Science.gov

Sample records for intercellurar calcium signals

  1. Calcium Signaling and Neurodegeneration

    PubMed Central

    2010-01-01

    Neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), and spinocerebellar ataxias (SCA) are very important both for fundamental science and for practical medicine. Despite extensive research into the causes of these diseases, clinical researchers have had very limited progress and, as of now, there is still no cure for any of these diseases. One of the main obstacles in the way of creating treatments for these disorders is the fact that their etiology and pathophysiology still remain unclear. This paper reviews results that support the so–called “calcium hypothesis of neurodegenerative diseases.” The calcium hypothesis states that the atrophic and degenerative processes in the neurons of AD, PD, ALS, HD, and SCA patients are accompanied by alterations in calcium homeostasis. Moreover, the calcium hypothesis states that this deregulation of calcium signaling is one of the early–stage and key processes in the pathogenesis of these diseases. Based on the results we reviewed, we conclude that the calcium channels and other proteins involved in the neuronal calcium signaling system are potential drug targets for AD, PD, ALS, HD, and SCA therapy. PMID:22649630

  2. Inositol trisphosphate and calcium signalling

    NASA Astrophysics Data System (ADS)

    Berridge, Michael J.

    1993-01-01

    Inositol trisphosphate is a second messenger that controls many cellular processes by generating internal calcium signals. It operates through receptors whose molecular and physiological properties closely resemble the calcium-mobilizing ryanodine receptors of muscle. This family of intracellular calcium channels displays the regenerative process of calcium-induced calcium release responsible for the complex spatiotemporal patterns of calcium waves and oscillations. Such a dynamic signalling pathway controls many cellular processes, including fertilization, cell growth, transformation, secretion, smooth muscle contraction, sensory perception and neuronal signalling.

  3. Calcium signaling and cytotoxicity.

    PubMed Central

    Kass, G E; Orrenius, S

    1999-01-01

    The divalent calcium cation Ca(2+) is used as a major signaling molecule during cell signal transduction to regulate energy output, cellular metabolism, and phenotype. The basis to the signaling role of Ca(2+) is an intricate network of cellular channels and transporters that allow a low resting concentration of Ca(2+) in the cytosol of the cell ([Ca(2+)]i) but that are also coupled to major dynamic and rapidly exchanging stores. This enables extracellular signals from hormones and growth factors to be transduced as [Ca(2+)]i spikes that are amplitude and frequency encoded. There is considerable evidence that a number of toxic environmental chemicals target these Ca(2+) signaling processes, alter them, and induce cell death by apoptosis. Two major pathways for apoptosis will be considered. The first one involves Ca(2+)-mediated expression of ligands that bind to and activate death receptors such as CD95 (Fas, APO-1). In the second pathway, Ca(2+) has a direct toxic effect and its primary targets include the mitochondria and the endoplasmic reticulum (ER). Mitochondria may respond to an apoptotic Ca(2+) signal by the selective release of cytochrome c or through enhanced production of reactive oxygen species and opening of an inner mitochondrial membrane pore. Toxic agents such as the environmental pollutant tributyltin or the natural plant product thapsigargin, which deplete the ER Ca(2+) stores, will induce as a direct result of this effect the opening of plasma membrane Ca(2+) channels and an ER stress response. In contrast, under some conditions, Ca(2+) signals may be cytoprotective and antagonize the apoptotic machinery. Images Figure 1 Figure 2 Figure 3 PMID:10229704

  4. Theoretical aspects of calcium signaling

    NASA Astrophysics Data System (ADS)

    Pencea, Corneliu Stefan

    2001-08-01

    Experiments investigating intracellular calcium dynamics have revealed that calcium signals differentially affect a variety of intracellular processes, from fertilization and cell development and differentiation to subsequent cellular activity, ending with cell death. As an intracellular messenger, calcium transmits information within and between cells, thus regulating their activity. To control such a variety of processes, calcium signals have to be very flexible and also precisely regulated. The cell uses a calcium signaling ``toolkit'', where calcium ions can act in different contexts of space, amplitude and time. For different tasks, the cell selects the particular signal, or combination of signals, that triggers the appropriate physiological response. The physical foundations of such a versatile cellular signaling toolkit involving calcium are not completely understood, despite important experimental and theoretical progress made recently. The declared goal of this work is to investigate physical mechanisms on which the propagation of differential signals can be based. The dynamics of calcium near a cluster of inositol trisphosphate (IP3) activated calcium channels has been investigated analytically and numerically. Our work has demonstrated that clusters of different IP3 receptors can show similar bistable behavior, but differ in both the transient and long term dynamics. We have also investigated the conditions under which a calcium signal propagates between a pair of localized stores. We have shown that the propagation of the signal across a random distribution of such stores shows a percolation transition manifested in the shape of the wave front. More importantly, our work indicates that specific distribution of stores can be interpreted as calcium circuits that can perform important signal analyzing task, from unidirectional propagation and coincidence detection to a complete set of logic gates. We believe that phenomena like the ones described are

  5. Calcium signaling in taste cells.

    PubMed

    Medler, Kathryn F

    2015-09-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  6. Revisiting intracellular calcium signaling semantics.

    PubMed

    Haiech, Jacques; Audran, Emilie; Fève, Marie; Ranjeva, Raoul; Kilhoffer, Marie-Claude

    2011-12-01

    Cells use intracellular free calcium concentration changes for signaling. Signal encoding occurs through both spatial and temporal modulation of the free calcium concentration. The encoded message is detected by an ensemble of intracellular sensors forming the family of calcium-binding proteins (CaBPs) which must faithfully translate the message using a new syntax that is recognized by the cell. The cell is home to a significant although limited number of genes coding for proteins involved in the signal encoding and decoding processes. In a cell, only a subset of this ensemble of genes is expressed, leading to a genetic regulation of the calcium signal pathways. Calmodulin (CaM), the most ubiquitous expressed intracellular calcium-binding protein, plays a major role in calcium signal translation. Similar to a hub, it is central to a large and finely tuned network, receiving information, integrating it and dispatching the cognate response. In this review, we examine the different steps starting with an external stimulus up to a cellular response, with special emphasis on CaM and the mechanism by which it decodes calcium signals and translates it into exquisitely coordinated cellular events. By this means, we will revisit the calcium signaling semantics, hoping that we will ease communication between scientists dealing with calcium signals in different biological systems and different domains.

  7. Calcium in plant defence-signalling pathways.

    PubMed

    Lecourieux, David; Ranjeva, Raoul; Pugin, Alain

    2006-01-01

    In plant cells, the calcium ion is a ubiquitous intracellular second messenger involved in numerous signalling pathways. Variations in the cytosolic concentration of Ca2+ ([Ca2+]cyt) couple a large array of signals and responses. Here we concentrate on calcium signalling in plant defence responses, particularly on the generation of the calcium signal and downstream calcium-dependent events participating in the establishment of defence responses with special reference to calcium-binding proteins.

  8. Calcium signalling in diabetes.

    PubMed

    Guerrero-Hernandez, Agustin; Verkhratsky, Alexei

    2014-11-01

    Molecular cascades responsible for Ca(2+) homeostasis and Ca(2+) signalling could be assembled in highly plastic toolkits that define physiological adaptation of cells to the environment and which are intimately involved in all types of cellular pathology. Control over Ca(2+) concentration in different cellular compartments is intimately linked to cell metabolism, because (i) ATP production requires low Ca(2+), (ii) Ca(2+) homeostatic systems consume ATP and (iii) Ca(2+) signals in mitochondria stimulate ATP synthesis being an essential part of excitation-metabolic coupling. The communication between the ER and mitochondria plays an important role in this metabolic fine tuning. In the insulin resistance state and diabetes this communication has been impaired leading to different disorders, for instance, diminished insulin production by pancreatic β cells, reduced heart and skeletal muscle contractility, reduced NO production by endothelial cells, increased glucose production by liver, increased lipolysis by adipose cells, reduced immune responses, reduced cognitive functions, among others. All these processes eventually trigger degenerative events resulting in overt diabetes due to reduction of pancreatic β cell mass, and different complications of diabetes, such as retinopathy, nephropathy, neuropathy, and different cardiovascular diseases.

  9. Calcium signalling and calcium channels: evolution and general principles.

    PubMed

    Verkhratsky, Alexei; Parpura, Vladimir

    2014-09-15

    Calcium as a divalent cation was selected early in evolution as a signaling molecule to be used by both prokaryotes and eukaryotes. Its low cytosolic concentration likely reflects the initial concentration of this ion in the primordial soup/ocean as unicellular organisms were formed. As the concentration of calcium in the ocean subsequently increased, so did the diversity of homeostatic molecules handling calcium. This includes the plasma membrane channels that allowed the calcium entry, as well as extrusion mechanisms, i.e., exchangers and pumps. Further diversification occurred with the evolution of intracellular organelles, in particular the endoplasmic reticulum and mitochondria, which also contain channels, exchanger(s) and pumps to handle the homeostasis of calcium ions. Calcium signalling system, based around coordinated interactions of the above molecular entities, can be activated by the opening of voltage-gated channels, neurotransmitters, second messengers and/or mechanical stimulation, and as such is all-pervading pathway in physiology and pathophysiology of organisms.

  10. Plant organellar calcium signalling: an emerging field

    PubMed Central

    Stael, Simon; Wurzinger, Bernhard; Mair, Andrea; Mehlmer, Norbert; Vothknecht, Ute C.; Teige, Markus

    2014-01-01

    This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except for the nucleus. Therefore, a brief overview on the main calcium stores in plants—the vacuole, the endoplasmic reticulum, and the apoplast—is provided and knowledge on the regulation of calcium concentrations in different cellular compartments is summarized. The main focus of the review will be the calcium handling properties of chloroplasts, mitochondria, and peroxisomes. Recently, it became clear that these organelles not only undergo calcium regulation themselves, but are able to influence the Ca2+ signalling pathways of the cytoplasm and the entire cell. Furthermore, the relevance of recent discoveries in the animal field for the regulation of organellar calcium signals will be discussed and conclusions will be drawn regarding potential homologous mechanisms in plant cells. Finally, a short overview on bacterial calcium signalling is included to provide some ideas on the question where this typically eukaryotic signalling mechanism could have originated from during evolution. PMID:22200666

  11. Extracellular calcium sensing and extracellular calcium signaling

    NASA Technical Reports Server (NTRS)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    , localized changes in Ca(o)(2+) within the ECF can originate from several mechanisms, including fluxes of calcium ions into or out of cellular or extracellular stores or across epithelium that absorb or secrete Ca(2+). In any event, the CaR and other receptors/sensors for Ca(o)(2+) and probably for other extracellular ions represent versatile regulators of numerous cellular functions and may serve as important therapeutic targets.

  12. Presynaptic Calcium Signalling in Cerebellar Mossy Fibres

    PubMed Central

    Thomsen, Louiza B.; Jörntell, Henrik; Midtgaard, Jens

    2009-01-01

    Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX)-sensitive fast Na+ spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers. Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none TTX-sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon appeared to be isolated from one another in terms of calcium signalling. CGP55845 application showed that GABA B receptors mediated presynaptic inhibition of the calcium signal over the entire firing frequency range of mossy fibres. A paired-pulse depression of the calcium signal lasting more than 1 s affected burst firing in mossy fibres; this paired-pulse depression was reduced by GABA B antagonists. While our results indicated that a presynaptic rosette electrophysiologically functioned as a unit, topical GABA application showed that calcium signals in the branches of complex rosettes could be modulated locally, suggesting that cerebellar glomeruli may be dynamically sub-compartmentalized due to ongoing inhibition mediated by Golgi cells. This could provide a fine-grained control of mossy fibre-granule cell information transfer and synaptic plasticity within a mossy fibre rosette. PMID:20162034

  13. Calcium Signaling Is Required for Erythroid Enucleation

    PubMed Central

    Russell, Sarah M.; Humbert, Patrick O.

    2016-01-01

    Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation. PMID:26731108

  14. Calcium signals and calcium channels in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Akanbi, K. A.; Farach-Carson, M. C.

    1998-01-01

    Calcium (Ca2+) channels are present in non-excitable as well as in excitable cells. In bone cells of the osteoblast lineage, Ca2+ channels play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. They are also proposed to modulate paracrine signaling between bone-forming osteoblasts and bone-resorbing osteoclasts at local sites of bone remodeling. Calcium signals are characterized by transient increases in intracellular Ca2+ levels that are associated with activation of intracellular signaling pathways that control cell behavior and phenotype, including patterns of gene expression. Development of Ca2+ signals is a tightly regulated cellular process that involves the concerted actions of plasma membrane and intracellular Ca2+ channels, along with Ca2+ pumps and exchangers. This review summarizes the current state of knowledge concerning the structure, function, and role of Ca2+ channels and Ca2+ signals in bone cells, focusing on the osteoblast.

  15. Calcium signals in olfactory neurons.

    PubMed

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  16. Calcium signalling and calcium channels: Evolution and general principles

    PubMed Central

    Verkhratsky, Alexei; Parpura, Vladimir

    2014-01-01

    Calcium as a divalent ion was selected early in evolution as a signaling molecule to be used by both prokaryotes and eukaryotes. Its low cytosolic concentration likely reflects the initial concentration of this ion in the primordial soup/ocean as unicellular organisms were formed. As the concentration of calcium in the ocean subsequently increased, so did the diversity of homeostatic molecules. This includes the plasma membrane channels that allowed the calcium entry, as well as extrusion mechanisms, i.e., exchangers and pumps. Further diversification occurred with the evolution of intracellular organelles, in particular the endoplasmic reticulum and mitochondria, which also contain channels, exchanger(s) and pumps to handle the homeostasis of calcium ions. Calcium signalling system, based around coordinated interactions of the above molecular entities, can be activated by the opening of voltage-gated channels, by neurotransmitters, by second messengers and/or mechanical stimulation, and as such is all-pervading pathway in physiology and pathophysiology of organisms. PMID:24291103

  17. Calcium Signaling in the Liver

    PubMed Central

    Amaya, Maria Jimena; Nathanson, Michael H.

    2014-01-01

    Intracellular free Ca2+ ([Ca2+]i) is a highly versatile second messenger that regulates a wide range of functions in every type of cell and tissue. To achieve this versatility, the Ca2+ signaling system operates in a variety of ways to regulate cellular processes that function over a wide dynamic range. This is particularly well exemplified for Ca2+ signals in the liver, which modulate diverse and specialized functions such as bile secretion, glucose metabolism, cell proliferation, and apoptosis. These Ca2+ signals are organized to control distinct cellular processes through tight spatial and temporal coordination of [Ca2+]i signals, both within and between cells. This article will review the machinery responsible for the formation of Ca2+ signals in the liver, the types of subcellular, cellular, and intercellular signals that occur, the physiological role of Ca2+ signaling in the liver, and the role of Ca2+ signaling in liver disease. PMID:23720295

  18. Calcium signalling remodelling and disease.

    PubMed

    Berridge, Michael J

    2012-04-01

    A wide range of Ca2+ signalling systems deliver the spatial and temporal Ca2+ signals necessary to control the specific functions of different cell types. Release of Ca2+ by InsP3 (inositol 1,4,5-trisphosphate) plays a central role in many of these signalling systems. Ongoing transcriptional processes maintain the integrity and stability of these cell-specific signalling systems. However, these homoeostatic systems are highly plastic and can undergo a process of phenotypic remodelling, resulting in the Ca2+ signals being set either too high or too low. Such subtle dysregulation of Ca2+ signals have been linked to some of the major diseases in humans such as cardiac disease, schizophrenia, bipolar disorder and Alzheimer's disease.

  19. Astrocyte calcium signaling: the third wave.

    PubMed

    Bazargani, Narges; Attwell, David

    2016-02-01

    The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.

  20. Calcium signaling in membrane repair

    PubMed Central

    Cheng, Xiping; Zhang, Xiaoli; Yu, Lu; Xu, Haoxing

    2015-01-01

    Resealing allows cells to mend damaged membranes rapidly when plasma membrane (PM) disruptions occur. Models of PM repair mechanisms include the “lipid-patch”, “endocytic removal”, and “macro-vesicle shedding” models, all of which postulate a dependence on local increases in intracellular Ca2+ at injury sites. Multiple calcium sensors, including synaptotagmin (Syt) VII, dysferlin, and apoptosis-linked gene-2 (ALG-2), are involved in PM resealing, suggesting that Ca2+ may regulate multiple steps of the repair process. Although earlier studies focused exclusively on external Ca2+, recent studies suggest that Ca2+ release from intracellular stores may also be important for PM resealing. Hence, depending on injury size and the type of injury, multiple sources of Ca2+ may be recruited to trigger and orchestrate repair processes. In this review, we discuss the mechanisms by which the resealing process is promoted by vesicular Ca2+ channels and Ca2+ sensors that accumulate at damage sites. PMID:26519113

  1. Calcium, channels, intracellular signaling and autoimmunity.

    PubMed

    Izquierdo, Jorge-Hernán; Bonilla-Abadía, Fabio; Cañas, Carlos A; Tobón, Gabriel J

    2014-01-01

    Calcium (Ca²⁺) is an important cation able to function as a second messenger in different cells of the immune system, particularly in B and T lymphocytes, macrophages and mastocytes, among others. Recent discoveries related to the entry of Ca²⁺ through the store-operated calcium entry (SOCE) has opened a new investigation area about the cell destiny regulated by Ca²⁺ especially in B and T lymphocytes. SOCE acts through calcium-release-activated calcium (CRAC) channels. The function of CRAC depends of two recently discovered regulators: the Ca²⁺ sensor in the endoplasmic reticulum or stromal interaction molecule (STIM-1) and one subunit of CRAC channels called Orai1. This review focuses on the role of Ca²⁺ signals in B and T lymphocytes functions, the signalling pathways leading to Ca²⁺ influx, and the relationship between Ca²⁺ signals and autoimmune diseases.

  2. Fast Kinetics of Calcium Signaling and Sensor Design

    PubMed Central

    Tang, Shen; Reddish, Florence; Zhuo, You; Yang, Jenny J.

    2015-01-01

    Fast calcium signaling is regulated by numerous calcium channels exhibiting high spatiotemporal profiles which are currently measured by fluorescent calcium sensors. There is still a strong need to improve the kinetics of genetically encoded calcium indicators (sensors) to capture calcium dynamics in the millisecond time frame. In this review, we summarize several major fast calcium signaling pathways and discuss the recent developments and application of genetically encoded calcium indicators to detect these pathways. A new class of genetically encoded calcium indicators designed with site-directed mutagenesis on the surface of beta-barrel fluorescent proteins to form a pentagonal bipyramidal-like calcium binding domain dramatically accelerates calcium binding kinetics. Furthermore, novel genetically encoded calcium indicators with significantly increased fluorescent lifetime change are advantageous in deep-field imaging with high light-scattering and notable morphology change. PMID:26151819

  3. Calcium binding proteins and calcium signaling in prokaryotes.

    PubMed

    Domínguez, Delfina C; Guragain, Manita; Patrauchan, Marianna

    2015-03-01

    With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.

  4. Another dimension to calcium signaling: a look at extracellular calcium.

    PubMed

    Hofer, Aldebaran M

    2005-03-01

    Cell biologists know the calcium ion best as a vital intracellular second messenger that governs countless cellular functions. However, the recent identification of cell-surface detectors for extracellular Ca(2+) has prompted consideration of whether Ca(2+) also functions as a signaling molecule in the extracellular milieu. The cast of Ca(2+) sensors includes the well-characterized extracellular-Ca(2+)-sensing receptor, a G-protein-coupled receptor originally isolated from the parathyroid gland. In addition, other receptors, channels and membrane proteins, such as gap junction hemichannels, metabotropic glutamate receptors, HERG K(+) channels and the receptor Notch, are all sensitive to external [Ca(2+)] fluctuations. A recently cloned Ca(2+) sensor (CAS) in Arabidopsis extends this concept to the plant kingdom. Emerging evidence indicates that [Ca(2+)] in the local microenvironment outside the cell undergoes alterations potentially sufficient to exert biological actions through these sensor proteins. The extracellular space might therefore constitute a much more dynamic Ca(2+) signaling compartment than previously appreciated.

  5. Regulation of neurogenesis by calcium signaling

    PubMed Central

    Toth, Anna B.; Shum, Andrew K.; Prakriya, Murali

    2017-01-01

    Calcium (Ca2+) signaling has essential roles in the development of the nervous system from neural induction to the proliferation, migration, and differentiation of neural cells. Ca2+ signaling pathways are shaped by interactions among metabotropic signaling cascades, intracellular Ca2+ stores, ion channels, and a multitude of downstream effector proteins that activate specific genetic programs. The temporal and spatial dynamics of Ca2+ signals are widely presumed to control the highly diverse yet specific genetic programs that establish the complex structures of the adult nervous system. Progress in the last two decades has led to significant advances in our understanding of the functional architecture of Ca2+ signaling networks involved in neurogenesis. In this review, we assess the literature on the molecular and functional organization of Ca2+ signaling networks in the developing nervous system and its impact on neural induction, gene expression, proliferation, migration, and differentiation. Particular emphasis is placed on the growing evidence for the involvement of store-operated Ca2+ release-activated Ca2+ (CRAC) channels in these processes. PMID:27020657

  6. Collective Calcium Signaling of Defective Multicellular Networks

    NASA Astrophysics Data System (ADS)

    Potter, Garrett; Sun, Bo

    2015-03-01

    A communicating multicellular network processes environmental cues into collective cellular dynamics. We have previously demonstrated that, when excited by extracellular ATP, fibroblast monolayers generate correlated calcium dynamics modulated by both the stimuli and gap junction communication between the cells. However, just as a well-connected neural network may be compromised by abnormal neurons, a tissue monolayer can also be defective with cancer cells, which typically have down regulated gap junctions. To understand the collective cellular dynamics in a defective multicellular network we have studied the calcium signaling of co-cultured breast cancer cells and fibroblast cells in various concentrations of ATP delivered through microfluidic devices. Our results demonstrate that cancer cells respond faster, generate singular spikes, and are more synchronous across all stimuli concentrations. Additionally, fibroblast cells exhibit persistent calcium oscillations that increase in regularity with greater stimuli. To interpret these results we quantitatively analyzed the immunostaining of purigenic receptors and gap junction channels. The results confirm our hypothesis that collective dynamics are mainly determined by the availability of gap junction communications.

  7. Calcium-Mediated Abiotic Stress Signaling in Roots

    PubMed Central

    Wilkins, Katie A.; Matthus, Elsa; Swarbreck, Stéphanie M.; Davies, Julia M.

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium’s other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  8. Astrocyte calcium signalling orchestrates neuronal synchronization in organotypic hippocampal slices

    PubMed Central

    Sasaki, Takuya; Ishikawa, Tomoe; Abe, Reimi; Nakayama, Ryota; Asada, Akiko; Matsuki, Norio; Ikegaya, Yuji

    2014-01-01

    Astrocytes are thought to detect neuronal activity in the form of intracellular calcium elevations; thereby, astrocytes can regulate neuronal excitability and synaptic transmission. Little is known, however, about how the astrocyte calcium signal regulates the activity of neuronal populations. In this study, we addressed this issue using functional multineuron calcium imaging in hippocampal slice cultures. Under normal conditions, CA3 neuronal networks exhibited temporally correlated activity patterns, occasionally generating large synchronization among a subset of cells. The synchronized neuronal activity was correlated with astrocyte calcium events. Calcium buffering by an intracellular injection of a calcium chelator into multiple astrocytes reduced the synaptic strength of unitary transmission between pairs of surrounding pyramidal cells and caused desynchronization of the neuronal networks. Uncaging the calcium in the astrocytes increased the frequency of neuronal synchronization. These data suggest an essential role of the astrocyte calcium signal in the maintenance of basal neuronal function at the circuit level. PMID:24710057

  9. Store-operated calcium entry is essential for glial calcium signalling in CNS white matter.

    PubMed

    Papanikolaou, M; Lewis, A; Butt, A M

    2017-02-28

    'Calcium signalling' is the ubiquitous response of glial cells to multiple extracellular stimuli. The primary mechanism of glial calcium signalling is by release of calcium from intracellular stores of the endoplasmic reticulum (ER). Replenishment of ER Ca(2+) stores relies on store-operated calcium entry (SOCE). However, despite the importance of calcium signalling in glial cells, little is known about their mechanisms of SOCE. Here, we investigated SOCE in glia of the mouse optic nerve, a typical CNS white matter tract that comprises bundles of myelinated axons and the oligodendrocytes and astrocytes that support them. Using quantitative RT-PCR, we identified Orai1 channels, both Stim1 and Stim2, and the transient receptor potential M3 channel (TRPM3) as the primary channels for SOCE in the optic nerve, and their expression in both astrocytes and oligodendrocytes was demonstrated by immunolabelling of optic nerve sections and cultures. The functional importance of SOCE was demonstrated by fluo-4 calcium imaging on isolated intact optic nerves and optic nerve cultures. Removal of extracellular calcium ([Ca(2+)]o) resulted in a marked depletion of glial cytosolic calcium ([Ca(2+)]i), which recovered rapidly on restoration of [Ca(2+)]o via SOCE. 2-aminoethoxydiphenylborane (2APB) significantly decreased SOCE and severely attenuated ATP-mediated calcium signalling. The results provide evidence that Orai/Stim and TRPM3 are important components of the 'calcium toolkit' that underpins SOCE and the sustainability of calcium signalling in white matter glia.

  10. Calcium-Sensing Receptor: A Key Target for Extracellular Calcium Signaling in Neurons

    PubMed Central

    Jones, Brian L.; Smith, Stephen M.

    2016-01-01

    Though both clinicians and scientists have long recognized the influence of extracellular calcium on the function of muscle and nervous tissue, recent insights reveal that the mechanisms allowing changes in extracellular calcium to alter cellular excitability have been incompletely understood. For many years the effects of calcium on neuronal signaling were explained only in terms of calcium entry through voltage-gated calcium channels and biophysical charge screening. More recently however, it has been recognized that the calcium-sensing receptor is prevalent in the nervous system and regulates synaptic transmission and neuronal activity via multiple signaling pathways. Here we review the multiplicity of mechanisms by which changes in extracellular calcium alter neuronal signaling and propose that multiple mechanisms are required to describe the full range of experimental observations. PMID:27065884

  11. Calcium signaling in plant cells in microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E.

    Changes in the intracellular Ca 2 + concentration in altered gravity (microgravity and clinostating) evidence that Ca2 + signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in eighties, a review highlighting the performed research and the possible significance of such Ca 2 + changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumably specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2 + ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravis ensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane

  12. Calcium/calmodulin-mediated signal network in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2003-01-01

    Various extracellular stimuli elicit specific calcium signatures that can be recognized by different calcium sensors. Calmodulin, the predominant calcium receptor, is one of the best-characterized calcium sensors in eukaryotes. In recent years, completion of the Arabidopsis genome project and advances in functional genomics have helped to identify and characterize numerous calmodulin-binding proteins in plants. There are some similarities in Ca(2+)/calmodulin-mediated signaling in plants and animals. However, plants possess multiple calmodulin genes and many calmodulin target proteins, including unique protein kinases and transcription factors. Some of these proteins are likely to act as "hubs" during calcium signal transduction. Hence, a better understanding of the function of these calmodulin target proteins should help in deciphering the Ca(2+)/calmodulin-mediated signal network and its role in plant growth, development and response to environmental stimuli.

  13. Spindle function in Xenopus oocytes involves possible nanodomain calcium signaling

    PubMed Central

    Li, Ruizhen; Leblanc, Julie; He, Kevin; Liu, X. Johné

    2016-01-01

    Intracellular calcium transients are a universal phenomenon at fertilization and are required for egg activation, but the exact role of Ca2+ in second-polar-body emission remains unknown. On the other hand, similar calcium transients have not been demonstrated during oocyte maturation, and yet, manipulating intracellular calcium levels interferes with first-polar-body emission in mice and frogs. To determine the precise role of calcium signaling in polar body formation, we used live-cell imaging coupled with temporally precise intracellular calcium buffering. We found that BAPTA-based calcium chelators cause immediate depolymerization of spindle microtubules in meiosis I and meiosis II. Surprisingly, EGTA at similar or higher intracellular concentrations had no effect on spindle function or polar body emission. Using two calcium probes containing permutated GFP and the calcium sensor calmodulin (Lck-GCaMP3 and GCaMP3), we demonstrated enrichment of the probes at the spindle but failed to detect calcium increase during oocyte maturation at the spindle or elsewhere. Finally, endogenous calmodulin was found to colocalize with spindle microtubules throughout all stages of meiosis. Our results—most important, the different sensitivities of the spindle to BAPTA and EGTA—suggest that meiotic spindle function in frog oocytes requires highly localized, or nanodomain, calcium signaling. PMID:27582389

  14. Calcium Signaling in Interstitial Cells: Focus on Telocytes

    PubMed Central

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai; Cretoiu, Dragos; Cretoiu, Sanda Maria

    2017-01-01

    In this review, we describe the current knowledge on calcium signaling pathways in interstitial cells with a special focus on interstitial cells of Cajal (ICCs), interstitial Cajal-like cells (ICLCs), and telocytes. In detail, we present the generation of Ca2+ oscillations, the inositol triphosphate (IP3)/Ca2+ signaling pathway and modulation exerted by cytokines and vasoactive agents on calcium signaling in interstitial cells. We discuss the physiology and alterations of calcium signaling in interstitial cells, and in particular in telocytes. We describe the physiological contribution of calcium signaling in interstitial cells to the pacemaking activity (e.g., intestinal, urinary, uterine or vascular pacemaking activity) and to the reproductive function. We also present the pathological contribution of calcium signaling in interstitial cells to the aortic valve calcification or intestinal inflammation. Moreover, we summarize the current knowledge of the role played by calcium signaling in telocytes in the uterine, cardiac and urinary physiology, and also in various pathologies, including immune response, uterine and cardiac pathologies. PMID:28208829

  15. Calcium Signaling in Interstitial Cells: Focus on Telocytes.

    PubMed

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai; Cretoiu, Dragos; Cretoiu, Sanda Maria

    2017-02-13

    In this review, we describe the current knowledge on calcium signaling pathways in interstitial cells with a special focus on interstitial cells of Cajal (ICCs), interstitial Cajal-like cells (ICLCs), and telocytes. In detail, we present the generation of Ca(2+) oscillations, the inositol triphosphate (IP₃)/Ca(2+) signaling pathway and modulation exerted by cytokines and vasoactive agents on calcium signaling in interstitial cells. We discuss the physiology and alterations of calcium signaling in interstitial cells, and in particular in telocytes. We describe the physiological contribution of calcium signaling in interstitial cells to the pacemaking activity (e.g., intestinal, urinary, uterine or vascular pacemaking activity) and to the reproductive function. We also present the pathological contribution of calcium signaling in interstitial cells to the aortic valve calcification or intestinal inflammation. Moreover, we summarize the current knowledge of the role played by calcium signaling in telocytes in the uterine, cardiac and urinary physiology, and also in various pathologies, including immune response, uterine and cardiac pathologies.

  16. Calcium Buildup in Young Arteries May Signal Heart Attack Risk

    MedlinePlus

    ... html Calcium Buildup in Young Arteries May Signal Heart Attack Risk Even small amount in 30s, 40s appears ... their arteries are already at risk of a heart attack, a new study finds. Among those 32 to ...

  17. Control of Intracellular Calcium Signaling as a Neuroprotective Strategy

    PubMed Central

    Duncan, R. Scott; Goad, Daryl L.; Grillo, Michael A.; Kaja, Simon; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Both acute and chronic degenerative diseases of the nervous system reduce the viability and function of neurons through changes in intracellular calcium signaling. In particular, pathological increases in the intracellular calcium concentration promote such pathogenesis. Disease involvement of numerous regulators of intracellular calcium signaling located on the plasma membrane and intracellular organelles has been documented. Diverse groups of chemical compounds targeting ion channels, G-protein coupled receptors, pumps and enzymes have been identified as potential neuroprotectants. The present review summarizes the discovery, mechanisms and biological activity of neuroprotective molecules targeting proteins that control intracellular calcium signaling to preserve or restore structure and function of the nervous system. Disease relevance, clinical applications and new technologies for the identification of such molecules are being discussed. PMID:20335972

  18. Towards the Physics of Calcium Signalling in Plants

    PubMed Central

    Vaz Martins, Teresa; Evans, Matthew J.; Woolfenden, Hugh C.; Morris, Richard J.

    2013-01-01

    Calcium is an abundant element with a wide variety of important roles within cells. Calcium ions are inter- and intra-cellular messengers that are involved in numerous signalling pathways. Fluctuating compartment-specific calcium ion concentrations can lead to localised and even plant-wide oscillations that can regulate downstream events. Understanding the mechanisms that give rise to these complex patterns that vary both in space and time can be challenging, even in cases for which individual components have been identified. Taking a systems biology approach, mathematical and computational techniques can be employed to produce models that recapitulate experimental observations and capture our current understanding of the system. Useful models make novel predictions that can be investigated and falsified experimentally. This review brings together recent work on the modelling of calcium signalling in plants, from the scale of ion channels through to plant-wide responses to external stimuli. Some in silico results that have informed later experiments are highlighted. PMID:27137393

  19. Calcium signaling in skeletal muscle development, maintenance and regeneration.

    PubMed

    Tu, Michelle K; Levin, Jacqueline B; Hamilton, Andrew M; Borodinsky, Laura N

    2016-03-01

    Skeletal muscle-specific stem cells are pivotal for tissue development and regeneration. Muscle plasticity, inherent in these processes, is also essential for daily life activities. Great advances and efforts have been made in understanding the function of the skeletal muscle-dedicated stem cells, called muscle satellite cells, and the specific signaling mechanisms that activate them for recruitment in the repair of the injured muscle. Elucidating these signaling mechanisms may contribute to devising therapies for muscular injury or disease. Here we review the studies that have contributed to our understanding of how calcium signaling regulates skeletal muscle development, homeostasis and regeneration, with a focus on the calcium dynamics and calcium-dependent effectors that participate in these processes.

  20. The role of Noise for Intracellular Calcium Signaling

    NASA Astrophysics Data System (ADS)

    Jung, Peter

    2003-03-01

    Calcium signaling is one of the most important and common cellular signaling mechanisms. Calcium signals turn on the wound response in epithelia cells (e.g. the cornea) and brain tissue, play an important role for metabolic processes in liver and pancreas, signal the heart muscle to contract, and are important players in learning and memory. Binding of agonist to receptors in the cell membrane can trigger the release of Ca^2+ from internal stores through small patches of release channels and the formation of intracellular, spatiotemporal calcium patterns that can be observed by using fluorescent markers. What makes these patterns so interesting from the biologic as well as the nonlinear dynamics perspective is that active elements (the release channels) are distributed discretely in small patches (about 100nm in size) that are typically 2mm apart. Processes on this scale are subject to large fluctuations that can dominate the overall calcium signal on a cellular and tissue scale depending on physiologic parameters. Pattern formation in such systems, with discretely distributed active sites and fluctuations poses new challenges that researchers have started to address only in the last years. Recent results in computational modeling of these processes from the elementary release process to the cellular level, are put into context with experimental findings. We focus on the effects of receptor clustering in the context of the cellular Ca^2+ signaling capability.

  1. Calcium and signal transduction in plants

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Reddy, A. S.

    1993-01-01

    Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.

  2. The symphony of autophagy and calcium signaling.

    PubMed

    Yao, Zhiyuan; Klionsky, Daniel J

    2015-01-01

    Posttranslational regulation of macroautophagy (hereafter autophagy), including phosphorylating and dephosphorylating components of the autophagy-related (Atg) core machinery and the corresponding upstream transcriptional factors, is important for the precise modulation of autophagy levels. Several kinases that are involved in phosphorylating autophagy-related proteins have been identified in both yeast and mammalian cells. However, there has been much less research published with regard to the identification of the complementary phosphatases that function in autophagy. A recent study identified PPP3/calcineurin, a calcium-dependent phosphatase, as a regulator of autophagy, and demonstrated that one of the key targets of PPP3/calcineurin is TFEB, a master transcriptional factor that controls autophagy and lysosomal function in mammalian cells.

  3. Calcium Signaling in Oomycetes: An Evolutionary Perspective.

    PubMed

    Zheng, Limian; Mackrill, John J

    2016-01-01

    Oomycetes are a family of eukaryotic microbes that superficially resemble fungi, but which are phylogenetically distinct from them. These organisms cause major global economic losses to agriculture and fisheries, with representative pathogens being Phytophthora infestans, the cause of late potato blight and Saprolegnia diclina, the instigator of "cotton molds" in fish. As in all eukaryotes, cytoplasmic Ca(2+) is a key second messenger in oomycetes, regulating life-cycle transitions, controlling motility and chemotaxis and, in excess, leading to cell-death. Despite this, little is known about the molecular mechanisms regulating cytoplasmic Ca(2+) concentrations in these organisms. Consequently, this review analyzed the presence of candidate calcium channels encoded within the nine oomycete genomes that are currently available. This revealed key differences between oomycetes and other eukaryotes, in particular the expansion and loss of different channel families, and the presence of a phylum-specific group of proteins, termed the polycystic kidney disease tandem ryanodine receptor domain (PKDRR) channels.

  4. Role of calcium signaling in epithelial bicarbonate secretion.

    PubMed

    Jung, Jinsei; Lee, Min Goo

    2014-06-01

    Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis.

  5. [Electrophysiology and calcium signalling in human bronchial smooth muscle].

    PubMed

    Marthan, R; Hyvelin, J M; Roux, E; Savineau, J P

    1999-01-01

    Recently, cells isolated from airways have been used to characterize precisely the electrophysiological properties of this smooth muscle and to describe the changes in cytosolic calcium concentration ([Ca2+]i) occurring upon agonist stimulation. Although most studies have produced consistent results in terms of types of ion channel and pathways of calcium signalling implicated in the mechanical activity of airways, there are differences according to (i) the site along the bronchial tree (trachea vs. bronchi); (ii) the proliferating status of the cells (freshly isolated vs. cultured) and (iii) the species (human vs. animals). With regard to the electrophysiological properties of airway smooth muscle, the contribution to [Ca2+]i rise of Ca2+ influx through L-type voltage-dependent calcium channels depends on the balance between depolarization related to non-specific cation channel and/or chloride channel activation and hyperpolarization related to activation of a variety of potassium channels. Most of the above-mentioned channels appear to be controlled, directly or indirectly, by agonists in human bronchial smooth muscle. With regard to calcium signalling, the pattern of agonist-induced [Ca2+]i responses, the so-called [Ca2+]i oscillations, has been observed recently in freshly isolated airway smooth muscle cells. The role and the calcium sources involved in these oscillations in human bronchial smooth muscle are currently being investigated.

  6. Evolution of the Calcium-Based Intracellular Signaling System

    PubMed Central

    Marchadier, Elodie; Oates, Matt E.; Fang, Hai; Donoghue, Philip C.J.; Hetherington, Alistair M.; Gough, Julian

    2016-01-01

    To progress our understanding of molecular evolution from a collection of well-studied genes toward the level of the cell, we must consider whole systems. Here, we reveal the evolution of an important intracellular signaling system. The calcium-signaling toolkit is made up of different multidomain proteins that have undergone duplication, recombination, sequence divergence, and selection. The picture of evolution, considering the repertoire of proteins in the toolkit of both extant organisms and ancestors, is radically different from that of other systems. In eukaryotes, the repertoire increased in both abundance and diversity at a far greater rate than general genomic expansion. We describe how calcium-based intracellular signaling evolution differs not only in rate but in nature, and how this correlates with the disparity of plants and animals. PMID:27358427

  7. Calcium Signaling in Intact Dorsal Root Ganglia

    PubMed Central

    Gemes, Geza; Rigaud, Marcel; Koopmeiners, Andrew S.; Poroli, Mark J.; Zoga, Vasiliki; Hogan, Quinn H.

    2013-01-01

    Background Ca2+ is the dominant second messenger in primary sensory neurons. In addition, disrupted Ca2+ signaling is a prominent feature in pain models involving peripheral nerve injury. Standard cytoplasmic Ca2+ recording techniques use high K+ or field stimulation and dissociated neurons. To compare findings in intact dorsal root ganglia, we used a method of simultaneous electrophysiologic and microfluorimetric recording. Methods Dissociated neurons were loaded by bath-applied Fura-2-AM and subjected to field stimulation. Alternatively, we adapted a technique in which neuronal somata of intact ganglia were loaded with Fura-2 through an intracellular microelectrode that provided simultaneous membrane potential recording during activation by action potentials (APs) conducted from attached dorsal roots. Results Field stimulation at levels necessary to activate neurons generated bath pH changes through electrolysis and failed to predictably drive neurons with AP trains. In the intact ganglion technique, single APs produced measurable Ca2+ transients that were fourfold larger in presumed nociceptive C-type neurons than in nonnociceptive Aβ-type neurons. Unitary Ca2+ transients summated during AP trains, forming transients with amplitudes that were highly dependent on stimulation frequency. Each neuron was tuned to a preferred frequency at which transient amplitude was maximal. Transients predominantly exhibited monoexponential recovery and had sustained plateaus during recovery only with trains of more than 100 APs. Nerve injury decreased Ca2+ transients in C-type neurons, but increased transients in Aβ-type neurons. Conclusions Refined observation of Ca2+ signaling is possible through natural activation by conducted APs in undissociated sensory neurons and reveals features distinct to neuronal types and injury state. PMID:20526180

  8. Plastid-nucleus communication involves calcium-modulated MAPK signalling

    PubMed Central

    Guo, Hailong; Feng, Peiqiang; Chi, Wei; Sun, Xuwu; Xu, Xiumei; Li, Yuan; Ren, Dongtao; Lu, Congming; David Rochaix, Jean; Leister, Dario; Zhang, Lixin

    2016-01-01

    Chloroplast retrograde signals play important roles in coordinating the plastid and nuclear gene expression and are critical for proper chloroplast biogenesis and for maintaining optimal chloroplast functions in response to environmental changes in plants. Until now, the signals and the mechanisms for retrograde signalling remain poorly understood. Here we identify factors that allow the nucleus to perceive stress conditions in the chloroplast and to respond accordingly by inducing or repressing specific nuclear genes encoding plastid proteins. We show that ABI4, which is known to repress the LHCB genes during retrograde signalling, is activated through phosphorylation by the MAP kinases MPK3/MPK6 and the activity of these kinases is regulated through 14-3-3ω-mediated Ca2+-dependent scaffolding depending on the chloroplast calcium sensor protein CAS. These findings uncover an additional mechanism in which chloroplast-modulated Ca2+ signalling controls the MAPK pathway for the activation of critical components of the retrograde signalling chain. PMID:27399341

  9. [Neurotransmitters, calcium signalling and neuronal communication].

    PubMed

    Eguiagaray, J G; Egea, J; Bravo-Cordero, J J; García, A G

    2004-04-01

    In this article we show some recent findings that constitute a great progress in the molecular knowledge of synaptic dynamics. To communicate, neurons use a code that includes electrical (action potentials) and chemical signals (neurotransmitters, neuromodulators). At the moment a great variety of molecules are known, whose neurotransmitter function in brain and the peripheral nervous system are out of question. Monoamines like acetylcholine, dopamine, noradrenaline, adrenaline, histamine, serotonin, glutamate, aspartate, glycine, ATP and GABA are good examples. Opioid neuropeptides, vasoactive intestinal peptide (VIP), neurokinines (substance P), somatostatin, neurotensin, neuropeptide Y, cholecystokinine, vasopressin or oxitocin have been related to the control of the stress response, sexual behaviour, food intake, pain, learning and memory, qualities that are also related to nitric oxide (NO). A great part of the molecular structure of the secretory machinery is known to be responsible for fast neurotransmitter release at the synapse, in response to action potentials. Proteins like sinaptobrevin (located in the membrane of the synaptic vesicle), sintaxin and SNAP-25 (both located at the presynaptic plasma membrane) constitute a trimeric complex which is responsible of the vesicular docking at the active sites for exocytosis. From this strategic location, vesicles release their neurotransmitter within few milliseconds, when the action potential invades the nerve terminal and activates the opening of the different subtypes of voltage-dependent Ca2+ channels. The asymmetric geographical distribution of each type of channel, in different neurons, rose the hypothesis that Ca2+ that enters through each subtype of channel is compartmentalised, thus favouring the generation of Ca2+ microdomains, in the cytosol and the nucleus, involved in different cellular functions. This great biochemical synaptic heterogeneity is facilitating the selection of many biological targets

  10. Regulation of PKC Mediated Signaling by Calcium during Visceral Leishmaniasis

    PubMed Central

    Roy, Nivedita; Chakraborty, Supriya; Paul Chowdhury, Bidisha; Banerjee, Sayantan; Halder, Kuntal; Majumder, Saikat; Majumdar, Subrata; Sen, Parimal C.

    2014-01-01

    Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA) and Sarco/endoplasmic reticulum calcium ATPase (SERCA) which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis. PMID:25329062

  11. Systematic Characterization of Dynamic Parameters of Intracellular Calcium Signals

    PubMed Central

    Mackay, Laurent; Mikolajewicz, Nicholas; Komarova, Svetlana V.; Khadra, Anmar

    2016-01-01

    Dynamic processes, such as intracellular calcium signaling, are hallmark of cellular biology. As real-time imaging modalities become widespread, a need for analytical tools to reliably characterize time-series data without prior knowledge of the nature of the recordings becomes more pressing. The goal of this study is to develop a signal-processing algorithm for MATLAB that autonomously computes the parameters characterizing prominent single transient responses (TR) and/or multi-peaks responses (MPR). The algorithm corrects for signal contamination and decomposes experimental recordings into contributions from drift, TRs, and MPRs. It subsequently provides numerical estimates for the following parameters: time of onset after stimulus application, activation time (time for signal to increase from 10 to 90% of peak), and amplitude of response. It also provides characterization of the (i) TRs by quantifying their area under the curve (AUC), response duration (time between 1/2 amplitude on ascent and descent of the transient), and decay constant of the exponential decay region of the deactivation phase of the response, and (ii) MPRs by quantifying the number of peaks, mean peak magnitude, mean periodicity, standard deviation of periodicity, oscillatory persistence (time between first and last discernable peak), and duty cycle (fraction of period during which system is active) for all the peaks in the signal, as well as coherent oscillations (i.e., deterministic spikes). We demonstrate that the signal detection performance of this algorithm is in agreement with user-mediated detection and that parameter estimates obtained manually and algorithmically are correlated. We then apply this algorithm to study how metabolic acidosis affects purinergic (P2) receptor-mediated calcium signaling in osteoclast precursor cells. Our results reveal that acidosis significantly attenuates the amplitude and AUC calcium responses at high ATP concentrations. Collectively, our data

  12. Calcium Efflux Systems in Stress Signaling and Adaptation in Plants

    PubMed Central

    Bose, Jayakumar; Pottosin, Igor I.; Shabala, Stanislav S.; Palmgren, Michael G.; Shabala, Sergey

    2011-01-01

    Transient cytosolic calcium ([Ca2+]cyt) elevation is an ubiquitous denominator of the signaling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency, and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium “signature” that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms to shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signaling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analyzed in detail. The spatial and temporal organization of calcium signaling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarized. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modeled by using a four-component model (plasma- and endo-membrane-based Ca2+-permeable channels and efflux systems) taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasizing the crucial role these active efflux systems play in plant adaptive responses to environment. PMID:22639615

  13. Can calcium signaling be harnessed for cancer immunotherapy?

    PubMed

    Rooke, Ronald

    2014-10-01

    Experimental evidence shows the importance of the immune system in controlling tumor appearance and growth. Immunotherapy is defined as the treatment of a disease by inducing, enhancing or suppressing an immune response. In the context of cancer treatment, it involves breaking tolerance to a cancer-specific self-antigen and/or enhancing the existing anti-tumor immune response, be it specific or not. Part of the complexity in developing such treatment is that cancers are selected to escape adaptive or innate immune responses. These escape mechanisms are numerous and they may cumulate in one cancer. Moreover, different cancers of a same type may present different combinations of escape mechanisms. The limited success of immunotherapeutics in the clinic as stand-alone products may in part be explained by the fact that most of them only activate one facet of the immune response. It is important to identify novel methods to broaden the efficacy of immunotherapeutics. Calcium signaling is central to numerous cellular processes, leading to immune responses, cancer growth and apoptosis induced by cancer treatments. Calcium signaling in cancer therapy and control will be integrated to current cancer immunotherapy approaches. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.

  14. Calcium signaling as a mediator of cell energy demand and a trigger to cell death

    PubMed Central

    Bhosale, Gauri; Sharpe, Jenny A.; Sundier, Stephanie Y.

    2015-01-01

    Calcium signaling is pivotal to a host of physiological pathways. A rise in calcium concentration almost invariably signals an increased cellular energy demand. Consistent with this, calcium signals mediate a number of pathways that together serve to balance energy supply and demand. In pathological states, calcium signals can precipitate mitochondrial injury and cell death, especially when coupled to energy depletion and oxidative or nitrosative stress. This review explores the mechanisms that couple cell signaling pathways to metabolic regulation or to cell death. The significance of these pathways is exemplified by pathological case studies, such as those showing loss of mitochondrial calcium uptake 1 in patients and ischemia/reperfusion injury. PMID:26375864

  15. Ion channels and calcium signaling in motile cilia

    PubMed Central

    Doerner, Julia F; Delling, Markus; Clapham, David E

    2015-01-01

    The beating of motile cilia generates fluid flow over epithelia in brain ventricles, airways, and Fallopian tubes. Here, we patch clamp single motile cilia of mammalian ependymal cells and examine their potential function as a calcium signaling compartment. Resting motile cilia calcium concentration ([Ca2+] ~170 nM) is only slightly elevated over cytoplasmic [Ca2+] (~100 nM) at steady state. Ca2+ changes that arise in the cytoplasm rapidly equilibrate in motile cilia. We measured CaV1 voltage-gated calcium channels in ependymal cells, but these channels are not specifically enriched in motile cilia. Membrane depolarization increases ciliary [Ca2+], but only marginally alters cilia beating and cilia-driven fluid velocity within short (~1 min) time frames. We conclude that beating of ependymal motile cilia is not tightly regulated by voltage-gated calcium channels, unlike that of well-studied motile cilia and flagella in protists, such as Paramecia and Chlamydomonas. DOI: http://dx.doi.org/10.7554/eLife.11066.001 PMID:26650848

  16. Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling

    PubMed Central

    Patel, Sandip; Docampo, Roberto

    2010-01-01

    Changes in cytosolic calcium concentration are crucial for a variety of cellular processes in all cells. It has long been appreciated that calcium is stored and released from intracellular calcium stores such as the endoplasmic reticulum. However, emerging evidence indicates that calcium is also dynamically regulated by a seemingly disparate collection of acidic organelles. Here, we review the defining features of these acidic calcium stores and highlight recent progress in understanding the mechanisms of uptake and release of calcium from these stores. We also examine the nature of calcium buffering within the stores and summarize the physiological and patho-physiological significance of these ubiquitous organelles in calcium signaling. PMID:20303271

  17. Nuclear calcium sensors reveal that repetition of trains of synaptic stimuli boosts nuclear calcium signaling in CA1 pyramidal neurons.

    PubMed

    Bengtson, C Peter; Freitag, H Eckehard; Weislogel, Jan-Marek; Bading, Hilmar

    2010-12-15

    Nuclear calcium is a key signal in the dialogue between synapse and nucleus that controls the genomic responses required for persistent adaptations, including memory and acquired neuroprotection. The amplitude and duration of nuclear calcium transients specify activity-induced transcriptional changes. However, the precise relationship between synaptic input and nuclear calcium output is unknown. Here, we used stereotaxic delivery to the rat brain of recombinant adeno-associated viruses encoding nuclear-targeted calcium sensors to assess nuclear calcium transients in CA1 pyramidal neurons after stimulation of the Schaffer collaterals. We show that in acute hippocampal slices, a burst of synaptic activity elicits a nuclear calcium signal with a regenerative component at above-threshold stimulation intensities. Using classical stimulation paradigms (i.e., high-frequency stimulation (HFS) and θ burst stimulation (TBS)) to induce early LTP (E-LTP) and transcription-dependent late LTP (L-LTP), we found that the magnitude of nuclear calcium signals and the number of action potentials activated by synaptic stimulation trains are greatly amplified by their repetition. Nuclear calcium signals and action potential generation were reduced by blockade of either NMDA receptors or L-type voltage-gated calcium channels, but not by procedures that lead to internal calcium store depletion or by blockade of metabotropic glutamate receptors. These findings identify a repetition-induced switch in nuclear calcium signaling that correlates with the transition from E-LTP to L-LTP, and may explain why the transcription-dependent phase of L-LTP is not induced by a single HFS or TBS but requires repeated trains of activity. Recombinant, nuclear-targeted indicators may prove useful for further analysis of nuclear calcium signaling in vivo.

  18. The use of flow cytometry to examine calcium signalling by TRPV1 in mixed cell populations.

    PubMed

    Assas, Bakri M; Adbulaal, Wesam; Wakid, Majed H; Zakai, Haytham A; Miyan, J; Pennock, J L

    2017-03-31

    Flow cytometric analysis of calcium mobilisation has been in use for many years in the study of specific receptor engagement or isolated cell:cell communication. However, calcium mobilisation/signaling is key to many cell functions including apoptosis, mobility and immune responses. Here we combine multiplex surface staining of whole spleen with Indo-1 AM to visualise calcium mobilisation and examine calcium signaling in a mixed immune cell culture over time. We demonstrate responses to a TRPV1 agonist in distinct cell subtypes without the need for cell separation. Multi parameter staining alongside Indo-1 AM to demonstrate calcium mobilization allows the study of real time calcium signaling in a complex environment.

  19. Lymphocyte adhesion-dependent calcium signaling in human endothelial cells

    PubMed Central

    1995-01-01

    Vascular endothelial cells (ECs) can undergo dramatic phenotypic and functional alterations in response to humoral and cellular stimuli. These changes promote endothelial participation in the inflammatory response through active recruitment of immune effector cells, increased vascular permeability, and alteration in vascular tone. In an attempt to define early events in lymphocyte-mediated EC signaling, we investigated cytosolic-free calcium (Ca2+) changes in single, Fluo-3- labeled human umbilical vein ECs (HUVECs), using an ACAS interactive laser cytometer. Of all lymphocyte subsets tested, allogeneic CD3-, CD56+ natural killer (NK) cells uniquely elicited oscillatory EC Ca2+ signals in cytokine (interleukin [IL]-1- or tumor necrosis factor [TNF])-treated ECs. The induction of these signals required avid intercellular adhesion, consisted of both Ca2+ mobilization and extracellular influx, and was associated with EC inositol phosphate (IP) generation. Simultaneous recording of NK and EC Ca2+ signals using two-color fluorescence detection revealed that, upon adhesion, NK cells flux prior to EC. Lymphocyte Ca2+ buffering with 1,2-bis-5-methyl-amino- phenoxylethane-N,N,N'-tetra-acetoxymethyl acetate (MAPTAM) demonstrated that lymphocyte fluxes are, in fact, prerequisites for the adhesion- dependent EC signals. mAb studies indicate that the beta 2 integrin- intercellular adhesion molecule (ICAM)-1 adhesion pathway is critically involved. However, ICAM-1 antisense oligonucleotide inhibition of IL-1- mediated ICAM-1 hyperinduction had no effect on EC Ca2+ signaling in lymphocyte-EC conjugates, indicating that additional cytokine-induced EC alteration is required. These experiments combine features of lymphocyte-endothelial interactions, intercellular adhesion, EC cytokine activation and transmembrane signaling. The results implicate the IP/Ca2+ second messenger pathway in EC outside-in signaling induced by cytotoxic lymphocytes, and suggest that these signals may play a

  20. Involvement of aberrant calcium signalling in herpetic neuralgia.

    PubMed

    Warwick, Rebekah A; Hanani, Menachem

    2016-03-01

    Alpha-herpesviruses, herpes simplex viruses (HSV) and varicella zoster virus (VZV), are pathogens of the peripheral nervous system. After primary infection, these viruses establish latency within sensory ganglia, while retaining the ability to reactivate. Reactivation of VZV results in herpes zoster, a condition characterized by skin lesions that leads to post-herpetic neuralgia. Recurrent reactivations of HSV, which cause mucocutaneous lesions, may also result in neuralgia. During reactivation of alpha-herpesviruses, satellite glial cells (SGCs), which surround neurons in sensory ganglia, become infected with the replicating virus. SGCs are known to contribute to neuropathic pain in a variety of animal pain models. Here we investigated how infection of short-term cultures of mouse trigeminal ganglia with HSV-1 affects communication between SGCs and neurons, and how this altered communication may increase neuronal excitability, thus contributing to herpetic neuralgia. Mechanical stimulation of single neurons or SGCs resulted in intercellular calcium waves, which were larger in cultures infected with HSV-1. Two differences were observed between control and HSV-1 infected cultures that could account for this augmentation. Firstly, HSV-1 infection induced cell fusion among SGCs and neurons, which would facilitate the spread of calcium signals over farther distances. Secondly, using calcium imaging and intracellular electrical recordings, we found that neurons in the HSV-1 infected cultures exhibited augmented influx of calcium upon depolarization. These virally induced changes may not only cause more neurons in the sensory ganglia to fire action potentials, but may also increase neurotransmitter release at the presynaptic terminals in the spinal cord. They are therefore likely to be contributing factors to herpetic neuralgia.

  1. Practical aspects of measuring intracellular calcium signals with fluorescent indicators.

    PubMed

    Kao, Joseph P Y; Li, Gong; Auston, Darryl A

    2010-01-01

    The use of fluorescent indicators for monitoring calcium (Ca(2+)) signals and for measuring Ca(2+) concentration ([Ca(2+)]) in living cells is described. The following topics are covered in detail: (1) ratiometric and nonratiometric fluorescent indicators and the principles underlying their use, (2) techniques for loading Ca(2+) indicators and Ca(2+) buffers into living cells, (3) calibration of indicator fluorescence intensity measurements to yield values of intracellular [Ca(2+)], (4) analysis of nonratiometric fluorescence intensity data and caveats relating to their interpretation, (5) techniques for manipulating intracellular and extracellular [Ca(2+)], and (6) the use of fluorescent indicators to monitor Ca(2+) signals in mitochondria. The chapter aims to present these fundamental topics in a manner that is practically useful and intuitively accessible. The origins of key mathematical equations used in the article are outlined in two appendices.

  2. Location matters: somatic and dendritic SK channels answer to distinct calcium signals.

    PubMed

    Rudolph, Stephanie; Thanawala, Monica S

    2015-07-01

    Voltage-dependent calcium channels (VDCCs) couple neuronal activity to diverse intracellular signals with exquisite spatiotemporal specificity. Using calcium imaging and electrophysiology, Jones and Stuart (J Neurosci 33: 19396-19405, 2013) examined the intimate relationship between distinct types of VDCCs and small-conductance calcium-activated potassium (SK) channels that contribute to the compartmentalized control of excitability in the soma and dendrites of cortical pyramidal neurons. Here we discuss the importance of calcium domains for signal specificity, explore the possible functions and mechanisms for local control of SK channels, and highlight technical considerations for the optical detection of calcium signals.

  3. CREB modulates calcium signaling in cAMP-induced bone marrow stromal cells (BMSCs).

    PubMed

    Zhang, Linxia; Liu, Li; Thompson, Ryan; Chan, Christina

    2014-10-01

    Calcium signaling has a versatile role in many important cellular functions. Despite its importance, regulation of calcium signaling in bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) has not been explored extensively. Our previous study revealed that cyclic adenosine monophosphate (cAMP) enabled BMSCs to generate calcium signal upon stimulation by dopamine, KCl and glutamate. Concurrently, cAMP transiently activated the transcription factor cAMP response element binding protein (CREB) in BMSCs. Activity of CREB can be modulated by the calcium/calmodulin-dependent kinase signaling pathway, however, whether the calcium signaling observed in cAMP-induced BMSCs requires CREB has not been investigated. In an effort to uncover the role of CREB in the generation of calcium signaling in response to modulators such as dopamine and KCl, we knocked down CREB activity in BMSCs. Our study indicated that BMSCs, but not its close relative fibroblasts, are responsive to dopamine and KCl after cAMP treatment. Calcium signal elicited by dopamine depends, in part, on calcium influx whereas that elicited by KCl depends completely on calcium influx. Knock-down of CREB activity significantly reduced or abolished the cAMP-induced calcium response, and reintroducing a constitutively active CREB partially restored the calcium response.

  4. Spatial characteristics to calcium signalling; the calcium wave as a basic unit in plant cell calcium signalling

    PubMed Central

    Malhó, R.

    1998-01-01

    Many signals that modify plant cell growth and development initiate changes in cytoplasmic Ca2+. The subsequent movement of Ca2+ in the cytoplasm is thought to take place via waves of free Ca2+. These waves may be initiated at defined regions of the cell and movement requires release from a reticulated endoplasmic reticulum and the vacuole. The mechanism of wave propagation is outlined and the possible basis of repetitive reticulum wave formation, Ca2+ oscillations and capacitative Ca2+ signalling is discussed. Evidence for the presence of Ca2+ waves in plant cells is outlined, and from studies on raphides it is suggested that the capabilities for capacitative Ca2+ signalling are also present. The paper finishes with an outline of the possible interrelation between Ca2+ waves and organelles and describes the intercellular movement of Ca2+ waves and the relevance of such information communication to plant development.

  5. Criticality in intracellular calcium signaling in cardiac myocytes.

    PubMed

    Nivala, Michael; Ko, Christopher Y; Nivala, Melissa; Weiss, James N; Qu, Zhilin

    2012-06-06

    Calcium (Ca) is a ubiquitous second messenger that regulates many biological functions. The elementary events of local Ca signaling are Ca sparks, which occur randomly in time and space, and integrate to produce global signaling events such as intra- and intercellular Ca waves and whole-cell Ca oscillations. Despite extensive experimental characterization in many systems, the transition from local random to global synchronous events is still poorly understood. Here we show that criticality, a ubiquitous dynamical phenomenon in nature, is responsible for the transition from local to global Ca signaling. We demonstrate this first in a computational model of Ca signaling in a cardiac myocyte and then experimentally in mouse ventricular myocytes, complemented by a theoretical agent-based model to delineate the underlying dynamics. We show that the interaction between the Ca release units via Ca-induced Ca release causes self-organization of Ca spark clusters. When the coupling between Ca release units is weak, the cluster-size distribution is exponential. As the interactions become strong, the cluster-size distribution changes to a power-law distribution, which is characteristic of criticality in thermodynamic and complex nonlinear systems, and facilitates the formation and propagation of Ca waves and whole-cell Ca oscillations. Our findings illustrate how criticality is harnessed by a biological cell to regulate Ca signaling via self-organization of random subcellular events into cellular-scale oscillations, and provide a general theoretical framework for the transition from local Ca signaling to global Ca signaling in biological cells.

  6. Calcium signaling during reproduction and biotrophic fungal interactions in plants.

    PubMed

    Chen, Junyi; Gutjahr, Caroline; Bleckmann, Andrea; Dresselhaus, Thomas

    2015-04-01

    Many recent studies have indicated that cellular communications during plant reproduction, fungal invasion, and defense involve identical or similar molecular players and mechanisms. Indeed, pollen tube invasion and sperm release shares many common features with infection of plant tissue by fungi and oomycetes, as a tip-growing intruder needs to communicate with the receptive cells to gain access into a cell and tissue. Depending on the compatibility between cells, interactions may result in defense, invasion, growth support, or cell death. Plant cells stimulated by both pollen tubes and fungal hyphae secrete, for example, small cysteine-rich proteins and receptor-like kinases are activated leading to intracellular signaling events such as the production of reactive oxygen species (ROS) and the generation of calcium (Ca(2+)) transients. The ubiquitous and versatile second messenger Ca(2+) thereafter plays a central and crucial role in modulating numerous downstream signaling processes. In stimulated cells, it elicits both fast and slow cellular responses depending on the shape, frequency, amplitude, and duration of the Ca(2+) transients. The various Ca(2+) signatures are transduced into cellular information via a battery of Ca(2+)-binding proteins. In this review, we focus on Ca(2+) signaling and discuss its occurrence during plant reproduction and interactions of plant cells with biotrophic filamentous microbes. The participation of Ca(2+) in ROS signaling pathways is also discussed.

  7. Modulation of calcium signalling by the endoplasmic reticulum in Carassius neurons.

    PubMed

    Lukyanets, Igor A; Lukyanetz, Elena A

    2013-04-19

    It is known that endoplasmic reticulum (ER), being a calcium store participates in the regulation of intracellular calcium concentration. Ca-ATPase of the ER is one of the crucial agents providing the calcium-accumulating function of this intracellular structure. We studied the role of the ER in modulation of calcium signalling in Carassius neurons using a Ca2+-imaging technique. We tested the role of the ER in the maintenance of a steady state calcium level in the cytoplasm and in modulation of Ca2+ transients evoked by cell depolarizations. The ER calcium stores were depleted using inhibitors of ER Ca-ATPase, which provided blocking of Ca2+ uptake by the ER. Our experiments firstly showed that the ER can significantly modulate the characteristics of intracellular calcium signals in Carassius neurons during their activity. These findings also indicate that the ER modulates the shape of Ca2+ signals rather than the basal level of intracellular Ca2+ in these neurons.

  8. Calcium and protein phosphorylation in the transduction of gravity signal in corn roots

    NASA Technical Reports Server (NTRS)

    Friedmann, M.; Poovaiah, B. W.

    1991-01-01

    The involvement of calcium and protein phosphorylation in the transduction of gravity signal was studied using corn roots of a light-insensitive variety (Zea mays L., cv. Patriot). The gravitropic response was calcium-dependent. Horizontal placement of roots preloaded with 32P for three minutes resulted in changes in protein phosphorylation of polypeptides of 32 and 35 kD. Calcium depletion resulted in decreased phosphorylation of these phosphoproteins and replenishment of calcium restored the phosphorylation.

  9. A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling.

    PubMed

    Gilroy, Simon; Suzuki, Nobuhiro; Miller, Gad; Choi, Won-Gyu; Toyota, Masatsugu; Devireddy, Amith R; Mittler, Ron

    2014-10-01

    Systemic signaling pathways enable multicellular organisms to prepare all of their tissues and cells to an upcoming challenge that may initially only be sensed by a few local cells. They are activated in plants in response to different stimuli including mechanical injury, pathogen infection, and abiotic stresses. Key to the mobilization of systemic signals in higher plants are cell-to-cell communication events that have thus far been mostly unstudied. The recent identification of systemically propagating calcium (Ca(2+)) and reactive oxygen species (ROS) waves in plants has unraveled a new and exciting cell-to-cell communication pathway that, together with electric signals, could provide a working model demonstrating how plant cells transmit long-distance signals via cell-to-cell communication mechanisms. Here, we summarize recent findings on the ROS and Ca(2+) waves and outline a possible model for their integration.

  10. Calcium signaling in plant cells in altered gravity.

    PubMed

    Kordyum, E L

    2003-01-01

    Changes in the intracellular Ca2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus-response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80th, a review highlighting the performed research and the possible significance of such Ca2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tension

  11. Calcium signaling in plant cells in altered gravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.

    2003-10-01

    Changes in the intracellular Ca 2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca 2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80 th, a review highlighting the performed research and the possible significance of such Ca 2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface

  12. Novel vistas of calcium-mediated signalling in the thalamus.

    PubMed

    Pape, Hans-Christian; Munsch, Thomas; Budde, Thomas

    2004-05-01

    Traditionally, the role of calcium ions (Ca(2+)) in thalamic neurons has been viewed as that of electrical charge carriers. Recent experimental findings in thalamic cells have only begun to unravel a highly complex Ca(2+) signalling network that exploits extra- and intracellular Ca(2+) sources. In thalamocortical relay neurons, interactions between T-type Ca(2+) channel activation, Ca(2+)-dependent regulation of adenylyl cyclase activity and the hyperpolarization-activated cation current ( I(h)) regulate oscillatory burst firing during periods of sleep and generalized epilepsy, while a functional triad between Ca(2+) influx through high-voltage-activated (most likely L-type) Ca(2+) channels, Ca(2+)-induced Ca(2+) release via ryanodine receptors (RyRs) and a repolarizing mechanism (possibly via K(+) channels of the BK(Ca) type) supports tonic spike firing as required during wakefulness. The mechanisms seem to be located mostly at dendritic and somatic sites, respectively. One functional compartment involving local GABAergic interneurons in certain thalamic relay nuclei is the glomerulus, in which the dendritic release of GABA is regulated by Ca(2+) influx via canonical transient receptor potential channels (TRPC), thereby presumably enabling transmitters of extrathalamic input systems that are coupled to phospholipase C (PLC)-activating receptors to control feed-forward inhibition in the thalamus. Functional interplay between T-type Ca(2+) channels in dendrites and the A-type K(+) current controls burst firing, contributing to the range of oscillatory activity observed in these interneurons. GABAergic neurons in the reticular thalamic (RT) nucleus recruit a specific set of Ca(2+)-dependent mechanisms for the generation of rhythmic burst firing, of which a particular T-type Ca(2+) channel in the dendritic membrane, the Ca(2+)-dependent activation of non-specific cation channels ( I(CAN)) and of K(+) channels (SK(Ca) type) are key players. Glial Ca(2+) signalling in

  13. Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent.

    PubMed

    Davis, F M; Azimi, I; Faville, R A; Peters, A A; Jalink, K; Putney, J W; Goodhill, G J; Thompson, E W; Roberts-Thomson, S J; Monteith, G R

    2014-05-01

    Signals from the tumor microenvironment trigger cancer cells to adopt an invasive phenotype through epithelial-mesenchymal transition (EMT). Relatively little is known regarding key signal transduction pathways that serve as cytosolic bridges between cell surface receptors and nuclear transcription factors to induce EMT. A better understanding of these early EMT events may identify potential targets for the control of metastasis. One rapid intracellular signaling pathway that has not yet been explored during EMT induction is calcium. Here we show that stimuli used to induce EMT produce a transient increase in cytosolic calcium levels in human breast cancer cells. Attenuation of the calcium signal by intracellular calcium chelation significantly reduced epidermal growth factor (EGF)- and hypoxia-induced EMT. Intracellular calcium chelation also inhibited EGF-induced activation of signal transducer and activator of transcription 3 (STAT3), while preserving other signal transduction pathways such as Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. To identify calcium-permeable channels that may regulate EMT induction in breast cancer cells, we performed a targeted siRNA-based screen. We found that transient receptor potential-melastatin-like 7 (TRPM7) channel expression regulated EGF-induced STAT3 phosphorylation and expression of the EMT marker vimentin. Although intracellular calcium chelation almost completely blocked the induction of many EMT markers, including vimentin, Twist and N-cadherin, the effect of TRPM7 silencing was specific for vimentin protein expression and STAT3 phosphorylation. These results indicate that TRPM7 is a partial regulator of EMT in breast cancer cells, and that other calcium-permeable ion channels are also involved in calcium-dependent EMT induction. In summary, this work establishes an important role for the intracellular calcium signal in the induction of EMT in human breast cancer cells. Manipulation of

  14. Nicotine elicits prolonged calcium signaling along ventral hippocampal axons.

    PubMed

    Zhong, Chongbo; Talmage, David A; Role, Lorna W

    2013-01-01

    Presynaptic nicotinic acetylcholine receptors (nAChRs) have long been implicated in the modulation of CNS circuits. We previously reported that brief exposure to low concentrations of nicotine induced sustained potentiation of glutamatergic transmission at ventral hippocampal (vHipp)-striatal synapses. Here, we exploited nAChR subtype-selective antagonists and agonists and α7*nAChR knockout mutant mice (α7-/-) to elucidate the signaling mechanisms underlying nAChR-mediated modulation of synaptic transmission. Using a combination of micro-slices culture from WT and α7-/-mice, calcium imaging, and immuno-histochemical techniques, we found that nicotine elicits localized and oscillatory increases in intracellular Ca(2+) along vHipp axons that persists for up to 30 minutes. The sustained phase of the nicotine-induced Ca(2+) response was blocked by α-BgTx but not by DHβE and was mimicked by α7*nAChR agonists but not by non-α7*nAChR agonists. In vHipp slices from α7-/- mice, nicotine elicited only transient increases of axonal Ca(2+) signals and did not activate CaMKII. The sustained phase of the nicotine-induced Ca(2+) response required localized activation of CaMKII, phospholipase C, and IP3 receptor mediated Ca(2+)-induced Ca(2+) release (CICR). In conclusion, activation of presynaptic nAChRs by nicotine elicits Ca(2+) influx into the presynaptic axons, the sustained phase of the nicotine-induced Ca(2+) response requires that axonal α7*nAChR activate a downstream signaling network in the vHipp axons.

  15. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells

    PubMed Central

    Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I

    2015-01-01

    A central question is how specificity in cellular responses to the eukaryotic second messenger Ca2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca2+-dependent and Ca2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca2+-signaling on a cellular, genetic, and biochemical level. DOI: http://dx.doi.org/10.7554/eLife.03599.001 PMID:26192964

  16. Differential Calcium Signaling Mediated by Voltage-Gated Calcium Channels in Rat Retinal Ganglion Cells and Their Unmyelinated Axons

    PubMed Central

    Sargoy, Allison; Sun, Xiaoping

    2014-01-01

    Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs) in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC) regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury. PMID:24416240

  17. Calcium signaling orchestrates glioblastoma development: Facts and conjunctures.

    PubMed

    Leclerc, Catherine; Haeich, Jacques; Aulestia, Francisco J; Kilhoffer, Marie-Claude; Miller, Andrew L; Néant, Isabelle; Webb, Sarah E; Schaeffer, Etienne; Junier, Marie-Pierre; Chneiweiss, Hervé; Moreau, Marc

    2016-06-01

    While it is a relatively rare disease, glioblastoma multiform (GBM) is one of the more deadly adult cancers. Following current interventions, the tumor is never eliminated whatever the treatment performed; whether it is radiotherapy, chemotherapy, or surgery. One hypothesis to explain this poor outcome is the "cancer stem cell" hypothesis. This concept proposes that a minority of cells within the tumor mass share many of the properties of adult neural stem cells and it is these that are responsible for the growth of the tumor and its resistance to existing therapies. Accumulating evidence suggests that Ca(2+) might also be an important positive regulator of tumorigenesis in GBM, in processes involving quiescence, maintenance, proliferation, or migration. Glioblastoma tumors are generally thought to develop by co-opting pathways that are involved in the formation of an organ. We propose that the cells initiating the tumor, and subsequently the cells of the tumor mass, must hijack the different checkpoints that evolution has selected in order to prevent the pathological development of an organ. In this article, two main points are discussed. (i) The first is the establishment of a so-called "cellular society," which is required to create a favorable microenvironment. (ii) The second is that GBM can be considered to be an organism, which fights to survive and develop. Since GBM evolves in a limited space, its only chance of development is to overcome the evolutionary checkpoints. For example, the deregulation of the normal Ca(2+) signaling elements contributes to the progression of the disease. Thus, by manipulating the Ca(2+) signaling, the GBM cells might not be killed, but might be reprogrammed toward a new fate that is either easy to cure or that has no aberrant functioning. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  18. Dynamic kisspeptin receptor trafficking modulates kisspeptin-mediated calcium signaling.

    PubMed

    Min, Le; Soltis, Kathleen; Reis, Ana Claudia S; Xu, Shuyun; Kuohung, Wendy; Jain, Manisha; Carroll, Rona S; Kaiser, Ursula B

    2014-01-01

    Kisspeptin receptor (KISS1R) signaling plays a critical role in the regulation of reproduction. We investigated the role of kisspeptin-stimulated KISS1R internalization, recycling, and degradation in the modulation of KISS1R signaling. Kisspeptin stimulation of Chinese hamster ovary or GT1-7 cells expressing KISS1R resulted in a biphasic increase in intracellular Ca(2+) ([Ca(2+)]i), with a rapid acute increase followed by a more sustained second phase. In contrast, stimulation of the TRH receptor, another Gq/11-coupled receptor, resulted in a much smaller second-phase [Ca(2+)]i response. The KISS1R-mediated second-phase [Ca(2+)]i response was abolished by removal of kisspeptin from cell culture medium. Notably, the second-phase [Ca(2+)]i response was also inhibited by dynasore, brefeldin A, and phenylarsine oxide, which inhibit receptor internalization and recycling, suggesting that KISS1R trafficking contributes to the sustained [Ca(2+)]i response. We further demonstrated that KISS1R undergoes dynamic ligand-dependent and -independent recycling. We next investigated the fate of the internalized kisspeptin-KISS1R complex. Most internalized kisspeptin was released extracellularly in degraded form within 1 hour, suggesting rapid processing of the internalized kisspeptin-KISS1R complex. Using a biotinylation assay, we demonstrated that degradation of cell surface KISS1R was much slower than that of the internalized ligand, suggesting dissociated processing of the internalized kisspeptin-KISS1R complex. Taken together, our results suggest that the sustained calcium response to kisspeptin is dependent on the continued presence of extracellular ligand and is the result of dynamic KISS1R trafficking.

  19. Yeast Gdt1 is a Golgi-localized calcium transporter required for stress-induced calcium signaling and protein glycosylation

    PubMed Central

    Colinet, Anne-Sophie; Sengottaiyan, Palanivelu; Deschamps, Antoine; Colsoul, Marie-Lise; Thines, Louise; Demaegd, Didier; Duchêne, Marie-Clémence; Foulquier, François; Hols, Pascal; Morsomme, Pierre

    2016-01-01

    Calcium signaling depends on a tightly regulated set of pumps, exchangers, and channels that are responsible for controlling calcium fluxes between the different subcellular compartments of the eukaryotic cell. We have recently reported that two members of the highly-conserved UPF0016 family, human TMEM165 and budding yeast Gdt1p, are functionally related and might form a new group of Golgi-localized cation/Ca2+ exchangers. Defects in the human protein TMEM165 are known to cause a subtype of Congenital Disorders of Glycosylation. Using an assay based on the heterologous expression of GDT1 in the bacterium Lactococcus lactis, we demonstrated the calcium transport activity of Gdt1p. We observed a Ca2+ uptake activity in cells expressing GDT1, which was dependent on the external pH, indicating that Gdt1p may act as a Ca2+/H+ antiporter. In yeast, we found that Gdt1p controls cellular calcium stores and plays a major role in the calcium response induced by osmotic shock when the Golgi calcium pump, Pmr1p, is absent. Importantly, we also discovered that, in the presence of a high concentration of external calcium, Gdt1p is required for glycosylation of carboxypeptidase Y and the glucanosyltransferase Gas1p. Finally we showed that glycosylation process is restored by providing more Mn2+ to the cells. PMID:27075443

  20. Peptidoglycan Induces the Production of Interleukin-8 via Calcium Signaling in Human Gingival Epithelium

    PubMed Central

    Son, Aran; Hong, Jeong Hee

    2015-01-01

    The etiology of periodontal disease is multifactorial. Exogenous stimuli such as bacterial pathogens can interact with toll-like receptors to activate intracellular calcium signaling in gingival epithelium and other tissues. The triggering of calcium signaling induces the secretion of pro-inflammatory cytokines such as interleukin-8 as part of the inflammatory response; however, the exact mechanism of calcium signaling induced by bacterial toxins when gingival epithelial cells are exposed to pathogens is unclear. Here, we investigate calcium signaling induced by bacteria and expression of inflammatory cytokines in human gingival epithelial cells. We found that peptidoglycan, a constituent of gram-positive bacteria and an agonist of toll-like receptor 2, increases intracellular calcium in a concentration-dependent manner. Peptidoglycan-induced calcium signaling was abolished by treatment with blockers of phospholipase C (U73122), inositol 1,4,5-trisphosphate receptors, indicating the release of calcium from intracellular calcium stores. Peptidoglycan-mediated interleukin-8 expression was blocked by U73122 and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester). Moreover, interleukin-8 expression was induced by thapsigargin, a selective inhibitor of the sarco/endoplasmic reticulum calcium ATPase, when thapsigargin was treated alone or co-treated with peptidoglycan. These results suggest that the gram-positive bacterial toxin peptidoglycan induces calcium signaling via the phospholipase C/inositol 1,4,5-trisphosphate pathway, and that increased interleukin-8 expression is mediated by intracellular calcium levels in human gingival epithelial cells. PMID:25605997

  1. Calcium

    MedlinePlus

    ... You'll also find calcium in broccoli and dark green, leafy vegetables (especially collard and turnip greens, ... can enjoy good sources of calcium such as dark green, leafy vegetables, broccoli, chickpeas, and calcium-fortified ...

  2. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  3. ETHANOL ALTERS CALCIUM SIGNALING IN AXONAL GROWTH CONES

    PubMed Central

    Mah, Stephanie J.; Fleck, Mark W.

    2011-01-01

    Calcium (Ca2+) channels are sensitive to ethanol and Ca2+ signaling is a critical regulator of axonal growth and guidance. Effects of acute and chronic exposure to ethanol (22, 43, or 87 mM) on voltage-gated Ca2+ channels (VGCCs) in whole cells, and KCl-induced Ca2+ transients in axonal growth cones, were examined using dissociated hippocampal cultures. Whole-cell patch-clamp analysis in neurons with newly-formed axons (Stage 3) revealed that rapidly inactivating, low-voltage activated (LVA) and non-inactivating, high-voltage activated (HVA) currents were both inhibited in a dose-dependent manner by acute ethanol, with relatively greater inhibition of HVA currents. When assessed by Fluo-4-AM imaging, baseline fluorescence and Ca2+ response to ethanol in Stage 3 neurons was similar compared to neurons without axons, but peak Ca2+ transient amplitudes in response to bath-applied KCl were greater in Stage 3 neurons and were decreased by acute ethanol. The amplitude of Ca2+ transients elicited specifically in axonal growth cones by focal application of KCl was also inhibited by acute exposure to moderate-to-high concentrations of ethanol (43 or 87 mM), whereas a lower concentration (22 mM) had no effect. When 43 or 87 mM ethanol was present continuously in the medium, KCl-evoked Ca2+ transient amplitudes were also reduced in growth cones. In contrast, Ca2+ transients were increased by continuous exposure to 22 mM ethanol. Visualization using a fluorescent dihydropyridine analog revealed that neurons continuously exposed to ethanol expressed increased amounts of L-type Ca2+ channels, with greater increases in axonal growth cones than cell bodies. Thus, acute ethanol reduces Ca2+ current and KCl-induced Ca2+ responses in whole cells and axonal growth cones, respectively, and chronic exposure is also generally inhibitory despite apparent up-regulation of L-type channel expression. These results are consistent with a role for altered growth cone Ca2+ signaling in abnormal

  4. Impact of Calcium Signaling during Infection of Neisseria meningitidis to Human Brain Microvascular Endothelial Cells

    PubMed Central

    Asmat, Tauseef M.; Tenenbaum, Tobias; Jonsson, Ann-Beth

    2014-01-01

    The pili and outer membrane proteins of Neisseria meningitidis (meningococci) facilitate bacterial adhesion and invasion into host cells. In this context expression of meningococcal PilC1 protein has been reported to play a crucial role. Intracellular calcium mobilization has been implicated as an important signaling event during internalization of several bacterial pathogens. Here we employed time lapse calcium-imaging and demonstrated that PilC1 of meningococci triggered a significant increase in cytoplasmic calcium in human brain microvascular endothelial cells, whereas PilC1-deficient meningococci could not initiate this signaling process. The increase in cytosolic calcium in response to PilC1-expressing meningococci was due to efflux of calcium from host intracellular stores as demonstrated by using 2-APB, which inhibits the release of calcium from the endoplasmic reticulum. Moreover, pre-treatment of host cells with U73122 (phospholipase C inhibitor) abolished the cytosolic calcium increase caused by PilC1-expressing meningococci demonstrating that active phospholipase C (PLC) is required to induce calcium transients in host cells. Furthermore, the role of cytosolic calcium on meningococcal adherence and internalization was documented by gentamicin protection assay and double immunofluorescence (DIF) staining. Results indicated that chelation of intracellular calcium by using BAPTA-AM significantly impaired PilC1-mediated meningococcal adherence to and invasion into host endothelial cells. However, buffering of extracellular calcium by BAPTA or EGTA demonstrated no significant effect on meningococcal adherence to and invasion into host cells. Taken together, these results indicate that meningococci induce calcium release from intracellular stores of host endothelial cells via PilC1 and cytoplasmic calcium concentrations play a critical role during PilC1 mediated meningococcal adherence to and subsequent invasion into host endothelial cells. PMID:25464500

  5. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification

    PubMed Central

    Schumacher, Jennifer A.; Wang, Xiaohong; Merrill, Sean A.; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M.; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons. PMID:26771544

  6. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels.

    PubMed

    Jung, Hyungjin; Best, Makenzie; Akkus, Ozan

    2015-07-01

    Mechanisms by which bone microdamage triggers repair response are not completely understood. It has been shown that calcium efflux ([Ca(2+)]E) occurs from regions of bone undergoing microdamage. Such efflux has also been shown to trigger intracellular calcium signaling ([Ca(2+)]I) in MC3T3-E1 cells local to damaged regions. Voltage-gated calcium channels (VGCCs) are implicated in the entry of [Ca(2+)]E to the cytoplasm. We investigated the involvement of VGCC in the extracellular calcium induced intracellular calcium response (ECIICR). MC3T3-E1 cells were subjected to one dimensional calcium efflux from their basal aspect which results in an increase in [Ca(2+)]I. This increase was concomitant with membrane depolarization and it was significantly reduced in the presence of Bepridil, a non-selective VGCC inhibitor. To identify specific type(s) of VGCC in ECIICR, the cells were treated with selective inhibitors for different types of VGCC. Significant changes in the peak intensity and the number of [Ca(2+)]I oscillations were observed when L-type and T-type specific VGCC inhibitors (Verapamil and NNC55-0396, respectively) were used. So as to confirm the involvement of L- and T-type VGCC in the context of microdamage, cells were seeded on devitalized notched bone specimen, which were loaded to induce microdamage in the presence and absence of Verapamil and NNC55-0396. The results showed significant decrease in [Ca(2+)]I activity of cells in the microdamaged regions of bone when L- and T-type blockers were applied. This study demonstrated that extracellular calcium increase in association with damage depolarizes the cell membrane and the calcium ions enter the cell cytoplasm by L- and T-type VGCCs.

  7. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling

    PubMed Central

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I.

    2015-01-01

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na+/Ca2+ exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies. PMID:26234466

  8. Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo.

    PubMed

    Yang, Helen H; St-Pierre, François; Sun, Xulu; Ding, Xiaozhe; Lin, Michael Z; Clandinin, Thomas R

    2016-06-30

    A mechanistic understanding of neural computation requires determining how information is processed as it passes through neurons and across synapses. However, it has been challenging to measure membrane potential changes in axons and dendrites in vivo. We use in vivo, two-photon imaging of novel genetically encoded voltage indicators, as well as calcium imaging, to measure sensory stimulus-evoked signals in the Drosophila visual system with subcellular resolution. Across synapses, we find major transformations in the kinetics, amplitude, and sign of voltage responses to light. We also describe distinct relationships between voltage and calcium signals in different neuronal compartments, a substrate for local computation. Finally, we demonstrate that ON and OFF selectivity, a key feature of visual processing across species, emerges through the transformation of membrane potential into intracellular calcium concentration. By imaging voltage and calcium signals to map information flow with subcellular resolution, we illuminate where and how critical computations arise.

  9. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish.

    PubMed

    Yoo, Sa Kan; Freisinger, Christina M; LeBert, Danny C; Huttenlocher, Anna

    2012-10-15

    Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H(2)O(2) at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H(2)O(2). A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate "wound signals" that integrate early wound responses and late epimorphic regeneration.

  10. Calcium signaling in plant cell organelles delimited by a double membrane.

    PubMed

    Xiong, Tou-Cheu; Bourque, Stéphane; Lecourieux, David; Amelot, Nicolas; Grat, Sabine; Brière, Christian; Mazars, Christian; Pugin, Alain; Ranjeva, Raoul

    2006-11-01

    Increases in the concentration of free calcium in the cytosol are one of the general events that relay an external stimulus to the internal cellular machinery and allow eukaryotic organisms, including plants, to mount a specific biological response. Different lines of evidence have shown that other intracellular organelles contribute to the regulation of free calcium homeostasis in the cytosol. The vacuoles, the endoplasmic reticulum and the cell wall constitute storage compartments for mobilizable calcium. In contrast, the role of organelles surrounded by a double membrane (e.g. mitochondria, chloroplasts and nuclei) is more complex. Here, we review experimental data showing that these organelles harbor calcium-dependent biological processes. Mitochondria, chloroplasts as well as nuclei are equipped to generate calcium signal on their own. Changes in free calcium in a given organelle may also favor the relocalization of proteins and regulatory components and therefore have a profound influence on the integrated functioning of the cell. Studying, in time and space, the dynamics of different components of calcium signaling pathway will certainly give clues to understand the extraordinary flexibility of plants to respond to stimuli and mount adaptive responses. The availability of technical and biological resources should allow breaking new grounds by unveiling the contribution of signaling networks in integrative plant biology.

  11. Wnt/Calcium Signaling Mediates Axon Growth and Guidance in the Developing Corpus Callosum

    PubMed Central

    Hutchins, B Ian; Li, Li; Kalil, Katherine

    2011-01-01

    It has been shown in vivo that Wnt5a gradients surround the corpus callosum and guide callosal axons after the midline (postcrossing) by Wnt5a-induced repulsion via Ryk receptors. In dissociated cortical cultures we showed that Wnt5a simultaneously promotes axon outgrowth and repulsion by calcium signaling. Here to test the role of Wnt5a/calcium signaling in a complex in vivo environment we used sensorimotor cortical slices containing the developing corpus callosum. Plasmids encoding the cytoplasmic marker DsRed and the genetically encoded calcium indicator GCaMP2 were electroporated into one cortical hemisphere. Postcrossing callosal axons grew 50% faster than pre-crossing axons and higher frequencies of calcium transients in axons and growth cones correlated well with outgrowth. Application of pharmacological inhibitors to the slices showed that signaling pathways involving calcium release through IP3 receptors and calcium entry through TRP channels regulate post-crossing axon outgrowth and guidance. Co-electroporation of Ryk siRNA and DsRed revealed that knock down of the Ryk receptor reduced outgrowth rates of postcrossing but not precrossing axons by 50% and caused axon misrouting. Guidance errors in axons with Ryk knockdown resulted from reduced calcium activity. In the corpus callosum CaMKII inhibition reduced the outgrowth rate of postcrossing (but not precrossing) axons and caused severe guidance errors which resulted from reduced CaMKII-dependent repulsion downstream of Wnt/calcium. We show for the first time that Wnt/Ryk calcium signaling mechanisms regulating axon outgrowth and repulsion in cortical cultures are also essential for the proper growth and guidance of postcrossing callosal axons which involve axon repulsion through CaMKII. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 269–283, 2011. PMID:20936661

  12. Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel.

    PubMed

    Liburdy, R P

    1992-04-13

    Calcium influx increased during mitogen-activated signal transduction in thymic lymphocytes exposed to a 22 mT, 60 Hz magnetic field (E induced = 1.7 mV/cm, 37 degrees C, 60 min). To distinguish between an electric or a magnetic field dependence a special multi-ring annular cell culture plate based on Faraday's Law of Induction was employed. Studies show a dependence on the strength of the induced electric field at constant magnetic flux density. Moreover, exposure to a pure 60 Hz electric field or to a magnetically-induced electric field of identical strength resulted in similar changes in calcium transport. The first real-time monitoring of [Ca2+]i during application of a 60 Hz electric field revealed an increase in [Ca2+]i observed 100 s after mitogen stimulation; this suggests that the plateau phase rather than the early phase of calcium signaling was influenced. The hypothesis was tested by separating, in time, the early release of calcium from intracellular stores from the influx of extracellular calcium. In calcium-free buffer, 60 Hz field exerted little influence on the early release of calcium from intracellular stores. In contrast, addition of extracellular calcium during exposure enhanced calcium influx through the plasma membrane. Alteration of the plateau phase of calcium signaling implicates the calcium channel as a site of field interaction. In addition, an electric field exposure metric is mechanistically consistent with a cell-surface interaction site.

  13. Spontaneous and CRH-Induced Excitability and Calcium Signaling in Mice Corticotrophs Involves Sodium, Calcium, and Cation-Conducting Channels.

    PubMed

    Zemkova, Hana; Tomić, Melanija; Kucka, Marek; Aguilera, Greti; Stojilkovic, Stanko S

    2016-04-01

    Transgenic mice expressing the tdimer2(12) form of Discosoma red fluorescent protein under control of the proopiomelanocortin gene's regulatory elements are a useful model for studying corticotrophs. Using these mice, we studied the ion channels and mechanisms controlling corticotroph excitability. Corticotrophs were either quiescent or electrically active, with a 22-mV difference in the resting membrane potential (RMP) between the 2 groups. In quiescent cells, CRH depolarized the membrane, leading to initial single spiking and sustained bursting; in active cells, CRH further facilitated or inhibited electrical activity and calcium spiking, depending on the initial activity pattern and CRH concentration. The stimulatory but not inhibitory action of CRH on electrical activity was mimicked by cAMP independently of the presence or absence of arachidonic acid. Removal of bath sodium silenced spiking and hyperpolarized the majority of cells; in contrast, the removal of bath calcium did not affect RMP but reduced CRH-induced depolarization, which abolished bursting electrical activity and decreased the spiking frequency but not the amplitude of single spikes. Corticotrophs with inhibited voltage-gated sodium channels fired calcium-dependent action potentials, whereas cells with inhibited L-type calcium channels fired sodium-dependent spikes; blockade of both channels abolished spiking without affecting the RMP. These results indicate that the background voltage-insensitive sodium conductance influences RMP, the CRH-depolarization current is driven by a cationic conductance, and the interplay between voltage-gated sodium and calcium channels plays a critical role in determining the status and pattern of electrical activity and calcium signaling.

  14. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    ERIC Educational Resources Information Center

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  15. Controlling metabolism and cell death: at the heart of mitochondrial calcium signalling

    PubMed Central

    Murgia, Marta; Giorgi, Carlotta; Pinton, Paolo; Rizzuto, Rosario

    2009-01-01

    Transient increases in intracellular calcium concentration activate and coordinate a wide variety of cellular processes in virtually every cell type. This review describes the main homeostatic mechanisms that control Ca2+ transients, focusing on the mitochondrial checkpoint. We subsequently extend this paradigm to the cardiomyocyte and to the interplay between cytosol, endoplasmic reticulum and mitochondria that occurs beat-to-beat in excitation-contraction coupling. The mechanisms whereby mitochondria decode fast cytosolic calcium spikes are discussed in the light of the results obtained with recombinant photoproteins targeted to the mitochondrial matrix of contracting cardiomyocytes. Mitochondrial calcium homeostasis is then highlighted as a crucial point of convergence of the environmental signals that mediate cardiac cell death, both by necrosis and by apoptosis. Altogether we point to a role of the mitochondrion as an integrator of calcium signalling and fundamental decision maker in cardiomyocyte metabolism and survival. PMID:19285982

  16. Filamin and Phospholipase C-ε Are Required for Calcium Signaling in the Caenorhabditis elegans Spermatheca

    PubMed Central

    Kovacevic, Ismar; Orozco, Jose M.; Cram, Erin J.

    2013-01-01

    The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue. PMID:23671426

  17. FRET imaging of calcium signaling in live cells in the microenvironment.

    PubMed

    Qian, Tongcheng; Lu, Shaoying; Ma, Hongwei; Fang, Jing; Zhong, Wenxuan; Wang, Yingxiao

    2013-02-01

    The microenvironment has been shown to regulate cellular functions including cell growth, differentiation, proliferation, migration, cancer development and metastasis. However, the underlying molecular mechanism remains largely unclear. We have integrated micro-pattern technology and molecular biosensors based on fluorescence resonance energy transfer (FRET) to visualize calcium responses in cells constrained to grow on a micro-patterned surface. Upon ATP stimulation, human umbilical vein endothelial cells (HUVECs) cultured on different surface micro-patterns had a shorter decay time and a reduced peak of a transient intracellular calcium rise compared to control cells without constraints. The decay time is regulated by the plasma membrane and the membrane calcium channels, while the peak by endoplasmic reticulum (ER) calcium release. Further results revealed that voltage operated channels (VOCs), coupling the plasma membrane and ER, can affect both the decay time and the peak of calcium response. The inhibition of VOCs can eliminate the effect of different micro-patterns on calcium signals. When two connected HUVECs were constrained to grow on a micro-pattern, drastically distinct calcium responses upon ATP stimulation can be observed, in contrast to the similar responses of two connected cells cultured without patterns. Interestingly, the inhibition of VOCs also blocked this difference of calcium responses between two connected cells on micro-patterns. These results indicate that a micro-patterned surface can have a profound effect on the calcium responses of HUVECs under ATP stimulation, largely mediated by VOCs. Therefore, our results shed new light on the molecular mechanism by which HUVECs perceive the microenvironment and regulate intracellular calcium signals.

  18. The impact of mitochondrial endosymbiosis on the evolution of calcium signaling.

    PubMed

    Blackstone, Neil W

    2015-03-01

    At high concentrations, calcium has detrimental effects on biological systems. Life likely arose in a low calcium environment, and the first cells evolved mechanisms to maintain this environment internally. Bursts of calcium influx followed by efflux or sequestration thus developed in a functional context. For example, in proto-cells with exterior energy-converting membranes, such bursts could be used to depolarize the membrane. In this way, proto-cells could maintain maximal phosphorylation (metabolic state 3) and moderate levels of reactive oxygen species (ROS), while avoiding the resting state (metabolic state 4) and high levels of ROS. This trait is likely a shared primitive characteristic of prokaryotes. When eukaryotes evolved, the α-proteobacteria that gave rise to proto-mitochondria inhabited a novel environment, the interior of the proto-eukaryote that had a low calcium concentration. In this environment, metabolic homeostasis was difficult to maintain, and there were inherent risks from ROS, yet depolarizing the proto-mitochondrial membrane by calcium influx was challenging. To maintain metabolic state 3, proto-mitochondria were required to congregate near calcium influx points in the proto-eukaryotic membrane. This behavior, resulting in embryonic forms of calcium signaling, may have occurred immediately after the initiation of the endosymbiosis. Along with ROS, calcium may have served as one of the key forms of crosstalk among the community of prokaryotes that led to the eukaryotic cell.

  19. Expressional Analysis and Role of Calcium Regulated Kinases in Abiotic Stress Signaling

    PubMed Central

    Das, Ritika; Pandey, Girdhar K

    2010-01-01

    Perception of stimuli and activation of a signaling cascade is an intrinsic characteristic feature of all living organisms. Till date, several signaling pathways have been elucidated that are involved in multiple facets of growth and development of an organism. Exposure to unfavorable stimuli or stress condition activates different signaling cascades in both plants and animal. Being sessile, plants cannot move away from an unfavorable condition, and hence activate the molecular machinery to cope up or adjust against that particular stress condition. In plants, role of calcium as second messenger has been studied in detail in both abiotic and biotic stress signaling. Several calcium sensor proteins such as calmodulin (CaM), calcium dependent protein kinases (CDPK) and calcinuerin B-like (CBL) were discovered to play a crucial role in abiotic stress signaling in plants. Unlike CDPK, CBL and CaM are calcium-binding proteins, which do not have any protein kinase enzyme activity and interact with a target protein kinase termed as CBL-interacting protein kinase (CIPK) and CaM kinases respectively. Genome sequence analysis of Arabidopsis and rice has led to the identification of multigene familes of these calcium signaling protein kinases. Individual and global gene expression analysis of these protein kinase family members has been analyzed under several developmental and different abiotic stress conditions. In this review, we are trying to overview and emphasize the expressional analysis of calcium signaling protein kinases under different abiotic stress and developmental stages, and linking the expression to possible function for these kinases. PMID:20808518

  20. Synergy of cAMP and calcium signaling pathways in CFTR regulation.

    PubMed

    Bozoky, Zoltan; Ahmadi, Saumel; Milman, Tal; Kim, Tae Hun; Du, Kai; Di Paola, Michelle; Pasyk, Stan; Pekhletski, Roman; Keller, Jacob P; Bear, Christine E; Forman-Kay, Julie D

    2017-02-27

    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, leading to defective apical chloride transport. Patients also experience overactivation of inflammatory processes, including increased calcium signaling. Many investigations have described indirect effects of calcium signaling on CFTR or other calcium-activated chloride channels; here, we investigate the direct response of CFTR to calmodulin-mediated calcium signaling. We characterize an interaction between the regulatory region of CFTR and calmodulin, the major calcium signaling molecule, and report protein kinase A (PKA)-independent CFTR activation by calmodulin. We describe the competition between calmodulin binding and PKA phosphorylation and the differential effects of this competition for wild-type CFTR and the major F508del mutant, hinting at potential therapeutic strategies. Evidence of CFTR binding to isolated calmodulin domains/lobes suggests a mechanism for the role of CFTR as a molecular hub. Together, these data provide insights into how loss of active CFTR at the membrane can have additional consequences besides impaired chloride transport.

  1. Synergy of cAMP and calcium signaling pathways in CFTR regulation

    PubMed Central

    Bozoky, Zoltan; Ahmadi, Saumel; Milman, Tal; Kim, Tae Hun; Du, Kai; Di Paola, Michelle; Pasyk, Stan; Pekhletski, Roman; Keller, Jacob P.; Bear, Christine E.; Forman-Kay, Julie D.

    2017-01-01

    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, leading to defective apical chloride transport. Patients also experience overactivation of inflammatory processes, including increased calcium signaling. Many investigations have described indirect effects of calcium signaling on CFTR or other calcium-activated chloride channels; here, we investigate the direct response of CFTR to calmodulin-mediated calcium signaling. We characterize an interaction between the regulatory region of CFTR and calmodulin, the major calcium signaling molecule, and report protein kinase A (PKA)-independent CFTR activation by calmodulin. We describe the competition between calmodulin binding and PKA phosphorylation and the differential effects of this competition for wild-type CFTR and the major F508del mutant, hinting at potential therapeutic strategies. Evidence of CFTR binding to isolated calmodulin domains/lobes suggests a mechanism for the role of CFTR as a molecular hub. Together, these data provide insights into how loss of active CFTR at the membrane can have additional consequences besides impaired chloride transport. PMID:28242698

  2. Purinergic and Calcium Signaling in Macrophage Function and Plasticity

    PubMed Central

    Desai, Bimal N.; Leitinger, Norbert

    2014-01-01

    In addition to a fundamental role in cellular bioenergetics, the purine nucleotide adenosine triphosphate (ATP) plays a crucial role in the extracellular space as a signaling molecule. ATP and its metabolites serve as ligands for a family of receptors that are collectively referred to as purinergic receptors. These receptors were first described and characterized in the nervous system but it soon became evident that they are expressed ubiquitously. In the immune system, purinergic signals regulate the migration and activation of immune cells and they may also orchestrate the resolution of inflammation (1, 2). The intracellular signal transduction initiated by purinergic receptors is strongly coupled to Ca2+-signaling, and co-ordination of these pathways plays a critical role in innate immunity. In this review, we provide an overview of purinergic and Ca2+-signaling in the context of macrophage phenotypic polarization and discuss the implications on macrophage function in physiological and pathological conditions. PMID:25505897

  3. Noradrenaline effects on pyruvate decarboxylation: correlation with calcium signaling.

    PubMed

    Chen, Y; Hertz, L

    1999-11-15

    Noradrenaline effects on the rate of metabolism of pyruvate to acetyl coenzyme A, catalyzed by the pyruvate dehydrogenase complex, was measured in primary cultures of mouse astrocytes as rate of production of labeled CO(2) from 1-[(14) C]pyruvate in the absence of competing glucose in the medium. The subtype specificity of a noradrenaline-stimulated increase in rate of CO(2) formation was identical to that for noradrenaline-induced increase in free intracellular calcium ([Ca(2+)](i)), suggesting a causal relationship between these two phenomena. The noradrenaline-induced stimulation of pyruvate decarboxylation was abolished in the presence of 10 mM magnesium chloride in the medium, combined with the omission of calcium, a procedure known to prevent an increased [Ca(2+)] in the cytosol from raising intramitochondrial [Ca(2+)]. Thus, the stimulation of metabolic flux through the reaction catalyzed by the pyruvate dehydrogenase complex appears to result from an increase in intramitochondrial [Ca(2+)] ions in astrocytes. Such a mechanism for stimulation of the same enzyme has been convincingly demonstrated in other cell types, primarily heart muscle and hepatic cells, but it has not previously been demonstrated in any cell type from the central nervous system.

  4. Disruption of Vitamin D and Calcium Signaling in Keratinocytes Predisposes to Skin Cancer

    PubMed Central

    Bikle, Daniel D.; Jiang, Yan; Nguyen, Thai; Oda, Yuko; Tu, Chia-ling

    2016-01-01

    1,25 dihydroxyvitamin D (1,25(OH)2D), the active metabolite of vitamin D, and calcium regulate epidermal differentiation. 1,25(OH)2D exerts its effects through the vitamin D receptor (VDR), a transcription factor in the nuclear hormone receptor family, whereas calcium acts through the calcium sensing receptor (Casr), a membrane bound member of the G protein coupled receptor family. We have developed mouse models in which the Vdr and Casr have been deleted in the epidermis (epidVdr−∕− and epidCasr−∕−). Both genotypes show abnormalities in calcium induced epidermal differentiation in vivo and in vitro, associated with altered hedgehog (HH) and β–catenin signaling that when abnormally expressed lead to basal cell carcinomas (BCC) and trichofolliculomas, respectively. The Vdr−∕− mice are susceptible to tumor formation following UVB or chemical carcinogen exposure. More recently we found that the keratinocytes from these mice over express long non-coding RNA (lncRNA) oncogenes such as H19 and under express lncRNA tumor suppressors such as lincRNA-21. Spontaneous tumors have not been observed in either the epidVdr−∕− or epidCasr−∕−. But in mice with epidermal specific deletion of both Vdr and Casr (epidVdr−∕−/epidCasr−∕− [DKO]) tumor formation occurs spontaneously when the DKO mice are placed on a low calcium diet. These results demonstrate important interactions between vitamin D and calcium signaling through their respective receptors that lead to cancer when these signals are disrupted. The roles of the β–catenin, hedgehog, and lncRNA pathways in predisposing the epidermis to tumor formation when vitamin D and calcium signaling are disrupted will be discussed. PMID:27462278

  5. Calcium Signals: The Lead Currency of Plant Information Processing

    PubMed Central

    Kudla, Jörg; Batistič, Oliver; Hashimoto, Kenji

    2010-01-01

    Ca2+ signals are core transducers and regulators in many adaptation and developmental processes of plants. Ca2+ signals are represented by stimulus-specific signatures that result from the concerted action of channels, pumps, and carriers that shape temporally and spatially defined Ca2+ elevations. Cellular Ca2+ signals are decoded and transmitted by a toolkit of Ca2+ binding proteins that relay this information into downstream responses. Major transduction routes of Ca2+ signaling involve Ca2+-regulated kinases mediating phosphorylation events that orchestrate downstream responses or comprise regulation of gene expression via Ca2+-regulated transcription factors and Ca2+-responsive promoter elements. Here, we review some of the remarkable progress that has been made in recent years, especially in identifying critical components functioning in Ca2+ signal transduction, both at the single-cell and multicellular level. Despite impressive progress in our understanding of the processing of Ca2+ signals during the past years, the elucidation of the exact mechanistic principles that underlie the specific recognition and conversion of the cellular Ca2+ currency into defined changes in protein–protein interaction, protein phosphorylation, and gene expression and thereby establish the specificity in stimulus response coupling remain to be explored. PMID:20354197

  6. Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks

    PubMed Central

    Chen, Dong-Hua; Acharya, Biswa R.; Liu, Wei; Zhang, Wei

    2013-01-01

    Calcium (Ca2+) plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen. PMID:27137395

  7. Lipid rafts/caveolae as microdomains of calcium signaling

    PubMed Central

    Pani, Biswaranjan; Singh, Brij B

    2009-01-01

    Summary Ca2+ is a major signaling molecule in both excitable and non-excitable cells, where it serves critical functions ranging from cell growth to differentiation to cell death. The physiological functions of these cells are tightly regulated in response to changes in cytosolic Ca2+ that is achieved by the activation of several plasma membrane (PM) Ca2+ channels as well as release of Ca2+ from the internal stores. One such channel is referred to as store-operated Ca2+ channel that is activated by the release of endoplasmic reticulum (ER) Ca2+ which initiates store operated Ca2+ entry (SOCE). Recent advances in the field suggest that some members of TRPCs and Orai channels function as SOCE channels. However, the molecular mechanisms that regulate channel activity and the exact nature of where these channels are assembled and regulated remain elusive. Research from several laboratories has demonstrated that key proteins involved in Ca2+ signaling are localized in discrete PM lipid rafts/caveolar microdomains. Lipid rafts are cholesterol and sphingolipid enriched microdomains that function as unique signal transduction platforms. In addition lipid rafts are dynamic in nature which tends to scaffold certain signaling molecules while excluding others. By such spatial segregation, lipid rafts not only provide a favorable environment for intra-molecular cross talk but also aid to expedite the signal relay. Importantly, Ca2+ signaling is shown to initiate from these lipid raft microdomains. Clustering of Ca2+ channels and their regulators in such microdomains can provide an exquisite spatiotemporal regulation of Ca2+ mediated cellular function. Thus in this review we discuss PM lipid rafts and caveolae as Ca2+ signaling microdomains and highlight their importance in organizing and regulating SOCE channels. PMID:19324409

  8. Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer.

    PubMed

    Raynal, Noël J-M; Lee, Justin T; Wang, Youjun; Beaudry, Annie; Madireddi, Priyanka; Garriga, Judith; Malouf, Gabriel G; Dumont, Sarah; Dettman, Elisha J; Gharibyan, Vazganush; Ahmed, Saira; Chung, Woonbok; Childers, Wayne E; Abou-Gharbia, Magid; Henry, Ryan A; Andrews, Andrew J; Jelinek, Jaroslav; Cui, Ying; Baylin, Stephen B; Gill, Donald L; Issa, Jean-Pierre J

    2016-03-15

    Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer.

  9. Mitochondrial respiration links TOR Complex 2 signaling to calcium regulation and autophagy.

    PubMed

    Vlahakis, Ariadne; Lopez Muniozguren, Nerea; Powers, Ted

    2017-03-21

    The Target of Rapamycin (TOR) kinase is a conserved regulator of cell growth and functions within 2 different protein complexes, TORC1 and TORC2, where TORC2 positively controls macroautophagy/autophagy during amino acid starvation. Under these conditions, TORC2 signaling inhibits the activity of the calcium-regulated phosphatase calcineurin and promotes the general amino acid control (GAAC) response and autophagy. Here we demonstrate that TORC2 regulates calcineurin by controlling the respiratory activity of mitochondria. In particular, we find that mitochondrial oxidative stress affects the calcium channel regulatory protein Mid1, which we show is an essential upstream activator of calcineurin. Thus, these findings describe a novel regulation for autophagy that involves TORC2 signaling, mitochondrial respiration, and calcium homeostasis.

  10. Intracellular calcium signaling regulates autophagy via calcineurin-mediated TFEB dephosphorylation

    PubMed Central

    Tong, Yanju; Song, Fuyong

    2015-01-01

    The transcription-regulating activity of TFEB is dependent on its phosphorylation modification, but the phosphatase(s) involved in TFEB dephosphorylation have remained elusive. It has now become clear that lysosomal calcium signaling activates calcineurin, an endogenous serine/threonine phosphatase, which dephosphorylate TFEB leading to upregulation of autophagy. PMID:26043755

  11. Calcium signaling and the MAPK cascade are required for sperm activation in Caenorhabditis elegans.

    PubMed

    Liu, Zhiyu; Wang, Bin; He, Ruijun; Zhao, Yanmei; Miao, Long

    2014-02-01

    In nematode, sperm activation (or spermiogenesis), a process in which the symmetric and non-motile spermatids transform into polarized and crawling spermatozoa, is critical for sperm cells to acquire fertilizing competence. SPE-8 dependent and SPE-8 independent pathways function redundantly during sperm activation in both males and hermaphrodites of Caenorhabditis elegans. However, the downstream signaling for both pathways remains unclear. Here we show that calcium signaling and the MAPK cascade are required for both SPE-8 dependent and SPE-8 independent sperm activation, implying that both pathways share common downstream signaling components during sperm activation. We demonstrate that activation of the MAPK cascade is sufficient to activate spermatids derived from either wild-type or spe-8 group mutant males and that activation of the MAPK cascade bypasses the requirement of calcium signal to induce sperm activation, indicating that the MAPK cascade functions downstream of or parallel with the calcium signaling during sperm activation. Interestingly, the persistent activation of MAPK in activated spermatozoa inhibits Major Sperm Protein (MSP)-based cytoskeleton dynamics. We demonstrate that MAPK plays dual roles in promoting pseudopod extension during sperm activation but also blocking the MSP-based, amoeboid motility of the spermatozoa. Thus, though nematode sperm are crawling cells, morphologically distinct from flagellated sperm, and the molecular machinery for motility of amoeboid and flagellated sperm is different, both types of sperm might utilize conserved signaling pathways to modulate sperm maturation.

  12. Dissection of calcium signaling events in exocrine secretion.

    PubMed

    Ambudkar, Indu S

    2011-07-01

    The secretion of fluid and electrolytes by salivary gland acinar cells requires the coordinated regulation of multiple ion channel and transporter proteins, signaling components, and water transport. Importantly, neurotransmitter stimulated increase in the cytosolic free [Ca(2+)] ([Ca(2+)](i)) is critical for the regulation of salivary gland secretion as it regulates several major ion fluxes that together establish the sustained osmotic gradient to drive fluid secretion. The mechanisms that act to modulate these increases in [Ca(2+)](i) are therefore central to the process of salivary fluid secretion. Such modulation involves membrane receptors for neurotransmitters, as well as mechanisms that mediate intracellular Ca(2+) release, and Ca(2+) entry, as well as those that maintain cellular Ca(2+) homeostasis. Together, these mechanisms determine the spatial and temporal aspects of the [Ca(2+)](i) signals that regulate fluid secretion. Molecular cloning of these transporters and channels as well as development of mice lacking these proteins has established the physiological significance of key components that are involved in regulating [Ca(2+)](i) in salivary glands. This review will discuss these important studies and the findings which have led to resolution of the Ca(2+) signaling mechanisms that determine salivary gland fluid secretion.

  13. Fluoxetine suppresses calcium signaling in human T lymphocytes through depletion of intracellular calcium stores.

    PubMed

    Gobin, V; De Bock, M; Broeckx, B J G; Kiselinova, M; De Spiegelaere, W; Vandekerckhove, L; Van Steendam, K; Leybaert, L; Deforce, D

    2015-09-01

    Selective serotonin reuptake inhibitors, such as fluoxetine, have recently been shown to exert anti-inflammatory and immunosuppressive effects. Although the effects on cytokine secretion, proliferation and viability of T lymphocytes have been extensively characterized, little is known about the mechanism behind these effects. It is well known that Ca(2+) signaling is an important step in the signaling transduction pathway following T cell receptor activation. Therefore, we investigated if fluoxetine interferes with Ca(2+) signaling in Jurkat T lymphocytes. Fluoxetine was found to suppress Ca(2+) signaling in response to T cell receptor activation. Moreover, fluoxetine was found to deplete intracellular Ca(2+) stores, thereby leaving less Ca(2+) available for release upon IP3- and ryanodine-receptor activation. The Ca(2+)-modifying effects of fluoxetine are not related to its capability to block the serotonin transporter, as even a large excess of 5HT did not abolish the effects. In conclusion, these data show that fluoxetine decreases IP3- and ryanodine-receptor mediated Ca(2+) release in Jurkat T lymphocytes, an effect likely to be at the basis of the observed immunosuppression.

  14. Calcium

    MedlinePlus

    ... milligrams) of calcium each day. Get it from: Dairy products. Low-fat milk, yogurt, cheese, and cottage ... lactase that helps digest the sugar (lactose) in dairy products, and may have gas, bloating, cramps, or ...

  15. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    SciTech Connect

    Sirvent, P.; Fabre, O.; Bordenave, S.; Hillaire-Buys, D.; Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J.

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  16. Scrophularia orientalis extract induces calcium signaling and apoptosis in neuroblastoma cells

    PubMed Central

    LANGE, INGO; MOSCHNY, JULIA; TAMANYAN, KAMILLA; KHUTSISHVILI, MANANA; ATHA, DANIEL; BORRIS, ROBERT P.; KOOMOA, DANA-LYNN

    2016-01-01

    Effective neuroblastoma (NB) treatments are still limited despite treatment options available today. Therefore, this study attempted to identify novel plant extracts that have anticancer effects. Cytotoxicity and increased intracellular calcium levels were determined using the Sulforhodamine B (SRB) assay and Fluo4-AM (acetoxymethyl) staining and fluorescence microscopy in NB cells in order to screen a library of plant extracts. The current study examined the anticancer effects of a dichloromethane extract from Scrophularia orientalis L. (Scrophulariaceae), a plant that has been used in Traditional Chinese Medicine. This extract contained highly potent agents that significantly reduced cell survival and increased calcium levels in NB cells. Further analysis revealed that cell death induced by this extract was associated with intracellular calcium release, opening of the MPTP, caspase 3- and PARP-cleavage suggesting that this extract induced aberrant calcium signaling that resulted in apoptosis via the mitochondrial pathway. Therefore, agents from Scrophularia orientalis may have the potential to lead to new chemo therapeutic anticancer drugs. Furthermore, targeting intracellular calcium signaling may be a novel strategy to develop more effective treatments for NB. PMID:26848085

  17. L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling

    PubMed Central

    Jacquemet, Guillaume; Baghirov, Habib; Georgiadou, Maria; Sihto, Harri; Peuhu, Emilia; Cettour-Janet, Pierre; He, Tao; Perälä, Merja; Kronqvist, Pauliina; Joensuu, Heikki; Ivaska, Johanna

    2016-01-01

    Mounting in vitro, in vivo and clinical evidence suggest an important role for filopodia in driving cancer cell invasion. Using a high-throughput microscopic-based drug screen, we identify FDA-approved calcium channel blockers (CCBs) as potent inhibitors of filopodia formation in cancer cells. Unexpectedly, we discover that L-type calcium channels are functional and frequently expressed in cancer cells suggesting a previously unappreciated role for these channels during tumorigenesis. We further demonstrate that, at filopodia, L-type calcium channels are activated by integrin inside-out signalling, integrin activation and Src. Moreover, L-type calcium channels promote filopodia stability and maturation into talin-rich adhesions through the spatially restricted regulation of calcium entry and subsequent activation of the protease calpain-1. Altogether we uncover a novel and clinically relevant signalling pathway that regulates filopodia formation in cancer cells and propose that cycles of filopodia stabilization, followed by maturation into focal adhesions, directs cancer cell migration and invasion. PMID:27910855

  18. Force-dependent calcium signaling and its pathway of human neutrophils on P-selectin in flow.

    PubMed

    Huang, Bing; Ling, Yingchen; Lin, Jiangguo; Du, Xin; Fang, Ying; Wu, Jianhua

    2017-02-01

    P-selectin engagement of P-selectin glycoprotein ligand-1 (PSGL-1) causes circulating leukocytes to roll on and adhere to the vascular surface, and mediates intracellular calcium flux, a key but unclear event for subsequent arresting firmly at and migrating into the infection or injured tissue. Using a parallel plate flow chamber technique and intracellular calcium ion detector (Fluo-4 AM), the intracellular calcium flux of firmly adhered neutrophils on immobilized P-selectin in the absence of chemokines at various wall shear stresses was investigated here in real time by fluorescence microscopy. The results demonstrated that P-selectin engagement of PSGL-1 induced the intracellular calcium flux of firmly adhered neutrophils in flow, increasing P-selectin concentration enhanced cellular calcium signaling, and, force triggered, enhanced and quickened the cytoplasmic calcium bursting of neutrophils on immobilized P-selectin. This P-selectin-induced calcium signaling should come from intracellular calcium release rather than extracellular calcium influx, and be along the mechano-chemical signal pathway involving the cytoskeleton, moesin and Spleen tyrosine kinase (Syk). These results provide a novel insight into the mechano-chemical regulation mechanism for P-selectin-induced calcium signaling of neutrophils in flow.

  19. Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription.

    PubMed

    Queisser, Gillian; Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.

  20. Cell adhesion and intracellular calcium signaling in neurons

    PubMed Central

    2013-01-01

    Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed. PMID:24330678

  1. Axial tubule junctions control rapid calcium signaling in atria

    PubMed Central

    Brandenburg, Sören; Kohl, Tobias; Williams, George S.B.; Rog-Zielinska, Eva A.; Hebisch, Elke; Dura, Miroslav; Didié, Michael; Nikolaev, Viacheslav O.; Hasenfuss, Gerd; Kohl, Peter; Ward, Christopher W.; Lehnart, Stephan E.

    2016-01-01

    The canonical atrial myocyte (AM) is characterized by sparse transverse tubule (TT) invaginations and slow intracellular Ca2+ propagation but exhibits rapid contractile activation that is susceptible to loss of function during hypertrophic remodeling. Here, we have identified a membrane structure and Ca2+-signaling complex that may enhance the speed of atrial contraction independently of phospholamban regulation. This axial couplon was observed in human and mouse atria and is composed of voluminous axial tubules (ATs) with extensive junctions to the sarcoplasmic reticulum (SR) that include ryanodine receptor 2 (RyR2) clusters. In mouse AM, AT structures triggered Ca2+ release from the SR approximately 2 times faster at the AM center than at the surface. Rapid Ca2+ release correlated with colocalization of highly phosphorylated RyR2 clusters at AT-SR junctions and earlier, more rapid shortening of central sarcomeres. In contrast, mice expressing phosphorylation-incompetent RyR2 displayed depressed AM sarcomere shortening and reduced in vivo atrial contractile function. Moreover, left atrial hypertrophy led to AT proliferation, with a marked increase in the highly phosphorylated RyR2-pS2808 cluster fraction, thereby maintaining cytosolic Ca2+ signaling despite decreases in RyR2 cluster density and RyR2 protein expression. AT couplon “super-hubs” thus underlie faster excitation-contraction coupling in health as well as hypertrophic compensatory adaptation and represent a structural and metabolic mechanism that may contribute to contractile dysfunction and arrhythmias. PMID:27643434

  2. Vasopressin and interactive calcium, cyclic AMP and purinergic signaling in Polycystic Kidney Disease

    PubMed Central

    Chebib, Fouad T.; Sussman, Caroline R.; Wang, Xiaofang; Harris, Peter C.; Torres, Vicente E.

    2015-01-01

    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common monogenic kidney disease and the fourth leading cause of end-stage renal disease, responsible for 5–10% of cases. The disease is characterized by relentless development and growth of cysts causing progressive kidney enlargement associated with hypertension, pain, reduced quality of life, and eventually kidney failure. It is caused by mutations to PKD1 or PKD2, encoding polycystin-1 and polycystin-2, respectively. Their function and the molecular mechanisms responsible for the development of polycystic kidney disease are not well understood. The objective of this review is to synthesize a large body of literature that examines how reduction of functional PC1 or PC2 at the primary cilia and/or the endoplasmic reticulum directly disrupts intracellular calcium signaling and indirectly disrupts calcium regulated cAMP and purinergic signaling. We propose a hypothetical model where dysregulated metabolism of cAMP and purinergic signaling increase the sensitivity of principal cells in collecting ducts and of tubular epithelial cells in the distal nephron to the constant tonic action of vasopressin. The resulting magnified response to vasopressin further enhances the disruption of calcium signaling initiated by mutations to PC1 or PC2 and activates downstream signaling pathways responsible for impaired tubulogenesis, cell proliferation, increased fluid secretion and interstitial inflammation. PMID:25870007

  3. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Swinteck, N.; Runge, K.; Deymier-Black, A.; Hoying, J. B.

    2015-11-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  4. Label-Free Imaging of Dynamic and Transient Calcium Signaling in Single Cells.

    PubMed

    Lu, Jin; Li, Jinghong

    2015-11-09

    Cell signaling consists of diverse events that occur at various temporal and spatial scales, ranging from milliseconds to hours and from single biomolecules to cell populations. The pathway complexities require the development of new techniques that detect the overall signaling activities and are not limited to quantifying a single event. A plasmonic-based electrochemical impedance microscope (P-EIM) that can provide such data with excellent temporal and spatial resolution and does not require the addition of any labels for detection has now been developed. The highly dynamic and transient calcium signaling activities at the early stage of G-protein-coupled receptor (GPCR) stimulation were thus studied. It could be shown that a subpopulation of cells is more responsive towards agonist stimulation, and the heterogeneity of the local distributions and the transient activities of the ion channels during agonist-activated calcium flux in single HeLa cells were investigated.

  5. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    PubMed

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  6. Plants, symbiosis and parasites: a calcium signalling connection.

    PubMed

    Harper, Jeffrey F; Harmon, Alice

    2005-07-01

    A unique family of protein kinases has evolved with regulatory domains containing sequences that are related to Ca(2+)-binding EF-hands. In this family, the archetypal Ca(2+)-dependent protein kinases (CDPKs) have been found in plants and some protists, including the malarial parasite, Plasmodium falciparum. Recent genetic evidence has revealed isoform-specific functions for a CDPK that is essential for Plasmodium berghei gametogenesis, and for a related chimeric Ca(2+) and calmodulin-dependent protein kinase (CCaMK) that is essential to the formation of symbiotic nitrogen-fixing nodules in plants. In Arabidopsis thaliana, the analysis of 42 isoforms of CDPK and related kinases is expected to delineate Ca(2+) signalling pathways in all aspects of plant biology.

  7. Biphasic Role of Calcium in Mouse Sperm Capacitation Signaling Pathways

    PubMed Central

    Alvau, Antonio; Escoffier, Jessica; Krapf, Dario; Sánchez-Cárdenas, Claudia; Salicioni, Ana M.; Darszon, Alberto; Visconti, Pablo E.

    2016-01-01

    Mammalian sperm acquire fertilizing ability in the female tract in a process known as capacitation. At the molecular level, capacitation is associated with up-regulation of a cAMP-dependent pathway, changes in intracellular pH, intracellular Ca2+ and an increase in tyrosine phosphorylation. How these signaling systems interact during capacitation is not well understood. Results presented in this study indicate that Ca2+ ions have a biphasic role in the regulation of cAMP-dependent signaling. Media without added Ca2+ salts (nominal zero Ca2+) still contain micromolar concentrations of this ion. Sperm incubated in this medium did not undergo PKA activation or the increase in tyrosine phosphorylation suggesting that these phosphorylation pathways require Ca2+. However, chelation of the extracellular Ca2+ traces by EGTA induced both cAMP-dependent phosphorylation and the increase in tyrosine phosphorylation. The EGTA effect in nominal zero Ca2+ media was mimicked by two calmodulin antagonists, W7 and calmidazolium, and by the calcineurin inhibitor cyclosporine A. These results suggest that Ca2+ ions regulate sperm cAMP and tyrosine phosphorylation pathways in a biphasic manner and that some of its effects are mediated by calmodulin. Interestingly, contrary to wild type mouse sperm, sperm from CatSper1 KO mice underwent PKA activation and an increase in tyrosine phosphorylation upon incubation in nominal zero Ca2+ media. Therefore, sperm lacking Catsper Ca2+ channels behave as wild-type sperm incubated in the presence of EGTA. This latter result suggests that Catsper transports the Ca2+ involved in the regulation of cAMP-dependent and tyrosine phosphorylation pathways required for sperm capacitation. PMID:25597298

  8. Characterization of NAADP-mediated calcium signaling in human spermatozoa

    SciTech Connect

    Sánchez-Tusie, A.A.; Vasudevan, S.R.; Churchill, G.C.; Nishigaki, T.; Treviño, C.L.

    2014-01-10

    Highlights: •Human sperm cells synthesize NAADP. •NAADP-AM mediates [Ca{sup 2+}]{sub i} increases in human sperm in the absence of [Ca{sup 2+}]{sub o}. •Human sperm have two acidic compartments located in the head and midpiece. -- Abstract: Ca{sup 2+} signaling in spermatozoa plays a crucial role during processes such as capacitation and release of the acrosome, but the underlying molecular mechanisms still remain unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca{sup 2+}-releasing second messenger in a variety of cellular processes. The presence of a NAADP synthesizing enzyme in sea urchin sperm has been previously reported, suggesting a possible role of NAADP in sperm Ca{sup 2+} signaling. In this work we used in vitro enzyme assays to show the presence of a novel NAADP synthesizing enzyme in human sperm, and to characterize its sensitivity to Ca{sup 2+} and pH. Ca{sup 2+} fluorescence imaging studies demonstrated that the permeable form of NAADP (NAADP-AM) induces intracellular [Ca{sup 2+}] increases in human sperm even in the absence of extracellular Ca{sup 2+}. Using LysoTracker®, a fluorescent probe that selectively accumulates in acidic compartments, we identified two such stores in human sperm cells. Their acidic nature was further confirmed by the reduction in staining intensity observed upon inhibition of the endo-lysosomal proton pump with Bafilomycin, or after lysosomal bursting with glycyl-L-phenylalanine-2-naphthylamide. The selective fluorescent NAADP analog, Ned-19, stained the same subcellular regions as LysoTracker®, suggesting that these stores are the targets of NAADP action.

  9. Effect of TGFβ on calcium signaling in megakaryocytes

    SciTech Connect

    Yan, Jing; Schmid, Evi; Almilaji, Ahmad; Shumilina, Ekaterina; Borst, Oliver; Laufer, Stefan; Gawaz, Meinrad; Lang, Florian

    2015-05-22

    TGFβ is a powerful regulator of megakaryocyte maturation and platelet formation. As previously shown for other cell types, TGFβ may up-regulate the expression of the serum & glucocorticoid inducible kinase SGK1, an effect requiring p38 kinase. SGK1 has in turn recently been shown to participate in the regulation of cytosolic Ca{sup 2+} activity ([Ca{sup 2+}]{sub i}) in megakaryocytes and platelets. SGK1 phosphorylates the IκB kinase (IKKα/β), which in turn phosphorylates the inhibitor protein IκBα resulting in nuclear translocation of nuclear factor NFκB. Genes up-regulated by NFκB include Orai1, the pore forming ion channel subunit accomplishing store operated Ca{sup 2+} entry (SOCE). The present study explored whether TGFβ influences Ca{sup 2+} signaling in megakaryocytes. [Ca{sup 2+}]{sub i} was determined by Fura-2 fluorescence and SOCE from the increase of [Ca{sup 2+}]{sub i} following re-addition of extracellular Ca{sup 2+} after store depletion by removal of extracellular Ca{sup 2+} and inhibition of the sarcoendoplasmatic Ca{sup 2+} ATPase (SERCA) with thapsigargin (1 μM). As a result, TGFβ (60 ng, 24 h) increased SOCE, an effect significantly blunted by p38 kinase inhibitor Skepinone-L (1 μM), SGK1 inhibitor EMD638683 (50 μM) and NFκB inhibitor wogonin (100 μM). In conclusion, TGFβ is a powerful regulator of store operated Ca{sup 2+} entry into megakaryocytes, an effect mediated by a signaling cascade involving p38 kinase, SGK1 and NFκB. - Highlights: • TGFβ up-regulates store operated Ca{sup 2+} entry (SOCE) in megakaryocytes. • The effect of TGFβ on SOCE is blunted by p38 kinase inhibitor Skepinone-L. • The effect of TGFβ on SOCE is virtually abrogated by SGK1 inhibitor EMD638683. • The effect of TGFβ on SOCE is almost abolished by NFκB inhibitor wogonin. • The effect of TGFβ is expected to enhance sensitivity of platelets to activation.

  10. Microscopic spiral waves reveal positive feedback in subcellular calcium signaling.

    PubMed Central

    Lipp, P; Niggli, E

    1993-01-01

    The regenerative Ca(2+)-induced Ca2+ release mechanism is an important amplifier of signal transduction in diverse cells. In heart muscle cells, this mechanism contributes to the Ca2+ transient activating the mechanical contraction, but it is also believed to drive Ca2+ waves propagating within the cytosol. We investigated the subcellular Ca2+ distribution in heart muscle cells during spontaneous Ca2+ release using laser scanning confocal microscopy with a ratiometric fluorescent indicator technique. Besides planar Ca2+ waves with linear propagation, sequences of confocal optical sections also revealed spiral Ca2+ waves spinning around a subcellular core at approximately 1 Hz. Although the Ca2+ spirals were continuous processes they frequently exhibited an apparently oscillatory output function into the elongated cell body. These oscillatory waves emanating from the spiral at regular intervals were formally considered to be short outer segments of the spiral but could not be distinguished from planar Ca2+ waves propagating along the longitudinal cell axis. The complex spatiotemporal pattern of spiral Ca2+ waves implies the participation of an active process exhibiting a large degree of positive feedback, most likely the Ca(2+)-induced Ca2+ release mechanism. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:8312468

  11. D1-D2 Dopamine Receptor Synergy Promotes Calcium Signaling via Multiple Mechanisms

    PubMed Central

    Chun, Lani S.; Free, R. Benjamin; Doyle, Trevor B.; Huang, Xi-Ping; Rankin, Michele L.

    2013-01-01

    The D1 dopamine receptor (D1R) has been proposed to form a hetero-oligomer with the D2 dopamine receptor (D2R), which in turn results in a complex that couples to phospholipase C–mediated intracellular calcium release. We have sought to elucidate the pharmacology and mechanism of action of this putative signaling pathway. Dopamine dose-response curves assaying intracellular calcium mobilization in cells heterologously expressing the D1 and D2 subtypes, either alone or in combination, and using subtype selective ligands revealed that concurrent stimulation is required for coupling. Surprisingly, characterization of a putative D1-D2 heteromer-selective ligand, 6-chloro-2,3,4,5-tetrahydro-3-methyl-1-(3-methylphenyl)-1H-3-benzazepine-7,8-diol (SKF83959), found no stimulation of calcium release, but it did find a broad range of cross-reactivity with other G protein–coupled receptors. In contrast, SKF83959 appeared to be an antagonist of calcium mobilization. Overexpression of Gqα with the D1 and D2 dopamine receptors enhanced the dopamine-stimulated calcium response. However, this was also observed in cells expressing Gqα with only the D1R. Inactivation of Gi or Gs with pertussis or cholera toxin, respectively, largely, but not entirely, reduced the calcium response in D1R and D2R cotransfected cells. Moreover, sequestration of Gβγ subunits through overexpression of G protein receptor kinase 2 mutants either completely or largely eliminated dopamine-stimulated calcium mobilization. Our data suggest that the mechanism of D1R/D2R–mediated calcium signaling involves more than receptor-mediated Gq protein activation, may largely involve downstream signaling pathways, and may not be completely heteromer-specific. In addition, SKF83959 may not exhibit selective activation of D1-D2 heteromers, and its significant cross-reactivity to other receptors warrants careful interpretation of its use in vivo. PMID:23680635

  12. Structural basis of Sorcin-mediated calcium-dependent signal transduction.

    PubMed

    Ilari, Andrea; Fiorillo, Annarita; Poser, Elena; Lalioti, Vasiliki S; Sundell, Gustav N; Ivarsson, Ylva; Genovese, Ilaria; Colotti, Gianni

    2015-11-18

    Sorcin is an essential penta-EF hand calcium binding protein, able to confer the multi-drug resistance phenotype to drug-sensitive cancer cells and to reduce Endoplasmic Reticulum stress and cell death. Sorcin silencing blocks cell cycle progression in mitosis and induces cell death by triggering apoptosis. Sorcin participates in the modulation of calcium homeostasis and in calcium-dependent cell signalling in normal and cancer cells. The molecular basis of Sorcin action is yet unknown. The X-ray structures of Sorcin in the apo (apoSor) and in calcium bound form (CaSor) reveal the structural basis of Sorcin action: calcium binding to the EF1-3 hands promotes a large conformational change, involving a movement of the long D-helix joining the EF1-EF2 sub-domain to EF3 and the opening of EF1. This movement promotes the exposure of a hydrophobic pocket, which can accommodate in CaSor the portion of its N-terminal domain displaying the consensus binding motif identified by phage display experiments. This domain inhibits the interaction of sorcin with PDCD6, a protein that carries the Sorcin consensus motif, co-localizes with Sorcin in the perinuclear region of the cell and in the midbody and is involved in the onset of apoptosis.

  13. The calcium signaling toolkit of the Apicomplexan parasites Toxoplasma gondii and Plasmodium spp.

    PubMed

    Lourido, Sebastian; Moreno, Silvia N J

    2015-03-01

    Apicomplexan parasites have complex life cycles, frequently split between different hosts and reliant on rapid responses as the parasites react to changing environmental conditions. Calcium ion (Ca(2+)) signaling is consequently essential for the cellular and developmental changes that support Apicomplexan parasitism. Apicomplexan genomes reveal a rich repertoire of genes involved in calcium signaling, although many of the genes responsible for observed physiological changes remain unknown. There is evidence, for example, for the presence of a nifedipine-sensitive calcium entry mechanism in Toxoplasma, but the molecular components involved in Ca(2+) entry in both Toxoplasma and Plasmodium, have not been identified. The major calcium stores are the endoplasmic reticulum (ER), the acidocalcisomes, and the plant-like vacuole in Toxoplasma, or the food vacuole in Plasmodium spp. Pharmacological evidence suggests that Ca(2+) release from intracellular stores may be mediated by inositol 1,4,5-trisphosphate (IP3) or cyclic ADP ribose (cADPR) although there is no molecular evidence for the presence of receptors for these second messengers in the parasites. Several Ca(2+)-ATPases are present in Apicomplexans and a putative mitochondrial Ca(2+)/H(+) exchanger has been identified. Apicomplexan genomes contain numerous genes encoding Ca(2+)-binding proteins, with the notable expansion of calcium-dependent protein kinases (CDPKs), whose study has revealed roles in gliding motility, microneme secretion, host cell invasion and egress, and parasite differentiation. Microneme secretion has also been shown to depend on the C2 domain containing protein DOC2 in both Plasmodium spp. and Toxoplasma, providing further evidence for the complex transduction of Ca(2+) signals in these organisms. The characterization of these pathways could lead to the discovery of novel drug targets and to a better understanding of the role of Ca(2+) in these parasites.

  14. ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct.

    PubMed

    Svenningsen, Per; Burford, James L; Peti-Peterdi, János

    2013-01-01

    ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD) and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30(-/-) mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca(2+)]i) signaling in the CD. Cortical CDs (CCDs) from wild type and Cx30(-/-) mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca(2+)]i in wild type CCDs. This response was blunted in Cx30(-/-) CCDs ([Ca(2+)]i increased only 1.2-fold, p < 0.0001 vs. WT, n = 6 each). To further test our hypothesis we performed CD [Ca(2+)]i imaging in intact mouse kidneys in vivo using multiphoton microscopy and micropuncture delivery of the calcium-sensitive fluorophore Rhod-2. We found intrinsic, spontaneous [Ca(2+)]i oscillations in free-flowing CDs of wild type but not Cx30(-/-) mice. The [Ca(2+)]i oscillations were sensitive also to P2-receptor inhibition by suramin. Taken together, these data confirm that mechanosensitive Cx30 hemichannels mediate tubular ATP release and purinergic calcium signaling in the CD which mechanism plays an important role in the regulation of CD salt and water reabsorption.

  15. ATP Releasing Connexin 30 Hemichannels Mediate Flow-Induced Calcium Signaling in the Collecting Duct

    PubMed Central

    Svenningsen, Per; Burford, James L.; Peti-Peterdi, János

    2013-01-01

    ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD) and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30−/− mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca2+]i) signaling in the CD. Cortical CDs (CCDs) from wild type and Cx30−/− mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca2+]i in wild type CCDs. This response was blunted in Cx30−/− CCDs ([Ca2+]i increased only 1.2-fold, p < 0.0001 vs. WT, n = 6 each). To further test our hypothesis we performed CD [Ca2+]i imaging in intact mouse kidneys in vivo using multiphoton microscopy and micropuncture delivery of the calcium-sensitive fluorophore Rhod-2. We found intrinsic, spontaneous [Ca2+]i oscillations in free-flowing CDs of wild type but not Cx30−/− mice. The [Ca2+]i oscillations were sensitive also to P2-receptor inhibition by suramin. Taken together, these data confirm that mechanosensitive Cx30 hemichannels mediate tubular ATP release and purinergic calcium signaling in the CD which mechanism plays an important role in the regulation of CD salt and water reabsorption. PMID:24137132

  16. Intracellular calcium during signal transduction in the lymphocyte is altered by ELF magnetic and electric fields

    SciTech Connect

    Liburdy, R.P. )

    1992-02-26

    Research has shown that ELF magnetic and electric fields alter calcium transport in rat thymic T-lymphocytes during signal transduction initiated by mitogen. Interestingly activated T-lymphocytes display a nonlinear dose-response for this basic field interaction which scales with the induced electric field in contrast to the applied magnetic field. Specialized multiring annular well cell culture plates based on Faraday's Law of Current Induction were used to demonstrate that the electric field associated with the magnetic field is the exposure metric of biological interest. The first real-time measurements of (Ca{sup 2+}){sub i} were recently presented and (Ca{sup 2+}){sub i} was shown to be altered by sinusoidal 60 Hz electric fields; magnetic fields that induced comparable electric fields yielded similar alterations in (Ca{sup 2+}){sub i}. The author now presents evidence that both parameters, (Ca{sup 2+}){sub i} and calcium transport, are altered by ELF fields during calcium signaling in thymocytes and scale with the induced electric field. In addition, (Ca{sup 2+}){sub i} studies have been conducted that provide evidence supporting the hypothesis that the mitogen-gated calcium channel present in the plasma cell membrane represents a specific site of interaction for ELF fields.

  17. Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells.

    PubMed

    Chubinskiy-Nadezhdin, Vladislav I; Vasileva, Valeria Y; Pugovkina, Natalia A; Vassilieva, Irina O; Morachevskaya, Elena A; Nikolsky, Nikolay N; Negulyaev, Yuri A

    2017-01-22

    Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances in hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca(2+) entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells.

  18. Distinct regulation of dopamine D2S and D2L autoreceptor signaling by calcium

    PubMed Central

    Gantz, Stephanie C; Robinson, Brooks G; Buck, David C; Bunzow, James R; Neve, Rachael L; Williams, John T; Neve, Kim A

    2015-01-01

    D2 autoreceptors regulate dopamine release throughout the brain. Two isoforms of the D2 receptor, D2S and D2L, are expressed in midbrain dopamine neurons. Differential roles of these isoforms as autoreceptors are poorly understood. By virally expressing the isoforms in dopamine neurons of D2 receptor knockout mice, this study assessed the calcium-dependence and drug-induced plasticity of D2S and D2L receptor-dependent G protein-coupled inwardly rectifying potassium (GIRK) currents. The results reveal that D2S, but not D2L receptors, exhibited calcium-dependent desensitization similar to that exhibited by endogenous autoreceptors. Two pathways of calcium signaling that regulated D2 autoreceptor-dependent GIRK signaling were identified, which distinctly affected desensitization and the magnitude of D2S and D2L receptor-dependent GIRK currents. Previous in vivo cocaine exposure removed calcium-dependent D2 autoreceptor desensitization in wild type, but not D2S-only mice. Thus, expression of D2S as the exclusive autoreceptor was insufficient for cocaine-induced plasticity, implying a functional role for the co-expression of D2S and D2L autoreceptors. DOI: http://dx.doi.org/10.7554/eLife.09358.001 PMID:26308580

  19. Ca2+ signalling in cardiovascular disease: the role of the plasma membrane calcium pumps.

    PubMed

    Cartwright, Elizabeth J; Oceandy, Delvac; Austin, Clare; Neyses, Ludwig

    2011-08-01

    The plasma membrane calcium ATPases (PMCA) are a family of genes which extrude Ca(2+) from the cell and are involved in the maintenance of intracellular free calcium levels and/or with Ca(2+) signalling, depending on the cell type. In the cardiovascular system, Ca(2+) is not only essential for contraction and relaxation but also has a vital role as a second messenger in signal transduction pathways. A complex array of mechanisms regulate intracellular free calcium levels in the heart and vasculature and a failure in these systems to maintain normal Ca(2+) homeostasis has been linked to both heart failure and hypertension. This article focuses on the functions of PMCA, in particular isoform 4 (PMCA4), in the heart and vasculature and the reported links between PMCAs and contractile function, cardiac hypertrophy, cardiac rhythm and sudden cardiac death, and blood pressure control and hypertension. It is becoming clear that this family of calcium extrusion pumps have essential roles in both cardiovascular health and disease.

  20. Calcium signals drive cell shape changes during zebrafish midbrain-hindbrain boundary formation.

    PubMed

    Sahu, Srishti U; Visetsouk, Mike R; Garde, Ryan J; Hennes, Leah; Kwas, Constance; Gutzman, Jennifer H

    2017-02-01

    One of the first morphogenetic events in the vertebrate brain is the formation of the highly conserved midbrain-hindbrain boundary (MHB). Specific cell shape changes occur at the point of deepest constriction of the MHB, the midbrain-hindbrain boundary constriction (MHBC), and are critical for proper MHB formation. These cell shape changes are controlled by non-muscle myosin II (NMII) motor proteins which are tightly regulated via the phosphorylation of their associated myosin regulatory light chains (MRLC). However, the upstream signaling pathways that initiate the regulation of NMII to mediate cell shape changes during MHB morphogenesis are not known. We show that intracellular calcium signals are critical for the regulation of cell shortening during initial MHB formation. We demonstrate that the MHB region is poised to respond to calcium transients that occur in the MHB at the onset of MHB morphogenesis and that calcium mediates phosphorylation of MRLC specifically in MHB tissue. Our results indicate that calmodulin 1a (calm1a), expressed specifically in the MHB, and myosin light chain kinase (MLCK), together mediate MHBC cell length. Our data suggest that modulation of NMII activity by calcium is critical for proper regulation of cell length to determine embryonic brain shape during development.

  1. Calcium signaling in mast cells: focusing on L-type calcium channels.

    PubMed

    Suzuki, Yoshihiro; Inoue, Toshio; Ra, Chisei

    2012-01-01

    Mast cells play central roles in adaptive and innate immunity. IgE-dependent stimulation of the high-affinity IgE receptor (FcεRI) results in rapid secretion of various proinflammatory chemical mediators and cytokines. All of the outputs depend to certain degrees on an increase in the intracellular Ca(2+) concentration, and influx of Ca(2+) from the extracellular space is often required for their full activation. There is strong evidence that FcεRI stimulation induces two different modes of Ca(2+) influx, store-operated Ca(2+) entry (SOCE) and non-SOCE, which are activated in response to endoplasmic reticulum Ca(2+) store depletion and independently of Ca(2+) store depletion, respectively, in mast cells. Although Ca(2+) release-activated Ca(2+) channels are the major route of SOCE, recent evidence indicates that they are not the only Ca(2+) channels activated by Ca(2+) store depletion. The recent data suggest that L-type Ca(2+) channels, which were thought to be a characteristic feature of excitable cells, exist in mast cells to mediate non-SOCE, which is critical for protecting mast cells against activation-induced mitochondrial cell death. In this chapter, we provide an overview of recent advances in our understanding of Ca(2+) signaling in mast cells with a special attention to the emerging role for the L-type Ca(2+) channels as a regulator of mast cell survival.

  2. Spontaneous calcium signals induced by gap junctions in a network model of astrocytes

    NASA Astrophysics Data System (ADS)

    Kazantsev, V. B.

    2009-01-01

    The dynamics of a network model of astrocytes coupled by gap junctions is investigated. Calcium dynamics of the single cell is described by the biophysical model comprising the set of three nonlinear differential equations. Intercellular dynamics is provided by the diffusion of inositol 1,4,5-trisphosphate (IP3) through gap junctions between neighboring astrocytes. It is found that the diffusion induces the appearance of spontaneous activity patterns in the network. Stability of the network steady state is analyzed. It is proved that the increase of the diffusion coefficient above a certain critical value yields the generation of low-amplitude subthreshold oscillatory signals in a certain frequency range. It is shown that such spontaneous oscillations can facilitate calcium pulse generation and provide a certain time scale in astrocyte signaling.

  3. NG2 glial cells integrate synaptic input in global and dendritic calcium signals

    PubMed Central

    Sun, Wenjing; Matthews, Elizabeth A; Nicolas, Vicky; Schoch, Susanne; Dietrich, Dirk

    2016-01-01

    Synaptic signaling to NG2-expressing oligodendrocyte precursor cells (NG2 cells) could be key to rendering myelination of axons dependent on neuronal activity, but it has remained unclear whether NG2 glial cells integrate and respond to synaptic input. Here we show that NG2 cells perform linear integration of glutamatergic synaptic inputs and respond with increasing dendritic calcium elevations. Synaptic activity induces rapid Ca2+ signals mediated by low-voltage activated Ca2+ channels under strict inhibitory control of voltage-gated A-type K+ channels. Ca2+ signals can be global and originate throughout the cell. However, voltage-gated channels are also found in thin dendrites which act as compartmentalized processing units and generate local calcium transients. Taken together, the activity-dependent control of Ca2+ signals by A-type channels and the global versus local signaling domains make intracellular Ca2+ in NG2 cells a prime signaling molecule to transform neurotransmitter release into activity-dependent myelination. DOI: http://dx.doi.org/10.7554/eLife.16262.001 PMID:27644104

  4. NG2 glial cells integrate synaptic input in global and dendritic calcium signals.

    PubMed

    Sun, Wenjing; Matthews, Elizabeth A; Nicolas, Vicky; Schoch, Susanne; Dietrich, Dirk

    2016-09-19

    Synaptic signaling to NG2-expressing oligodendrocyte precursor cells (NG2 cells) could be key to rendering myelination of axons dependent on neuronal activity, but it has remained unclear whether NG2 glial cells integrate and respond to synaptic input. Here we show that NG2 cells perform linear integration of glutamatergic synaptic inputs and respond with increasing dendritic calcium elevations. Synaptic activity induces rapid Ca(2+) signals mediated by low-voltage activated Ca(2+) channels under strict inhibitory control of voltage-gated A-type K(+) channels. Ca(2+) signals can be global and originate throughout the cell. However, voltage-gated channels are also found in thin dendrites which act as compartmentalized processing units and generate local calcium transients. Taken together, the activity-dependent control of Ca(2+) signals by A-type channels and the global versus local signaling domains make intracellular Ca(2+) in NG2 cells a prime signaling molecule to transform neurotransmitter release into activity-dependent myelination.

  5. Acoustic tweezers for studying intracellular calcium signaling in SKBR-3 human breast cancer cells.

    PubMed

    Hwang, Jae Youn; Yoon, Chi Woo; Lim, Hae Gyun; Park, Jin Man; Yoon, Sangpil; Lee, Jungwoo; Shung, K Kirk

    2015-12-01

    Extracellular matrix proteins such as fibronectin (FNT) play crucial roles in cell proliferation, adhesion, and migration. For better understanding of these associated cellular activities, various microscopic manipulation tools have been used to study their intracellular signaling pathways. Recently, it has appeared that acoustic tweezers may possess similar capabilities in the study. Therefore, we here demonstrate that our newly developed acoustic tweezers with a high-frequency lithium niobate ultrasonic transducer have potentials to study intracellular calcium signaling by FNT-binding to human breast cancer cells (SKBR-3). It is found that intracellular calcium elevations in SKBR-3 cells, initially occurring on the microbead-contacted spot and then eventually spreading over the entire cell, are elicited by attaching an acoustically trapped FNT-coated microbead. Interestingly, they are suppressed by either extracellular calcium elimination or phospholipase C (PLC) inhibition. Hence, this suggests that our acoustic tweezers may serve as an alternative tool in the study of intracellular signaling by FNT-binding activities.

  6. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor

    PubMed Central

    Zhang, Chen; Miller, Cassandra L.; Gorkhali, Rakshya; Zou, Juan; Huang, Kenneth; Brown, Edward M.; Yang, Jenny J.

    2016-01-01

    Ca2+-sensing receptors (CaSRs) play a central role in regulating extracellular calcium concentration ([Ca2+]o) homeostasis and many (patho)physiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids, and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT) domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR's cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs) in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics. PMID:27746744

  7. Influence of zinc on calcium-dependent signal transduction pathways during aluminium-induced neurodegeneration.

    PubMed

    Singla, Neha; Dhawan, D K

    2014-10-01

    Metals perform important functions in the normal physiological system, and alterations in their levels may lead to a number of diseases. Aluminium (Al) has been implicated as a major risk factor, which is linked to several neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. On the other hand, zinc (Zn) is considered as a neuromodulator and an essential dietary element that regulates a number of biological activities in our body. The aim of the present study was to investigate the effects of Zn supplementation, if any, in ameliorating the changes induced by Al on calcium signalling pathway. Male Sprague Dawley rats weighing 140-160 g were divided into four different groups viz.: normal control, aluminium treated (100 mg/kg b.wt./day via oral gavage), zinc treated (227 mg/l in drinking water) and combined aluminium and zinc treated. All the treatments were carried out for a total duration of 8 weeks. Al treatment decreased the Ca(2+) ATPase activity whereas increased the levels of 3', 5'-cyclic adenosine monophosphate, intracellular calcium and total calcium content in both the cerebrum and cerebellum, which, however, were modulated upon Zn supplementation. Al treatment exhibited a significant elevation in the protein expressions of phospholipase C, inositol triphosphate and protein kinase A but decreased the expression of protein kinase C, which, however, was reversed upon Zn co-treatment. Al treatment also revealed alterations in neurohistoarchitecture in the form of calcium deposits, which were improved upon zinc co-administration. The present study, therefore, suggests that zinc regulates the intracellular calcium signalling pathway during aluminium-induced neurodegeneration.

  8. The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophila mushroom body neurons.

    PubMed

    Tessier, Charles R; Broadie, Kendal

    2011-01-01

    Fragile X syndrome (FXS) is a broad-spectrum neurological disorder characterized by hypersensitivity to sensory stimuli, hyperactivity and severe cognitive impairment. FXS is caused by loss of the fragile X mental retardation 1 (FMR1) gene, whose FMRP product regulates mRNA translation downstream of synaptic activity to modulate changes in synaptic architecture, function and plasticity. Null Drosophila FMR1 (dfmr1) mutants exhibit reduced learning and loss of protein synthesis-dependent memory consolidation, which is dependent on the brain mushroom body (MB) learning and memory center. We targeted a transgenic GFP-based calcium reporter to the MB in order to analyze calcium dynamics downstream of neuronal activation. In the dfmr1 null MB, there was significant augmentation of the calcium transients induced by membrane depolarization, as well as elevated release of calcium from intracellular organelle stores. The severity of these calcium signaling defects increased with developmental age, although early stages were characterized by highly variable, low fidelity calcium regulation. At the single neuron level, both calcium transient and calcium store release defects were exhibited by dfmr1 null MB neurons in primary culture. Null dfmr1 mutants exhibit reduced brain mRNA expression of calcium-binding proteins, including calcium buffers calmodulin and calbindin, predicting that the inability to appropriately sequester cytosolic calcium may be the common mechanistic defect causing calcium accumulation following both influx and store release. Changes in the magnitude and fidelity of calcium signals in the absence of dFMRP likely contribute to defects in neuronal structure/function, leading to the hallmark learning and memory dysfunction of FXS.

  9. Shear stress-induced NO production is dependent on ATP autocrine signaling and capacitative calcium entry

    PubMed Central

    Andrews, Allison M.; Jaron, Dov; Buerk, Donald G.; Barbee, Kenneth A.

    2014-01-01

    Flow-induced production of nitric oxide (NO) by endothelial cells plays a fundamental role in vascular homeostasis. However, the mechanisms by which shear stress activates NO production remain unclear due in part to limitations in measuring NO, especially under flow conditions. Shear stress elicits the release of ATP, but the relative contribution of autocrine stimulation by ATP to flow-induced NO production has not been established. Furthermore, the importance of calcium in shear stress-induced NO production remains controversial, and in particular the role of capacitive calcium entry (CCE) has yet to be determined. We have utilized our unique NO measurement device to investigate the role of ATP autocrine signaling and CCE in shear stress-induced NO production. We found that endogenously released ATP and downstream activation of purinergic receptors and CCE plays a significant role in shear stress-induced NO production. ATP-induced eNOS phophorylation under static conditions is also dependent on CCE. Inhibition of protein kinase C significantly inhibited eNOS phosphorylation and the calcium response. To our knowledge, we are the first to report on the role of CCE in the mechanism of acute shear stress-induced NO response. In addition, our work highlights the importance of ATP autocrine signaling in shear stress-induced NO production. PMID:25386222

  10. Signal processing by T-type calcium channel interactions in the cerebellum

    PubMed Central

    Engbers, Jordan D. T.; Anderson, Dustin; Zamponi, Gerald W.; Turner, Ray W.

    2013-01-01

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT) and hyperpolarization-activated cation current (IH) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  11. Calcium supplementation during sepsis exacerbates organ failure and mortality via calcium/calmodulin-dependent protein kinase kinase (CaMKK) signaling

    PubMed Central

    Collage, Richard D.; Howell, Gina M.; Zhang, Xianghong; Stripay, Jennifer L.; Lee, Janet S.; Angus, Derek C.; Rosengart, Matthew R.

    2013-01-01

    . This altered calcium signaling, transduced by the CaMKK cascade, mediates heightened inflammation and vascular leak that culminates in elevated organ dysfunction and mortality. In the clinical management of septic patients calcium supplementation provides no benefit and may impose harm. PMID:23887235

  12. Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour.

    PubMed

    Vogel, David; Nicolis, Stamatios C; Perez-Escudero, Alfonso; Nanjundiah, Vidyanand; Sumpter, David J T; Dussutour, Audrey

    2015-11-22

    Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: 'slow-regular-social', 'fast-regular-social' and 'fast-irregular-asocial'. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms.

  13. Voltage-gated calcium channels function as Ca2+-activated signaling receptors.

    PubMed

    Atlas, Daphne

    2014-02-01

    Voltage-gated calcium channels (VGCCs) are transmembrane cell surface proteins responsible for multifunctional signals. In response to voltage, VGCCs trigger synaptic transmission, drive muscle contraction, and regulate gene expression. Voltage perturbations open VGCCs enabling Ca(2+) binding to the low affinity Ca(2+) binding site of the channel pore. Subsequent to permeation, Ca(2+) targets selective proteins to activate diverse signaling pathways. It is becoming apparent that the Ca(2+)-bound channel triggers secretion in excitable cells and drives contraction in cardiomyocytes prior to Ca(2+) permeation. Here, I highlight recent data implicating receptor-like function of the Ca(2+)-bound channel in converting external Ca(2+) into an intracellular signal. The two sequential mechanistic perspectives of VGCC function are discussed in the context of the prevailing and long-standing current models of depolarization-evoked secretion and cardiac contraction.

  14. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.

    PubMed

    Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong

    2015-03-01

    Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway.

  15. Contractility and calcium signaling of human myometrium are profoundly affected by cholesterol manipulation: implications for labor?

    PubMed

    Jie Zhang; Kendrick, Annabelle; Quenby, Siobhan; Wray, Susan

    2007-07-01

    The authors elucidate cholesterol's effect on human uterine contractility and calcium signaling to test the hypotheses that elevation of cholesterol decreases uterine activity and that oxytocin cannot augment contraction when cholesterol is elevated. The effects of cholesterol extraction with methyl beta-cyclodextrin and enrichment with low-density lipoproteins and cholesterol on contractile activity and intracellular calcium signaling in spontaneous or oxytocin-stimulated myometrium are determined. Force occurring spontaneously and with oxytocin is significantly increased by cholesterol extraction. Cholesterol enrichment profoundly inhibits force production in a dose-dependent manner and could reverse the effects of cholesterol extraction. Qualitatively similar results are found for nonpregnant and pregnant laboring and non-laboring myometrium. These contractile changes are related to changes in intracellular Ca2+ . Thus, elevated cholesterol is deleterious to contractility and Ca2+ signaling in human myometrium. Cholesterol may contribute to uterine quiescence but could cause difficulties in labor in obese/dyslipidemic women, consistent with their increased cesarean delivery rates.

  16. Modelling intracellular competition for calcium: kinetic and thermodynamic control of different molecular modes of signal decoding

    PubMed Central

    Antunes, Gabriela; Roque, Antonio C.; Simoes de Souza, Fabio M.

    2016-01-01

    Frequently, a common chemical entity triggers opposite cellular processes, which implies that the components of signalling networks must detect signals not only through their chemical natures, but also through their dynamic properties. To gain insights on the mechanisms of discrimination of the dynamic properties of cellular signals, we developed a computational stochastic model and investigated how three calcium ion (Ca2+)-dependent enzymes (adenylyl cyclase (AC), phosphodiesterase 1 (PDE1), and calcineurin (CaN)) differentially detect Ca2+ transients in a hippocampal dendritic spine. The balance among AC, PDE1 and CaN might determine the occurrence of opposite Ca2+-induced forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD). CaN is essential for LTD. AC and PDE1 regulate, indirectly, protein kinase A, which counteracts CaN during LTP. Stimulations of AC, PDE1 and CaN with artificial and physiological Ca2+ signals demonstrated that AC and CaN have Ca2+ requirements modulated dynamically by different properties of the signals used to stimulate them, because their interactions with Ca2+ often occur under kinetic control. Contrarily, PDE1 responds to the immediate amplitude of different Ca2+ transients and usually with the same Ca2+ requirements observed under steady state. Therefore, AC, PDE1 and CaN decode different dynamic properties of Ca2+ signals. PMID:27033299

  17. Inhibition of calcium channels by neurokinin receptor and signal transduction in hamster submandibular ganglion cells.

    PubMed

    Yamada, T; Endoh, T; Suzuki, T

    1999-04-16

    Both substance P (SP) and neurokinin A (NKA) are known as neurotransmitters of the submandibular ganglion (SMG) neurons. SP released from collaterals of the sensory nerves also regulates the excitability of SMG neurons. It has recently been shown that neurokinins (NK) inhibit calcium channels in various neurons. In this study, the effects of NK on voltage-dependent calcium channel current (I(Ca)) in SMG cells were investigated using the whole-cell patch-clamp recording method. NK-1 receptor agonist and SP caused inhibition of I(Ca) in SMG cells in a dose-dependent manner. NK-1 receptor agonist inhibited L-, N- and P/Q-type I(Ca) components. GDP-beta-S included in the pipette solution reduced the NK-1 receptor agonist-induced inhibition of I(Ca). In addition, NK-1 receptor agonist-induced inhibition of I(Ca) was reduced by stimulation of protein kinase C (PKC) but not cyclic AMP-dependent protein kinase (PKA). The results provided evidence for a signal transduction pathway in which calcium channel inhibition by NK receptors required activation of G-protein and PKC-affected step phosphorylation in SMG neurons.

  18. Constant change: dynamic regulation of membrane transport by calcium signalling networks keeps plants in tune with their environment.

    PubMed

    Kleist, Thomas J; Luan, Sheng

    2016-03-01

    Despite substantial variation and irregularities in their environment, plants must conform to spatiotemporal demands on the molecular composition of their cytosol. Cell membranes are the major interface between organisms and their environment and the basis for controlling the contents and intracellular organization of the cell. Membrane transport proteins (MTPs) govern the flow of molecules across membranes, and their activities are closely monitored and regulated by cell signalling networks. By continuously adjusting MTP activities, plants can mitigate the effects of environmental perturbations, but effective implementation of this strategy is reliant on precise coordination among transport systems that reside in distinct cell types and membranes. Here, we examine the role of calcium signalling in the coordination of membrane transport, with an emphasis on potassium transport. Potassium is an exceptionally abundant and mobile ion in plants, and plant potassium transport has been intensively studied for decades. Classic and recent studies have underscored the importance of calcium in plant environmental responses and membrane transport regulation. In reviewing recent advances in our understanding of the coding and decoding of calcium signals, we highlight established and emerging roles of calcium signalling in coordinating membrane transport among multiple subcellular locations and distinct transport systems in plants, drawing examples from the CBL-CIPK signalling network. By synthesizing classical studies and recent findings, we aim to provide timely insights on the role of calcium signalling networks in the modulation of membrane transport and its importance in plant environmental responses.

  19. Signaling domain of Sonic Hedgehog as cannibalistic calcium-regulated zinc-peptidase.

    PubMed

    Rebollido-Rios, Rocio; Bandari, Shyam; Wilms, Christoph; Jakuschev, Stanislav; Vortkamp, Andrea; Grobe, Kay; Hoffmann, Daniel

    2014-07-01

    Sonic Hedgehog (Shh) is a representative of the evolutionary closely related class of Hedgehog proteins that have essential signaling functions in animal development. The N-terminal domain (ShhN) is also assigned to the group of LAS proteins (LAS = Lysostaphin type enzymes, D-Ala-D-Ala metalloproteases, Sonic Hedgehog), of which all members harbor a structurally well-defined Zn2+ center; however, it is remarkable that ShhN so far is the only LAS member without proven peptidase activity. Another unique feature of ShhN in the LAS group is a double-Ca2+ center close to the zinc. We have studied the effect of these calcium ions on ShhN structure, dynamics, and interactions. We find that the presence of calcium has a marked impact on ShhN properties, with the two calcium ions having different effects. The more strongly bound calcium ion significantly stabilizes the overall structure. Surprisingly, the binding of the second calcium ion switches the putative catalytic center from a state similar to LAS enzymes to a state that probably is catalytically inactive. We describe in detail the mechanics of the switch, including the effect on substrate co-ordinating residues and on the putative catalytic water molecule. The properties of the putative substrate binding site suggest that ShhN could degrade other ShhN molecules, e.g. by cleavage at highly conserved glycines in ShhN. To test experimentally the stability of ShhN against autodegradation, we compare two ShhN mutants in vitro: (1) a ShhN mutant unable to bind calcium but with putative catalytic center intact, and thus, according to our hypothesis, a constitutively active peptidase, and (2) a mutant carrying additionally mutation E177A, i.e., with the putative catalytically active residue knocked out. The in vitro results are consistent with ShhN being a cannibalistic zinc-peptidase. These experiments also reveal that the peptidase activity depends on pH.

  20. Intracellular calcium signals display an avalanche-like behavior over multiple lengthscales

    PubMed Central

    Lopez, Lucía; Piegari, Estefanía; Sigaut, Lorena; Ponce Dawson, Silvina

    2012-01-01

    Many natural phenomena display “self-organized criticality” (SOC), (Bak et al., 1987). This refers to spatially extended systems for which patterns of activity characterized by different lengthscales can occur with a probability density that follows a power law with pattern size. Differently from power laws at phase transitions, systems displaying SOC do not need the tuning of an external parameter. Here we analyze intracellular calcium (Ca2+) signals, a key component of the signaling toolkit of almost any cell type. Ca2+ signals can either be spatially restricted (local) or propagate throughout the cell (global). Different models have suggested that the transition from local to global signals is similar to that of directed percolation. Directed percolation has been associated, in turn, to the appearance of SOC. In this paper we discuss these issues within the framework of simple models of Ca2+ signal propagation. We also analyze the size distribution of local signals (“puffs”) observed in immature Xenopus Laevis oocytes. The puff amplitude distribution obtained from observed local signals is not Gaussian with a noticeable fraction of large size events. The experimental distribution of puff areas in the spatio-temporal record of the image has a long tail that is approximately log-normal. The distribution can also be fitted with a power law relationship albeit with a smaller goodness of fit. The power law behavior is encountered within a simple model that includes some coupling among individual signals for a wide range of parameter values. An analysis of the model shows that a global elevation of the Ca2+ concentration plays a major role in determining whether the puff size distribution is long-tailed or not. This suggests that Ca2+-clearing from the cytosol is key to determine whether IP3-mediated Ca2+ signals can display a SOC-like behavior or not. PMID:22969730

  1. Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes

    PubMed Central

    Oschmann, Franziska; Mergenthaler, Konstantin; Obermayer, Klaus

    2017-01-01

    Astrocytes integrate and process synaptic information and exhibit calcium (Ca2+) signals in response to incoming information from neighboring synapses. The generation of Ca2+ signals is mostly attributed to Ca2+ release from internal Ca2+ stores evoked by an elevated metabotropic glutamate receptor (mGluR) activity. Different experimental results associated the generation of Ca2+ signals to the activity of the glutamate transporter (GluT). The GluT itself does not influence the intracellular Ca2+ concentration, but it indirectly activates Ca2+ entry over the membrane. A closer look into Ca2+ signaling in different astrocytic compartments revealed a spatial separation of those two pathways. Ca2+ signals in the soma are mainly generated by Ca2+ release from internal Ca2+ stores (mGluR-dependent pathway). In astrocytic compartments close to the synapse most Ca2+ signals are evoked by Ca2+ entry over the plasma membrane (GluT-dependent pathway). This assumption is supported by the finding, that the volume ratio between the internal Ca2+ store and the intracellular space decreases from the soma towards the synapse. We extended a model for mGluR-dependent Ca2+ signals in astrocytes with the GluT-dependent pathway. Additionally, we included the volume ratio between the internal Ca2+ store and the intracellular compartment into the model in order to analyze Ca2+ signals either in the soma or close to the synapse. Our model results confirm the spatial separation of the mGluR- and GluT-dependent pathways along the astrocytic process. The model allows to study the binary Ca2+ response during a block of either of both pathways. Moreover, the model contributes to a better understanding of the impact of channel densities on the interaction of both pathways and on the Ca2+ signal. PMID:28192424

  2. Bone Is a Major Target of PTH/PTHrP Receptor Signaling in Regulation of Fetal Blood Calcium Homeostasis.

    PubMed

    Hirai, Takao; Kobayashi, Tatsuya; Nishimori, Shigeki; Karaplis, Andrew C; Goltzman, David; Kronenberg, Henry M

    2015-08-01

    The blood calcium concentration during fetal life is tightly regulated within a narrow range by highly interactive homeostatic mechanisms that include transport of calcium across the placenta and fluxes in and out of bone; the mechanisms of this regulation are poorly understood. Our findings that endochondral bone-specific PTH/PTHrP receptor (PPR) knockout (KO) mice showed significant reduction of fetal blood calcium concentration compared with that of control littermates at embryonic day 18.5 led us to focus on bone as a possibly major determinant of fetal calcium homeostasis. We found that the fetal calcium concentration of Runx2 KO mice was significantly higher than that of control littermates, suggesting that calcium flux into bone had a considerable influence on the circulating calcium concentration. Moreover, Runx2:PTH double mutant fetuses showed calcium levels similar to those of Runx2 KO mice, suggesting that part of the fetal hypocalcemia in PTH KO mice was caused by the increment of the mineralized bone mass allowed by the formation of osteoblasts. Finally, Rank:PTH double mutant mice had a blood calcium concentration even lower than that of the either Rank KO or PTH KO mice alone at embryonic day 18.5. These observations in our genetic models suggest that PTH/PTHrP receptor signaling in bones has a significant role of the regulation of fetal blood calcium concentration and that both placental transport and osteoclast activation contribute to PTH's hypercalcemic action. They also show that PTH-independent deposition of calcium in bone is the major controller of fetal blood calcium level.

  3. Leptin regulated calcium channels of neuropeptide Y and proopiomelanocortin neurons by activation of different signal pathways.

    PubMed

    Wang, J-H; Wang, F; Yang, M-J; Yu, D-F; Wu, W-N; Liu, J; Ma, L-Q; Cai, F; Chen, J-G

    2008-09-22

    The fat-derived hormone leptin regulates food intake and body weight in part by modulating the activity of neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC). To investigate the electrophysiological activity of these neurons and their responses to leptin, we recorded whole-cell calcium currents on NPY and POMC neurons in the ARC of rats, which we identified by morphologic features and immunocytochemical identification at the end of recording. Leptin decreased the peak amplitude of high voltage-activated calcium currents (I(HVA)) in the isolated neurons from ARC, which were subsequently shown to be immunoreactive for NPY. The inhibition was prevented by pretreatment with inhibitors of Janus kinase 2 (JAK2) and mitogen-activated protein kinases (MAPK). In contrast, leptin increased the amplitude of I(HVA) in POMC-containing neurons. The stimulations of I(HVA) were inhibited by blockers of JAK2 and phosphatidylino 3-kinase (PI3-k). Both of these effects were counteracted by the L-type calcium channel antagonist nifedipine, suggesting that L-type calcium channels were involved in the regulation induced by leptin. These data indicated that leptin exerted opposite effects on these two classes of neurons. Leptin directly inhibited I(HVA) in NPY neurons via leptin receptor (LEPR) -JAK2-MAPK pathways, whereas evoked I(HVA) in POMC neurons by LEPR-JAK2-PI3-k pathways. These neural pathways and intracellular signaling mechanisms may play key roles in regulating NPY and POMC neuron activity, anorectic action of leptin and, thereby, feeding.

  4. Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS)

    PubMed Central

    Sergé, Arnauld; Bernard, Anne-Marie; Phélipot, Marie-Claire; Bertaux, Nicolas; Fallet, Mathieu; Grenot, Pierre; Marguet, Didier; He, Hai-Tao; Hamon, Yannick

    2013-01-01

    We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells. PMID:24086124

  5. Small caliber arterial endothelial cells calcium signals elicited by PAR2 are preserved from endothelial dysfunction

    PubMed Central

    Hennessey, John C; Stuyvers, Bruno D; McGuire, John J

    2015-01-01

    Endothelial cell (EC)-dependent vasodilation by proteinase-activated receptor 2 (PAR2) is preserved in small caliber arteries in disease states where vasodilation by muscarinic receptors is decreased. In this study, we identified and characterized the PAR2-mediated intracellular calcium (Ca2+)-release mechanisms in EC from small caliber arteries in healthy and diseased states. Mesenteric arterial EC were isolated from PAR2 wild-type (WT) and null mice, after saline (controls) or angiotensin II (AngII) infusion, for imaging intracellular calcium and characterizing the calcium-release system by immunofluorescence. EC Ca2+ signals comprised two forms of Ca2+-release events that had distinct spatial-temporal properties and occurred near either the plasmalemma (peripheral) or center of EC. In healthy EC, PAR2-dependent increases in the densities and firing rates of both forms of Ca2+-release were abolished by inositol 1,4,5- trisphosphate receptor (IP3R) inhibitor, but partially reduced by transient potential vanilloid channels inhibitor ruthenium red (RR). Acetylcholine (ACh)-induced less overall Ca2+-release than PAR2 activation, but enhanced selectively the incidence of central events. PAR2-dependent Ca2+-activity, inhibitors sensitivities, IP3R, small- and intermediate-conductance Ca2+-activated potassium channels expressions were unchanged in EC from AngII WT. However, the same cells exhibited decreases in ACh-induced Ca2+-release, RR sensitivity, and endothelial nitric oxide synthase expression, indicating AngII-induced dysfunction was differentiated by receptor, Ca2+-release, and downstream targets of EC activation. We conclude that PAR2 and muscarinic receptors selectively elicit two elementary Ca2+ signals in single EC. PAR2-selective IP3R-dependent peripheral Ca2+-release mechanisms are identical between healthy and diseased states. Further study of PAR2-selective Ca2+-release for eliciting pathological and/or normal EC functions is warranted. PMID:25729579

  6. Graded boosting of synaptic signals by low-threshold voltage-activated calcium conductance

    PubMed Central

    Carbó Tano, Martín; Vilarchao, María Eugenia

    2015-01-01

    Low-threshold voltage-activated calcium conductances (LT-VACCs) play a substantial role in shaping the electrophysiological attributes of neurites. We have investigated how these conductances affect synaptic integration in a premotor nonspiking (NS) neuron of the leech nervous system. These cells exhibit an extensive neuritic tree, do not fire Na+-dependent spikes, but express an LT-VACC that was sensitive to 250 μM Ni2+ and 100 μM NNC 55-0396 (NNC). NS neurons responded to excitation of mechanosensory pressure neurons with depolarizing responses for which amplitude was a linear function of the presynaptic firing frequency. NNC decreased these synaptic responses and abolished the concomitant widespread Ca2+ signals. Coherent with the interpretation that the LT-VACC amplified signals at the postsynaptic level, this conductance also amplified the responses of NS neurons to direct injection of sinusoidal current. Synaptic amplification thus is achieved via a positive feedback in which depolarizing signals activate an LT-VACC that, in turn, boosts these signals. The wide distribution of LT-VACC could support the active propagation of depolarizing signals, turning the complex NS neuritic tree into a relatively compact electrical compartment. PMID:25972583

  7. Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium.

    PubMed

    Niu, Lijuan; Liao, Weibiao

    2016-01-01

    Hydrogen peroxide (H2O2), as a reactive oxygen species, is widely generated in many biological systems. It has been considered as an important signaling molecule that mediates various physiological and biochemical processes in plants. Normal metabolism in plant cells results in H2O2 generation, from a variety of sources. Also, it is now clear that nitric oxide (NO) and calcium (Ca(2+)) function as signaling molecules in plants. Both H2O2 and NO are involved in plant development and abiotic responses. A wide range of evidences suggest that NO could be generated under similar stress conditions and with similar kinetics as H2O2. The interplay between H2O2 and NO has important functional implications to modulate transduction processes in plants. Moreover, close interaction also exists between H2O2 and Ca(2+) in response to development and abiotic stresses in plants. Cellular responses to H2O2 and Ca(2+) signaling systems are complex. There is quite a bit of interaction between H2O2 and Ca(2+) signaling in responses to several stimuli. This review aims to introduce these evidences in our understanding of the crosstalk among H2O2, NO, and Ca(2+) signaling which regulates plant growth and development, and other cellular and physiological responses to abiotic stresses.

  8. Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium

    PubMed Central

    Niu, Lijuan; Liao, Weibiao

    2016-01-01

    Hydrogen peroxide (H2O2), as a reactive oxygen species, is widely generated in many biological systems. It has been considered as an important signaling molecule that mediates various physiological and biochemical processes in plants. Normal metabolism in plant cells results in H2O2 generation, from a variety of sources. Also, it is now clear that nitric oxide (NO) and calcium (Ca2+) function as signaling molecules in plants. Both H2O2 and NO are involved in plant development and abiotic responses. A wide range of evidences suggest that NO could be generated under similar stress conditions and with similar kinetics as H2O2. The interplay between H2O2 and NO has important functional implications to modulate transduction processes in plants. Moreover, close interaction also exists between H2O2 and Ca2+ in response to development and abiotic stresses in plants. Cellular responses to H2O2 and Ca2+ signaling systems are complex. There is quite a bit of interaction between H2O2 and Ca2+ signaling in responses to several stimuli. This review aims to introduce these evidences in our understanding of the crosstalk among H2O2, NO, and Ca2+ signaling which regulates plant growth and development, and other cellular and physiological responses to abiotic stresses. PMID:26973673

  9. A TRPC5-regulated calcium signaling pathway controls dendrite patterning in the mammalian brain.

    PubMed

    Puram, Sidharth V; Riccio, Antonio; Koirala, Samir; Ikeuchi, Yoshiho; Kim, Albert H; Corfas, Gabriel; Bonni, Azad

    2011-12-15

    Transient receptor potential (TRP) channels have been implicated as sensors of diverse stimuli in mature neurons. However, developmental roles for TRP channels in the establishment of neuronal connectivity remain largely unexplored. Here, we identify an essential function for TRPC5, a member of the canonical TRP subfamily, in the regulation of dendrite patterning in the mammalian brain. Strikingly, TRPC5 knockout mice harbor long, highly branched granule neuron dendrites with impaired dendritic claw differentiation in the cerebellar cortex. In vivo RNAi analyses suggest that TRPC5 regulates dendrite morphogenesis in the cerebellar cortex in a cell-autonomous manner. Correlating with impaired dendrite patterning in the cerebellar cortex, behavioral analyses reveal that TRPC5 knockout mice have deficits in gait and motor coordination. Finally, we uncover the molecular basis of TRPC5's function in dendrite patterning. We identify the major protein kinase calcium/calmodulin-dependent kinase II β (CaMKIIβ) as a critical effector of TRPC5 function in neurons. Remarkably, TRPC5 forms a complex specifically with CaMKIIβ, but not the closely related kinase CaMKIIα, and thereby induces the CaMKIIβ-dependent phosphorylation of the ubiquitin ligase Cdc20-APC at the centrosome. Accordingly, centrosomal CaMKIIβ signaling mediates the ability of TRPC5 to regulate dendrite morphogenesis in neurons. Our findings define a novel function for TRPC5 that couples calcium signaling to a ubiquitin ligase pathway at the centrosome and thereby orchestrates dendrite patterning and connectivity in the brain.

  10. The Impact of Vitamin D3 Supplementation on Mechanisms of Cell Calcium Signaling in Chronic Kidney Disease.

    PubMed

    Lajdova, Ingrid; Spustova, Viera; Oksa, Adrian; Kaderjakova, Zuzana; Chorvat, Dusan; Morvova, Marcela; Sikurova, Libusa; Marcek Chorvatova, Alzbeta

    2015-01-01

    Intracellular calcium concentration in peripheral blood mononuclear cells (PBMCs) of patients with chronic kidney disease (CKD) is significantly increased, and the regulatory mechanisms maintaining cellular calcium homeostasis are impaired. The purpose of this study was to examine the effect of vitamin D3 on predominant regulatory mechanisms of cell calcium homeostasis. The study involved 16 CKD stages 2-3 patients with vitamin D deficiency treated with cholecalciferol 7000-14000 IU/week for 6 months. The regulatory mechanisms of calcium signaling were studied in PBMCs and red blood cells. After vitamin D3 supplementation, serum concentration of 25(OH)D3 increased (P < 0.001) and [Ca(2+)]i decreased (P < 0.001). The differences in [Ca(2+)]i were inversely related to differences in 25(OH)D3 concentration (P < 0.01). Vitamin D3 supplementation decreased the calcium entry through calcium release activated calcium (CRAC) channels and purinergic P2X7 channels. The function of P2X7 receptors was changed in comparison with their baseline status, and the expression of these receptors was reduced. There was no effect of vitamin D3 on P2X7 pores and activity of plasma membrane Ca(2+)-ATPases. Vitamin D3 supplementation had a beneficial effect on [Ca(2+)]i decreasing calcium entry via CRAC and P2X7 channels and reducing P2X7 receptors expression.

  11. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan; Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zeng, Shaoqun; Luo, Qingming

    2010-05-01

    Astrocytes have been identified to actively contribute to brain functions through Ca2+ signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca2+) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca2+ signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca2+ wave throughout the network with reduced speed is induced, and intracellular Ca2+ oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P2Y receptors. Different patterns of Ca2+ elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca2+ signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca2+ signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.

  12. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser.

    PubMed

    Zhao, Yuan; Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zeng, Shaoqun; Luo, Qingming

    2010-01-01

    Astrocytes have been identified to actively contribute to brain functions through Ca(2+) signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca(2+)) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca(2+) signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca(2+) wave throughout the network with reduced speed is induced, and intracellular Ca(2+) oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P(2)Y receptors. Different patterns of Ca(2+) elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca(2+) signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca(2+) signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.

  13. Cdk9 T-loop Phosphorylation is Regulated by the Calcium Signaling Pathway

    PubMed Central

    Ramakrishnan, Rajesh; Rice, Andrew P.

    2011-01-01

    Eukaryotic RNA polymerase II transcriptional elongation is a tightly regulated process and is dependent upon positive transcription elongation factor-b (P-TEFb). The core P-TEFb complex is composed of Cdk9 and Cyclin T and is essential for the expression of most protein coding genes. Cdk9 kinase function is dependent upon phosphorylation of Thr186 in its T-loop. In this study, we examined kinases and signaling pathways that influence Cdk9 T-loop phosphorylation. Using an RNAi screen in HeLa cells, we found that Cdk9 T-loop phosphorylation is regulated by Calcium/Calmodulin- dependent kinase 1D (CaMK1D). Using small molecules inhibitors in HeLa cells and primary CD4+ T lymphocytes, we found that the Ca2+ signaling pathway is required for Cdk9 T-loop phosphorylation. Inhibition of Ca2+ signaling led to dephosphorylation of Thr186 on Cdk9. In reporter plasmid assays, inhibition of the Ca2+ signaling pathway repressed the PCNA promoter and HIV-1 Tat transactivation of the HIV-1 LTR, but not HTLV-1 Tax transactivation of the HTLV-1 LTR, suggesting that perturbation of the Ca2+ pathway and reduction of Cdk9 T-loop phosphorylation inhibits transcription units that have a rigorous requirement for P-TEFb function. PMID:21448926

  14. Engendering biased signalling from the calcium-sensing receptor for the pharmacotherapy of diverse disorders

    PubMed Central

    Leach, K; Sexton, P M; Christopoulos, A; Conigrave, A D

    2014-01-01

    The human calcium-sensing receptor (CaSR) is widely expressed in the body, where its activity is regulated by multiple orthosteric and endogenous allosteric ligands. Each ligand stabilizes a unique subset of conformational states, which enables the CaSR to couple to distinct intracellular signalling pathways depending on the extracellular milieu in which it is bathed. Differential signalling arising from distinct receptor conformations favoured by each ligand is referred to as biased signalling. The outcome of CaSR activation also depends on the cell type in which it is expressed. Thus, the same ligand may activate diverse pathways in distinct cell types. Given that the CaSR is implicated in numerous physiological and pathophysiological processes, it is an ideal target for biased ligands that could be rationally designed to selectively regulate desired signalling pathways in preferred cell types. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:24111791

  15. Cytosolic calcium and pH signaling in plants under salinity stress.

    PubMed

    Kader, Md Abdul; Lindberg, Sylvia

    2010-03-01

    Calcium is one of the essential nutrients for growth and development of plants. It is an important component of various structures in cell wall and membranes. Besides some fundamental roles under normal condition, calcium functions as a major secondary-messenger molecule in plants under different developmental cues and various stress conditions including salinity stress. Also changes in cytosolic pH, pH(cyt), either individually, or in coordination with changes in cytosolic Ca(2+) concentration, [Ca(2+)](cyt), evoke a wide range of cellular functions in plants including signal transduction in plant-defense responses against stresses. It is believed that salinity stress, like other stresses, is perceived at cell membrane, either extra cellular or intracellular, which then triggers an intracellular-signaling cascade including the generation of secondary messenger molecules like Ca(2+) and protons. The variety and complexity of Ca(2+) and pH signaling result from the nature of the stresses as well as the tolerance level of the plant species against that specific stress. The nature of changes in [Ca(2+)](cyt) concentration, in terms of amplitude, frequency and duration, is likely very important for decoding the specific downstream responses for salinity stress tolerance in planta. It has been observed that the signatures of [Ca(2+)](cyt) and pH differ in various studies reported so far depending on the techniques used to measure them, and also depending on the plant organs where they are measured, such as root, shoot tissues or cells. This review describes the recent advances about the changes in [Ca(2+)](cyt) and pH(cyt) at both cellular and whole-plant levels under salinity stress condition, and in various salinity-tolerant and -sensitive plant species.

  16. Serotonin Regulates Calcium Homeostasis in Lactation by Epigenetic Activation of Hedgehog Signaling

    PubMed Central

    Laporta, Jimena; Keil, Kimberly P.; Weaver, Samantha R.; Cronick, Callyssa M.; Prichard, Austin P.; Crenshaw, Thomas D.; Heyne, Galen W.; Vezina, Chad M.; Lipinski, Robert J.

    2014-01-01

    Calcium homeostasis during lactation is critical for maternal and neonatal health. We previously showed that nonneuronal/peripheral serotonin [5-hydroxytryptamine (5-HT)] causes the lactating mammary gland to synthesize and secrete PTHrP in an acute fashion. Here, using a mouse model, we found that genetic inactivation of tryptophan hydroxylase 1 (Tph1), which catalyzes the rate-limiting step in peripheral 5-HT synthesis, reduced circulating and mammary PTHrP expression, osteoclast activity, and maternal circulating calcium concentrations during the transition from pregnancy to lactation. Tph1 inactivation also reduced sonic hedgehog signaling in the mammary gland during lactation. Each of these deficiencies was rescued by daily injections of 5-hydroxy-L-tryptophan (an immediate precursor of 5-HT) to Tph1-deficient dams. We used immortalized mouse embryonic fibroblasts to demonstrate that 5-HT induces PTHrP through a sonic hedgehog-dependent signal transduction mechanism. We also found that 5-HT altered DNA methylation of the Shh gene locus, leading to transcriptional initiation at an alternate start site and formation of a variant transcript in mouse embryonic fibroblasts in vitro and in mammary tissue in vivo. These results support a new paradigm of 5-HT-mediated Shh regulation involving DNA methylation remodeling and promoter switching. In addition to having immediate implications for lactation biology, identification and characterization of a novel functional regulatory relationship between nonneuronal 5-HT, hedgehog signaling, and PTHrP offers new avenues for the study of these important factors in development and disease. PMID:25192038

  17. Modeling Local X-ROS and Calcium Signaling in the Heart.

    PubMed

    Limbu, Sarita; Hoang-Trong, Tuan M; Prosser, Benjamin L; Lederer, W Jonathan; Jafri, M Saleet

    2015-11-17

    Stretching single ventricular cardiac myocytes has been shown experimentally to activate transmembrane nicotinamide adenine dinucleotide phosphate oxidase type 2 to produce reactive oxygen species (ROS) and increase the Ca2+ spark rate in a process called X-ROS signaling. The increase in Ca2+ spark rate is thought to be due to an increase in ryanodine receptor type 2 (RyR2) open probability by direct oxidation of the RyR2 protein complex. In this article, a computational model is used to examine the regulation of ROS and calcium homeostasis by local, subcellular X-ROS signaling and its role in cardiac excitation-contraction coupling. To this end, a four-state RyR2 model was developed that includes an X-ROS-dependent RyR2 mode switch. When activated, [Ca2+]i-sensitive RyR2 open probability increases, and the Ca2+ spark rate changes in a manner consistent with experimental observations. This, to our knowledge, new model is used to study the transient effects of diastolic stretching and subsequent ROS production on RyR2 open probability, Ca2+ sparks, and the myoplasmic calcium concentration ([Ca2+]i) during excitation-contraction coupling. The model yields several predictions: 1) [ROS] is produced locally near the RyR2 complex during X-ROS signaling and increases by an order of magnitude more than the global ROS signal during myocyte stretching; 2) X-ROS activation just before the action potential, corresponding to ventricular filling during diastole, increases the magnitude of the Ca2+ transient; 3) during prolonged stretching, the X-ROS-induced increase in Ca2+ spark rate is transient, so that long-sustained stretching does not significantly increase sarcoplasmic reticulum Ca2+ leak; and 4) when the chemical reducing capacity of the cell is decreased, activation of X-ROS signaling increases sarcoplasmic reticulum Ca2+ leak and contributes to global oxidative stress, thereby increases the possibility of arrhythmia. The model provides quantitative information not

  18. Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures.

    PubMed

    Singh, Ajay V; Raymond, Michael; Pace, Fabiano; Certo, Anthony; Zuidema, Jonathan M; McKay, Christopher A; Gilbert, Ryan J; Lu, X Lucas; Wan, Leo Q

    2015-01-19

    Following central nervous system (CNS) injury, activated astrocytes form glial scars, which inhibit axonal regeneration, leading to long-term functional deficits. Engineered nanoscale scaffolds guide cell growth and enhance regeneration within models of spinal cord injury. However, the effects of micro-/nanosize scaffolds on astrocyte function are not well characterized. In this study, a high throughput (HTP) microscale platform was developed to study astrocyte cell behavior on micropatterned surfaces containing 1 μm spacing grooves with a depth of 250 or 500 nm. Significant changes in cell and nuclear elongation and alignment on patterned surfaces were observed, compared to on flat surfaces. The cytoskeleton components (particularly actin filaments and focal adhesions) and nucleus-centrosome axis were aligned along the grooved direction as well. More interestingly, astrocytes on micropatterned surfaces showed enhanced mitochondrial activity with lysosomes localized at the lamellipodia of the cells, accompanied by enhanced adenosine triphosphate (ATP) release and calcium activities. These data indicate that the lysosome-mediated ATP exocytosis and calcium signaling may play an important role in astrocytic responses to substrate topology. These new findings have furthered our understanding of the biomechanical regulation of astrocyte cell-substrate interactions, and may benefit the optimization of scaffold design for CNS healing.

  19. Calcium signatures and signaling in cytosol and organelles of tobacco cells induced by plant defense elicitors.

    PubMed

    Manzoor, Hamid; Chiltz, Annick; Madani, Siham; Vatsa, Parul; Schoefs, Benoît; Pugin, Alain; Garcia-Brugger, Angela

    2012-06-01

    Calcium signatures induced by two elicitors of plant defense reactions, namely cryptogein and oligogalacturonides, were monitored at the subcellular level, using apoaequorin-transformed Nicotiana tabacum var Xanthi cells, in which the apoaequorin calcium sensor was targeted either to cytosol, mitochondria or chloroplasts. Our study showed that both elicitors induced specific Ca(2+) signatures in each compartment, with the most striking difference relying on duration. Common properties also emerged from the analysis of Ca(2+) signatures: both elicitors induced a biphasic cytosolic [Ca(2+)] elevation together with a single mitochondrial [Ca(2+)] elevation concomitant with the first cytosolic [Ca(2+)] peak. In addition, both elicitors induced a chloroplastic [Ca(2+)] elevation peaking later in comparison to cytosolic [Ca(2+)] elevation. In cryptogein-treated cells, pharmacological studies indicated that IP(3) should play an important role in Ca(2+) signaling contrarily to cADPR or nitric oxide, which have limited or no effect on [Ca(2+)] variations. Our data also showed that, depending on [Ca(2+)] fluxes at the plasma membrane, cryptogein triggered a mitochondrial respiration increase and affected excess energy dissipation mechanisms in chloroplasts. Altogether the results indicate that cryptogein profoundly impacted cell functions at many levels, including organelles.

  20. Use-dependent control of presynaptic calcium signalling at central synapses

    PubMed Central

    Scott, Ricardo

    2007-01-01

    Voltage-gated Ca2+ channels activated by action potentials evoke Ca2+ entry into presynaptic terminals thus briefly distorting the resting Ca2+ concentration. When this happens, a number of processes are initiated to re-establish the Ca2+ equilibrium. During the post-spike period, the increased Ca2+ concentration could enhance the presynaptic Ca2+ signalling. Some of the mechanisms contributing to presynaptic Ca2+ dynamics involve endogenous Ca2+ buffers, Ca2+ stores, mitochondria, the sodium–calcium exchanger, extraterminal Ca2+ depletion and presynaptic receptors. Additionally, subthreshold presynaptic depolarization has been proposed to have an effect on release of neurotransmitters through a mechanism involving changes in resting Ca2+. Direct evidence for the role of any of these participants in shaping the presynaptic Ca2+ dynamics comes from direct recordings of giant presynaptic terminals and from fluorescent Ca2+ imaging of axonal boutons. Here, some of this evidence is presented and discussed. PMID:17523936

  1. The Calcium Ion Is a Second Messenger in the Nitrate Signaling Pathway of Arabidopsis.

    PubMed

    Riveras, Eleodoro; Alvarez, José M; Vidal, Elena A; Oses, Carolina; Vega, Andrea; Gutiérrez, Rodrigo A

    2015-10-01

    Understanding how plants sense and respond to changes in nitrogen availability is the first step toward developing strategies for biotechnological applications, such as improvement of nitrogen use efficiency. However, components involved in nitrogen signaling pathways remain poorly characterized. Calcium is a second messenger in signal transduction pathways in plants, and it has been indirectly implicated in nitrate responses. Using aequorin reporter plants, we show that nitrate treatments transiently increase cytoplasmic Ca(2+) concentration. We found that nitrate also induces cytoplasmic concentration of inositol 1,4,5-trisphosphate. Increases in inositol 1,4,5-trisphosphate and cytoplasmic Ca(2+) levels in response to nitrate treatments were blocked by U73122, a pharmacological inhibitor of phospholipase C, but not by the nonfunctional phospholipase C inhibitor analog U73343. In addition, increase in cytoplasmic Ca(2+) levels in response to nitrate treatments was abolished in mutants of the nitrate transceptor NITRATE TRANSPORTER1.1/Arabidopsis (Arabidopsis thaliana) NITRATE TRANSPORTER1 PEPTIDE TRANSPORTER FAMILY6.3. Gene expression of nitrate-responsive genes was severely affected by pretreatments with Ca(2+) channel blockers or phospholipase C inhibitors. These results indicate that Ca(2+) acts as a second messenger in the nitrate signaling pathway of Arabidopsis. Our results suggest a model where NRT1.1/AtNPF6.3 and a phospholipase C activity mediate the increase of Ca(2+) in response to nitrate required for changes in expression of prototypical nitrate-responsive genes.

  2. Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour

    PubMed Central

    Vogel, David; Nicolis, Stamatios C.; Perez-Escudero, Alfonso; Nanjundiah, Vidyanand; Sumpter, David J. T.; Dussutour, Audrey

    2015-01-01

    Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: ‘slow–regular–social’, ‘fast–regular–social’ and ‘fast–irregular–asocial’. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms. PMID:26609088

  3. Proline induces calcium-mediated oxidative burst and salicylic acid signaling.

    PubMed

    Chen, Jiugeng; Zhang, Yueqin; Wang, Cuiping; Lü, Weitao; Jin, Jing Bo; Hua, Xuejun

    2011-05-01

    Although free proline accumulation is a well-documented phenomenon in many plants in response to a variety of environmental stresses, and is proposed to play protective roles, high intracellular proline content, by either exogenous application or endogenous over-production, in the absence of stresses, is found to be inhibitory to plant growth. We have shown here that exogenous application of proline significantly induced intracellular Ca(2+) accumulation in tobacco and calcium-dependent ROS production in Arabidopsis seedlings, which subsequently enhanced salicylic acid (SA) synthesis and PR genes expression. This suggested that proline can promote a reaction similar to hypersensitive response during pathogen infection. Other amino acids, such as glutamate, but not arginine and phenylalanine, were also found to be capable of inducing PR gene expression. In addition, proline at concentration as low as 0.5 mM could induce PR gene expression. However, proline could not induce the expression of PDF1.2 gene, the marker gene for jasmonic acid signaling pathway. Furthermore, proline-induced SA production is mediated by NDR1-dependent signaling pathway, but not that mediated by PAD4. Our data provide evidences that exogenous proline, and probably some other amino acids can specifically induce SA signaling and defense response.

  4. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling

    PubMed Central

    Peng, Yaqin; Liu, Jiane; Miao, Fengqin; Zhang, Jianqiong

    2015-01-01

    MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade. PMID:26263390

  5. Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom.

    PubMed

    Kashir, Junaid; Deguchi, Ryusaku; Jones, Celine; Coward, Kevin; Stricker, Stephen A

    2013-10-01

    Fertilization causes mature oocytes or eggs to increase their concentrations of intracellular calcium ions (Ca²⁺) in all animals that have been examined, and such Ca²⁺ elevations, in turn, provide key activating signals that are required for non-parthenogenetic development. Several lines of evidence indicate that the Ca²⁺ transients produced during fertilization in mammals and other taxa are triggered by soluble factors that sperm deliver into oocytes after gamete fusion. Thus, for a broad-based analysis of Ca²⁺ dynamics during fertilization in animals, this article begins by summarizing data on soluble sperm factors in non-mammalian species, and subsequently reviews various topics related to a sperm-specific phospholipase C, called PLCζ, which is believed to be the predominant activator of mammalian oocytes. After characterizing initiation processes that involve sperm factors or alternative triggering mechanisms, the spatiotemporal patterns of Ca²⁺ signals in fertilized oocytes or eggs are compared in a taxon-by-taxon manner, and broadly classified as either a single major transient or a series of repetitive oscillations. Both solitary and oscillatory types of fertilization-induced Ca²⁺ signals are typically propagated as global waves that depend on Ca²⁺ release from the endoplasmic reticulum in response to increased concentrations of inositol 1,4,5-trisphosphate (IP₃). Thus, for taxa where relevant data are available, upstream pathways that elevate intraoocytic IP3 levels during fertilization are described, while other less-common modes of producing Ca²⁺ transients are also examined. In addition, the importance of fertilization-induced Ca²⁺ signals for activating development is underscored by noting some major downstream effects of these signals in various animals.

  6. Tight mitochondrial control of calcium and exocytotic signals in chromaffin cells at embryonic life.

    PubMed

    Vestring, Stefan; Fernández-Morales, José C; Méndez-López, Iago; C Musial, Diego; G de Diego, Antonio-Miguel; Padín, J Fernando; G García, Antonio

    2015-12-01

    Calcium buffering by mitochondria plays a relevant physiological function in the regulation of Ca(2+) and exocytotic signals in mature chromaffin cells (CCs) from various adult mammals. Whether a similar or different role of mitochondrial Ca(2+) buffering is present in immature CCs at early life has not been explored. Here we present a comparative study in rat embryonic CCs and rat mother CCs, of various physiological parameters that are known to be affected by mitochondrial Ca(2+) buffering during cell activation. We found that the clearance of cytosolic Ca(2+) transients ([Ca(2+)]c) elicited by high K(+) was 7-fold faster in embryo CCs compared to mother CCs. This strongly suggests that at embryonic life, the mitochondria play a more significant role in the clearance of [Ca(2+)]c loads compared to adult life. Consistent with this view are the following results concerning the transient suppression of mitochondrial Ca(2+) buffering by protonophore FCCP, in embryonic CCs compared to mother CCs: (i) faster and greater inactivation of inward calcium currents, (ii) higher K(+)-elicited [Ca(2+)]c transients with 25-fold faster clearance, (iii) higher increase of basal catecholamine release and (iv) higher potentiation of K(+)-evoked secretion. These pronounced differences could be explained by two additional features (embryo versus mother CCs): (a) slower recovery of mitochondrial resting membrane potential after the application of a transient FCCP pulse and (b) greater relative density of the mitochondria in the cytosol. This tighter control by the mitochondria of Ca(2+) and exocytotic signals may be relevant to secure a healthy catecholamine secretory response at early life.

  7. Spatiotemporal Properties of Intracellular Calcium Signaling in Osteocytic and Osteoblastic Cell Networks under Fluid Flow

    PubMed Central

    Jing, Da; Lu, X. Lucas; Luo, Erping; Sajda, Paul; Leong, Pui L; Guo, X. Edward

    2013-01-01

    Mechanical stimuli can trigger intracellular calcium (Ca2+) responses in osteocytes and osteoblasts. Successful construction of bone cell networks necessitates more elaborate and systematic analysis for the spatiotemporal properties of Ca2+ signaling in the networks. In the present study, an unsupervised algorithm based on independent component analysis (ICA) was employed to extract the Ca2+ signals of bone cells in the network. We demonstrated that the ICA-based technology could yield higher signal fidelity than the manual region of interest (ROI) method. Second, the spatiotemporal properties of Ca2+ signaling in osteocyte-like MLO-Y4 and osteoblast-like MC3T3-E1 cell networks under laminar and steady fluid flow stimulation were systematically analyzed and compared. MLO-Y4 cells exhibited much more active Ca2+ transients than MC3T3-E1 cells, evidenced by more Ca2+ peaks, less time to the 1st peak and less time between the 1st and 2nd peaks. With respect to temporal properties, MLO-Y4 cells demonstrated higher spike rate and Ca2+ oscillating frequency. The spatial intercellular synchronous activities of Ca2+ signaling in MLO-Y4 cell networks were higher than those in MC3T3-E1 cell networks and also negatively correlated with the intercellular distance, revealing faster Ca2+ wave propagation in MLO-Y4 cell networks. Our findings show that the unsupervised ICA-based technique results in more sensitive and quantitative signal extraction than traditional ROI analysis, with the potential to be widely employed in Ca2+ signaling extraction in the cell networks. The present study also revealed a dramatic spatiotemporal difference in Ca2+ signaling for osteocytic and osteoblastic cell networks in processing the mechanical stimulus. The higher intracellular Ca2+ oscillatory behaviors and intercellular coordination of MLO-Y4 cells provided further evidences that osteocytes may behave as the major mechanical sensor in bone modeling and remodeling processes. PMID:23328496

  8. Calcium spike-mediated digital signaling increases glutamate output at the visual threshold of retinal bipolar cells

    PubMed Central

    Lipin, Mikhail Y.

    2014-01-01

    Most retinal bipolar cells (BCs) transmit visual input from photoreceptors to ganglion cells using graded potentials, but some also generate calcium or sodium spikes. Sodium spikes are thought to increase temporal precision of light-evoked BC signaling; however, the role of calcium spikes in BCs is not fully understood. Here we studied how calcium spikes and graded responses mediate neurotransmitter release from Mb-type BCs, known to produce both. In dark-adapted goldfish retinal slices, light induced spikes in 40% of the axon terminals of intact Mbs; in the rest, light generated graded responses. These light-evoked membrane potentials were used to depolarize axotomized Mb terminals where depolarization-evoked calcium current (ICa) and consequent exocytosis-associated membrane capacitance increases (ΔCm) could be precisely measured. When evoked by identical dim light intensities, spiking responses transferred more calcium (QCa) and triggered larger exocytosis with higher efficiency (ΔCm/QCa) than graded potentials. QCa was translated into exocytosis linearly when transferred with spikes and supralinearly when transferred with graded responses. At the Mb output (ΔCm), spiking responses coded light intensity with numbers and amplitude whereas graded responses coded with amplitude, duration, and steepness. Importantly, spiking responses saturated exocytosis within scotopic range but graded potentials did not. We propose that calcium spikes in Mbs increase signal input-output ratio by boosting Mb glutamate release at threshold intensities. Therefore, spiking Mb responses are suitable to transfer low-light-intensity signals to ganglion cells with higher gain, whereas graded potentials signal for light over a wider range of intensities at the Mb output. PMID:25339710

  9. Calcium Signaling of Lysophosphatidylethanolamine through LPA1 in Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Lee, Jung-Min; Park, Soo-Jin; Im, Dong-Soon

    2017-01-01

    Lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, has been reported to be an intercellular signaling molecule. LPE mobilizes intracellular Ca2+ through G-protein-coupled receptor (GPCR) in some cells types. However, GPCRs for lysophosphatidic acid (LPA) were not implicated in the LPE-mediated activities in LPA GPCR overexpression systems or in SK-OV3 ovarian cancer cells. In the present study, in human SH-SY5Y neuroblastoma cells, experiments with LPA1 antagonists showed LPE induced intracellular Ca2+ increases in an LPA1 GPCR-dependent manner. Furthermore, LPE increased intracellular Ca2+ through pertussis-sensitive G proteins, edelfosine-sensitive-phospholipase C, 2-APB-sensitive IP3 receptors, Ca2+ release from intracellular Ca2+ stores, and subsequent Ca2+ influx across plasma membranes, and LPA acted on LPA1 and LPA2 receptors to induce Ca2+ response in a 2-APB-sensitive and insensitive manner. These findings suggest novel involvements for LPE and LPA in calcium signaling in human SH-SY5Y neuroblastoma cells. PMID:27302965

  10. Calcium Signaling of Lysophosphatidylethanolamine through LPA1 in Human SH-SY5Y Neuroblastoma Cells.

    PubMed

    Lee, Jung-Min; Park, Soo-Jin; Im, Dong-Soon

    2017-03-01

    Lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, has been reported to be an intercellular signaling molecule. LPE mobilizes intracellular Ca(2+) through G-protein-coupled receptor (GPCR) in some cells types. However, GPCRs for lysophosphatidic acid (LPA) were not implicated in the LPE-mediated activities in LPA GPCR overexpression systems or in SK-OV3 ovarian cancer cells. In the present study, in human SH-SY5Y neuroblastoma cells, experiments with LPA1 antagonists showed LPE induced intracellular Ca(2+) increases in an LPA1 GPCR-dependent manner. Furthermore, LPE increased intracellular Ca(2+) through pertussis-sensitive G proteins, edelfosine-sensitive-phospholipase C, 2-APB-sensitive IP3 receptors, Ca(2+) release from intracellular Ca(2+) stores, and subsequent Ca(2+) influx across plasma membranes, and LPA acted on LPA1 and LPA2 receptors to induce Ca(2+) response in a 2-APB-sensitive and insensitive manner. These findings suggest novel involvements for LPE and LPA in calcium signaling in human SH-SY5Y neuroblastoma cells.

  11. Internal calcium release and activation of sea urchin eggs by cGMP are independent of the phosphoinositide signaling pathway.

    PubMed Central

    Whalley, T; McDougall, A; Crossley, I; Swann, K; Whitaker, M

    1992-01-01

    We show that microinjecting cyclic GMP (cGMP) into unfertilized sea urchin eggs activates them by stimulating a rise in the intracellular free calcium ion concentration ([Ca2+]i). The increase in [Ca2+]i is similar in both magnitude and duration to the transient that activates the egg at fertilization. It is due to mobilization of calcium from intracellular stores but is not prevented by the inositol trisphosphate (InsP3) antagonist heparin. Furthermore, cGMP does not stimulate the eggs Na+/H+ antiport when the [Ca2+]i transient is blocked by the calcium chelator bis-(O-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA), suggesting that cGMP does not activate eggs by interacting with the their phosphoinositide signaling pathway. However, the [Ca2+]i increase and activation are prevented in eggs in which the InsP3-sensitive calcium stores have been emptied by the prior microinjection of the InsP3 analogue inositol 1,4,5-trisphosphorothioate. These data indicate that cGMP activates eggs by stimulating the release of calcium from an InsP3-sensitive calcium store via a novel, though unidentified, route independent of the InsP3 receptor. PMID:1320962

  12. The endocytic receptor protein LRP also mediates neuronal calcium signaling via N-methyl-d-aspartate receptors

    PubMed Central

    Bacskai, B. J.; Xia, M. Q.; Strickland, D. K.; Rebeck, G. W.; Hyman, B. T.

    2000-01-01

    The low density lipoprotein receptor-related protein (LRP) is an endocytic receptor that is a member of the low density lipoprotein receptor family. We report that the LRP ligand, activated α2-macroglobulin (α2M*), induces robust calcium influx in cultured primary neurons, but not in nonneuronal LRP-containing cells in the same culture. The calcium influx is mediated through N-methyl-d-aspartate receptor channels, which explains the neuron specificity of the response. Microapplication of α2M* leads to a localized response at the site of application that dissipates rapidly, suggesting that the calcium signal is temporally and spatially discrete. Calcium influx to α2M* is blocked by the physiological LRP inhibitor, receptor-associated protein. Bivalent antibodies to the extracellular domain of LRP, but not Fab fragments of the same antibody, cause calcium influx, indicating that the response is specific to LRP and may require dimerization of the receptor. Thus, LRP is an endocytic receptor with a novel signaling role. PMID:11016955

  13. Computational modeling of calcium signaling from the nanoscale to multicellular systems

    NASA Astrophysics Data System (ADS)

    Ullah, Ghanim

    Calcium signaling is one of the most important signaling mechanisms controlling e.g. the contraction of muscle cells, the release of neurotransmitter from neurons and astrocytes, transcription inside the nucleus and metabolic processes in liver and pancreas [8, 44, 36]. Due to the general importance in cell biology, Ca2+ signals of a variety of forms have been the subject of much recent experimental research. A recent and particularly powerful approach towards the understanding of Ca2+ signaling is the combination of highly resolved fluorescent imaging methods and detailed mathematical modeling. Models for Ca2+ signaling are probably the most advanced and realistic modes in all areas of biological physics. Hence theoretical predictions are quantitative in nature and allow direct comparison with experiments. Ca2+ signaling patterns exhibit a hierarchical structure varying from single-channel release events (10's of nanometers) to Ca2+ waves sweeping over entire organs like the liver to globally orchestrate the efficient release of enzymes [48]. This multi-scale organization renders it an ideal tool for studying basic concepts of pattern formation, especially since access to the most important experimental parameters is given. The aim of this dissertation is to develop mathematical models that quantitatively describe the characteristics of elementary Ca2+ elements (called Ca2+ -puffs) on the nano-scale as well as the organization of global waves and oscillations on the cell and organ scale. We used oocytes, eggs and astrocytes as model cells for our theoretical studies. Particularly on the microscopic scale we report significant progress in modeling Ca 2+ release events that are accurate in time course and spatial shape. Experimental investigations have revealed recently that Ca 2+ signaling differentiates during the development of oocytes into mature eggs. The fertilization specific Ca2+ signal in mature eggs is characterized by a fast rise of intracellular Ca2+ and

  14. Impact of Acrylamide on Calcium Signaling and Cytoskeletal Filaments in Testes From F344 Rat.

    PubMed

    Recio, Leslie; Friedman, Marvin; Marroni, Dennis; Maynor, Timothy; Chepelev, Nikolai L

    Acrylamide (AA) at high exposure levels is neurotoxic, induces testicular toxicity, and increases dominant lethal mutations in rats. RNA-sequencing in testes was used to identify differentially expressed genes (DEG), explore AA-induced pathway perturbations that could contribute to AA-induced testicular toxicity and then used to derive a benchmark dose (BMD). Male F344/DuCrl rats were administered 0.0, 0.5, 1.5, 3.0, 6.0, or 12.0 mg AA/kg bw/d in drinking water for 5, 15, or 31 days. The experimental design used exposure levels that spanned and exceeded the exposure levels used in the rat dominant lethal, 2-generation reproductive toxicology, and cancer bioassays. The time of sample collection was based on previous studies that developed gene expression-based BMD. At 12.0 mg/kg, there were 38, 33, and 65 DEG ( P value <.005; fold change >1.5) in the testes after 5, 15, or 31 days of exposure, respectively. At 31 days, there was a dose-dependent increase in the number of DEG, and at 12.0 mg/kg/d the top three functional clusters affected by AA exposure were actin filament organization, response to calcium ion, and regulation of cell proliferation. The BMD lower 95% confidence limit using DEG ranged from 1.8 to 6.8 mg/kg compared to a no-observed-adverse-effect-level of 2.0 mg/kg/d for male reproductive toxicity. These results are consistent with the known effects of AA on calcium signaling and cytoskeletal actin filaments leading to neurotoxicity and suggest that AA can cause rat dominant lethal mutations by these same mechanisms leading to impaired chromosome segregation during cell division.

  15. PMCA2 VIA PSD-95 CONTROLS CALCIUM SIGNALING BY α7-CONTAINING NICOTINIC ACETYLCHOLINE RECEPTORS ON ASPINY INTERNEURONS

    PubMed Central

    Gomez-Varela, David; Schmidt, Manuela; Schoellerman, Jeff; Peters, Eric C.; Berg, Darwin K.

    2012-01-01

    Local control of calcium concentration within neurons is critical for signaling and regulation of synaptic communication in neural circuits. How local control can be achieved in the absence of physical compartmentalization is poorly understood. Challenging examples are provided by nicotinic acetylcholine receptors that contain α7 nicotinic receptor subunits (α7-nAChRs). These receptors are highly permeable to calcium and are concentrated on aspiny dendrites of interneurons which lack obvious physical compartments for constraining calcium diffusion. Using functional proteomics on rat brain, we show that α7-nAChRs are associated with the membrane calcium pump PMCA2. Analysis of α7-nAChR function in hippocampal interneurons in culture shows that PMCA2 activity limits the duration of calcium elevations produced by the receptors. Unexpectedly, PMCA2 inhibition triggers rapid calcium-dependent loss of α7-nAChR clusters. This extreme regulatory response is mediated by CaMKII, involves proteasome activity, depends on the second intracellular loop of α7-nAChR subunits, and is specific in that it does not alter two other classes of calcium-permeable ionotropic receptors on the same neurons. A critical link is provided by the scaffold protein PSD-95, which is associated with α7-nAChRs and constrains their mobility as revealed by single-particle tracking on neurons. The PSD-95 link is required for PMCA2-mediated removal of α7-nAChR clusters. This three-component combination of PMCA2/PSD-95/α7-nAChR offers a novel mechanism for tight control of calcium dynamics in neurons. PMID:22593058

  16. Retinoic Acid Regulates Calcium Signaling to Promote Mouse Ovarian Granulosa Cell Proliferation.

    PubMed

    Demczuk, Michael; Huang, Huiya; White, Carl; Kipp, Jingjing L

    2016-09-01

    Normal development of ovarian follicles is critical for female reproduction and endocrine function. We have identified retinoic acid (RA) and the RA-degrading enzyme CYP26B1 as regulators of ovarian follicle development and showed that RA and a CYP26 inhibitor stimulated ovarian granulosa cell proliferation. The mechanism underpinning RA-dependent proliferation, however, is not known. The current study was designed to examine the role of intracellular calcium (Ca(2+)) signaling in mediating the effects of RA on primary mouse granulosa cell proliferation. In single-cell Ca(2+) imaging experiments, treatment of cultured granulosa cells with RA increased the steady-state Ca(2+) content of the endoplasmic reticulum (ER) stores. This correlated with increased store-operated Ca(2+) entry (SOCE) and enhanced inositol 1,4,5-trisphosphate receptor (IP3R)-dependent Ca(2+) release. In proliferation assays, RA treatment or Cyp26b1 knockdown stimulated proliferation, whereas Cyp26b1 overexpression inhibited proliferation. When RA was given together with 2-aminoethoxydiphenylborane (2-APB), a blocker of IP3R-dependent ER Ca(2+) release and SOCE, with xestospongin C, a selective IP3R- receptor antagonist, or with 3,5-bis (trifluoromethyl)pyrazole (BTP-2), a specific SOCE blocker, the stimulatory effect of RA on cell proliferation was abolished. Further investigation showed that treatment with 2-APB or BTP-2 inhibited RA induction of RA response element (RARE) activation in granulosa cells, confirming an important role for Ca(2+) signaling in mediating RA actions. Overall, these data support a model in which RA regulates ovarian follicle development by stimulating granulosa cell proliferation and that this stimulatory effect is at least in part driven by the modulation of Ca(2+) signaling.

  17. Calcium influx-mediated signaling is required for complete mouse egg activation.

    PubMed

    Miao, Yi-Liang; Stein, Paula; Jefferson, Wendy N; Padilla-Banks, Elizabeth; Williams, Carmen J

    2012-03-13

    Mammalian fertilization is accompanied by oscillations in egg cytoplasmic calcium (Ca(2+)) concentrations that are critical for completion of egg activation. These oscillations are initiated by Ca(2+) release from inositol 1,4,5-trisphosphate (IP(3))-sensitive intracellular stores. We tested the hypothesis that Ca(2+) influx across the plasma membrane was a requisite component of egg activation signaling, and not simply a Ca(2+) source for store repletion. Using intracytoplasmic sperm injection (ICSI) and standard in vitro fertilization (IVF), we found that Ca(2+) influx was not required to initiate resumption of meiosis II. However, even if multiple oscillations in intracellular Ca(2+) occurred, in the absence of Ca(2+) influx, the fertilized eggs failed to emit the second polar body, resulting in formation of three pronuclei. Additional experiments using the Ca(2+) chelator, BAPTA/AM, demonstrated that Ca(2+) influx is sufficient to support polar body emission and pronucleus formation after only a single sperm-induced Ca(2+) transient, whereas BAPTA/AM-treated ICSI or fertilized eggs cultured in Ca(2+)-free medium remained arrested in metaphase II. Inhibition of store-operated Ca(2+) entry had no effect on ICSI-induced egg activation, so Ca(2+) influx through alternative channels must participate in egg activation signaling. Ca(2+) influx appears to be upstream of CaMKIIγ activity because eggs can be parthenogenetically activated with a constitutively active form of CaMKIIγ in the absence of extracellular Ca(2+). These results suggest that Ca(2+) influx at fertilization not only maintains Ca(2+) oscillations by replenishing Ca(2+) stores, but also activates critical signaling pathways upstream of CaMKIIγ that are required for second polar body emission.

  18. Dexamethasone-induced cardiac deterioration is associated with both calcium handling abnormalities and calcineurin signaling pathway activation.

    PubMed

    de Salvi Guimarães, Fabiana; de Moraes, Wilson Max Almeida Monteiro; Bozi, Luis Henrique Marchesi; Souza, Pâmela R; Antonio, Ednei Luiz; Bocalini, Danilo Sales; Tucci, Paulo José Ferreira; Ribeiro, Daniel Araki; Brum, Patricia Chakur; Medeiros, Alessandra

    2017-01-01

    Dexamethasone is a potent and widely used anti-inflammatory and immunosuppressive drug. However, recent evidences suggest that dexamethasone cause pathologic cardiac remodeling, which later impairs cardiac function. The mechanism behind the cardiotoxic effect of dexamethasone is elusive. The present study aimed to verify if dexamethasone-induced cardiotoxicity would be associated with changes in the cardiac net balance of calcium handling protein and calcineurin signaling pathway activation. Wistar rats (~400 g) were treated with dexamethasone (35 µg/g) in drinking water for 15 days. After dexamethasone treatment, we analyzed cardiac function, cardiomyocyte diameter, cardiac fibrosis, and the expression of proteins involved in calcium handling and calcineurin signaling pathway. Dexamethasone-treated rats showed several cardiovascular abnormalities, including elevated blood pressure, diastolic dysfunction, cardiac fibrosis, and cardiomyocyte apoptosis. Regarding the expression of proteins involved in calcium handling, dexamethasone increased phosphorylation of phospholamban at threonine 17, reduced protein levels of Na(+)/Ca(2+) exchanger, and had no effect on protein expression of Serca2a. Protein levels of NFAT and GATA-4 were increased in both cytoplasmic and nuclear faction. In addition, dexamethasone increased nuclear protein levels of calcineurin. Altogether our findings suggest that dexamethasone causes pathologic cardiac remodeling and diastolic dysfunction, which is associated with impaired calcium handling and calcineurin signaling pathway activation.

  19. Chondrocyte calcium signaling in response to fluid flow is regulated by matrix adhesion in 3-D alginate scaffolds.

    PubMed

    Degala, Satish; Zipfel, Warren R; Bonassar, Lawrence J

    2011-01-01

    The interaction between chondrocytes and their surrounding extracellular matrix plays an important role in regulating cartilage metabolism in response to environmental cues. This study characterized the role of cell adhesion on the calcium signaling response of chondrocytes to fluid flow. Bovine chondrocytes were suspended in alginate hydrogels functionalized with RGD at concentrations of 0-400μM. The hydrogels were perfused and the calcium signaling response of the cells was measured over a range of fluid velocities from 0 to 68μm/s. Attachment to RGD-alginate doubled the sensitivity of chondrocytes to flows in the range of 8-13μm/s, but at higher fluid velocities, the contribution of cell adhesion to the observed calcium signaling response was no longer apparent. The enhanced sensitivity to flow was dependent on the density of RGD-ligand present in the scaffolds. The RGD-enhanced sensitivity to flow was completely inhibited by the addition of soluble RGD which acted as a competitive inhibitor. The results of this study indicate a role for matrix adhesion in regulating chondrocyte response to fluid flow through a calcium dependent mechanism.

  20. The GAR-3 muscarinic receptor cooperates with calcium signals to regulate muscle contraction in the Caenorhabditis elegans pharynx.

    PubMed Central

    Steger, Katherine A; Avery, Leon

    2004-01-01

    Muscarinic acetylcholine receptors regulate the activity of neurons and muscle cells through G-protein-coupled cascades. Here, we identify a pathway through which the GAR-3 muscarinic receptor regulates both membrane potential and excitation-contraction coupling in the Caenorhabditis elegans pharyngeal muscle. GAR-3 signaling is enhanced in worms overexpressing gar-3 or lacking GPB-2, a G-protein beta-subunit involved in RGS-mediated inhibition of G(o)alpha- and G(q)alpha-linked pathways. High levels of signaling through GAR-3 inhibit pharyngeal muscle relaxation and impair feeding--but do not block muscle repolarization--when worms are exposed to arecoline, a muscarinic agonist. Loss of gar-3 function results in shortened action potentials and brief muscle contractions in the pharyngeal terminal bulb. High levels of calcium entry through voltage-gated channels also impair terminal bulb relaxation and sensitize worms to the toxic effects of arecoline. Mutation of gar-3 reverses this sensitivity, suggesting that GAR-3 regulates calcium influx or calcium-dependent processes. Because the effects of GAR-3 signaling on membrane depolarization and muscle contraction can be separated, we conclude that GAR-3 regulates multiple calcium-dependent processes in the C. elegans pharyngeal muscle. PMID:15238517

  1. Modeling of [Formula: see text]-mediated calcium signaling in vascular endothelial cells induced by fluid shear stress and ATP.

    PubMed

    Li, Long-Fei; Xiang, Cheng; Qin, Kai-Rong

    2015-10-01

    The calcium signaling plays a vital role in flow-dependent vascular endothelial cell (VEC) physiology. Variations in fluid shear stress and ATP concentration in blood vessels can activate dynamic responses of cytosolic-free [Formula: see text] through various calcium channels on the plasma membrane. In this paper, a novel dynamic model has been proposed for transient receptor potential vanilloid 4 [Formula: see text]-mediated intracellular calcium dynamics in VECs induced by fluid shear stress and ATP. Our model includes [Formula: see text] signaling pathways through P2Y receptors and [Formula: see text] channels (indirect mechanism) and captures the roles of the [Formula: see text] compound channels in VEC [Formula: see text] signaling in response to fluid shear stress (direct mechanism). In particular, it takes into account that the [Formula: see text] compound channels are regulated by intracellular [Formula: see text] and [Formula: see text] concentrations. The simulation studies have demonstrated that the dynamic responses of calcium concentration produced by the proposed model correlate well with the existing experimental observations. We also conclude from the simulation studies that endogenously released ATP may play an insignificant role in the process of intracellular [Formula: see text] response to shear stress.

  2. Wnt11-R signaling regulates a calcium sensitive EMT event essential for dorsal fin development of Xenopus

    PubMed Central

    Garriock, Robert J.; Krieg, Paul A.

    2007-01-01

    In the frog embryo, a sub-population of trunk neural crest (NC) cells undergoes a dorsal route of migration to contribute to the mesenchyme in the core of the dorsal fin. Here we show that a second population of cells, originally located in the dorsomedial region of the somite, also contributes to the fin mesenchyme. We find that the frog orthologue of Wnt11 (Wnt11-R) is expressed in both the NC and somite cell populations that migrate into the fin matrix. Wnt11-R is expressed prior to migration and persists in the mesenchymal cells after they have distributed throughout the fin. Loss of function studies demonstrate that Wnt11-R activity is required for an epithelial to mesenchymal transformation (EMT) event that precedes migration of cells into the fin matrix. In Wnt11-R depleted embryos, the absence of fin core cells leads to defective dorsal fin development and to collapse of the fin structure. Experiments using small molecule inhibitors indicate that dorsal migration of fin core cells depends on calcium signaling through calcium/calmodulin-dependent kinase II (CaMKII). In Wnt11-R depleted embryos, normal migration of NC cells and dorsal somite cells into the fin and normal fin development can be rescued by stimulation of calcium release. These studies are consistent with a model in which Wnt11-R signaling, via a downstream calcium pathway, regulates fin cell migration and, more generally, indicates a role for non-canonical Wnt signaling in regulation of EMT. PMID:17240368

  3. Amyloid β Peptide Enhances RANKL-Induced Osteoclast Activation through NF-κB, ERK, and Calcium Oscillation Signaling

    PubMed Central

    Li, Shangfu; Yang, Bu; Teguh, Dian; Zhou, Lin; Xu, Jiake; Rong, Limin

    2016-01-01

    Osteoporosis and Alzheimer’s disease (AD) are common chronic degenerative disorders which are strongly associated with advanced age. We have previously demonstrated that amyloid beta peptide (Aβ), one of the pathological hallmarks of AD, accumulated abnormally in osteoporotic bone specimens in addition to having an activation effect on osteoclast (Bone 2014,61:164-75). However, the underlying molecular mechanisms remain unclear. Activation of NF-κB, extracellular signal-regulated kinase (ERK) phosphorylates, and calcium oscillation signaling pathways by receptor activator NF-κB ligand (RANKL) plays a pivotal role in osteoclast activation. Targeting this signaling to modulate osteoclast function has been a promising strategy for osteoclast-related diseases. In this study, we investigated the effects of Aβ on RANKL-induced osteoclast signaling pathways in vitro. In mouse bone marrow monocytes (BMMs), Aβ exerted no effect on RANKL-induced osteoclastogenesis but promoted osteoclastic bone resorption. In molecular levels, Aβ enhanced NF-κB activity and IκB-α degradation, activated ERK phosphorylation and stimulated calcium oscillation, thus leading to upregulation of NFAT-c1 expression during osteoclast activation. Taken together, our data demonstrate that Aβ enhances RANKL-induced osteoclast activation through IκB-α degradation, ERK phosphorylation, and calcium oscillation signaling pathways and that Aβ may be a promising agent in the treatment of osteoclast-related disease such as osteoporosis. PMID:27735865

  4. Calcium and bone disease

    PubMed Central

    Blair, Harry C.; Robinson, Lisa J.; Huang, Christopher L.-H.; Sun, Li; Friedman, Peter A.; Schlesinger, Paul H.; Zaidi, Mone

    2013-01-01

    Calcium transport and calcium signaling are of basic importance in bone cells. Bone is the major store of calcium and a key regulatory organ for calcium homeostasis. Bone, in major part, responds to calcium-dependent signals from the parathyroids and via vitamin D metabolites, although bone retains direct response to extracellular calcium if parathyroid regulation is lost. Improved understanding of calcium transporters and calcium-regulated cellular processes has resulted from analysis of genetic defects, including several defects with low or high bone mass. Osteoblasts deposit calcium by mechanisms including phosphate and calcium transport with alkalinization to absorb acid created by mineral deposition; cartilage calcium mineralization occurs by passive diffusion and phosphate production. Calcium mobilization by osteoclasts is mediated by acid secretion. Both bone forming and bone resorbing cells use calcium signals as regulators of differentiation and activity. This has been studied in more detail in osteoclasts, where both osteoclast differentiation and motility are regulated by calcium. PMID:21674636

  5. Agonist-Biased Signaling via Proteinase Activated Receptor-2: Differential Activation of Calcium and Mitogen-Activated Protein Kinase Pathways

    PubMed Central

    Ramachandran, Rithwik; Mihara, Koichiro; Mathur, Maneesh; Rochdi, Moulay Driss; Bouvier, Michel; DeFea, Kathryn

    2009-01-01

    We evaluated the ability of different trypsin-revealed tethered ligand (TL) sequences of rat proteinase-activated receptor 2 (rPAR2) and the corresponding soluble TL-derived agonist peptides to trigger agonist-biased signaling. To do so, we mutated the proteolytically revealed TL sequence of rPAR2 and examined the impact on stimulating intracellular calcium transients and mitogen-activated protein (MAP) kinase. The TL receptor mutants, rPAR2-Leu37Ser38, rPAR2-Ala37–38, and rPAR2-Ala39–42 were compared with the trypsin-revealed wild-type rPAR2 TL sequence, S37LIGRL42—. Upon trypsin activation, all constructs stimulated MAP kinase signaling, but only the wt-rPAR2 and rPAR2-Ala39–42 triggered calcium signaling. Furthermore, the TL-derived synthetic peptide SLAAAA-NH2 failed to cause PAR2-mediated calcium signaling but did activate MAP kinase, whereas SLIGRL-NH2 triggered both calcium and MAP kinase signaling by all receptors. The peptides AAIGRL-NH2 and LSIGRL-NH2 triggered neither calcium nor MAP kinase signals. Neither rPAR2-Ala37–38 nor rPAR2-Leu37Ser38 constructs recruited β-arrestins-1 or -2 in response to trypsin stimulation, whereas both β-arrestins were recruited to these mutants by SLIGRL-NH2. The lack of trypsin-triggered β-arrestin interactions correlated with impaired trypsin-activated TL-mutant receptor internalization. Trypsin-stimulated MAP kinase activation by the TL-mutated receptors was not blocked by inhibitors of Gαi (pertussis toxin), Gαq [N-cyclohexyl-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-c]pyrazole-3-carboxamide (GP2A)], Src kinase [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], or the epidermal growth factor (EGF) receptor [4-(3′-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478)], but was inhibited by the Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2HCl (Y27362). The data indicate that the proteolytically revealed TL sequence(s) and the mode

  6. Calcium Signaling During Meiotic Cell Cycle Regulation and Apoptosis in Mammalian Oocytes.

    PubMed

    Tiwari, Meenakshi; Prasad, Shilpa; Shrivastav, Tulsidas G; Chaube, Shail K

    2017-05-01

    Calcium (Ca(++) ) is one of the major signal molecules that regulate various aspects of cell functions including cell cycle progression, arrest, and apoptosis in wide variety of cells. This review summarizes current knowledge on the differential roles of Ca(++) in meiotic cell cycle resumption, arrest, and apoptosis in mammalian oocytes. Release of Ca(++) from internal stores and/or Ca(++) influx from extracellular medium causes moderate increase of intracellular Ca(++) ([Ca(++) ]i) level and reactive oxygen species (ROS). Increase of Ca(++) as well as ROS levels under physiological range trigger maturation promoting factor (MPF) destabilization, thereby meiotic resumption from diplotene as well as metaphase-II (M-II) arrest in oocytes. A sustained increase of [Ca(++) ]i level beyond physiological range induces generation of ROS sufficient enough to cause oxidative stress (OS) in aging oocytes. The increased [Ca(++) ]i triggers Fas ligand-mediated oocyte apoptosis. Further, OS triggers mitochondria-mediated oocyte apoptosis in several mammalian species. Thus, Ca(++) exerts differential roles on oocyte physiology depending upon its intracellular concentration. A moderate increase of [Ca(++) ]i as well as ROS mediate spontaneous resumption of meiosis from diplotene as well as M-II arrest, while their high levels cause meiotic cell cycle arrest and apoptosis by operating both mitochondria- as well as Fas ligand-mediated apoptotic pathways. Indeed, Ca(++) regulates cellular physiology by modulating meiotic cell cycle and apoptosis in mammalian oocytes. J. Cell. Physiol. 232: 976-981, 2017. © 2016 Wiley Periodicals, Inc.

  7. Analysing calcium signalling of cells under high shear flows using discontinuous dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Soffe, Rebecca; Baratchi, Sara; Tang, Shi-Yang; Nasabi, Mahyar; McIntyre, Peter; Mitchell, Arnan; Khoshmanesh, Khashayar

    2015-07-01

    Immobilisation of cells is an important feature of many cellular assays, as it enables the physical/chemical stimulation of cells; whilst, monitoring cellular processes using microscopic techniques. Current approaches for immobilising cells, however, are hampered by time-consuming processes, the need for specific antibodies or coatings, and adverse effects on cell integrity. Here, we present a dielectrophoresis-based approach for the robust immobilisation of cells, and analysis of their responses under high shear flows. This approach is quick and label-free, and more importantly, minimises the adverse effects of electric field on the cell integrity, by activating the field for a short duration of 120 s, just long enough to immobilise the cells, after which cell culture media (such as HEPES) is flushed through the platform. In optimal conditions, at least 90% of the cells remained stably immobilised, when exposed to a shear stress of 63 dyn/cm2. This approach was used to examine the shear-induced calcium signalling of HEK-293 cells expressing a mechanosensitive ion channel, transient receptor potential vaniloid type 4 (TRPV4), when exposed to the full physiological range of shear stress.

  8. Nuclear BK Channels Regulate Gene Expression via the Control of Nuclear Calcium Signaling

    PubMed Central

    Li, Boxing; Jie, Wei; Huang, Lianyan; Wei, Peng; Li, Shuji; Luo, Zhengyi; Friedman, Allyson K.; Meredith, Andrea L.; Han, Ming-Hu; Zhu, Xin-Hong; Gao, Tian-Ming

    2014-01-01

    Ion channels are essential for the regulation of neuronal functions. The significance of plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal ion channels in the regulation of Ca2+ is well established. In contrast, surprisingly less is known about the function of ion channels on the nuclear envelope (NE). Here we demonstrate the presence of functional large-conductance, calcium-activated potassium channels (BK channels) on the NE of rodent hippocampal neurons. Functionally blockade of nuclear BK channels (nBK channels) induces NE-derived Ca2+ release, nucleoplasmic Ca2+ elevation, and cAMP response element binding protein (CREB)-dependent transcription. More importantly, blockade of nBK channels regulates nuclear Ca2+-sensitive gene expression and promotes dendritic arborization in a nuclear Ca2+-dependent manner. These results suggest that nBK channel functions as a molecular linker between neuronal activity and nuclear Ca2+ to convey the signals from synapse to nucleus and is a new modulator for synaptic activity-dependent neuronal functions at the NE level. PMID:24952642

  9. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling.

    PubMed

    Shih, Yu-Ru V; Hwang, YongSung; Phadke, Ameya; Kang, Heemin; Hwang, Nathaniel S; Caro, Eduardo J; Nguyen, Steven; Siu, Michael; Theodorakis, Emmanuel A; Gianneschi, Nathan C; Vecchio, Kenneth S; Chien, Shu; Lee, Oscar K; Varghese, Shyni

    2014-01-21

    Synthetic matrices emulating the physicochemical properties of tissue-specific ECMs are being developed at a rapid pace to regulate stem cell fate. Biomaterials containing calcium phosphate (CaP) moieties have been shown to support osteogenic differentiation of stem and progenitor cells and bone tissue formation. By using a mineralized synthetic matrix mimicking a CaP-rich bone microenvironment, we examine a molecular mechanism through which CaP minerals induce osteogenesis of human mesenchymal stem cells with an emphasis on phosphate metabolism. Our studies show that extracellular phosphate uptake through solute carrier family 20 (phosphate transporter), member 1 (SLC20a1) supports osteogenic differentiation of human mesenchymal stem cells via adenosine, an ATP metabolite, which acts as an autocrine/paracrine signaling molecule through A2b adenosine receptor. Perturbation of SLC20a1 abrogates osteogenic differentiation by decreasing intramitochondrial phosphate and ATP synthesis. Collectively, this study offers the demonstration of a previously unknown mechanism for the beneficial role of CaP biomaterials in bone repair and the role of phosphate ions in bone physiology and regeneration. These findings also begin to shed light on the role of ATP metabolism in bone homeostasis, which may be exploited to treat bone metabolic diseases.

  10. A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signalling

    PubMed Central

    Eyckmans, J; Roberts, S J; Schrooten, J; Luyten, F P

    2010-01-01

    Abstract In this study, we investigated a clinically relevant model of in vivo ectopic bone formation utilizing human periosteum derived cells (HPDCs) seeded in a Collagraft™ carrier and explored the mechanisms by which this process is driven. Bone formation occurred after eight weeks when a minimum of one million HPDCs was loaded on Collagraft™ carriers and implanted subcutaneously in NMRI nu/nu mice. De novo bone matrix, mainly secreted by the HPDCs, was found juxta-proximal of the calcium phosphate (CaP) granules suggesting that CaP may have triggered the ‘osteoinductive program’. Indeed, removal of the CaP granules by ethylenediaminetetraacetic acid decalcification prior to cell seeding and implantation resulted in loss of bone formation. In addition, inhibition of endogenous bone morphogenetic protein and Wnt signalling by overexpression of the secreted antagonists Noggin and Frzb, respectively, also abrogated osteoinduction. Proliferation of the engrafted HPDCs was strongly reduced in the decalcified scaffolds or when seeded with adenovirus-Noggin/Frzb transduced HPDCs indicating that cell division of the engrafted HPDCs is required for the direct bone formation cascade. These data suggest that this model of bone formation is similar to that observed during physiological intramembranous bone development and may be of importance when investigating tissue engineering strategies. PMID:19538476

  11. Atorvastatin calcium inhibits phenotypic modulation of PDGF-BB-induced VSMCs via down-regulation the Akt signaling pathway.

    PubMed

    Chen, Shuang; Liu, Baoqin; Kong, Dehui; Li, Si; Li, Chao; Wang, Huaqin; Sun, Yingxian

    2015-01-01

    Plasticity of vascular smooth muscle cells (VSMCs) plays a central role in the onset and progression of proliferative vascular diseases. In adult tissue, VSMCs exist in a physiological contractile-quiescent phenotype, which is defined by lack of the ability of proliferation and migration, while high expression of contractile marker proteins. After injury to the vessel, VSMC shifts from a contractile phenotype to a pathological synthetic phenotype, associated with increased proliferation, migration and matrix secretion. It has been demonstrated that PDGF-BB is a critical mediator of VSMCs phenotypic switch. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methyl-glutaryl l coenzyme A (HMG-CoA) reductase, exhibits various protective effects against VSMCs. In this study, we investigated the effects of atorvastatin calcium on phenotype modulation of PDGF-BB-induced VSMCs and the related intracellular signal transduction pathways. Treatment of VSMCs with atorvastatin calcium showed dose-dependent inhibition of PDGF-BB-induced proliferation. Atorvastatin calcium co-treatment inhibited the phenotype modulation and cytoskeleton rearrangements and improved the expression of contractile phenotype marker proteins such as α-SM actin, SM22α and calponin in comparison with PDGF-BB alone stimulated VSMCs. Although Akt phosphorylation was strongly elicited by PDGF-BB, Akt activation was attenuated when PDGF-BB was co-administrated with atorvastatin calcium. In conclusion, atorvastatin calcium inhibits phenotype modulation of PDGF-BB-induced VSMCs and activation of the Akt signaling pathway, indicating that Akt might play a vital role in the modulation of phenotype.

  12. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR{sub 1} activation

    SciTech Connect

    Blanc-Brude, Olivier P. . E-mail: olivier.blanc-brude@larib.inserm.fr; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-03-10

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR{sub 1}). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR{sub 1}-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR{sub 1}-specific agonists and inhibitors were used to demonstrate that PAR{sub 1} mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR{sub 1} and not PAR{sub 2}. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.

  13. Possible Signaling Pathways Mediating Neuronal Calcium Sensor-1-Dependent Spatial Learning and Memory in Mice

    PubMed Central

    Nakamura, Tomoe Y.; Nakao, Shu; Nakajo, Yukako; Takahashi, Jun C.; Wakabayashi, Shigeo; Yanamoto, Hiroji

    2017-01-01

    Intracellular Ca2+ signaling regulates diverse functions of the nervous system. Many of these neuronal functions, including learning and memory, are regulated by neuronal calcium sensor-1 (NCS-1). However, the pathways by which NCS-1 regulates these functions remain poorly understood. Consistent with the findings of previous reports, we revealed that NCS-1 deficient (Ncs1-/-) mice exhibit impaired spatial learning and memory function in the Morris water maze test, although there was little change in their exercise activity, as determined via treadmill-analysis. Expression of brain-derived neurotrophic factor (BDNF; a key regulator of memory function) and dopamine was significantly reduced in the Ncs1-/- mouse brain, without changes in the levels of glial cell-line derived neurotrophic factor or nerve growth factor. Although there were no gross structural abnormalities in the hippocampi of Ncs1-/- mice, electron microscopy analysis revealed that the density of large dense core vesicles in CA1 presynaptic neurons, which release BDNF and dopamine, was decreased. Phosphorylation of Ca2+/calmodulin-dependent protein kinase II-α (CaMKII-α, which is known to trigger long-term potentiation and increase BDNF levels, was significantly reduced in the Ncs1-/- mouse brain. Furthermore, high voltage electric potential stimulation, which increases the levels of BDNF and promotes spatial learning, significantly increased the levels of NCS-1 concomitant with phosphorylated CaMKII-α in the hippocampus; suggesting a close relationship between NCS-1 and CaMKII-α. Our findings indicate that NCS-1 may regulate spatial learning and memory function at least in part through activation of CaMKII-α signaling, which may directly or indirectly increase BDNF production. PMID:28122057

  14. A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death

    PubMed Central

    Wang, Z; Liu, D; Varin, A; Nicolas, V; Courilleau, D; Mateo, P; Caubere, C; Rouet, P; Gomez, A-M; Vandecasteele, G; Fischmeister, R; Brenner, C

    2016-01-01

    Although cardiac cytosolic cyclic 3′,5′-adenosine monophosphate (cAMP) regulates multiple processes, such as beating, contractility, metabolism and apoptosis, little is known yet on the role of this second messenger within cardiac mitochondria. Using cellular and subcellular approaches, we demonstrate here the local expression of several actors of cAMP signaling within cardiac mitochondria, namely a truncated form of soluble AC (sACt) and the exchange protein directly activated by cAMP 1 (Epac1), and show a protective role for sACt against cell death, apoptosis as well as necrosis in primary cardiomyocytes. Upon stimulation with bicarbonate (HCO3−) and Ca2+, sACt produces cAMP, which in turn stimulates oxygen consumption, increases the mitochondrial membrane potential (ΔΨm) and ATP production. cAMP is rate limiting for matrix Ca2+ entry via Epac1 and the mitochondrial calcium uniporter and, as a consequence, prevents mitochondrial permeability transition (MPT). The mitochondrial cAMP effects involve neither protein kinase A, Epac2 nor the mitochondrial Na+/Ca2+ exchanger. In addition, in mitochondria isolated from failing rat hearts, stimulation of the mitochondrial cAMP pathway by HCO3− rescued the sensitization of mitochondria to Ca2+-induced MPT. Thus, our study identifies a link between mitochondrial cAMP, mitochondrial metabolism and cell death in the heart, which is independent of cytosolic cAMP signaling. Our results might have implications for therapeutic prevention of cell death in cardiac pathologies. PMID:27100892

  15. Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design

    SciTech Connect

    Akerboom, Jasper; Velez Rivera, Jonathan D.; Rodriguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Hernandez, Hector H.; Tian, Lin; Hires, S. Andrew; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.

    2009-03-16

    The genetically encoded calcium indicator GCaMP2 shows promise for neural network activity imaging, but is currently limited by low signal-to-noise ratio. We describe x-ray crystal structures as well as solution biophysical and spectroscopic characterization of GCaMP2 in the calcium-free dark state, and in two calcium-bound bright states: a monomeric form that dominates at intracellular concentrations observed during imaging experiments and an unexpected domain-swapped dimer with decreased fluorescence. This series of structures provides insight into the mechanism of Ca{sup 2+}-induced fluorescence change. Upon calcium binding, the calmodulin (CaM) domain wraps around the M13 peptide, creating a new domain interface between CaM and the circularly permuted enhanced green fluorescent protein domain. Residues from CaM alter the chemical environment of the circularly permuted enhanced green fluorescent protein chromophore and, together with flexible inter-domain linkers, block solvent access to the chromophore. Guided by the crystal structures, we engineered a series of GCaMP2 point mutants to probe the mechanism of GCaMP2 function and characterized one mutant with significantly improved signal-to-noise. The mutation is located at a domain interface and its effect on sensor function could not have been predicted in the absence of structural data.

  16. 1alpha,25(OH)2-vitamin D3 membrane-initiated calcium signaling modulates exocytosis and cell survival.

    PubMed

    Xiaoyu, Zhang; Payal, Biswas; Melissa, Owraghi; Zanello, Laura P

    2007-03-01

    1alpha,25(OH)(2)-vitamin D(3) (1,25D) is considered a bone anabolic hormone. 1,25D actions leading to bone formation involve gene transactivation, on one hand, and modulation of cytoplasmic signaling, on the other. In both cases, a functional vitamin D receptor (VDR) appears to be required. Here we study 1,25D-stimulated calcium signaling that initiates at the cell membrane and leads to exocytosis of bone materials and increased osteoblast survival. We found that rapid 1,25D-induction of exocytosis couples to cytoplasmic calcium increase in osteoblastic ROS 17/2.8 cells. In addition, we found that elevation of cytoplasmic calcium concentration is involved in 1,25D anti-apoptotic effects via Akt activation in ROS 17/2.8 cells and non-osteoblastic CV-1 cells. In both cases, 1,25D-stimulated elevation of intracellular calcium is due in part to activation of L-type Ca(2+) channels. We conclude that 1,25D bone anabolic effects that involve increased intracellular Ca(2+) concentration in osteoblasts can be explained at two levels. At the single-cell level, 1,25D promotes Ca(2+)-dependent exocytotic activities. At the tissue level, 1,25D protects osteoblasts from apoptosis via a Ca(2+)-dependent Akt pathway. Our studies contribute to the understanding of the molecular basis of bone diseases characterized by decreased bone formation and mineralization.

  17. Decoding of calcium signal through calmodulin: calmodulin-binding proteins in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many abiotic and biotic stimuli such as heat, cold, drought, salt, light, wind, touch, wounding, symbionts and pathogens as well as growth, developmental and hormonal cues can quickly induce cytosolic calcium increases. Calmodulin, the most thoroughly studied calcium sensor, mediates interpretation...

  18. Imaging intracellular Ca²⁺ signals in striatal astrocytes from adult mice using genetically-encoded calcium indicators.

    PubMed

    Jiang, Ruotian; Haustein, Martin D; Sofroniew, Michael V; Khakh, Baljit S

    2014-11-19

    Astrocytes display spontaneous intracellular Ca(2+) concentration fluctuations ([Ca(2+)]i) and in several settings respond to neuronal excitation with enhanced [Ca(2+)]i signals. It has been proposed that astrocytes in turn regulate neurons and blood vessels through calcium-dependent mechanisms, such as the release of signaling molecules. However, [Ca(2+)]i imaging in entire astrocytes has only recently become feasible with genetically encoded calcium indicators (GECIs) such as the GCaMP series. The use of GECIs in astrocytes now provides opportunities to study astrocyte [Ca(2+)]i signals in detail within model microcircuits such as the striatum, which is the largest nucleus of the basal ganglia. In the present report, detailed surgical methods to express GECIs in astrocytes in vivo, and confocal imaging approaches to record [Ca(2+)]i signals in striatal astrocytes in situ, are described. We highlight precautions, necessary controls and tests to determine if GECI expression is selective for astrocytes and to evaluate signs of overt astrocyte reactivity. We also describe brain slice and imaging conditions in detail that permit reliable [Ca(2+)]i imaging in striatal astrocytes in situ. The use of these approaches revealed the entire territories of single striatal astrocytes and spontaneous [Ca(2+)]i signals within their somata, branches and branchlets. The further use and expansion of these approaches in the striatum will allow for the detailed study of astrocyte [Ca(2+)]i signals in the striatal microcircuitry.

  19. Imaging Intracellular Ca2+ Signals in Striatal Astrocytes from Adult Mice Using Genetically-encoded Calcium Indicators

    PubMed Central

    Jiang, Ruotian; Haustein, Martin D.; Sofroniew, Michael V.; Khakh, Baljit S.

    2014-01-01

    Astrocytes display spontaneous intracellular Ca2+ concentration fluctuations ([Ca2+]i) and in several settings respond to neuronal excitation with enhanced [Ca2+]i signals. It has been proposed that astrocytes in turn regulate neurons and blood vessels through calcium-dependent mechanisms, such as the release of signaling molecules. However, [Ca2+]i imaging in entire astrocytes has only recently become feasible with genetically encoded calcium indicators (GECIs) such as the GCaMP series. The use of GECIs in astrocytes now provides opportunities to study astrocyte [Ca2+]i signals in detail within model microcircuits such as the striatum, which is the largest nucleus of the basal ganglia. In the present report, detailed surgical methods to express GECIs in astrocytes in vivo, and confocal imaging approaches to record [Ca2+]i signals in striatal astrocytes in situ, are described. We highlight precautions, necessary controls and tests to determine if GECI expression is selective for astrocytes and to evaluate signs of overt astrocyte reactivity. We also describe brain slice and imaging conditions in detail that permit reliable [Ca2+]i imaging in striatal astrocytes in situ. The use of these approaches revealed the entire territories of single striatal astrocytes and spontaneous [Ca2+]i signals within their somata, branches and branchlets. The further use and expansion of these approaches in the striatum will allow for the detailed study of astrocyte [Ca2+]i signals in the striatal microcircuitry. PMID:25490346

  20. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    PubMed

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early

  1. Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms

    PubMed Central

    Hasbi, Ahmed; O’Dowd, Brian F.; George, Susan R.

    2009-01-01

    The repertoire of signal transduction pathways activated by dopamine in brain includes the increase of intracellular calcium. However the mechanism(s) by which dopamine activated this important second messenger system was unknown. Although we showed that activation of the D5 dopamine receptor increased calcium concentrations, the restricted anatomic distribution of this receptor made this unlikely to be the major mechanism in brain. We have identified novel heteromeric dopamine receptor complexes that are linked to calcium signaling. The calcium pathway activated through the D1–D2 receptor heteromer involved coupling to Gq, through phospholipase C and IP3 receptors to result in a rise in intracellular calcium. The calcium rise activated through the D2–D5 receptor heteromer involved a small rise in intracellular calcium through the Gq pathway that triggered a store operated channel mediated influx of extracellular calcium. These novel receptor heteromeric complexes, for the first time, establish the link between dopamine action and rapid calcium signaling. PMID:19897420

  2. In vivo photoacoustic neuronal imaging of odor-evoked calcium signals in the drosophila brain (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiying; Rao, Bin; Rong, Haoyang; Raman, Baranidharan; Wang, Lihong V.

    2016-03-01

    Neural scientists can benefit greatly from imaging tools that can penetrate thick brain tissue. Compared with traditional optical microscopy methods, photoacoustic imaging can beat the optical diffusion limit and achieve such deep tissue imaging with high spatial resolution. In this study, we used an optical-resolution photoacoustic microscope to image the odor-evoked neuronal activities in a drosophila model. Drosophila brain neurons stably express GCaMP5G, a calcium-sensitive fluorescent protein whose optical absorption coefficient changes with calcium influx during action potentials. We recorded an ~20% odor-evoked fractional photoacoustic signal increase at all depths of the drosophila brain in vivo, with and without removal of the brain cuticle, at a recording rate of 1 kHz. Our results were confirmed by concurrent fluorescent recordings. Furthermore, by performing fast 2D scanning, we imaged the antenna lobe region, which is of particular interest in neuroscience, at a volumetric rate of ~1 Hz with a sub-neuron resolution of 3 μm. Unlike optical imaging, which requires surgical removal of the scattering brain cuticle, our photoacoustic system can image through the cuticle and measure neuronal signals of the whole drosophila brain without invasive surgery, enabling minimal disturbance to the animal's behaviors. In conclusion, we have demonstrated photoacoustic imaging of calcium signals in drosophila brains for the first time. Utilizing the deep imaging capability of photoacoustic tomography, our methods could potentially be extended to in vivo imaging of neuronal activities from deep brains in other animal models.

  3. Modulation of action potential and calcium signaling by levetiracetam in rat sensory neurons.

    PubMed

    Ozcan, Mete; Ayar, Ahmet

    2012-06-01

    Levetiracetam (LEV), a new anticonvulsant agent primarily used to treat epilepsy, has been used in pain treatment but the cellular mechanism of this action remains unclear. This study aimed to investigate effects of LEV on the excitability and membrane depolarization-induced calcium signaling in isolated rat sensory neurons using the whole-cell patch clamp and fura 2-based ratiometric Ca(2+)-imaging techniques. Dorsal root ganglia (DRG) were excised from neonatal rats, and cultured following enzymatic and mechanical dissociation. Under current clamp conditions, acute application of LEV (30 µM, 100 µM and 300 µM) significantly increased input resistance and caused the membrane to hyperpolarize from resting membrane potential in a dose-dependent manner. Reversal potentials of action potential (AP) after hyperpolarising amplitudes were shifted to more negative, toward to potassium equilibrium potentials, after application of LEV. It also caused a decrease in number of APs in neurons fired multiple APs in response to prolonged depolarization. Fura-2 fluorescence Ca(2+) imaging protocols revealed that HiK(+) (30 mM)-induced intracellular free Ca(2+) ([Ca(2+)](i)) was inhibited to 97.8 ± 4.6% (n = 17), 92.6 ± 4.8% (n = 17, p < 0.01) and 89.1 ± 5.1% (n = 18, p < 0.01) after application of 30 µM, 100 µM and 300 µM LEV (respectively), without any significant effect on basal levels of [Ca(2+)](i). This is the first evidence for the effect of LEV on the excitability of rat sensory neurons through an effect which might involve activation of potassium channels and inhibition of entry of Ca(2+), providing new insights for cellular mechanism(s) of LEV in pain treatment modalities.

  4. Moderate increases in intracellular calcium activate neuroprotective signals in hippocampal neurons.

    PubMed

    Bickler, P E; Fahlman, C S

    2004-01-01

    Although large increases in neuronal intracellular calcium concentrations ([Ca(2+)](i)) are lethal, moderate increases in [Ca(2+)](i) of 50-200 nM may induce immediate or long-term tolerance of ischemia or other stresses. In neurons in rat hippocampal slice cultures, we determined the relationship between [Ca(2+)](i), cell death, and Ca(2+)-dependent neuroprotective signals before and after a 45 min period of oxygen and glucose deprivation (OGD). Thirty minutes before OGD, [Ca(2+)](i) was increased in CA1 neurons by 40-200 nM with 1 nM-1 microM of a Ca(2+)-selective ionophore (calcimycin or ionomycin-"Ca(2+) preconditioning"). Ca(2+) preconditioning greatly reduced cell death in CA1, CA3 and dentate during the following 7 days, even though [Ca(2+)](i) was similar (approximately 2 microM) in preconditioned and control neurons 1 h after the OGD. When pre-OGD [Ca(2+)](i) was lowered to 25 nM (10 nM ionophore in Ca(2+)-free medium) or increased to 8 microM (10 microM ionophore), more than 90% of neurons died. Increased levels of the anti-apoptotic protein protein kinase B (Akt) and the MAP kinase ERK (p42/44) were present in preconditioned slices after OGD. Reducing Ca(2+) influx, inhibiting calmodulin, and preventing Akt or MAP kinase p42/44 upregulation prevented Ca(2+) preconditioning, supporting a specific role for Ca(2+) in the neuroprotective process. Further, in continuously oxygenated cultured hippocampal/cortical neurons, preconditioning for 30 min with 10 nM ionomycin reduced cell death following a 4 microM increase in [Ca(2+)](i) elicited by 1 microM ionomycin. Thus, a zone of moderately increased [Ca(2+)](i) before a potentially lethal insult promotes cell survival, uncoupling subsequent large increases in [Ca(2+)](i) from initiating cell death processes.

  5. Calcium signalling indicates bilateral power balancing in the Drosophila flight muscle during manoeuvring flight.

    PubMed

    Lehmann, Fritz-Olaf; Skandalis, Dimitri A; Berthé, Ruben

    2013-05-06

    Manoeuvring flight in animals requires precise adjustments of mechanical power output produced by the flight musculature. In many insects such as fruit flies, power generation is most likely varied by altering stretch-activated tension, that is set by sarcoplasmic calcium levels. The muscles reside in a thoracic shell that simultaneously drives both wings during wing flapping. Using a genetically expressed muscle calcium indicator, we here demonstrate in vivo the ability of this animal to bilaterally adjust its calcium activation to the mechanical power output required to sustain aerodynamic costs during flight. Motoneuron-specific comparisons of calcium activation during lift modulation and yaw turning behaviour suggest slightly higher calcium activation for dorso-longitudinal than for dorsoventral muscle fibres, which corroborates the elevated need for muscle mechanical power during the wings' downstroke. During turning flight, calcium activation explains only up to 54 per cent of the required changes in mechanical power, suggesting substantial power transmission between both sides of the thoracic shell. The bilateral control of muscle calcium runs counter to the hypothesis that the thorax of flies acts as a single, equally proportional source for mechanical power production for both flapping wings. Collectively, power balancing highlights the precision with which insects adjust their flight motor to changing energetic requirements during aerial steering. This potentially enhances flight efficiency and is thus of interest for the development of technical vehicles that employ bioinspired strategies of power delivery to flapping wings.

  6. Antagonizing amyloid-β/calcium-sensing receptor signaling in human astrocytes and neurons: a key to halt Alzheimer's disease progression?

    PubMed Central

    Dal Prà, Ilaria; Chiarini, Anna; Armato, Ubaldo

    2015-01-01

    Astrocytes’ roles in late-onset Alzheimer's disease (LOAD) promotion are important, since they survive soluble or fibrillar amyloid-β peptides (Aβs) neurotoxic effects, undergo alterations of intracellular and intercellular Ca2+ signaling and gliotransmitters release via the Aβ/α7-nAChR (α7-nicotinic acetylcholine receptor) signaling, and overproduce/oversecrete newly synthesized Aβ42 oligomers, NO, and VEGF-A via the Aβ/CaSR (calcium-sensing receptor) signaling. Recently, it was suggested that the NMDAR (N-methyl-D-aspartate receptor) inhibitor nitromemantine would block the synapse-destroying effects of Aβ/α7-nAChR signaling. Yet, this and the progressive extracellular accrual and spreading of Aβ42 oligomers would be stopped well upstream by NPS 2143, an allosteric CaSR antagonist (calcilytic). PMID:25883618

  7. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    SciTech Connect

    Magno, Aaron L.; Ingley, Evan; Brown, Suzanne J.; Conigrave, Arthur D.; Ratajczak, Thomas; Ward, Bryan K.

    2011-09-09

    Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  8. Osteogenic Differentiation of MSC through Calcium Signaling Activation: Transcriptomics and Functional Analysis

    PubMed Central

    Viti, Federica; Landini, Martina; Mezzelani, Alessandra; Petecchia, Loredana; Milanesi, Luciano; Scaglione, Silvia

    2016-01-01

    The culture of progenitor mesenchymal stem cells (MSC) onto osteoconductive materials to induce a proper osteogenic differentiation and mineralized matrix regeneration represents a promising and widely diffused experimental approach for tissue-engineering (TE) applications in orthopaedics. Among modern biomaterials, calcium phosphates represent the best bone substitutes, due to their chemical features emulating the mineral phase of bone tissue. Although many studies on stem cells differentiation mechanisms have been performed involving calcium-based scaffolds, results often focus on highlighting production of in vitro bone matrix markers and in vivo tissue ingrowth, while information related to the biomolecular mechanisms involved in the early cellular calcium-mediated differentiation is not well elucidated yet. Genetic programs for osteogenesis have been just partially deciphered, and the description of the different molecules and pathways operative in these differentiations is far from complete, as well as the activity of calcium in this process. The present work aims to shed light on the involvement of extracellular calcium in MSC differentiation: a better understanding of the early stage osteogenic differentiation program of MSC seeded on calcium-based biomaterials is required in order to develop optimal strategies to promote osteogenesis through the use of new generation osteoconductive scaffolds. A wide spectrum of analysis has been performed on time-dependent series: gene expression profiles are obtained from samples (MSC seeded on calcium-based scaffolds), together with related microRNAs expression and in vivo functional validation. On this basis, and relying on literature knowledge, hypotheses are made on the biomolecular players activated by the biomaterial calcium-phosphate component. Interestingly, a key role of miR-138 was highlighted, whose inhibition markedly increases osteogenic differentiation in vitro and enhance ectopic bone formation in vivo

  9. Differential regulation of calcium signalling pathways by components of Piper methysticum (‘Awa)

    PubMed Central

    Shimoda, L.M.N; Showman, A.; Baker, J.D.; Lange, I.; Koomoa, D.L.; Stokes, A.J.; Borris, R.P.; Turner, H.

    2015-01-01

    Kava is a soporific, anxiolytic and relaxant in widespread ritual and recreational use throughout the Pacific. Traditional uses of kava by indigenous Pacific Island peoples reflect a complex pharmacopeia, centered on GABA-ergic effects of the well-characterized kavalactones. However, peripheral effects of kava suggest active components other than the CNS-targeted kavalactones. We have previously shown that immunocytes exhibit calcium mobilization in response to traditionally-prepared kava extracts, and that the kavalactones do not induce these calcium responses. Here, we characterize the complex calcium-mobilizing activity of traditionally-prepared and partially HPLC-purified kava extracts, noting induction of both calcium entry and store release pathways. Kava components activate intracellular store depletion of thapsigargin-sensitive and –insensitive stores that are coupled to the calcium release activated (CRAC) current, and cause calcium entry through non-store-operated pathways. Together with the pepper-like potency reported by kava users, these studies lead us to hypothesize that kava extracts contain one or more ligands for the transient receptor potential (TRP) family of ion channels. Indeed, TRP-like conductances are observed in kava-treated cells under patch clamp. Thus TRP-mediated cellular effects may be responsible for some of the reported pharmacology of kava. PMID:25640812

  10. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants

    PubMed Central

    Sinha, Deepak K.; Chandran, Predeesh; Timm, Alicia E.; Aguirre-Rojas, Lina; Smith, C. Michael

    2016-01-01

    The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI) metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion. PMID:26815857

  11. Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells.

    PubMed

    Centuori, Sara M; Gomes, Cecil J; Trujillo, Jesse; Borg, Jamie; Brownlee, Joshua; Putnam, Charles W; Martinez, Jesse D

    2016-07-01

    Obesity and a western diet have been linked to high levels of bile acids and the development of colon cancer. Specifically, increased levels of the bile acid deoxycholic acid (DCA), an established tumor promoter, has been shown to correlate with increased development of colorectal adenomas and progression to carcinoma. Herein we investigate the mechanism by which DCA leads to EGFR-MAPK activation, a candidate mechanism by which DCA may promote colorectal tumorigenesis. DCA treated colon cancer cells exhibited strong and prolonged activation of ERK1/2 when compared to EGF treatment alone. We also showed that DCA treatment prevents EGFR degradation as opposed to the canonical EGFR recycling observed with EGF treatment. Moreover, the combination of DCA and EGF treatment displayed synergistic activity, suggesting DCA activates MAPK signaling in a non-canonical manner. Further evaluation showed that DCA treatment increased intracellular calcium levels and CAMKII phosphorylation, and that blocking calcium with BAPTA-AM abrogated MAPK activation induced by DCA, but not by EGF. Finally we showed that DCA-induced CAMKII leads to MAPK activation through the recruitment of c-Src. Taken together, we demonstrated that DCA regulates MAPK activation through calcium signaling, an alternative mechanism not previously recognized in human colon cancer cells. Importantly, this mechanism allows for EGFR to escape degradation and thus achieve a constitutively active state, which may explain its tumor promoting effects.

  12. Association of CD147 and Calcium Exporter PMCA4 Uncouples IL-2 Expression from Early TCR Signaling.

    PubMed

    Supper, Verena; Schiller, Herbert B; Paster, Wolfgang; Forster, Florian; Boulègue, Cyril; Mitulovic, Goran; Leksa, Vladimir; Ohradanova-Repic, Anna; Machacek, Christian; Schatzlmaier, Philipp; Zlabinger, Gerhard J; Stockinger, Hannes

    2016-02-01

    The Ig superfamily member CD147 is upregulated following T cell activation and was shown to serve as a negative regulator of T cell proliferation. Thus, Abs targeting CD147 are being tested as new treatment strategies for cancer and autoimmune diseases. How CD147 mediates immunosuppression and whether association with other coreceptor complexes is needed have remained unknown. In the current study, we show that silencing of CD147 in human T cells increases IL-2 production without affecting the TCR proximal signaling components. We mapped the immunosuppressive moieties of CD147 to its transmembrane domain and Ig-like domain II. Using affinity purification combined with mass spectrometry, we determined the domain specificity of CD147 interaction partners and identified the calcium exporter plasma membrane calcium ATPase isoform 4 (PMCA4) as the interaction partner of the immunosuppressive moieties of CD147. CD147 does not control the proper membrane localization of PMCA4, but PMCA4 is essential for the CD147-dependent inhibition of IL-2 expression via a calcium-independent mechanism. In summary, our data show that CD147 interacts via its immunomodulatory domains with PMCA4 to bypass TCR proximal signaling and inhibit IL-2 expression.

  13. Up-regulation of ryanodine receptor expression increases the calcium-induced calcium release and spontaneous calcium signals in cerebral arteries from hindlimb unloaded rats.

    PubMed

    Morel, Jean-Luc; Dabertrand, Fabrice; Porte, Yves; Prevot, Anne; Macrez, Nathalie

    2014-08-01

    Microgravity induces a redistribution of blood volume. Consequently, astronauts' body pressure is modified so that the upright blood pressure gradient is abolished, thereby inducing a modification in cerebral blood pressure. This effect is mimicked in the hindlimb unloaded rat model. After a duration of 8 days of unloading, Ca2+ signals activated by depolarization and inositol-1,4,5-trisphosphate intracellular release were increased in cerebral arteries. In the presence of ryanodine and thapsigargin, the depolarization-induced Ca2+ signals remained increased in hindlimb suspended animals, indicating that Ca2+ influx and Ca2+-induced Ca2+ release mechanism were both increased. Spontaneous Ca2+ waves and localized Ca2+ events were also investigated. Increases in both amplitude and frequency of spontaneous Ca2+ waves were measured in hindlimb suspension conditions. After pharmacological segregation of Ca2+ sparks and Ca2+ sparklets, their kinetic parameters were characterized. Hindlimb suspension induced an increase in the frequencies of both Ca2+ localized events, suggesting an increase of excitability. Labeling with bodipy compounds suggested that voltage-dependent Ca2+ channels and ryanodine receptor expressions were increased. Finally, the expression of the ryanodine receptor subtype 1 (RyR1) was increased in hindlimb unloading conditions. Taken together, these results suggest that RyR1 expression and voltage-dependent Ca2+ channels activity are the focal points of the regulation of Ca2+ signals activated by vasoconstriction in rat cerebral arteries with an increase of the voltage-dependent Ca2+ influx.

  14. Role of calcium signaling in the activation of mitochondrial nitric oxide synthase and citric acid cycle.

    PubMed

    Traaseth, Nathaniel; Elfering, Sarah; Solien, Joseph; Haynes, Virginia; Giulivi, Cecilia

    2004-07-23

    An apparent discrepancy arises about the role of calcium on the rates of oxygen consumption by mitochondria: mitochondrial calcium increases the rate of oxygen consumption because of the activation of calcium-activated dehydrogenases, and by activating mitochondrial nitric oxide synthase (mtNOS), decreases the rates of oxygen consumption because nitric oxide is a competitive inhibitor of cytochrome oxidase. To this end, the rates of oxygen consumption and nitric oxide production were followed in isolated rat liver mitochondria in the presence of either L-Arg (to sustain a mtNOS activity) or N(G)-monomethyl-L-Arg (NMMA, a competitive inhibitor of mtNOS) under State 3 conditions. In the presence of NMMA, the rates of State 3 oxygen consumption exhibited a K(0.5) of 0.16 microM intramitochondrial free calcium, agreeing with those required for the activation of the Krebs cycle. By plotting the difference between the rates of oxygen consumption in State 3 with L-Arg and with NMMA at various calcium concentrations, a K(0.5) of 1.2 microM intramitochondrial free calcium was obtained, similar to the K(0.5) (0.9 microM) of the dependence of the rate of nitric oxide production on calcium concentrations. The activation of dehydrogenases, followed by the activation of mtNOS, would lead to the modulation of the Krebs cycle activity by the modulation of nitric oxide on the respiratory rates. This would ensue in changes in the NADH/NAD and ATP/ADP ratios, which would influence the rate of the cycle and the oxygen diffusion.

  15. Effects of nonylphenol on the calcium signal and catecholamine secretion coupled with nicotinic acetylcholine receptors in bovine adrenal chromaffin cells.

    PubMed

    Liu, Pei-Shan; Liu, Ging-Hui; Chao, Wei-Liang

    2008-02-03

    Nonylphenol (NP) is the most critical metabolite of alkylphenol polyethoxylate detergents. NP is known as an endocrine disruptor with estrogenic activities and as an inhibitor of endoplasmic reticulum Ca(2+)-ATPase. Estrogen has modulatory roles on ligand-gated ion channels, such as nicotinic acetylcholine receptors (nAChRs). Ca(2+)-ATPase inhibitors can modulate the cytosolic calcium concentration ([Ca(2+)](c)]) and thus can affect the calcium signaling coupled with nAChRs. Therefore, NP is predicted to have complex effects on the Ca(2+) signaling and secretion coupled with nAChRs. This study investigated these effects using bovine adrenal chromaffin cells. The results show that NP suppressed the Ca(2+) signaling coupled with nAChRs and voltage-operated Ca(2+) channels in a dose-dependent manner, with IC(50)s of 1 and 5.9 microM, respectively. Estradiol exhibits similar suppression but much lower inhibitory potencies. NP alone induced a transient rise in [Ca(2+)](c) in the presence or absence of extracellular calcium. Thapsigargin, an endoplasmic reticulum Ca(2+)-ATPase inhibitor, partially suppressed the [Ca(2+)](c) rise induced by NP, but NP totally blocked the [Ca(2+)](c) rise induced by thapsigargin. This illustrates that NP can cause Ca(2+) release from thapsigargin-insensitive pools. Thapsigargin suppressed the Ca(2+) signaling coupled with nAChRs but increased that coupled with voltage-operated Ca(2+) channels. We propose that three routes are responsible for the effects of NP on nAChRs: named receptor channels, voltage-gated Ca(2+) channels, and Ca(2+)-induced Ca(2+) release. Three routes are related to the characteristics of NP as steroid-like compounds and Ca(2+)-ATPase inhibitor.

  16. The effect of chemically defined medium on spontaneous calcium signaling of in situ chondrocytes during long-term culture.

    PubMed

    Zhou, Yilu; Park, Miri; Cheung, Enoch; Wang, Liyun; Lu, X Lucas

    2015-04-13

    Chemically defined serum-free medium has been shown to better maintain the mechanical integrity of articular cartilage explants than serum-supplemented medium during long-term in vitro culture, but little is known about its effect on cellular mechanisms. We hypothesized that the chemically defined culture medium could regulate the spontaneous calcium signaling of in situ chondrocytes, which may modulate the cellular metabolic activities. Bovine cartilage explants were cultured in chemically defined serum-free or serum-supplemented medium for four weeks. The spontaneous intracellular calcium ([Ca(2+)]i) signaling of in situ chondrocytes was longitudinally measured together along with the biomechanical properties of the explants. The spontaneous [Ca(2+)]i oscillations in chondrocytes were enhanced at the initial exposure of serum-supplemented medium, but were significantly dampened afterwards. In contrast, cartilage explants in chemically defined medium preserved the level of calcium signaling, and showed more responsive cells with higher and more frequent [Ca(2+)]i peaks throughout the four week culture in comparison to those in serum medium. Regardless of the culture medium that the explants were exposed, a positive correlation was detected between the [Ca(2+)]i responsive rate and the stiffness of cartilage (Spearman's rank correlation coefficient=0.762). A stable pattern of [Ca(2+)]i peaks was revealed for each chondrocyte, i.e., the spatiotemporal features of [Ca(2+)]i peaks from a cell were highly consistent during the observation period (15 min). This study showed that the beneficial effect of chemically defined culture of cartilage explants is associated with the spontaneous [Ca(2+)]i signaling of chondrocytes in cartilage.

  17. Magnolol and honokiol regulate the calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli-induced diarrhea mice.

    PubMed

    Deng, Yanli; Han, Xuefeng; Tang, Shaoxun; Xiao, Wenjun; Tan, Zhiliang; Zhou, Chuanshe; Wang, Min; Kang, Jinghe

    2015-05-15

    To explore the regulatory mechanisms of magnolol and honokiol on calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea mice, the concentrations of serum chloride ion (Cl(-)), sodium ion (Na(+)), potassium ion (K(+)) and calcium ion (Ca(2+)) were measured. Additionally, the mRNA expressions of calmodulin 1 (CaM), calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) and beta subunit (CaMKIIβ), ryanodine receptor 1, inositol 1,4,5-trisphosphate receptors (IP3 receptors), protein kinases C (PKC), potassium intermediate/small conductance calcium-activated channels (SK) and potassium large conductance calcium-activated channels(BK)were determined. A diarrhea mouse model was established using ETEC suspensions (3.29×10(9)CFU/ml) at a dosage of 0.02ml/g live body weight (BW). Magnolol or honokiol was intragastrically administered at dosages of 100 (M100 or H100), 300 (M300 or H300) and 500 (M500 or H500) mg/kg BW according to a 3×3 factorial arrangement. Magnolol and honokiol increased the Cl(-) and K(+) concentrations, further, upregulated the CaM, BKα1 and BKβ3 mRNA levels but downregulated the IP3 receptors 1, PKC, SK1, SK2, SK3, SK4 and BKβ4 mRNA expressions. Magnolol and honokiol did not alter the CaMKIIα, CaMKIIβ, ryanodine receptor 1, IP3 receptor 2, IP3 receptor 3, BKβ1 and BKβ2 mRNA expressions. These results clarify that magnolol and honokiol, acting through Ca(2+) channel blockade, inhibit the activation of IP3 receptor 1 to regulate the IP3-Ca(2+) store release, activate CaM to inhibit SK channels, and effectively suppress PKC kinases to promote BKα1 and BKβ3 channels opening and BKβ4 channel closing, which modulates the intestinal ion secretion.

  18. Regulation of anaphase chromosome motion in Tradescantia stamen hair cells by calcium and related signaling agents

    PubMed Central

    1990-01-01

    Several lines of evidence support the idea that increases in the intracellular free calcium concentration [( Ca2+]i) regulate chromosome motion. To directly test this we have iontophoretically injected Ca2+ or related signaling agents into Tradescantia stamen hair cells during anaphase and measured their effect on chromosome motion and on the Ca2+ levels. Ca2+ at (+)1 nA for 10 s (approximately 1 microM) causes a transient (20 s) twofold increase in the rate of chromosome motion, while at higher levels it slows or completely stops motion. Ca2+ buffers, EGTA, and 5,5'-dibromo-1,2- bis(o-aminophenoxy)ethane- N,N,N',N'-tetraacetic acid, which transiently suppress the ion level, also momentarily stop motion. Injection of K+, Cl-, or Mg2+, as controls, have no effect on motion. The injection of GTP gamma S, and to a lesser extent GTP, enhances motion similarly to a low level of Ca2+. However, inositol 1,4,5-trisphosphate, ATP gamma S, ATP, and GDP beta S have no effect. Measurement of the [Ca2+]i with indo-1 reveals that the direct injections of Ca2+ produce the expected increases. GTP gamma S, on the other hand, causes only a small [Ca2+]i rise, which by itself is insufficient to increase the rate of chromosome motion. Further studies reveal that any negative ion injection, presumably through hyperpolarization of the membrane potential, generates a similar small pulse of Ca2+, yet these agents have no effect on motion. Two major conclusions from these studies are as follows. (a) Increased [Ca2+]i can enhance the rate of motion, if administered in a narrow physiological window around 1 microM; concentrations above 1 microM or below the physiological resting level will slow or stop chromosomes. (b) GTP gamma S enhances motion by a mechanism that does not cause a sustained uniform rise of [Ca2+]i in the spindle; this effect may be mediated through very localized [Ca2+]i changes or Ca2(+)-independent effectors. PMID:2114409

  19. Cadmium-Induced Apoptosis in Primary Rat Cerebral Cortical Neurons Culture Is Mediated by a Calcium Signaling Pathway

    PubMed Central

    Xu, Hui; Sun, Ya; Hu, Fei-fei; Bian, Jian-chun; Liu, Xue-zhong; Gu, Jian-hong; Liu, Zong-ping

    2013-01-01

    Cadmium (Cd) is an extremely toxic metal, capable of severely damaging several organs, including the brain. Studies have shown that Cd disrupts intracellular free calcium ([Ca2+]i) homeostasis, leading to apoptosis in a variety of cells including primary murine neurons. Calcium is a ubiquitous intracellular ion which acts as a signaling mediator in numerous cellular processes including cell proliferation, differentiation, and survival/death. However, little is known about the role of calcium signaling in Cd-induced apoptosis in neuronal cells. Thus we investigated the role of calcium signaling in Cd-induced apoptosis in primary rat cerebral cortical neurons. Consistent with known toxic properties of Cd, exposure of cerebral cortical neurons to Cd caused morphological changes indicative of apoptosis and cell death. It also induced elevation of [Ca2+]i and inhibition of Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities. This Cd-induced elevation of [Ca2+]i was suppressed by an IP3R inhibitor, 2-APB, suggesting that ER-regulated Ca2+ is involved. In addition, we observed elevation of reactive oxygen species (ROS) levels, dysfunction of cytochrome oxidase subunits (COX-I/II/III), depletion of mitochondrial membrane potential (ΔΨm), and cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase (PARP) during Cd exposure. Z-VAD-fmk, a pan caspase inhibitor, partially prevented Cd-induced apoptosis and cell death. Interestingly, apoptosis, cell death and these cellular events induced by Cd were blocked by BAPTA-AM, a specific intracellular Ca2+ chelator. Furthermore, western blot analysis revealed an up-regulated expression of Bcl-2 and down-regulated expression of Bax. However, these were not blocked by BAPTA-AM. Thus Cd toxicity is in part due to its disruption of intracellular Ca2+ homeostasis, by compromising ATPases activities and ER-regulated Ca2+, and this elevation in Ca2+ triggers the activation of the Ca2+-mitochondria apoptotic signaling pathway. This

  20. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    PubMed Central

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal

  1. A calcium sensor – protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species

    PubMed Central

    Beckmann, Linda; Edel, Kai H.; Batistič, Oliver; Kudla, Jörg

    2016-01-01

    Calcium (Ca2+) signaling is a universal mechanism of signal transduction and involves Ca2+ signal formation and decoding of information by Ca2+ binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca2+ binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca2+ signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca2+ signaling specificity. PMID:27538881

  2. Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors.

    PubMed

    Hamada, Kozo; Terauchi, Akiko; Nakamura, Kyoko; Higo, Takayasu; Nukina, Nobuyuki; Matsumoto, Nagisa; Hisatsune, Chihiro; Nakamura, Takeshi; Mikoshiba, Katsuhiko

    2014-09-23

    The inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum mediates calcium signaling that impinges on intracellular processes. IP3Rs are allosteric proteins comprising four subunits that form an ion channel activated by binding of IP3 at a distance. Defective allostery in IP3R is considered crucial to cellular dysfunction, but the specific mechanism remains unknown. Here we demonstrate that a pleiotropic enzyme transglutaminase type 2 targets the allosteric coupling domain of IP3R type 1 (IP3R1) and negatively regulates IP3R1-mediated calcium signaling and autophagy by locking the subunit configurations. The control point of this regulation is the covalent posttranslational modification of the Gln2746 residue that transglutaminase type 2 tethers to the adjacent subunit. Modification of Gln2746 and IP3R1 function was observed in Huntington disease models, suggesting a pathological role of this modification in the neurodegenerative disease. Our study reveals that cellular signaling is regulated by a new mode of posttranslational modification that chronically and enzymatically blocks allosteric changes in the ligand-gated channels that relate to disease states.

  3. Calcium/calmodulin-dependent protein kinase type IV is a target gene of the Wnt/beta-catenin signaling pathway.

    PubMed

    Arrázola, Macarena S; Varela-Nallar, Lorena; Colombres, Marcela; Toledo, Enrique M; Cruzat, Fernando; Pavez, Leonardo; Assar, Rodrigo; Aravena, Andrés; González, Mauricio; Montecino, Martín; Maass, Alejandro; Martínez, Servet; Inestrosa, Nibaldo C

    2009-12-01

    Calcium/calmodulin-dependent protein kinase IV (CaMKIV) plays a key role in the regulation of calcium-dependent gene expression. The expression of CaMKIV and the activation of CREB regulated genes are involved in memory and neuronal survival. We report here that: (a) a bioinformatic analysis of 15,476 promoters of the human genome predicted several Wnt target genes, being CaMKIV a very interesting candidate; (b) CaMKIV promoter contains TCF/LEF transcription motifs similar to those present in Wnt target genes; (c) biochemical studies indicate that lithium and the canonical ligand Wnt-3a induce CaMKIV mRNA and protein expression levels in rat hippocampal neurons as well as CaMKIV promoter activity; (d) treatment of hippocampal neurons with Wnt-3a increases the binding of beta-catenin to the CaMKIV promoter: (e) In vivo activation of the Wnt signaling improve spatial memory impairment and restores the expression of CaMKIV in a mice double transgenic model for Alzheimer's disease which shows decreased levels of the kinase. We conclude that CaMKIV is regulated by the Wnt signaling pathway and that its expression could play a role in the neuroprotective function of the Wnt signaling against the Alzheimer's amyloid peptide.

  4. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling.

    PubMed

    Magno, Aaron L; Ingley, Evan; Brown, Suzanne J; Conigrave, Arthur D; Ratajczak, Thomas; Ward, Bryan K

    2011-09-09

    The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  5. A new system for profiling drug-induced calcium signal perturbation in human embryonic stem cell-derived cardiomyocytes.

    PubMed

    Lewis, Kimberley J; Silvester, Nicole C; Barberini-Jammaers, Steven; Mason, Sammy A; Marsh, Sarah A; Lipka, Magdalena; George, Christopher H

    2015-03-01

    The emergence of human stem cell-derived cardiomyocyte (hSCCM)-based assays in the cardiovascular (CV) drug discovery sphere requires the development of improved systems for interrogating the rich information that these cell models have the potential to yield. We developed a new analytical framework termed SALVO (synchronization, amplitude, length, and variability of oscillation) to profile the amplitude and temporal patterning of intra- and intercellular calcium signals in hSCCM. SALVO quantified drug-induced perturbations in the calcium signaling "fingerprint" in spontaneously contractile hSCCM. Multiparametric SALVO outputs were integrated into a single index of in vitro cytotoxicity that confirmed the rank order of perturbation as astemizole > thioridazine > cisapride > flecainide > valdecoxib > sotalol > nadolol ≈ control. This rank order of drug-induced Ca(2+) signal disruption is in close agreement with the known arrhythmogenic liabilities of these compounds in humans. Validation of the system using a second set of compounds and hierarchical cluster analysis demonstrated the utility of SALVO to discriminate drugs based on their mechanisms of action. We discuss the utility of this new mechanistically agnostic system for the evaluation of in vitro drug cytotoxicity in hSCCM syncytia and the potential placement of SALVO in the early stage drug screening framework.

  6. Pathway Network Analyses for Autism Reveal Multisystem Involvement, Major Overlaps with Other Diseases and Convergence upon MAPK and Calcium Signaling

    PubMed Central

    Wen, Ya; Alshikho, Mohamad J.; Herbert, Martha R.

    2016-01-01

    We used established databases in standard ways to systematically characterize gene ontologies, pathways and functional linkages in the large set of genes now associated with autism spectrum disorders (ASDs). These conditions are particularly challenging—they lack clear pathognomonic biological markers, they involve great heterogeneity across multiple levels (genes, systemic biological and brain characteristics, and nuances of behavioral manifestations)—and yet everyone with this diagnosis meets the same defining behavioral criteria. Using the human gene list from Simons Foundation Autism Research Initiative (SFARI) we performed gene set enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database, and then derived a pathway network from pathway-pathway functional interactions again in reference to KEGG. Through identifying the GO (Gene Ontology) groups in which SFARI genes were enriched, mapping the coherence between pathways and GO groups, and ranking the relative strengths of representation of pathway network components, we 1) identified 10 disease-associated and 30 function-associated pathways 2) revealed calcium signaling pathway and neuroactive ligand-receptor interaction as the most enriched, statistically significant pathways from the enrichment analysis, 3) showed calcium signaling pathways and MAPK signaling pathway to be interactive hubs with other pathways and also to be involved with pervasively present biological processes, 4) found convergent indications that the process “calcium-PRC (protein kinase C)-Ras-Raf-MAPK/ERK” is likely a major contributor to ASD pathophysiology, and 5) noted that perturbations associated with KEGG’s category of environmental information processing were common. These findings support the idea that ASD-associated genes may contribute not only to core features of ASD themselves but also to vulnerability to other chronic and systemic problems potentially including cancer, metabolic

  7. Imaging calcium in neurons.

    PubMed

    Grienberger, Christine; Konnerth, Arthur

    2012-03-08

    Calcium ions generate versatile intracellular signals that control key functions in all types of neurons. Imaging calcium in neurons is particularly important because calcium signals exert their highly specific functions in well-defined cellular subcompartments. In this Primer, we briefly review the general mechanisms of neuronal calcium signaling. We then introduce the calcium imaging devices, including confocal and two-photon microscopy as well as miniaturized devices that are used in freely moving animals. We provide an overview of the classical chemical fluorescent calcium indicators and of the protein-based genetically encoded calcium indicators. Using application examples, we introduce new developments in the field, such as calcium imaging in awake, behaving animals and the use of calcium imaging for mapping single spine sensory inputs in cortical neurons in vivo. We conclude by providing an outlook on the prospects of calcium imaging for the analysis of neuronal signaling and plasticity in various animal models.

  8. Integrin binding and MAPK signal pathways in primary cell responses to surface chemistry of calcium silicate cements.

    PubMed

    Shie, Ming-You; Ding, Shinn-Jyh

    2013-09-01

    Cell attachment, proliferation and differentiation on different materials depend largely on the surface properties of the materials. This study sheds light on the mechanism by which the modulation of the chemical composition of calcium silicate cements with different Si/Ca molar ratios could produce different cell responses. Two primary cell types (human mesenchymal stem cells (hMSCs) and human dental pulp cells (hDPCs)) were used to elicit the changes in total DNA content, integrin subunit levels, phosphor-focal adhesion kinase (pFAK) levels, and mitogen-activated protein kinase (MAPK) signaling pathway activity at the cell attachment stage. The effect of small interfering RNA (siRNA) transfection targeting collagen type I (COL I) and fibronectin (FN) was also evaluated. The results indicated that increased total DNA content, pFAK and total integrin levels were observed upon an increase in cement Si content. Cements with different Si/Ca ratios did not cause the variations of interleukin 1β (IL-1β), epidermal growth factor (EGF) and tumor necrosis factor-α (TNF-α) ligands. The Si-rich cement facilitated COL I and α2β1 subintegrin expression, while Ca-rich cement promoted FN and αvβ3 subintegrin expression. Si component of the calcium silicates stimulated cell adhesion via activation of MAPK/extracellular signal-regulated kinase (ERK) and p38 signaling pathways more effectively than did by Ca component, but it did not affect c-Jun NH2-terminal kinase (JNK) activity. Inhibition of MAPK/ERK and MAPK/p38 signaling pathways in hMSCs and hDPCs significantly attenuated adhesion, proliferation and differentiation as assessed according to total DNA content and alkaline phosphatase activity. hMSCs and hDPCs from the three different donors exhibited a similar preference for cell behaviors. The results of the current study suggest that calcium silicate cements with a higher Si content have the potential to serve as excellent supports for primary cells. Unraveling the

  9. Calcium-sensing receptors signal constitutive macropinocytosis and facilitate the uptake of NOD2 ligands in macrophages

    PubMed Central

    Canton, Johnathan; Schlam, Daniel; Breuer, Christian; Gütschow, Michael; Glogauer, Michael; Grinstein, Sergio

    2016-01-01

    Macropinocytosis can be induced in several cell types by stimulation with growth factors. In selected cell types, notably macrophages and dendritic cells, macropinocytosis occurs constitutively, supporting the uptake of antigens for subsequent presentation. Despite their different mode of initiation and contrasting physiological roles, it is tacitly assumed that both types of macropinocytosis are mechanistically identical. We report that constitutive macropinocytosis is stringently calcium dependent, while stimulus-induced macropinocytosis is not. Extracellular calcium is sensed by G-protein-coupled calcium-sensing receptors (CaSR) that signal macropinocytosis through Gα-, phosphatidylinositol 3-kinase and phospholipase C. These pathways promote the recruitment of exchange factors that stimulate Rac and/or Cdc42, driving actin-dependent formation of ruffles and macropinosomes. In addition, the heterologous expression of CaSR in HEK293 cells confers on them the ability to perform constitutive macropinocytosis. Finally, we show that CaSR-induced constitutive macropinocytosis facilitates the sentinel function of macrophages, promoting the efficient delivery of ligands to cytosolic pattern-recognition receptors. PMID:27050483

  10. Aluminum Chloride Induces Osteoblasts Apoptosis via Disrupting Calcium Homeostasis and Activating Ca(2+)/CaMKII Signal Pathway.

    PubMed

    Cao, Zheng; Liu, Dawei; Zhang, Qiuyue; Sun, Xudong; Li, Yanfei

    2016-02-01

    Aluminum promotes osteoblast (OB) apoptosis. Apoptosis is induced by the disordered calcium homeostasis. Therefore, to investigate the relationship between Al-induced OB apoptosis and calcium homeostasis, calvarium OBs from neonatal rats (3-4 days) were cultured and exposed to 0.048-mg/mL Al(3+) or 0.048-mg/mL Al(3+) combined with 5 μM BAPTA-AM (OBs were pretreated with 5 μM BAPTA-AM for 1 h, then added 0.048 mg/mL Al(3+)), respectively. Then OB apoptosis rate, intracellular calcium ions concentration ([Ca(2+)]i), mRNA expression level of calmodulin (CaM), and protein expression levels of CaM and p-CaMKII in OBs were examined. The result showed that AlCl3 increased OB apoptosis rate, and [Ca(2+)]i and p-CaMKII expression levels and decreased CaM expression levels, whereas BAPTA-AM relieved the effects. These results proved that AlCl3 induced OB apoptosis by disrupting the intracellular Ca(2+) homeostasis and activating the Ca(2+)/CaMKII signal pathway. Our findings can provide new insights for revealing the apoptosis mechanism of OBs exposed to AlCl3.

  11. Redox Modulation of Cellular Signaling and Metabolism Through Reversible Oxidation of Methionine Sensors in Calcium Regulatory Proteins

    SciTech Connect

    Bigelow, Diana J.; Squier, Thomas C.

    2005-01-17

    Adaptive responses associated with environmental stressors are critical to cell survival. These involve the modulation of central signaling protein functions through site-specific and enzymatically reversible oxidative modifications of methionines to coordinate cellular metabolism, energy utilization, and calcium signaling. Under conditions when cellular redox and antioxidant defenses are overwhelmed, the selective oxidation of critical methionines within selected protein sensors functions to down-regulate energy metabolism and the further generation of reactive oxygen species (ROS). Mechanistically, these functional changes within protein sensors take advantage of the helix-breaking character of methionine sulfoxide. Thus, depending on either the ecological niche of the organism or the cellular milieu of different organ systems, cellular metabolism can be fine-tuned to maintain optimal function in the face of variable amounts of collateral oxidative damage. The sensitivity of several calcium regulatory proteins to oxidative modification provides cellular sensors that link oxidative stress to cellular response and recovery. Calmodulin (CaM) is one such critical calcium regulatory protein, which is functionally sensitive to methionine oxidation. Helix destabilization resulting from the oxidation of either Met{sup 144} or Met{sup 145} results in the nonproductive association between CaM and target proteins. The ability of oxidized CaM to stabilize its target proteins in an inhibited state with an affinity similar to that of native (unoxidized) CaM permits this central regulatory protein to function as a cellular rheostat that down-regulates energy metabolism in response to oxidative stress. Likewise, oxidation of a methionine within a critical switch region of the regulatory protein phospholamban is expected to destabilize the phosphorylationdependent helix formation necessary for the release of enzyme inhibition, resulting in a down-regulation of the Ca-ATPase in

  12. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system

    PubMed Central

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E. F.; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V. L.; Guse, Andreas H.

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate/calcium

  13. Calcium Signaling Pathway Genes RUNX2 and CACNA1C Are Associated With Calcific Aortic Valve Disease

    PubMed Central

    Guauque-Olarte, Sandra; Messika-Zeitoun, David; Droit, Arnaud; Lamontagne, Maxime; Tremblay-Marchand, Joël; Lavoie-Charland, Emilie; Gaudreault, Nathalie; Arsenault, Benoit J.; Dubé, Marie-Pierre; Tardif, Jean-Claude; Body, Simon C.; Seidman, Jonathan G.; Boileau, Catherine; Mathieu, Patrick; Pibarot, Philippe; Bossé, Yohan

    2016-01-01

    Background Calcific aortic valve stenosis (AS) is a life-threatening disease with no medical therapy. The genetic architecture of AS remains elusive. This study combines genome-wide association studies, gene expression, and expression quantitative trait loci mapping in human valve tissues to identify susceptibility genes of AS. Methods and Results A meta-analysis was performed combining the results of 2 genome-wide association studies in 474 and 486 cases from Quebec City (Canada) and Paris (France), respectively. Corresponding controls consisted of 2988 and 1864 individuals with European ancestry from the database of genotypes and phenotypes. mRNA expression levels were evaluated in 9 calcified and 8 normal aortic valves by RNA sequencing. The results were integrated with valve expression quantitative trait loci data obtained from 22 AS patients. Twenty-five single-nucleotide polymorphisms had P<5×10−6 in the genome-wide association studies meta-analysis. The calcium signaling pathway was the top gene set enriched for genes mapped to moderately AS-associated single-nucleotide polymorphisms. Genes in this pathway were found differentially expressed in valves with and without AS. Two single-nucleotide polymorphisms located in RUNX2 (runt-related transcription factor 2), encoding an osteogenic transcription factor, demonstrated some association with AS (genome-wide association studies P=5.33×10−5). The mRNA expression levels of RUNX2 were upregulated in calcified valves and associated with eQTL-SNPs. CACNA1C encoding a subunit of a voltage-dependent calcium channel was upregulated in calcified valves. The eQTL-SNP with the most significant association with AS located in CACNA1C was associated with higher expression of the gene. Conclusions This integrative genomic study confirmed the role of RUNX2 as a potential driver of AS and identified a new AS susceptibility gene, CACNA1C, belonging to the calcium signaling pathway. PMID:26553695

  14. Metabotropic glutamate receptor 6 signaling enhances TRPM1 calcium channel function and increases melanin content in human melanocytes.

    PubMed

    Devi, Sulochana; Markandeya, Yogananda; Maddodi, Nityanand; Dhingra, Anuradha; Vardi, Noga; Balijepalli, Ravi C; Setaluri, Vijayasaradhi

    2013-05-01

    Mutations in TRPM1, a calcium channel expressed in retinal bipolar cells and epidermal melanocytes, cause complete congenital stationary night blindness with no discernible skin phenotype. In the retina, TRPM1 activity is negatively coupled to metabotropic glutamate receptor 6 (mGluR6) signaling through Gαo and TRPM1 mutations result in the loss of responsiveness of TRPM1 to mGluR6 signaling. Here, we show that human melanocytes express mGluR6, and treatment of melanocytes with L-AP4, a type III mGluR-selective agonist, enhances Ca(2+) uptake. Knockdown of TRPM1 or mGluR6 by shRNA abolished L-AP4-induced Ca(2+) influx and TRPM1 currents, showing that TRPM1 activity in melanocytes is positively coupled to mGluR6 signaling. Gαo protein is absent in melanocytes. However, forced expression of Gαo restored negative coupling of TRPM1 to mGluR6 signaling, but treatment with pertussis toxin, an inhibitor of Gi /Go proteins, did not affect basal or mGluR6-induced Ca(2+) uptake. Additionally, chronic stimulation of mGluR6 altered melanocyte morphology and increased melanin content. These data suggest differences in coupling of TRPM1 function to mGluR6 signaling explain different cellular responses to glutamate in the retina and the skin.

  15. Metabotropic glutamate receptor 6 signaling enhances TRPM1 calcium channel function and increases melanin content in human melanocytes

    PubMed Central

    Devi, Sulochana; Markandeya, Yogananda; Maddodi, Nityanand; Dhingra, Anuradha; Vardi, Noga; Balijepalli, Ravi C; Setaluri, Vijayasaradhi

    2013-01-01

    SUMMARY Mutations in TRPM1, a calcium channel expressed in retinal bipolar cells and epidermal melanocytes, cause complete congenital stationary night blindness with no discernible skin phenotype. In the retina, TRPM1 activity is negatively coupled to metabotropic glutamate receptor 6 (mGluR6) signaling through Gαo and TRPM1 mutations result in the loss of responsiveness of TRPM1 to mGluR6 signaling. Here, we show that human melanocytes express mGluR6 and treatment of melanocytes with L-AP4, a type III mGluR-selective agonist, enhances Ca2+ uptake. Knockdown of TRPM1 or mGluR6 by shRNA abolished L-AP4-induced Ca2+ influx and TRPM1 currents showing that TRPM1 activity in melanocytes is positively coupled to mGluR6 signaling. Gαo protein is absent in melanocytes. However, forced expression of Gαo restored negative coupling of TRPM1 to mGluR6 signaling, but treatment with and pertussis toxin, an inhibitor of Gi/Go proteins, did not affect basal or mGluR6-induced Ca2+ uptake. Additionally, chronic stimulation of mGluR6 altered melanocyte morphology and increased melanin content. These data suggest differences in coupling of TRPM1 function to mGluR6 signaling explain different cellular responses to glutamate in the retina and the skin. PMID:23452348

  16. Science Signaling Podcast for 24 January 2017: Tissue-specific regulation of L-type calcium channels.

    PubMed

    Hell, Johannes W; Navedo, Manuel F; VanHook, Annalisa M

    2017-01-24

    This Podcast features an interview with Johannes Hell and Manuel Navedo, senior authors of two Research Articles that appear in the 24 January 2017 issue of Science Signaling, about tissue-specific regulation of the L-type calcium channel CaV1.2. This channel is present in many tissues, including the heart, vasculature, and brain, and allows calcium to flow into cells when it is activated. Signaling through the β-adrenergic receptor (βAR) stimulates CaV1.2 activity in heart cells and neurons to accelerate heart rate and increase neuronal excitability, respectively. Using mouse models, Qian et al found that βAR-mediated enhancement of CaV1.2 activity in the brain required phosphorylation of Ser(1928), whereas βAR-mediated enhancement of CaV1.2 activity in the heart did not require phosphorylation of this residue. In a related study, Nystoriak et al demonstrated that phosphorylation of Ser(1928) in arterial myocytes was required for vasoconstriction during acute hyperglycemia and in diabetic mice. These findings demonstrate tissue-specific differences in CaV1.2 regulation and suggest that it may be possible to design therapies to target this channel in specific tissues.Listen to Podcast.

  17. Science Signaling Podcast for 24 January 2017: Tissue-specific regulation of L-type calcium channels

    PubMed Central

    Hell, Johannes W.; Navedo, Manuel F.; VanHook, Annalisa M.

    2017-01-01

    This Podcast features an interview with Johannes Hell and Manuel Navedo, senior authors of two Research Articles that appear in the 24 January 2017 issue of Science Signaling, about tissue-specific regulation of the L-type calcium channel CaV1.2. This channel is present in many tissues, including the heart, vasculature, and brain, and allows calcium to flow into cells when it is activated. Signaling through the β-adrenergic receptor (βAR) stimulates CaV1.2 activity in heart cells and neurons to accelerate heart rate and increase neuronal excitability, respectively. Using mouse models, Qian et al. found that βAR-mediated enhancement of CaV1.2 activity in the brain required phosphorylation of Ser1928, whereas βAR-mediated enhancement of CaV1.2 activity in the heart did not require phosphorylation of this residue. In a related study, Nystoriak et al. demonstrated that phosphorylation of Ser1928 in arterial myocytes was required for vasoconstriction during acute hyperglycemia and in diabetic mice. These findings demonstrate tissue-specific differences in CaV1.2 regulation and suggest that it may be possible to design therapies to target this channel in specific tissues. PMID:28119457

  18. Ryanodine receptors, calcium signaling and regulation of vascular tone in the cerebral parenchymal microcirculation

    PubMed Central

    Dabertrand, Fabrice; Nelson, Mark T.; Brayden, Joseph E.

    2012-01-01

    The cerebral blood supply is delivered by a surface network of pial arteries and arterioles from which arise (parenchymal) arterioles that penetrate into the cortex and terminate in a rich capillary bed. The critical regulation of cerebral blood flow, locally and globally, requires precise vasomotor regulation of the intracerebral microvasculature. This vascular region is anatomically unique as illustrated by the presence of astrocytic processes that envelope almost the entire basolateral surface of parenchymal arterioles. There are, moreover, notable functional differences between pial arteries and parenchymal arterioles. For example, in pial vascular smooth muscle cells (VSMCs), local calcium release events (“calcium sparks”) through ryanodine receptor (RyR) channels in sarcoplasmic reticulum membrane activate large conductance, calcium-sensitive potassium (BK) channels to modulate vascular diameter. In contrast, VSMCs in parenchymal arterioles express functional RyR and BK channels, but under physiological conditions these channels do not oppose pressure-induced vasoconstriction. Here we summarize the roles of ryanodine receptors in the parenchymal microvasculature under physiologic and pathologic conditions, and discuss their importance in the control of cerebral blood flow. PMID:23216877

  19. Nitric oxide and cGMP signaling in calcium-dependent development of cell polarity in Ceratopteris richardii.

    PubMed

    Salmi, Mari L; Morris, Kacey E; Roux, Stanley J; Porterfield, D Marshall

    2007-05-01

    Single-celled spores of the fern Ceratopteris richardii undergo gravity-directed cell polarity development that is driven by polar calcium currents. Here we present results that establish a role for nitric oxide (NO)/cGMP signaling in transducing the stimulus of gravity to directed polarization of the spores. Application of specific NO donors and scavengers inhibited the calcium-dependent gravity response in a dose-dependent manner. The effects of NO donor exposure were antagonized by application of NO scavenger compounds. Similarly, the guanylate cyclase inhibitors 6-anilino-5,8-quinolinedione and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin, and the phosphodiesterase inhibitor Viagra, which modulate NO-dependent cGMP levels in the cells, disrupted gravity-directed cell polarity in a dose-dependent manner. Viagra effects were antagonized by application of NO scavengers, consistent with the postulate that NO and cGMP are linked in the signaling pathway. To identify other components of the signaling system we analyzed gene expression changes induced by Viagra treatment using microarrays and quantitative real-time reverse transcription-polymerase chain reaction. Preliminary microarray analysis revealed several genes whose expression was significantly altered by Viagra treatment. Three of these genes had strong sequence similarity to key signal transduction or stress response genes and quantitative real-time reverse transcription-polymerase chain reaction was used to more rigorously quantify the effects of Viagra on their expression in spores and to test how closely these effects could be mimicked by treatment with dibutyryl cGMP. Taken together our results implicate NO and cGMP as downstream effectors that help link the gravity stimulus to polarized growth in C. richardii spores. Sequence data from this article can be found in the GenBank/EMBL data libraries under accession numbers BE 640669 to BE 643506, BQ 086920 to BQ 087668, and CV 734654 to CV 736151.

  20. The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins.

    PubMed

    Mola, Maria Grazia; Sparaneo, Angelo; Gargano, Concetta Domenica; Spray, David C; Svelto, Maria; Frigeri, Antonio; Scemes, Eliana; Nicchia, Grazia Paola

    2016-01-01

    Regulatory volume decrease (RVD) is a process by which cells restore their original volume in response to swelling. In this study, we have focused on the role played by two different Aquaporins (AQPs), Aquaporin-4 (AQP4), and Aquaporin-1 (AQP1), in triggering RVD and in mediating calcium signaling in astrocytes under hypotonic stimulus. Using biophysical techniques to measure water flux through the plasma membrane of wild-type (WT) and AQP4 knockout (KO) astrocytes and of an astrocyte cell line (DI TNC1) transfected with AQP4 or AQP1, we here show that AQP-mediated fast swelling kinetics play a key role in triggering and accelerating RVD. Using calcium imaging, we show that AQP-mediated fast swelling kinetics also significantly increases the amplitude of calcium transients inhibited by Gadolinium and Ruthenium Red, two inhibitors of the transient receptor potential vanilloid 4 (TRPV4) channels, and prevented by removing extracellular calcium. Finally, inhibition of TRPV4 or removal of extracellular calcium does not affect RVD. All together our study provides evidence that (1) AQP influenced swelling kinetics is the main trigger for RVD and in mediating calcium signaling after hypotonic stimulus together with TRPV4, and (2) calcium influx from the extracellular space and/or TRPV4 are not essential for RVD to occur in astrocytes.

  1. Nitric oxide signals are interlinked with calcium signals in normal pancreatic stellate cells upon oxidative stress and inflammation

    PubMed Central

    2016-01-01

    The mammalian diffuse stellate cell system comprises retinoid-storing cells capable of remarkable transformations from a quiescent to an activated myofibroblast-like phenotype. Activated pancreatic stellate cells (PSCs) attract attention owing to the pivotal role they play in development of tissue fibrosis in chronic pancreatitis and pancreatic cancer. However, little is known about the actual role of PSCs in the normal pancreas. These enigmatic cells have recently been shown to respond to physiological stimuli in a manner that is markedly different from their neighbouring pancreatic acinar cells (PACs). Here, we demonstrate the capacity of PSCs to generate nitric oxide (NO), a free radical messenger mediating, for example, inflammation and vasodilatation. We show that production of cytosolic NO in PSCs is unambiguously related to cytosolic Ca2+ signals. Only stimuli that evoke Ca2+ signals in the PSCs elicit consequent NO generation. We provide fresh evidence for the striking difference between signalling pathways in PSCs and adjacent PACs, because PSCs, in contrast to PACs, generate substantial Ca2+-mediated and NOS-dependent NO signals. We also show that inhibition of NO generation protects both PSCs and PACs from necrosis. Our results highlight the interplay between Ca2+ and NO signalling pathways in cell–cell communication, and also identify a potential therapeutic target for anti-inflammatory therapies. PMID:27488376

  2. Imaging long distance propagating calcium signals in intact plant leaves with the BRET-based GFP-aequorin reporter.

    PubMed

    Xiong, Tou Cheu; Ronzier, Elsa; Sanchez, Frédéric; Corratgé-Faillie, Claire; Mazars, Christian; Thibaud, Jean-Baptiste

    2014-01-01

    Calcium (Ca(2+)) is a second messenger involved in many plant signaling processes. Biotic and abiotic stimuli induce Ca(2+) signals within plant cells, which, when decoded, enable these cells to adapt in response to environmental stresses. Multiple examples of Ca(2+) signals from plants containing the fluorescent yellow cameleon sensor (YC) have contributed to the definition of the Ca(2+) signature in some cell types such as root hairs, pollen tubes and guard cells. YC is, however, of limited use in highly autofluorescent plant tissues, in particular mesophyll cells. Alternatively, the bioluminescent reporter aequorin enables Ca(2+) imaging in the whole plant, including mesophyll cells, but this requires specific devices capable of detecting the low amounts of emitted light. Another type of Ca(2+) sensor, referred to as GFP-aequorin (G5A), has been engineered as a chimeric protein, which combines the two photoactive proteins from the jellyfish Aequorea victoria, the green fluorescent protein (GFP) and the bioluminescent protein aequorin. The Ca(2+)-dependent light-emitting property of G5A is based on a bioluminescence resonance energy transfer (BRET) between aequorin and GFP. G5A has been used for over 10 years for enhanced in vivo detection of Ca(2+) signals in animal tissues. Here, we apply G5A in Arabidopsis and show that G5A greatly improves the imaging of Ca(2+) dynamics in intact plants. We describe a simple method to image Ca(2+) signals in autofluorescent leaves of plants with a cooled charge-coupled device (cooled CCD) camera. We present data demonstrating how plants expressing the G5A probe can be powerful tools for imaging of Ca(2+) signals. It is shown that Ca(2+) signals propagating over long distances can be visualized in intact plant leaves and are visible mainly in the veins.

  3. Calcium alterations signal either to senescence or to autophagy induction in stem cells upon oxidative stress

    PubMed Central

    Borodkina, Aleksandra V.; Shatrova, Alla N.; Deryabin, Pavel I.; Griukova, Anastasiia A.; Abushik, Polina A.; Antonov, Sergei M.; Nikolsky, Nikolay N.; Burova, Elena B.

    2016-01-01

    Intracellular calcium ([Ca2+]i) has been reported to play an important role in autophagy, apoptosis and necrosis, however, a little is known about its impact in senescence. Here we investigated [Ca2+]i contribution to oxidative stress-induced senescence of human endometrium-derived stem cells (hMESCs). In hMESCs sublethal H2O2-treatment resulted in a rapid calcium release from intracellular stores mediated by the activation of PLC/IP3/IP3R pathway. Notably, further senescence development was accompanied by persistently elevated [Ca2+]i levels. In H2O2-treated hMESCs, [Ca2+]i chelation by BAPTA-AM (BAPTA) was sufficient to prevent the expansion of the senescence phenotype, to decrease endogenous reactive oxygen species levels, to avoid G0/G1 cell cycle arrest, and finally to retain proliferation. Particularly, loading with BAPTA attenuated phosphorylation of the main DNA damage response members, including ATM, 53BP1 and H2A.X and reduced activation of the p53/p21/Rb pathway in H2O2-stimulated cells. Next, we revealed that BAPTA induced an early onset of AMPK-dependent autophagy in H2O2-treated cells as confirmed by both the phosphorylation status of AMPK/mTORC1 pathway and the dynamics of the LC3 lipidization. Summarizing the obtained data we can assume that calcium chelation is able to trigger short-term autophagy and to prevent the premature senescence of hMESCs under oxidative stress. PMID:27941214

  4. Differential volume regulation and calcium signaling in two ciliary body cell types is subserved by TRPV4 channels

    PubMed Central

    Jo, Andrew O.; Lakk, Monika; Frye, Amber M.; Phuong, Tam T. T.; Redmon, Sarah N.; Roberts, Robin; Berkowitz, Bruce A.; Yarishkin, Oleg; Križaj, David

    2016-01-01

    Fluid secretion by the ciliary body plays a critical and irreplaceable function in vertebrate vision by providing nutritive support to the cornea and lens, and by maintaining intraocular pressure. Here, we identify TRPV4 (transient receptor potential vanilloid isoform 4) channels as key osmosensors in nonpigmented epithelial (NPE) cells of the mouse ciliary body. Hypotonic swelling and the selective agonist GSK1016790A (EC50 ∼33 nM) induced sustained transmembrane cation currents and cytosolic [Ca2+]i elevations in dissociated and intact NPE cells. Swelling had no effect on [Ca2+]i levels in pigment epithelial (PE) cells, whereas depolarization evoked [Ca2+]i elevations in both NPE and PE cells. Swelling-evoked [Ca2+]i signals were inhibited by the TRPV4 antagonist HC067047 (IC50 ∼0.9 μM) and were absent in Trpv4−/− NPE. In NPE, but not PE, swelling-induced [Ca2+]i signals required phospholipase A2 activation. TRPV4 localization to NPE was confirmed with immunolocalization and excitation mapping approaches, whereas in vivo MRI analysis confirmed TRPV4-mediated signals in the intact mouse ciliary body. Trpv2 and Trpv4 were the most abundant vanilloid transcripts in CB. Overall, our results support a model whereby TRPV4 differentially regulates cell volume, lipid, and calcium signals in NPE and PE cell types and therefore represents a potential target for antiglaucoma medications. PMID:27006502

  5. Voltage-gated calcium and sodium channels mediate Sema3A retrograde signaling that regulates dendritic development.

    PubMed

    Yamashita, Naoya; Aoki, Reina; Chen, Sandy; Jitsuki-Takahashi, Aoi; Ohura, Shunsuke; Kamiya, Haruyuki; Goshima, Yoshio

    2016-01-15

    Growing axons rely on local signaling at the growth cone for guidance cues. Semaphorin3A (Sema3A), a secreted repulsive axon guidance molecule, regulates synapse maturation and dendritic branching. We previously showed that local Sema3A signaling in the growth cones elicits retrograde retrograde signaling via PlexinA4 (PlexA4), one component of the Sema3A receptor, thereby regulating dendritic localization of AMPA receptor GluA2 and proper dendritic development. In present study, we found that nimodipine (voltage-gated L-type Ca(2+) channel blocker) and tetrodotoxin (TTX; voltage-gated Na(+) channel blocker) suppress Sema3A-induced dendritic localization of GluA2 and dendritic branch formation in cultured hippocampal neurons. The local application of nimodipine or TTX to distal axons suppresses retrograde transport of Venus-Sema3A that has been exogenously applied to the distal axons. Sema3A facilitates axonal transport of PlexA4, which is also suppressed in neurons treated with either TTX or nimodipine. These data suggest that voltage-gated calcium and sodium channels mediate Sema3A retrograde signaling that regulates dendritic GluA2 localization and branch formation.

  6. Intracellular calcium promotes radioresistance of non-small cell lung cancer A549 cells through activating Akt signaling.

    PubMed

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo

    2017-03-01

    Radiotherapy is a major therapeutic approach in non-small cell lung cancer but is restricted by radioresistance. Although Akt signaling promotes radioresistance in non-small cell lung cancer, it is not well understood how Akt signaling is activated. Since intracellular calcium (Ca(2+)) could activate Akt in A549 cells, we investigated the relationship between intracellular calcium (Ca(2+)) and Akt signaling in radioresistant A549 cells by establishing radioresistant non-small cell lung cancer A549 cells. The radioresistant cell line A549 was generated by dose-gradient irradiation of the parental A549 cells. The cell viability, proliferation, and apoptosis were, respectively, assessed using the cell counting kit-8, EdU labeling, and flow cytometry analysis. The phosphorylation of Akt was evaluated by Western blotting, and the intracellular Ca(2+) concentration was assessed by Fluo 4-AM. The radioresistant A549 cells displayed mesenchymal morphology. After additional irradiation, the radioresistant A549 cells showed decreased cell viability and proliferation but increased apoptosis. Moreover, the intracellular Ca(2+) concentration and the phosphorylation level on the Akt473 site in radioresistant A549 cells were higher than those in original cells, whereas the percentage of apoptosis in radioresistant A549 cells was less. All these results could be reversed by verapamil. In conclusion, our study found that intracellular Ca(2+) could promote radioresistance of non-small cell lung cancer cells through phosphorylating of Akt on the 473 site, which contributes to a better understanding on the non-small cell lung cancer radioresistance, and may provide a new target for radioresistance management.

  7. Transient Oxygen/Glucose Deprivation Causes a Delayed Loss of Mitochondria and Increases Spontaneous Calcium Signaling in Astrocytic Processes

    PubMed Central

    O'Donnell, John C.; Jackson, Joshua G.

    2016-01-01

    brain, are vital integrators of signaling and metabolism. Each astrocyte consists of many long, thin branches, called processes, which ensheathe vasculature and thousands of synapses. Mitochondria occupy the majority of each process. This occupancy is decreased by ∼50% 24 h after an in vitro model of ischemia/reperfusion injury, due to delayed fragmentation and mitophagy. The mechanism appears to be independent of neuropathology, instead involving an extended period of high glutamate uptake into astrocytes. Our data suggest that mitochondria serve as spatial buffers, and possibly even as a source of calcium signals in astrocytic processes. Loss of mitochondria resulted in drastically altered calcium signaling that could disrupt neurovascular coupling and gliotransmission. PMID:27383588

  8. The Speed of Swelling Kinetics Modulates Cell Volume Regulation and Calcium Signaling in Astrocytes: A Different Point of View on the Role of Aquaporins

    PubMed Central

    Mola, Maria Grazia; Sparaneo, Angelo; Gargano, Concetta Domenica; Spray, David C.; Svelto, Maria; Frigeri, Antonio; Scemes, Eliana; Nicchia, Grazia Paola

    2016-01-01

    Regulatory volume decrease (RVD) is a process by which cells restore their original volume in response to swelling. In this study, we have focused on the role played by two different Aquaporins (AQPs), Aquaporin-4 (AQP4), and Aquaporin-1 (AQP1), in triggering RVD and in mediating calcium signaling in astrocytes under hypotonic stimulus. Using biophysical techniques to measure water flux through the plasma membrane of wild-type (WT) and AQP4 knockout (KO) astrocytes and of an astrocyte cell line (DI TNC1) transfected with AQP4 or AQP1, we here show that AQP-mediated fast swelling kinetics play a key role in triggering and accelerating RVD. Using calcium imaging, we show that AQP-mediated fast swelling kinetics also significantly increases the amplitude of calcium transients inhibited by Gadolinium and Ruthenium Red, two inhibitors of the transient receptor potential vanilloid 4 (TRPV4) channels, and prevented by removing extracellular calcium. Finally, inhibition of TRPV4 or removal of extracellular calcium does not affect RVD. All together our study provides evidence that (1) AQP influenced swelling kinetics is the main trigger for RVD and in mediating calcium signaling after hypotonic stimulus together with TRPV4, and (2) calcium influx from the extracellular space and/or TRPV4 are not essential for RVD to occur in astrocytes. Main Points: (1) The speed of swelling kinetics is the main trigger for Regulatory Volume Decrease (RVD) and for calcium response in astrocytes; (2) Calcium influx from the extracellular space and TRPV4 are not essential for RVD. PMID:26413835

  9. Chromaffin cell calcium signal and morphology study based on multispectral images

    NASA Astrophysics Data System (ADS)

    Wu, Hongxiu; Wei, Shunhui; Qu, Anlian; Zhou, Zhuan

    1998-09-01

    Increasing or decreasing the internal calcium concentration can promote or prevent programmed cell death (PCD). We therefore performed a Ca2+ imaging study using Ca2+ indicator dye fura-2 and a sensitive cooled-CCD camera with a 12 bit resolution. Monochromatic beams of light with a wavelength of 345,380 nm were isolated from light emitted by a xenon lamp using a monochromator. The concentration of free calcium can be directly calculated from the ratio of two fluorescence values taken at two appropriately selected wavelength. Fluorescent light emitted from the cells was capture using a camera system. The cell morphology study is based on multispectral scanning, with smear images provided as three monochromatic images by illumination with light of 610,535 and 470 nm wavelengths. The nuclear characteristic parameters extracted from individual nuclei by system are nuclear area, nuclear diameter, nuclear density vector. The results of the restoration of images and the performance of a primitive logic for the detection of nuclei with PCD proved the usefulness of the system and the advantages of using multispectral images in the restoration and detection procedures.

  10. Intracellular calcium signals regulate growth of hepatic stellate cells via specific effects on cell cycle progression.

    PubMed

    Soliman, Elwy M; Rodrigues, Michele Angela; Gomes, Dawidson Assis; Sheung, Nina; Yu, Jin; Amaya, Maria Jimina; Nathanson, Michael H; Dranoff, Jonathan A

    2009-03-01

    Hepatic stellate cells (HSC) are important mediators of liver fibrosis. Hormones linked to downstream intracellular Ca(2+) signals upregulate HSC proliferation, but the mechanisms by which this occurs are unknown. Nuclear and cytosolic Ca(2+) signals may have distinct effects on cell proliferation, so we expressed plasmid and adenoviral constructs containing the Ca(2+) chelator parvalbumin (PV) linked to either a nuclear localization sequence (NLS) or a nuclear export sequence (NES) to block Ca(2+) signals in distinct compartments within LX-2 immortalized human HSC and primary rat HSC. PV-NLS and PV-NES constructs each targeted to the appropriate intracellular compartment and blocked Ca(2+) signals only within that compartment. PV-NLS and PV-NES constructs inhibited HSC growth. Furthermore, blockade of nuclear or cytosolic Ca(2+) signals arrested growth at the G2/mitosis (G2/M) cell-cycle interface and prevented the onset of mitosis. Blockade of nuclear or cytosolic Ca(2+) signals downregulated phosphorylation of the G2/M checkpoint phosphatase Cdc25C. Inhibition of calmodulin kinase II (CaMK II) had identical effects on LX-2 growth and Cdc25C phosphorylation. We propose that nuclear and cytosolic Ca(2+) are critical signals that regulate HSC growth at the G2/M checkpoint via CaMK II-mediated regulation of Cdc25C phosphorylation. These data provide a new logical target for pharmacological therapy directed against progression of liver fibrosis.

  11. Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway.

    PubMed

    Liu, Chao-Hsin; Hung, Chi-Jr; Huang, Tsui-Hsien; Lin, Chi-Chang; Kao, Chia-Tze; Shie, Ming-You

    2014-10-01

    Bone healing needs a complex interaction of growth factors that establishes an environment for efficient bone formation. We examine how calcium silicate (CS) and tricalcium phosphate (β-TCP) cements influence the behavior of human dental pulp cells (hDPCs) through fibroblast growth factor receptor (FGFR) and active MAPK pathways, in particular ERK. The hDPCs are cultured with β-TCP and CS, after which the cells' viability and odontogenic differentiation markers are determined by using PrestoBlue® assay and western blot, respectively. The effect of small interfering RNA (siRNA) transfection targeting FGFR was also evaluated. The results showed that CS promoted cell proliferation and enhances FGFR expression. It was also found that CS increases ERK and p38 activity in hDPCs, and furthermore, raises the expression and secretion of DSP, and DMP-1. Additionally, statistically significant differences (p<0.05) have been found in the calcium deposition in si-FGFR transfection and ERK inhibitor between CS and β-TCP; these variations indicated that ERK/MAPK signaling is involved in the silicon-induced odontogenic differentiation of hDPCs. The current study shows that CS substrates play a key role in odontoblastic differentiation of hDPCs through FGFR and modulate ERK/MAPK activation.

  12. Acrolein induces Hsp72 via both PKCdelta/JNK and calcium signaling pathways in human umbilical vein endothelial cells.

    PubMed

    Misonou, Yoshiko; Takahashi, Motoko; Park, Yong Seek; Asahi, Michio; Miyamoto, Yasuhide; Sakiyama, Haruhiko; Cheng, Xinyao; Taniguchi, Naoyuki

    2005-05-01

    Acrolein is a highly electrophilic alpha,beta-unsaturated aldehydes to which humans are exposed in a variety of environment situations and is also a product of lipid peroxidation. Increased levels of unsaturated aldehydes play an important role in the pathogenesis of a number of human diseases such as Alzheimer's disease, atherosclerosis and diabetes. A number of studies have reported that acrolein evokes downstream signaling via an elevation in cellular oxidative stress. Here, we report that low concentrations of acrolein induce Hsp72 in human umbilical vein endothelial cells (HUVEC) and that both the PKCdelta/JNK pathway and calcium pathway were involved in the induction. The findings confirm that the production of reactive oxygen species (ROS) is not directly involved in the pathway. The induction of Hsp72 was not observed in other cells such as smooth muscle cells (SMC) or COS-1 cells. The results suggest that HUVEC have a unique defense system against cell damage by acrolein in which Hsp72 is induced via activation of both the PKCd/JNK and the calcium pathway.

  13. Subcellular propagation of calcium waves in Müller glia does not require autocrine/paracrine purinergic signaling.

    PubMed

    Phuong, Tam T T; Yarishkin, Oleg; Križaj, David

    2016-09-02

    The polarized morphology of radial glia allows them to functionally interconnect different layers of CNS tissues including the retina, cerebellum, and cortex. A likely mechanism involves propagation of transcellular Ca(2+) waves which were proposed to involve purinergic signaling. Because it is not known whether ATP release is required for astroglial Ca(2+) wave propagation we investigated this in mouse Müller cells, radial astroglia-like retinal cells in which in which waves can be induced and supported by Orai/TRPC1 (transient receptor potential isoform 1) channels. We found that depletion of endoplasmic reticulum (ER) stores triggers regenerative propagation of transcellular Ca(2+) waves that is independent of ATP release and activation of P2X and P2Y receptors. Both the amplitude and kinetics of transcellular, depletion-induced waves were resistant to non-selective purinergic P2 antagonists such as pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Thus, store-operated calcium entry (SOCE) is itself sufficient for the initiation and subcellular propagation of calcium waves in radial glia.

  14. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view.

    PubMed

    Cai, Xinjiang; Wang, Xiangbing; Patel, Sandip; Clapham, David E

    2015-03-01

    The basic principles of Ca(2+) regulation emerged early in prokaryotes. Ca(2+) signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca(2+) concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca(2+) signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca(2+) exchangers and four-domain voltage-gated Ca(2+) channels. Newly identified evolutionary evidence suggests that the distinct Ca(2+) signaling machineries in animals, plants and fungi likely originated from an ancient Ca(2+) signaling machinery prior to early eukaryotic radiation.

  15. Insights into the early evolution of animal calcium signaling machinery: A unicellular point of view

    PubMed Central

    Cai, Xinjiang; Wang, Xiangbing; Patel, Sandip; Clapham, David E.

    2014-01-01

    The basic principles of Ca2+ regulation emerged early in prokaryotes. Ca2+ signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca2+ concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca2+ signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca2+ exchangers and four-domain voltage-gated Ca2+ channels. Newly identified evolutionary evidence suggests that the distinct Ca2+ signaling machineries in animals, plants and fungi likely originated from an ancient Ca2+ signaling machinery prior to early eukaryotic radiation. PMID:25498309

  16. Glial Cell Calcium Signaling Mediates Capillary Regulation of Blood Flow in the Retina

    PubMed Central

    Biesecker, Kyle R.; Srienc, Anja I.; Shimoda, Angela M.; Agarwal, Amit; Bergles, Dwight E.; Kofuji, Paulo

    2016-01-01

    The brain is critically dependent on the regulation of blood flow to nourish active neurons. One widely held hypothesis of blood flow regulation holds that active neurons stimulate Ca2+ increases in glial cells, triggering glial release of vasodilating agents. This hypothesis has been challenged, as arteriole dilation can occur in the absence of glial Ca2+ signaling. We address this controversy by imaging glial Ca2+ signaling and vessel dilation in the mouse retina. We find that sensory stimulation results in Ca2+ increases in the glial endfeet contacting capillaries, but not arterioles, and that capillary dilations often follow spontaneous Ca2+ signaling. In IP3R2−/− mice, where glial Ca2+ signaling is reduced, light-evoked capillary, but not arteriole, dilation is abolished. The results show that, independent of arterioles, capillaries actively dilate and regulate blood flow. Furthermore, the results demonstrate that glial Ca2+ signaling regulates capillary but not arteriole blood flow. SIGNIFICANCE STATEMENT We show that a Ca2+-dependent glial cell signaling mechanism is responsible for regulating capillary but not arteriole diameter. This finding resolves a long-standing controversy regarding the role of glial cells in regulating blood flow, demonstrating that glial Ca2+ signaling is both necessary and sufficient to dilate capillaries. While the relative contributions of capillaries and arterioles to blood flow regulation remain unclear, elucidating the mechanisms that regulate capillary blood flow may ultimately lead to the development of therapies for treating diseases where blood flow regulation is disrupted, including Alzheimer's disease, stroke, and diabetic retinopathy. This finding may also aid in revealing the underlying neuronal activity that generates BOLD fMRI signals. PMID:27605617

  17. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization

    PubMed Central

    Arking, Dan E.; Pulit, Sara L.; Crotti, Lia; van der Harst, Pim; Munroe, Patricia B.; Koopmann, Tamara T.; Sotoodehnia, Nona; Rossin, Elizabeth J.; Morley, Michael; Wang, Xinchen; Johnson, Andrew D.; Lundby, Alicia; Gudbjartsson, Daníel F.; Noseworthy, Peter A.; Eijgelsheim, Mark; Bradford, Yuki; Tarasov, Kirill V.; Dörr, Marcus; Müller-Nurasyid, Martina; Lahtinen, Annukka M.; Nolte, Ilja M.; Smith, Albert Vernon; Bis, Joshua C.; Isaacs, Aaron; Newhouse, Stephen J.; Evans, Daniel S.; Post, Wendy S.; Waggott, Daryl; Lyytikäinen, Leo-Pekka; Hicks, Andrew A.; Eisele, Lewin; Ellinghaus, David; Hayward, Caroline; Navarro, Pau; Ulivi, Sheila; Tanaka, Toshiko; Tester, David J.; Chatel, Stéphanie; Gustafsson, Stefan; Kumari, Meena; Morris, Richard W.; Naluai, Åsa T.; Padmanabhan, Sandosh; Kluttig, Alexander; Strohmer, Bernhard; Panayiotou, Andrie G.; Torres, Maria; Knoflach, Michael; Hubacek, Jaroslav A.; Slowikowski, Kamil; Raychaudhuri, Soumya; Kumar, Runjun D.; Harris, Tamara B.; Launer, Lenore J.; Shuldiner, Alan R.; Alonso, Alvaro; Bader, Joel S.; Ehret, Georg; Huang, Hailiang; Kao, W.H. Linda; Strait, James B.; Macfarlane, Peter W.; Brown, Morris; Caulfield, Mark J.; Samani, Nilesh J.; Kronenberg, Florian; Willeit, Johann; Smith, J. Gustav; Greiser, Karin H.; zu Schwabedissen, Henriette Meyer; Werdan, Karl; Carella, Massimo; Zelante, Leopoldo; Heckbert, Susan R.; Psaty, Bruce M.; Rotter, Jerome I.; Kolcic, Ivana; Polašek, Ozren; Wright, Alan F.; Griffin, Maura; Daly, Mark J.; Arnar, David O.; Hólm, Hilma; Thorsteinsdottir, Unnur; Denny, Joshua C.; Roden, Dan M.; Zuvich, Rebecca L.; Emilsson, Valur; Plump, Andrew S.; Larson, Martin G.; O'Donnell, Christopher J.; Yin, Xiaoyan; Bobbo, Marco; D'Adamo, Adamo P.; Iorio, Annamaria; Sinagra, Gianfranco; Carracedo, Angel; Cummings, Steven R.; Nalls, Michael A.; Jula, Antti; Kontula, Kimmo K.; Marjamaa, Annukka; Oikarinen, Lasse; Perola, Markus; Porthan, Kimmo; Erbel, Raimund; Hoffmann, Per; Jöckel, Karl-Heinz; Kälsch, Hagen; Nöthen, Markus M.; consortium, HRGEN; den Hoed, Marcel; Loos, Ruth J.F.; Thelle, Dag S.; Gieger, Christian; Meitinger, Thomas; Perz, Siegfried; Peters, Annette; Prucha, Hanna; Sinner, Moritz F.; Waldenberger, Melanie; de Boer, Rudolf A.; Franke, Lude; van der Vleuten, Pieter A.; Beckmann, Britt Maria; Martens, Eimo; Bardai, Abdennasser; Hofman, Nynke; Wilde, Arthur A.M.; Behr, Elijah R.; Dalageorgou, Chrysoula; Giudicessi, John R.; Medeiros-Domingo, Argelia; Barc, Julien; Kyndt, Florence; Probst, Vincent; Ghidoni, Alice; Insolia, Roberto; Hamilton, Robert M.; Scherer, Stephen W.; Brandimarto, Jeffrey; Margulies, Kenneth; Moravec, Christine E.; Fabiola Del, Greco M.; Fuchsberger, Christian; O'Connell, Jeffrey R.; Lee, Wai K.; Watt, Graham C.M.; Campbell, Harry; Wild, Sarah H.; El Mokhtari, Nour E.; Frey, Norbert; Asselbergs, Folkert W.; Leach, Irene Mateo; Navis, Gerjan; van den Berg, Maarten P.; van Veldhuisen, Dirk J.; Kellis, Manolis; Krijthe, Bouwe P.; Franco, Oscar H.; Hofman, Albert; Kors, Jan A.; Uitterlinden, André G.; Witteman, Jacqueline C.M.; Kedenko, Lyudmyla; Lamina, Claudia; Oostra, Ben A.; Abecasis, Gonçalo R.; Lakatta, Edward G.; Mulas, Antonella; Orrú, Marco; Schlessinger, David; Uda, Manuela; Markus, Marcello R.P.; Völker, Uwe; Snieder, Harold; Spector, Timothy D.; Ärnlöv, Johan; Lind, Lars; Sundström, Johan; Syvänen, Ann-Christine; Kivimaki, Mika; Kähönen, Mika; Mononen, Nina; Raitakari, Olli T.; Viikari, Jorma S.; Adamkova, Vera; Kiechl, Stefan; Brion, Maria; Nicolaides, Andrew N.; Paulweber, Bernhard; Haerting, Johannes; Dominiczak, Anna F.; Nyberg, Fredrik; Whincup, Peter H.; Hingorani, Aroon; Schott, Jean-Jacques; Bezzina, Connie R.; Ingelsson, Erik; Ferrucci, Luigi; Gasparini, Paolo; Wilson, James F.; Rudan, Igor; Franke, Andre; Mühleisen, Thomas W.; Pramstaller, Peter P.; Lehtimäki, Terho J.; Paterson, Andrew D.; Parsa, Afshin; Liu, Yongmei; van Duijn, Cornelia; Siscovick, David S.; Gudnason, Vilmundur; Jamshidi, Yalda; Salomaa, Veikko; Felix, Stephan B.; Sanna, Serena; Ritchie, Marylyn D.; Stricker, Bruno H.; Stefansson, Kari; Boyer, Laurie A.; Cappola, Thomas P.; Olsen, Jesper V.; Lage, Kasper; Schwartz, Peter J.; Kääb, Stefan; Chakravarti, Aravinda; Ackerman, Michael J.; Pfeufer, Arne; de Bakker, Paul I.W.; Newton-Cheh, Christopher

    2014-01-01

    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal Mendelian Long QT Syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals we identified 35 common variant QT interval loci, that collectively explain ∼8-10% of QT variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 novel QT loci in 298 unrelated LQTS probands identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode for proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies novel candidate genes for ventricular arrhythmias, LQTS,and SCD. PMID:24952745

  18. Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway.

    PubMed

    Cui, Yujie; Liu, Xiaoyu; Yang, Tingting; Mei, Yan-Ai; Hu, Changlong

    2014-01-01

    Extremely low-frequency electromagnetic fields (ELF-EMF) causes various biological effects through altering intracellular calcium homeostasis. The role of high voltage-gated (HVA) calcium channels in ELF-EMF induced effects has been extensively studied. However, the effect of ELF-EMF on low-voltage-gated (LVA) T-type calcium channels has not been reported. In this study, we test the effect of ELF-EMF (50Hz) on human T-type calcium channels transfected in HEK293 cells. Conversely to its stimulant effects on HVA channels, ELF-EMF exposure inhibited all T-type (Cav3.1, Cav3.2 and Cav3.3) channels. Neither the protein expression nor the steady-state activation and inactivation kinetics of Cav3.2 channels were altered by ELF-EMF (50Hz, 0.2mT) exposure. Exposure to ELF-EMF increased both arachidonic acid (AA) and leukotriene E4 (LTE4) levels in HEK293 cells. CAY10502 and bestatin, which block the increase of AA and LTE4 respectively, abrogated the ELF-EMF inhibitory effect on Cav3.2 channels. Exogenous LTE4 mimicked the ELF-EMF inhibition of T-type calcium channels. ELF-EMF (50Hz) inhibits native T-type calcium channels in primary cultured mouse cortical neurons via LTE4. We conclude that 50Hz ELF-EMF inhibits T-type calcium channels through AA/LTE4 signaling pathway.

  19. A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells.

    PubMed

    Navazio, Lorella; Moscatiello, Roberto; Genre, Andrea; Novero, Mara; Baldan, Barbara; Bonfante, Paola; Mariani, Paola

    2007-06-01

    The implication of calcium as intracellular messenger in the arbuscular mycorrhizal (AM) symbiosis has not yet been directly demonstrated, although often envisaged. We used soybean (Glycine max) cell cultures stably expressing the bioluminescent Ca(2+) indicator aequorin to detect intracellular Ca(2+) changes in response to the culture medium of spores of Gigaspora margarita germinating in the absence of the plant partner. Rapid and transient elevations in cytosolic free Ca(2+) were recorded, indicating that diffusible molecules released by the mycorrhizal fungus are perceived by host plant cells through a Ca(2+)-mediated signaling. Similar responses were also triggered by two Glomus isolates. The fungal molecules active in generating the Ca(2+) transient were constitutively released in the medium, and the induced Ca(2+) signature was not modified by the coculture of germinating spores with plant cells. Even ungerminated spores were able to generate the signaling molecules, as proven when the germination was blocked by a low temperature. The fungal molecules were found to be stable to heat treatment, of small molecular mass (<3 kD), and, on the basis of extraction with an organic solvent, partially lipophilic. Evidence for the specificity of such an early fungal signal to the AM symbiosis is suggested by the lack of a Ca(2+) response in cultured cells of the nonhost plant Arabidopsis (Arabidopsis thaliana) and by the up-regulation in soybean cells of genes related to Medicago truncatula DMI1, DMI2, and DMI3 and considered essential for the establishment of the AM symbiosis.

  20. Model-Free Reconstruction of Excitatory Neuronal Connectivity from Calcium Imaging Signals

    PubMed Central

    Stetter, Olav; Battaglia, Demian; Soriano, Jordi; Geisel, Theo

    2012-01-01

    A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized

  1. Global calcium transducer P-type Ca²⁺-ATPases open new avenues for agriculture by regulating stress signalling.

    PubMed

    Huda, Kazi Md Kamrul; Banu, Mst Sufara Akhter; Tuteja, Renu; Tuteja, Narendra

    2013-08-01

    Food security is in danger under the continuous growing threat of various stresses including climate change and global warming, which ultimately leads to a reduction in crop yields. Calcium plays a very important role in many signal transduction pathways including stress signalling. Different extracellular stimuli trigger increases in cytosolic calcium, which is detrimental to plants. To cope with such stresses, plants need to develop efficient efflux mechanisms to maintain ionic homeostasis. The Ca(2+)-ATPases are members of the P-type ATPase superfamily, which perform many fundamental processes in organisms by actively transporting ions across cellular membranes. In recent years, many studies have revealed that, as well as efflux mechanisms, Ca(2+)-ATPases also play critical roles in sensing calcium fluctuations and relaying downstream signals by activating definitive targets, thus modulating corresponding metabolic pathways. As calcium-activated calmodulin (CaM) is reported to play vital roles in stress tolerance, the presence of a unique CaM-binding site in type IIB Ca(2+)-ATPases indicates their potential role in biotic as well as abiotic stress tolerance. The key roles of Ca(2+)-ATPases in transport systems and stress signalling in cellular homeostasis are addressed in this review. A complete understanding of plant defence mechanisms under stress will allow bioengineering of improved crop plants, which will be crucial for food security currently observed worldwide in the context of global climate changes. Overall, this article covers classification, evolution, structural aspects of Ca(2+)-ATPases, and their emerging roles in plant stress signalling.

  2. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis

    PubMed Central

    Hajnóczky, György; Csordás, György; Das, Sudipto; Garcia-Perez, Cecilia; Saotome, Masao; Roy, Soumya Sinha; Yi, Muqing

    2009-01-01

    Summary Local Ca2+ transfer between adjoining domains of the sarcoendoplasmic reticulum (ER/SR) and mitochondria allows ER/SR Ca2+ release to activate mitochondrial Ca2+ uptake and to evoke a matrix [Ca2+] ([Ca2+]m) rise. [Ca2+]m exerts control on several steps of energy metabolism to synchronize ATP generation with cell function. However, calcium signal propagation to the mitochondria may also ignite a cell death program through opening of the permeability transition pore (PTP). This occurs when the Ca2+ release from the ER/SR is enhanced or is coincident with sensitization of the PTP. Recent studies have shown that several pro-apoptotic factors, including members of the Bcl-2 family proteins and reactive oxygen species (ROS) regulate the Ca2+ sensitivity of both the Ca2+ release channels in the ER and the PTP in the mitochondria. To test the relevance of the mitochondrial Ca2+ accumulation in various apoptotic paradigms, methods are available for buffering of [Ca2+], for dissipation of the driving force of the mitochondrial Ca2+ uptake and for inhibition of the mitochondrial Ca2+ transport mechanisms. However, in intact cells, the efficacy and the specificity of these approaches have to be established. Here we discuss mechanisms that recruit the mitochondrial calcium signal to a pro-apoptotic cascade and the approaches available for assessment of the relevance of the mitochondrial Ca2+ handling in apoptosis. We also present a systematic evaluation of the effect of ruthenium red and Ru360, two inhibitors of mitochondrial Ca2+ uptake on cytosolic [Ca2+] and [Ca2+]m in intact cultured cells. PMID:17074387

  3. Scotopic Visual Signaling in the Mouse Retina Is Modulated by High-Affinity Plasma Membrane Calcium Extrusion

    PubMed Central

    Duncan, Jacque L.; Yang, Haidong; Doan, Thuy; Silverstein, Robert S.; Murphy, Gabe J.; Nune, George; Liu, Xiaorong; Copenhagen, David; Tempel, Bruce L.; Rieke, Fred; Križaj, David

    2007-01-01

    Transmission of visual signals at the first retinal synapse is associated with changes in calcium concentration in photoreceptors and bipolar cells. We investigated how loss of plasma membrane Ca2+ ATPase isoform 2 (PMCA2), the calcium transporter isoform with the highest affinity for Ca2+/calmodulin, affects transmission of rod- and cone-mediated responses. PMCA2 expression in the neuroblast layer was observed soon after birth; in the adult, PMCA2 was expressed in inner segments and synaptic terminals of rod photoreceptors, in rod bipolar cells, and in most inner retinal neurons but was absent from cones. To determine the role of PMCA2 in retinal signaling, we compared morphology and light responses of retinas from control mice and deafwaddler dfw2J mice, which lack functional PMCA2 protein. The cytoarchitecture of retinas from control and dfw2J mice was indistinguishable at the light microscope level. Suction electrode recordings revealed no difference in the sensitivity or amplitude of outer segment light responses of control and dfw2J rods. However, rod-mediated ERG b-wave responses in dfw2J mice were ∼45% smaller and significantly slower than those of control mice. Furthermore, recordings from individual rod bipolar cells showed that the sensitivity of transmission at the rod output synapse was reduced by ∼50%. No changes in the amplitude or timing of cone-mediated ERG responses were observed. These results suggest that PMCA2-mediated Ca2+ extrusion modulates the amplitude and timing of the high-sensitivity rod pathway to a much greater extent than that of the cone pathway. PMID:16822977

  4. Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling

    PubMed Central

    2010-01-01

    Background Plant Ca2+ signals are involved in a wide array of intracellular signaling pathways after pest invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate the signaling following Ca2+ influx after insect herbivory. However, until now this prediction was not testable. Results To investigate the roles CPKs play in a herbivore response-signaling pathway, we screened the characteristics of Arabidopsis CPK mutants damaged by a feeding generalist herbivore, Spodoptera littoralis. Following insect attack, the cpk3 and cpk13 mutants showed lower transcript levels of plant defensin gene PDF1.2 compared to wild-type plants. The CPK cascade was not directly linked to the herbivory-induced signaling pathways that were mediated by defense-related phytohormones such as jasmonic acid and ethylene. CPK3 was also suggested to be involved in a negative feedback regulation of the cytosolic Ca2+ levels after herbivory and wounding damage. In vitro kinase assays of CPK3 protein with a suite of substrates demonstrated that the protein phosphorylates transcription factors (including ERF1, HsfB2a and CZF1/ZFAR1) in the presence of Ca2+. CPK13 strongly phosphorylated only HsfB2a, irrespective of the presence of Ca2+. Furthermore, in vivo agroinfiltration assays showed that CPK3-or CPK13-derived phosphorylation of a heat shock factor (HsfB2a) promotes PDF1.2 transcriptional activation in the defense response. Conclusions These results reveal the involvement of two Arabidopsis CPKs (CPK3 and CPK13) in the herbivory-induced signaling network via HsfB2a-mediated regulation of the defense-related transcriptional machinery. This cascade is not involved in the phytohormone-related signaling pathways, but rather directly impacts transcription factors for defense responses. PMID:20504319

  5. Calcium signalling toolkits in astrocytes and spatio-temporal progression of Alzheimer's disease.

    PubMed

    Lim, Dmitry; Rodríguez-Arellano, J J; Parpura, Vladimir; Zorec, Robert; Zeidán-Chuliá, Fares; Genazzani, Armando A; Verkhratsky, Alexei

    2016-01-01

    Pathological remodelling of astroglia represents an important component of the pathogenesis of Alzheimer's disease (AD). In AD astrocytes undergo both atrophy and reactivity; which may be specific for different stages of the disease evolution. Astroglial reactivity represents the generic defensive mechanism, and inhibition of astrogliotic response exacerbates b-amyloid pathology associated with AD. In animal models of AD astroglial reactivity is different in different brain regions, and the deficits of reactive response observed in entorhinal and prefrontal cortices may be linked to their vulnerability to AD progression. Reactive astrogliosis is linked to astroglial Ca(2+) signalling, this latter being widely regarded as a mechanism of astroglial excitability. The AD pathology evolving in animal models as well as acute or chronic exposure to β-amyloid induce pathological remodelling of Ca(2+) signalling toolkit in astrocytes. This remodelling modifies astroglial Ca(2+) signalling and may be linked to cellular mechanisms of AD pathogenesis.

  6. Unique responsiveness of angiosperm stomata to elevated CO2 explained by calcium signalling.

    PubMed

    Brodribb, Timothy J; McAdam, Scott A M

    2013-01-01

    Angiosperm and conifer tree species respond differently when exposed to elevated CO2, with angiosperms found to dynamically reduce water loss while conifers appear insensitive. Such distinct responses are likely to affect competition between these tree groups as atmospheric CO2 concentration rises. Seeking the mechanism behind this globally important phenomenon we targeted the Ca(2+)-dependent signalling pathway, a mediator of stomatal closure in response to elevated CO2, as a possible explanation for the differentiation of stomatal behaviours. Sampling across the diversity of vascular plants including lycophytes, ferns, gymnosperms and angiosperms we show that only angiosperms possess the stomatal behaviour and prerequisite genetic coding, linked to Ca(2+)-dependent stomatal signalling. We conclude that the evolution of Ca(2+)-dependent stomatal signalling gives angiosperms adaptive benefits in terms of highly efficient water use, but that stomatal sensitivity to high CO2 may penalise angiosperm productivity relative to other plant groups in the current era of soaring atmospheric CO2.

  7. C2-domain mediated nano-cluster formation increases calcium signaling efficiency

    PubMed Central

    Bonny, Mike; Hui, Xin; Schweizer, Julia; Kaestner, Lars; Zeug, André; Kruse, Karsten; Lipp, Peter

    2016-01-01

    Conventional protein kinase Cs (cPKCs) are key signaling proteins for transducing intracellular Ca2+ signals into downstream phosphorylation events. However, the lifetime of individual membrane-bound activated cPKCs is an order of magnitude shorter than the average time needed for target-protein phosphorylation. Here, we employed intermolecular Förster resonance energy transfer (FRET) in living cells combined with computational analysis to study the spatial organization of cPKCs bound to the plasma membrane. We discovered Ca2+-dependent cPKC nano-clusters that significantly extend cPKC’s plasma-membrane residence time. These protein patterns resulted from self-assembly mediated by Ca2+-binding C2-domains, which are widely used for membrane-targeting of Ca2+-sensing proteins. We also established clustering of other unrelated C2-domain containing proteins, suggesting that nano-cluster formation is a key step for efficient cellular Ca2+-signaling. PMID:27808106

  8. C2-domain mediated nano-cluster formation increases calcium signaling efficiency.

    PubMed

    Bonny, Mike; Hui, Xin; Schweizer, Julia; Kaestner, Lars; Zeug, André; Kruse, Karsten; Lipp, Peter

    2016-11-03

    Conventional protein kinase Cs (cPKCs) are key signaling proteins for transducing intracellular Ca(2+) signals into downstream phosphorylation events. However, the lifetime of individual membrane-bound activated cPKCs is an order of magnitude shorter than the average time needed for target-protein phosphorylation. Here, we employed intermolecular Förster resonance energy transfer (FRET) in living cells combined with computational analysis to study the spatial organization of cPKCs bound to the plasma membrane. We discovered Ca(2+)-dependent cPKC nano-clusters that significantly extend cPKC's plasma-membrane residence time. These protein patterns resulted from self-assembly mediated by Ca(2+)-binding C2-domains, which are widely used for membrane-targeting of Ca(2+)-sensing proteins. We also established clustering of other unrelated C2-domain containing proteins, suggesting that nano-cluster formation is a key step for efficient cellular Ca(2+)-signaling.

  9. Transient enhancement of spike-evoked calcium signaling by a serotonergic interneuron.

    PubMed

    Hill, Evan S; Sakurai, Akira; Katz, Paul S

    2008-11-01

    Enhancement of presynaptic Ca(2+) signals is widely recognized as a potential mechanism for heterosynaptic potentiation of neurotransmitter release. Here we show that stimulation of a serotonergic interneuron increased spike-evoked Ca(2+) in a manner consistent with its neuromodulatory effect on synaptic transmission. In the gastropod mollusk, Tritonia diomedea, stimulation of a serotonergic dorsal swim interneuron (DSI) at physiological rates heterosynaptically enhances the strength of output synapses made by another swim interneuron, C2, onto neurons in the pedal ganglion. Using intracellular electrophysiological recording combined with real-time confocal imaging of C2 (loaded with Oregon Green Bapta 1), it was determined that DSI stimulation increases the amplitude of spike-evoked Ca(2+) signals in C2 without altering basal Ca(2+) signals. This neuromodulatory action was restricted to distal neurites of C2 where synapses with pedal neurons are located. The effect of DSI stimulation on C2 spike-evoked Ca(2+) signals resembled DSI heterosynaptic enhancement of C2 synapses in several measures: both decayed within 15 s, both were abolished by the serotonin receptor antagonist, methysergide, and both were independent of DSI's depolarizing actions on C2. A brief puff of serotonin could mimic the enhancement of spike-evoked Ca(2+) signals in the distal neurites of C2, but larger puffs or bath-applied serotonin elicited nonphysiological effects. These results suggest that DSI heterosynaptic enhancement of C2 synaptic strength may be mediated by a local enhancement of spike-evoked Ca(2+) signals in the distal neurites of C2.

  10. Does Global Astrocytic Calcium Signaling Participate in Awake Brain State Transitions and Neuronal Circuit Function?

    PubMed

    Kjaerby, Celia; Rasmussen, Rune; Andersen, Mie; Nedergaard, Maiken

    2017-02-16

    We continuously need to adapt to changing conditions within our surrounding environment, and our brain needs to quickly shift between resting and working activity states in order to allow appropriate behaviors. These global state shifts are intimately linked to the brain-wide release of the neuromodulators, noradrenaline and acetylcholine. Astrocytes have emerged as a new player participating in the regulation of brain activity, and have recently been implicated in brain state shifts. Astrocytes display global Ca(2+) signaling in response to activation of the noradrenergic system, but whether astrocytic Ca(2+) signaling is causative or correlative for shifts in brain state and neural activity patterns is not known. Here we review the current available literature on astrocytic Ca(2+) signaling in awake animals in order to explore the role of astrocytic signaling in brain state shifts. Furthermore, we look at the development and availability of innovative new methodological tools that are opening up for new ways of visualizing and perturbing astrocyte activity in awake behaving animals. With these new tools at hand, the field of astrocyte research will likely be able to elucidate the causal and mechanistic roles of astrocytes in complex behaviors within a very near future.

  11. Calcium signaling in response to fluid flow by chondrocytes in 3D alginate culture.

    PubMed

    Degala, Satish; Williams, Rebecca; Zipfel, Warren; Bonassar, Lawrence J

    2012-05-01

    Quantifying the effects of mechanical loading on the metabolic response of chondrocytes is difficult due to complicated structure of cartilage ECM and the coupled nature of the mechanical stimuli presented to the cells. In this study we describe the effects of fluid flow, particularly hydrostatic pressure and wall shear stress, on the Ca(2+) signaling response of bovine articular chondrocytes in 3D culture. Using well-established alginate hydrogel system to maintain spherical chondrocyte morphology, we altered solid volume fraction to change scaffold mechanics. Fluid velocities in the bulk of the scaffolds were directly measured via an optical technique and scaffold permeability and aggregate modulus was characterized to quantify the mechanical stimuli presented to cells. Ca(2+) signaling response to direct perfusion of chondrocyte-seeded scaffolds increased monotonically with flow rate and was found more directly dependent on fluid velocity rather than shear stress or hydrostatic pressure. Chondrocytes in alginate scaffolds responded to fluid flow at velocities and shear stresses 2-3 orders of magnitude lower than seen in previous monolayer studies. Our data suggest that flow-induced Ca(2+) signaling response of chondrocytes in alginate culture may be due to mechanical signaling pathways, which is influenced by the 3D nature of cell shape.

  12. Shared functional defect in IP3R-mediated calcium signaling in diverse monogenic autism syndromes

    PubMed Central

    Schmunk, G; Boubion, B J; Smith, I F; Parker, I; Gargus, J J

    2015-01-01

    Autism spectrum disorder (ASD) affects 2% of children, and is characterized by impaired social and communication skills together with repetitive, stereotypic behavior. The pathophysiology of ASD is complex due to genetic and environmental heterogeneity, complicating the development of therapies and making diagnosis challenging. Growing genetic evidence supports a role of disrupted Ca2+ signaling in ASD. Here, we report that patient-derived fibroblasts from three monogenic models of ASD—fragile X and tuberous sclerosis TSC1 and TSC2 syndromes—display depressed Ca2+ release through inositol trisphosphate receptors (IP3Rs). This was apparent in Ca2+ signals evoked by G protein-coupled receptors and by photoreleased IP3 at the levels of both global and local elementary Ca2+ events, suggesting fundamental defects in IP3R channel activity in ASD. Given the ubiquitous involvement of IP3R-mediated Ca2+ signaling in neuronal excitability, synaptic plasticity, gene expression and neurodevelopment, we propose dysregulated IP3R signaling as a nexus where genes altered in ASD converge to exert their deleterious effect. These findings highlight potential pharmaceutical targets, and identify Ca2+ screening in skin fibroblasts as a promising technique for early detection of individuals susceptible to ASD. PMID:26393489

  13. Cdk9 T-loop phosphorylation is regulated by the calcium signaling pathway.

    PubMed

    Ramakrishnan, Rajesh; Rice, Andrew P

    2012-02-01

    Eukaryotic RNA polymerase II transcriptional elongation is a tightly regulated process and is dependent upon positive transcription elongation factor-b (P-TEFb). The core P-TEFb complex is composed of Cdk9 and Cyclin T and is essential for the expression of most protein coding genes. Cdk9 kinase function is dependent upon phosphorylation of Thr186 in its T-loop. In this study, we examined kinases and signaling pathways that influence Cdk9 T-loop phosphorylation. Using an RNAi screen in HeLa cells, we found that Cdk9 T-loop phosphorylation is regulated by Ca(2+)/calmodulin-dependent kinase 1D (CaMK1D). Using small molecules inhibitors in HeLa cells and primary CD4(+) T lymphocytes, we found that the Ca(2+) signaling pathway is required for Cdk9 T-loop phosphorylation. Inhibition of Ca(2+) signaling led to dephosphorylation of Thr186 on Cdk9. In reporter plasmid assays, inhibition of the Ca(2+) signaling pathway repressed the PCNA promoter and HIV-1 Tat transactivation of the HIV-1 LTR, but not HTLV-1 Tax transactivation of the HTLV-1 LTR, suggesting that perturbation of the Ca(2+) pathway and reduction of Cdk9 T-loop phosphorylation inhibits transcription units that have a rigorous requirement for P-TEFb function.

  14. The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus1[OPEN

    PubMed Central

    Plötner, Romina; Stamm, Gina; Hause, Gerd; Mitra, Dipannita; Abel, Steffen

    2017-01-01

    Calcium (Ca2+) signaling and dynamic reorganization of the cytoskeleton are essential processes for the coordination and control of plant cell shape and cell growth. Calmodulin (CaM) and closely related calmodulin-like (CML) polypeptides are principal sensors of Ca2+ signals. CaM/CMLs decode and relay information encrypted by the second messenger via differential interactions with a wide spectrum of targets to modulate their diverse biochemical activities. The plant-specific IQ67 DOMAIN (IQD) family emerged as possibly the largest class of CaM-interacting proteins with undefined molecular functions and biological roles. Here, we show that the 33 members of the IQD family in Arabidopsis (Arabidopsis thaliana) differentially localize, using green fluorescent protein (GFP)-tagged proteins, to multiple and distinct subcellular sites, including microtubule (MT) arrays, plasma membrane subdomains, and nuclear compartments. Intriguingly, the various IQD-specific localization patterns coincide with the subcellular patterns of IQD-dependent recruitment of CaM, suggesting that the diverse IQD members sequester Ca2+-CaM signaling modules to specific subcellular sites for precise regulation of Ca2+-dependent processes. Because MT localization is a hallmark of most IQD family members, we quantitatively analyzed GFP-labeled MT arrays in Nicotiana benthamiana cells transiently expressing GFP-IQD fusions and observed IQD-specific MT patterns, which point to a role of IQDs in MT organization and dynamics. Indeed, stable overexpression of select IQD proteins in Arabidopsis altered cellular MT orientation, cell shape, and organ morphology. Because IQDs share biochemical properties with scaffold proteins, we propose that IQD families provide an assortment of platform proteins for integrating CaM-dependent Ca2+ signaling at multiple cellular sites to regulate cell function, shape, and growth. PMID:28115582

  15. Dihydropyridine Receptors as Voltage Sensors for a Depolarization-evoked, IP3R-mediated, Slow Calcium Signal in Skeletal Muscle Cells

    PubMed Central

    Araya, Roberto; Liberona, José L.; Cárdenas, J. César; Riveros, Nora; Estrada, Manuel; Powell, Jeanne A.; Carrasco, M. Angélica; Jaimovich, Enrique

    2003-01-01

    The dihydropyridine receptor (DHPR), normally a voltage-dependent calcium channel, functions in skeletal muscle essentially as a voltage sensor, triggering intracellular calcium release for excitation-contraction coupling. In addition to this fast calcium release, via ryanodine receptor (RYR) channels, depolarization of skeletal myotubes evokes slow calcium waves, unrelated to contraction, that involve the cell nucleus (Jaimovich, E., R. Reyes, J.L. Liberona, and J.A. Powell. 2000. Am. J. Physiol. Cell Physiol. 278:C998–C1010). We tested the hypothesis that DHPR may also be the voltage sensor for these slow calcium signals. In cultures of primary rat myotubes, 10 μM nifedipine (a DHPR inhibitor) completely blocked the slow calcium (fluo-3-fluorescence) transient after 47 mM K+ depolarization and only partially reduced the fast Ca2+ signal. Dysgenic myotubes from the GLT cell line, which do not express the α1 subunit of the DHPR, did not show either type of calcium transient following depolarization. After transfection of the α1 DNA into the GLT cells, K+ depolarization induced slow calcium transients that were similar to those present in normal C2C12 and normal NLT cell lines. Slow calcium transients in transfected cells were blocked by nifedipine as well as by the G protein inhibitor, pertussis toxin, but not by ryanodine, the RYR inhibitor. Since slow Ca2+ transients appear to be mediated by IP3, we measured the increase of IP3 mass after K+ depolarization. The IP3 transient seen in control cells was inhibited by nifedipine and was absent in nontransfected dysgenic cells, but α1-transfected cells recovered the depolarization-induced IP3 transient. In normal myotubes, 10 μM nifedipine, but not ryanodine, inhibited c-jun and c-fos mRNA increase after K+ depolarization. These results suggest a role for DHPR-mediated calcium signals in regulation of early gene expression. A model of excitation-transcription coupling is presented in which both G proteins and IP

  16. Sensory Flask Cells in Sponge Larvae Regulate Metamorphosis via Calcium Signaling.

    PubMed

    Nakanishi, Nagayasu; Stoupin, Daniel; Degnan, Sandie M; Degnan, Bernard M

    2015-12-01

    The Porifera (sponges) is one of the earliest phyletic lineages to branch off the metazoan tree. Although the body-plan of sponges is among the simplest in the animal kingdom and sponges lack nervous systems that communicate environmental signals to other cells, their larvae have sensory systems that generate coordinated responses to environmental cues. In eumetazoans (Cnidaria and Bilateria), the nervous systems of larvae often regulate metamorphosis through Ca(2+)-dependent signal transduction. In sponges, neither the identity of the receptor system that detects an inductive environmental cue (hereafter "metamorphic cues") nor the signaling system that mediates settlement and metamorphosis are known. Using a combination of behavioral assays and surgical manipulations, we show here that specialized epithelial cells-referred to as flask cells-enriched in the anterior third of the Amphimedon queenslandica larva are most likely to be the sensory cells that detect the metamorphic cues. Surgical removal of the region enriched in flask cells in a larva inhibits the initiation of metamorphosis. The flask cell has an apical sensory apparatus with a cilium surrounded by an apical F-actin-rich protrusion, and numerous vesicles, hallmarks of eumetazoan sensory-neurosecretory cells. We demonstrate that these flask cells respond to metamorphic cues by elevating intracellular Ca(2+) levels, and that this elevation is necessary for the initiation of metamorphosis. Taken together, these analyses suggest that sponge larvae have sensory-secretory epithelial cells capable of converting exogenous cues into internal signals via Ca(2+)-mediated signaling, which is necessary for the initiation of metamorphosis. Similarities in the morphology, physiology, and function of the sensory flask cells in sponge larvae with the sensory/neurosecretory cells in eumetazoan larvae suggest this sensory system predates the divergence of Porifera and Eumetazoa.

  17. Requirement for non-regulated, constitutive calcium influx in macrophage survival signaling

    SciTech Connect

    Tano, Jean-Yves; Vazquez, Guillermo

    2011-04-08

    Highlights: {yields} We examine the role of constitutive Ca{sup 2+} influx in macrophage survival. {yields} Survival signaling exhibits a mandatory requirement for constitutive Ca{sup 2+} influx. {yields} CAM/CAMKII couples constitutive Ca{sup 2+} influx to survival signaling. -- Abstract: The phosphatidylinositol-3-kinase (PI3K)/AKT axis and the Nuclear Factor kappa B (NF{kappa}B) pathway play critical roles in macrophage survival. In cells other than macrophages proper operation of those two pathways requires Ca{sup 2+} influx into the cell, but if that is the case in macrophages remains unexplored. In the present work we used THP-1-derived macrophages and a pharmacological approach to examine for the first time the role of constitutive, non-regulated Ca{sup 2+} influx in PI3K/AKT and NF{kappa}B signaling. Blocking constitutive function of Ca{sup 2+}-permeable channels with the organic channel blocker SKF96365 completely prevented phosphorylation of I{kappa}B{alpha}, AKT and its downstream target BAD in TNF{alpha}-treated macrophages. A similar effect was observed upon treating macrophages with the calmodulin (CAM) inhibitor W-7 or the calmodulin-dependent kinase II (CAMKII) inhibitor KN-62. In addition, pre-treating macrophages with SKF96365 significantly enhanced TNF{alpha}-induced apoptosis. Our findings suggest that in THP-1-derived macrophages survival signaling depends, to a significant extent, on constitutive Ca{sup 2+} influx presumably through a mechanism that involves the CAM/CAMKII axis as a coupling component between constitutive Ca{sup 2+} influx and activation of survival signaling.

  18. Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures.

    PubMed

    Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi

    2013-01-01

    Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.

  19. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response calmodulin-binding transcription factor AtSR1/CAMTA3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium/calmodulin (Ca2+/CaM) has long been considered a crucial component in wound signaling pathway. However, no functional significance of Ca2+/CaM-binding proteins has been identified in plant responses to herbivore attack/wounding stress. We have reported earlier that a family of Ca2+/CaM-bindi...

  20. Reactive oxygen species and calcium signals in skeletal muscle: A crosstalk involved in both normal signaling and disease.

    PubMed

    Espinosa, Alejandra; Henríquez-Olguín, Carlos; Jaimovich, Enrique

    2016-09-01

    Reactive Oxygen Species (ROS) have been profusely studied as agents of potential damage to living cells and they have been related to a number of pathological processes. Increasing evidence points to a more positive role of ROS in cell signaling and the detailed mechanism that regulates the precise amount of ROS needed for cell functioning without the deleterious effects of excess ROS still needs to be resolved in detail. In skeletal muscle the main source of ROS during normal functioning appears to be NADPH oxidase 2 (NOX2), which is activated by electrical stimuli (or exercise) through a cascade of events that include ATP release through pannexin1 channels. NOX2 is a protein complex that assembles in the T-tubule membrane before activation and ROS production by NOX2 appears to be important for muscle adaptation through gene expression and mitochondrial biogenesis as well as for improving glucose transport after insulin action. Excess ROS production (or diminished antioxidant defenses) plays a role in a number of pathological processes in skeletal muscle. Together with increased reactive nitrogen species, an increase in ROS appears to have a deleterious role in a model of Duchenne muscular dystrophy as well as muscle wasting in other diseases such as aging sarcopenia and cancer cachexia. In addition, ROS is involved in obesity and muscle insulin resistance, both of which are causally related to type 2 diabetes. A detailed description of the fine-tuning of ROS (including all sources of ROS) in skeletal muscle in health and disease will significantly contribute to our knowledge of both muscle adaptation and muscle related pathologies.

  1. B cells Using Calcium Signaling for Specific and Rapid Detection of Escherichia coli O157:H7

    PubMed Central

    Wang, Ling; Wang, Ronghui; Kong, Byung-Whi; Jin, Sha; Ye, Kaiming; Fang, Weihuan; Li, Yanbin

    2015-01-01

    A rapid and sensitive detection technology is highly desirable for specific detection of E. coli O157:H7, one of the leading bacterial pathogens causing foodborne illness. In this study, we reported the rapid detection of E. coli O157:H7 by using calcium signaling of the B cell upon cellular membrane anchors anti-E. coli O157:H7 IgM. The binding of E. coli O157:H7 to the IgM on B cell surface activates the B cell receptor (BCR)-induced Ca2+ signaling pathway and results in the release of Ca2+ within seconds. The elevated intracellular Ca2+ triggers Fura-2, a fluorescent Ca2+ indicator, for reporting the presence of pathogens. The Fura-2 is transferred to B cells before detection. The study demonstrated that the developed B cell based biosensor was able to specifically detect E. coli O157:H7 at the low concentration within 10 min in pure culture samples. Finally, the B cell based biosensor was used for the detection of E. coli O157:H7 in ground beef samples. With its short detection time and high sensitivity at the low concentration of the target bacteria, this B cell biosensor shows promise in future application of the high throughput and rapid food detection, biosafety and environmental monitoring. PMID:26034978

  2. Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-kB.

    PubMed

    Lim, Dmitry; Iyer, Anand; Ronco, Virginia; Grolla, Ambra A; Canonico, Pier Luigi; Aronica, Eleonora; Genazzani, Armando A

    2013-07-01

    The amyloid hypothesis of Alzheimer's disease (AD) suggests that soluble amyloid β (Aβ) is an initiator of a cascade of events eventually leading to neurodegeneration. Recently, we reported that Aβ deranged Ca(2+) homeostasis specifically in hippocampal astrocytes by targeting key elements of Ca(2+) signaling, such as mGluR5 and IP3 R1. In the present study, we dissect a cascade of signaling events by which Aβ deregulates glial Ca(2+) : (i) 100 nM Aβ leads to an increase in cytosolic calcium after 4-6 h of treatment; (ii) mGluR5 is increased after 24 h of treatment; (iii) this increase is blocked by inhibitors of calcineurin (CaN) and NF-kB. Furthermore, we show that Aβ treatment of glial cells leads to de-phosphorylation of Bcl10 and an increased CaN-Bcl10 interaction. Last, mGluR5 staining is augmented in hippocampal astrocytes of AD patients in proximity of Aβ plaques and co-localizes with nuclear accumulation of the p65 NF-kB subunit and increased staining of CaNAα. Taken together our data suggest that nanomolar [Aβ] deregulates Ca(2+) homeostasis via CaN and its downstream target NF-kB, possibly via the cross-talk of Bcl10 in hippocampal astrocytes.

  3. Impaired calcium calmodulin kinase signaling and muscle adaptation response in the absence of calpain 3.

    PubMed

    Kramerova, I; Kudryashova, E; Ermolova, N; Saenz, A; Jaka, O; López de Munain, A; Spencer, M J

    2012-07-15

    Mutations in the non-lysosomal, cysteine protease calpain 3 (CAPN3) result in the disease limb girdle muscular dystrophy type 2A (LGMD2A). CAPN3 is localized to several subcellular compartments, including triads, where it plays a structural, rather than a proteolytic, role. In the absence of CAPN3, several triad components are reduced, including the major Ca(2+) release channel, ryanodine receptor (RyR). Furthermore, Ca(2+) release upon excitation is impaired in the absence of CAPN3. In the present study, we show that Ca-calmodulin protein kinase II (CaMKII) signaling is compromised in CAPN3 knockout (C3KO) mice. The CaMK pathway has been previously implicated in promoting the slow skeletal muscle phenotype. As expected, the decrease in CaMKII signaling that was observed in the absence of CAPN3 is associated with a reduction in the slow versus fast muscle fiber phenotype. We show that muscles of WT mice subjected to exercise training activate the CaMKII signaling pathway and increase expression of the slow form of myosin; however, muscles of C3KO mice do not exhibit these adaptive changes to exercise. These data strongly suggest that skeletal muscle's adaptive response to functional demand is compromised in the absence of CAPN3. In agreement with our mouse studies, RyR levels were also decreased in biopsies from LGMD2A patients. Moreover, we observed a preferential pathological involvement of slow fibers in LGMD2A biopsies. Thus, impaired CaMKII signaling and, as a result, a weakened muscle adaptation response identify a novel mechanism that may underlie LGMD2A and suggest a pharmacological target that should be explored for therapy.

  4. Sphingosine-1-Phosphate Elicits Receptor-Dependent Calcium Signaling in Retinal Amacrine Cells

    PubMed Central

    Crousillac, Scott; Colonna, Jeremy; McMains, Emily; Dewey, Jill Sayes

    2009-01-01

    Evidence is emerging indicating that sphingosine-1-phosphate (S1P) participates in signaling in the retina. To determine whether S1P might be involved in signaling in the inner retina specifically, we examine the effects of this sphingolipid on cultured retinal amacrine cells. Whole cell voltage-clamp recordings reveal that S1P activates a cation current that is dependent on signaling through Gi and phospholipase C. These observations are consistent with the involvement of members of the S1P receptor family of G-protein-coupled receptors in the production of the current. Immunocytochemistry and PCR amplification provide evidence for the expression of S1P1R and S1P3R in amacrine cells. The receptor-mediated channel activity is shown to be highly sensitive to blockade by lanthanides consistent with the behavior of transient receptor potential canonical (TRPC) channels. PCR products amplified from amacrine cells reveal that TRPCs 1 and 3–7 channel subunits have the potential to be expressed. Because TRPC channels provide a Ca2+ entry pathway, we asked whether S1P caused cytosolic Ca2+ elevations in amacrine cells. We show that S1P-dependent Ca2+ elevations do occur in these cells and that they might be mediated by S1P1R and S1P3R. The Ca2+ elevations are partially due to release from internal stores, but the largest contribution is from influx across the plasma membrane. The effect of inhibition of sphingosine kinase suggests that the production of cytosolic S1P underlies the sustained nature of the Ca2+ elevations. Elucidation of the downstream effects of these signals will provide clues to the role of S1P in regulating inner retinal function. PMID:19776367

  5. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling

    PubMed Central

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A.; Rodriguez, Pedro L.; Albert, Armando

    2016-01-01

    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca2+ are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca2+ signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca2+-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca2+ sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca2+-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. PMID:26719420

  6. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling.

    PubMed

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A; Rodriguez, Pedro L; Albert, Armando

    2016-01-19

    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.

  7. High-throughput screen detects calcium signaling dysfunction in typical sporadic autism spectrum disorder

    PubMed Central

    Schmunk, Galina; Nguyen, Rachel L.; Ferguson, David L.; Kumar, Kenny; Parker, Ian; Gargus, J. Jay

    2017-01-01

    Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders without any defined uniting pathophysiology. Ca2+ signaling is emerging as a potential node in the genetic architecture of the disorder. We previously reported decreased inositol trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum in several rare monogenic syndromes highly comorbid with autism – fragile X and tuberous sclerosis types 1 and 2 syndromes. We now extend those findings to a cohort of subjects with sporadic ASD without any known mutations. We developed and applied a high throughput Fluorometric Imaging Plate Reader (FLIPR) assay to monitor agonist-evoked Ca2+ signals in human primary skin fibroblasts. Our results indicate that IP3 -mediated Ca2+ release from the endoplasmic reticulum in response to activation of purinergic receptors is significantly depressed in subjects with sporadic as well as rare syndromic forms of ASD. We propose that deficits in IP3-mediated Ca2+ signaling represent a convergent hub function shared across the spectrum of autistic disorders – whether caused by rare highly penetrant mutations or sporadic forms – and holds promise as a biomarker for diagnosis and novel drug discovery. PMID:28145469

  8. Live Imaging of Nicotine Induced Calcium Signaling and Neurotransmitter Release Along Ventral Hippocampal Axons.

    PubMed

    Zhong, Chongbo; Talmage, David A; Role, Lorna W

    2015-06-24

    Sustained enhancement of axonal signaling and increased neurotransmitter release by the activation of pre-synaptic nicotinic acetylcholine receptors (nAChRs) is an important mechanism for neuromodulation by acetylcholine (ACh). The difficulty with access to probing the signaling mechanisms within intact axons and at nerve terminals both in vitro and in vivo has limited progress in the study of the pre-synaptic components of synaptic plasticity. Here we introduce a gene-chimeric preparation of ventral hippocampal (vHipp)-accumbens (nAcc) circuit in vitro that allows direct live imaging to analyze both the pre- and post-synaptic components of transmission while selectively varying the genetic profile of the pre- vs post-synaptic neurons. We demonstrate that projections from vHipp microslices, as pre-synaptic axonal input, form multiple, reliable glutamatergic synapses with post-synaptic targets, the dispersed neurons from nAcc. The pre-synaptic localization of various subtypes of nAChRs are detected and the pre-synaptic nicotinic signaling mediated synaptic transmission are monitored by concurrent electrophysiological recording and live cell imaging. This preparation also provides an informative approach to study the pre- and post-synaptic mechanisms of glutamatergic synaptic plasticity in vitro.

  9. Inflammatory cytokine signaling in insulin producing beta-cells enhances the colocalization correlation coefficient between L-type voltage-dependent calcium channel and calcium-sensing receptor.

    PubMed

    Parkash, Jai

    2008-08-01

    The immunological processes in type 1 diabetes and metabolic/inflammatory disorder in type 2 diabetes converge on common signaling pathway(s) leading to beta-cell death in these two diseases. The cytokine-mediated beta-cell death seems to be dependent on voltage-dependent calcium channel (VDCC)-mediated Ca2+ entry. The Ca2+ handling molecular networks control the homeostasis of [Ca2+]i in the beta-cell. The activity and membrane density of VDCC are regulated by several mechanisms including G protein-coupled receptors (GPCRs). CaR is a 123-kDa seven transmembrane extracellular Ca2+ sensing protein that belongs to GPCR family C. Tumor necrosis factor-alpha (TNF-alpha), is a cytokine widely known to activate nuclear factor-kappaB (NF-kappaB) transcription in beta-cells. To obtain a better understanding of TNF-alpha-induced molecular interactions between CaR and VDCC, confocal fluorescence measurements were performed on insulin-producing beta-cells exposed to varying concentrations of TNF-alpha and the results are discussed in the light of increased colocalization correlation coefficient. The insulin producing beta-cells were exposed to 5, 10, 20, 30, and 50 ng/ml TNF-alpha for 24 h at 37 degrees . The cells were then immunolabelled with antibodies directed against CaR, VDCC, and NF-kappaB. The confocal fluorescence imaging data showed enhancement in the colocalization correlation coefficient between CaR and VDCC in beta-cells exposed to TNF-alpha thereby indicating increased membrane delimited spatial interactions between these two membrane proteins. TNF-alpha-induced colocalization of VDCC with CaR was inhibited by nimodipine, an inhibitor of L-type VDCC thereby suggesting that VDCC activity is required for spatial interactions with CaR. The 3-D confocal fluorescence imaging data also demonstrated that addition of TNF-alpha to RIN cells led to the translocation of NF-kappaB from the cytoplasm to the nucleus. Such molecular interactions between CaR and VDCC in tissues

  10. Differential redox regulation of ORAI ion channels: a mechanism to tune cellular calcium signaling.

    PubMed

    Bogeski, Ivan; Kummerow, Carsten; Al-Ansary, Dalia; Schwarz, Eva C; Koehler, Richard; Kozai, Daisuke; Takahashi, Nobuaki; Peinelt, Christine; Griesemer, Desiree; Bozem, Monika; Mori, Yasuo; Hoth, Markus; Niemeyer, Barbara A

    2010-03-30

    Reactive oxygen species (ROS) are involved in many physiological and pathophysiological cellular processes. We used lymphocytes, which are exposed to highly oxidizing environments during inflammation, to study the influence of ROS on cellular function. Calcium ion (Ca(2+)) influx through Ca(2+) release-activated Ca(2+) (CRAC) channels composed of proteins of the ORAI family is essential for the activation, proliferation, and differentiation of T lymphocytes, but whether and how ROS affect ORAI channel function have been unclear. Here, we combined Ca(2+) imaging, patch-clamp recordings, and measurements of cell proliferation and cytokine secretion to determine the effects of hydrogen peroxide (H(2)O(2)) on ORAI channel activity and human T helper lymphocyte (T(H) cell) function. ORAI1, but not ORAI3, channels were inhibited by oxidation by H(2)O(2). The differential redox sensitivity of ORAI1 and ORAI3 channels depended mainly on an extracellularly located reactive cysteine, which is absent in ORAI3. T(H) cells became progressively less redox-sensitive after differentiation into effector cells, a shift that would allow them to proliferate, differentiate, and secrete cytokines in oxidizing environments. The decreased redox sensitivity of effector T(H) cells correlated with increased expression of Orai3 and increased abundance of several cytosolic antioxidants. Knockdown of ORAI3 with small-interfering RNA rendered effector T(H) cells more redox-sensitive. The differential expression of Orai isoforms between naïve and effector T(H) cells may tune cellular responses under oxidative stress.

  11. Dynamics of Intrinsic Dendritic Calcium Signaling during Tonic Firing of Thalamic Reticular Neurons

    PubMed Central

    Chausson, Patrick; Leresche, Nathalie; Lambert, Régis C.

    2013-01-01

    The GABAergic neurons of the nucleus reticularis thalami that control the communication between thalamus and cortex are interconnected not only through axo-dendritic synapses but also through gap junctions and dendro-dendritic synapses. It is still unknown whether these dendritic communication processes may be triggered both by the tonic and the T-type Ca2+ channel-dependent high frequency burst firing of action potentials displayed by nucleus reticularis neurons during wakefulness and sleep, respectively. Indeed, while it is known that activation of T-type Ca2+ channels actively propagates throughout the dendritic tree, it is still unclear whether tonic action potential firing can also invade the dendritic arborization. Here, using two-photon microscopy, we demonstrated that dendritic Ca2+ responses following somatically evoked action potentials that mimic wake-related tonic firing are detected throughout the dendritic arborization. Calcium influx temporally summates to produce dendritic Ca2+ accumulations that are linearly related to the duration of the action potential trains. Increasing the firing frequency facilitates Ca2+ influx in the proximal but not in the distal dendritic compartments suggesting that the dendritic arborization acts as a low-pass filter in respect to the back-propagating action potentials. In the more distal compartment of the dendritic tree, T-type Ca2+ channels play a crucial role in the action potential triggered Ca2+ influx suggesting that this Ca2+ influx may be controlled by slight changes in the local dendritic membrane potential that determine the T-type channels’ availability. We conclude that by mediating Ca2+ dynamic in the whole dendritic arborization, both tonic and burst firing of the nucleus reticularis thalami neurons might control their dendro-dendritic and electrical communications. PMID:23991078

  12. Single-cell mechanics and calcium signalling in organotypic slices of human myometrium.

    PubMed

    Loftus, Fiona C; Richardson, Magnus J E; Shmygol, Anatoly

    2015-06-25

    Elucidation of cellular mechanisms regulating myometrial contractility is crucial for improvement in management of many obstetric abnormalities, such as premature delivery, uterine dystocia and post-partum haemorrhage. Myometrial contractions are triggered by periodic synchronous rises in intracellular calcium concentration ([Ca(2+)]i) elicited by spontaneously generated action potentials propagating throughout the entire myometrium. During labour, hormones like oxytocin and prostaglandins potentiate uterine contractions by increasing their duration, strength and frequency. The most informative approach to studying the mechanisms underlying hormonal modulation of uterine contractility is to record [Ca(2+)]i responses to hormones in intact myometrial samples that have not been subjected to enzymatic treatment for cell isolation or cell culture conditions. However, the spatio-temporal resolution of such recording is limited due to the motion artifacts occurring in contracting tissue. Here we describe the application of our newly developed motion correction algorithm to investigate the [Ca(2+)]i dynamics in control and oxytocin stimulated slices of human myometrium on a cellular level. We present evidence that oxytocin induces asynchronous [Ca(2+)]i oscillations in individual myocytes within intact myometrium which are similar to those observed in cultured cells. The oscillations occur between synchronous action potential-driven [Ca(2+)]i transients but appear to be unrelated to contractions. Furthermore, the oxytocin-triggered [Ca(2+)]i oscillations wane within 30-50min of hormone application, while the action potential induced [Ca(2+)]i transients remain augmented. We conclude that oxytocin-induced [Ca(2+)]i oscillations are not relevant to the acute regulation of myometrial contractility but may play a role in longer-term regulatory processes, for example, by triggering gene expression.

  13. Calcium signaling and cell fate: how can Ca2+ signals contribute to wrong decisions for Chronic Lymphocytic Leukemic B lymphocyte outcome?

    PubMed

    Debant, Marjolaine; Hemon, Patrice; Brigaudeau, Christophe; Renaudineau, Yves; Mignen, Olivier

    2015-01-01

    Ca(2+) signaling is a key regulator of B lymphocyte cell fate and defects in this signaling pathway have been reported in numerous diseases such as Chronic lymphocytic leukemia (CLL). CLL is a B cell clonal disorder characterized by the accumulation of mature monoclonal CD5(+) B cells. Although CLL could be considered to be a proliferative disease, most circulating CLL B cells are arrested in the G0 phase of the cell cycle and present both defects in calcium (Ca(2+)) homeostasis and signaling. The Ca(2+) response to antigen ligation is heterogeneous and related, in part, to defects arising from the incapacity to respond to B cell receptor (BCR) engagement (anergy), to the expression of T cell kinases (e.g. Zap70), and to the presence of negative feedback regulation by phosphatases (e.g. SHP-1). Anergic CD5(+) CLL B cells are characterized by an elevated basal Ca(2+) level, IgM/CD79 downregulation, a constitutive activation of BCR pathway kinases, and an activation of the nuclear factor of activated T cells (NF-AT). Based on the Ca(2+) response, patients are classified into three groups: unresponders, responders with apoptosis, and responders with entry in the cell cycle. Moreover, internal and direct interaction between leukemic BCR-HCDR3 epitopes at the plasma membrane and interaction between Bcl-2 and the IP3-receptor at the endoplasmic reticulum are also suspected to interfere with the intracellular Ca(2+) homeostasis in CLL-B cells. As a whole, the Ca(2+) pathway is emerging to play a key role in malignant CLL-B survival, disease progression, and last but not least, in the therapeutic response.

  14. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling.

    PubMed

    Weckwerth, Philipp; Ehlert, Britta; Romeis, Tina

    2015-03-01

    Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize.

  15. Calcium-sensing receptors regulate cardiomyocyte Ca2+ signaling via the sarcoplasmic reticulum-mitochondrion interface during hypoxia/reoxygenation.

    PubMed

    Lu, Fang-hao; Tian, Zhiliang; Zhang, Wei-hua; Zhao, Ya-jun; Li, Hu-lun; Ren, Huan; Zheng, Hui-shuang; Liu, Chong; Hu, Guang-xia; Tian, Ye; Yang, Bao-feng; Wang, Rui; Xu, Chang-qing

    2010-06-17

    Communication between the SR (sarcoplasmic reticulum, SR) and mitochondria is important for cell survival and apoptosis. The SR supplies Ca2+ directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). Although it has been demonstrated that CaR (calcium sensing receptor) activation is involved in intracellular calcium overload during hypoxia/reoxygenation (H/Re), the role of CaR activation in the cardiomyocyte apoptotic pathway remains unclear. We postulated that CaR activation plays a role in the regulation of SR-mitochondrial inter-organelle Ca2+ signaling, causing apoptosis during H/Re. To investigate the above hypothesis, cultured cardiomyocytes were subjected to H/Re. We examined the distribution of IP3Rs in cardiomyocytes via immunofluorescence and Western blotting and found that type 3 IP3Rs were located in the SR. [Ca2+]i, [Ca2+]m and [Ca2+]SR were determined using Fluo-4, x-rhod-1 and Fluo 5N, respectively, and the mitochondrial membrane potential was detected with JC-1 during reoxygenation using laser confocal microscopy. We found that activation of CaR reduced [Ca2+]SR, increased [Ca2+]i and [Ca2+]m and decreased the mitochondrial membrane potential during reoxygenation. We found that the activation of CaR caused the cleavage of BAP31, thus generating the pro-apoptotic p20 fragment, which induced the release of cytochrome c from mitochondria and the translocation of bak/bax to mitochondria. Taken together, these results reveal that CaR activation causes Ca2+ release from the SR into the mitochondria through IP3Rs and induces cardiomyocyte apoptosis during hypoxia/reoxygenation.

  16. Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane.

    PubMed

    Rigamonti, M; Groppi, S; Belotti, F; Ambrosini, R; Filippi, G; Martegani, E; Tisi, R

    2015-02-01

    Saccharomyces cerevisiae cells respond to hypotonic stress (HTS) by a cytosolic calcium rise, either generated by an influx of calcium from extracellular medium, when calcium is available, or by a release from intracellular stores in scarcity of extracellular calcium. Calcium release from intracellular compartments is peculiarly inhibited by external calcium in a calcineurin-independent and Cch1-, but not Mid1-, driven manner. HTS-induced calcium release is also negatively regulated by the ER protein Cls2 and involves a poorly characterized protein, FLC2/YAL053W gene product, previously proposed to be required for FAD transport in the ER, albeit, due to its molecular features, it was also previously classified as an ion transporter. A computational analysis revealed that this gene and its three homologs in S. cerevisiae, together with previously identified Schizosaccharomyces pombe pkd2 and Neurospora crassa calcium-related spray protein, belong to a fungal branch of TRP-like ion transporters related to human mucolipin and polycystin 2 calcium transporters. Moreover, disruption of FLC2 gene confers severe sensitivity to Calcofluor white and hyper-activation of the cell wall integrity MAPK cascade, suggesting a role in cell wall maintenance as previously suggested for the fission yeast homolog. Perturbation in cytosolic resting calcium concentration and hyper-activation of calcineurin in exponentially growing cells suggest a role for this transporter in calcium homeostasis in yeast.

  17. IGF-1 induces IP3 -dependent calcium signal involved in the regulation of myostatin gene expression mediated by NFAT during myoblast differentiation.

    PubMed

    Valdés, Juan A; Flores, Sylvia; Fuentes, Eduardo N; Osorio-Fuentealba, Cesar; Jaimovich, Enrique; Molina, Alfredo

    2013-07-01

    Skeletal muscle differentiation is a complex and highly regulated process characterized by cell cycle arrest, which is associated with morphological changes including myoblast alignment, elongation, and fusion into multinucleated myotubes. This is a balanced process dynamically coordinated by positive and negative signals such as the insulin-like growth factor I (IGF-1) and myostatin (MSTN), respectively. In this study, we report that the stimulation of skeletal myoblasts during differentiation with IGF-1 induces a rapid and transient calcium increase from intracellular stores, which are principally mediated through the phospholipase C gamma (PLC γ)/inositol 1,4,5-triphosphate (IP3 )-dependent signaling pathways. This response was completely blocked when myoblasts were incubated with LY294002 or transfected with the dominant-negative p110 gamma, suggesting a fundamental role of phosphatidylinositol 3-kinase (PI3K) in PLCγ activation. Additionally, we show that calcium released via IP3 and induced by IGF-1 stimulates NFAT-dependent gene transcription and nuclear translocation of the GFP-labeled NFATc3 isoform. This activation was independent of extracellular calcium influx and calcium release mediated by ryanodine receptor (RyR). Finally, we examined mstn mRNA levels and mstn promoter activity in myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents and in reporter activity, which was inhibited by cyclosporin A, 11R-VIVIT, and by inhibitors of the PI3Kγ, PLCγ, and IP3 receptor. Our results strongly suggest that IGF-1 regulates myostatin transcription through the activation of the NFAT transcription factor in an IP3 /calcium-dependent manner. This is the first study to demonstrate a role of calcium-dependent signaling pathways in the mRNA expression of myostatin.

  18. Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling.

    PubMed

    Migdal, Camille; Foggia, Lucie; Tailhardat, Magalie; Courtellemont, Pascal; Haftek, Marek; Serres, Mireille

    2010-01-01

    Thimerosal, a mercury derivative composed of ethyl mercury chloride (EtHgCl) and thiosalicylic acid (TSA), is widely used as a preservative in vaccines and cosmetic products and causes cutaneous reactions. Since dendritic cells (DCs) play an essential role in the immune response, the sensitization potency of chemicals was studied in vitro using U937, a human promyelomonocytic cell line that is used as a surrogate of monocytic differentiation and activation. Currently, this cell line is under ECVAM (European Center for the Validation of Alternative Methods) validation as an alternative method for discriminating chemicals. Thimerosal and mercury derivatives induced in U937 an overexpression of CD86 and interleukin (IL)-8 secretion similarly to 1-chloro-2,4-dinitrobenzene (DNCB), a sensitizer used as a positive control for DC activation. Non-sensitizers, dichloronitrobenzene (DCNB), TSA and sodium dodecyl sulfate (SDS), an irritant, had no effect. U937 activation was prevented by cell pretreatment with N-acetyl-L-cysteine (NAC) but not with thiol-independent antioxidants except vitamin E which affected CD86 expression by preventing lipid peroxidation of cell membranes. Thimerosal, EtHgCl and DNCB induced glutathione (GSH) depletion and reactive oxygen species (ROS) within 15 min; another peak was detected after 2h for mercury compounds only. MitoSOX, a specific mitochondrial fluorescent probe, confirmed that ROS were essentially produced by mitochondria in correlation with its membrane depolarization. Changes in mitochondrial membrane permeability induced by mercury were reversed by NAC but not by thiol-independent antioxidants. Thimerosal and EtHgCl also induced a calcium (Ca2+) influx with a peak at 3h, suggesting that Ca2+ influx is a secondary event following ROS induction as Ca2+ influx was suppressed after pretreatment with NAC but not with thiol-independent antioxidants. Ca2+ influx was also suppressed when culture medium was deprived of Ca2+ confirming the

  19. Calcium-independent activation of extracellular signal-regulated kinases 1 and 2 by cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Sumpio, B. E.

    1998-01-01

    We have previously demonstrated that cyclic strain induces extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in endothelial cells (EC). The aim of this study was to investigate the effect of Ca2+ on the activation of ERK1/2. Bovine aortic EC were pretreated with a chelator of extracellular Ca2+, ethylaneglycol-bis(aminoethylether)-tetra-acetate (EGTA), a depleter of Ca2+ pools, 2,5-Di-(tert-butyl)-1,4-benzohydroquinone (BHQ), or a Ca2+ channel blocker, GdCl3, and subjected to an average 10 % strain at a rate of 60 cycles/min for 10 min. BHQ and GdCl3 did not inhibit the strain-induced ERK1/2 activation. Chelation of normal extracellular Ca2+ (1.8 mM) medium with EGTA (3 mM) acutely stimulated baseline phosphorylation and activation of ERK1/2, thereby obscuring any strain-induced activation of ERK1/2. However, in EC preincubated for 24 hours in Ca2+-free medium, elevated baseline phosphorylation was minimally activated by EGTA (200 microM) such that cyclic strain stimulated ERK1/2 in the presence or absence of BHQ. These results suggest a Ca2+ independence of the ERK1/2 signaling pathway by cyclic strain. Copyright 1998 Academic Press.

  20. AKAP-anchored PKA maintains neuronal L-type calcium channel activity and NFAT transcriptional signaling.

    PubMed

    Murphy, Jonathan G; Sanderson, Jennifer L; Gorski, Jessica A; Scott, John D; Catterall, William A; Sather, William A; Dell'Acqua, Mark L

    2014-06-12

    L-type voltage-gated Ca2+ channels (LTCC) couple neuronal excitation to gene transcription. LTCC activity is elevated by the cyclic AMP (cAMP)-dependent protein kinase (PKA) and depressed by the Ca2+-dependent phosphatase calcineurin (CaN), and both enzymes are localized to the channel by A-kinase anchoring protein 79/150 (AKAP79/150). AKAP79/150 anchoring of CaN also promotes LTCC activation of transcription through dephosphorylation of the nuclear factor of activated T cells (NFAT). We report here that the basal activity of AKAP79/150-anchored PKA maintains neuronal LTCC coupling to CaN-NFAT signaling by preserving LTCC phosphorylation in opposition to anchored CaN. Genetic disruption of AKAP-PKA anchoring promoted redistribution of the kinase out of postsynaptic dendritic spines, profound decreases in LTCC phosphorylation and Ca2+ influx, and impaired NFAT movement to the nucleus and activation of transcription. Thus, LTCC-NFAT transcriptional signaling in neurons requires precise organization and balancing of PKA and CaN activities in the channel nanoenvironment, which is only made possible by AKAP79/150 scaffolding.

  1. Imaging calcium signals in vivo: a powerful tool in physiology and pharmacology.

    PubMed

    Russell, James T

    2011-08-01

    The design and engineering of organic fluorescent Ca(2+) indicators approximately 30 years ago opened the door for imaging cellular Ca(2+) signals with a high degree of temporal and spatial resolution. Over this time, Ca(2+) imaging has revolutionized our approaches for tissue-level spatiotemporal analysis of functional organization and has matured into a powerful tool for in situ imaging of cellular activity in the living animal. In vivo Ca(2+) imaging with temporal resolution at the millisecond range and spatial resolution at micrometer range has been achieved through novel designs of Ca(2+) sensors, development of modern microscopes and powerful imaging techniques such as two-photon microscopy. Imaging Ca(2+) signals in ensembles of cells within tissue in 3D allows for analysis of integrated cellular function, which, in the case of the brain, enables recording activity patterns in local circuits. The recent development of miniaturized compact, fibre-optic-based, mechanically flexible microendoscopes capable of two-photon microscopy opens the door for imaging activity in awake, behaving animals. This development is poised to open a new chapter in physiological experiments and for pharmacological approaches in the development of novel therapies.

  2. Anabolic androgenic steroids and intracellular calcium signaling: a mini review on mechanisms and physiological implications.

    PubMed

    Vicencio, J M; Estrada, M; Galvis, D; Bravo, R; Contreras, A E; Rotter, D; Szabadkai, G; Hill, J A; Rothermel, B A; Jaimovich, E; Lavandero, S

    2011-05-01

    Increasing evidence suggests that nongenomic effects of testosterone and anabolic androgenic steroids (AAS) operate concertedly with genomic effects. Classically, these responses have been viewed as separate and independent processes, primarily because nongenomic responses are faster and appear to be mediated by membrane androgen receptors, whereas long-term genomic effects are mediated through cytosolic androgen receptors regulating transcriptional activity. Numerous studies have demonstrated increases in intracellular Ca2+ in response to AAS. These Ca2+ mediated responses have been seen in a diversity of cell types, including osteoblasts, platelets, skeletal muscle cells, cardiac myocytes and neurons. The versatility of Ca2+ as a second messenger provides these responses with a vast number of pathophysiological implications. In cardiac cells, testosterone elicits voltage-dependent Ca2+ oscillations and IP3R-mediated Ca2+ release from internal stores, leading to activation of MAPK and mTOR signaling that promotes cardiac hypertrophy. In neurons, depending upon concentration, testosterone can provoke either physiological Ca2+ oscillations, essential for synaptic plasticity, or sustained, pathological Ca2+ transients that lead to neuronal apoptosis. We propose therefore, that Ca2+ acts as an important point of crosstalk between nongenomic and genomic AAS signaling, representing a central regulator that bridges these previously thought to be divergent responses.

  3. Dendritic Calcium Signaling in ON and OFF Mouse Retinal Ganglion Cells

    PubMed Central

    Margolis, David J.; Gartland, Andrew J.; Euler, Thomas; Detwiler, Peter B.

    2010-01-01

    Retinal ganglion cells (RGCs) are the output cells of the retina; they convert synaptic input into spike output that carries visual information to the brain. Synaptic inputs are received, integrated and communicated to the spike initiation zone of the axon by dendrites whose properties are poorly understood. Here simultaneous patch clamp recording and 2-photon Ca2+ imaging are used to study voltage- and light-evoked Ca2+ signals in the dendrites of identified types of mouse RGCs from parallel ON and OFF pathways, which encode the onset and offset of light, respectively. The results show pathway-specific differences in voltage-dependent Ca2+ signaling. While both ON and OFF cells express high-voltage-activated (HVA) Ca2+ channels, only OFF RGCs also express low-voltage-activated (LVA) Ca2+ channels. LVA Ca2+ channels in OFF cells are de-inactivated by hyperpolarization from the resting potential and give rise to rebound excited Ca2+ spikes at the termination of a step of either hyperpolarizing current or light. This suggests that the differential expression of voltage-gated Ca2+ channels in ON and OFF RGC dendrites contribute to differences in the way the two cell types process visual stimuli. PMID:20505081

  4. Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system.

    PubMed

    Higashida, Haruhiro; Salmina, Alla B; Olovyannikova, Raissa Ya; Hashii, Minako; Yokoyama, Shigeru; Koizumi, Keita; Jin, Duo; Liu, Hong-Xiang; Lopatina, Olga; Amina, Sarwat; Islam, Mohammad Saharul; Huang, Jian-Jun; Noda, Mami

    2007-01-01

    beta-NAD(+) is as abundant as ATP in neuronal cells. beta-NAD(+) functions not only as a coenzyme but also as a substrate. beta-NAD(+)-utilizing enzymes are involved in signal transduction. We focus on ADP-ribosyl cyclase/CD38 which synthesizes cyclic ADP-ribose (cADPR), a universal Ca(2+) mobilizer from intracellular stores, from beta-NAD(+). cADPR acts through activation/modulation of ryanodine receptor Ca(2+) releasing Ca(2+) channels. cADPR synthesis in neuronal cells is stimulated or modulated via different pathways and various factors. Subtype-specific coupling of various neurotransmitter receptors with ADP-ribosyl cyclase confirms the involvement of the enzyme in signal transduction in neurons and glial cells. Moreover, cADPR/CD38 is critical in oxytocin release from the hypothalamic cell dendrites and nerve terminals in the posterior pituitary. Therefore, it is possible that pharmacological manipulation of intracellular cADPR levels through ADP-ribosyl cyclase activity or synthetic cADPR analogues may provide new therapeutic opportunities for treatment of neurodevelopmental disorders.

  5. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis.

    PubMed

    Jiang, Shanshan; Zhang, Dan; Wang, Li; Pan, Jiaowen; Liu, Yang; Kong, Xiangpei; Zhou, Yan; Li, Dequan

    2013-10-01

    Calcium-dependent protein kinases (CDPKs) play essential roles in calcium-mediated signal transductions in plant response to abiotic stress. Several members have been identified to be regulators for plants response to abscisic acid (ABA) signaling. Here, we isolated a subgroup I CDPK gene, ZmCPK4, from maize. Quantitative real time PCR (qRT-PCR) analysis revealed that the ZmCPK4 transcripts were induced by various stresses and signal molecules. Transient and stable expression of the ZmCPK4-GFP fusion proteins revealed ZmCPK4 localized to the membrane. Moreover, overexpression of ZmCPK4 in the transgenic Arabidopsis enhanced ABA sensitivity in seed germination, seedling growth and stomatal movement. The transgenic plants also enhanced drought stress tolerance. Taken together, the results suggest that ZmCPK4 might be involved in ABA-mediated regulation of stomatal closure in response to drought stress.

  6. Xanthohumol Modulates Calcium Signaling in Rat Ventricular Myocytes: Possible Antiarrhythmic Properties.

    PubMed

    Arnaiz-Cot, Juan Jose; Cleemann, Lars; Morad, Martin

    2017-01-01

    Cardiac arrhythmia is a major cause of mortality in cardiovascular pathologies. A host of drugs targeted to sarcolemmal Na(+), Ca(2+), and K(+) channels has had limited success clinically. Recently, Ca(2+) signaling has been target of pharmacotherapy based on finding that leaky ryanodine receptors elevate local Ca(2+) concentrations causing membrane depolarizations that trigger arrhythmias. In this study, we report that xanthohumol, an antioxidant extracted from hops showing therapeutic effects in other pathologies, suppresses aberrant ryanodine receptor Ca(2+) release. The effects of xanthohumol (5-1000 nM) on Ca(2+) signaling pathways were probed in isolated rat ventricular myocytes incubated with Fluo-4 AM using the perforated patch-clamp technique. We found that 5-50 nM xanthohumol reduced the frequency of spontaneously occurring Ca(2+) sparks (>threefold) and Ca(2+) waves in control myocytes and in cells subjected to Ca(2+) overload caused by the following: 1) exposure to low K(+) solutions, 2) periods of high frequency electrical stimulation, 3) exposures to isoproterenol, or 4) caffeine. At room temperatures, 50-100 nM xanthohumol reduced the rate of relaxation of electrically- or caffeine-triggered Ca(2+)transients, without suppressing ICa, but this effect was small and reversed by isoproterenol at physiologic temperatures. Xanthohumol also suppressed the Ca(2+) content of the SR and its rate of recirculation. The stabilizing effects of xanthohumol on the frequency of spontaneously triggered Ca(2+) sparks and waves combined with its antioxidant properties, and lack of significant effects on Na(+) and Ca(2+) channels, may provide this compound with clinically desirable antiarrhythmic properties.

  7. Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice

    PubMed Central

    Hernández-Ochoa, Erick O; Pratt, Stephen J P; Garcia-Pelagio, Karla P; Schneider, Martin F; Lovering, Richard M

    2015-01-01

    Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild-type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high-speed confocal microscopy and the voltage-sensitive indicator di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS) to assess the action potential (AP) properties. We also examined AP-induced Ca2+ transients using high-speed confocal microscopy with rhod-2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP-induced Ca2+ transients, with a further Ca2+ transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca2+ signals suggest changes in excitability and remodeling of the global Ca2+ signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles. PMID:25907787

  8. Involvement of calcium/calmodulin signaling in cercosporin toxin biosynthesis by Cercospora nicotianae.

    PubMed

    Chung, Kuang-Ren

    2003-02-01

    Cercosporin is a non-host-selective, perylenequinone toxin produced by many phytopathogenic Cercospora species. The involvement of Ca(2+)/calmodulin (CaM) signaling in cercosporin biosynthesis was investigated by using pharmacological inhibitors. The results suggest that maintaining endogenous Ca(2+) homeostasis is required for cercosporin biosynthesis in Cercospora nicotianae. The addition of excess Ca(2+) to the medium slightly increased fungal growth but resulted in a reduction in cercosporin production. The addition of Ca(2+) chelators [EGTA and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid] also reduced cercosporin production. Ca(2+) channel blockers exhibited a strong inhibition of cercosporin production only at higher concentrations (>2 mM). Cercosporin production was reduced greatly by Ca(2+) ionophores (A23187 and ionomycin) and internal Ca(2+) blocker [3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester]. Phospholipase C inhibitors (lithium, U73122, and neomycin) led to a concentration-dependent inhibition of cercosporin biosynthesis. Furthermore, the addition of CaM inhibitors (compound 48/80, trifluoperazine, W-7, and chlorpromazine) also markedly reduced cercosporin production. In contrast to W-7, W-5, with less specificity for CaM, led to only minor inhibition of cercosporin production. The inhibitory effects of Ca(2+)/CaM inhibitors were partially or completely reversed by the addition of external Ca(2+). As assessed with Fluo-3/AM (a fluorescent Ca(2+) indicator), the Ca(2+) content in the cytoplasm decreased significantly when fungal cultures were grown in a medium containing Ca(2+)/CaM antagonists, confirming the specificity of those Ca(2+)/CaM antagonists in C. nicotianae. Taken together, the results suggest that Ca(2+)/CaM signal transduction may play a pivotal role in cercosporin biosynthesis in C. nicotianae.

  9. Structure-activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 2: Role of the alditol side chain stereochemistry.

    PubMed

    Tsutsui, Nozomi; Tanabe, Genzoh; Gotoh, Genki; Morita, Nao; Nomura, Naohisa; Kita, Ayako; Sugiura, Reiko; Muraoka, Osamu

    2014-02-01

    Five alditol analogs 1b-1f of a novel glycolipid acremomannolipin A (1a), the potential Ca(2+) signal modulator isolated from Acremonium strictum, were synthesized by employing a stereoselective β-mannosylation of appropriately protected mannose with five hexitols with different stereochemistry, and their potential on modulating Ca(2+) signaling were evaluated. All these analogs were more potent compared to the original compound 1a, and proved that mannitol stereochemistry of 1a was not critical for the potent calcium signal modulating.

  10. Glutamate-induced calcium signals stimulate CO production in piglet astrocytes

    PubMed Central

    Xi, Qi; Tcheranova, Dilyara; Basuroy, Shyamali; Parfenova, Helena; Jaggar, Jonathan H.

    2011-01-01

    Glutamate-stimulated, astrocyte-derived carbon monoxide (CO) causes cerebral arteriole dilation by activating smooth muscle cell large-conductance Ca2+-activated K+ channels. Here, we examined the hypothesis that glutamate activates heme oxygenase (HO)-2 and CO production via the intracellular Ca2+ concentration ([Ca2+]i)/Ca2+-calmodulin signaling pathway in newborn pig astrocytes. The major findings are: 1) glutamate stimulated Ca2+ transients and increased steady-state [Ca2+]i in cerebral cortical astrocytes in primary culture, 2) in astrocytes permeabilized with ionomycin, elevation of [Ca2+]i concentration-dependently increased CO production, 3) glutamate did not affect CO production at any [Ca2+]i when the [Ca2+]i was held constant, 4) thapsigargin, a sarco/endoplasmic reticulum Ca2+-ATPase blocker, decreased basal CO production and blocked glutamate-induced increases in CO, and 5) calmidazolium, a calmodulin inhibitor, blocked CO production induced by glutamate and by [Ca2+]i elevation. Taken together, our data are consistent with the hypothesis that glutamate elevates [Ca2+]i in astrocytes, leading to Ca2+- and calmodulin-dependent HO-2 activation, and CO production. PMID:21572018

  11. Electromagnetic field effects on cells of the immune system: The role of calcium signaling

    SciTech Connect

    Walleczek, J. )

    1992-10-01

    During the past decade considerable evidence has accumulated demonstrating that nonthermal exposures of cells of the immune system to extremely low-frequency (ELF) electromagnetic fields (< 300 Hz) can elicit cellular changes that might be relevant to in vivo immune activity. A similar responsiveness to nonionizing electromagnetic energy in this frequency range has also been documented for tissues of the neuroendocrine and musculoskeletal system. However, knowledge about the underlying biological mechanisms by which such fields can induce cellular changes is still very limited. It is generally believed that the cell membrane and Ca[sup 2+]-regulated activity is involved in bioactive ELF field coupling to living systems. This article begins with a short review of the current state of knowledge concerning the effects of nonthermal levels of ELF electromagnetic fields on the biochemistry and activity of immune cells and then closely examines new results that suggest a role for Ca[sup 2+] in the induction of these cellular field effects. Based on these findings it is proposed that membrane-mediated Ca[sup 2+] in the induction of these cellular field effects. Based on these findings it is proposed that membrane-mediated Ca[sup 2+] signaling processes are involved in the mediation of field effects on the immune system. 69 refs., 2 tabs.

  12. Electromagnetic field effects on cells of the immune system: The role of calcium signalling

    SciTech Connect

    Walleczek, J.

    1991-07-01

    During the past decade considerable evidence has accumulated demonstrating the exposures of cells of the immune system to relatively weak extremely-low-frequency (ELF) electromagnetic fields (< 300 Hz) can elicit cellular changes which might be relevant to in-vivo immune activity. However, knowledge about the underlying biological mechanisms by which weak fields induce cellular changes is still very limited. It is generally believed that the cell membrane and Ca{sup 2+} regulated activity is involved in bioactive ELF field-coupling to living systems. This article begins with a short review of the current state of knowledge concerning the effects of nonthermal levels of ELF electromagnetic fields on the biochemistry and activity of immune cells, and then closely examines new results which suggest a role for Ca{sup 2+} in the induction of these cellular field effects. Based on these findings it is proposed that membrane-mediated Ca{sup 2+} signalling processes are involved in the mediation of field effects on the immune system. 64 refs., 2 tabs.

  13. Cardiac Ryanodine Receptor (Ryr2)-mediated Calcium Signals Specifically Promote Glucose Oxidation via Pyruvate Dehydrogenase.

    PubMed

    Bround, Michael J; Wambolt, Rich; Cen, Haoning; Asghari, Parisa; Albu, Razvan F; Han, Jun; McAfee, Donald; Pourrier, Marc; Scott, Nichollas E; Bohunek, Lubos; Kulpa, Jerzy E; Chen, S R Wayne; Fedida, David; Brownsey, Roger W; Borchers, Christoph H; Foster, Leonard J; Mayor, Thibault; Moore, Edwin D W; Allard, Michael F; Johnson, James D

    2016-11-04

    Cardiac ryanodine receptor (Ryr2) Ca(2+) release channels and cellular metabolism are both disrupted in heart disease. Recently, we demonstrated that total loss of Ryr2 leads to cardiomyocyte contractile dysfunction, arrhythmia, and reduced heart rate. Acute total Ryr2 ablation also impaired metabolism, but it was not clear whether this was a cause or consequence of heart failure. Previous in vitro studies revealed that Ca(2+) flux into the mitochondria helps pace oxidative metabolism, but there is limited in vivo evidence supporting this concept. Here, we studied heart-specific, inducible Ryr2 haploinsufficient (cRyr2Δ50) mice with a stable 50% reduction in Ryr2 protein. This manipulation decreased the amplitude and frequency of cytosolic and mitochondrial Ca(2+) signals in isolated cardiomyocytes, without changes in cardiomyocyte contraction. Remarkably, in the context of well preserved contractile function in perfused hearts, we observed decreased glucose oxidation, but not fat oxidation, with increased glycolysis. cRyr2Δ50 hearts exhibited hyperphosphorylation and inhibition of pyruvate dehydrogenase, the key Ca(2+)-sensitive gatekeeper to glucose oxidation. Metabolomic, proteomic, and transcriptomic analyses revealed additional functional networks associated with altered metabolism in this model. These results demonstrate that Ryr2 controls mitochondrial Ca(2+) dynamics and plays a specific, critical role in promoting glucose oxidation in cardiomyocytes. Our findings indicate that partial RYR2 loss is sufficient to cause metabolic abnormalities seen in heart disease.

  14. Ectopic vesicular neurotransmitter release along sensory axons mediates neurovascular coupling via glial calcium signaling.

    PubMed

    Thyssen, Anne; Hirnet, Daniela; Wolburg, Hartwig; Schmalzing, Günther; Deitmer, Joachim W; Lohr, Christian

    2010-08-24

    Neurotransmitter release generally is considered to occur at active zones of synapses, and ectopic release of neurotransmitters has been demonstrated in a few instances. However, the mechanism of ectopic neurotransmitter release is poorly understood. We took advantage of the intimate morphological and functional proximity of olfactory receptor axons and specialized glial cells, olfactory ensheathing cells (OECs), to study ectopic neurotransmitter release. Axonal stimulation evoked purinergic and glutamatergic Ca(2+) responses in OECs, indicating ATP and glutamate release. In axons expressing synapto-pHluorin, stimulation evoked an increase in synapto-pHluorin fluorescence, indicative of vesicle fusion. Transmitter release was dependent on Ca(2+) and could be inhibited by bafilomycin A1 and botulinum toxin A. Ca(2+) transients in OECs evoked by ATP, axonal stimulation, and laser photolysis of NP-EGTA resulted in constriction of adjacent blood vessels. Our results indicate that ATP and glutamate are released ectopically by vesicles along axons and mediate neurovascular coupling via glial Ca(2+) signaling.

  15. Calcium inhibition as an intracellular signal for actin–myosin interaction

    PubMed Central

    KOHAMA, Kazuhiro

    2016-01-01

    Intracellular signaling pathways include both the activation and the inhibition of biological processes. The activation of Ca2+ regulation of actin-myosin interactions was examined first, whereas it took 20 years for the author to clarify the inhibitory mode by using Physarum polycephalum, a lower eukaryote. This review describes the investigation of the inhibitory mode since 1980. The inhibitory effect of Ca2+ on myosin was detected chemically by ATPase assays and mechanically by in vitro motility assays. The Ca2+-binding ability of Physarum myosin is as high as that of scallop myosin. Ca2+ inhibits Physarum myosin, whereas it activates scallop myosin. We cloned cDNA of the myosin heavy chain and light chains to express a hybrid of Physarum and scallop myosin, and found that the Ca-binding light chain (CaLc), which belongs to an alkali light chain class, plays a major role in Ca inhibition. The role of CaLc was confirmed by mutating its EF-hand, Ca-binding structure and expressing Physarum myosin as a recombinant protein. Thus, the data obtained by classical protein purification were confirmed by the results obtained with the modern recombinant techniques. However, there are some discrepancies that remain to be solved as described in Section XII. PMID:27941307

  16. Intracellular calcium overloading and oxidative stress in cardiomyocyte necrosis via a mitochondriocentric signal-transducer-effector pathway

    PubMed Central

    Shaheen, Mazen; Cheema, Yaser; Shahbaz, Atta U; Bhattacharya, Syamal K; Weber, Karl T

    2011-01-01

    Congestive heart failure (CHF), a common clinical syndrome, has reached epidemic proportions. Its disabling symptoms account for frequent hospitalizations and readmissions. Pathophysiological mechanisms that lead to CHF and account for its progressive nature are of considerable interest. Important scientific observations obtained from Dr Pawan K Singal’s laboratory in Winnipeg, Manitoba, have provided crucial insights to our understanding of the pathophysiological factors that contribute to cardiomyocyte necrosis (the heart is a postmitotic organ incapable of tolerating an ongoing loss of these cells without adverse functional consequences). This increment in knowledge and the mechanistic insights afforded by Dr Singal and his colleagues have highlighted the role of excessive intracellular calcium accumulation and the appearance of oxidative stress in CHF, in which the rate of reactive oxygen species generation overwhelms their rate of detoxification by antioxidant defenses. They have shown that this common pathophysiological scenario applies to diverse entities such as ischemia/reperfusion and hypoxia/reoxygenation forms of injury, myocardial infarction and the cardiomyopathies that accompany diabetes and excess levels of catecholamines and adriamycin. The authors are honoured to be invited to contribute to the present focus issue of Experimental & Clinical Cardiology in recognizing Dr Singal’s numerous scholarly accomplishments. The present article reviews the authors’ recent work on a mitochondriocentric signal-transducer-effector pathway to cardiomyocyte necrosis found in rats with either an acute stressor state that accompanies isoproterenol administration or a chronic stressor state manifested after four weeks of aldosterone/salt treatment. PMID:22131852

  17. Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo

    PubMed Central

    Deneux, Thomas; Kaszas, Attila; Szalay, Gergely; Katona, Gergely; Lakner, Tamás; Grinvald, Amiram; Rózsa, Balázs; Vanzetta, Ivo

    2016-01-01

    Extracting neuronal spiking activity from large-scale two-photon recordings remains challenging, especially in mammals in vivo, where large noises often contaminate the signals. We propose a method, MLspike, which returns the most likely spike train underlying the measured calcium fluorescence. It relies on a physiological model including baseline fluctuations and distinct nonlinearities for synthetic and genetically encoded indicators. Model parameters can be either provided by the user or estimated from the data themselves. MLspike is computationally efficient thanks to its original discretization of probability representations; moreover, it can also return spike probabilities or samples. Benchmarked on extensive simulations and real data from seven different preparations, it outperformed state-of-the-art algorithms. Combined with the finding obtained from systematic data investigation (noise level, spiking rate and so on) that photonic noise is not necessarily the main limiting factor, our method allows spike extraction from large-scale recordings, as demonstrated on acousto-optical three-dimensional recordings of over 1,000 neurons in vivo. PMID:27432255

  18. The calcium ATPase SERCA2 regulates desmoplakin dynamics and intercellular adhesive strength through modulation of PKCα signaling

    PubMed Central

    Hobbs, Ryan P.; Amargo, Evangeline V.; Somasundaram, Agila; Simpson, Cory L.; Prakriya, Murali; Denning, Mitchell F.; Green, Kathleen J.

    2011-01-01

    Darier's disease (DD) is an inherited autosomal-dominant skin disorder characterized histologically by loss of adhesion between keratinocytes. DD is typically caused by mutations in sarcoendoplasmic reticulum Ca2+-ATPase isoform 2 (SERCA2), a major regulator of intracellular Ca2+ homeostasis in the skin. However, a defined role for SERCA2 in regulating intercellular adhesion remains poorly understood. We found that diminution of SERCA2 function by pharmacological inhibition or siRNA silencing in multiple human epidermal-derived cell lines was sufficient to disrupt desmosome assembly and weaken intercellular adhesive strength. Specifically, SERCA2-deficient cells exhibited up to a 60% reduction in border translocation of desmoplakin (DP), the desmosomal cytolinker protein necessary for intermediate filament (IF) anchorage to sites of robust cell-cell adhesion. In addition, loss of SERCA2 impaired the membrane translocation of protein kinase C α (PKCα), a known regulator of DP-IF association and desmosome assembly, to the plasma membrane by up to 70%. Exogenous activation of PKCα in SERCA2-deficient cells was sufficient to rescue the defective DP localization, desmosome assembly, and intercellular adhesive strength to levels comparable to controls. Our findings indicate that SERCA2-deficiency is sufficient to impede desmosome assembly and weaken intercellular adhesive strength via a PKCα-dependent mechanism, implicating SERCA2 as a novel regulator of PKCα signaling.—Hobbs, R. P., Amargo, E. V., Somasundaram, A., Simpson, C. L., Prakriya, M., Denning, M. F., Green, K. J. The calcium ATPase SERCA2 regulates desmoplakin dynamics and intercellular adhesive strength through modulation of PKCα signaling. PMID:21156808

  19. Cardiac calcium signalling pathologies associated with defective calmodulin regulation of type 2 ryanodine receptor

    PubMed Central

    Arnáiz-Cot, Juan José; Damon, Brooke James; Zhang, Xiao-Hua; Cleemann, Lars; Yamaguchi, Naohiro; Meissner, Gerhard; Morad, Martin

    2013-01-01

    Cardiac ryanodine receptor (RyR2) is a homotetramer of 560 kDa polypeptides regulated by calmodulin (CaM), which decreases its open probability at diastolic and systolic Ca2+ concentrations. Point mutations in the CaM-binding domain of RyR2 (W3587A/L3591D/F3603A, RyR2ADA) in mice result in severe cardiac hypertrophy, poor left ventricle contraction and death by postnatal day 16, suggesting that CaM inhibition of RyR2 is required for normal cardiac function. Here, we report on Ca2+ signalling properties of enzymatically isolated, Fluo-4 dialysed whole cell clamped cardiac myocytes from 10–15-day-old wild-type (WT) and homozygous Ryr2ADA/ADA mice. Spontaneously occurring Ca2+ spark frequency, measured at −80 mV, was 14-fold lower in mutant compared to WT myocytes. ICa, though significantly smaller in mutant myocytes, triggered Ca2+ transients that were of comparable size to those of WT myocytes, but with slower activation and decay kinetics. Caffeine-triggered Ca2+ transients were about three times larger in mutant myocytes, generating three- to four-fold bigger Na+-Ca2+ exchanger NCX currents (INCX). Mutant myocytes often exhibited Ca2+ transients of variable size and duration that were accompanied by similarly alternating and slowly activating INCX. The data suggest that RyR2ADA mutation produces significant reduction in ICa density and ICa-triggered Ca2+ release gain, longer but infrequently occurring Ca2+ sparks, larger sarcoplasmic reticulum Ca2+ loads, and spontaneous Ca2+ releases accompanied by activation of large and potentially arrhythmogenic inward INCX. PMID:23836685

  20. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals.

    PubMed

    Jackson, M B; Konnerth, A; Augustine, G J

    1991-01-15

    Hormone release from nerve terminals in the neurohypophysis is a sensitive function of action potential frequency. We have investigated the cellular mechanisms responsible for this frequency-dependent facilitation by combining patch clamp and fluorimetric Ca2+ measurements in single neurosecretory terminals in thin slices of the rat posterior pituitary. In these terminals both action potential-induced changes in the intracellular Ca2+ concentration ([Ca2+]i) and action potential duration were enhanced by high-frequency stimuli, all with a frequency dependence similar to that of hormone release. Furthermore, brief voltage clamp pulses inactivated a K+ current with a very similar frequency dependence. These results support a model for frequency-dependent facilitation in which the inactivation of a K+ current broadens action potentials, leading to an enhancement of [Ca2+]i signals. Further experiments tested for a causal relationship between action potential broadening and facilitation of [Ca2+]i changes. First, increasing the duration of depolarization, either by broadening action potentials with the K(+)-channel blocker tetraethylammonium or by applying longer depolarizing voltage clamp steps, increased [Ca2+]i changes. Second, eliminating frequency-dependent changes in duration, by voltage clamping the terminal with constant duration pulses, substantially reduced the frequency-dependent enhancement of [Ca2+]i changes. These results indicate that action potential broadening contributes to frequency-dependent facilitation of [Ca2+]i changes. However, the small residual frequency dependence of [Ca2+]i changes seen with constant duration stimulation suggests that a second process, distinct from action potential broadening, also contributes to facilitation. These two frequency-dependent mechanisms may also contribute to activity-dependent plasticity in synaptic terminals.

  1. Separate 5-hydroxytryptamine receptors on the salivary gland of the blowfly are linked to the generation of either cyclic adenosine 3',5'-monophosphate or calcium signals.

    PubMed Central

    Berridge, M. J.; Heslop, J. P.

    1981-01-01

    1 5'-Hydroxytryptamine (5-HT) stimulates the formation of two separate second messengers in the salivary gland of the blowfly. Activation of adenylate cyclase raises adenosine 3',5'-monophosphate (cyclic AMP) whereas the hydrolysis of phosphatidylinositol (PI) is associated with an increase in calcium permeability. The possibility that these two signal pathways might be controlled by separate 5-HT receptors was studied by testing the specificity of 5-HT analogues and antagonists. 2 The parent compound 5-HT was found to stimulate both cyclic AMP formation and the related parameters of PI hydrolysis and calcium transport with similar dose-response relationships. 3 Certain analogues such as 4- and 5-fluoro-alpha-methyltryptamine were capable of raising cyclic AMP levels and stimulating fluid secretion but did not stimulate the hydrolysis of PI or the entry of calcium. 4 Other analogues, which had chloro or methyl substituents at the 5-position, were found to stimulate the hydrolysis of PI and the transport of calcium at much lower doses than those required to stimulate the formation of cyclic AMP. 5 Antagonists were also found to exert selective effects. Methysergide was a potent inhibitor of PI hydrolysis whereas cinanserin was far more selective in blocking the stimulatory effect of 5-HT on cyclic AMP formation. 6 It is concluded that 5-HT acts on two separate receptors, a 5-HT1 receptor acting through calcium and a 5-HT2 receptor which mediates its effects through cyclic AMP. PMID:6265018

  2. Experimental evidence for 60 Hz magnetic fields operating through the signal transduction cascade. Effects on calcium influx and c-MYC mRNA induction.

    PubMed

    Liburdy, R P; Callahan, D E; Harland, J; Dunham, E; Sloma, T R; Yaswen, P

    1993-11-22

    We tested the hypothesis that early alterations in calcium influx induced by an imposed 60 Hz magnetic field are propagated down the signal transduction (ST) cascade to alter c-MYC mRNa induction. To test this we measured both ST parameters in the same cells following 60 Hz magnetic field exposures in a specialized annular ring device (220 G (22 mT), 1.7 mV/cm maximal E(induced), 37 degrees C, 60 min). Ca2+ influx is a very early ST marker that precedes the specific induction of mRNA transcripts for the proto-oncogene c-MYC, an immediate early response gene. In three experiments influx of 45Ca2+ in the absence of mitogen was similar to that in cells treated with suboptimal levels of Con-A (1 micrograms/ml). However, calcium influx was elevated 1.5-fold when lymphocytes were exposed to Con-A plus magnetic fields; this co-stimulatory effect is consistent with previous reports from our laboratory [FEBS Lett. 301 (1992) 53-59; FEBS Lett. 271 (1990) 157-160; Ann. N.Y. Acad. Sci. 649 (1992) 74-95]. The level of c-MYC mRNA transcript copies in non-activated cells and in suboptimally-activated cells was also similar, which is consistent with the above calcium influx findings. Significantly, lymphocytes exposed to the combination of magnetic fields plus suboptimal Con-A responded with an approximate 3.0-fold increase in band intensity of c-MYC mRNA transcripts. Importantly, transcripts for the housekeeping gene GAPDH were not influenced by mitogen or magnetic fields. We also observed that lymphocytes that failed to exhibit increased calcium influx in response to magnetic fields plus Con-A, also failed to exhibit an increase in total copies of c-MYC mRNA. Thus, calcium influx and c-MYC mRNA expression, which are sequentially linked via the signal transduction cascade in contrast to GAPDH, were both increased by magnetic fields. These findings support the above ST hypothesis and provide experimental evidence for a general biological framework for understanding magnetic field

  3. Inositol 1, 4, 5-trisphosphate-dependent nuclear calcium signals regulate angiogenesis and cell motility in triple negative breast cancer.

    PubMed

    Guimarães, Erika; Machado, Rodrigo; Fonseca, Matheus de Castro; França, Andressa; Carvalho, Clarissa; Araújo E Silva, Ana Cândida; Almeida, Brígida; Cassini, Puebla; Hissa, Bárbara; Drumond, Luciana; Gonçalves, Carlos; Fernandes, Gabriel; De Brot, Marina; Moraes, Márcio; Barcelos, Lucíola; Ortega, José Miguel; Oliveira, André; Leite, M Fátima

    2017-01-01

    Increases in nuclear calcium concentration generate specific biological outcomes that differ from those resulting from increased cytoplasmic calcium. Nuclear calcium effects on tumor cell proliferation are widely appreciated; nevertheless, its involvement in other steps of tumor progression is not well understood. Therefore, we evaluated whether nuclear calcium is essential in other additional stages of tumor progression, including key steps associated with the formation of the primary tumor or with the metastatic cascade. We found that nuclear calcium buffering impaired 4T1 triple negative breast cancer growth not just by decreasing tumor cell proliferation, but also by enhancing tumor necrosis. Moreover, nuclear calcium regulates tumor angiogenesis through a mechanism that involves the upregulation of the anti-angiogenic C-X-C motif chemokine 10 (CXCL10-IP10). In addition, nuclear calcium buffering regulates breast tumor cell motility, culminating in less cell invasion, likely due to enhanced vinculin expression, a focal adhesion structural protein. Together, our results show that nuclear calcium is essential for triple breast cancer angiogenesis and cell migration and can be considered as a promising strategic target for triple negative breast cancer therapy.

  4. Inhibition of VEGFR2 Activation and Its Downstream Signaling to ERK1/2 and Calcium by Thrombospondin-1 (TSP1): In silico Investigation

    PubMed Central

    Bazzazi, Hojjat; Isenberg, Jeffery S.; Popel, Aleksander S.

    2017-01-01

    VEGF signaling through VEGFR2 is a central regulator of the angiogenic response. Inhibition of VEGF signaling by the stress-induced matricellular protein TSP1 plays a role in modulating the angiogenic response to VEGF in both health and disease. TSP1 binding to CD47 inhibits VEGFR2 activation. The full implications of this inhibitory interaction are unknown. We developed a detailed rule-based computational model to inquire if TSP1-CD47 signaling through VEGF had downstream effects upon ERK1/2 and calcium. Our Simulations suggest that enhanced degradation of VEGFR2 initiated by the binding of TSP1 to CD47 is sufficient to explain the inhibition of VEGFR2 phosphorylation, calcium elevation, and ERK1/2 activation downstream of VEGF. A complementary mechanism involving the recruitment of phosphatases to the VEGFR2 complex with consequent increase in the rate of receptor dephosphorylation may augment the inhibition of the VEGF signal. The model was then utilized to simulate the effect of inhibiting external TSP1 or the depletion of CD47 as potential therapeutic strategies in restoring VEGF signaling. Results suggest that depleting CD47 is a more efficient strategy in inhibiting the effects of TSP1/CD47 on VEGF signaling. Our results highlight the utility of in silico investigations in elucidating and clarifying molecular mechanisms at the intersection of TSP1 and VEGF biology and in differentiating between competing pro-angiogenic therapeutic strategies relevant to peripheral arterial disease (PAD) and wound healing. PMID:28220078

  5. Neuronal Expression of the Human Neuropeptide S Receptor NPSR1 Identifies NPS-Induced Calcium Signaling Pathways

    PubMed Central

    Erdmann, Frank; Kügler, Sebastian; Blaesse, Peter; Lange, Maren D.; Skryabin, Boris V.; Pape, Hans-Christian; Jüngling, Kay

    2015-01-01

    The neuropeptide S (NPS) system was discovered as a novel neurotransmitter system a decade ago and has since been identified as a key player in the modulation of fear and anxiety. Genetic variations of the human NPS receptor (NPSR1) have been associated with pathologies like panic disorders. However, details on the molecular fundamentals of NPSR1 activity in neurons remained elusive. We expressed NPSR1 in primary hippocampal cultures. Using single-cell calcium imaging we found that NPSR1 stimulation induced calcium mobilization from the endoplasmic reticulum via activation of IP3 and ryanodine receptors. Store-operated calcium channels were activated in a downstream process mediating entry of extracellular calcium. We provide the first detailed analysis of NPSR1 activity and the underlying intracellular pathways with respect to calcium mobilization in neurons. PMID:25714705

  6. Short food deprivation inhibits orexin receptor 1 expression and orexin-A induced intracellular calcium signaling in acutely isolated duodenal enterocytes.

    PubMed

    Bengtsson, Magnus W; Mäkelä, Kari; Herzig, Karl-Heinz; Flemström, Gunnar

    2009-03-01

    Close intra-arterial infusion of the appetite regulating peptide orexin-A stimulates bicarbonate secretion from the duodenal mucosa. The aim of the present study was to elucidate the ability of orexin-A to induce intracellular calcium signaling in acutely isolated duodenal enterocytes. Freshly isolated clusters of enterocytes, obtained from rat duodenal mucosa or human duodenal biopsies, were loaded with fura 2-AM and mounted in a perfusion chamber. Cryptlike enterocytes were selected (caged), and changes in intracellular calcium concentration ([Ca2+]i) were evaluated by fluorescence imaging. Total RNA was extracted from pellets of enterocytes and reverse transcribed to cDNA, and expression of orexin receptors 1 and 2 (OX1R and OX2R) was measured by quantitative real-time PCR. Orexin-A at all concentrations tested (1-100 nM) increased [Ca2+]i in enterocytes isolated from continuously fed rats, and the OX1R-antagonist SB-334867 (10 nM) attenuated the response. The primary [Ca2+]i response was a slow increase to a sustained plateau persisting after orexin-A removal, and a similar response was observed in enterocytes from human biopsies. In contrast to orexin-A, the OX2R agonist (Ala11,D-Leu15)-orexin-B (1-10 nM) did not induce calcium signaling. There were no significant [Ca2+]i responses in enterocytes from animals food deprived overnight, and overnight fasting decreased (P<0.01) enterocyte OX1R as well as OX2R mRNA. Induction of intracellular calcium signaling in isolated duodenal enterocytes is thus mediated primarily by OX1R receptors. Short (overnight) food deprivation markedly depresses receptor expression and inhibits orexin-A induced increases in [Ca2+]i. Studies of enterocyte signaling and intestinal secretion requires particular evaluation regarding feeding status.

  7. Calcium supplements

    MedlinePlus

    ... TYPES OF CALCIUM SUPPLEMENTS Forms of calcium include: Calcium carbonate: Over-the-counter (OTC) antacid products, such as Tums and Rolaids, contain calcium carbonate. These sources of calcium do not cost much. ...

  8. Mapping transmembrane residues of proteinase activated receptor 2 (PAR2) that influence ligand-modulated calcium signaling.

    PubMed

    Suen, J Y; Adams, M N; Lim, J; Madala, P K; Xu, W; Cotterell, A J; He, Y; Yau, M K; Hooper, J D; Fairlie, D P

    2017-03-01

    Proteinase-activated receptor 2 (PAR2) is a G protein-coupled receptor involved in metabolism, inflammation, and cancers. It is activated by proteolysis, which exposes a nascent N-terminal sequence that becomes a tethered agonist. Short synthetic peptides corresponding to this sequence also activate PAR2, while small organic molecules show promising PAR2 antagonism. Developing PAR2 ligands into pharmaceuticals is hindered by a lack of knowledge of how synthetic ligands interact with and differentially modulate PAR2. Guided by PAR2 homology modeling and ligand docking based on bovine rhodopsin, followed by cross-checking with newer PAR2 models based on ORL-1 and PAR1, site-directed mutagenesis of PAR2 was used to investigate the pharmacology of three agonists (two synthetic agonists and trypsin-exposed tethered ligand) and one antagonist for modulation of PAR2 signaling. Effects of 28 PAR2 mutations were examined for PAR2-mediated calcium mobilization and key mutants were selected for measuring ligand binding. Nineteen of twenty-eight PAR2 mutations reduced the potency of at least one ligand by >10-fold. Key residues mapped predominantly to a cluster in the transmembrane (TM) domains of PAR2, differentially influence intracellular Ca(2+) induced by synthetic agonists versus a native agonist, and highlight subtly different TM residues involved in receptor activation. This is the first evidence highlighting the importance of the PAR2 TM regions for receptor activation by synthetic PAR2 agonists and antagonists. The trypsin-cleaved N-terminus that activates PAR2 was unaffected by residues that affected synthetic peptides, challenging the widespread practice of substituting peptides for proteases to characterize PAR2 physiology.

  9. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants.

    PubMed

    Sang, Jianrong; Zhang, Aying; Lin, Fan; Tan, Mingpu; Jiang, Mingyi

    2008-05-01

    Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H(2)O(2)), calcium (Ca(2+))-calmodulin (CaM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. Treatments with ABA, H(2)O(2), and CaCl(2) induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. However, such increases were blocked by the pretreatments with Ca(2+) inhibitors and CaM antagonists. Meanwhile, pretreatments with two NOS inhibitors also suppressed the Ca(2+)-induced increase in the production of NO. On the other hand, treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca(2+) in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaM1) gene and the contents of CaM in leaves of maize plants, and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor. Moreover, SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca(2+) inhibitors and CaM antagonists. Our results suggest that Ca(2+)-CaM functions both upstream and downstream of NO production, which is mainly from NOS, in ABA- and H(2)O(2)-induced antioxidant defense in leaves of maize plants.

  10. Contribution of calcium ions and hydrogen ions to the signal transduction chain in phytochrome-mediated spore germination. [Onoclea sensibilis L

    SciTech Connect

    Wayne, R.

    1985-01-01

    Red light stimulates germination in the spores of Onoclea sensibilis L. Phytochrome is confirmed to be the photoreceptor pigment in the germination response by demonstrating red-far-red photoreversibility. External Ca/sup 2 +/ is required for this response with a threshold at a submicromolar concentration. Red light stimulates an increase in the total concentration of intracellular calcium in the spores as determined by atomic absorption spectroscopy. Subsequent exposure to far-red light inhibits the red light-induced increase in intracellular calcium. The majority of the increase occurs 5 minutes after the onset of irradiation. The calcium-antagonist, La/sup 3 +/ inhibits both germination and the red light-induced increase in intracellular calcium. Using /sup 31/P-nuclear magnetic resonance spectroscopy, the author tested the hypothesis that a sustained increase in intracellular pH contributes to the signal transduction chain. He never detected a red light-induced increase in intracellular pH or a change in portion efflux. An artificially induced change in intracellular pH of greater than 1 pH unit (5.8-7.2) has no effect on germination. Although the intracellular pH can be varied in magnitude greater than it would be expected to change if it were acting as an intracellular signal, germination of Onoclea spores is independent of intracellular pH in this range. These data indicate that a sustained increase in intracellular pH does not contribute to the single transduction chain phytochrome-mediated fern spore germination. Therefore, Ca/sup 2 +/, but not pH, contributes to the signal transduction chain in phytochrome-mediated fern spore germination.

  11. Oxidative Stress in the Hypothalamus: the Importance of Calcium Signaling and Mitochondrial ROS in Body Weight Regulation.

    PubMed

    Gyengesi, Erika; Paxinos, George; Andrews, Zane B

    2012-12-01

    A considerable amount of evidence shows that reactive oxygen species (ROS) in the mammalian brain are directly responsible for cell and tissue function and dysfunction. Excessive reactive oxygen species contribute to various conditions including inflammation, diabetes mellitus, neurodegenerative diseases, tumor formation, and mental disorders such as depression. Increased intracellular calcium levels have toxic roles leading to cell death. However, the exact connection between reactive oxygen production and high calcium stress is not yet fully understood. In this review, we focus on the role of reactive oxygen species and calcium stress in hypothalamic arcuate neurons controlling feeding. We revisit the role of NPY and POMC neurons in the regulation of appetite and energy homeostasis, and consider how ROS and intracellular calcium levels affect these neurons. These novel insights give a new direction to research on hypothalamic mechanisms regulating energy homeostasis and may offer novel treatment strategies for obesity and type-2 diabetes.

  12. The roles of calcium signaling and ERK1/2 phosphorylation in a Pax6+/- mouse model of epithelial wound-healing delay

    PubMed Central

    Leiper, Lucy J; Walczysko, Petr; Kucerova, Romana; Ou, Jingxing; Shanley, Lynne J; Lawson, Diane; Forrester, John V; McCaig, Colin D; Zhao, Min; Collinson, J Martin

    2006-01-01

    Background Congenital aniridia caused by heterozygousity at the PAX6 locus is associated with ocular surface disease including keratopathy. It is not clear whether the keratopathy is a direct result of reduced PAX6 gene dosage in the cornea itself, or due to recurrent corneal trauma secondary to defects such as dry eye caused by loss of PAX6 in other tissues. We investigated the hypothesis that reducing Pax6 gene dosage leads to corneal wound-healing defects. and assayed the immediate molecular responses to wounding in wild-type and mutant corneal epithelial cells. Results Pax6+/- mouse corneal epithelia exhibited a 2-hour delay in their response to wounding, but subsequently the cells migrated normally to repair the wound. Both Pax6+/+ and Pax6+/- epithelia activated immediate wound-induced waves of intracellular calcium signaling. However, the intensity and speed of propagation of the calcium wave, mediated by release from intracellular stores, was reduced in Pax6+/- cells. Initiation and propagation of the calcium wave could be largely decoupled, and both phases of the calcium wave responses were required for wound healing. Wounded cells phosphorylated the extracellular signal-related kinases 1/2 (phospho-ERK1/2). ERK1/2 activation was shown to be required for rapid initiation of wound healing, but had only a minor effect on the rate of cell migration in a healing epithelial sheet. Addition of exogenous epidermal growth factor (EGF) to wounded Pax6+/- cells restored the calcium wave, increased ERK1/2 activation and restored the immediate healing response to wild-type levels. Conclusion The study links Pax6 deficiency to a previously overlooked wound-healing delay. It demonstrates that defective calcium signaling in Pax6+/- cells underlies this delay, and shows that it can be pharmacologically corrected. ERK1/2 phosphorylation is required for the rapid initiation of wound healing. A model is presented whereby minor abrasions, which are quickly healed in normal

  13. Spleen Tyrosine Kinase (Syk)-dependent Calcium Signals Mediate Efficient CpG-induced Exocytosis of Tumor Necrosis Factor α (TNFα) in Innate Immune Cells*

    PubMed Central

    Rao, Sheila; Liu, Xiaohong; Freedman, Bruce D.; Behrens, Edward M.

    2013-01-01

    Pattern recognition receptors expressed by cells of the innate immune system initiate the immune response upon recognition of microbial products. Activation of pattern recognition receptors result in the production and release of proinflammatory cytokines, including TNFα and IL-6. Because these cytokines promote disparate effector cell responses, understanding the signaling pathways involved in their regulation is critical for directing the immune response. Using macrophages and dendritic cells deficient in spleen tyrosine kinase (Syk), we identified a novel pathway by which TNFα trafficking and secretion are regulated by Syk following stimulation with CpG DNA. In the absence of PLCγ2, a Syk substrate, or the calcium-responsive kinase calcium calmodulin kinase II, CpG-induced TNFα secretion was impaired. Forced calcium mobilization rescued the TNFα secretion defect in Syk-deficient cells. In contrast to its effect on TNFα, Syk deficiency did not affect IL-6 secretion, suggesting that Syk-dependent signals participate in differential sorting of cytokines, thus tailoring the cytokine response. Our data report a novel pathway for TNFα regulation and provide insight into non-transcriptional mechanisms for shaping cytokine responses. PMID:23515313

  14. Activation of ERK1/2 and TNF-α production are regulated by calcium/calmodulin signaling pathway during Penicillium marneffei infection within human macrophages.

    PubMed

    Chen, Renqiong; Ji, Guangquan; Wang, Ling; Ren, Hong; Xi, Liyan

    2016-04-01

    Previous study have shown that Penicillium marneffei (P. marneffei)-induced TNF-α production via an extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase-dependent mechanism is an important host defence mechanism against P. marneffei in human macrophages. Therefore, we explore signaling pathway that regulates TNF-α secretion and activation of ERK1/2 by intracellular signaling mechanisms during P. marneffei infection. We found that ERK1/2 activation was dependent on the calcium/calmodulin/calmodulin kinase Ⅱ pathway in P. marneffei-infected human macrophages. In contrast, P. marneffei-induced p38 MAPK activation was negatively regulated by calcium/calmodulin/calmodulin kinase Ⅱ signaling pathway. Furthermore, TNF-α production in P. marneffei-infected human macrophages was also dependent on Ca(2+)/calmodulin/calmodulin kinase Ⅱ pathway. These data suggest that Ca(2+)/calmodulin/calmodulin kinase Ⅱ pathway plays vital regulatory roles in macrophage activation and subsequent cytokine production during P. marneffei infection.

  15. Apoptosis induction-related cytosolic calcium responses revealed by the dual FRET imaging of calcium signals and caspase-3 activation in a single cell.

    PubMed

    Miyamoto, Akitoshi; Miyauchi, Hiroshi; Kogure, Takako; Miyawaki, Atsushi; Michikawa, Takayuki; Mikoshiba, Katsuhiko

    2015-04-24

    Stimulus-induced changes in the intracellular Ca(2+) concentration control cell fate decision, including apoptosis. However, the precise patterns of the cytosolic Ca(2+) signals that are associated with apoptotic induction remain unknown. We have developed a novel genetically encoded sensor of activated caspase-3 that can be applied in combination with a genetically encoded sensor of the Ca(2+) concentration and have established a dual imaging system that enables the imaging of both cytosolic Ca(2+) signals and caspase-3 activation, which is an indicator of apoptosis, in the same cell. Using this system, we identified differences in the cytosolic Ca(2+) signals of apoptotic and surviving DT40 B lymphocytes after B cell receptor (BCR) stimulation. In surviving cells, BCR stimulation evoked larger initial Ca(2+) spikes followed by a larger sustained elevation of the Ca(2+) concentration than those in apoptotic cells; BCR stimulation also resulted in repetitive transient Ca(2+) spikes, which were mediated by the influx of Ca(2+) from the extracellular space. Our results indicate that the observation of both Ca(2+) signals and cells fate in same cell is crucial to gain an accurate understanding of the function of intracellular Ca(2+) signals in apoptotic induction.

  16. Effect of a high dose of simvastatin on muscle mitochondrial metabolism and calcium signaling in healthy volunteers

    SciTech Connect

    Galtier, F.; Mura, T.; Raynaud de Mauverger, E.; Chevassus, H.; Farret, A.; Gagnol, J.-P.; Costa, F.; Dupuy, A.; and others

    2012-09-15

    Statin use may be limited by muscle side effects. Although incompletely understood to date, their pathophysiology may involve oxidative stress and impairments of mitochondrial function and of muscle Ca{sup 2+} homeostasis. In order to simultaneously assess these mechanisms, 24 male healthy volunteers were randomized to receive either simvastatin for 80 mg daily or placebo for 8 weeks. Blood and urine samples and a stress test were performed at baseline and at follow-up, and mitochondrial respiration and Ca{sup 2+} spark properties were evaluated on a muscle biopsy 4 days before the second stress test. Simvastatin-treated subjects were separated according to their median creatine kinase (CK) increase. Simvastatin treatment induced a significant elevation of aspartate amino transferase (3.38 ± 5.68 vs − 1.15 ± 4.32 UI/L, P < 0.001) and CK (− 24.3 ± 99.1 ± 189.3vs 48.3 UI/L, P = 0.01) and a trend to an elevation of isoprostanes (193 ± 408 vs12 ± 53 pmol/mmol creatinine, P = 0.09) with no global change in mitochondrial respiration, lactate/pyruvate ratio or Ca{sup 2+} sparks. However, among statin-treated subjects, those with the highest CK increase displayed a significantly lower Vmax rotenone succinate and an increase in Ca{sup 2+} spark amplitude vs both subjects with the lowest CK increase and placebo-treated subjects. Moreover, Ca{sup 2+} spark amplitude was positively correlated with treatment-induced CK increase in the whole group (r = 0.71, P = 0.0045). In conclusion, this study further supports that statin induced muscular toxicity may be related to alterations in mitochondrial respiration and muscle calcium homeostasis independently of underlying disease or concomitant medication. -- Highlights: ► Statin use may be limited by side effects, particularly myopathy. ► Statins might impair mitochondrial function and muscle Ca2+ signaling in muscle. ► This was tested among healthy volunteers receiving simvastatin 80 mg daily for 8 weeks. ► CK

  17. Store-operated calcium entry contributes to abnormal Ca²⁺ signalling in dystrophic mdx mouse myoblasts.

    PubMed

    Onopiuk, Marta; Brutkowski, Wojciech; Young, Christopher; Krasowska, Elżbieta; Róg, Justyna; Ritso, Morten; Wojciechowska, Sylwia; Arkle, Stephen; Zabłocki, Krzysztof; Górecki, Dariusz C

    2015-03-01

    Sarcolemma damage and activation of various calcium channels are implicated in altered Ca(2+) homeostasis in muscle fibres of both Duchenne muscular dystrophy (DMD) sufferers and in the mdx mouse model of DMD. Previously we have demonstrated that also in mdx myoblasts extracellular nucleotides trigger elevated cytoplasmic Ca(2+) concentrations due to alterations of both ionotropic and metabotropic purinergic receptors. Here we extend these findings to show that the mdx mutation is associated with enhanced store-operated calcium entry (SOCE). Substantially increased rate of SOCE in mdx myoblasts in comparison to that in control cells correlated with significantly elevated STIM1 protein levels. These results reveal that mutation in the dystrophin-encoding Dmd gene may significantly impact cellular calcium response to metabotropic stimulation involving depletion of the intracellular calcium stores followed by activation of the store-operated calcium entry, as early as in undifferentiated myoblasts. These data are in agreement with the increasing number of reports showing that the dystrophic pathology resulting from dystrophin mutations may be developmentally regulated. Moreover, our results showing that aberrant responses to extracellular stimuli may contribute to DMD pathogenesis suggest that treatments inhibiting such responses might alter progression of this lethal disease.

  18. Regulation of the L-type calcium channel by alpha 5beta 1 integrin requires signaling between focal adhesion proteins.

    PubMed

    Wu, X; Davis, G E; Meininger, G A; Wilson, E; Davis, M J

    2001-08-10

    The L-type calcium channel is the major calcium influx pathway in vascular smooth muscle and is regulated by integrin ligands, suggesting an important link between extracellular matrix and vascular tone regulation in tissue injury and remodeling. We examined the role of integrin-linked tyrosine kinases and focal adhesion proteins in regulation of L-type calcium current in single vascular myocytes. Soluble tyrosine kinase inhibitors blocked the increase in current produced by alpha(5) integrin antibody or fibronectin, whereas tyrosine phosphatase inhibition enhanced the effect. Cell dialysis with an antibody to focal adhesion kinase or with FRNK, the C-terminal noncatalytic domain of focal adhesion kinase, produced moderate (24 or 18%, respectively) inhibition of basal current but much greater inhibition (63 or 68%, respectively) of integrin-enhanced current. A c-Src antibody and peptide inhibitors of the Src homology-2 domain or a putative Src tyrosine phosphorylation site on the channel produced similar inhibition. Antibodies to the cytoskeletal proteins paxillin and vinculin, but not alpha-actinin, inhibited integrin-dependent current by 65-80%. Therefore, alpha(5)beta(1) integrin appears to regulate a tyrosine phosphorylation cascade involving Src and various focal adhesion proteins that control the function of the L-type calcium channel. This interaction may represent a novel mechanism for control of calcium influx in vascular smooth muscle and other cell types.

  19. Calcium-mediated repression of β-catenin and its transcriptional signaling mediates neural crest cell death in an avian model of fetal alcohol syndrome.

    PubMed

    Flentke, George R; Garic, Ana; Amberger, Ed; Hernandez, Marcos; Smith, Susan M

    2011-07-01

    Fetal alcohol syndrome (FAS) is a common birth defect in many societies. Affected individuals have neurodevelopmental disabilities and a distinctive craniofacial dysmorphology. These latter deficits originate during early development from the ethanol-mediated apoptotic depletion of cranial facial progenitors, a population known as the neural crest. We showed previously that this apoptosis is caused because acute ethanol exposure activates G-protein-dependent intracellular calcium within cranial neural crest progenitors, and this calcium transient initiates the cell death. The dysregulated signals that reside downstream of ethanol's calcium transient and effect neural crest death are unknown. Here we show that ethanol's repression of the transcriptional effector β-catenin causes the neural crest losses. Clinically relevant ethanol concentrations (22-78 mM) rapidly deplete nuclear β-catenin from neural crest progenitors, with accompanying losses of β-catenin transcriptional activity and downstream genes that govern neural crest induction, expansion, and survival. Using forced expression studies, we show that β-catenin loss of function (via dominant-negative T cell transcription factor [TCF]) recapitulates ethanol's effects on neural crest apoptosis, whereas β-catenin gain-of-function in ethanol's presence preserves neural crest survival. Blockade of ethanol's calcium transient using Bapta-AM normalizes β-catenin activity and prevents the neural crest losses, whereas ionomycin treatment is sufficient to destabilize β-catenin. We propose that ethanol's repression of β-catenin causes the neural crest losses in this model of FAS. β-Catenin is a novel target for ethanol's teratogenicity. β-Catenin/Wnt signals participate in many developmental events and its rapid and persistent dysregulation by ethanol may explain why the latter is such a potent teratogen.

  20. Epidermal growth factor receptor signaling-dependent calcium elevation in cumulus cells is required for NPR2 inhibition and meiotic resumption in mouse oocytes.

    PubMed

    Wang, Yakun; Kong, Nana; Li, Na; Hao, Xiaoqiong; Wei, Kaiwen; Xiang, Xi; Xia, Guoliang; Zhang, Meijia

    2013-09-01

    In preovulatory ovarian follicles, the oocyte is maintained in meiotic prophase arrest by natriuretic peptide precursor C (NPPC) and its receptor natriuretic peptide receptor 2 (NPR2). LH treatment results in the decrease of NPR2 guanylyl cyclase activity that promotes resumption of meiosis. We investigated the regulatory mechanism of LH-activated epidermal growth factor (EGF) receptor signaling on NPR2 function. Cumulus cell-oocyte complex is cultured in the medium with 30 nM NPPC to prevent oocyte spontaneous maturation. In this system, EGF could stimulate oocyte meiotic resumption after 4 hours of incubation. Further study showed that EGF elevated intracellular calcium concentrations of cumulus cells and decreased cGMP levels in cumulus cells and oocytes, and calcium-elevating reagents ionomycin and sphingosine-1-phosphate mimicked the effects of EGF on oocyte maturation and cGMP levels. EGF-mediated cGMP levels and meiotic resumption could be reversed by EGF receptor inhibitor AG1478 and the calcium chelator bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)-ester. EGF also decreased the expression of Npr2 mRNA in cumulus cells, which may not be involved in meiotic resumption, because the block of NPR2 protein de novo synthesis by cycloheximide had no effect on NPPC and EGF-mediated oocyte maturation. However, EGF had no effect on oocyte maturation when meiotic arrest was maintained in the present of cGMP analog 8-bromoadenosine-cGMP. These results suggest that EGF receptor signaling induces meiotic resumption by elevating calcium concentrations of cumulus cells to decrease NPR2 guanylyl cyclase activity.

  1. Silver Nanoparticle-Directed Mast Cell Degranulation Is Mediated through Calcium and PI3K Signaling Independent of the High Affinity IgE Receptor

    PubMed Central

    Alsaleh, Nasser B.; Persaud, Indushekhar; Brown, Jared M.

    2016-01-01

    Engineered nanomaterial (ENM)-mediated toxicity often involves triggering immune responses. Mast cells can regulate both innate and adaptive immune responses and are key effectors in allergic diseases and inflammation. Silver nanoparticles (AgNPs) are one of the most prevalent nanomaterials used in consumer products due to their antimicrobial properties. We have previously shown that AgNPs induce mast cell degranulation that was dependent on nanoparticle physicochemical properties. Furthermore, we identified a role for scavenger receptor B1 (SR-B1) in AgNP-mediated mast cell degranulation. However, it is completely unknown how SR-B1 mediates mast cell degranulation and the intracellular signaling pathways involved. In the current study, we hypothesized that SR-B1 interaction with AgNPs directs mast cell degranulation through activation of signal transduction pathways that culminate in an increase in intracellular calcium signal leading to mast cell degranulation. For these studies, we utilized bone marrow-derived mast cells (BMMC) isolated from C57Bl/6 mice and RBL-2H3 cells (rat basophilic leukemia cell line). Our data support our hypothesis and show that AgNP-directed mast cell degranulation involves activation of PI3K, PLCγ and an increase in intracellular calcium levels. Moreover, we found that influx of extracellular calcium is required for the cells to degranulate in response to AgNP exposure and is mediated at least partially via the CRAC channels. Taken together, our results provide new insights into AgNP-induced mast cell activation that are key for designing novel ENMs that are devoid of immune system activation. PMID:27907088

  2. Extra and intracellular calcium signaling pathway(s) differentially regulate histamine-induced myometrial contractions during early and mid-pregnancy stages in buffaloes (Bubalus bubalis).

    PubMed

    Sharma, Abhishek; Nakade, Udayraj P; Choudhury, Soumen; Yadav, Rajkumar Singh; Garg, Satish Kumar

    2017-04-01

    This study examines the differential role of calcium signaling pathway(s) in histamine-induced uterotonic action during early and mid-pregnancy stages in buffaloes. Compared to mid pregnancy, tonic contraction, amplitude and mean-integral tension were significantly increased by histamine to produce myometrial contraction during early pregnancy with small effects on phasic contraction and frequency. Although uterotonic action of histamine during both stages of pregnancy is sensitive to nifedipine (a L-type Ca(2+) channels blocker) and NNC55-0396 (T-type Ca(2+) channels blocker), the role of extracellular calcium seems to be more significant during mid-pregnancy as in this stage histamine produced only 9.38±0.96% contraction in Ca(2+) free-RLS compared to 21.60±1.45% in uteri of early pregnancy stage. Intracellular calcium plays major role in histamine-induced myometrial contraction during early pregnancy as compared to mid pregnancy, as in the presence of cyclopiazonic acid (CPA) Ca(2+)-free RLS, histamine produced significantly higher contraction in myometrial strips of early-pregancy in comparison to mid-pregnancy (10.59±1.58% and 3.13±0.46%, respectively). In the presence of U-73122, the DRC of histamine was significantly shifted towards right with decrease in maximal effect (Emax) only in early pregnancy suggesting the predominant role of phospholipase-C (PL-C) in this stage of pregnancy.

  3. Inhibition of the Inositol Kinase Itpkb Augments Calcium Signaling in Lymphocytes and Reveals a Novel Strategy to Treat Autoimmune Disease

    PubMed Central

    Miller, Andrew T.; Dahlberg, Carol; Sandberg, Mark L.; Wen, Ben G.; Beisner, Daniel R.; Hoerter, John A. H.; Parker, Albert; Schmedt, Christian; Stinson, Monique; Avis, Jacqueline; Cienfuegos, Cynthia; McPate, Mark; Tranter, Pamela; Gosling, Martin; Groot-Kormelink, Paul J.; Dawson, Janet; Pan, Shifeng; Tian, Shin-Shay; Seidel, H. Martin; Cooke, Michael P.

    2015-01-01

    Emerging approaches to treat immune disorders target positive regulatory kinases downstream of antigen receptors with small molecule inhibitors. Here we provide evidence for an alternative approach in which inhibition of the negative regulatory inositol kinase Itpkb in mature T lymphocytes results in enhanced intracellular calcium levels following antigen receptor activation leading to T cell death. Using Itpkb conditional knockout mice and LMW Itpkb inhibitors these studies reveal that Itpkb through its product IP4 inhibits the Orai1/Stim1 calcium channel on lymphocytes. Pharmacological inhibition or genetic deletion of Itpkb results in elevated intracellular Ca2+ and induction of FasL and Bim resulting in T cell apoptosis. Deletion of Itpkb or treatment with Itpkb inhibitors blocks T-cell dependent antibody responses in vivo and prevents T cell driven arthritis in rats. These data identify Itpkb as an essential mediator of T cell activation and suggest Itpkb inhibition as a novel approach to treat autoimmune disease. PMID:26121493

  4. Flufenamic acid is a tool for investigating TRPC6-mediated calcium signalling in human conditionally immortalised podocytes and HEK293 cells.

    PubMed

    Foster, Rebecca R; Zadeh, Maryam A H; Welsh, Gavin I; Satchell, Simon C; Ye, Yi; Mathieson, Peter W; Bates, David O; Saleem, Moin A

    2009-04-01

    Mutations in the cation channel TRPC6 result in a renal-specific phenotype of familial nephrotic syndrome, affecting intracellular calcium ([Ca(2+)](i)) signalling in the glomerular podocyte. Tools to study native TRPC6 activity are scarce, although there has been recent success with flufenamic acid (FFA). We confirm the specificity of FFA for TRPC6 both in an artificial expression system and in a human conditionally immortalised podocyte cell line (ciPod). Cells were loaded with fura-2AM and changes in intracellular calcium ([Ca(2+)](i)) were calculated. 200microM FFA induced an increase in [Ca(2+)](i) in HEK293 cells with native TRPC6 expression, which was enhanced by overexpression of TRPC6 and completely blocked in the absence of extracellular calcium. Expressed TRPC7 did not significantly affect the response to FFA whereas expressed TRPC3 reduced it. FFA also induced an increase ciPod in [Ca(2+)](i), which was inhibited using SKF96365 and 2-APB, but not indomethacin. In ciPod, adenovirus (Ad-v) wild type (WT) TRPC6 increased [Ca(2+)](i) activity to FFA compared to native TRPC6, whereas activity was significantly reduced with Ad-v dominant negative (DN) TRPC6. The niflumic acid (NFA) induced increase in [Ca(2+)](i) in ciPod was not affected by Ad-v TRPC6 DN, and in HEK293 cells was not affected by WT TRPC6. In conclusion, FFA activates TRPC6 [Ca(2+)](i) signalling in both ciPod and HEK293 cells independently of TRPC3 and TRPC7, and independently of properties of the fenamate family.

  5. Wenxin-Keli Regulates the Calcium/Calmodulin-Dependent Protein Kinase II Signal Transduction Pathway and Inhibits Cardiac Arrhythmia in Rats with Myocardial Infarction

    PubMed Central

    Xing, Yanwei; Gao, Yonghong; Chen, Jianxin; Zhu, Haiyan; Wu, Aiming; Yang, Qing; Teng, Fei; Zhang, Dong-mei; Xing, Yanhui; Gao, Kuo; He, Qingyong; Zhang, Zhenpeng; Wang, Jie; Shang, Hongcai

    2013-01-01

    Wenxin-Keli (WXKL) is a Chinese herbal compound reported to be of benefit in the treatment of cardiac arrhythmia, cardiac inflammation, and heart failure. Amiodarone is a noncompetitive inhibitor of the α- and β-adrenergic receptors and prevents calcium influx in the slow-response cells of the sinoatrial and atrioventricular nodes. Overexpression of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in transgenic mice results in heart failure and arrhythmias. We hypothesised that administration of WXKL and amiodarone can reduce the incidence of arrhythmias by regulating CaMKII signal transduction. A total of 100 healthy Sprague Dawley rats were used in the study. The rats were randomly divided into four groups (a sham group, a myocardial infarction (MI) group, a WXKL-treated group, and an amiodarone-treated group). A myocardial infarction model was established in these rats by ligating the left anterior descending coronary artery for 4 weeks. Western blotting was used to assess CaMKII, p-CaMKII (Thr-286), PLB, p-PLB (Thr-17), RYR2, and FK binding protein 12.6 (FKBP12.6) levels. The Ca2+ content in the sarcoplasmic reticulum (SR) and the calcium transient amplitude were studied by confocal imaging using the fluorescent indicator Fura-4. In conclusion, WXKL may inhibit heart failure and cardiac arrhythmias by regulating the CaMKII signal transduction pathway similar to amiodarone. PMID:23781262

  6. Wenxin-Keli Regulates the Calcium/Calmodulin-Dependent Protein Kinase II Signal Transduction Pathway and Inhibits Cardiac Arrhythmia in Rats with Myocardial Infarction.

    PubMed

    Xing, Yanwei; Gao, Yonghong; Chen, Jianxin; Zhu, Haiyan; Wu, Aiming; Yang, Qing; Teng, Fei; Zhang, Dong-Mei; Xing, Yanhui; Gao, Kuo; He, Qingyong; Zhang, Zhenpeng; Wang, Jie; Shang, Hongcai

    2013-01-01

    Wenxin-Keli (WXKL) is a Chinese herbal compound reported to be of benefit in the treatment of cardiac arrhythmia, cardiac inflammation, and heart failure. Amiodarone is a noncompetitive inhibitor of the α - and β -adrenergic receptors and prevents calcium influx in the slow-response cells of the sinoatrial and atrioventricular nodes. Overexpression of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in transgenic mice results in heart failure and arrhythmias. We hypothesised that administration of WXKL and amiodarone can reduce the incidence of arrhythmias by regulating CaMKII signal transduction. A total of 100 healthy Sprague Dawley rats were used in the study. The rats were randomly divided into four groups (a sham group, a myocardial infarction (MI) group, a WXKL-treated group, and an amiodarone-treated group). A myocardial infarction model was established in these rats by ligating the left anterior descending coronary artery for 4 weeks. Western blotting was used to assess CaMKII, p-CaMKII (Thr-286), PLB, p-PLB (Thr-17), RYR2, and FK binding protein 12.6 (FKBP12.6) levels. The Ca(2+) content in the sarcoplasmic reticulum (SR) and the calcium transient amplitude were studied by confocal imaging using the fluorescent indicator Fura-4. In conclusion, WXKL may inhibit heart failure and cardiac arrhythmias by regulating the CaMKII signal transduction pathway similar to amiodarone.

  7. Normalization of deranged signal transduction in lymphocytes of COPD patients by the novel calcium channel blocker H-DHPM.

    PubMed

    Manral, Sushma; Bhatia, Sumati; Sinha, Rajesh; Kumar, Ajit; Rohil, Vishwajeet; Arya, Anu; Dhawan, Ashish; Arya, Pragya; Joshi, Rini; Sreedhara, Sreerama C; Gangopadhyay, Sukanya; Bansal, Surendra K; Chatterjee, Suvro; Chaudhury, Nabo K; Vijayan, Vannan K; Saso, Luciano; Parmar, Virinder S; DePass, Anthony L; Prasad, Ashok K; Raj, Hanumantharao G

    2011-07-01

    Investigations on the role of intracellular Ca(2+) ion concentration in the mechanism of development of COPD in smokers and non-smokers were carried out. The intracellular Ca(2+) levels were found to be increased in human lymphocytes in patients with COPD as compared to non-smokers and smokers without COPD. The investigations reveal an association in altered intracellular Ca(2+) regulation in lymphocytes and severity of COPD, by means of significant activation of Protein kinase C and inducible nitric oxide synthase (iNOS). The effect of a novel calcium channel blocker ethyl 4-(4'-heptanoyloxyphenyl)-6-methyl-3,4-dihydropyrimidin-2-one-5-carboxylate (H-DHPM) as a potential candidate for the treatment of COPD was also investigated. H-DHPM treated cells showed a decrease in intracellular Ca(2+) level as compared to the control cells. Molecular studies were carried out to evaluate the expression profile of NOS isoforms in human lymphocytes and it was shown that H-DHPM decreases the increased iNOS in COPD along with reestablishing the normal levels of endothelial nitric oxide synthase (eNOS). The results of H-DHPM were comparable with those of Amlodipine, a known calcium channel blocker. Calcium channel blocker H-DHPM proves to be a potential candidate for the treatment of COPD and further clinical studies are required to prove its role in the treatment of pulmonary hypertension (PH).

  8. Sorcin links calcium signaling to vesicle trafficking, regulates Polo-like kinase 1 and is necessary for mitosis.

    PubMed

    Lalioti, Vasiliki S; Ilari, Andrea; O'Connell, David J; Poser, Elena; Sandoval, Ignacio V; Colotti, Gianni

    2014-01-01

    Sorcin, a protein overexpressed in many multi-drug resistant cancers, dynamically localizes to distinct subcellular sites in 3T3-L1 fibroblasts during cell-cycle progression. During interphase sorcin is in the nucleus, in the plasma membrane, in endoplasmic reticulum (ER) cisternae, and in ER-derived vesicles localized along the microtubules. These vesicles are positive to RyR, SERCA, calreticulin and Rab10. At the beginning of mitosis, sorcin-containing vesicles associate with the mitotic spindle, and during telophase are concentrated in the cleavage furrow and, subsequently, in the midbody. Sorcin regulates dimensions and calcium load of the ER vesicles by inhibiting RYR and activating SERCA. Analysis of sorcin interactome reveals calcium-dependent interactions with many proteins, including Polo-like kinase 1 (PLK1), Aurora A and Aurora B kinases. Sorcin interacts physically with PLK1, is phosphorylated by PLK1 and induces PLK1 autophosphorylation, thereby regulating kinase activity. Knockdown of sorcin results in major defects in mitosis and cytokinesis, increase in the number of rounded polynucleated cells, blockage of cell progression in G2/M, apoptosis and cell death. Sorcin regulates calcium homeostasis and is necessary for the activation of mitosis and cytokinesis.

  9. Serum Calcium-decreasing Factor, Caldecrin, Inhibits Receptor Activator of NF-κB Ligand (RANKL)-mediated Ca2+ Signaling and Actin Ring Formation in Mature Osteoclasts via Suppression of Src Signaling Pathway*

    PubMed Central

    Tomomura, Mineko; Hasegawa, Hiroya; Suda, Naoto; Sakagami, Hiroshi; Tomomura, Akito

    2012-01-01

    Osteoclasts are essential for bone dynamics and calcium homeostasis. Recently, we reported that serum calcium-decreasing factor, caldecrin, which is a secretory-type serine protease isolated from the pancreas, inhibits osteoclast differentiation by suppression of NFATc1 activity regardless of its own protease activity (Hasegawa, H., Kido, S., Tomomura, M., Fujimoto, K., Ohi, M., Kiyomura, M., Kanegae, H., Inaba, A., Sakagami, H., and Tomomura, A. (2010) Serum calcium-decreasing factor, caldecrin, inhibits osteoclast differentiation by suppression of NFATc1 activity. J. Biol. Chem. 285, 25448–25457). Here, we investigated the effects of caldecrin on the function of mature osteoclasts by treatment with receptor activator of NF-κB ligand (RANKL). Caldecrin inhibited the RANKL-stimulated bone resorptive activity of mature osteoclasts. Furthermore, caldecrin inhibited RANKL-mediated sealing actin ring formation, which is associated with RANKL-evoked Ca2+ entry through transient receptor potential vanilloid channel 4. The inhibitors of phospholipase Cγ, Syk, and c-Src suppressed RANKL-evoked Ca2+ entry and actin ring formation of mature osteoclasts. Interestingly, caldecrin significantly inhibited RANKL-stimulated phosphorylation of c-Src, Syk, phospholipase Cγ1 and Cγ2, SLP-76, and Pyk2 but not that of ERK, JNK, or Akt. Caldecrin inhibited RANKL-stimulated c-Src kinase activity and c-Src·Syk association. These results suggest that caldecrin inhibits RANKL-stimulated calcium signaling activation and cytoskeletal organization by suppression of the c-Src·Syk pathway, which may in turn reduce the bone resorptive activity of mature osteoclasts. Thus, caldecrin is capable of acting as a negative regulator of osteoclastogenesis and osteoclast function of bone resorption. PMID:22461633

  10. Herpes Simplex Virus Type 2 Glycoprotein H Interacts with Integrin αvβ3 To Facilitate Viral Entry and Calcium Signaling in Human Genital Tract Epithelial Cells

    PubMed Central

    Cheshenko, Natalia; Trepanier, Janie B.; González, Pablo A.; Eugenin, Eliseo A.; Jacobs, William R.

    2014-01-01

    ABSTRACT Herpes simplex virus (HSV) entry requires multiple interactions at the cell surface and activation of a complex calcium signaling cascade. Previous studies demonstrated that integrins participate in this process, but their precise role has not been determined. These studies were designed to test the hypothesis that integrin αvβ3 signaling promotes the release of intracellular calcium (Ca2+) stores and contributes to viral entry and cell-to-cell spread. Transfection of cells with small interfering RNA (siRNA) targeting integrin αvβ3, but not other integrin subunits, or treatment with cilengitide, an Arg-Gly-Asp (RGD) mimetic, impaired HSV-induced Ca2+ release, viral entry, plaque formation, and cell-to-cell spread of HSV-1 and HSV-2 in human cervical and primary genital tract epithelial cells. Coimmunoprecipitation studies and proximity ligation assays indicated that integrin αvβ3 interacts with glycoprotein H (gH). An HSV-2 gH-null virus was engineered to further assess the role of gH in the virus-induced signaling cascade. The gH-2-null virus bound to cells and activated Akt to induce a small Ca2+ response at the plasma membrane, but it failed to trigger the release of cytoplasmic Ca2+ stores and was impaired for entry and cell-to-cell spread. Silencing of integrin αvβ3 and deletion of gH prevented phosphorylation of focal adhesion kinase (FAK) and the transport of viral capsids to the nuclear pore. Together, these findings demonstrate that integrin signaling is activated downstream of virus-induced Akt signaling and facilitates viral entry through interactions with gH by activating the release of intracellular Ca2+ and FAK phosphorylation. These findings suggest a new target for HSV treatment and suppression. IMPORTANCE Herpes simplex viruses are the leading cause of genital disease worldwide, the most common infection associated with neonatal encephalitis, and a major cofactor for HIV acquisition and transmission. There is no effective vaccine

  11. A rendezvous with the queen of ion channels: Three decades of ion channel research by David T Yue and his Calcium Signals Laboratory.

    PubMed

    Dick, Ivy E; Limpitikul, Worawan B; Niu, Jacqueline; Banerjee, Rahul; Issa, John B; Ben-Johny, Manu; Adams, Paul J; Kang, Po Wei; Lee, Shin Rong; Sang, Lingjie; Yang, Wanjun; Babich, Jennifer; Zhang, Manning; Bazazzi, Hojjat; Yue, Nancy C; Tomaselli, Gordon F

    2016-01-01

    David T. Yue was a renowned biophysicist who dedicated his life to the study of Ca(2+) signaling in cells. In the wake of his passing, we are left not only with a feeling of great loss, but with a tremendous and impactful body of work contributed by a remarkable man. David's research spanned the spectrum from atomic structure to organ systems, with a quantitative rigor aimed at understanding the fundamental mechanisms underlying biological function. Along the way he developed new tools and approaches, enabling not only his own research but that of his contemporaries and those who will come after him. While we cannot hope to replicate the eloquence and style we are accustomed to in David's writing, we nonetheless undertake a review of David's chosen field of study with a focus on many of his contributions to the calcium channel field.

  12. Bcl-2 regulation of the inositol 1,4,5-trisphosphate receptor and calcium signaling in normal and malignant lymphocytes: potential new target for cancer treatment.

    PubMed

    Greenberg, Edward F; Lavik, Andrew R; Distelhorst, Clark W

    2014-10-01

    The anti-apoptotic protein Bcl-2 is a versatile regulator of cell survival. Its interactions with its own pro-apoptotic family members are widely recognized for their role in promoting the survival of cancer cells. These interactions are thus being targeted for cancer treatment. Less widely recognized is the interaction of Bcl-2 with the inositol 1,4,5-trisphosphate receptor (InsP3R), an InsP3-gated Ca(2+) channel located on the endoplasmic reticulum. The nature of this interaction, the mechanism by which it controls Ca(2+) release from the ER, its role in T-cell development and survival, and the possibility of targeting it as a novel cancer treatment strategy are summarized in this review. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.

  13. A rendezvous with the queen of ion channels: Three decades of ion channel research by David T Yue and his Calcium Signals Laboratory

    PubMed Central

    Dick, Ivy E; Limpitikul, Worawan B; Niu, Jacqueline; Banerjee, Rahul; Issa, John B; Ben-Johny, Manu; Adams, Paul J; Kang, Po Wei; Lee, Shin Rong; Sang, Lingjie; Yang, Wanjun; Babich, Jennifer; Zhang, Manning; Bazazzi, Hojjat; Yue, Nancy C; Tomaselli, Gordon F

    2016-01-01

    David T. Yue was a renowned biophysicist who dedicated his life to the study of Ca2+ signaling in cells. In the wake of his passing, we are left not only with a feeling of great loss, but with a tremendous and impactful body of work contributed by a remarkable man. David's research spanned the spectrum from atomic structure to organ systems, with a quantitative rigor aimed at understanding the fundamental mechanisms underlying biological function. Along the way he developed new tools and approaches, enabling not only his own research but that of his contemporaries and those who will come after him. While we cannot hope to replicate the eloquence and style we are accustomed to in David's writing, we nonetheless undertake a review of David's chosen field of study with a focus on many of his contributions to the calcium channel field. PMID:26176690

  14. Advanced oxidation protein products decrease the expression of calcium transport channels in small intestinal epithelium via the p44/42 MAPK signaling pathway.

    PubMed

    Wu, Peiqun; Xie, Fang; Xue, Minmin; Xu, Xiaoping; He, Shuying; Lin, Minyi; Bai, Lan

    2015-05-01

    Advanced oxidation protein products (AOPPs), novel protein markers of oxidative damage, accumulate in the plasma of patients with inflammatory bowel disease (IBD). Osteoporosis, which is closely related to the regulation of intestinal calcium transport channels (CTCs), is a prevalent extraintestinal complication of IBD and is associated with oxidative stress. However, the underlying mechanisms are unknown. The present study aimed to verify whether AOPPs inhibit CTCs in the small intestinal epithelium and to identify the underlying mechanisms that may contribute to IBD-associated osteoporosis. Normal Sprague-Dawley rats were treated with AOPP-modified rat serum albumin. The calcium ion level in serum was not significantly altered, while the duodenal expression of CTCs (e.g. transient receptor potential vanilloid [TRPV6], calbindin-D9k [CaBP-D9k], plasma membrane Ca(2+)-ATPase 1 [PMCA1], and Na(+)/Ca(2+) exchanger 1 [NCX1]) were decreased. In contrast, the levels of the related hormones that regulate calcium absorption including parathyroid hormone (PTH), 25-(OH)D₃, and 1,25-(OH)₂D₃ were increased, although the trend toward an increase in PTH levels was not significant. In order to further investigate the effects of AOPP exposure, we also evaluated the expression of CTCs (including the voltage-dependent L-type calcium channel [CaV1.3], TRPV6, CaBP-D9k, PMCA1, and NCX1) in cultured human colorectal adenocarcinoma cells (Caco-2). The expression levels of total CTC protein and mRNA, except for CaV1.3, were significantly down-regulated in a concentration- and time-dependent manner. Moreover, phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) was observed in vivo and in vitro. The p44/42 inhibitor U0126 reversed the down-regulation of CTCs induced by AOPPs in the Caco-2 monolayer. Our results indicate that AOPPs down-regulate the expression of CTCs through p44/42 MAPK signaling mechanisms in the small intestinal epithelium. These data provide new

  15. Fruit Calcium: Transport and Physiology

    PubMed Central

    Hocking, Bradleigh; Tyerman, Stephen D.; Burton, Rachel A.; Gilliham, Matthew

    2016-01-01

    Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium

  16. Hippocampal activation, memory performance in young and old, and the risk for sporadic Alzheimer’s disease converge genetically to calcium signaling

    PubMed Central

    Heck, Angela; Fastenrath, Matthias; Coynel, David; Auschra, Bianca; Bickel, Horst; Freytag, Virginie; Gschwind, Leo; Hartmann, Francina; Jessen, Frank; Kaduszkiewicz, Hanna; Maier, Wolfgang; Milnik, Annette; Pentzek, Michael; Riedel-Heller, Steffi G.; Spalek, Klara; Vogler, Christian; Wagner, Michael; Weyerer, Siegfried; Wolfsgruber, Steffen; de Quervain, Dominique F.; Papassotiropoulos, Andreas

    2017-01-01

    Importance Human episodic memory performance is linked to the function of specific brain regions, including the hippocampus, declines as a result of increasing age, and is markedly disturbed in Alzheimer’s disease (AD), an age-associated neurodegenerative disorder affecting primarily the hippocampus. Exploring the molecular underpinnings of human episodic memory is key to the understanding of hippocampus-dependent cognitive physiology and pathophysiology. Objective To determine whether biologically defined groups of genes are enriched in episodic memory performance across ages, in memory encoding-related brain activity and in AD. Design, Setting, and Participants In this multicenter collaborative study, gene set enrichment analysis was done by using primary and meta-analysis data from 57968 participants. The Swiss cohorts consisted of 3043 healthy young adults assessed for episodic memory performance. In a subgroup (1119 participants) of one of these cohorts, functional magnetic resonance imaging (fMRI) was used to identify gene set-dependent differences in brain activity related to episodic memory. The German AgeCoDe cohort consisted of 763 non-demented elderly participants assessed for episodic memory performance. The International Genomics of Alzheimer's Project (IGAP) case-control sample consisted of 54162 participants (17008 patients with sporadic AD, 37154 controls). Main Outcomes and Measures Gene set enrichment analysis in all samples was done by using genome-wide single nucleotide polymorphism (SNP) data. Episodic memory performance in the Swiss and AgeCoDe cohorts was quantified by picture and verbal delayed free recall tasks. In the fMRI experiment, activation of the hippocampus during encoding of pictures served as the phenotype of interest. In the IGAP sample, diagnosis of sporadic AD served as the phenotype of interest. Results We detected significant and consistent enrichment for genes constituting the Calcium Signaling Pathway (KEGG entry: hsa

  17. Submicroscopic calcium signals as fundamental events of excitation--contraction coupling in guinea-pig cardiac myocytes.

    PubMed Central

    Lipp, P; Niggli, E

    1996-01-01

    1. Subcellularly localized Ca2+ signals have been proposed to represent elementary events of cardiac Ca2+ signalling (Ca2+ sparks), whereby an individual sarcolemmal L-type Ca2+ channel locally controls opening of a single (or a few) Ca2+ release channels in the sarcoplasmic reticulum (SR). 2. To investigate directly the elementary nature of this Ca(2+)-induced Ca2+ release mechanism we used flash photolysis of caged Ca2+ while simultaneously measuring the intracellular Ca2+ concentration ([Ca2+]i) with a laser-scanning confocal microscope. 3. Power spectral analysis of the confocal images performed in the spatial domain revealed that only Ca2+ signalling events involving the L-type Ca2+ channel pathway gave rise to Ca2+ sparks. In contrast, SR Ca2+ release triggered by photolytic [Ca2+]i jumps resulted in Ca2+ transients that were always spatially homogeneous. 4. From these findings we conclude that the fundamental event of Ca2+ signalling in cardiac muscle may be smaller in size or amplitude than a Ca2+ spark. 5. We term this event a 'Ca2+ quark' possibly resulting from gating of a single SR Ca2+ release channel. It is proposed that concerted activation of several 'Ca2+ quarks' may be required for a Ca2+ spark. The 'Ca2+ quark' could also be the fundamental event in other cell types implementing a hierarchical Ca2+ signalling concept. Images Fig. 1 Figure 2 (cont.) Figure 2 Figure 3 PMID:8730580

  18. MuSK is a BMP co-receptor that shapes BMP responses and calcium signaling in muscle cells

    PubMed Central

    Yilmaz, Atilgan; Kattamuri, Chandramohan; Ozdeslik, Rana N.; Schmiedel, Carolyn; Mentzer, Sarah; Schorl, Christoph; Oancea, Elena; Thompson, Thomas B.; Fallon, Justin R.

    2017-01-01

    Bone morphogenetic proteins (BMPs) function in most tissues but have cell type-specific effects. Given the relatively small number of BMP receptors, this exquisite signaling specificity requires additional molecules to regulate this pathway’s output. The receptor tyrosine kinase MuSK (muscle-specific kinase) is critical for neuromuscular junction formation and maintenance. Here, we show that MuSK also promotes BMP signaling in muscle cells. MuSK bound to BMP4 and related BMPs with low nanomolar affinity in vitro and to the type I BMP receptors ALK3 and ALK6 in a ligand-independent manner both in vitro and in cultured myotubes. High-affinity binding to BMPs required the third, alternatively spliced MuSK immunoglobulin-like domain. In myoblasts, endogenous MuSK promoted BMP4-dependent phosphorylation of SMADs and transcription of Id1, which encodes a transcription factor involved in muscle differentiation. Gene expression profiling showed that MuSK was required for the BMP4-induced expression of a subset of genes in myoblasts, including regulator of G protein signaling 4 (Rgs4). In myotubes, MuSK enhanced the BMP4-induced expression of a distinct set of genes, including transcripts characteristic of slow muscle. MuSK-mediated stimulation of BMP signaling required type I BMP receptor activity but was independent of MuSK tyrosine kinase activity. MuSK-dependent expression of Rgs4 resulted in the inhibition of Ca2+ signaling induced by the muscarinic acetylcholine receptor in myoblasts. These findings establish that MuSK has dual roles in muscle cells, acting both as a tyrosine kinase-dependent synaptic organizing molecule and as a BMP co-receptor that shapes BMP transcriptional output and cholinergic signaling. PMID:27601729

  19. The role of calcium and cyclic nucleotide signaling in cerebellar granule cell migration under normal and pathological conditions.

    PubMed

    Komuro, Yutaro; Galas, Ludovic; Lebon, Alexis; Raoult, Emilie; Fahrion, Jennifer K; Tilot, Amanda; Kumada, Tasturo; Ohno, Nobuhiko; Vaudry, David; Komuro, Hitoshi

    2015-04-01

    In the developing brain, immature neurons migrate from their sites of origin to their final destination, where they reside for the rest of their lives. This active movement of immature neurons is essential for the formation of normal neuronal cytoarchitecture and proper differentiation. Deficits in migration result in the abnormal development of the brain, leading to a variety of neurological disorders. A myriad of extracellular guidance molecules and intracellular effector molecules is involved in controlling the migration of immature neurons in a cell type, cortical layer and birth-date-specific manner. To date, little is known about how extracellular guidance molecules transfer their information to the intracellular effector molecules, which regulate the migration of immature neurons. In this article, to fill the gap between extracellular guidance molecules and intracellular effector molecules, using the migration of cerebellar granule cells as a model system of neuronal cell migration, we explore the role of second messenger signaling (specifically Ca(2+) and cyclic nucleotide signaling) in the regulation of neuronal cell migration. We will, first, describe the cortical layer-specific changes in granule cell migration. Second, we will discuss the roles of Ca(2+) and cyclic nucleotide signaling in controlling granule cell migration. Third, we will present recent studies showing the roles of Ca(2+) and cyclic nucleotide signaling in the deficits in granule cell migration in mouse models of fetal alcohol spectrum disorders and fetal Minamata disease.

  20. Binding of Alphaherpesvirus Glycoprotein H to Surface α4β1-Integrins Activates Calcium-Signaling Pathways and Induces Phosphatidylserine Exposure on the Plasma Membrane

    PubMed Central

    Gramatica, Andrea; Herrmann, Andreas; Osterrieder, Nikolaus

    2015-01-01

    ABSTRACT Intracellular signaling connected to integrin activation is known to induce cytoplasmic Ca2+ release, which in turn mediates a number of downstream signals. The cellular entry pathways of two closely related alphaherpesviruses, equine herpesviruses 1 and 4 (EHV-1 and EHV-4), are differentially regulated with respect to the requirement of interaction of glycoprotein H (gH) with α4β1-integrins. We show here that binding of EHV-1, but not EHV-4, to target cells resulted in a rapid and significant increase in cytosolic Ca2+ levels. EHV-1 expressing EHV-4 gH (gH4) in lieu of authentic gH1 failed to induce Ca2+ release, while EHV-4 with gH1 triggered significant Ca2+ release. Blocking the interaction between gH1 and α4β1-integrins, inhibiting phospholipase C (PLC) activation, or blocking binding of inositol 1,4,5-triphosphate (IP3) to its receptor on the endoplasmic reticulum (ER) abrogated Ca2+ release. Interestingly, phosphatidylserine (PS) was exposed on the plasma membrane in response to cytosolic calcium increase after EHV-1 binding through a scramblase-dependent mechanism. Inhibition of both Ca2+ release from the ER and scramblase activation blocked PS scrambling and redirected virus entry to the endocytic pathway, indicating that PS may play a role in facilitating virus entry directly at the plasma membrane. PMID:26489864

  1. Protein kinase A signaling and calcium ions are major players in PAF mediated toxicity against Aspergillus niger

    PubMed Central

    Binder, Ulrike; Benčina, Mojca; Fizil, Ádám; Batta, Gyula; Chhillar, Anil K.; Marx, Florentine

    2015-01-01

    The Penicillium chrysogenum antifungal protein PAF is toxic against potentially pathogenic Ascomycetes. We used the highly sensitive aequorin-expressing model Aspergillus niger to identify a defined change in cytoplasmic free Ca2+ dynamics in response to PAF. This Ca2+ signature depended on an intact positively charged lysine-rich PAF motif. By combining Ca2+ measurements in A. niger mutants with deregulated cAMP/protein kinase A (PKA) signaling, we proved the interconnection of Ca2+ perturbation and cAMP/PKA signaling in the mechanistic function of PAF. A deep understanding of the mode of action of PAF is an invaluable prerequisite for its future application as new antifungal drug. PMID:25882631

  2. Nanojunctions of the Sarcoplasmic Reticulum Deliver Site- and Function-Specific Calcium Signaling in Vascular Smooth Muscles.

    PubMed

    Evans, A M

    2017-01-01

    Vasoactive agents may induce myocyte contraction, dilation, and the switch from a contractile to a migratory-proliferative phenotype(s), which requires changes in gene expression. These processes are directed, in part, by Ca(2+) signals, but how different Ca(2+) signals are generated to select each function is enigmatic. We have previously proposed that the strategic positioning of Ca(2+) pumps and release channels at membrane-membrane junctions of the sarcoplasmic reticulum (SR) demarcates cytoplasmic nanodomains, within which site- and function-specific Ca(2+) signals arise. This chapter will describe how nanojunctions of the SR may: (1) define cytoplasmic nanospaces about the plasma membrane, mitochondria, contractile myofilaments, lysosomes, and the nucleus; (2) provide for functional segregation by restricting passive diffusion and by coordinating active ion transfer within a given nanospace via resident Ca(2+) pumps and release channels; (3) select for contraction, relaxation, and/or changes in gene expression; and (4) facilitate the switch in myocyte phenotype through junctional reorganization. This should serve to highlight the need for further exploration of cellular nanojunctions and the mechanisms by which they operate, that will undoubtedly open up new therapeutic horizons.

  3. An algorithm for automated detection, localization and measurement of local calcium signals from camera-based imaging.

    PubMed

    Ellefsen, Kyle L; Settle, Brett; Parker, Ian; Smith, Ian F

    2014-09-01

    Local Ca(2+) transients such as puffs and sparks form the building blocks of cellular Ca(2+) signaling in numerous cell types. They have traditionally been studied by linescan confocal microscopy, but advances in TIRF microscopy together with improved electron-multiplied CCD (EMCCD) cameras now enable rapid (>500 frames s(-1)) imaging of subcellular Ca(2+) signals with high spatial resolution in two dimensions. This approach yields vastly more information (ca. 1 Gb min(-1)) than linescan imaging, rendering visual identification and analysis of local events imaged both laborious and subject to user bias. Here we describe a routine to rapidly automate identification and analysis of local Ca(2+) events. This features an intuitive graphical user-interfaces and runs under Matlab and the open-source Python software. The underlying algorithm features spatial and temporal noise filtering to reliably detect even small events in the presence of noisy and fluctuating baselines; localizes sites of Ca(2+) release with sub-pixel resolution; facilitates user review and editing of data; and outputs time-sequences of fluorescence ratio signals for identified event sites along with Excel-compatible tables listing amplitudes and kinetics of events.

  4. Effects of exogenous hydrogen sulphide on calcium signalling, background (TASK) K channel activity and mitochondrial function in chemoreceptor cells.

    PubMed

    Buckler, Keith J

    2012-04-01

    It has been proposed that endogenous H(2)S mediates oxygen sensing in chemoreceptors; this study investigates the mechanisms by which H(2)S excites carotid body type 1 cells. H(2)S caused a rapid reversible increase in intracellular calcium with EC(50) ≈ 6 μM. This [Ca(2+)](i) response was abolished in Ca-free Tyrode. In perforated patch current clamp recordings, H(2)S depolarised type 1 cells from -59 to -35 mV; this was accompanied by a robust increase in [Ca(2+)](i). Voltage clamping at the resting membrane potential abolished the H(2)S-induced rise in [Ca(2+)](i). H(2)S inhibited background K(+) current in whole cell perforated patch and reduced background K(+) channel activity in cell-attached patch recordings. It is concluded that H(2)S excites type 1 cells through the inhibition of background (TASK) potassium channels leading to membrane depolarisation and voltage-gated Ca(2+) entry. These effects mimic those of hypoxia. H(2)S also inhibited mitochondrial function over a similar concentration range as assessed by NADH autofluorescence and measurement of intracellular magnesium (an index of decline in MgATP). Cyanide inhibited background K channels to a similar extent to H(2)S and prevented H(2)S exerting any further influence over channel activity. These data indicate that the effects of H(2)S on background K channels are a consequence of inhibition of oxidative phosphorylation. Whilst this does not preclude a role for endogenous H(2)S in oxygen sensing via the inhibition of cytochrome oxidase, the levels of H(2)S required raise questions as to the viability of such a mechanism.

  5. Inhibition of Extracellular Calcium Influx Results in Enhanced IL-12 Production in LPS-Treated Murine Macrophages by Downregulation of the CaMKKβ-AMPK-SIRT1 Signaling Pathway

    PubMed Central

    Zhu, Yuanfeng; Yang, Yongjun; Chen, Xiaoli; Fan, Shijun; Chen, Qian; Zheng, Jiang

    2016-01-01

    Activated macrophages are the primary sources of IL-12, a key cytokine bridging innate and adaptive immunity. However, macrophages produce low amounts of IL-12 upon stimulation and the underlying regulatory mechanism remains unclear. In this study, we found a new calcium-dependent mechanism that controlled IL-12 production in LPS-treated murine macrophages. First, LPS was demonstrated to induce extracellular calcium entry in murine peritoneal macrophages and inhibition of calcium influx resulted in marked enhancement in IL-12 production. Then, withdrawal of extracellular calcium was found to suppress CaMKKβ and AMPK activation triggered by LPS while chemical inhibition or genetic knockdown of these two kinases augmented LPS induced IL-12 production. AMPK activation increased the NAD+/NADH ratio and activated Sirtuin 1 (SIRT1), a NAD+-dependent deacetylating enzyme and negative regulator of inflammation. Chemical inhibitor or siRNA of SIRT1 enhanced IL-12 release while its agonist suppressed IL-12 production. Finally, it was found that SIRT1 selectively affected the transcriptional activity of NF-κB which thereby inhibited IL-12 production. Overall, our study demonstrates a new role of transmembrane calcium mobilization in immunity modulation such that inhibition of calcium influx leads to impaired activation of CaMKKβ-AMPK-SIRT1 signaling pathway which lifts restriction on NF-κB activation and results in enhanced IL-12 production. PMID:27313401

  6. Exposure to Radiocontrast Agents Induces Pancreatic Inflammation by Activation of Nuclear Factor-kB, Calcium Signaling, and Calcineurin

    PubMed Central

    Jin, Shunqian; Orabi, Abrahim I.; Le, Tianming; Javed, Tanveer A.; Sah, Swati; Eisses, John F.; Bottino, Rita; Molkentin, Jeffery D.; Husain, Sohail Z.

    2015-01-01

    Background & Aims Radiocontrast agents are required for radiographic procedures, but these agents can injure tissues by unknown mechanisms. We investigated whether exposure of pancreatic tissues to radiocontrast agents during endoscopic retrograde cholangiopancreatography (ERCP) causes pancreatic inflammation, and studied the effects of these agents on human cell lines and in mice. Methods We exposed mouse and human acinar cells to the radiocontrast agent iohexol (Omnipaque) and measured intracellular release of Ca2+, calcineurin activation (using a luciferase reporter), activation of nuclear factor-κB (NF-κB, using a luciferase reporter), and cell necrosis (via propidium iodide uptake). We infused the radiocontrast agent into the pancreatic ducts of wild type mice (C57BL/6) to create a mouse model of post-ERCP pancreatitis; some mice were given intraperitoneal injections of the calcineurin inhibitor FK506 before and after infusion of the radiocontrast agent. CnAβ−/− mice were also used. This experiment was also performed in mice given infusions of AAV6-NF-κB-luciferase, to assess activation of this transcription factor in vivo. Results Incubation of mouse and human acinar cells, but not HEK293 or COS7 cells, with iohexol led to a peak and then plateau in Ca2+ signaling, along with activation of the transcription factors NF-κB and NFAT. Suppressing Ca2+ signaling or calcineurin with BAPTA, cyclosporine A, or FK506 prevented activation of NF-κB and acinar cell injury. Calcineurin Aβ-deficient mice were protected against induction of pancreatic inflammation by iohexol. The calcineurin inhibitor FK506 prevented contrast-induced activation of NF-κB in pancreata of mice; this was observed by live imaging of mice given infusions of AAV6- NF-kB-luciferase. Conclusions Radiocontrast agents cause pancreatic inflammation in mice, via activation of NF-κB, Ca2+ signaling, and calcineurin. Calcineurin inhibitors might be developed to prevent post-ERCP pancreatitis

  7. Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways.

    PubMed

    Garcia-Mata, Carlos; Lamattina, Lorenzo

    2007-01-01

    Nitric oxide (NO) is an important signaling component of ABA-induced stomatal closure. However, only fragmentary data are available about NO effect on the inhibition of stomatal opening. Here, we present results supporting that, in Vicia faba guard cells, there is a critical Ca2+-dependent NO increase required for the ABA-mediated inhibition of stomatal opening. Light-induced stomatal opening was inhibited by exogenous NO in V. faba epidermal strips. Furthermore, ABA-mediated inhibition of stomatal opening was blocked by the specific NO scavenger cPTIO, supporting the involvement of endogenous NO in this process. Since the raise in Ca2+ concentration is a pre-requisite in ABA-mediated inhibition of stomatal opening, it was interesting to establish how does Ca2+, NO and ABA interact in the inhibition of light-induced stomatal opening. The permeable Ca2+ specific buffer BAPTA-AM blocked both ABA- and Ca2+- but not NO-mediated inhibition of stomatal opening. The NO synthase (NOS) specific inhibitor L-NAME prevented Ca2+-mediated inhibition of stomatal opening, indicating that a NOS-like activity was required for Ca2+ signaling. Furthermore, experiments using the NO specific fluorescent probe DAF-2DA indicated that Ca2+ induces an increase of endogenous NO. These results indicate that, in addition to the roles in ABA-triggered stomatal closure, both NO and Ca2+ are active components of signaling events acting in ABA inhibition of light-induced stomatal opening. Results also support that Ca2+ induces the NO production through the activation of a NOS-like activity.

  8. Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling

    PubMed Central

    Li, Zhou; Zhang, Yan; Peng, Dandan; Wang, Xiaojuan; Peng, Yan; He, Xiaoshuang; Zhang, Xinquan; Ma, Xiao; Huang, Linkai; Yan, Yanhong

    2015-01-01

    Endogenous polyamine (PA) may play a critical role in tolerance to water stress in plants acting as a signaling molecule activator. Water stress caused increases in endogenous PA content in leaves, including putrescine (Put), spermidine (Spd), and spermine (Spm). Exogenous application of Spd could induce the instantaneous H2O2 burst and accumulation of cytosolic free Ca2+, and activate NADPH oxidase and CDPK gene expression in cells. To a great extent, PA biosynthetic inhibitor reduced the water stress-induced H2O2 accumulation, free cytosolic Ca2+ release, antioxidant enzyme activities and genes expression leading to aggravate water stress-induced oxidative damage, while these suppressing effects were alleviated by the addition of exogenous Spd, indicating PA was involved in water stress-induced H2O2 and cytosolic free Ca2+ production as well as stress tolerance. Dehydrin genes (Y2SK, Y2K, and SK2) were showed to be highly responsive to exogenous Spd. PA-induced antioxidant defense and dehydrin genes expression could be blocked by the scavenger of H2O2 and the inhibitors of H2O2 generation or Ca2+ channels blockers, a calmodulin antagonist, as well as the inhibitor of CDPK. These findings suggested that PA regulated tolerance to water stress in white clover associated with antioxidant defenses and dehydrins via involvement in the calcium messenger system and H2O2 signaling pathways. PA-induced H2O2 production required Ca2+ release, while PA-induced Ca2+ release was also essential for H2O2 production, suggesting an interaction between PA-induced H2O2 and Ca2+ signaling. PMID:26528187

  9. Electrical stimulation modulates Wnt signaling and regulates genes for the motor endplate and calcium binding in muscle of rats with spinal cord transection

    PubMed Central

    2013-01-01

    Background Spinal cord injury (SCI) results in muscle atrophy and a shift of slow oxidative to fast glycolytic fibers. Electrical stimulation (ES) at least partially restores muscle mass and fiber type distribution. The objective of this study was to was to characterize the early molecular adaptations that occur in rat soleus muscle after initiating isometric resistance exercise by ES for one hour per day for 1, 3 or 7 days when ES was begun 16 weeks after SCI. Additionally, changes in mRNA levels after ES were compared with those induced in soleus at the same time points after gastrocnemius tenotomy (GA). Results ES increased expression of Hey1 and Pitx2 suggesting increased Notch and Wnt signaling, respectively, but did not normalize RCAN1.4, a measure of calcineurin/NFAT signaling, or PGC-1ß mRNA levels. ES increased PGC-1α expression but not that of slow myofibrillar genes. Microarray analysis showed that after ES, genes coding for calcium binding proteins and nicotinic acetylcholine receptors were increased, and the expression of genes involved in blood vessel formation and morphogenesis was altered. Of the 165 genes altered by ES only 16 were also differentially expressed after GA, of which 12 were altered in the same direction by ES and GA. In contrast to ES, GA induced expression of genes related to oxidative phosphorylation. Conclusions Notch and Wnt signaling may be involved in ES-induced increases in the mass of paralyzed muscle. Molecular adaptations of paralyzed soleus to resistance exercise are delayed or defective compared to normally innervated muscle. PMID:23914941

  10. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  11. Distinct contributions by ionotropic purinoceptor subtypes to ATP-evoked calcium signals in mouse parotid acinar cells

    PubMed Central

    Bhattacharya, Sumit; Verrill, Douglas S; Carbone, Kristopher M; Brown, Stefanie; Yule, David I; Giovannucci, David R

    2012-01-01

    There is emerging consensus that P2X4 and P2X7 ionotropic purinoceptors (P2X4R and P2X7R) are critical players in regulating [Ca2+]i dynamics and fluid secretion in the salivary gland. In contrast, details regarding their compartmentalization and selective activation, contributions to the spatiotemporal properties of intracellular signals and roles in regulating protein exocytosis and ion channel activity have remained largely undefined. To address these concerns, we profiled mouse parotid acinar cells using live-cell imaging to follow the spatial and temporal features of ATP-evoked Ca2+ dynamics and exocytotic activity. Selective activation of P2X7Rs revealed an apical-to-basal [Ca2+]i signal that initiated at the sub-luminal border and propagated with a wave speed estimated at 17.3 ± 4.3 μm s−1 (n = 6). The evoked Ca2+ spike consisted of Ca2+ influx and Ca2+-induced Ca2+ release from intracellular Ca2+ channels. In contrast, selective activation of P2X4Rs induced a Ca2+ signal that initiated basally and propagated toward the lumen with a wave speed of 4.3 ± 0.2 μm s−1 (n = 8) that was largely independent of intracellular Ca2+ channel blockade. Consistent with these observations, P2X7R expression was enriched in the sub-luminal regions of acinar cells while P2X4R appeared localized to basal areas. In addition, we showed that P2X4R and P2X7R activation evokes exocytosis in parotid acinar cells. Our studies also demonstrate that the P2X4R-mediated [Ca2+]i rise and subsequent protein exocytosis was enhanced by ivermectin (IVR). Thus, in addition to furthering our understanding of salivary gland physiology, this study identifies P2X4R as a potential target for treatment of salivary hypofunction diseases. PMID:22451435

  12. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury.

    PubMed

    Calì, Bianca; Ceolin, Stefano; Ceriani, Federico; Bortolozzi, Mario; Agnellini, Andrielly H R; Zorzi, Veronica; Predonzani, Andrea; Bronte, Vincenzo; Molon, Barbara; Mammano, Fabio

    2015-04-30

    Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding "bystander" cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca(2+)-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy.

  13. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury

    PubMed Central

    Calì, Bianca; Ceolin, Stefano; Ceriani, Federico; Bortolozzi, Mario; Agnellini, Andrielly H.R.; Zorzi, Veronica; Predonzani, Andrea; Bronte, Vincenzo

    2015-01-01

    Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding “bystander” cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca2+-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy. PMID:25868859

  14. Calcium - urine

    MedlinePlus

    ... into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production of ... Milk-alkali syndrome Proximal renal tubular acidosis Rickets Sarcoidosis Vitamin D Review Date 5/3/2015 Updated ...

  15. Calcium signaling via Orai1 is essential for induction of the nuclear orphan receptor pathway to drive Th17 differentiation.

    PubMed

    Kim, Kyun-Do; Srikanth, Sonal; Tan, Yossan-Var; Yee, Ma-Khin; Jew, Marcus; Damoiseaux, Robert; Jung, Michael E; Shimizu, Saki; An, Dong Sung; Ribalet, Bernard; Waschek, James A; Gwack, Yousang

    2014-01-01

    Orai1 is the pore subunit of Ca(2+) release-activated Ca(2+) (CRAC) channels that stimulate downstream signaling pathways crucial for T cell activation. CRAC channels are an attractive therapeutic target for alleviation of autoimmune diseases. Using high-throughput chemical library screening targeting Orai1, we identified a novel class of small molecules that inhibit CRAC channel activity. One of these molecules, compound 5D, inhibited CRAC channel activity by blocking ion permeation. When included during differentiation, Th17 cells showed higher sensitivity to compound 5D than Th1 and Th2 cells. The selectivity was attributable to high dependence of promoters of retinoic-acid-receptor-related orphan receptors on the Ca(2+)-NFAT pathway. Blocking of CRAC channels drastically decreased recruitment of NFAT and histone modifications within key gene loci involved in Th17 differentiation. The impairment in Th17 differentiation by treatment with CRAC channel blocker was recapitulated in Orai1-deficient T cells, which could be rescued by exogenous expression of retinoic-acid-receptor-related orphan receptors or a constitutive active mutant of NFAT. In vivo administration of CRAC channel blockers effectively reduced the severity of experimental autoimmune encephalomyelitis by suppression of differentiation of inflammatory T cells. These results suggest that CRAC channel blockers can be considered as chemical templates for the development of therapeutic agents to suppress inflammatory responses.

  16. G protein modulation of recombinant P/Q-type calcium channels by regulators of G protein signalling proteins.

    PubMed

    Mark, M D; Wittemann, S; Herlitze, S

    2000-10-01

    1. Fast synaptic transmission is triggered by the activation of presynaptic Ca2+ channels which can be inhibited by Gbetagamma subunits via G protein-coupled receptors (GPCR). Regulators of G protein signalling (RGS) proteins are GTPase-accelerating proteins (GAPs), which are responsible for >100-fold increases in the GTPase activity of G proteins and might be involved in the regulation of presynaptic Ca2+ channels. In this study we investigated the effects of RGS2 on G protein modulation of recombinant P/Q-type channels expressed in a human embryonic kidney (HEK293) cell line using whole-cell recordings. 2. RGS2 markedly accelerates transmitter-mediated inhibition and recovery from inhibition of Ba2+ currents (IBa) through P/Q-type channels heterologously expressed with the muscarinic acetylcholine receptor M2 (mAChR M2). 3. Both RGS2 and RGS4 modulate the prepulse facilitation properties of P/Q-type Ca2+ channels. G protein reinhibition is accelerated, while release from inhibition is slowed. These kinetics depend on the availability of G protein alpha and betagamma subunits which is altered by RGS proteins. 4. RGS proteins unmask the Ca2+ channel beta subunit modulation of Ca2+ channel G protein inhibition. In the presence of RGS2, P/Q-type channels containing the beta2a and beta3 subunits reveal significantly altered kinetics of G protein modulation and increased facilitation compared to Ca2+ channels coexpressed with the beta1b or beta4 subunit.

  17. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress.

    PubMed

    Cantero-Recasens, Gerard; Fandos, César; Rubio-Moscardo, Fanny; Valverde, Miguel A; Vicente, Rubén

    2010-01-01

    Alterations of protein folding or Ca(2+) levels within the endoplasmic reticulum (ER) result in the unfolded-protein response (UPR), a process considered as an endogenous inducer of inflammation. Thereby, understanding how genetic factors modify UPR is particularly relevant in chronic inflammatory diseases such as asthma. Here we identified that ORMDL3, the only genetic risk factor recently associated to asthma in a genome wide study, alters ER-mediated Ca(2+) homeostasis and facilitates the UPR. Heterologous expression of human ER-resident transmembrane ORMDL3 protein increased resting cytosolic Ca(2+) levels and reduced ER-mediated Ca(2+) signaling, an effect reverted by co-expression with the sarco-endoplasmic reticulum Ca(2+) pump (SERCA). Increased ORMDL3 expression also promoted stronger activation of UPR transducing molecules and target genes while siRNA-mediated knock-down of endogenous ORMDL3 potentiated ER Ca(2+) release and attenuated the UPR. In conclusion, our findings are consistent with a model in which ORMDL3 binds and inhibits SERCA resulting in a reduced ER Ca(2+) concentration and increased UPR. Thus, we provide a first insight into the molecular mechanism explaining the association of ORMDL3 with proinflammatory diseases.

  18. The pleiotropic vegetative and sexual development phenotypes of Neurospora crassa arise from double mutants of the calcium signaling genes plc-1, splA2, and cpe-1.

    PubMed

    Barman, Ananya; Tamuli, Ranjan

    2017-03-06

    We investigated phenotypes of the double mutants of the calcium (Ca(2+)) signaling genes plc-1, splA2, and cpe-1 encoding for a phospholipase C1 (PLC-1), a secretory phospholipase A2 (sPLA2), and a Ca(2+)/H(+) exchanger (CPE-1), respectively, to understand the cell functions regulated by their genetic interactions. Mutants lacking plc-1 and either splA2 or cpe-1 exhibited numerous defects including reduced colonial growth, stunted aerial hyphae, premature conidiation on plates with delayed germination, inappropriate conidiation in submerged culture, and lesser mycelial pigmentation. Moreover, the ∆plc-1; ∆splA2 and ∆plc-1; ∆cpe-1 double mutants were female-sterile when crossed with wild type as the male parent. In addition, ∆plc-1, ∆splA2, and ∆cpe-1 single mutants displayed higher carotenoid accumulation and an increased level of intracellular reactive oxygen species (ROS). Therefore, the pleiotropic phenotype of the double mutants of plc-1, splA2, and cpe-1 suggested that the genetic interaction of these genes plays a critical role for normal vegetative and sexual development in N. crassa.

  19. Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses.

    PubMed

    Vandelle, Elodie; Poinssot, Benoît; Wendehenne, David; Bentéjac, Marc; Alain, Pugin

    2006-04-01

    We have already reported the identification of the endopolygalacturonase 1 (BcPG1) from Botrytis cinerea as a potent elicitor of defense responses in grapevine, independently of its enzymatic activity. The aim of the present study is the analysis of the signaling pathways triggered by BcPG1 in grapevine cells. Our data indicate that BcPG1 induces a Ca2+ entry from the apoplasm, which triggers a phosphorylation-dependent nitric oxide (NO) production via an enzyme probably related to a NO synthase. Then NO is involved in (i) cytosolic calcium homeostasis, by activating Ca2+ release from internal stores and regulating Ca2+ fluxes across the plasma membrane, (ii) plasma membrane potential variation, (iii) the activation of active oxygen species (AOS) production, and (iv) defense gene expression, including phenylalanine ammonia lyase and stilbene synthase, which encode enzymes responsible for phytoalexin biosynthesis. Interestingly enough, mitogen-activated protein kinase (MAPK) activation is independent of this regulation pathway that closely connects Ca2+, NO, and AOS.

  20. Calcium oxalate crystals induces tight junction disruption in distal renal tubular epithelial cells by activating ROS/Akt/p38 MAPK signaling pathway.

    PubMed

    Yu, Lei; Gan, Xiuguo; Liu, Xukun; An, Ruihua

    2017-11-01

    Tight junction plays important roles in regulating paracellular transports and maintaining cell polarity. Calcium oxalate monohydrate (COM) crystals, the major crystalline composition of kidney stones, have been demonstrated to be able to cause tight junction disruption to accelerate renal cell injury. However, the cellular signaling involved in COM crystal-induced tight junction disruption remains largely to be investigated. In the present study, we proved that COM crystals induced tight junction disruption by activating ROS/Akt/p38 MAPK pathway. Treating Madin-Darby canine kidney (MDCK) cells with COM crystals induced a substantial increasing of ROS generation and activation of Akt that triggered subsequential activation of ASK1 and p38 mitogen-activated protein kinase (MAPK). Western blot revealed a significantly decreased expression of ZO-1 and occludin, two important structural proteins of tight junction. Besides, redistribution and dissociation of ZO-1 were observed by COM crystals treatment. Inhibition of ROS by N-acetyl-l-cysteine (NAC) attenuated the activation of Akt, ASK1, p38 MAPK, and down-regulation of ZO-1 and occludin. The redistribution and dissociation of ZO-1 were also alleviated by NAC treatment. These results indicated that ROS were involved in the regulation of tight junction disruption induced by COM crystals. In addition, the down-regulation of ZO-1 and occludin, the phosphorylation of ASK1 and p38 MAPK were also attenuated by MK-2206, an inhibitor of Akt kinase, implying Akt was involved in the disruption of tight junction upstream of p38 MAPK. Thus, these results suggested that ROS-Akt-p38 MAPK signaling pathway was activated in COM crystal-induced disruption of tight junction in MDCK cells.

  1. Rapid signaling responses in Sertoli cell membranes induced by follicle stimulating hormone and testosterone: calcium inflow and electrophysiological changes.

    PubMed

    Loss, Eloísa S; Jacobus, Ana Paula; Wassermann, Guillermo F

    2011-10-10

    This minireview describes the rapid signaling actions of follicle stimulating hormone (FSH) and testosterone in immature Sertoli cells mainly related to Ca(2+) inflow and the electrophysiological changes produced by hormones. The rapid membrane actions of FSH occur in a time frame of seconds to minutes, which include membrane depolarization and the stimulation of (45)Ca(2+) uptake. These effects can be prevented by pertussis toxin (PTX), suggesting that they are likely mediated by Gi-protein coupled receptor activation. Furthermore, these effects were inhibited by verapamil, a blocker of the L-type voltage-dependent Ca(2+) channel (VDCC). Finally, FSH stimulation of (45)Ca(2+) uptake was inhibited by the (phosphoinositide 3-kinase) PI3K inhibitor wortmannin. These results suggest that the rapid action of FSH on L-type Ca(2+) channel activity in Sertoli cells from pre-pubertal rats is mediated by the Gi/Gβγ/PI3Kγ pathway, independent of its effects on insulin-like growth factor type I (IGF-I). Testosterone depolarizes the membrane potential and increases the resistance and the (45)Ca(2+) uptake in Sertoli cells of the seminiferous tubules of immature rats. These actions were nullified by diazoxide (K(+)(ATP) channel opener). Testosterone actions were blocked by both PTX and the phospholipase C (PLC) inhibitor U73122, suggesting the involvement of PLC - phosphatidylinositol 4-5 bisphosphate (PIP2) hydrolysis via the Gq protein in the testosterone-mediated pathway. These results indicate that testosterone acts on the Sertoli cell membrane through the K(+)(ATP) channels and PLC-PIP2 hydrolysis, which closes the channel, depolarizes the membrane and stimulates (45)Ca(2+) uptake. These results demonstrate the existence of rapid non-classical pathways in immature Sertoli cells regulated by FSH and testosterone.

  2. Calcium-dependent signalling is essential during collateral growth in the pig hind limb-ischemia model.

    PubMed

    Troidl, C; Nef, H; Voss, S; Schilp, A; Kostin, S; Troidl, K; Szardien, S; Rolf, A; Schmitz-Rixen, T; Schaper, W; Hamm, C W; Elsässer, A; Möllmann, H

    2010-07-01

    We investigated the effect of pharmacological activation of the Ca(2+)-channel transient receptor potential cation channel, subfamily V, member 4 (TRPV4) on collateral growth in a pig hind limb-ischemia model thereby identifying subcellular mechanisms. Domestic pigs received femoral artery ligature and were randomly assigned to one of the following groups (each n=6): (1) 4alpha-phorbol 12,13-didecanoate (4alphaPDD) treatment; (2) treatment with an arterio-venous shunt (AV-shunt) distal to the occlusion; or (3) implantation of NaCl-filled minipump. Six sham-operated pigs acted as controls. Aortic and peripheral mean arterial pressure (MAP) measurements were performed to assess the collateral flow index (CFI). Tissue was isolated from M. quadriceps for immunohistochemistry and from isolated collateral arteries for quantitative real time PCR (qRT-PCR). Shortly after ligature the CFI dropped from 0.96+/-0.02 to 0.21+/-0.02 in all ligature-treated groups. In ligature-only-treated pigs CFI increased to 0.56+/-0.03 after 7days. Treatment with 4alphaPDD led to an enhancement of CFI compared with ligature alone (0.73+/-0.03). CD31-staining showed improved arteriolar density. Increased Ki67 staining in collaterals indicated proliferation. qRT-PCR and Western blot analysis showed upregulation or modulation of Ca(2+)-dependent transcription factors nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), Kv channel interacting protein 3, calsenilin (KCNIP3/CSEN/DREAM), and myocyte enhancer factor 2C (MEF2C) in 4alphaPDD- and AV-shunt-treated pigs compared with controls. Improved CFI after 4alphaPDD treatment identifies TRPV4 as an initial fluid shear-stress sensor and collateral remodelling and growth trigger. Subcellularly, modulation of Ca(2+)-dependent transcription factors indicates a pivotal role for Ca(2+)-signalling during arteriogenesis.

  3. Modulatory effect of insulin on T cell receptor mediated calcium signaling is blunted in long lasting type 1 diabetes mellitus.

    PubMed

    Demkow, Urszula; Winklewski, Paweł; Ciepiela, Olga; Popko, Katarzyna; Lipińska, Anna; Kucharska, Anna; Michalska, Beata; Wąsik, Maria

    2012-01-01

    Insulin significantly influences Ca(2+) signals evoked by various stimulants. In type 1 recent onset diabetes mellitus the proliferative response of T cells is significantly decreased. The number of clinical trials exploring the role of anti-CD3 monoclonal antibodies (mAb) as a therapeutic agent in recent onset diabetes mellitus type 1 is increasing last years. Therefore, a better understanding of the interplay between T cell receptor (TCR) dependent Ca(2+) increase, and insulin is of vital clinical significance. The aim of the study was to assess the effect of insulin on TCR evoked Ca(2+) responses in T lymphocytes obtained from healthy volunteers and patients suffering from long lasting diabetes mellitus type 1. Analysis was performed with use of the flow cytometer. We demonstrated that T cells ability to mobilize Ca(2+) was significantly reduced in long lasting diabetes mellitus type 1. Ca(2+) decrease achieved by the long term incubation with anti-CD3 mAb in T cells from healthy volunteers was restored by insulin. Strong interrelationship between baseline Ca(2+) level and plateau phase response to TCR stimulation was observed in the cytoplasm of cells pre-incubated with insulin from both healthy subjects and diabetic patients (r = 0.95, p < 0.0001 and r = 0.94, p < 0.0001, respectively). We postulate the existence of the interplay between TCR mediated activation and insulin. The TCR-insulin interplay is blunted in long lasting diabetes mellitus type 1. These observations may have an important implication for future therapeutic options in diabetes.

  4. Kv3 channels modulate calcium signals induced by fast firing patterns in the rat retinal ganglion cells.

    PubMed

    Kuznetsov, Kirill I; Grygorov, Oleksii O; Maslov, Vitaly Yu; Veselovsky, Nikolay S; Fedulova, Svetlana A

    2012-11-01

    Expression of non-inactivating Kv3.1/Kv3.2 potassium channels determines fast-spiking phenotype of many types of neurones including retinal ganglion cells (RGCs); furthermore Kv3 channels regulate neurotransmitter release from presynaptic terminals. In the present study we investigated how inhibition of Kv3 channel by low TEA concentrations modifies firing properties and Ca2+ influx in the rat RGCs. Experiments were performed on the whole-mount retinal preparations from 4 to 6 weeks old Wistar rats using simultaneous whole cell patch clamp and intracellular Ca2+ measurements in combination with single-cell RT-PCR. In response to 500-ms depolarization step the RGCs demonstrated fast firing tonic behaviour with a mean frequency of spiking 61±5 Hz (n=28). All of the tonic cells tested (n=9) expressed specific mRNA for either Kv3.1 or Kv3.2 or for both channels. Bath applications of TEA (250 μM, 500 μM and 1 mM) modified firing patterns dose-dependently as follows: firing frequency was decreased, mean action potential (AP) half-width increased and mean amplitude of after hyperpolarization was reduced. The amplitude of the Ca2+ signals induced by the cells firing was linearly dependent on number of APs with a mean slope of 7.3±0.9 nM per one AP (n=8). APs widening by TEA increased the slope of the amplitude vs. AP number plots in a dose-dependent manner: 250 μM of TEA increased the mean slope value to 9.5±1.2 nM/AP, 500 μM to 12.4±2.4 nM/AP and 1 mM to 13.2±2.9 nM/AP (n=6). All these parameters, as well as the cells firing properties, were significantly different from controls and from each other except between 500 μM and 1 mM. This is consistent with the pharmacological properties of Kv3.1/Kv3.2 channels: the TEA IC50 is in the range 150-300 μM with almost complete block at 1 mM. This suggests that Kv3.1/Kv3.2 channels underlie the fast firing of the rat RGCs and provide at a given firing frequency 1.8-fold restriction Ca2+ influx, thus protecting the cells

  5. Calcium signals activated by ghrelin and D-Lys(3)-GHRP-6 ghrelin antagonist in developing dorsal root ganglion glial cells.

    PubMed

    Erriquez, Jessica; Bernascone, Silvia; Ciarletta, Monica; Filigheddu, Nicoletta; Graziani, Andrea; Distasi, Carla

    2009-09-01

    Ghrelin is a hormone regulating energy homeostasis via interaction with its receptor, GHSR-1a. Ghrelin activities in dorsal root ganglia (DRG) cells are unknown. Herein we show that ghrelin induces a change of cytosolic calcium concentration in both glia and neurons of embryonic chick DRG. Both RT-PCR and binding studies performed with fluorescent ghrelin in the presence of either unlabeled ghrelin or GHSR-1a antagonist D-Lys(3)-GHRP-6, indicate that DRG cells express GHSR-1a. In glial cells the response is characterized by a rapid transient rise in [Ca(2+)](i) followed by a long lasting rise. The calcium elevation is dependent on calcium release from thapsigargin-sensitive intracellular stores and on activation of two distinct Ca(2+) entry pathways, a receptor activated calcium entry and a store operated calcium entry. Surprisingly, D-Lys(3)-GHRP-6 exerts several activities in the absence of exogenous ghrelin: (i) it activates calcium release from thapsigargin-sensitive intracellular stores and calcium entry via voltage-operated channels in non-neuronal cells; (ii) it inhibits calcium oscillations in non-neuronal cells exhibiting spontaneous Ca(2+) activity and iii) it promotes apoptosis of DRG cells, both neurons and glia. In summary, we provide the first evidence for ghrelin activity in DRG, and we also demonstrate that the widely used D-Lys(3)-GHRP-6 ghrelin antagonist features ghrelin independent activities.

  6. Magnesium modification up-regulates the bioactivity of bone morphogenetic protein-2 upon calcium phosphate cement via enhanced BMP receptor recognition and Smad signaling pathway.

    PubMed

    Ding, Sai; Zhang, Jing; Tian, Yu; Huang, Baolin; Yuan, Yuan; Liu, Changsheng

    2016-09-01

    Efficient presentation of growth factors is one of the great challenges in tissue engineering. In living systems, bioactive factors exist in soluble as well as in matrix-bound forms, both of which play an integral role in regulating cell behaviors. Herein, effect of magnesium on osteogenic bioactivity of recombinant human bone morphogenetic protein-2 (rhBMP-2) was investigated systematically with a series of Mg modified calcium phosphate cements (xMCPCs, x means the content of magnesium phosphate cement wt%) as matrix model. The results indicated that the MCPC, especially 5MCPC, could promote the rhBMP-2-induced in vitro osteogenic differentiation via Smad signaling of C2C12 cells. Further studies demonstrated that all MCPC substrates exhibited similar rhBMP-2 release rate and preserved comparable conformation and biological activity of the released rhBMP-2. Also, the ionic extracts of MCPC made little difference to the bioactivity of rhBMP-2, either in soluble or in matrix-bound forms. However, with the quartz crystal microbalance (QCM), we observed a noticeable enhancement of rhBMP-2 mass-uptake on 5MCPC as well as a better recognition of the bound rhBMP-2 to BMPR IA and BMPR II. In vivo results demonstrated a better bone regeneration capacity of 5MCPC/rhBMP-2. From the above, our results demonstrated that it was the Mg anchored on the underlying substrates that tailored the way of rhBMP-2 bound on MCPC, and thus facilitated the recognition of BMPRs to stimulate osteogenic differentiation. The study will guide the development of Mg-doped bioactive bone implants for tissue regeneration.

  7. Flocculus Purkinje cell signals in mouse Cacna1a calcium channel mutants of escalating severity: an investigation of the role of firing irregularity in ataxia

    PubMed Central

    Thumser, Zachary C.

    2014-01-01

    Mutation of the Cacna1a gene for the P/Q (CaV2.1) calcium channel invariably leads to cerebellar dysfunction. The dysfunction has been attributed to disrupted rhythmicity of cerebellar Purkinje cells, but the hypothesis remains unproven. If irregular firing rates cause cerebellar dysfunction, then the irregularity and behavioral deficits should covary in a series of mutant strains of escalating severity. We compared firing irregularity in floccular and anterior vermis Purkinje cells in the mildly affected rocker and moderately affected tottering Cacna1a mutants and normal C57BL/6 mice. We also measured the amplitude and timing of modulations of floccular Purkinje cell firing rate during the horizontal vestibuloocular reflex (VOR, 0.25–1 Hz) and the horizontal and vertical optokinetic reflex (OKR, 0.125–1 Hz). We recorded Purkinje cells selective for rotational stimulation about the vertical axis (VAPCs) and a horizontal axis (HAPCs). Irregularity scaled with behavioral deficit severity in the flocculus but failed to do so in the vermis, challenging the irregularity hypothesis. Mutant VAPCs exhibited unusually strong modulation during VOR and OKR, the response augmentation scaling with phenotypic severity. HAPCs exhibited increased OKR modulation but in tottering only. The data contradict prior claims that modulation amplitude is unaffected in tottering but support the idea that attenuated compensatory eye movements in Cacna1a mutants arise from defective transfer of Purkinje cell signals to downstream circuitry, rather than attenuated synaptic transmission within the cerebellar cortex. Shifts in the relative sizes of the VAPC and HAPC populations raise the possibility that Cacna1a mutations influence the development of floccular zone architecture. PMID:25143538

  8. Altered vasoreactivity in neonatal rats with pulmonary hypertension associated with bronchopulmonary dysplasia: Implication of both eNOS phosphorylation and calcium signaling

    PubMed Central

    Quignard, Jean-François; Freund-Michel, Véronique; Courtois, Arnaud; Marthan, Roger; Muller, Bernard; Guibert, Christelle; Dubois, Mathilde

    2017-01-01

    Bronchopulmonary dysplasia (BPD) consists of an arrest of pulmonary vascular and alveolar growth, with persistent hypoplasia of the pulmonary microvasculature and alveolar simplification. In 25 to 40% of the cases, BPD is complicated by pulmonary hypertension (BPD-PH) that significantly increases the risk of morbidity. In vivo studies suggest that increased pulmonary vascular tone could contribute to late PH in BPD. Nevertheless, an alteration in vasoreactivity as well as the mechanisms involved remain to be confirmed. The purpose of this study was thus to assess changes in pulmonary vascular reactivity in a murine model of BPD-PH. Newborn Wistar rats were exposed to either room air (normoxia) or 90% O2 (hyperoxia) for 14 days. Exposure to hyperoxia induced the well-known features of BPD-PH such as elevated right ventricular systolic pressure, right ventricular hypertrophy, pulmonary vascular remodeling and decreased pulmonary vascular density. Intrapulmonary arteries from hyperoxic pups showed decreased endothelium-dependent relaxation to acetylcholine without any alteration of relaxation to the NO-donor sodium nitroprusside. This functional alteration was associated with a decrease of lung eNOS phosphorylation at the Ser1177 activating site. In pups exposed to hyperoxia, serotonin and phenylephrine induced exacerbated contractile responses of intrapulmonary arteries as well as intracellular calcium response in pulmonary arterial smooth muscle cells (PASMC). Moreover, the amplitude of the store-operated Ca2+ entry (SOCE), induced by store depletion using a SERCA inhibitor, was significantly greater in PASMC from hyperoxic pups. Altogether, hyperoxia-induced BPD-PH alters the pulmonary arterial reactivity, with effects on both endothelial and smooth muscle functions. Reduced activating eNOS phosphorylation and enhanced Ca2+ signaling likely account for alterations of pulmonary arterial reactivity. PMID:28235094

  9. Brain-specific regulator of G-protein signaling 9-2 selectively interacts with alpha-actinin-2 to regulate calcium-dependent inactivation of NMDA receptors.

    PubMed

    Bouhamdan, Mohamad; Yan, Hai-Dun; Yan, Xiu-Hua; Bannon, Michael J; Andrade, Rodrigo

    2006-03-01

    Regulator of G-protein signaling 9-1 (RGS9-1) and RGS9-2 are highly related RGS proteins with distinctive C termini arising from alternative splicing of RGS9 gene transcripts. RGS9-1 is expressed in photoreceptors where it functions as a regulator of transducin. In contrast, RGS9-2 is abundantly expressed in the brain, especially in basal ganglia, where its specific function remains poorly understood. To gain insight into the function of RGS9-2, we screened a human cDNA library for potential interacting proteins. This screen identified a strong interaction between RGS9-2 and alpha-actinin-2, suggesting a possible functional relationship between these proteins. Consistent with this idea, RGS9-2 and alpha-actinin-2 coimmunoprecipitated after coexpression in human embryonic kidney 293 (HEK-293) cells. Furthermore, endogenous RGS9-2 and alpha-actinin-2 could also be coimmunoprecipitated from extracts of rat striatum, an area highly enriched in both these proteins. These results supported the idea that RGS9-2 and alpha-actinin-2 could act in concert in central neurons. Like alpha-actinin-2, RGS9-2 coimmunoprecipitated NMDA receptors from striatal extracts, suggesting an interaction between RGS9-2, alpha-actinin-2, and NMDA receptors. Previous studies have shown that alpha-actinin mediates calcium-dependent inactivation of NMDA receptors. In HEK-293 cells expressing NMDA receptors, expression of RGS9-2 significantly modulated this form of NMDA receptor inactivation. Furthermore, this modulation showed remarkable preference for NMDA receptor inactivation mediated by alpha-actinin-2. Using a series of deletion constructs, we localized this effect to the RGS domain of the protein. These results identify an unexpected functional interaction between RGS9-2 and alpha-actinin-2 and suggest a potential novel role for RGS9-2 in the regulation of NMDA receptor function.

  10. Calcium input potentiates the transforming growth factor (TGF)-beta1-dependent signaling to promote the export of inorganic pyrophosphate by articular chondrocyte.

    PubMed

    Cailotto, Frederic; Reboul, Pascal; Sebillaud, Sylvie; Netter, Patrick; Jouzeau, Jean-Yves; Bianchi, Arnaud

    2011-06-03

    Transforming growth factor (TGF)-β1 stimulates extracellular PP(i) (ePP(i)) generation and promotes chondrocalcinosis, which also occurs secondary to hyperparathyroidism-induced hypercalcemia. We previously demonstrated that ANK was up-regulated by TGF-β1 activation of ERK1/2 and Ca(2+)-dependent protein kinase C (PKCα). Thus, we investigated mechanisms by which calcium could affect ePP(i) metabolism, especially its main regulating proteins ANK and PC-1 (plasma cell membrane glycoprotein-1). We stimulated articular chondrocytes with TGF-β1 under extracellular (eCa(2+)) or cytosolic Ca(2+) (cCa(2+)) modulations. We studied ANK, PC-1 expression (quantitative RT-PCR, Western blotting), ePP(i) levels (radiometric assay), and cCa(2+) input (fluorescent probe). Voltage-operated Ca(2+)-channels (VOC) and signaling pathways involved were investigated with selective inhibitors. Finally, Ank promoter activity was evaluated (gene reporter). TGF-β1 elevated cCa(2+) and ePP(i) levels (by up-regulating Ank and PC-1 mRNA/proteins) in an eCa(2+) dose-dependent manner. TGF-β1 effects were suppressed by cCa(2+) chelation or L- and T-VOC blockade while being mostly reproduced by ionomycin. In the same experimental conditions, the activation of Ras, the phosphorylation of ERK1/2 and PKCα, and the stimulation of Ank promoter activity were affected similarly. Activation of SP1 (specific protein 1) and ELK-1 (Ets-like protein-1) transcription factors supported the regulatory role of Ca(2+). SP1 or ELK-1 overexpression or blockade experiments demonstrated a major contribution of ELK-1, which acted synergistically with SP1 to activate Ank promoter in response to TGF-β1. TGF-β1 promotes input of eCa(2+) through opening of L- and T-VOCs, to potentiate ERK1/2 and PKCα signaling cascades, resulting in an enhanced activation of Ank promoter and ePP(i) production in chondrocyte.

  11. Calcium-sensing receptors.

    PubMed

    Goodman, William G

    2004-01-01

    It is now known that variations in extracellular calcium concentration exert diverse physiologic effects in a variety of tissues that are mediated by a calcium-sensing receptor (CaSRs). In parathyroid tissue, the CaSR represents the molecular mechanism by which parathyroid cells detect changes in blood ionized calcium concentration, modulate parathyroid hormone (PTH) secretion accordingly, and thus maintain serum calcium levels within a narrow physiologic range. In the kidney, the CaSR regulates renal calcium excretion and influences the transepithelial movement of water and other electrolytes. More generally, activation of the CaSR represents an important signal transduction pathway in intestine, placenta, brain, and perhaps bone. Some of these actions involve cell cycle regulation, changes that may be relevant to understanding the pathogenesis of parathyroid gland hyperplasia in secondary hyperparathyroidism caused by chronic kidney disease. The CaSR represents an appealing target for therapeutic agents designed to modify parathyroid gland function in vivo, offering the prospect of novel therapies for selected disorders of bone and mineral metabolism. Other receptors capable of responding to extracellular calcium ions also have been identified, but the functional importance of these interactions remains to be determined.

  12. Calcium regulation in endosymbiotic organelles of plants.

    PubMed

    Bussemer, Johanna; Vothknecht, Ute C; Chigri, Fatima

    2009-09-01

    In plant cells calcium-dependent signaling pathways are involved in a large array of biological processes in response to hormones, biotic/abiotic stress signals and a variety of developmental cues. This is generally achieved through binding of calcium to diverse calcium-sensing proteins, which subsequently control downstream events by activating or inhibiting biochemical reactions. Regulation by calcium is considered as a eukaryotic trait and has not been described for prokaryotes. Nevertheless, there is increasing evidence indicating that organelles of prokaryotic origin, such as chloroplasts and mitochondria, are integrated into the calcium-signaling network of the cell. An important transducer of calcium in these organelles appears to be calmodulin. In this review we want to give an overview over present data showing that endosymbiotic organelles harbour calcium-dependent biological processes with a focus on calmodulin-regulation.

  13. In vivo immunotoxicity of perfluorooctane sulfonate in BALB/c mice: Identification of T-cell receptor and calcium-mediated signaling pathway disruption through gene expression profiling of the spleen.

    PubMed

    Lv, Qi-Yan; Wan, Bin; Guo, Liang-Hong; Yang, Yu; Ren, Xiao-Min; Zhang, Hui

    2015-10-05

    Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant that is used worldwide and is continuously being detected in biota and the environment, thus presenting potential threats to the ecosystem and human health. Although PFOS is highly immunotoxic, its underlying molecular mechanisms remain largely unknown. The present study examined PFOS-induced immunotoxicity in the mouse spleen and explored its underlying mechanisms by gene expression profiling. Oral exposure of male BALB/c mice for three weeks followed by one-week recovery showed that a 10 mg/kg/day PFOS exposure damaged the splenic architecture, inhibited T-cell proliferation in response to mitogen, and increased the percentages of T helper (CD3(+)CD4(+)) and cytotoxic T (CD3(+)CD8(+)) cells, despite the decrease in the absolute number of these cells. A delayed type of PFOS immunotoxicity was observed, which mainly occurred during the recovery period. Global gene expression profiling of mouse spleens and QRT-PCR analyses suggest that PFOS inhibited the expression of genes involved in cell cycle regulation and NRF2-mediated oxidative stress response, and upregulated those in TCR signaling, calcium signaling, and p38/MAPK signaling pathways. Western blot analysis confirmed that the expressions of CAMK4, THEMIS, and CD3G, which were involved in the upregulated pathways, were induced upon PFOS exposure. Acute PFOS exposure modulated calcium homoeostasis in splenocytes. These results indicate that PFOS exposure can activate TCR signaling and calcium ion influx, which provides a clue for the potential mechanism of PFOS immunotoxicity. The altered signaling pathways by PFOS treatment as revealed in the present study might facilitate in better understanding PFOS immunotoxicity and explain the association between immune disease and PFOS exposure.

  14. Extracellular Self-DNA (esDNA), but Not Heterologous Plant or Insect DNA (etDNA), Induces Plasma Membrane Depolarization and Calcium Signaling in Lima Bean (Phaseolus lunatus) and Maize (Zea mays)

    PubMed Central

    Barbero, Francesca; Guglielmotto, Michela; Capuzzo, Andrea; Maffei, Massimo E.

    2016-01-01

    Extracellular self-DNA (esDNA) is produced during cell and tissue damage or degradation and has been shown to induce significant responses in several organisms, including plants. While the inhibitory effects of esDNA have been shown in conspecific individuals, little is known on the early events involved upon plant esDNA perception. We used electrophysiology and confocal laser scanning microscopy calcium localization to evaluate the plasma membrane potential (Vm) variations and the intracellular calcium fluxes, respectively, in Lima bean (Phaseolus lunatus) and maize (Zea mays) plants exposed to esDNA and extracellular heterologous DNA (etDNA) and to etDNA from Spodoptera littoralis larvae and oral secretions. In both species, esDNA induced a significant Vm depolarization and an increased flux of calcium, whereas etDNA was unable to exert any of these early signaling events. These findings confirm the specificity of esDNA to induce plant cell responses and to trigger early signaling events that eventually lead to plant response to damage. PMID:27690017

  15. Extracellular Self-DNA (esDNA), but Not Heterologous Plant or Insect DNA (etDNA), Induces Plasma Membrane Depolarization and Calcium Signaling in Lima Bean (Phaseolus lunatus) and Maize (Zea mays).

    PubMed

    Barbero, Francesca; Guglielmotto, Michela; Capuzzo, Andrea; Maffei, Massimo E

    2016-09-29

    Extracellular self-DNA (esDNA) is produced during cell and tissue damage or degradation and has been shown to induce significant responses in several organisms, including plants. While the inhibitory effects of esDNA have been shown in conspecific individuals, little is known on the early events involved upon plant esDNA perception. We used electrophysiology and confocal laser scanning microscopy calcium localization to evaluate the plasma membrane potential (Vm) variations and the intracellular calcium fluxes, respectively, in Lima bean (Phaseolus lunatus) and maize (Zea mays) plants exposed to esDNA and extracellular heterologous DNA (etDNA) and to etDNA from Spodoptera littoralis larvae and oral secretions. In both species, esDNA induced a significant Vm depolarization and an increased flux of calcium, whereas etDNA was unable to exert any of these early signaling events. These findings confirm the specificity of esDNA to induce plant cell responses and to trigger early signaling events that eventually lead to plant response to damage.

  16. Calcium in diet

    MedlinePlus

    ... of calcium dietary supplements include calcium citrate and calcium carbonate. Calcium citrate is the more expensive form of ... the body on a full or empty stomach. Calcium carbonate is less expensive. It is absorbed better by ...

  17. Calcium at fertilization and in early development

    PubMed Central

    Whitaker, Michael

    2012-01-01

    Fertilization calcium waves are introduced and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypothesis put forward to explain the generation of the fertilization calcium wave are set out and it is concluded that initiation of the fertilization calcium wave can be most generally explained in inverterbrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signalling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signalling during resumption of meiosis. Changes to the calcium signalling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signalling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed

  18. Sodium–calcium exchangers contribute to the regulation of cytosolic calcium levels in mouse taste cells

    PubMed Central

    Laskowski, Agnieszka I; Medler, Kathryn F

    2009-01-01

    Taste cells use multiple signalling mechanisms to generate unique calcium responses to distinct taste stimuli. Some taste stimuli activate G-protein coupled receptors (GPCRs) that cause calcium release from intracellular stores while other stimuli depolarize taste cells to cause calcium influx through voltage-gated calcium channels (VGCCs). We recently demonstrated that a constitutive calcium influx exists in taste cells that is regulated by mitochondrial calcium transport and that the magnitude of this calcium influx correlates with the signalling mechanisms used by the taste cells. In this study, we used calcium imaging to determine that sodium–calcium exchangers (NCXs) also routinely contribute to the regulation of basal cytosolic calcium and that their relative role correlates with the signalling mechanisms used by the taste cells. RT-PCR analysis revealed that multiple NCXs and sodium–calcium–potassium exchangers (NCKXs) are expressed in taste cells. Thus, a dynamic relationship exists between calcium leak channels and calcium regulatory mechanisms in taste cells that functions to keep cytosolic calcium levels in the appropriate range for cell function. PMID:19581381

  19. Calcium - ionized

    MedlinePlus

    ... 245. Read More Acute kidney failure Albumin - blood (serum) test Bone tumor Calcium blood test Hyperparathyroidism Hypoparathyroidism Malabsorption Milk-alkali syndrome Multiple myeloma Osteomalacia Paget disease of the bone Rickets Sarcoidosis Vitamin D Review ...

  20. Calcium Carbonate.

    PubMed

    Al Omari, M M H; Rashid, I S; Qinna, N A; Jaber, A M; Badwan, A A

    2016-01-01

    Calcium carbonate is a chemical compound with the formula CaCO3 formed by three main elements: carbon, oxygen, and calcium. It is a common substance found in rocks in all parts of the world (most notably as limestone), and is the main component of shells of marine organisms, snails, coal balls, pearls, and eggshells. CaCO3 exists in different polymorphs, each with specific stability that depends on a diversity of variables.

  1. Calcium Hydroxylapatite

    PubMed Central

    Yutskovskaya, Yana Alexandrovna; Philip Werschler, WM.

    2015-01-01

    Background: Calcium hydroxylapatite is one of the most well-studied dermal fillers worldwide and has been extensively used for the correction of moderate-to-severe facial lines and folds and to replenish lost volume. Objectives: To mark the milestone of 10 years of use in the aesthetic field, this review will consider the evolution of calcium hydroxylapatite in aesthetic medicine, provide a detailed injection protocol for a global facial approach, and examine how the unique properties of calcium hydroxylapatite provide it with an important place in today’s market. Methods: This article is an up-to-date review of calcium hydroxylapatite in aesthetic medicine along with procedures for its use, including a detailed injection protocol for a global facial approach by three expert injectors. Conclusion: Calcium hydroxylapatite is a very effective agent for many areas of facial soft tissue augmentation and is associated with a high and well-established safety profile. Calcium hydroxylapatite combines high elasticity and viscosity with an ability to induce long-term collagen formation making it an ideal agent for a global facial approach. PMID:25610523

  2. Calcium orthophosphates

    PubMed Central

    Dorozhkin, Sergey V.

    2011-01-01

    The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided. PMID:23507744

  3. Regulation of cardiomyocyte autophagy by calcium.

    PubMed

    Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F G; Hill, Joseph A; Lavandero, Sergio

    2016-04-15

    Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy.

  4. The recent evolution of a symbiotic ion channel in the legume family altered ion conductance and improved functionality in calcium signaling.

    PubMed

    Venkateshwaran, Muthusubramanian; Cosme, Ana; Han, Lu; Banba, Mari; Satyshur, Kenneth A; Schleiff, Enrico; Parniske, Martin; Imaizumi-Anraku, Haruko; Ané, Jean-Michel

    2012-06-01

    Arbuscular mycorrhiza and the rhizobia-legume symbiosis are two major root endosymbioses that facilitate plant nutrition. In Lotus japonicus, two symbiotic cation channels, CASTOR and POLLUX, are indispensable for the induction of nuclear calcium spiking, one of the earliest plant responses to symbiotic partner recognition. During recent evolution, a single amino acid substitution in DOES NOT MAKE INFECTIONS1 (DMI1), the POLLUX putative ortholog in the closely related Medicago truncatula, rendered the channel solo sufficient for symbiosis; castor, pollux, and castor pollux double mutants of L. japonicus were rescued by DMI1 alone, while both Lj-CASTOR and Lj-POLLUX were required for rescuing a dmi1 mutant of M. truncatula. Experimental replacement of the critical serine by an alanine in the selectivity filter of Lj-POLLUX conferred a symbiotic performance indistinguishable from DMI1. Electrophysiological characterization of DMI1 and Lj-CASTOR (wild-type and mutants) by planar lipid bilayer experiments combined with calcium imaging in Human Embryonic Kidney-293 cells expressing DMI1 (the wild type and mutants) suggest that the serine-to-alanine substitution conferred reduced conductance with a long open state to DMI1 and improved its efficiency in mediating calcium oscillations. We propose that this single amino acid replacement in the selectivity filter made DMI1 solo sufficient for symbiosis, thus explaining the selective advantage of this allele at the mechanistic level.

  5. Ginkgolide B Exerts Cardioprotective Properties against Doxorubicin-Induced Cardiotoxicity by Regulating Reactive Oxygen Species, Akt and Calcium Signaling Pathways In Vitro and In Vivo

    PubMed Central

    Zhao, Deqiang; Zheng, Jianpu; Liu, Zongjun

    2016-01-01

    The aim of this study was to evaluate the effect of Ginkgolide B (GB) on doxorubicin (DOX) induced cardiotoxicity in vitro and in vivo. Rat cardiomyocyte cell line H9c2 was pretreated with GB and subsequently subjected to doxorubicin treatment. Cell viability and cell apoptosis were assessed by MTT assay and Hoechst staining, respectively. Reactive oxygen species (ROS), Akt phosphorylation and intracellular calcium were equally determined in order to explore the underlying molecular mechanism. To verify the in vivo therapeutic effect of GB, we established a mouse model of cardiotoxicity and determined left ventricle ejection fraction (LVEF) and left ventricular mass (LVM). The in vitro experimental results indicated that pretreatment with GB significantly decreases the viability and apoptosis of H9c2 cells by decreasing ROS and intracellular calcium levels and activating Akt phosphorylation. In the in vivo study, we recorded an improved LVEF and a decreased LVM in the group of cardiotoxic rats treated with GB. Altogether, our findings anticipate that GB exerts a cardioprotective effect through possible regulation of the ROS, Akt and calcium pathways. The findings suggest that combination of GB with DOX in chemotherapy could help avoid the cardiotoxic side effects of GB. PMID:27973574

  6. Extra-intestinal calcium handling contributes to normal serum calcium levels when intestinal calcium absorption is suboptimal.

    PubMed

    Lieben, Liesbet; Verlinden, Lieve; Masuyama, Ritsuko; Torrekens, Sophie; Moermans, Karen; Schoonjans, Luc; Carmeliet, Peter; Carmeliet, Geert

    2015-12-01

    The active form of vitamin D, 1,25(OH)2D, is a crucial regulator of calcium homeostasis, especially through stimulation of intestinal calcium transport. Lack of intestinal vitamin D receptor (VDR) signaling does however not result in hypocalcemia, because the increased 1,25(OH)2D levels stimulate calcium handling in extra-intestinal tissues. Systemic VDR deficiency, on the other hand, results in hypocalcemia because calcium handling is impaired not only in the intestine, but also in kidney and bone. It remains however unclear whether low intestinal VDR activity, as observed during aging, is sufficient for intestinal calcium transport and for mineral and bone homeostasis. To this end, we generated mice that expressed the Vdr exclusively in the gut, but at reduced levels. We found that ~15% of intestinal VDR expression greatly prevented the Vdr null phenotype in young-adult mice, including the severe hypocalcemia. Serum calcium levels were, however, in the low-normal range, which may be due to the suboptimal intestinal calcium absorption, renal calcium loss, insufficient increase in bone resorption and normal calcium incorporation in the bone matrix. In conclusion, our results indicate that low intestinal VDR levels improve intestinal calcium absorption compared to Vdr null mice, but also show that 1,25(OH)2D-mediated fine-tuning of renal calcium reabsorption and bone mineralization and resorption is required to maintain fully normal serum calcium levels.

  7. Release of calcium from endolysosomes increases calcium influx through N-type calcium channels: Evidence for acidic store-operated calcium entry in neurons.

    PubMed

    Hui, Liang; Geiger, Nicholas H; Bloor-Young, Duncan; Churchill, Grant C; Geiger, Jonathan D; Chen, Xuesong

    2015-12-01

    Neurons possess an elaborate system of endolysosomes. Recently, endolysosomes were found to have readily releasable stores of intracellular calcium; however, relatively little is known about how such 'acidic calcium stores' affect calcium signaling in neurons. Here we demonstrated in primary cultured neurons that calcium released from acidic calcium stores triggered calcium influx across the plasma membrane, a phenomenon we have termed "acidic store-operated calcium entry (aSOCE)". aSOCE was functionally distinct from store-operated calcium release and calcium entry involving endoplasmic reticulum. aSOCE appeared to be governed by N-type calcium channels (NTCCs) because aSOCE was attenuated significantly by selectively blocking NTCCs or by siRNA knockdown of NTCCs. Furthermore, we demonstrated that NTCCs co-immunoprecipitated with the lysosome associated membrane protein 1 (LAMP1), and that aSOCE is accompanied by increased cell-surface expression levels of NTCC and LAMP1 proteins. Moreover, we demonstrated that siRNA knockdown of LAMP1 or Rab27a, both of which are key proteins involved in lysosome exocytosis, attenuated significantly aSOCE. Taken together our data suggest that aSOCE occurs in neurons, that aSOCE plays an important role in regulating the levels and actions of intraneuronal calcium, and that aSOCE is regulated at least in part by exocytotic insertion of N-type calcium channels into plasma membranes through LAMP1-dependent lysosome exocytosis.

  8. Calcium Test

    MedlinePlus

    ... if a person has symptoms of a parathyroid disorder , malabsorption , or an overactive thyroid. A total calcium level is often measured as part of a routine health screening. It is included in the comprehensive metabolic panel (CMP) and the basic metabolic panel (BMP) , ...

  9. Calcium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for calcium cyanide is included in th

  10. The NEXAFS of biological calcium phosphates

    SciTech Connect

    Buckley, C.J.; Bellamy, S.J. ); Zhang, X. ); Dermody, G. ); Hulbert, S. )

    1995-02-01

    The absorption cross section of a number of calcium salts has been assessed at the calcium [ital L] edge by measuring the total electron yield (TEY) at the NSLS U13UA beamline. TEY was used because of distortions introduced by instrumentation when using a transmission signal. The effect of these distortions has been evaluated and is presented. The TEY signal was normalized to the incident beam using the signal from a new beam monitor which is detailed here. Comparative spectra are presented for some calcium salts associated with osteoarthritis.

  11. Proteomics links the redox state to calcium signaling during bleaching of the scleractinian coral Acropora microphthalma on exposure to high solar irradiance and thermal stress.

    PubMed

    Weston, Andrew J; Dunlap, Walter C; Beltran, Victor H; Starcevic, Antonio; Hranueli, Daslav; Ward, Malcolm; Long, Paul F

    2015-03-01

    Shipboard experiments were each performed over a 2 day period to examine the proteomic response of the symbiotic coral Acropora microphthalma exposed to acute conditions of high temperature/low light or high light/low temperature stress. During these treatments, corals had noticeably bleached. The photosynthetic performance of residual algal endosymbionts was severely impaired but showed signs of recovery in both treatments by the end of the second day. Changes in the coral proteome were determined daily and, using recently available annotated genome sequences, the individual contributions of the coral host and algal endosymbionts could be extracted from these data. Quantitative changes in proteins relevant to redox state and calcium metabolism are presented. Notably, expression of common antioxidant proteins was not detected from the coral host but present in the algal endosymbiont proteome. Possible roles for elevated carbonic anhydrase in the coral host are considered: to restore intracellular pH diminished by loss of photosynthetic activity, to indirectly limit intracellular calcium influx linked with enhanced calmodulin expression to impede late-stage symbiont exocytosis, or to enhance inorganic carbon transport to improve the photosynthetic performance of algal symbionts that remain in hospite. Protein effectors of calcium-dependent exocytosis were present in both symbiotic partners. No caspase-family proteins associated with host cell apoptosis, with exception of the autophagy chaperone HSP70, were detected, suggesting that algal loss and photosynthetic dysfunction under these experimental conditions were not due to host-mediated phytosymbiont destruction. Instead, bleaching occurred by symbiont exocytosis and loss of light-harvesting pigments of algae that remain in hospite. These proteomic data are, therefore, consistent with our premise that coral endosymbionts can mediate their own retention or departure from the coral host, which may manifest as

  12. A Calcium-Relay Mechanism in Vertebrate Phototransduction

    PubMed Central

    2013-01-01

    Calcium-signaling in cells requires a fine-tuned system of calcium-transport proteins involving ion channels, exchangers, and ion-pumps but also calcium-sensor proteins and their targets. Thus, control of physiological responses very often depends on incremental changes of the cytoplasmic calcium concentration, which are sensed by calcium-binding proteins and are further transmitted to specific target proteins. This Review will focus on calcium-signaling in vertebrate photoreceptor cells, where recent physiological and biochemical data indicate that a subset of neuronal calcium sensor proteins named guanylate cyclase-activating proteins (GCAPs) operate in a calcium-relay system, namely, to make gradual responses to small changes in calcium. We will further integrate this mechanism in an existing computational model of phototransduction showing that it is consistent and compatible with the dynamics that are characteristic for the precise operation of the phototransduction pathways. PMID:23472635

  13. Acceleration of bone regeneration by activating Wnt/β-catenin signalling pathway via lithium released from lithium chloride/calcium phosphate cement in osteoporosis.

    PubMed

    Li, Li; Peng, Xiaozhong; Qin, Yongbao; Wang, Renchong; Tang, Jingli; Cui, Xu; Wang, Ting; Liu, Wenlong; Pan, Haobo; Li, Bing

    2017-03-24

    By virtue of its excellent bioactivity and osteoconductivity, calcium phosphate cement (CPC) has been applied extensively in bone engineering. Doping a trace element into CPC can change physical characteristics and enhance osteogenesis. The trace element lithium has been demonstrated to stimulate the proliferation and differentiation of osteoblasts. We investigated the fracture-healing effect of osteoporotic defects with lithium-doped calcium phosphate cement (Li/CPC) and the underlying mechanism. Li/CPC bodies immersed in simulated body fluid converted gradually to hydroxyapatite. Li/CPC extracts stimulated the proliferation and differentiation of osteoblasts upon release of lithium ions (Li(+)) at 25.35 ± 0.12 to 50.74 ± 0.13 mg/l through activation of the Wnt/β-catenin pathway in vitro. We also examined the effect of locally administered Li(+) on defects in rat tibia between CPC and Li/CPC in vivo. Micro-computed tomography and histological staining showed that Li/CPC had better osteogenesis by increasing bone mass and promoting repair in defects compared with CPC (P < 0.05). Li/CPC also showed better osteoconductivity and osseointegration. These findings suggest that local release of Li(+) from Li/CPC may accelerate bone regeneration from injury through activation of the Wnt/β-catenin pathway in osteoporosis.

  14. Acceleration of bone regeneration by activating Wnt/β-catenin signalling pathway via lithium released from lithium chloride/calcium phosphate cement in osteoporosis

    NASA Astrophysics Data System (ADS)

    Li, Li; Peng, Xiaozhong; Qin, Yongbao; Wang, Renchong; Tang, Jingli; Cui, Xu; Wang, Ting; Liu, Wenlong; Pan, Haobo; Li, Bing

    2017-03-01

    By virtue of its excellent bioactivity and osteoconductivity, calcium phosphate cement (CPC) has been applied extensively in bone engineering. Doping a trace element into CPC can change physical characteristics and enhance osteogenesis. The trace element lithium has been demonstrated to stimulate the proliferation and differentiation of osteoblasts. We investigated the fracture-healing effect of osteoporotic defects with lithium-doped calcium phosphate cement (Li/CPC) and the underlying mechanism. Li/CPC bodies immersed in simulated body fluid converted gradually to hydroxyapatite. Li/CPC extracts stimulated the proliferation and differentiation of osteoblasts upon release of lithium ions (Li+) at 25.35 ± 0.12 to 50.74 ± 0.13 mg/l through activation of the Wnt/β-catenin pathway in vitro. We also examined the effect of locally administered Li+ on defects in rat tibia between CPC and Li/CPC in vivo. Micro-computed tomography and histological staining showed that Li/CPC had better osteogenesis by increasing bone mass and promoting repair in defects compared with CPC (P < 0.05). Li/CPC also showed better osteoconductivity and osseointegration. These findings suggest that local release of Li+ from Li/CPC may accelerate bone regeneration from injury through activation of the Wnt/β-catenin pathway in osteoporosis.

  15. Acceleration of bone regeneration by activating Wnt/β-catenin signalling pathway via lithium released from lithium chloride/calcium phosphate cement in osteoporosis

    PubMed Central

    Li, Li; Peng, Xiaozhong; Qin, Yongbao; Wang, Renchong; Tang, Jingli; Cui, Xu; Wang, Ting; Liu, Wenlong; Pan, Haobo; Li, Bing

    2017-01-01

    By virtue of its excellent bioactivity and osteoconductivity, calcium phosphate cement (CPC) has been applied extensively in bone engineering. Doping a trace element into CPC can change physical characteristics and enhance osteogenesis. The trace element lithium has been demonstrated to stimulate the proliferation and differentiation of osteoblasts. We investigated the fracture-healing effect of osteoporotic defects with lithium-doped calcium phosphate cement (Li/CPC) and the underlying mechanism. Li/CPC bodies immersed in simulated body fluid converted gradually to hydroxyapatite. Li/CPC extracts stimulated the proliferation and differentiation of osteoblasts upon release of lithium ions (Li+) at 25.35 ± 0.12 to 50.74 ± 0.13 mg/l through activation of the Wnt/β-catenin pathway in vitro. We also examined the effect of locally administered Li+ on defects in rat tibia between CPC and Li/CPC in vivo. Micro-computed tomography and histological staining showed that Li/CPC had better osteogenesis by increasing bone mass and promoting repair in defects compared with CPC (P < 0.05). Li/CPC also showed better osteoconductivity and osseointegration. These findings suggest that local release of Li+ from Li/CPC may accelerate bone regeneration from injury through activation of the Wnt/β-catenin pathway in osteoporosis. PMID:28338064

  16. Use of genetically-encoded calcium indicators for live cell calcium imaging and localization in virus-infected cells.

    PubMed

    Perry, Jacob L; Ramachandran, Nina K; Utama, Budi; Hyser, Joseph M

    2015-11-15

    Calcium signaling is a ubiquitous and versatile process involved in nearly every cellular process, and exploitation of host calcium signals is a common strategy used by viruses to facilitate replication and cause disease. Small molecule fluorescent calcium dyes have been used by many to examine changes in host cell calcium signaling and calcium channel activation during virus infections, but disadvantages of these dyes, including poor loading and poor long-term retention, complicate analysis of calcium imaging in virus-infected cells due to changes in cell physiology and membrane integrity. The recent expansion of genetically-encoded calcium indicators (GECIs), including blue and red-shifted color variants and variants with calcium affinities appropriate for calcium storage organelles like the endoplasmic reticulum (ER), make the use of GECIs an attractive alternative for calcium imaging in the context of virus infections. Here we describe the development and testing of cell lines stably expressing both green cytoplasmic (GCaMP5G and GCaMP6s) and red ER-targeted (RCEPIAer) GECIs. Using three viruses (rotavirus, poliovirus and respiratory syncytial virus) previously shown to disrupt host calcium homeostasis, we show the GECI cell lines can be used to detect simultaneous cytoplasmic and ER calcium signals. Further, we demonstrate the GECI expression has sufficient stability to enable long-term confocal imaging of both cytoplasmic and ER calcium during the course of virus infections.

  17. An alternative method for calcium depletion of the oxygen evolving complex of photosystem II as revealed by the dark-stable multiline EPR signal.

    PubMed

    Haddy, Alice; Ore, Brandon M

    2010-05-11

    The dark-stable multiline EPR signal of photosystem II (PSII) is associated with a slow-decaying S(2) state that is due to Ca(2+) loss from the oxyge