molecular adaptations that occur in rat soleus muscle after initiating isometric resistance exercise by ES for one hour per day for 1, 3 or 7 days when ES was begun 16 weeks after SCI. Additionally, changes in mRNA levels after ES were compared with those induced in soleus at the same time points after gastrocnemius tenotomy (GA). Results ES increased expression of Hey1 and Pitx2 suggesting increased Notch and Wnt signaling, respectively, but did not normalize RCAN1.4, a measure of calcineurin/NFAT signaling, or PGC-1ß mRNA levels. ES increased PGC-1α expression but not that of slow myofibrillar genes. Microarray analysis showed that after ES, genes coding for calcium binding proteins and nicotinic acetylcholine receptors were increased, and the expression of genes involved in blood vessel formation and morphogenesis was altered. Of the 165 genes altered by ES only 16 were also differentially expressed after GA, of which 12 were altered in the same direction by ES and GA. In contrast to ES, GA induced expression of genes related to oxidative phosphorylation. Conclusions Notch and Wnt signaling may be involved in ES-induced increases in the mass of paralyzed muscle. Molecular adaptations of paralyzed soleus to resistance exercise are delayed or defective compared to normally innervated muscle. PMID:23914941

  13. Comparative proteomics of root plasma membrane proteins reveals the involvement of calcium signalling in NaCl-facilitated nitrate uptake in Salicornia europaea

    PubMed Central

    Nie, Lingling; Feng, Juanjuan; Fan, Pengxiang; Chen, Xianyang; Guo, Jie; Lv, Sulian; Bao, Hexigeduleng; Jia, Weitao; Tai, Fang; Jiang, Ping; Wang, Jinhui; Li, Yinxin

    2015-01-01

    Improving crop nitrogen (N) use efficiency under salinity is essential for the development of sustainable agriculture in marginal lands. Salicornia europaea is a succulent euhalophyte that can survive under high salinity and N-deficient habitat conditions, implying that a special N assimilation mechanism may exist in this plant. In this study, phenotypic and physiological changes of S. europaea were investigated under different nitrate and NaCl levels. The results showed that NaCl had a synergetic effect with nitrate on the growth of S. europaea. In addition, the shoot nitrate concentration and nitrate uptake rate of S. europaea were increased by NaCl treatment under both low N and high N conditions, suggesting that nitrate uptake in S. europaea was NaCl facilitated. Comparative proteomic analysis of root plasma membrane (PM) proteins revealed 81 proteins, whose abundance changed significantly in response to NaCl and nitrate. These proteins are involved in metabolism, cell signalling, transport, protein folding, membrane trafficking, and cell structure. Among them, eight proteins were calcium signalling components, and the accumulation of seven of the above-mentioned proteins was significantly elevated by NaCl treatment. Furthermore, cytosolic Ca2+ concentration ([Ca2+]cyt) was significantly elevated in S. europaea under NaCl treatment. The application of the Ca2+ channel blocker LaCl3 not only caused a decrease in nitrate uptake rate, but also attenuated the promoting effects of NaCl on nitrate uptake rates. Based on these results, a possible regulatory network of NaCl-facilitated nitrate uptake in S. europaea focusing on the involvement of Ca2+ signalling was proposed. PMID:25956883

  14. Chronic suppression of inositol 1,4,5-triphosphate receptor-mediated calcium signaling in cerebellar purkinje cells alleviates pathological phenotype in spinocerebellar ataxia 2 mice.

    PubMed

    Kasumu, Adebimpe W; Liang, Xia; Egorova, Polina; Vorontsova, Daria; Bezprozvanny, Ilya

    2012-09-12

    Spinocerebellar ataxia 2 (SCA2) is a neurodegenerative disorder characterized by progressive ataxia. SCA2 results from a poly(Q) (polyglutamine) expansion in the cytosolic protein ataxin-2 (Atx2). Cerebellar Purkinje cells (PCs) are primarily affected in SCA2, but the cause of PC dysfunction and death in SCA2 is poorly understood. In previous studies, we reported that mutant but not wild-type Atx2 specifically binds the inositol 1,4,5-trisphosphate receptor (InsP(3)R) and increases its sensitivity to activation by InsP3. We further proposed that the resulting supranormal calcium (Ca2+) release from the PC endoplasmic reticulum plays a key role in the development of SCA2 pathology. To test this hypothesis, we achieved a chronic suppression of InsP(3)R-mediated Ca2+ signaling by adenoassociated virus-mediated expression of the inositol 1,4,5-phosphatase (Inpp5a) enzyme (5PP) in PCs of a SCA2 transgenic mouse model. We determined that recombinant 5PP overexpression alleviated age-dependent dysfunction in the firing pattern of SCA2 PCs. We further discovered that chronic 5PP overexpression also rescued age-dependent motor incoordination and PC death in SCA2 mice. Our findings further support the important role of supranormal Ca2+ signaling in SCA2 pathogenesis and suggest that partial inhibition of InsP3-mediated Ca2+ signaling could provide therapeutic benefit for the patients afflicted with SCA2 and possibly other SCAs.

  15. Neuropeptide Y regulates intracellular calcium through different signalling pathways linked to a Y1-receptor in rat mesenteric small arteries

    PubMed Central

    Prieto, Dolores; Buus, Carsten L; Mulvany, Michael J; Nilsson, Holger

    2000-01-01

    Simultaneous measurements of intracellular calcium concentration ([Ca2+]i) and tension were performed to clarify whether the mechanisms which cause the neuropeptide Y (NPY)-elicited contraction and potentiation of noradrenaline contractions, and the NPY inhibition of forskolin responses are linked to a single or different NPY receptor(s) in rat mesenteric small arteries.In resting arteries, NPY moderately elevated [Ca2+]i and tension. These effects were antagonized by the selective Y1 receptor antagonist, (R)-N2-(diphenacetyl)-N-[(4-hydroxyphenyl)methyl]-D-arginineamide (BIBP 3226) (apparent pKB values of 8.54±0.25 and 8.27±0.17, respectively).NPY (0.1 μM) caused a near 3 fold increase in sensitivity to noradrenaline but did not significantly modify the tension-[Ca2+]i relationship for this agonist. BIBP 3226 competitively antagonized the contractile response to NPY in arteries submaximally preconstricted with noradrenaline (pA2 7.87±0.20).In arteries activated by vasopressin, the adenylyl cyclase activator forskolin (3 μM) induced a maximum relaxation and a return of [Ca2+]i to resting levels. NPY completely inhibited these effects. The contractile responses to NPY in arteries maximally relaxed with either sodium nitroprusside (SNP) or nifedipine were not significantly higher than those evoked by the peptide at resting tension, in contrast to the contractions to NPY in forskolin-relaxed arteries. BIBP 3226 competitively antagonized the contraction to NPY in forskolin-relaxed arteries with a pA2 of 7.92±0.29.Electrical field stimulation (EFS) at 8–32 Hz caused large contractions in arteries relaxed with either forskolin or noradrenaline in the presence of phentolamine. These responses to EFS were inhibited by BIBP 3226. Similar EFS in resting, non-activated arteries did not produce any response.The present results suggest that different intracellular pathways are linked to a single NPY Y1 receptor in intact rat mesenteric small arteries, and provide

  16. Neuropeptide Y regulates intracellular calcium through different signalling pathways linked to a Y(1)-receptor in rat mesenteric small arteries.

    PubMed

    Prieto, D; Buus, C L; Mulvany, M J; Nilsson, H

    2000-04-01

    Simultaneous measurements of intracellular calcium concentration ([Ca(2+)](i)) and tension were performed to clarify whether the mechanisms which cause the neuropeptide Y (NPY)-elicited contraction and potentiation of noradrenaline contractions, and the NPY inhibition of forskolin responses are linked to a single or different NPY receptor(s) in rat mesenteric small arteries. In resting arteries, NPY moderately elevated [Ca(2+)](i) and tension. These effects were antagonized by the selective Y(1) receptor antagonist, (R)-N(2)-(diphenacetyl)-N-[(4-hydroxyphenyl)methyl]-D-argininea mide (BIBP 3226) (apparent pK(B) values of 8.54+/-0.25 and 8.27+/-0.17, respectively). NPY (0.1 microM) caused a near 3 fold increase in sensitivity to noradrenaline but did not significantly modify the tension-[Ca(2+)](i) relationship for this agonist. BIBP 3226 competitively antagonized the contractile response to NPY in arteries submaximally preconstricted with noradrenaline (pA(2) 7.87+/-0.20). In arteries activated by vasopressin, the adenylyl cyclase activator forskolin (3 microM) induced a maximum relaxation and a return of [Ca(2+)](i) to resting levels. NPY completely inhibited these effects. The contractile responses to NPY in arteries maximally relaxed with either sodium nitroprusside (SNP) or nifedipine were not significantly higher than those evoked by the peptide at resting tension, in contrast to the contractions to NPY in forskolin-relaxed arteries. BIBP 3226 competitively antagonized the contraction to NPY in forskolin-relaxed arteries with a pA(2) of 7.92+/-0.29. Electrical field stimulation (EFS) at 8-32 Hz caused large contractions in arteries relaxed with either forskolin or noradrenaline in the presence of phentolamine. These responses to EFS were inhibited by BIBP 3226. Similar EFS in resting, non-activated arteries did not produce any response. The present results suggest that different intracellular pathways are linked to a single NPY Y(1) receptor in intact rat

  17. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma).

    PubMed

    Plattner, H; Sehring, I M; Mohamed, I K; Miranda, K; De Souza, W; Billington, R; Genazzani, A; Ladenburger, E-M

    2012-05-01

    The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section.

  18. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling.

    PubMed

    Stephen, Terri-Leigh; Higgs, Nathalie F; Sheehan, David F; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I Lorena; Kittler, Josef T

    2015-12-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca(2+). Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca(2+)-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca(2+) in astrocytic processes. Thus, the regulation of intracellular Ca(2+) signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca(2+) wave propagation, gliotransmission, and ultimately neuronal function. PMID:26631479

  19. Distinct contributions by ionotropic purinoceptor subtypes to ATP-evoked calcium signals in mouse parotid acinar cells

    PubMed Central

    Bhattacharya, Sumit; Verrill, Douglas S; Carbone, Kristopher M; Brown, Stefanie; Yule, David I; Giovannucci, David R

    2012-01-01

    There is emerging consensus that P2X4 and P2X7 ionotropic purinoceptors (P2X4R and P2X7R) are critical players in regulating [Ca2+]i dynamics and fluid secretion in the salivary gland. In contrast, details regarding their compartmentalization and selective activation, contributions to the spatiotemporal properties of intracellular signals and roles in regulating protein exocytosis and ion channel activity have remained largely undefined. To address these concerns, we profiled mouse parotid acinar cells using live-cell imaging to follow the spatial and temporal features of ATP-evoked Ca2+ dynamics and exocytotic activity. Selective activation of P2X7Rs revealed an apical-to-basal [Ca2+]i signal that initiated at the sub-luminal border and propagated with a wave speed estimated at 17.3 ± 4.3 μm s−1 (n = 6). The evoked Ca2+ spike consisted of Ca2+ influx and Ca2+-induced Ca2+ release from intracellular Ca2+ channels. In contrast, selective activation of P2X4Rs induced a Ca2+ signal that initiated basally and propagated toward the lumen with a wave speed of 4.3 ± 0.2 μm s−1 (n = 8) that was largely independent of intracellular Ca2+ channel blockade. Consistent with these observations, P2X7R expression was enriched in the sub-luminal regions of acinar cells while P2X4R appeared localized to basal areas. In addition, we showed that P2X4R and P2X7R activation evokes exocytosis in parotid acinar cells. Our studies also demonstrate that the P2X4R-mediated [Ca2+]i rise and subsequent protein exocytosis was enhanced by ivermectin (IVR). Thus, in addition to furthering our understanding of salivary gland physiology, this study identifies P2X4R as a potential target for treatment of salivary hypofunction diseases. PMID:22451435

  20. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  1. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury

    PubMed Central

    Calì, Bianca; Ceolin, Stefano; Ceriani, Federico; Bortolozzi, Mario; Agnellini, Andrielly H.R.; Zorzi, Veronica; Predonzani, Andrea; Bronte, Vincenzo

    2015-01-01

    Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding “bystander” cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca2+-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy. PMID:25868859

  2. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury.

    PubMed

    Calì, Bianca; Ceolin, Stefano; Ceriani, Federico; Bortolozzi, Mario; Agnellini, Andrielly H R; Zorzi, Veronica; Predonzani, Andrea; Bronte, Vincenzo; Molon, Barbara; Mammano, Fabio

    2015-04-30

    Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding "bystander" cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca(2+)-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy.

  3. Calcium signalling in the ciliated protozoan model, Paramecium: strict signal localisation by epigenetically controlled positioning of different Ca²⁺-channels.

    PubMed

    Plattner, Helmut

    2015-03-01

    The Paramecium tetraurelia cell is highly organised, with regularly spaced elements pertinent to Ca(2+) signalling under epigenetic control. Vesicles serving as stationary Ca(2+) stores or undergoing trafficking contain Ca(2+)-release channels (PtCRCs) which, according to sequence and domain comparison, are related either to inositol 1,4,5-trisphosphate (InsP3) receptors (IP3R) or to ryanodine receptor-like proteins (RyR-LP) or to both, with intermediate characteristics or deviation from conventional domain structure. Six groups of such PtCRCs have been found. The ryanodine-InsP3-receptor homology (RIH) domain is not always recognisable, in contrast to the channel domain with six trans-membrane domains and the pore between transmembrane domain 5 and 6. Two CRC subtypes tested more closely, PtCRC-II and PtCRC-IV, with and without an InsP3-binding domain, reacted to InsP3 and to caffeine, respectively, and hence represent IP3Rs and RyR-LPs. IP3Rs occur in the contractile vacuole complex where they allow for stochastic constitutive Ca(2+) reflux into the cytosol. RyR-LPs are localised to cortical Ca(2+) stores; they are engaged in dense core-secretory vesicle exocytosis by Ca(2+) release, superimposed by Ca(2+)-influx via non-ciliary Ca(2+)-channels. One or two different types of PtCRCs also occur in other vesicles undergoing trafficking. Since the PtCRCs described combine different features they are considered derivatives of primitive precursors. The highly regular, epigenetically controlled design of a Paramecium cell allows it to make Ca(2+) available very locally, in a most efficient way, along predetermined trafficking pathways, including regulation of exocytosis, endocytosis, phagocytosis and recycling phenomena. The activity of cilia is also regulated by Ca(2+), yet independently from any CRCs, by de- and hyperpolarisation of the cell membrane potential.

  4. Calcium signaling via Orai1 is essential for induction of the nuclear orphan receptor pathway to drive Th17 differentiation.

    PubMed

    Kim, Kyun-Do; Srikanth, Sonal; Tan, Yossan-Var; Yee, Ma-Khin; Jew, Marcus; Damoiseaux, Robert; Jung, Michael E; Shimizu, Saki; An, Dong Sung; Ribalet, Bernard; Waschek, James A; Gwack, Yousang

    2014-01-01

    Orai1 is the pore subunit of Ca(2+) release-activated Ca(2+) (CRAC) channels that stimulate downstream signaling pathways crucial for T cell activation. CRAC channels are an attractive therapeutic target for alleviation of autoimmune diseases. Using high-throughput chemical library screening targeting Orai1, we identified a novel class of small molecules that inhibit CRAC channel activity. One of these molecules, compound 5D, inhibited CRAC channel activity by blocking ion permeation. When included during differentiation, Th17 cells showed higher sensitivity to compound 5D than Th1 and Th2 cells. The selectivity was attributable to high dependence of promoters of retinoic-acid-receptor-related orphan receptors on the Ca(2+)-NFAT pathway. Blocking of CRAC channels drastically decreased recruitment of NFAT and histone modifications within key gene loci involved in Th17 differentiation. The impairment in Th17 differentiation by treatment with CRAC channel blocker was recapitulated in Orai1-deficient T cells, which could be rescued by exogenous expression of retinoic-acid-receptor-related orphan receptors or a constitutive active mutant of NFAT. In vivo administration of CRAC channel blockers effectively reduced the severity of experimental autoimmune encephalomyelitis by suppression of differentiation of inflammatory T cells. These results suggest that CRAC channel blockers can be considered as chemical templates for the development of therapeutic agents to suppress inflammatory responses.

  5. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦

    PubMed Central

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter

    2015-01-01

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139

  6. Aluminum disruption of calcium homeostasis and signal transduction resembles change that occurs in aging and Alzheimer's disease.

    PubMed

    Walton, J R

    2012-01-01

    Most humans living in industrialized societies are routinely exposed to bioavailable aluminum salts in the form of additives-in commercially-prepared foods, alum-clarified drinking water, certain pharmaceuticals, sunscreens, and other topical applications. Minute amounts of this aluminum are absorbed into the circulation. Trace aluminum levels cross the blood-brain barrier and progressively accumulate in large pyramidal neurons of the hippocampus, cortex, and other brain regions vulnerable in Alzheimer's disease. More aluminum enters the brain than leaves, resulting in a net increase in intraneuronal aluminum with advancing age. Aluminum is responsible for two main types of toxic damage in cells. As a pro-oxidant, aluminum causes oxidative damage both on its own and in synergy with iron. Aluminum also competes with, and substitutes for, essential metals-primarily Mg2+, iron and Ca2+ ions-in or on proteins and their co-factors. The author hypothesizes that intraneuronal aluminum interferes with Ca2+ metabolism in the aged brain and describes a way to test this hypothesis. This paper reviews: 1) major changes that occur in brain Ca2+ homeostasis and Ca2+ signaling, subtly with aging and more overtly in Alzheimer's disease; and 2) evidence from the scientific literature that aluminum causes these same changes in neurons.

  7. Oro-Gustatory Perception of Dietary Lipids and Calcium Signaling in Taste Bud Cells Are Altered in Nutritionally Obesity-Prone Psammomys obesus

    PubMed Central

    Bitam, Arezki; Sadou, Hassimi; Koceïr, Elhadj Ahmed; Khan, Naim Akhtar

    2013-01-01

    Since the increasing prevalence of obesity is one of the major health problems of the modern era, understanding the mechanisms of oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. We have conducted the present study on Psammomys obesus, the rodent desert gerbil which is a unique polygenic natural animal model of obesity. Our results show that obese animals exhibit a strong preference for lipid solutions in a two-bottle test. Interestingly, the expression of CD36, a lipido-receptor, in taste buds cells (TBC), isolated from circumvallate papillae, was decreased at mRNA level, but remained unaltered at protein level, in obese animals. We further studied the effects of linoleic acid (LA), a long-chain fatty acid, on the increases in free intracellular calcium (Ca2+) concentrations, [Ca2+]i, in the TBC of P. obesus. LA induced increases in [Ca2+]i, largely via CD36, from intracellular pool, followed by the opening of store-operated Ca2+ (SOC) channels in the TBC of these animals. The action of this fatty acid on the increases in [Ca2+]i was higher in obese animals than that in controls. However, the release of Ca2+ from intracellular stores, studied also by employing thapsigargin, was lower in TBC of obese animals than control rodents. In this study, we show, for the first time, that increased lipid intake and altered Ca2+ signaling in TBC are associated with obesity in Psammomys obesus. PMID:23936306

  8. Effect of Poly(γ-glutamic acid) on the Physiological Responses and Calcium Signaling of Rape Seedlings (Brassica napus L.) under Cold Stress.

    PubMed

    Lei, Peng; Xu, Zongqi; Ding, Yan; Tang, Bao; Zhang, Yunxia; Li, Huashan; Feng, Xiaohai; Xu, Hong

    2015-12-01

    Cold stress adversely affects plant growth and development. Poly(γ-glutamic acid) (γ-PGA) is a potential plant growth regulator that may