Sample records for intercepted base flow

  1. Calculation of intercepted runoff depth based on stormwater quality and environmental capacity of receiving waters for initial stormwater pollution management.

    PubMed

    Peng, Hai-Qin; Liu, Yan; Gao, Xue-Long; Wang, Hong-Wu; Chen, Yi; Cai, Hui-Yi

    2017-11-01

    While point source pollutions have gradually been controlled in recent years, the non-point source pollution problem has become increasingly prominent. The receiving waters are frequently polluted by the initial stormwater from the separate stormwater system and the wastewater from sewage pipes through stormwater pipes. Consequently, calculating the intercepted runoff depth has become a problem that must be resolved immediately for initial stormwater pollution management. The accurate calculation of intercepted runoff depth provides a solid foundation for selecting the appropriate size of intercepting facilities in drainage and interception projects. This study establishes a separate stormwater system for the Yishan Building watershed of Fuzhou City using the InfoWorks Integrated Catchment Management (InfoWorks ICM), which can predict the stormwater flow velocity and the flow of discharge outlet after each rainfall. The intercepted runoff depth is calculated from the stormwater quality and environmental capacity of the receiving waters. The average intercepted runoff depth from six rainfall events is calculated as 4.1 mm based on stormwater quality. The average intercepted runoff depth from six rainfall events is calculated as 4.4 mm based on the environmental capacity of the receiving waters. The intercepted runoff depth differs when calculated from various aspects. The selection of the intercepted runoff depth depends on the goal of water quality control, the self-purification capacity of the water bodies, and other factors of the region.

  2. Two zero-flow pressure intercepts exist in autoregulating isolated skeletal muscle.

    PubMed

    Braakman, R; Sipkema, P; Westerhof, N

    1990-06-01

    The autoregulating vascular bed of the isolated canine extensor digitorum longus muscle was investigated for the possible existence of two positive zero-flow pressure axis intercepts, a tone-dependent one and a tone-independent one. An isolated preparation, perfused with autologous blood, was used to exclude effects of collateral flow and nervous and humoral regulation while autoregulation was left intact [mean autoregulatory gain 0.50 +/- 0.24 (SD)]. In a first series of experiments, the steady-state (zero flow) pressure axis intercept [mean 8.9 +/- 2.6 (SD) mmHg, tone independent] and the instantaneous (zero flow) pressure axis intercept [mean 28.5 +/- 9.9 (SD) mmHg, tone dependent] were determined as a function of venous pressure (range: 0-45 mmHg) and were independent of venous pressure until the venous pressure exceeded their respective values. Beyond this point the relations between the venous pressure and the steady-state and instantaneous pressure axis intercept followed the line of identity. The findings agree with the predictions of the vascular waterfall model. In a second series it was shown by means of administration of vasoactive drugs that the instantaneous pressure axis intercept is tone dependent, whereas the steady-state pressure axis intercept is not. It is concluded that there is a (proximal) tone-dependent zero-flow pressure at the arteriolar level and a (distal) tone-independent zero-flow pressure at the venous level.

  3. Cryogenic parallel, single phase flows: an analytical approach

    NASA Astrophysics Data System (ADS)

    Eichhorn, R.

    2017-02-01

    Managing the cryogenic flows inside a state-of-the-art accelerator cryomodule has become a demanding endeavour: In order to build highly efficient modules, all heat transfers are usually intercepted at various temperatures. For a multi-cavity module, operated at 1.8 K, this requires intercepts at 4 K and at 80 K at different locations with sometimes strongly varying heat loads which for simplicity reasons are operated in parallel. This contribution will describe an analytical approach, based on optimization theories.

  4. Investigation of Vapor Cooling Enhancements for Applications on Large Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Ameen, Lauren; Zoeckler, Joseph

    2017-01-01

    The need to demonstrate and evaluate the effectiveness of heat interception methods for use on a relevant cryogenic propulsion stage at a system level has been identified. Evolvable Cryogenics (eCryo) Structural Heat Intercept, Insulation and Vibration Evaluation Rig (SHIIVER) will be designed with vehicle specific geometries (SLS Exploration Upper Stage (EUS) as guidance) and will be subjected to simulated space environments. One method of reducing structure-born heat leak being investigated utilizes vapor-based heat interception. Vapor-based heat interception could potentially reduce heat leak into liquid hydrogen propulsion tanks, increasing potential mission length or payload capability. Due to the high number of unknowns associated with the heat transfer mechanism and integration of vapor-based heat interception on a realistic large-scale skirt design, a sub-scale investigation was developed. The sub-project effort is known as the Small-scale Laboratory Investigation of Cooling Enhancements (SLICE). The SLICE aims to study, design, and test sub-scale multiple attachments and flow configuration concepts for vapor-based heat interception of structural skirts. SLICE will focus on understanding the efficiency of the heat transfer mechanism to the boil-off hydrogen vapor by varying the fluid network designs and configurations. Various analyses were completed in MATLAB, Excel VBA, and COMSOL Multiphysics to understand the optimum flow pattern for heat transfer and fluid dynamics. Results from these analyses were used to design and fabricate test article subsections of a large forward skirt with vapor cooling applied. The SLICE testing is currently being performed to collect thermal mechanical performance data on multiple skirt heat removal designs while varying inlet vapor conditions necessary to intercept a specified amount of heat for a given system. Initial results suggest that applying vapor-cooling provides a 50 heat reduction in conductive heat transmission along the skirt to the tank. The information obtained by SLICE will be used by the SHIIVER engineering team to design and implement vapor-based heat removal technology into the SHIIVER forward skirt hardware design.

  5. Accounting for intracell flow in models with emphasis on water table recharge and stream-aquifer interaction: 1. Problems and concepts

    USGS Publications Warehouse

    Jorgensen, Donald G.; Signor, Donald C.; Imes, Jeffrey L.

    1989-01-01

    Intracell flow is important in modeling cells that contain both sources and sinks. Special attention is needed if recharge through the water table is a source. One method of modeling multiple sources and sinks is to determine the net recharge per cell. For example, for a model cell containing both a sink and recharge through the water table, the amount of recharge should be reduced by the ratio of the area of influence of the sink within the cell to the area of the cell. The reduction is the intercepted portion of the recharge. In a multilayer model this amount is further reduced by a proportion factor, which is a function of the depth of the flow lines from the water table boundary to the internal sink. A gaining section of a stream is a typical sink. The aquifer contribution to a gaining stream can be conceptualized as having two parts; the first part is the intercepted lateral flow from the water table and the second is the flow across the streambed due to differences in head between the water level in the stream and the aquifer below. The amount intercepted is a function of the geometry of the cell, but the amount due to difference in head across the stream bed is largely independent of cell geometry. A discharging well can intercept recharge through the water table within a model cell. The net recharge to the cell would be reduced in proportion to the area of influence of the well within the cell. The area of influence generally changes with time. Thus the amount of intercepted recharge and net recharge may not be constant with time. During periods when the well is not discharging there will be no intercepted recharge even though the area of influence from previous pumping may still exist. The reduction of net recharge per cell due to internal interception of flow will result in a model-calculated mass balance less than the prototype. Additionally the “effective transmissivity” along the intercell flow paths may be altered when flow paths are occupied by intercepted recharge.

  6. Analysis of the ecological water diversion project in Wenzhou City

    NASA Astrophysics Data System (ADS)

    Xu, Haibo; Fu, Lei; Lin, Tong

    2018-02-01

    As a developed city in China, Wenzhou City has been suffered from bad water quality for years. In order to improve the river network water quality, an ecological water diversion project was designed and executed by the regional government. In this study, an investigation and analysis of the regional ecological water diversion project is made for the purpose of examining the water quality improvements. A numerical model is also established, different water diversion flow rates and sewer interception levels are considered during the simulation. Simulation results reveal that higher flow rate and sewer interception level will greatly improve the river network water quality in Wenzhou City. The importance of the flow rate and interception level has been proved and future work will be focused on increasing the flow rate and upgrading the sewer interception level.

  7. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    PubMed

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  8. Transport of intercepted snow from trees during snow storms

    Treesearch

    David H. Miller

    1966-01-01

    Five principal processes by which intercepted snow in trees is removed during snow storms are described and evaluated as far as data permit: vapor flux from melt water, vapor flux from bodies of snow, stem flow and dripping of melt water, sliding of bodies of intercepted snow from branches, and wind erosion and transport of intercepted snow. Further research is...

  9. Apportionment of rainfall in central Himalayan forests (India)

    NASA Astrophysics Data System (ADS)

    Pathak, P. C.; Pandey, A. N.; Singh, J. S.

    1985-02-01

    The apportionment of rainfall into throughfall, stemflow and interception in certain forests of Kumaun Himalaya was assessed during the 1981 and 1982 monsoon seasons. Stemflow accounted for 0.28-0.89%, throughfall 74.7-91.5% and interception 8.1-25.0% of gross rainfall. The absolute values of throughfall, stemflow and interception were influenced by tree species. Overland flow was low for all forests, indicating that the latter are subsurface flow systems and, consequently, are specially susceptible to deforestation.

  10. Coupling of Processes and Data in PennState Integrated Hydrologic Modeling (PIHM) System

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Duffy, C.

    2007-12-01

    Full physical coupling, "natural" numerical coupling and parsimonious but accurate data coupling is needed to comprehensively and accurately capture the interaction between different components of a hydrologic continuum. Here we present a physically based, spatially distributed hydrologic model that incorporates all the three coupling strategies. Physical coupling of interception, snow melt, transpiration, overland flow, subsurface flow, river flow, macropore based infiltration and stormflow, flow through and over hydraulic structures likes weirs and dams, and evaporation from interception, ground and overland flow is performed. All the physically coupled components are numerically coupled through semi-discrete form of ordinary differential equations, that define each hydrologic process, using Finite-Volume based approach. The fully implicit solution methodology using CVODE solver solves for all the state variables simultaneously at each adaptive time steps thus providing robustness, stability and accuracy. The accurate data coupling is aided by use of constrained unstructured meshes, flexible data model and use of PIHMgis. The spatial adaptivity of decomposed domain and temporal adaptivity of the numerical solver facilitates capture of varied spatio-temporal scales that are inherent in hydrologic process interactions. The implementation of the model has been performed on a meso-scale Little-Juniata Watershed. Model results are validated by comparison of streamflow at multiple locations. We discuss some of the interesting hydrologic interactions between surface, subsurface and atmosphere witnessed during the year long simulation such as a) inverse relationship between evaporation from interception storage and transpiration b) relative influence of forcing (precipitation, temperature and radiation) and source (soil moisture and overland flow) on evaporation c) influence of local topography on gaining, loosing or "flow-through" behavior of river-aquifer interactions d) role of macropores on base flow during wetting and drying conditions. In addition to its use as a potential predictive and exploratory science tool, we present a test case for the application of model in water management by mapping of water table decline index for the whole watershed. Also discussed will be the efficient parallelization strategy of the model for high spatio-temporal resolution simulations.

  11. [Identifying dry-weather flow and pollution load sources of separate storm sewer systems with different degrees of illicit discharge].

    PubMed

    Meng, Ying-ying; Feng, Cang; Li, Tian; Wang, Ling

    2009-12-01

    Dry-weather flow quantity and quality of three representative separate storm sewer systems in Shanghai-H, G, N were studied. Based on survey of operating status of the pumping stations as well as characteristics of the drainage systems, it was obtained that the interception sewage volumes per unit area in the three systems were 3610 m3/(km2 x d), 1550 m3/(km2 x d), 2970 m3/(km2 x d) respectively; the sanitary wastewater included accounted for 25%, 85% and 71% respectively; the interception volume of H was mainly composed of infiltrated underground water, so the dry-weather flow pollution was slighter, and the interception volumes of G, N were both mainly composed of sanitary wastewater, so the dry-weather which were flow pollution was relatively serious. The water characteristics of potential illicit discharge sources of dry-weather which were flow-grey water, black water and underground water were preliminarily explored, so that treating three parameters-LAS/ NH4+ -N, NH4+ -N/K, Mg/K as tracer parameters of grey water, black water and underground water was put forward. Moreover, the water characteristics of grey water and sanitary wastewater including black water were summarized: the feature of grey water was LAS/NH4+ -N > 0.2, NH4+ -N/K <1, and sanitary wastewater was LAS/NH4+ -N < 0.2, NH4+ -N/K >1. Based on the above, the applications of flow chart method and CMBM method in dry-weather flow detection of monitored storm systems were preliminarily discussed, and the results were basically same as that obtained in flow quantity and quality comprehensive analysis. The research results and methods can provide guidance for analysis and diagnosis of dry-weather flow sources and subsequent reconstruction projects in similar separate storm sewer systems at home.

  12. Purely numerical approach for analyzing flow to a well intercepting a vertical fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, T.N.; Palen, W.A.

    1979-03-01

    A numerical method, based on an Integral Finite Difference approach, is presented to investigate wells intercepting fractures in general and vertical fractures in particular. Such features as finite conductivity, wellbore storage, damage, and fracture deformability and its influence as permeability are easily handled. The advantage of the numerical approach is that it is based on fewer assumptions than analytic solutions and hence has greater generality. Illustrative examples are given to validate the method against known solutions. New results are presenteed to demonstrate the applicability of the method to problems not apparently considered in the literature so far.

  13. Effects of the interception of litterfall by the understory on carbon cycling in eucalyptus plantations of South China.

    PubMed

    Yang, Long; Wang, Jun; Huang, Yuhui; Hui, Dafeng; Wen, Meili

    2014-01-01

    For the purposes of forest restoration, carbon (C) fixation, and economic improvement, eucalyptus (Eucalyptus urophylla) has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration. The total mass of E. urophylla litterfall collected on the understory was similar to that collected by the traditional litter trap method. All of the eucalyptus litterfall is intercepted by the D. dichotoma canopy. Of the litterfall that was intercepted by D. dichotoma, 20-40% and 60-80% was intercepted by the top (50-100 cm) and bottom (0-50 cm) of the understory canopy, respectively. Intercepted litterfall decomposed faster at the bottom of understory canopy (at the base of the plants) than at the top, and decomposition was slower on the soil surface in the absence of understory than on any location in the understory canopy. Soil respiration was highest when both the understory and litter were present and was lowest when both the understory and litter were absent. These results indicate that litterfall interception changed carbon flow between aboveground and belowground through litter decomposition and soil respiration, which changed carbon cycling in eucalyptus plantations. The effects of the understory on litter decomposition and soil respiration should be considered in ecosystem carbon models.

  14. Effects of the Interception of Litterfall by the Understory on Carbon Cycling in Eucalyptus Plantations of South China

    PubMed Central

    Huang, Yuhui; Hui, Dafeng; Wen, Meili

    2014-01-01

    For the purposes of forest restoration, carbon (C) fixation, and economic improvement, eucalyptus (Eucalyptus urophylla) has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration. The total mass of E. urophylla litterfall collected on the understory was similar to that collected by the traditional litter trap method. All of the eucalyptus litterfall is intercepted by the D. dichotoma canopy. Of the litterfall that was intercepted by D. dichotoma, 20–40% and 60–80% was intercepted by the top (50–100 cm) and bottom (0–50 cm) of the understory canopy, respectively. Intercepted litterfall decomposed faster at the bottom of understory canopy (at the base of the plants) than at the top, and decomposition was slower on the soil surface in the absence of understory than on any location in the understory canopy. Soil respiration was highest when both the understory and litter were present and was lowest when both the understory and litter were absent. These results indicate that litterfall interception changed carbon flow between aboveground and belowground through litter decomposition and soil respiration, which changed carbon cycling in eucalyptus plantations. The effects of the understory on litter decomposition and soil respiration should be considered in ecosystem carbon models. PMID:24959853

  15. Feeding currents facilitate a mixotrophic way of life

    PubMed Central

    Nielsen, Lasse T; Kiørboe, Thomas

    2015-01-01

    Mixotrophy is common, if not dominant, among eukaryotic flagellates, and these organisms have to both acquire inorganic nutrients and capture particulate food. Diffusion limitation favors small cell size for nutrient acquisition, whereas large cell size facilitates prey interception because of viscosity, and hence intermediately sized mixotrophic dinoflagellates are simultaneously constrained by diffusion and viscosity. Advection may help relax both constraints. We use high-speed video microscopy to describe prey interception and capture, and micro particle image velocimetry (micro-PIV) to quantify the flow fields produced by free-swimming dinoflagellates. We provide the first complete flow fields of free-swimming interception feeders, and demonstrate the use of feeding currents. These are directed toward the prey capture area, the position varying between the seven dinoflagellate species studied, and we argue that this efficiently allows the grazer to approach small-sized prey despite viscosity. Measured flow fields predict the magnitude of observed clearance rates. The fluid deformation created by swimming dinoflagellates may be detected by evasive prey, but the magnitude of flow deformation in the feeding current varies widely between species and depends on the position of the transverse flagellum. We also use the near-cell flow fields to calculate nutrient transport to swimming cells and find that feeding currents may enhance nutrient uptake by ≈75% compared with that by diffusion alone. We argue that all phagotrophic microorganisms must have developed adaptations to counter viscosity in order to allow prey interception, and conclude that the flow fields created by the beating flagella in dinoflagellates are key to the success of these mixotrophic organisms. PMID:25689024

  16. Feeding currents facilitate a mixotrophic way of life.

    PubMed

    Nielsen, Lasse T; Kiørboe, Thomas

    2015-10-01

    Mixotrophy is common, if not dominant, among eukaryotic flagellates, and these organisms have to both acquire inorganic nutrients and capture particulate food. Diffusion limitation favors small cell size for nutrient acquisition, whereas large cell size facilitates prey interception because of viscosity, and hence intermediately sized mixotrophic dinoflagellates are simultaneously constrained by diffusion and viscosity. Advection may help relax both constraints. We use high-speed video microscopy to describe prey interception and capture, and micro particle image velocimetry (micro-PIV) to quantify the flow fields produced by free-swimming dinoflagellates. We provide the first complete flow fields of free-swimming interception feeders, and demonstrate the use of feeding currents. These are directed toward the prey capture area, the position varying between the seven dinoflagellate species studied, and we argue that this efficiently allows the grazer to approach small-sized prey despite viscosity. Measured flow fields predict the magnitude of observed clearance rates. The fluid deformation created by swimming dinoflagellates may be detected by evasive prey, but the magnitude of flow deformation in the feeding current varies widely between species and depends on the position of the transverse flagellum. We also use the near-cell flow fields to calculate nutrient transport to swimming cells and find that feeding currents may enhance nutrient uptake by ≈75% compared with that by diffusion alone. We argue that all phagotrophic microorganisms must have developed adaptations to counter viscosity in order to allow prey interception, and conclude that the flow fields created by the beating flagella in dinoflagellates are key to the success of these mixotrophic organisms.

  17. A Tracer Test to Characterize Treatment of TCE in a Permeable Reactive Barrier

    EPA Science Inventory

    A tracer test was conducted to characterize the flow of ground water surrounding a permeable reactive barrier constructed with plant mulch (a biowall) at the OU-1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat ground water contaminated by ...

  18. Placement of riparian forest buffers to improve water quality

    Treesearch

    Mark D. Tomer; Michael G. Dosskey; Michael R. Burkart; David E. James; Matthew J. Helmers; Dean E. Eisenhauer

    2005-01-01

    Riparian forest buffers can improve stream water quality, provided they intercept and remove contaminants from surface runoff and/or shallow groundwater. Soils, topography, hydrology, and surficial geology detemine the capability of forest buffers to intercept and treat these flows. This paper describes landscape analysis techniques for identifying and mapping...

  19. The perceptual control of goal-directed locomotion: a common control architecture for interception and navigation?

    PubMed

    Chardenon, A; Montagne, G; Laurent, M; Bootsma, R J

    2004-09-01

    Intercepting a moving object while locomoting is a highly complex and demanding ability. Notwithstanding the identification of several informational candidates, the role of perceptual variables in the control process underlying such skills remains an open question. In this study we used a virtual reality set-up for studying locomotor interception of a moving ball. The subject had to walk along a straight path and could freely modify forward velocity, if necessary, in order to intercept-with the head-a ball moving along a straight path that led it to cross the agent's displacement axis. In a series of experiments we manipulated a local (ball size) and a global (focus of expansion) component of the visual flow but also the egocentric orientation of the ball. The experimental observations are well captured by a dynamic model linking the locomotor acceleration to properties of both global flow and egocentric direction. More precisely the changes in locomotor velocity depend on a linear combination of the change in bearing angle and the change in egocentric orientation, allowing the emergence of adaptive behavior under a variety of circumstances. We conclude that the mechanisms underlying the control of different goal-directed locomotion tasks (i.e. steering and interceptive tasks) could share a common architecture.

  20. Methods to prioritize placement of riparian buffers for improved water quality

    Treesearch

    Mark D. Tomer; Michael G. Dosskey; Michael R. Burkart; David E. James; Matthew J. Helmers; Dean E. Eisenhauer

    2008-01-01

    Agroforestry buffers in riparian zones can improve stream water quality, provided they intercept and remove contaminants from surface runoff and/or shallow groundwater. Soils, topography, surficial geology, and hydrology determine the capability of forest buffers to intercept and treat these flows. This paper describes two landscape analysis techniques for identifying...

  1. Surface water storage capacity of twenty tree species in Davis, California

    Treesearch

    Qingfu Xiao; E. Gregory McPherson

    2016-01-01

    Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage...

  2. Anticipating the effects of gravity when intercepting moving objects: differentiating up and down based on nonvisual cues.

    PubMed

    Senot, Patrice; Zago, Myrka; Lacquaniti, Francesco; McIntyre, Joseph

    2005-12-01

    Intercepting an object requires a precise estimate of its time of arrival at the interception point (time to contact or "TTC"). It has been proposed that knowledge about gravitational acceleration can be combined with first-order, visual-field information to provide a better estimate of TTC when catching falling objects. In this experiment, we investigated the relative role of visual and nonvisual information on motor-response timing in an interceptive task. Subjects were immersed in a stereoscopic virtual environment and asked to intercept with a virtual racket a ball falling from above or rising from below. The ball moved with different initial velocities and could accelerate, decelerate, or move at a constant speed. Depending on the direction of motion, the acceleration or deceleration of the ball could therefore be congruent or not with the acceleration that would be expected due to the force of gravity acting on the ball. Although the best success rate was observed for balls moving at a constant velocity, we systematically found a cross-effect of ball direction and acceleration on success rate and response timing. Racket motion was triggered on average 25 ms earlier when the ball fell from above than when it rose from below, whatever the ball's true acceleration. As visual-flow information was the same in both cases, this shift indicates an influence of the ball's direction relative to gravity on response timing, consistent with the anticipation of the effects of gravity on the flight of the ball.

  3. Challenges in Estimating Evapotranspiration of Young Sparse Stands in a Boreal Forest of Eastern-Canada

    NASA Astrophysics Data System (ADS)

    Hadiwijaya, B.; Nadeau, D.; Pépin, S.

    2017-12-01

    Forest evapotranspiration is the sum of transpiration, evaporation from intercepted rainfall by the canopy and soil evaporation, each component being governed by distinct time scales and mechanisms. Therefore, to develop a simple, yet realistic, model to estimate evapotranspiration over forested areas, field measurements must capture the full chronological sequence of events taking place following rainfall. This becomes a challenge in the case of young sparse forest stands due to large diversity in canopy covers and leaf area indices, which leads to strong spatial variation in intercepted rainfall by the canopy. Unfortunately, very few studies have focused on transition between the dry and wet canopy conditions. The objectives of this study are to investigate each element of rain interception and intercepted water loss, to characterize water loss partitioning processes based on precipitation rate, elapsed time and time-sequence events. To do this, we conducted a summer field campaign at Forêt Montmorency (47°N, 71°W), in southern Québec, Canada, started from early May until late October. The site is characterized by a humid continental climate, with a mean annual precipitation of 1500 mm. The site is located at the boreal forest region, in the balsam for-white birch ecosystem, whose growing season typically extends from May until October. Six measurement plots were established around two micrometeorological towers located in juvenile and sapling forest stands. Five sap flow probes to measure transpiration and a set of rainfall interception instruments (measuring throughfall, free throughfall and stemflow separately) have been deployed on each plot. Initial results presented will include the estimated evapotranspiration rate and soil evaporation measured using eddy covariance method, transpiration rate and high resolution analysis of rainfall interception.

  4. Intercepting a moving target: On-line or model-based control?

    PubMed

    Zhao, Huaiyong; Warren, William H

    2017-05-01

    When walking to intercept a moving target, people take an interception path that appears to anticipate the target's trajectory. According to the constant bearing strategy, the observer holds the bearing direction of the target constant based on current visual information, consistent with on-line control. Alternatively, the interception path might be based on an internal model of the target's motion, known as model-based control. To investigate these two accounts, participants walked to intercept a moving target in a virtual environment. We degraded the target's visibility by blurring the target to varying degrees in the midst of a trial, in order to influence its perceived speed and position. Reduced levels of visibility progressively impaired interception accuracy and precision; total occlusion impaired performance most and yielded nonadaptive heading adjustments. Thus, performance strongly depended on current visual information and deteriorated qualitatively when it was withdrawn. The results imply that locomotor interception is normally guided by current information rather than an internal model of target motion, consistent with on-line control.

  5. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  6. Rainfall interception by tree crown and leaf litter: an interactive process

    Treesearch

    Xiang Li; Qingfu Xiao; Jianzhi Niu; Salli Dymond; E. Gregory McPherson; Natalie van Doorn; Xinxiao Yu; Baoyuan Xie; Kebin Zhang; Jiao Li

    2017-01-01

    Rainfall interception research in forest ecosystems usually focuses on interception by either tree crown or leaf litter, although the 2 components interact when rainfall occurs. A process-based study was conducted to jointly measure rainfall interception by crown and litter and the interaction between the 2 interception processes for 4 tree species (...

  7. Effects of Surface and Subsurface Bed Material Composition on Gravel Transport and Flow Competence Relations—Possibilities for Prediction

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Abt, S. R.; Swingle, K. W.; Cenderelli, D. A.; Gaeuman, D. A.

    2014-12-01

    Bedload transport and flow competence relations are difficult to predict in coarse-bedded steep streams where widely differing sediment supply, bed stability, and complex flow hydraulics greatly affect amounts and sizes of transported gravel particles. This study explains how properties of bed material surface and subsurface size distributions are directly related to gravel transport and may be used for prediction of gravel transport and flow competence relations. Gravel transport, flow competence, and bed material size were measured in step-pool and plane-bed streams. Power functions were fitted to gravel transport QB=aQb and flow competence Dmax=cQd relations; Q is water discharge. Frequency distributions of surface FDsurf and subsurface FDsub bed material were likewise described by power functions FDsurf=hD j and FDsub=kDm fitted over six 0.5-phi size classes within 4 to 22.4 mm. Those gravel sizes are typically mobile even in moderate floods. Study results show that steeper subsurface bed material size distributions lead to steeper gravel transport and flow competence relations, whereas larger amounts of sediment contained in those 6 size bedmaterial classes (larger h and k) flatten the relations. Similarly, steeper surface size distributions decrease the coefficients of the gravel transport and flow competence relations, whereas larger amounts of sediment within the six bed material classes increase the intercepts of gravel transport and flow competence relations. Those relations are likely causative in streams where bedload stems almost entirely from the channel bed as opposed to direct (unworked) contributions from hillslopes and tributaries. The exponent of the subsurface bed material distribution m predicted the gravel transport exponent b with r2 near 0.7 and flow competence exponent d with r2 near 0.5. The intercept of bed surface distributions h increased the intercept a of gravel transport and c of the flow competence relations with r2 near 0.6.

  8. Digital-transport model study of Diisopropylmethylphosphonate (DIMP) ground-water contamination at the Rocky Mountain Arsenal, Colorado

    USGS Publications Warehouse

    Warner, James W.

    1979-01-01

    Diisopropylmethylphosphonate (DIMP) is an organic compound produced as a by-product of the manufacture and detoxification of GB nerve gas. Ground-water contamination by DIMP from the disposal of wastes into unlined surface ponds at the Rocky Mountain Arsenal occurred from 1952 to 1956. A digital-transport model was used to determine the effects on ground-water movement and on DIMP concentrations in the ground water of a bentonite barrier in the aquifer near the northern boundary of the arsenal. The transport model is based on an iterative-alternating-direction-implicit mathematical solution of the ground-water-flow equation coupled with a method-of-characteristics solution of the solute-transport equation. The model assumes conservative (nonreactive) transient transport of DIMP and steady-state ground-water flow. In the model simulations, a bentonite barrier was assumed that was impermeable and penetrated the entire saturated thickness of the aquifer. Ground water intercepted by the barrier was assumed to be pumped by wells located south (upgradient) of the barrier, to be treated to remove DIMP, and to be recharged by pits or wells to the aquifer north (downgradient) of the barrier. The amount of DIMP transported across the northern boundary of the arsenal was substantially reduced by a ground-water-barrier system of this type. For a 1,500-foot-long bentonite barrier located along the northern boundary of the arsenal near D Street, about 50 percent of the DIMP that would otherwise cross the boundary would be intercepted by the barrier. This barrier configuration and location were proposed by the U.S. Army. Of the ground water with DIMP concentrations greater than 500 micrograms per liter, the safe DIMP-concentration level determined by the U.S. Army, about 72 percent would be intercepted by the barrier system. The amount of DIMP underflow intercepted may be increased to 65 percent by doubling the pumpage, or to 73 percent by doubling the length of the barrier. (Kosco-USGS)

  9. Process-based rainfall interception by small trees in Northern China: The effect of rainfall traits and crown structure characteristics

    Treesearch

    Xiang Li; Qingfu Xiao; Jianzhi Niu; Salli Dymond; Natalie S. van Doorn; Xinxiao Yu; Baoyuan Xie; Xizhi Lv; Kebin Zhang; Jiao Li

    2016-01-01

    Rainfall interception by a tree's crown is one of the most important hydrological processes in an ecosystem, yet the mechanisms of interception are not well understood. A process-based experiment was conducted under five simulated rainfall intensities (from 10 to 150 mm h−1) to directly quantify tree crown interception and examine the effect...

  10. Some climatological factors of pine in the lake toba catchment area

    NASA Astrophysics Data System (ADS)

    Nasution, Z.

    2018-02-01

    The article deals with climatological factors of Pine at the Lake Toba Catchment Area also called drained basin, Pinus merkusii is a plant endemic in Sumatra. A central population of Pine in North Sumatra is located in the Tapanuli region to south of Lake Toba. Junghuhn discovered the species in the mountains range of Sipirok. He provisionally named the species as Pinus sumatrana. The article presents a detail analysis of approaches to climate factors, considers rainfall, air temperature, humidity, stemflow, throughfall and Interception following calculation of regression to determine relationship between precipitation with stemflow and interception. Stemflow, it is highly significant with significance of difference between correlation coefficients and z normal distribution. Temperature and relative humidity are the important components in the climate. These components influence the evaporation process and rainfall in the catchment. Pinus merkusii has the big crown interception. Stemflow and Interception has an opposite relation. Increasing of interception capacity will decrease stemflow. This type of Pine also has rough bark however significant channels so that, it flows water even during the wet season and caused the stemflow in Pinus merkusii relatively bigger.

  11. Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.; Perlin, Marc; Dowling, David R.; Ceccio, Steven L.

    2013-08-01

    The current study explores the influence of polymer drag reduction on the near-wall velocity distribution in a turbulent boundary layer (TBL) and its dependence on Reynolds number. Recent moderate Reynolds number direct numerical simulation and experimental studies presented in White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862 have challenged the classical representation of the logarithmic dependence of the velocity profile for drag-reduced flows, especially at drag reduction levels above 40%. In the present study, high Reynolds number data from a drag reduced TBL is presented and compared to the observations of White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862. Data presented here were acquired in the TBL flow on a 12.9-m-long flat plate at speeds to 20.3 m s-1, achieving momentum thickness based Reynolds number to 1.5 × 105, which is an order of magnitude greater than that available in the literature. Polyethylene oxide solutions with an average molecular weight of 3.9 × 106 g mol-1 were injected into the flow at various concentrations and volumetric fluxes to achieve a particular level of drag reduction. The resulting mean near-wall velocity profiles show distinctly different behavior depending on whether they fall in the low drag reduction (LDR) or the high drag reduction (HDR) regimes, which are nominally divided at 40% drag reduction. In the LDR regime, the classical view that the logarithmic slope remains constant at the Newtonian value and the intercept constant increases with increasing drag reduction appears to be valid. However, in the HDR regime the behavior is no longer universal. The intercept constant continues to increase linearly in proportion to the drag reduction level until a Reynolds-number-dependent threshold is achieved, at which point the intercept constant rapidly decreases to that predicted by the ultimate profile. The rapid decrease in the intercept constant is due to the corresponding increase in the profile slope in the HDR regime. There was significant scatter in the observed slope in the HDR regime, but the scatter did not appear to be Reynolds number dependent. Finally, the ultimate profiles for flows at maximum drag reduction were examined and did not exhibit a logarithmic functional relationship, which is the classical empirical relationship suggested by Virk [J. Am. Inst. Chem. Eng. 21, 625-656 (1975)], 10.1002/aic.690210402.

  12. Rainfall interception, and its modeling, in Pine and Eucalypt stands in Portugal

    NASA Astrophysics Data System (ADS)

    de Coninck, H. L.; Keizer, J. J.; Coelho, C. O. A.; van Dijck, S. J. E.; Jetten, V. G.; Warmerdam, P. M. M.; Ferreira, A. J. D.; Boulet, A. K.

    2003-04-01

    Within the framework of the EU-funded CLIMED project (ICA3-2000-30005), concerning the water management implications of foreseeable climate and land-use changes in central Portugal and northern Africa, the event-based Limburg Soil Erosion Model (LISEM; www.geog.uu.nl/lisem) is intended to provide further insight into water yields, peak flow and timing under possible future rainfall regimes. In the Portuguese study area, LISEM is being applied to two small (< 1km2) catchments with contrasting land covers, dominated by Pinus pinaster Ait. and Eucalyptus globulus Labill. tree stands, respectively. In LISEM, cumulative interception is modelled using the empirical formula by Ashton (1979), i.e. as a function of vegetation cover and canopy storage capacity, which in turn is estimated from the Leaf Area Index using the Von Hoyningen-Huenes (1981) formula. Besides that the appropriateness of the LISEM interception module for forested areas may be questioned, its (optional) substitution in LISEM by a more process-based model like that of Rutter would be more in line with LISEM’s overall model structure. This study has as main aims to assess the suitability of (1) the Ashton formula and (2) the sparse variants of the Gash and Rutter interception models to model rainfall interception measurements carried out in a Pinus pinaster Ait. stand as well as a Eucalyptus globulus Labill. stand. Unlike in the bulk of published studies on forest interception, the experimental set-up structures the sampling space in below-canopy and gaps. The below-canopy sampling space is further divided into two classes on the basis of dendrometric data from a prior inventory of 20x20 m. The two stands are equipped with 15 below-canopy and 5 gap rainfall collectors, 3 of which are automated tipping-buckets gauges. Stemflow is measured for 10 trees per stand, which includes 2 trees with automated tipping-bucket (0.5 l/tip). Between November 2002 and the present time, 31 rainfall events totaling about 850 mm were recorded. Interestingly, these preliminary results reveal that below-canopy rainfall may exceed gap rainfall. This phenomenon can be explained by non-vertical rainfall, increasing the probability of droplets hitting the tree canopy instead of the forest floor. If further measurements confirm it to occur regularly, the suitability of not only the LISEM interception module but also the sparse Rutter and Gash models will, at least conceptually, be in doubt.

  13. Ground-water appraisal of the Pineland Sands area, central Minnesota

    USGS Publications Warehouse

    Helgesen, J.O.

    1977-01-01

    Results of model analysis show that present development (withdrawals totaling 3.3 cubic feet per second) has no significant effect on the aquifer system. Simulations of hypothetical withdrawals of 60 to 120 cubic feet per second resulted in computed water-table declines as great as 12 feet in places. Most pumpage is derived from intercepted base flow to streams, thus reducing streamflow. Similarly, some lake levels can be expected to decline in response to nearby intensive development.

  14. Modeling the Interaction Between Hydraulic and Natural Fractures Using Dual-Lattice Discrete Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jing; Huang, Hai; Deo, Milind

    The interaction between hydraulic fractures (HF) and natural fractures (NF) will lead to complex fracture networks due to the branching and merging of natural and hydraulic fractures in unconventional reservoirs. In this paper, a newly developed hydraulic fracturing simulator based on discrete element method is used to predict the generation of complex fracture network in the presence of pre-existing natural fractures. By coupling geomechanics and reservoir flow within a dual lattice system, this simulator can effectively capture the poro-elastic effects and fluid leakoff into the formation. When HFs are intercepting single or multiple NFs, complex mechanisms such as direct crossing,more » arresting, dilating and branching can be simulated. Based on the model, the effects of injected fluid rate and viscosity, the orientation and permeability of NFs and stress anisotropy on the HF-NF interaction process are investigated. Combined impacts from multiple parameters are also examined in the paper. The numerical results show that large values of stress anisotropy, intercepting angle, injection rate and viscosity will impede the opening of NFs.« less

  15. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China

    NASA Astrophysics Data System (ADS)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei

    2017-12-01

    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  16. [Canopy interception characteristics of main vegetation types in Liupan Mountains of China].

    PubMed

    Xu, Li-hong; Shi, Zhong-jie; Wang, Yan-hui; Xiong, Wei; Yu, Peng-tao

    2010-10-01

    Based on field observation and modeling analysis, this paper studied the canopy interception, interception capacity, and some parameters for interception modeling of main forest types in Liupan Mountains of China. For the test main forest types, the ratio of their canopy interception to precipitation ranged from 8.59% to 17.94%, throughfall was more than 80%, and stemflow ranged from 0.23% to 3.10%. The canopy interception capacity was 0.78-1.88 mm, among which, leaf interception capacity was 0.62-1.63 mm, and stem interception capacity was 0.13-0.29 mm. Conifer forest had a higher canopy interception capacity than broad-leaved forest. The modified model considering the change of leaf area index, which was used in this paper, had a higher simulating precision than the interception model used before. The simulation results for Betula albo-sinensis forest, Pinus armandii forest, Prunus shrub, and Quercus liaotungensis-Tilia paucicostata forest were good, but those for Quercus liaotungensis forest, Pinus tabulaeformis forest, and Acer tetramerum and Euonymus sanguineus shrub were bad, which might be related to the differences in canopy structure, leaf area index, and precipitation characteristics.

  17. Importance of perceptual representation in the visual control of action

    NASA Astrophysics Data System (ADS)

    Loomis, Jack M.; Beall, Andrew C.; Kelly, Jonathan W.; Macuga, Kristen L.

    2005-03-01

    In recent years, many experiments have demonstrated that optic flow is sufficient for visually controlled action, with the suggestion that perceptual representations of 3-D space are superfluous. In contrast, recent research in our lab indicates that some visually controlled actions, including some thought to be based on optic flow, are indeed mediated by perceptual representations. For example, we have demonstrated that people are able to perform complex spatial behaviors, like walking, driving, and object interception, in virtual environments which are rendered visible solely by cyclopean stimulation (random-dot cinematograms). In such situations, the absence of any retinal optic flow that is correlated with the objects and surfaces within the virtual environment means that people are using stereo-based perceptual representations to perform the behavior. The fact that people can perform such behaviors without training suggests that the perceptual representations are likely the same as those used when retinal optic flow is present. Other research indicates that optic flow, whether retinal or a more abstract property of the perceptual representation, is not the basis for postural control, because postural instability is related to perceived relative motion between self and the visual surroundings rather than to optic flow, even in the abstract sense.

  18. Geostatistics applied to cross-well reflection seismic for imaging carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Parra, Jorge; Emery, Xavier

    2013-05-01

    Cross-well seismic reflection data, acquired from a carbonate aquifer at Port Mayaca test site near the eastern boundary of Lake Okeechobee in Martin County, Florida, are used to delineate flow units in the region intercepted by two wells. The interwell impedance determined by inversion from the seismic reflection data allows us to visualize the major boundaries between the hydraulic units. The hydraulic (flow) unit properties are based on the integration of well logs and the carbonate structure, which consists of isolated vuggy carbonate units and interconnected vug systems within the carbonate matrix. The vuggy and matrix porosity logs based on Formation Micro-Imager (FMI) data provide information about highly permeable conduits at well locations. The integration of the inverted impedance and well logs using geostatistics helps us to assess the resolution of the cross-well seismic method for detecting conduits and to determine whether these conduits are continuous or discontinuous between wells. A productive water zone of the aquifer outlined by the well logs was selected for analysis and interpretation. The ELAN (Elemental Log Analysis) porosity from two wells was selected as primary data and the reflection seismic-based impedance as secondary data. The direct and cross variograms along the vertical wells capture nested structures associated with periodic carbonate units, which correspond to connected flow units between the wells. Alternatively, the horizontal variogram of impedance (secondary data) provides scale lengths that correspond to irregular boundary shapes of flow units. The ELAN porosity image obtained by cokriging exhibits three similar flow units at different depths. These units are thin conduits developed in the first well and, at about the middle of the interwell separation region, these conduits connect to thicker flow units that are intercepted by the second well. In addition, a high impedance zone (low porosity) at a depth of about 275 m, after being converted to ELAN porosity, is characterized as a more confined low porosity structure. This continuous zone corresponds to a permeability barrier in the carbonate aquifer that separates the three connected conduits observed in the cokriging image. In the zones above and below this permeability barrier, the water production is very high, which agrees with water well observations at the Port Mayaca aquifer.

  19. A Physically Based Distributed Hydrologic Model with a no-conventional terrain analysis

    NASA Astrophysics Data System (ADS)

    Rulli, M.; Menduni, G.; Rosso, R.

    2003-12-01

    A physically based distributed hydrological model is presented. Starting from a contour-based terrain analysis, the model makes a no-conventional discretization of the terrain. From the maximum slope lines, obtained using the principles of minimum distance and orthogonality, the models obtains a stream tubes structure. The implemented model automatically can find the terrain morphological characteristics, e.g. peaks and saddles, and deal with them respecting the stream flow. Using this type of discretization, the model divides the elements in which the water flows in two classes; the cells, that are mixtilinear polygons where the overland flow is modelled as a sheet flow and channels, obtained by the interception of two or more stream tubes and whenever surface runoff occurs, the surface runoff is channelised. The permanent drainage paths can are calculated using one of the most common methods: threshold area, variable threshold area or curvature. The subsurface flow is modelled using the Simplified Bucket Model. The model considers three type of overland flow, depending on how it is produced:infiltration excess;saturation of superficial layer of the soil and exfiltration of sub-surface flow from upstream. The surface flow and the subsurface flow across a element are routed according with the mono-dimensional equation of the kinematic wave. The also model considers the spatial variability of the channels geometry with the flow. The channels have a rectangular section with length of the base decreasing with the distance from the outlet and depending on a power of the flow. The model was tested on the Rio Gallina and Missiaga catchments and the results showed model good performances.

  20. Eye movements and manual interception of ballistic trajectories: effects of law of motion perturbations and occlusions.

    PubMed

    Delle Monache, Sergio; Lacquaniti, Francesco; Bosco, Gianfranco

    2015-02-01

    Manual interceptions are known to depend critically on integration of visual feedback information and experience-based predictions of the interceptive event. Within this framework, coupling between gaze and limb movements might also contribute to the interceptive outcome, since eye movements afford acquisition of high-resolution visual information. We investigated this issue by analyzing subjects' head-fixed oculomotor behavior during manual interceptions. Subjects moved a mouse cursor to intercept computer-generated ballistic trajectories either congruent with Earth's gravity or perturbed with weightlessness (0 g) or hypergravity (2 g) effects. In separate sessions, trajectories were either fully visible or occluded before interception to enforce visual prediction. Subjects' oculomotor behavior was classified in terms of amounts of time they gazed at different visual targets and of overall number of saccades. Then, by way of multivariate analyses, we assessed the following: (1) whether eye movement patterns depended on targets' laws of motion and occlusions; and (2) whether interceptive performance was related to the oculomotor behavior. First, we found that eye movement patterns depended significantly on targets' laws of motion and occlusion, suggesting predictive mechanisms. Second, subjects coupled differently oculomotor and interceptive behavior depending on whether targets were visible or occluded. With visible targets, subjects made smaller interceptive errors if they gazed longer at the mouse cursor. Instead, with occluded targets, they achieved better performance by increasing the target's tracking accuracy and by avoiding gaze shifts near interception, suggesting that precise ocular tracking provided better trajectory predictions for the interceptive response.

  1. [Canopy interception of sub-alpine dark coniferous communities in western Sichuan, China].

    PubMed

    Lü, Yu-liang; Liu, Shi-rong; Sun, Peng-sen; Liu, Xing-liang; Zhang, Rui-pu

    2007-11-01

    Based on field measurements of throughfall and stemflow in combination with climatic data collected from the meteorological station adjacent to the studied sub-alpine dark coniferous forest in Wolong, Sichuan Province, canopy interception of sub-alpine dark coniferous forests was analyzed and modeled at both stand scale and catchment scale. The results showed that monthly interception rate of Fargesia nitida, Bashania fangiana--Abies faxoniana old-growth ranged from 33% Grass to 72%, with the average of 48%. In growing season, there was a linear or powerful or exponential relationship between rainfall and interception an. a negative exponential relationship between rainfall and interception rate. The mean maximum canopy interception by the vegetation in the catchment of in.44 km was 1.74 ment and the significant differences among the five communities occurred in the following sequence: Moss-Fargesia nitida, Bashan afanglana-A. faxoniana stand > Grass-F. nitida, B. fangiana-A. faxoniana stand > Moss-Rhododendron spp.-A. faxoniana stand > Grass-Rh. spp.-A. faxoniana stand > Rh. spp. shrub. In addition, a close linear relationship existed between leaf area index (LAI) and maximum canopy interception. The simulated value of canopy interception rate, maximum canopy interception rate and addition interception rate of the vegetation in the catchment were 39%, 25% and 14%, respectively. Simulation of the canopy interception model was better at the overall growing season scale, that the mean relative error was 9%-14%.

  2. Intracompartmental pressure as a predictor of intratesticular blood flow: a rat model.

    PubMed

    Watson, Matthew J; Bartkowski, Donald P; Nelson, Nathan C

    2015-06-01

    We identified an intratesticular pressure at which vascular flow would cease in a testicular compartment syndrome model, defining a critical vascular stop flow pressure. A total of 52 male Sprague Dawley® rats were used for the study. The testicle of each rat was delivered from the scrotum and size measurements were taken. An intracompartment pressure monitor needle was inserted into the testis to record basal intratesticular pressure. The monitor needle remained in the testicle for the duration of the procedure. Vascular flow within the testis was measured using a variable frequency linear ultrasound transducer with color flow and pulse wave Doppler modalities. Saline was infused through the compartment monitor in 5 mm Hg increments via a pressure infusion pump. Following each 5 mm Hg increase intratesticular vascular blood flow and velocities were recorded using color flow and pulse wave, respectively. Data collection proceeded until color flow images indicated a complete absence of flow within the testis. Using a paired t-test (p <0.0001), mean color flow stop flow pressure was 52.17 mm Hg (95% CI 49.57-54.77) and pulse wave stop flow pressure was 36.34 mm Hg (95% CI 33.90-38.77). Regression analysis of pulse wave vs color flow showed a slope of 0.6960 ± 0.09112, a y-intercept of 0.02427 ± 4.824 and an x-intercept of -0.03486. This is the first known study to characterize a stop flow pressure within the testicular parenchyma resulting from an increased intracompartmental pressure. Due to probe sensitivity limitations, color flow appears to provide the most precise mean pressure of occlusion of 52.17 mm Hg. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Diastolic coronary artery pressure-flow velocity relationships in conscious man.

    PubMed

    Dole, W P; Richards, K L; Hartley, C J; Alexander, G M; Campbell, A B; Bishop, V S

    1984-09-01

    We characterised the diastolic pressure-flow velocity relationship in the normal left coronary artery of conscious man before and after vasodilatation with angiographic contrast medium. Phasic coronary artery pressure and flow velocity were measured in ten patients during individual diastoles (0.5 to 1.0 s) using a 20 MHz catheter-tipped, pulsed Doppler transducer. All pressure-flow velocity curves were linear over the diastolic pressure range of 110 +/- 15 (SD) mmHg to 71 +/- 7 mmHg (r = 0.97 +/- 0.01). In the basal state, values for slope and extrapolated zero flow pressure intercept averaged 0.35 +/- 0.12 cm X s-1 X mmHg-1 and 51.7 +/- 8.6 mmHg, respectively. Vasodilatation resulted in a 2.5 +/- 0.5 fold increase in mean flow velocity. The diastolic pressure-flow velocity relationship obtained during peak vasodilatation compared to that during basal conditions was characterised by a steeper slope (0.80 +/- 0.48 cm X s-1 X mmHg-1, p less than 0.001) and lower extrapolated zero flow pressure intercept (37.9 +/- 9.8 mmHg, p less than 0.05). Mean right atrial pressure for the group averaged 4.4 +/- 1.7 mmHg, while left ventricular end-diastolic pressure averaged 8.7 +/- 2.8 mmHg. These observations in man are similar to data reported in the canine coronary circulation which are consistent with a vascular waterfall model of diastolic flow regulation. In this model, coronary blood flow may be regulated by changes in diastolic zero flow pressure as well as in coronary resistance.

  4. Catching What We Can't See: Manual Interception of Occluded Fly-Ball Trajectories

    PubMed Central

    Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco

    2012-01-01

    Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories. PMID:23166653

  5. Catching what we can't see: manual interception of occluded fly-ball trajectories.

    PubMed

    Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco

    2012-01-01

    Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories.

  6. Migrants in transit: the importance of monitoring HIV risk among migrant flows at the Mexico-US border.

    PubMed

    Martinez-Donate, Ana P; Hovell, Melbourne F; Rangel, Maria Gudelia; Zhang, Xiao; Sipan, Carol L; Magis-Rodriguez, Carlos; Gonzalez-Fagoaga, J Eduardo

    2015-03-01

    We conducted a probability-based survey of migrant flows traveling across the Mexico-US border, and we estimated HIV infection rates, risk behaviors, and contextual factors for migrants representing 5 distinct migration phases. Our results suggest that the influence of migration is not uniform across genders or risk factors. By considering the predeparture, transit, and interception phases of the migration process, our findings complement previous studies on HIV among Mexican migrants conducted at the destination and return phases. Monitoring HIV risk among this vulnerable transnational population is critical for better understanding patterns of risk at different points of the migration process and for informing the development of protection policies and programs.

  7. Migrants in Transit: The Importance of Monitoring HIV Risk Among Migrant Flows at the Mexico–US Border

    PubMed Central

    Martinez-Donate, Ana P.; Hovell, Melbourne F.; Rangel, Maria Gudelia; Zhang, Xiao; Sipan, Carol L.; Magis-Rodriguez, Carlos; Gonzalez-Fagoaga, J. Eduardo

    2015-01-01

    We conducted a probability-based survey of migrant flows traveling across the Mexico–US border, and we estimated HIV infection rates, risk behaviors, and contextual factors for migrants representing 5 distinct migration phases. Our results suggest that the influence of migration is not uniform across genders or risk factors. By considering the predeparture, transit, and interception phases of the migration process, our findings complement previous studies on HIV among Mexican migrants conducted at the destination and return phases. Monitoring HIV risk among this vulnerable transnational population is critical for better understanding patterns of risk at different points of the migration process and for informing the development of protection policies and programs. PMID:25602882

  8. Snow catch by conifer crowns

    Treesearch

    Donald R. Satterlund; Harold F. Haupt

    1967-01-01

    Study of interception storage of snow by two species of sapling conifers in northern Idaho revealed that cumulative snow catch follows the classical law of autocatakinetic growth, or [equation - see PDF] where I, is interception storage, e is the interception storage capacity of the tree, e is the base of the natural logarithm, k is a constant expressing the rate of...

  9. Description and Initial Evaluation of a Computer-Based Individual Trainer for the Radar Intercept Observer.

    ERIC Educational Resources Information Center

    Rigney, Joseph W.; And Others

    An individual trainer for giving students in the radar intercept observer (RIO) schools concentrated practice in procedures for air-to-air intercepts was designed around a programmable graphics terminal with two integral minicomputers and 8k of core memory. The trainer automatically administers practice in computing values of variables in the…

  10. Estimating Vegetation Rainfall Interception Using Remote Sensing Observations at Very High Resolution

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Zhao, P.; Hong, Y.; Fan, W.; Yan, B.; Xie, H.

    2017-12-01

    Abstract: As an important compont of evapotranspiration, vegetation rainfall interception is the proportion of gross rainfall that is intercepted, stored and subsequently evaporated from all parts of vegetation during or following rainfall. Accurately quantifying the vegetation rainfall interception at a high resolution is critical for rainfall-runoff modeling and flood forecasting, and is also essential for understanding its further impact on local, regional, and even global water cycle dynamics. In this study, the Remote Sensing-based Gash model (RS-Gash model) is developed based on a modified Gash model for interception loss estimation using remote sensing observations at the regional scale, and has been applied and validated in the upper reach of the Heihe River Basin of China for different types of vegetation. To eliminate the scale error and the effect of mixed pixels, the RS-Gash model is applied at a fine scale of 30 m with the high resolution vegetation area index retrieved by using the unified model of bidirectional reflectance distribution function (BRDF-U) for the vegetation canopy. Field validation shows that the RMSE and R2 of the interception ratio are 3.7% and 0.9, respectively, indicating the model's strong stability and reliability at fine scale. The temporal variation of vegetation rainfall interception loss and its relationship with precipitation are further investigated. In summary, the RS-Gash model has demonstrated its effectiveness and reliability in estimating vegetation rainfall interception. When compared to the coarse resolution results, the application of this model at 30-m fine resolution is necessary to resolve the scaling issues as shown in this study. Keywords: rainfall interception; remote sensing; RS-Gash analytical model; high resolution

  11. Effect of atrial systole on canine and porcine coronary blood flow.

    PubMed

    Bellamy, R F

    1981-09-01

    A feature of phasic coronary flow patterns recorded in conscious chronically instrumented dogs is the atrial cove--a transient depression of arterial flow that occurs during atrial systole. The association between the hemodynamic effects of atrial systole and the atrial cove was studied in anesthetized dogs and pigs with complete heart block. Many atrial coves are available for study in these preparations because atrial activity continues unabated during the diastolic ventricular arrest that follows cessation of electrical pacing. The effect of atrial systole is to translate the pressure-flow relation found during diastole to a higher intercept pressure without change in slope. The increase in the intercept pressure equals the increase in intramyocardial pressure measured with microtransducers embedded in the left ventricular wall. The decrement in flow during the atrial cove is a direct function of the change in intramyocardial pressure and an inverse function of coronary vascular resistance. Each atrial systole is associated with a forward flow transient in the coronary veins, the peak of which occurs at the same instant as does the nadir of atrial flow. These data suggest that the coronary vessels are acting as collapsible tubes and that the waterfall model of the coronary circulation is applicable. The following sequence is proposed to account for the atrial cove. Atrial systole ejects a bolus of blood into the left ventricle increasing both ventricular cavity and intramyocardial pressures. The increase in intramyocardial pressure raises the back pressure opposing coronary flow, reducing the arterial perfusion pressure gradient and causing flow to fall.

  12. A reprogrammable receiver architecture for wireless signal interception

    NASA Astrophysics Data System (ADS)

    Yao, Timothy S.

    2003-09-01

    In this paper, a re-programmable receiver architecture, based on software-defined-radio concept, for wireless signal interception is presented. The radio-frequency (RF) signal that the receiver would like to intercept may come from a terrestrial cellular network or communication satellites, which their carrier frequency are in the range from 800 MHz (civilian mobile) to 15 GHz (Ku band). To intercept signals from such a wide range of frequency in these variant communication systems, the traditional way is to deploy multiple receivers to scan and detect the desired signal. This traditional approach is obviously unattractive due to the cost, efficiency, and accuracy. Instead, we propose a universal receiver, which is software-driven and re-configurable, to intercept signals of interest. The software-defined-radio based receiver first intercepts RF energy of wide spectrum (25MHz) through antenna, performs zero-IF down conversion (homodyne architecture) to baseband, and digital channelizes the baseband signal. The channelization module is a bank of high performance digital filters. The bandwidth of the filter bank is programmable according to the wireless communication protocol under watch. In the baseband processing, high-performance digital signal processors carry out the detection process and microprocessors handle the communication protocols. The baseband processing is also re-configurable for different wireless standards and protocol. The advantages of the software-defined-radio architecture over traditional RF receiver make it a favorable technology for the communication signal interception and surveillance.

  13. Green Infrastructure and Watershed-Scale Hydrology in Mixed Land Cover System

    EPA Science Inventory

    Urbanization results in replacement of pervious areas (e.g., vegetation, topsoil) with impervious surfaces such as roads, roofs, and parking lots, which cause reductions in interception, evapotranspiration, and infiltration, and increases in surface runoff (overland flow) and pol...

  14. USEPA CAPSTONE REPORT: CONTROL AND TREATMENT

    EPA Science Inventory

    Combined-sewer overflows (CSOs), sanitary-sewer overflows and stormwater (SW) are significant contributors of contamination to surface waters. During a rain event, the flow in a combined sewer system may exceed the capacity of the intercepting sewer leading to the wastewater trea...

  15. COMBINED-SEWER OVERFLOW CONTROL AND TREATMENT

    EPA Science Inventory

    Combined-sewer overflow (CSO), along with sanitary-sewer overflow and stormwater are significant contributors of contamination to surface waters. During a rain event, the flow in a combined sewer system may exceed the capacity of the intercepting sewer leading to the wastewater t...

  16. Quadrotor Intercept Trajectory Planning and Simulation

    DTIC Science & Technology

    2017-06-01

    Figure 41. Results are grouped by geometry type and colored based on trajectory planner. Figure 41. Summary of Experimental Data Intercept Time...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Quadrotor drones pose a safety hazard when operated in or near controlled airspace. A hazardous...quadrotor could be intercepted and removed by another quadrotor. In this thesis, we seek to determine if optimal control methods outperform missile

  17. Is perception of self-motion speed a necessary condition for intercepting a moving target while walking?

    PubMed

    Morice, Antoine H P; Wallet, Grégory; Montagne, Gilles

    2014-04-30

    While it has been shown that the Global Optic Flow Rate (GOFR) is used in the control of self-motion speed, this study examined its relevance in the control of interceptive actions while walking. We asked participants to intercept approaching targets by adjusting their walking speed in a virtual environment, and predicted that the influence of the GOFR depended on their interception strategy. Indeed, unlike the Constant Bearing Angle (CBA), the Modified Required Velocity (MRV) strategy relies on the perception of self-displacement speed. On the other hand, the CBA strategy involves specific speed adjustments depending on the curvature of the target's trajectory, whereas the MRV does not. We hypothesized that one strategy is selected among the two depending on the informational content of the environment. We thus manipulated the curvature and display of the target's trajectory, and the relationship between physical walking speed and the GOFR (through eye height manipulations). Our results showed that when the target trajectory was not displayed, walking speed profiles were affected by curvature manipulations. Otherwise, walking speed profiles were less affected by curvature manipulations and were affected by the GOFR manipulations. Taken together, these results show that the use of the GOFR for intercepting a moving target while walking depends on the informational content of the environment. Finally we discuss the complementary roles of these two perceptual-motor strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Aerial surveys adjusted by ground surveys to estimate area occupied by black-tailed prairie dog colonies

    USGS Publications Warehouse

    Sidle, John G.; Augustine, David J.; Johnson, Douglas H.; Miller, Sterling D.; Cully, Jack F.; Reading, Richard P.

    2012-01-01

    Aerial surveys using line-intercept methods are one approach to estimate the extent of prairie dog colonies in a large geographic area. Although black-tailed prairie dogs (Cynomys ludovicianus) construct conspicuous mounds at burrow openings, aerial observers have difficulty discriminating between areas with burrows occupied by prairie dogs (colonies) versus areas of uninhabited burrows (uninhabited colony sites). Consequently, aerial line-intercept surveys may overestimate prairie dog colony extent unless adjusted by an on-the-ground inspection of a sample of intercepts. We compared aerial line-intercept surveys conducted over 2 National Grasslands in Colorado, USA, with independent ground-mapping of known black-tailed prairie dog colonies. Aerial line-intercepts adjusted by ground surveys using a single activity category adjustment overestimated colonies by ≥94% on the Comanche National Grassland and ≥58% on the Pawnee National Grassland. We present a ground-survey technique that involves 1) visiting on the ground a subset of aerial intercepts classified as occupied colonies plus a subset of intercepts classified as uninhabited colony sites, and 2) based on these ground observations, recording the proportion of each aerial intercept that intersects a colony and the proportion that intersects an uninhabited colony site. Where line-intercept techniques are applied to aerial surveys or remotely sensed imagery, this method can provide more accurate estimates of black-tailed prairie dog abundance and trends

  19. Improved Filed Evaluation of NAPL Dissolution and Source Longevity

    DTIC Science & Technology

    2011-10-01

    waterflood, a non- condensable vapor flow (i.e., soil vapor extraction), a steamflood, and the co-injection of air and steam. The purpose of the testing was...are typically inserted into groundwater monitoring wells where they passively intercept ambient groundwater flow. Inside the PFM is a permeable...mean soil particle diameter θ = soil porosity U = groundwater velocity νw = kinematic viscosity of water β = mass transfer correlation

  20. PARSEC-SCALE SHOCKS IN THE KILOPARSEC-SCALE JET OF CENTAURUS A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingay, S. J.; Lenc, E.

    2009-09-15

    High angular resolution very long baseline interferometry (VLBI) observations of Centaurus A have been undertaken that allow access to a wide field of view, encompassing both the well-studied parsec-scale jet and the inner part of the kiloparsec-scale jet. The VLBI observations have detected compact regions of synchrotron emission in the kiloparsec-scale jet that coincide with three stationary features identified from previous VLA monitoring observations. Each of these stationary features is associated with strong localized X-ray emission. The VLBI results strengthen arguments made by previous authors suggesting that the stationary features may be the result of stellar objects or gas cloudsmore » traversing the jet flow, intercepting the jet and causing strong shocks. The VLBI data show that the most strongly shocked regions in these features are resolved but have extents no larger than a few pc, reducing the required mass of the typical intercepting object by a factor of {approx}10 relative to previous estimates, making explanations based on high mass-loss stars or low-density gas clouds more plausible.« less

  1. Computer-aided mathematical analysis of probability of intercept for ground-based communication intercept system

    NASA Astrophysics Data System (ADS)

    Park, Sang Chul

    1989-09-01

    We develop a mathematical analysis model to calculate the probability of intercept (POI) for the ground-based communication intercept (COMINT) system. The POI is a measure of the effectiveness of the intercept system. We define the POI as the product of the probability of detection and the probability of coincidence. The probability of detection is a measure of the receiver's capability to detect a signal in the presence of noise. The probability of coincidence is the probability that an intercept system is available, actively listening in the proper frequency band, in the right direction and at the same time that the signal is received. We investigate the behavior of the POI with respect to the observation time, the separation distance, antenna elevations, the frequency of the signal, and the receiver bandwidths. We observe that the coincidence characteristic between the receiver scanning parameters and the signal parameters is the key factor to determine the time to obtain a given POI. This model can be used to find the optimal parameter combination to maximize the POI in a given scenario. We expand this model to a multiple system. This analysis is conducted on a personal computer to provide the portability. The model is also flexible and can be easily implemented under different situations.

  2. Marginal and Random Intercepts Models for Longitudinal Binary Data With Examples From Criminology.

    PubMed

    Long, Jeffrey D; Loeber, Rolf; Farrington, David P

    2009-01-01

    Two models for the analysis of longitudinal binary data are discussed: the marginal model and the random intercepts model. In contrast to the linear mixed model (LMM), the two models for binary data are not subsumed under a single hierarchical model. The marginal model provides group-level information whereas the random intercepts model provides individual-level information including information about heterogeneity of growth. It is shown how a type of numerical averaging can be used with the random intercepts model to obtain group-level information, thus approximating individual and marginal aspects of the LMM. The types of inferences associated with each model are illustrated with longitudinal criminal offending data based on N = 506 males followed over a 22-year period. Violent offending indexed by official records and self-report were analyzed, with the marginal model estimated using generalized estimating equations and the random intercepts model estimated using maximum likelihood. The results show that the numerical averaging based on the random intercepts can produce prediction curves almost identical to those obtained directly from the marginal model parameter estimates. The results provide a basis for contrasting the models and the estimation procedures and key features are discussed to aid in selecting a method for empirical analysis.

  3. Canopy water balance of windward and leeward Hawaiian cloud forests on Haleakalā, Maui, Hawai'i

    USGS Publications Warehouse

    Giambelluca, Thomas W.; DeLay, John K.; Nullet, Michael A.; Scholl, Martha A.; Gingerich, Stephen B.

    2011-01-01

    The contribution of intercepted cloud water to precipitation at windward and leeward cloud forest sites on the slopes of Haleakalā, Maui was assessed using two approaches. Canopy water balance estimates based on meteorological monitoring were compared with interpretations of fog screen measurements collected over a 2-year period at each location. The annual incident rainfall was 973 mm at the leeward site (Auwahi) and 2550 mm at the windward site (Waikamoi). At the leeward, dry forest site, throughfall was less than rainfall (87%), and, at the windward, wet forest site, throughfall exceeded rainfall (122%). Cloud water interception estimated from canopy water balance was 166 mm year−1 at Auwahi and 1212 mm year−1 at Waikamoi. Annual fog screen measurements of cloud water flux, corrected for wind-blown rainfall, were 132 and 3017 mm for the dry and wet sites respectively. Event totals of cloud water flux based on fog screen measurements were poorly correlated with event cloud water interception totals derived from the canopy water balance. Hence, the use of fixed planar fog screens to estimate cloud water interception is not recommended. At the wet windward site, cloud water interception made up 32% of the total precipitation, adding to the already substantial amount of rainfall. At the leeward dry site, cloud water interception was 15% of the total precipitation. Vegetation at the dry site, where trees are more exposed and isolated, was more efficient at intercepting the available cloud water than at the rainy site, but events were less frequent, shorter in duration and lower in intensity. A large proportion of intercepted cloud water, 74% and 83%, respectively for the two sites, was estimated to become throughfall, thus adding significantly to soil water at both sites

  4. On interception modelling of a lowland coastal rainforest in northern Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Wallace, Jim; McJannet, Dave

    2006-10-01

    SummaryRecent studies of the water balance of tropical rainforests in northern Queensland have revealed that large fractions of rainfall, up to 30%, are intercepted by the canopy and lost as evaporation. These loss rates are much higher than those reported for continental rainforests, for example, in the Amazon basin, where interception is around 9% of rainfall. Higher interception losses have been found in coastal and mountain rainforests and substantial advection of energy during rainfall is proposed to account for these results. This paper uses a process based model of interception to analyse the interception losses at Oliver Creek, a lowland coastal rainforest site in northern Queensland with a mean annual rainfall of 3952 mm. The observed interception loss of 25% of rainfall for the period August 2001 to January 2004 can be reproduced by the model with a suitable choice of the three key controlling variables, the canopy storage capacity, mean rainfall rate and mean wet canopy evaporation rate. Our analyses suggest that the canopy storage capacity of the Oliver Creek rainforest is between 3.0 and 3.5 mm, higher than reported for most other rainforests. Despite the high canopy capacity at our site, the interception losses can only be accounted for with energy advection during rainfall in the range 40-70% of the incident energy.

  5. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients

    PubMed Central

    Matimati, Ignatious

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed ‘mass-flow’ treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed ‘interception’ treatment). ‘Mass-flow’ plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (g s), 1.2-fold higher intercellular [CO2] (C i), and 3.4-fold lower water use efficiency than ‘interception’ plants, despite comparable values of photosynthetic rate (A). E, g s, and C i first increased and then decreased with increasing distance from the N source to values even lower than those of ‘interception’ plants. ‘Mass-flow’ plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties. PMID:24231035

  6. Multiyear nutrient removal performance of three constructed wetlands intercepting tile drain flows from grazed pastures.

    PubMed

    Tanner, Chris C; Sukias, James P S

    2011-01-01

    Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.6% of the drained catchments too reduce nutrient loads. Continuous flow records are combined with automated flow-proportional sampling of nutrient concentrations to calculate tile drain nutrient yields and wetland mass removal rates. Annual drainage water yields rangedfrom 193 to 564 mm (16-51% of rainfall) at two rain-fed sites and from 827 to 853 mm (43-51% of rainfall + irrigation) at an irrigated site. Annually, the tile drains exported 14 to 109 kg ha(-1) of total N (TN), of which 58 to 90% was nitrate-N. Constructed wetlands intercepting these flows removed 30 to 369 gTN m(-2) (7-63%) of influent loadings annually. Seasonal percentage nitrate-N and TN removal were negatively associated with wetland N mass loadings. Wetland P removal was poor in all wetlands, with 12 to 115% more total P exported annually overall than received. Annually, the tile drains exported 0.12 to 1.38 kg ha of total P, of which 15 to 93% was dissolved reactive P. Additional measures are required to reduce these losses or provide supplementary P removal. Wetland N removal performance could be improved by modifying drainage systems to release flows more gradually and improving irrigation practices to reduce drainage losses.

  7. On the Aerodynamics of Windblast.

    DTIC Science & Technology

    1981-11-13

    streamline pattern that characterizes the cross-flow over two circular-cylindrical body segments in line contact with one another at time t = 0. That is, at...over the limbs of the ejection seat occupant. Note that MC may vary over different portions of the body that intercept the flow at different angles a...dimensional, rectilinear situation, one may estimate the kinematics of the ensuing motion of a body segment of mass Ms, subjected to the force

  8. Vegetation pattern formation in a fog-dependent ecosystem.

    PubMed

    Borthagaray, Ana I; Fuentes, Miguel A; Marquet, Pablo A

    2010-07-07

    Vegetation pattern formation is a striking characteristic of several water-limited ecosystems around the world. Typically, they have been described on runoff-based ecosystems emphasizing local interactions between water, biomass interception, growth and dispersal. Here, we show that this situation is by no means general, as banded patterns in vegetation can emerge in areas without rainfall and in plants without functional root (the Bromeliad Tillandsia landbeckii) and where fog is the principal source of moisture. We show that a simple model based on the advection of fog-water by wind and its interception by the vegetation can reproduce banded patterns which agree with empirical patterns observed in the Coastal Atacama Desert. Our model predicts how the parameters may affect the conditions to form the banded pattern, showing a transition from a uniform vegetated state, at high water input or terrain slope to a desert state throughout intermediate banded states. Moreover, the model predicts that the pattern wavelength is a decreasing non-linear function of fog-water input and slope, and an increasing function of plant loss and fog-water flow speed. Finally, we show that the vegetation density is increased by the formation of the regular pattern compared to the density expected by the spatially homogeneous model emphasizing the importance of self-organization in arid ecosystems. (c) 2010 Elsevier Ltd. All rights reserved.

  9. Assessment of inlet efficiency through a 3D simulation: numerical and experimental comparison.

    PubMed

    Gómez, Manuel; Recasens, Joan; Russo, Beniamino; Martínez-Gomariz, Eduardo

    2016-10-01

    Inlet efficiency is a requirement for characterizing the flow transfers between surface and sewer flow during rain events. The dual drainage approach is based on the joint analysis of both upper and lower drainage levels, and the flow transfer is one of the relevant elements to define properly this joint behaviour. This paper presents the results of an experimental and numerical investigation about the inlet efficiency definition. A full scale (1:1) test platform located in the Technical University of Catalonia (UPC) reproduces both the runoff process in streets and the water entering the inlet. Data from tests performed on this platform allow the inlet efficiency to be estimated as a function of significant hydraulic and geometrical parameters. A reproduction of these tests through a numerical three-dimensional code (Flow-3D) has been carried out simulating this type of flow by solving the RANS equations. The aim of the work was to reproduce the hydraulic performance of a previously tested grated inlet under several flow and geometric conditions using Flow-3D as a virtual laboratory. This will allow inlet efficiencies to be obtained without previous experimental tests. Moreover, the 3D model allows a better understanding of the hydraulics of the flow interception and the flow patterns approaching the inlet.

  10. Interoperability In Multi-Layered Active Defense:The Need For Commonality And Robustness Between Active Defense Weapon Systems

    DTIC Science & Technology

    2016-02-16

    into areas where there is no access to maritime platforms. Sea-based interceptor platforms have the ability to intercept targets at each stage of the...argues that the most efficient concept for integrating active defense weapon systems is a multi- layered architecture with redundant intercept ...faster data transfer and will prevent data loss. The need for almost 100% interception successes is increasing as the threat becomes more

  11. Plant light interception can be explained via computed tomography scanning: demonstration with pyramidal cedar (Thuja occidentalis, Fastigiata).

    PubMed

    Dutilleul, Pierre; Han, Liwen; Smith, Donald L

    2008-01-01

    Light interception by the leaf canopy is a key aspect of plant photosynthesis, which helps mitigate the greenhouse effect via atmospheric CO(2) recycling. The relationship between plant light interception and leaf area was traditionally modelled with the Beer-Lambert law, until the spatial distribution of leaves was incorporated through the fractal dimension of leafless plant structure photographed from the side allowing maximum appearance of branches and petioles. However, photographs of leafless plants are two-dimensional projections of three-dimensional structures, and sampled plants were cut at the stem base before leaf blades were detached manually, so canopy development could not be followed for individual plants. Therefore, a new measurement and modelling approach were developed to explain plant light interception more completely and precisely, based on appropriate processing of computed tomography (CT) scanning data collected for developing canopies. Three-dimensional images of canopies were constructed from CT scanning data. Leaf volumes (LV) were evaluated from complete canopy images, and fractal dimensions (FD) were estimated from skeletonized leafless images. The experimental plant species is pyramidal cedar (Thuja occidentalis, Fastigiata). The three-dimensional version of the Beer-Lambert law based on FD alone provided a much better explanation of plant light interception (R(2) = 0.858) than those using the product LV*FD (0.589) or LV alone (0.548). While values of all three regressors were found to increase over time, FD in the Beer-Lambert law followed the increase in light interception the most closely. The delayed increase of LV reflected the appearance of new leaves only after branches had lengthened and ramified. The very strong correlation obtained with FD demonstrates that CT scanning data contain fundamental information about the canopy architecture geometry. The model can be used to identify crops and plantation trees with improved light interception and productivity.

  12. Plant Light Interception Can Be Explained via Computed Tomography Scanning: Demonstration with Pyramidal Cedar (Thuja occidentalis, Fastigiata)

    PubMed Central

    Dutilleul, Pierre; Han, Liwen; Smith, Donald L.

    2008-01-01

    Background and Aims Light interception by the leaf canopy is a key aspect of plant photosynthesis, which helps mitigate the greenhouse effect via atmospheric CO2 recycling. The relationship between plant light interception and leaf area was traditionally modelled with the Beer–Lambert law, until the spatial distribution of leaves was incorporated through the fractal dimension of leafless plant structure photographed from the side allowing maximum appearance of branches and petioles. However, photographs of leafless plants are two-dimensional projections of three-dimensional structures, and sampled plants were cut at the stem base before leaf blades were detached manually, so canopy development could not be followed for individual plants. Therefore, a new measurement and modelling approach were developed to explain plant light interception more completely and precisely, based on appropriate processing of computed tomography (CT) scanning data collected for developing canopies. Methods Three-dimensional images of canopies were constructed from CT scanning data. Leaf volumes (LV) were evaluated from complete canopy images, and fractal dimensions (FD) were estimated from skeletonized leafless images. The experimental plant species is pyramidal cedar (Thuja occidentalis, Fastigiata). Key Results The three-dimensional version of the Beer–Lambert law based on FD alone provided a much better explanation of plant light interception (R2 = 0·858) than those using the product LV*FD (0·589) or LV alone (0·548). While values of all three regressors were found to increase over time, FD in the Beer–Lambert law followed the increase in light interception the most closely. The delayed increase of LV reflected the appearance of new leaves only after branches had lengthened and ramified. Conclusions The very strong correlation obtained with FD demonstrates that CT scanning data contain fundamental information about the canopy architecture geometry. The model can be used to identify crops and plantation trees with improved light interception and productivity. PMID:17981879

  13. Hydrogeologic investigations of the Sierra Vista subwatershed of the Upper San Pedro Basin, Cochise County, southeast Arizona

    USGS Publications Warehouse

    Pool, Donald R.; Coes, Alissa L.

    1999-01-01

    The hydrogeologic system in the Sierra Vista subwatershed of the Upper San Pedro Basin in southeastern Arizona was investigated for the purpose of developing a better understanding of stream-aquifer interactions. The San Pedro River is an intermittent stream that supports a narrow corridor of riparian vegetation. Withdrawal of ground water will result in reduced discharge from the basin through reduced base flow and evapotranspiration; however, the rate and location of reduced discharge are uncertain. The investigation resulted in better definition of distributions of silt and clay in the regional aquifer; changes in seasonal precipitation, runoff, and base flow in the San Pedro River; sources of base flow; and regional water-level changes. Regional ground-water flow is separated into deep-confined and shallow-unconfined systems by silt and clay. Precipitation, runoff, and base flow declined at the Charleston streamflow-gaging station from 1936 through 1997 for the months of June through October. Base flow at the Charleston station during 1996 and 1997 was primarily supplied by ground water recharged near the San Pedro River during recent major runoff and by minor contributions from the regional aquifer. The decline in base flow, about 2 cubic feet per second, has several probable causes including declining runoff and recharge near the river during June through October and increased interception of ground-water flow to the river by wells and phreatophytes. Water levels in wells throughout the regional aquifer generally declined at rates of 0.2 to 0.5 feet per year between 1940 and the mid-1980's, which corresponded with a period of below-average winter precipitation. Water levels in wells in the Fort Huachuca and Sierra Vista areas declined at rates that were faster than regional rates of decline through 1998 and caused diversion of ground-water flow that would have discharged along perennial stream reaches.

  14. Networking in the Presence of Adversaries

    DTIC Science & Technology

    2014-09-12

    a topological graph with linear algebraic constraints. As a practical example, such a model arises from an electric power system in which the power...flow is governed by the Kirchhoff law. When an adversary launches an MiM data attack, part of the sensor data are intercepted and substituted with

  15. Transonic Compressor: Program System TXCO for Data Acquisition and On-Line Reduction.

    DTIC Science & Technology

    1980-10-01

    IMONIDAYIYEARIHOUR,IMINISEC) OS16 C ............................................................... (0S17 C 0SiB C Gel dole ond line and convert the...linear curve fits SECON real intercept of linear curve fit (as from CURVE) 65 - . FLOW CHART SUBROUTINE CALIB - - - Aso C’A / oonre& *Go wSAt*irc

  16. Coronary oscillatory flow amplitude is more affected by perfusion pressure than ventricular pressure.

    PubMed

    Krams, R; Sipkema, P; Westerhof, N

    1990-06-01

    In this study on the isolated, maximally vasodilated, blood-perfused cat heart we investigated the relation between left ventricular developed pressure (delta Piv) and coronary oscillatory flow amplitude (diastolic minus systolic flow, delta F) at different levels of constant perfusion pressure (Pp). We hypothesized that the effect of cardiac contraction on the phasic flow results from the changing elastic properties of cardiac muscle. The coronary vessel compartment can, as can the left ventricular lumen compartment, be described by a time-varying elastance. This concept predicts that the effect of left ventricular pressure on delta F is small, whereas the effect of Pp is considerable. Both the waterfall model and the intramyocardial pump model predict the inverse. The relation between delta Piv and delta F at a Pp of 10 kPa is delta F = (4.71 +/- 3.08).delta Piv + 337 +/- 75 (slope in ml.min-1.100 g-1.kPa-1 and intercept in ml.min-1.100 g-1; n = 7); the relation between (constant levels of) Pp and delta F at a constant delta Piv of 10 kPa is delta F = 51.Pp + 211 (slope in ml.min-1.100 g-1.kPa-1 and intercept in ml.min-1.100 g-1; n = 6). The differences in slope are best predicted by the time-varying elastance concept.

  17. Constrained orbital intercept-evasion

    NASA Astrophysics Data System (ADS)

    Zatezalo, Aleksandar; Stipanovic, Dusan M.; Mehra, Raman K.; Pham, Khanh

    2014-06-01

    An effective characterization of intercept-evasion confrontations in various space environments and a derivation of corresponding solutions considering a variety of real-world constraints are daunting theoretical and practical challenges. Current and future space-based platforms have to simultaneously operate as components of satellite formations and/or systems and at the same time, have a capability to evade potential collisions with other maneuver constrained space objects. In this article, we formulate and numerically approximate solutions of a Low Earth Orbit (LEO) intercept-maneuver problem in terms of game-theoretic capture-evasion guaranteed strategies. The space intercept-evasion approach is based on Liapunov methodology that has been successfully implemented in a number of air and ground based multi-player multi-goal game/control applications. The corresponding numerical algorithms are derived using computationally efficient and orbital propagator independent methods that are previously developed for Space Situational Awareness (SSA). This game theoretical but at the same time robust and practical approach is demonstrated on a realistic LEO scenario using existing Two Line Element (TLE) sets and Simplified General Perturbation-4 (SGP-4) propagator.

  18. Height intercept for estimating site index in young ponderosa pine plantations and natural stands

    Treesearch

    William W. Oliver

    1972-01-01

    Site index is difficult to estimate with any reliability in ponderosa pine (Pinus ponderosa Laws.) stands below 20 yeas old. A method of estimating site index based on 4-year height intercepts (total length of the first four internodes above breast height) is described. Equations based on two sets of published site-index curves were developed. They...

  19. Satellite-based prediction of rainfall interception by tropical forest stands of a human-dominated landscape in Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Nieschulze, Jens; Erasmi, Stefan; Dietz, Johannes; Hölscher, Dirk

    2009-01-01

    SummaryRainforest conversion to other land use types drastically alters the hydrological cycle in which changes in rainfall interception contribute significantly to the observed differences. However, little is known about the effects of more gradual changes in forest structure and at regional scales. We studied land use types ranging from natural forest over selectively-logged forest to cacao agroforest in a lower montane region in Central Sulawesi, Indonesia, and tested the suitability of high-resolution optical satellite imagery for modeling observed interception patterns. Investigated characteristics indicating canopy structure were mean and standard deviation of reflectance values, local maxima, and self-similarity measures based on the grey level co-occurrence matrix and geostatistical variogram analysis. Previously studied and published rainfall interception data comprised twelve plots and median values per land use type ranged from 30% in natural forest to 18% in cacao agroforests. A linear regression model with local maxima, mean contrast and normalized digital vegetation index (NDVI) as regressors was able to explain more than 84% ( Radj2) of the variation encountered in the data. Other investigated characteristics did not prove significant in the regression analysis. The model yielded stable results with respect to cross-validation and also produced realistic values and spatial patterns when applied at the landscape level (783.6 ha). High values of interception were rare and localized in natural forest stands distant to villages, whereas low interception characterized the intensively used sites close to settlements. We conclude that forest use intensity significantly reduced rainfall interception and satellite image analysis can successfully be applied for its regional prediction, and most forest in the study region has already been subject to human-induced structural changes.

  20. NMD Against Rogue States-- Are We On the Right Track?

    NASA Astrophysics Data System (ADS)

    Garwin, Richard L.

    2001-04-01

    The national missile defense (NMD) under development at present will deploy 100-200 interceptor missiles in Alaska and North Dakota and conduct hit-to-kill mid-course intercepts of strategic payloads-- biological warfare agents (BW) or nuclear warheads. Mid-course intercept is vulnerable to penetration aids-- hundreds of BW bomblets dispensed just after the ICBM reaches its full speed; and decoy balloons (aided by an enclosing balloon on the re-entry vehicle of a nuclear warhead). The NMD organization has not seriously considered countermeasures, which I believe are much easier to build than the ICBMs themselves. Only now is NMD beginning to structure a program to evaluate and determine the response to such countermeasures. Defense against North Korean ICBMs can be obtained by boost-phase intercept, while the ICBM rocket engines are still burning. I will discuss a proposal to conduct such intercepts from a joint U.S.- Russian base south of Vladivostok, and with some interceptors based on U.S. military cargo ships hundreds of km from North Korea. A similar system would counter ICBMs from Iraq, with a base in Southeast Turkey; but the much larger country, Iran, would need at least two bases-- perhaps one in the Caspian Sea and U.S. ships in the Gulf of Oman. Simple countermeasures and possible responses to them will be discussed, together with some problems and characteristics of boost-phase intercept systems. For a given level of kill-vehicle technology, space-based boost-phase interceptors are inferior to surface-based for the "rogue nation" potential ICBM threat, and weapons in space are likely to provoke a severe response that would endanger critical U.S. satellites.

  1. Examining the canopy interception at a forest field site using cosmic-ray neutron detection

    NASA Astrophysics Data System (ADS)

    Andreasen, M.; Looms, M.; Christiansen, J. R.; Sonnenborg, T. O.; Stisen, S.; Jensen, K. H.

    2017-12-01

    Canopy interception, the amount of precipitation captured by the surface of plants and trees, is a key component of the water cycle as it constrains the water flux to the ground below vegetation. Forests have especially high interception capacities and therefore the interception loss often forms a considerable part of the total evapotranspiration. The canopy interception capacity is dependent on the size and structure of the vegetation, and the interception loss can vary substantial in time and space. Measuring the canopy interception loss directly is challenging and current methodologies only represent small areas and rely on indirect approaches. Improving methods to estimate canopy interception loss directly will forward the basic understanding of how vegetation structure interacts with the water cycle and hence prediction of evapotranspiration. The intensity of low-energy neutrons produced by cosmic-rays, measured above the ground surface, is sensitive to the hydrogen content in the upper decimeters of the ground and hence the soil moisture content from a radius of hundreds of meters in the horizontal direction. In order to advance the cosmic-ray neutron (CRN) soil moisture method and extend the application of the CRN method more research has recently focused on the signal of other hydrogen pools on the neutron intensity (e.g., vegetation and canopy interception). A recent study, based on neutron transport modeling, found that the ground level thermal neutron intensity (energy < 1 eV), and as a consequence also the thermal-to-epithermal neutron (T/E) ratio (epithermal energy > 1 eV), increased with increasing canopy interception. In this study, we test whether CRN measurements can be used to provide a direct measure of the canopy interception. Four sets of CR2000/B systems were installed below the canopy in an oak forest stand in Denmark. Each system holds a bare (primarily measuring thermal neutrons) and a moderated detector (primarily measuring epithermal neutrons). The measured T/E ratios are compared to independent canopy interception measurements, obtained from throughfall and precipitation measurements. Furthermore, T/E ratios are related to measurements from leaf wetness sensors, CRN soil moisture estimates, and the biomass density in the canopy derived from a mobile terrestrial laser scanner.

  2. The relationship between energy expenditure and speed during pedestrian locomotion in birds: a morphological basis for the elevated y-intercept?

    PubMed

    Halsey, Lewis G

    2013-06-01

    The slope of the typically linear relationship between metabolic rate and walking speed represents the net cost of transport (NCOT). The extrapolated y-intercept is often greater than resting metabolic rate, thus representing a fixed cost associated with pedestrian transport including body maintenance costs. The full cause of the elevated y-intercept remains elusive and it could simply represent experimental stresses. The present literature-based study compares the mass-independent energetic cost of pedestrian locomotion in birds (excluding those with an upright posture, i.e. penguins), represented by the y-intercept, to a known predictor of cost of transport, hip height. Both phylogenetically informed and non-phylogenetically informed analyses were undertaken to determine if patterns of association between hip height, body mass, and the y-intercept are robust with respect to the method of analysis. Body mass and hip height were significant predictors of the y-intercept in the best phylogenetically-informed and non-phylogenetically informed models. Thus there is evidence that, in birds at least, the elevated y-intercept is a legitimate component of locomotion energy expenditure. Hip height is probably a good proxy of effective limb length and thus perhaps birds with greater hip heights have lower y-intercepts because their longer legs more efficiently accommodate body motion and/or because their limbs are more aligned with the ground reaction forces. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Internal models and prediction of visual gravitational motion.

    PubMed

    Zago, Myrka; McIntyre, Joseph; Senot, Patrice; Lacquaniti, Francesco

    2008-06-01

    Baurès et al. [Baurès, R., Benguigui, N., Amorim, M.-A., & Siegler, I. A. (2007). Intercepting free falling objects: Better use Occam's razor than internalize Newton's law. Vision Research, 47, 2982-2991] rejected the hypothesis that free-falling objects are intercepted using a predictive model of gravity. They argued instead for "a continuous guide for action timing" based on visual information updated till target capture. Here we show that their arguments are flawed, because they fail to consider the impact of sensori-motor delays on interception behaviour and the need for neural compensation of such delays. When intercepting a free-falling object, the delays can be overcome by a predictive model of the effects of gravity on target motion.

  4. Biomechanical factors contributing to self-organization in seagrass landscapes

    USGS Publications Warehouse

    Fonseca, M.S.; Koehl, M.A.R.; Kopp, B.S.

    2007-01-01

    Field observations have revealed that when water flow is consistently from one direction, seagrass shoots align in rows perpendicular to the primary axis of flow direction. In this study, live Zostera marina shoots were arranged either randomly or in rows perpendicular to the flow direction and tested in a seawater flume under unidirectional flow and waves to determine if shoot arrangement: a) influenced flow-induced force on individual shoots, b) differentially altered water flow through the canopy, and c) influenced light interception by the canopy. In addition, blade breaking strength was compared with flow-induced force to determine if changes in shoot arrangement might reduce the potential for damage to shoots. Under unidirectional flow, both current velocity in the canopy and force on shoots were significantly decreased when shoots were arranged in rows as compared to randomly. However, force on shoots was nearly constant with downstream distance, arising from the trade-off of shoot bending and in-canopy flow reduction. The coefficient of drag was higher for randomly-arranged shoots at low velocities (< 30 cm s- 1) but converged rapidly among the two shoot arrangements at higher velocities. Shoots arranged in rows tended to intercept slightly more light than those arranged randomly. Effects of shoot arrangement under waves were less clear, potentially because we did not achieve the proper plant size?row spacing ratio. At this point, we may only suggest that water motion, as opposed to light capture, is the dominant physical mechanism responsible for these shoot arrangements. Following a computation of the Environmental Stress Factor, we concluded that even photosynthetically active blades may be damaged or broken under frequently encountered storm conditions, irrespective of shoot arrangement. We hypothesize that when flow is generally from one direction, seagrass bed patterns over multiple scales of consideration may arise as a cumulative effect of individual shoot self-organization driven by reduced force and drag on the shoots and somewhat improved light capture.

  5. Canopy interception variability in changing climate

    NASA Astrophysics Data System (ADS)

    Kalicz, Péter; Herceg, András; Kisfaludi, Balázs; Csáki, Péter; Gribovszki, Zoltán

    2017-04-01

    Tree canopies play a rather important role in forest hydrology. They intercept significant amounts of precipitation and evaporate back into the atmosphere during and after precipitation event. This process determines the net intake of forest soils and so important factor of hydrological processes in forested catchments. Average amount of interception loss is determined by the storage capacity of tree canopies and the rainfall distribution. Canopy storage capacity depends on several factors. It shows strong correlation with the leaf area index (LAI). Some equations are available to quantify this dependence. LAI shows significant variability both spatial and temporal scale. There are several methods to derive LAI from remote sensed data which helps to follow changes of it. In this study MODIS sensor based LAI time series are used to estimate changes of the storage capacity. Rainfall distribution derived from the FORESEE database which is developed for climate change related impact studies in the Carpathian Basin. It contains observation based precipitation data for the past and uses bias correction method for the climate projections. In this study a site based estimation is outworked for the Sopron Hills area. Sopron Hills is located at the eastern foothills of the Alps in Hungary. The study site, namely Hidegvíz Valley experimental catchment, is located in the central valley of the Sopron Hills. Long-term interception measurements are available in several forest sites in Hidegvíz Valley. With the combination of the ground based observations, MODIS LAI datasets a simple function is developed to describe the average yearly variations in canopy storage. Interception measurements and the CREMAP evapotranspiration data help to calibrate a simple interception loss equation based on Merriam's work. Based on these equation and the FORESEE bias corrected precipitation data an estimation is outworked for better understanding of the feedback of forest crown on hydrological cycle. This research has been supported by the Agroclimate.2 VKSZ_12-1-2013-0034 project, and the corresponding author's work was also supported by the János Bolyai Scholarship of the Hungarian Academy of Sciences.

  6. Optimization and Performance Analysis of a Supersonic Conical-Flow Waverider for a Deck-Launched Intercept Mission

    DTIC Science & Technology

    1993-06-01

    radius aid 20 minutes of comibat follovcu by retum to the carrer . A conical-flow waweider served as the starting pount for the aircraft configuration. A...design, test meia adj p teat paramieter siekction were studied for planned low speed wind and water tunnel tests as well as performance predictions fir die... planned win~d tunnel tests. 14. SUBJECT TERMS 15. NUMBER OF PAGES Waveniders, Hypersonics, Aircraft Design 82 `16. PRICE CODE 17. SECURITY

  7. Studies of limb-dislodging forces acting on an ejection seat occupant.

    PubMed

    Schneck, D J

    1980-03-01

    A mathematical theory is being developed in order to calculate the aerodynamic loading to which a pilot is exposed during high-speed ejections. Neglecting the initial effects of flow separation, results thus far indicate that a pilot's musculoskeletal system is not likely to withstand the tendency for limb-flailing if he is ejecting at Mach numbers in excess of about 0.7. This tendency depends very strongly upon the angle at which the pilot's limbs intercept a high-speed flow; the forces that cause limb dislodgement increase dramatically with speed of ejection. Examining the time-course of limb-dislodging forces after the initial onset of windblast, the theory further predicts the generation of a double vortex street pattern on the downstream side of the limbs of an ejection seat occupant. This results in the corresponding appearance of oscillating forces tending to cause lateral motion (vibration) of the limbs. The amplitude and frequency of these oscillating forces are also very dependent on the Mach number of ejection and the angle at which the pilot's limbs intercept the flow. However, even at moderate Mach numbers, the frequency can be as high as 100 cycles per second, and the amplitude rapidly exceeds a pilot's musculo-skeletal resistive powers for Mach numbers above 0.7.

  8. Application of membrane distillation for the treatment of anaerobic membrane bioreactor effluent: An especial attention to the operating conditions.

    PubMed

    Liu, Chang; Chen, Lin; Zhu, Liang

    2018-06-04

    This study was carried out by applying the direct contact membrane distillation (DCMD) into the treatment of effluent from anaerobic membrane bioreactor. The treatment efficiency of DCMD was highly emphasized, which was expected to be improved through the optimization of operating conditions. Three operating conditions, including temperature difference, cross-flow velocity and membrane pore size, were considered. The relative flux (the ratio of actual flux to initial flux) increased from 0.50 to 0.98 as the operating conditions changed and that was enhanced by the increment of temperature difference and cross-flow velocity. Regarding the wastewater treatment efficiency, except for ammonia nitrogen, the interception ratio was greater than 90.0%, which even reached 99.0% for COD Cr , protein and polysaccharide by optimizing operating conditions. In addition, the interception ratio of PO 4 3- -P almost reached 100.0% under any operating condition. Further study about membrane fouling was carried out, and the crystallization fouling was found to be the main fouling type. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Interannual and long-term changes in the trophic state of a multibasin lake: Effects of morphology, climate, winter aeration, and beaver activity

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William; Reneau, Paul C.

    2016-01-01

    Little St. Germain Lake (LSG), a relatively pristine multibasin lake in Wisconsin, USA, was examined to determine how morphologic (internal), climatic (external), anthropogenic (winter aeration), and natural (beaver activity) factors affect the trophic state (phosphorus, P; chlorophyll, CHL; and Secchi depth, SD) of each of its basins. Basins intercepting the main flow and external P sources had highest P and CHL and shallowest SD. Internal loading in shallow, polymictic basins caused P and CHL to increase and SD to decrease as summer progressed. Winter aeration used to eliminate winterkill increased summer internal P loading and decreased water quality, while reductions in upstream beaver impoundments had little effect on water quality. Variations in air temperature and precipitation affected each basin differently. Warmer air temperatures increased productivity throughout the lake and decreased clarity in less eutrophic basins. Increased precipitation increased P in the basins intercepting the main flow but had little effect on the isolated deep West Bay. These relations are used to project effects of future climatic changes on LSG and other temperate lakes.

  10. Rainfall interception from a lowland tropical rainforest in Brunei

    NASA Astrophysics Data System (ADS)

    Dykes, A. P.

    1997-12-01

    Results from a programme of throughfall measurements in a lowland tropical rainforest in Brunei, northwest Borneo, indicate that interception losses amount to 18% of the gross incident rainfall. The high annual rainfall experienced by the study area results in annual interception losses of around 800 mm, which may result in total annual evapotranspiration losses significantly higher than in other rainforest locations. An improved version of Gash's analytical interception model is tested on the available data using assumed values for the "forest" parameters, and is found to predict interception losses extremely well. The model predictions are based on an estimated evaporation rate during rainfall of 0.71 mm h -1. This is significantly higher than has been reported in other tropical studies. It is concluded that these results are distinctive when compared with previous results from rainforests, and that further, detailed work is required to establish whether the enhanced evaporation rate is due to advective effects associated with the maritime setting of the study area.

  11. Annual and average estimates of water-budget components based on hydrograph separation and PRISM precipitation for gaged basins in the Appalachian Plateaus Region, 1900-2011

    USGS Publications Warehouse

    Nelms, David L.; Messinger, Terence; McCoy, Kurt J.

    2015-07-14

    As part of the U.S. Geological Survey’s Groundwater Resources Program study of the Appalachian Plateaus aquifers, annual and average estimates of water-budget components based on hydrograph separation and precipitation data from parameter-elevation regressions on independent slopes model (PRISM) were determined at 849 continuous-record streamflow-gaging stations from Mississippi to New York and covered the period of 1900 to 2011. Only complete calendar years (January to December) of streamflow record at each gage were used to determine estimates of base flow, which is that part of streamflow attributed to groundwater discharge; such estimates can serve as a proxy for annual recharge. For each year, estimates of annual base flow, runoff, and base-flow index were determined using computer programs—PART, HYSEP, and BFI—that have automated the separation procedures. These streamflow-hydrograph analysis methods are provided with version 1.0 of the U.S. Geological Survey Groundwater Toolbox, which is a new program that provides graphing, mapping, and analysis capabilities in a Windows environment. Annual values of precipitation were estimated by calculating the average of cell values intercepted by basin boundaries where previously defined in the GAGES–II dataset. Estimates of annual evapotranspiration were then calculated from the difference between precipitation and streamflow.

  12. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Schellekens, J.; Scatena, F. N.; Bruijnzeel, L. A.; Wickel, A. J.

    1999-12-01

    Recent surveys of tropical forest water use suggest that rainfall interception by the canopy is largest in wet maritime locations. To investigate the underlying processes at one such location—the Luquillo Experimental Forest in eastern Puerto Rico—66 days of detailed throughfall and above-canopy climatic data were collected in 1996 and analysed using the Rutter and Gash models of rainfall interception. Throughfall occurred on 80% of the days distributed over 80 rainfall events. Measured interception loss was 50% of gross precipitation. When Penman-Monteith based estimates for the wet canopy evaporation rate (0.11 mm h -1 on average) and a canopy storage of 1.15 mm were used, both models severely underestimated measured interception loss. A detailed analysis of four storms using the Rutter model showed that optimizing the model for the wet canopy evaporation component yielded much better results than increasing the canopy storage capacity. However, the Rutter model failed to properly estimate throughfall amounts during an exceptionally large event. The analytical model, on the other hand, was capable of representing interception during the extreme event, but once again optimizing wet canopy evaporation rates produced a much better fit than optimizing the canopy storage capacity. As such, the present results support the idea that it is primarily a high rate of evaporation from a wet canopy that is responsible for the observed high interception losses.

  13. 15 CFR 742.13 - Communications intercepting devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... 742.13 Section 742.13 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... POLICY-CCL BASED CONTROLS § 742.13 Communications intercepting devices. (a) License requirement. (1) In... Canada, for ECCNs having an “SL” under the “Reason for Control” paragraph. These items include any...

  14. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

    2014-02-01

    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

  15. Comparison of the evapotranspiration and its components before and after thinning in Japanese cedar and Japanese cypress forest

    NASA Astrophysics Data System (ADS)

    Tateishi, Makiko; Xiang, Yang; Matsuda, Hiroki; Saito, Takami; Sun, Haotian; Otsuki, Kyoichi; Kasahara, Tamao; Onda, Yuichi

    2014-05-01

    Water source area of Japan is often covered by forest, and 40 % of forest cover is coniferous plantation. Thinning has become a major tool in the management of plantation in recent years, but its effects on water cycle and its components are yet to be evaluated well. In this study, we investigated the changes in evapotranspiration and its components, including stand transpiration and canopy interception loss, after thinning in 50 years old Japanese cedar and Japanese cypress plantation at Yayama experimental catchment in Fukuoka, Japan. We established study plot in each Japanese cedar and Japanese cypress stand. Sap flow measurement was conducted for evaluating stand transpiration in each plot. Through fall and stem flow were also monitored to estimate canopy interception loss. The experiments were conducted over two years. During the measurements, 50 % of trees were thinned randomly in entire catchment, which has an area of 2.98 ha. Stem density was changed from 3945 to 1977 trees per ha after thinning. The reduction of daily stand transpiration in the studied Japanese cedar and cypress stands after thinning were 31.6 % and 48.2 % under the same condition of microclimate, respectively. These values were comparable to the changes in total sapwood area, 34.2 % and 44.5 %, and sap flow density did not change after thinning. It implies that sapwood area is a primary determinant of stand transpiration. Canopy interception ratios were 27 % and 26 % for Japanese cedar and cypress before thinning, and the ratios decreased to 24 % and 21 % after thinning, respectively. Thus, we obtained the changes in annual evapotranspiration and its components at catchment scale by using observation and models. The changes in partitioning of evapotranspiration is also discussed. The evapotranspiration before and after thinning were also compared to water balance data in this study site.

  16. The use of Mediterranean shrub to flight against the land degradation. The rainfall partitioning fluxes

    NASA Astrophysics Data System (ADS)

    García-Estringana, Pablo; Nieves Alonso-Blazquez, M.; Alegre, Jesús; Cerdà, Artemi

    2014-05-01

    Desertification can be triggered by the lost of vegetation (Izzo et al., 2013). One of the impacts of the lack of vegetation is the increase in the effective rainfall and then higher soil and water losses. Vegetation can reduce the effective rainfall by interception. To recover the land that is affected by Desertification we must select plant species that will intercept the rainfall, but will not avoid the rainfall to reach the soil. This is why, studies on the plant rainfall interception are relevant to flight Land Degradation processes. Soil erosion is highly dependent on the effective rainfall (Cerdà and Lasanta, 2005; Haile and Fetene; 2012; Miao et al., 2012, Prokop and Poręba, 2012). The amount of rainfall that reaches the soil surface and can contribute to detach and transport material is determined by the interception of plants. Interception is also a key factor of the watershed hydrology (Zema et al., 2012). The importance of the rainfall partitioning fluxes is related to the climatic conditions, as climate control the plant cover and the soil properties, and then the soil losses (Cerdà, 1998). Although the shrubs has been seen as a key vegetation cover in semiarid lands to control the soil and water losses (Cerdà and Doerr, 2007) little information is available about rainfall interception in Mediterranean shrub vegetation, due to technical difficulties to measure them in such small-sized vegetation (Belmonte Serrato and Romero Diaz, 1998). The aim of this work was to assess the influence of different Mediterranean shrubs (Retama sphaerocarpa, Colutea arborescens, Dorycnium pentaphyllum, Medicago strasseri, Pistacia Lentiscus and Quercus coccifera) on rainfall partitioning fluxes (interception losses, throughfall and stemflow) in semiarid environments. The experiment was carried out under natural rainfall conditions with live specimens during two years, with automatic measurement of rainfall partitioning fluxes. In order to assess the influence of biotic and abiotic factors on rainfall partitioning fluxes and their seasonal variation, twenty rainfall events, ten small-size events (P≤10 mm) and ten major events (P>10 mm), were selected. Great differences were observed among species, with interception losses varying between 10% for R. sphaerocarpa to greater than 36% for D. pentaphyllum and M. strasseri, and with stemflow percentages changing between less than 11% for D. pentaphyllum and M. strasseri and 20% for R. sphaerocarpa (Garcia-Estringana, 2011). Pistacia Lentiscus intercepted 21 % of the rainfall and Quercus coccifera 31 %. Species was the most important biotic factor, rainfall volume was the most significant abiotic factor. Stemflow percentages increased and interception losses percentages decreased as rainfall volume increased, both until a stable value reached when rainfall volume was greater than 10 mm. Stemflow and interception losses varied greatly in small events, consequently it is difficult to predict rainfall interception fluxes in semiarid regions, where small events are the most frequent ones. Rainfall volume events greater than 10 mm are much less frequent, but more rainfall is concentrated around the stem base, being during these events when species which used stemflow as an adaptive mechanism to aridity store water in deep soil layers. Stemflow reached their maximum values in autumn and winter, and their minimum values in summer, unlike interception losses, which were higher in summer, except for M. strasseri because it sheds all its leaves. Hydrologic impact of shrubs was very variable depending on the species, and its capacity to form dense communities. Therefore it makes this type of vegetation of great interest in the Mediterranean region, not only by the effect on soil protection (Garcia-Estringana et al., 2010), but also by the effect on hydrology and water availability in a region where water is a scarce resource and shrub vegetation is proliferating as a result of agricultural abandonment. Acknowledgements TThe research projects 07 M/0077/1998, 07 M/0023/2000 and RTA01-078-C2- 2, GL2008-02879/BTE, LEDDRA243857 and RECARE FP7 project 603498 supported this research. References: Belmonte Serrato, F., Romero Díaz, A. 1998. A simple technique for measuring rainfall interception by small shrub: "interception flow collection box. Hydrological Processes 12, 471-481. Cerdà, A. 1998. Relationship between climate and soil hydrological and erosional characteristics along climatic gradients in Mediterranean limestone areas. Geomorphology, 25, 123-134. Cerdà, A., Doerr, S.H. 2007. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrological Processes, 21, 2325-2336. doi: 10.1016/j.catena.2008.03.010. Cerdà, A., Lasanta, A. 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 1. Water and sediment yield. Catena, 60, 59-80. Garcia-Estringana, P. 2011. Efectos de diferentes tipos de vegetación mediterránea sobre la hidrología y la pérdida de suelo. Tesis Doctoral, Universidad de Alcalá, Facultad de Ciencias, pp. 170. Garcia-Estringana, P., Alonso-Blázquez, N., Marques, M.J., Bienes, R., Alegre, J. 2010. Direct and indirect effects of Mediterranean vegetation on runoff and soil loss. European Journal of Soil Science 61, 174-185. Izzo, M., Araujo, N., Aucelli, P. P. C., Maratea, A., and Sánchez, A. 2013. Land sensitivity to Desertification in the Dominican Republic: an adaptation of the ESA methodology. Land Degradation & Development, 24: 486- 498. DOI 10.1002/ldr.2241 Lasanta, A., Cerdà, A. 2005. Long-term erosional responses after fire in the Central Spanish Pyrenees: 2. Solute release. Catena, 60, 80-101 Miao, C. Y., Yang, L., Chen, X. H., Gao, Y. 2012. The vegetation cover dynamics (1982-2006) in different erosion regions of the Yellow River Basin, China. Land Degradation & Development, 23: 62- 71. DOI 10.1002/ldr.1050 Prokop, P., Poręba, G. J. 2012. Soil erosion associated with an upland farming system under population pressure in Northeast India. Land Degradation & Development, 23: 310- 321. DOI 10.1002/ldr.2147 Zema, D. A., Bingner, R. L., Denisi, P., Govers, G., Licciardello, F., Zimbone, S. M. 2012. Evaluation of runoff, peak flow and sediment yield for events simulated by the AnnAGNPS model in a belgian agricultural watershed. Land Degradation & Development, 23: 205- 215. DOI 10.1002/ldr.1068

  17. Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach.

    PubMed

    Ala-Aho, Pertti; Tetzlaff, Doerthe; McNamara, James P; Laudon, Hjalmar; Kormos, Patrick; Soulsby, Chris

    2017-07-01

    Use of stable water isotopes has become increasingly popular in quantifying water flow paths and travel times in hydrological systems using tracer-aided modeling. In snow-influenced catchments, snowmelt produces a traceable isotopic signal, which differs from original snowfall isotopic composition because of isotopic fractionation in the snowpack. These fractionation processes in snow are relatively well understood, but representing their spatiotemporal variability in tracer-aided studies remains a challenge. We present a novel, parsimonious modeling method to account for the snowpack isotope fractionation and estimate isotope ratios in snowmelt water in a fully spatially distributed manner. Our model introduces two calibration parameters that alone account for the isotopic fractionation caused by sublimation from interception and ground snow storage, and snowmelt fractionation progressively enriching the snowmelt runoff. The isotope routines are linked to a generic process-based snow interception-accumulation-melt model facilitating simulation of spatially distributed snowmelt runoff. We use a synthetic modeling experiment to demonstrate the functionality of the model algorithms in different landscape locations and under different canopy characteristics. We also provide a proof-of-concept model test and successfully reproduce isotopic ratios in snowmelt runoff sampled with snowmelt lysimeters in two long-term experimental catchment with contrasting winter conditions. To our knowledge, the method is the first such tool to allow estimation of the spatially distributed nature of isotopic fractionation in snowpacks and the resulting isotope ratios in snowmelt runoff. The method can thus provide a useful tool for tracer-aided modeling to better understand the integrated nature of flow, mixing, and transport processes in snow-influenced catchments.

  18. Deflection of the local interstellar dust flow by solar radiation pressure

    NASA Technical Reports Server (NTRS)

    Landgraf, M.; Augustsson, K.; Grun, E.; Gustafson, B. A.

    1999-01-01

    Interstellar dust grains intercepted by the dust detectors on the Ulysses and Galileo spacecrafts at heliocentric distances from 2 to 4 astronomical units show a deficit of grains with masses from 1 x 10(-17) to 3 x 10(-16) kilograms relative to grains intercepted outside 4 astronomical units. To divert grains out of the 2- to 4-astronomical unit region, the solar radiation pressure must be 1.4 to 1.8 times the force of solar gravity. These figures are consistent with the optical properties of spherical or elongated grains that consist of astronomical silicates or organic refractory material. Pure graphite grains with diameters of 0.2 to 0.4 micrometer experience a solar radiation pressure force as much as twice the force of solar gravity.

  19. Technical note: Evaluation of urinary purine derivatives in comparison with duodenal purines for estimating rumen microbial protein supply in sheep.

    PubMed

    Kozloski, G V; Stefanello, C M; Oliveira, L; Filho, H M N Ribeiro; Klopfenstein, T J

    2017-02-01

    A data set of individual observations was compiled from digestibility trials to examine the relationship between the duodenal purine bases (PB) flow and urinary purine derivatives (PD) excretion and the validity of different equations for estimating rumen microbial N (Nm) supply based on urinary PD in comparison with estimates based on duodenal PB. Trials (8 trials, = 185) were conducted with male sheep fitted with a duodenal T-type cannula, housed in metabolic cages, and fed forage alone or with supplements. The amount of PD excreted in urine was linearly related to the amount of PB flowing to the duodenum ( < 0.05). The intercept of the linear regression was 0.180 mmol/(d·kg), representing the endogenous excretion of PD, and the slope was lower than 1 ( < 0.05), indicating that only 0.43% of the PB in the duodenum was excreted as PD in urine. The Nm supply estimated by either approach was linearly related ( < 0.05) to the digestible OM intake. However, the Nm supply estimated through either of 3 published PD-based equations probably underestimated the Nm supply in sheep.

  20. Real-World Contexts, Multiple Representations, Student-Invented Terminology, and Y-Intercept

    ERIC Educational Resources Information Center

    Davis, Jon D.

    2007-01-01

    One classroom using two units from a "Standards"-based curriculum was the focus of a study designed to examine the effects of real-world contexts, delays in the introduction of formal mathematics terminology, and multiple function representations on student understanding. Students developed their own terminology for y-intercept, which was tightly…

  1. Do sampling methods differ in their utility for ecological monitoring? Comparison of line-point intercept, grid-point intercept, and ocular estimate methods

    USDA-ARS?s Scientific Manuscript database

    This study compared the utility of three sampling methods for ecological monitoring based on: interchangeability of data (rank correlations), precision (coefficient of variation), cost (minutes/transect), and potential of each method to generate multiple indicators. Species richness and foliar cover...

  2. The combined effect of platelet storage media and intercept pathogen reduction technology on platelet activation/activability and cellular apoptosis/necrosis: Lisbon-RBS experience.

    PubMed

    Carvalho, Helena; Alguero, Carmen; Santos, Matilde; de Sousa, Gracinda; Trindade, Helder; Seghatchian, Jerard

    2006-04-01

    Platelets are known to undergo shape change, activation, a release reaction and apoptosis/necrosis during processing and storage, all of which are collectively known as the platelet storage lesion. Any additional processing may have some deleterious impact on platelet activability and functional integrity, which need to be investigated. This preliminary investigation was undertaken to establish the combined effects of standard platelet storage media and the intercept pathogen reduction technology on platelet activation and activability during 7 day storage, using buffy-coat derived platelets in standard storage media containing 35% plasma (N=24). P-selectin (CD62p) expression, a classical marker of platelet activation, and phosphatidylserine (PS) exposure on the platelet surface membrane, a hallmark of cellular necrosis/apoptosis, were both measured by flow cytometry. The results reveal significant increases in activation, from an average of 22.7% on day 1 before treatment to 31.6% on day 2 after treatment and 58.7% at the end of storage. Concomitantly, the basal expression of PS was slightly increased from 1.9% to 2.8% at day 2 after treatment and 7.3% at the end of storage. However, the functional reserve of platelets during storage, which reflects their capability to undergo activation and the release reaction when platelets were challenged with either calcium ionophore or thrombin, was relatively well maintained. These preliminary data confirm the earlier data on the use of intercept, and for the first time, based on the assessment of platelet functional integrity, suggest that platelet functional reserve is relatively well maintained, with little change in the formation of apoptotic cells.

  3. Seasonal Snowpack Dynamics and Runoff in a Maritime Forested Basin, Niigata, Japan

    NASA Astrophysics Data System (ADS)

    Whitaker, A. C.; Sugiyama, H.

    2005-12-01

    Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff is given through three complete winter seasons 2002-05 in: (1) mature cedar stand, (2) larch stand, and (3) regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter base-flow, mid-winter melt, rain-on-snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterised by constant ground melt of 0.8-1.0 mm/day. Rapid response to mid-winter melt or rainfall shows that the snowpack remains in a ripe or near-ripe condition throughout the snowcover season. Hourly and daily lysimeter discharge was greatest during rain-on-snow with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain-on-snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4.0 times greater in the opening compared to the mature cedar, and 48-hour discharge was up to 2.5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models.

  4. Effects of elevated atmospheric CO2 and tropospheric O3 on tree branch growth and implications for hydraulic budgeting

    Treesearch

    L. Rhea; J. King; Mark Kubiske; N. Saliendra; R. Teclaw

    2010-01-01

    The forest hydrologic budget may be impacted by increasing CO2 and tropospheric O3. Efficient means to quantify such effects are beneficial. We hypothesized that changes in the balance of canopy interception, stem flow, and through-fall in the presence of elevated CO2 and O3...

  5. Study on Hydrological Functions of Litter Layers in North China

    PubMed Central

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2013-01-01

    Canopy interception, throughfall, stemflow, and runoff have received considerable attention during the study of water balance and hydrological processes in forested ecosystems. Past research has either neglected or underestimated the role of hydrological functions of litter layers, although some studies have considered the impact of various characteristics of rainfall and litter on litter interception. Based on both simulated rainfall and litter conditions in North China, the effect of litter mass, rainfall intensity and litter type on the maximum water storage capacity of litter (S) and litter interception storage capacity (C) were investigated under five simulated rainfall intensities and four litter masses for two litter types. The results indicated: 1) the S values increased linearly with litter mass, and the S values of broadleaf litter were on average 2.65 times larger than the S values of needle leaf litter; 2) rainfall intensity rather than litter mass determined the maximum interception storage capacity (Cmax); Cmax increased linearly with increasing rainfall intensity; by contrast, the minimum interception storage capacity (Cmin) showed a linear relationship with litter mass, but a poor correlation with rainfall intensity; 3) litter type impacted Cmax and Cmin; the values of Cmax and Cmin for broadleaf litter were larger than those of needle leaf litter, which indicated that broadleaf litter could intercepte and store more water than needle leaf litter; 4) a gap existed between Cmax and Cmin, indicating that litter played a significant role by allowing rainwater to infiltrate or to produce runoff rather than intercepting it and allowing it to evaporate after the rainfall event; 5) Cmin was always less than S at the same litter mass, which should be considered in future interception predictions. Vegetation and precipitation characteristics played important roles in hydrological characteristics. PMID:23936188

  6. Study on Light Interception and Biomass Production of Different Cotton Cultivars

    PubMed Central

    Mao, Shuchun; Han, Yingchun; Feng, Lu; Wang, Guoping; Yang, Beifang; Zhi, Xiaoyu; Fan, Zhengyi; Lei, Yaping; Du, Wenli; Li, Yabing

    2016-01-01

    Identifying the characteristics of light interception and utilization is of great significance for improving the potential photosynthetic activity of plants. The present research investigates the differences in absorbing and converting photosynthetically active radiation (PAR) among various cotton cultivars. Field experiments were conducted in 2012, 2013 and 2014 in Anyang, Henan, China. Ten cultivars with different maturity and plant architectures were planted at a density of 60,000 plants ha-1 in randomized blocks, with three replicates. The spatial distribution of light in canopy was measured and quantified with a geo-statistical method, according to which the cumulative amount of intercepted radiation was calculated by Simpson 3/8 rules. Finally, light interception was analyzed in association with the biomass accumulation of different cultivars. The key results were: (1) late-maturing varieties with an incompact plant architecture captured more solar radiation throughout the whole growth period than middle varieties with columnar architecture and even more than early varieties with compact architecture, and they produced more biomass; (2) the highest PAR interception ratio and the maximum biomass accumulation rate occurred during the blossoming and boll-forming stage, when leaf area index (LAI) reached its peak; (3) the distribution within the canopy presented a significant spatial heterogeneity, and at late growing stage, the PAR was mainly intercepted by upper canopies in incompact-type plant communities, but was more homogeneous in columnar-type plants; however, the majority of radiation was transmitted through the canopy in compact-type colonies; (4) there was not a consistent variation relationship between the cumulative intercepted PAR (iPAR) and biomass among these cultivars over the three years of the study. Based on these results, we attempted to clarify the distinction in light spatial distribution within different canopies and the patterns of PAR interception in diverse cotton cultivars with different hereditary characters, thereby providing a significant basis for researchers to select cultivars with appropriate growth period and optimal plant architecture for improvement of light interception and utilization. PMID:27227675

  7. Electrical resistivity surveys to understand vegetation-water interlinkages in a northern latitude headwater catchment

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Dick, J.; Tetzlaff, D.; Bradford, J.

    2016-12-01

    The role of vegetation on the partitioning of precipitation, and the subsequent storage and release of water within the landscape is poorly understood. In particular, the relationship between vegetation and soil moisture is complex and reciprocal. The role of soil moisture as the primary source of water to plants may affect vegetation distribution. In turn, the structure of vegetation canopies may regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in the inputs, together with complex patterns of water uptake from highly distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Here, we present a study combining 3D and 2D ERT surveys with soil moisture measurements in a 3.2km upland catchment in the Scottish Highlands to understand influences of different vegetation types on spatio-temporal dynamics in soil moisture. The study focussed on one year of fortnightly ERT surveys to investigate plant-soil-water interactions within the root zone in podzolic soils. Locations were selected in both forest stands of 15m high Scots pine (Pinus sylvestris) and non-forest locations dominated by heather (Calluna vulgaris) shrubs (<0.5m high). These dominant species are typical of forest and non-forest vegetation communities in the Scottish Highlands. Results showed differences in the soil moisture dynamics under the different vegetation types, with heterogeneous patterns in the forested site mainly correlated with canopy cover and mirroring interception losses, with pronounced wetting cycles of the soil surrounding the bole of trees as a consequence of stem flow. Temporal variability in the forested site was greater, probably due to the interception, and increased evapotranspiration losses relative to the heather site, with drying typically being focussed on the areas around the trees, and reflecting the amount of water uptake. Moisture changes in the heather site were fairly heterogeneous are related to micro-topographic affects, lower interception ( 30% compared with 45%) and a smaller microclimatic effect of the canopy which serves to create greater fluctuations in soil moisture. Our results confirm the value in using geophysics to spatially elucidate subsurface plant-soil-water interactions.

  8. The Amazon forest-rainfall feedback: the roles of transpiration and interception

    NASA Astrophysics Data System (ADS)

    Dekker, Stefan; Staal, Arie; Tuinenburg, Obbe

    2017-04-01

    In the Amazon, deep-rooted trees increase local transpiration and high tree cover increase local interception evaporation. These increased local evapotranspiration fluxes to the atmosphere have both positive effects on forests down-wind, as they stimulate rainfall. Although important for the functioning of the Amazon, we have an inadequate assessment on the strength and the timing of these forest-rainfall feedbacks. In this study we (i) estimate local forest transpiration and local interception evaporation, (ii) simulate the trajectories of these moisture flows through the atmosphere and (iii) quantify their contributions to the forest-rainfall feedback for the whole Amazon basin. To determine the atmospheric moisture flows in tropical South America we use a Lagrangian moisture tracking algorithm on 0.25° (c. 25 km) resolution with eight atmospheric layers on a monthly basis for the period 2003-2015. With our approach we account for multiple re-evaporation cycles of this moisture. We also calculate for each month the potential effects of forest loss on evapotranspiration. Combined, these calculations allow us to simulate the effects of land-cover changes on rainfall in downwind areas and estimate the effect on the forest. We found large regional and temporal differences in the importance how forest contribute to rainfall. The transpiration-rainfall feedback is highly important during the dry season. Between September-November, when large parts of the Amazon are at the end of the dry season, more than 50% of the rainfall is caused by the forests upstream. This means that droughts in the Amazon are alleviated by the forest. Furthermore, we found that much moisture cycles several times during its trajectory over the Amazon. After one evapotranspiration-rainfall cycle, more than 40% of the moisture is re-evaporated again. The interception-evaporation feedback is less important during droughts. Finally from our analysis, we show that the forest-rainfall feedback is essential for the resilience of the south-western and northern parts of the Amazon forest. Without the forest-rainfall feedbacks, these forest wouldn't exist.

  9. Time series of canopy intercepted water and dew observed in a tropical tree plantation by means of microwave radiometry

    NASA Astrophysics Data System (ADS)

    Schneebeli, M.; Wolf, S.; Kunert, N.; Eugster, W.; Mätzler, C.

    2012-04-01

    During summer and autumn 2007, a 11 GHz microwave radiometer was deployed in an experimental tree plantation in Sardinilla, Panama. With this instrument, the opacity of the tree canopy was derived from incoming brightness temperatures received on the ground. A collocated eddy-covariance flux tower measured water vapor fluxes and meteorological variables above the canopy. It was found that canopy intercepted rain and dew formation modulated the diurnal opacity cycle. With an enhanced canopy opacity model accounting for water deposited on the leaves, we quantified the influence of canopy stored water (i.e. intercepted water and dew) on the opacity. With this technique it was possible to directly monitor high resolution time series of dew formation and rain interception during a period of two weeks. In contrast to through-fall measurements, this new technique allows to determine the amount of intercepted rain more precisely and during day and night since evaporation effects do not hamper the accuracy of the method. We found that during light rainfall up to 60% of the rain amount is intercepted by the canopy whereas during periods of intense rainfall, only 4% were intercepted. On average, about 15% of the rain amount was intercepted during rainfalls of medium intensities. By comparing the interception with the water vapor flux time series it was found that intercepted water is evaporated rapidly after it is deposited on the leaves, which resulted in an enhanced water vapor flux. Our study also provides the first direct measurements and quantifications of the temporal evolution of dew formation and evaporation in a tree canopy on a diurnal base. Dew accumulated during the night and until about 2 h after sunrise, when the water vapor flux began to exceed the dew formation rate. The dew continued to evaporate for another 3.5 h until the surface of the leaves was completely dry. On average, 0.17 mm of dew was formed during the night. Dew evaporation contributed 5% to the total water vapor flux measured above the canopy.

  10. Proceedings of the NRDEC (Natick RD&E Center) Science Symposium Held on 2-4 June 1986 in Natick, Massachusetts. Volume 1

    DTIC Science & Technology

    1986-06-04

    turbulence as a means of increasing the external heat transfer coefficient. To evaluate the various evaporator des igns, each evaporator in turn was plumbed...water was pumped through the i ns ide surface while air flowed around t he outs i de . The amount of heat being transferred could be calculated by...intercept, (infinite wate r flow), the inside heat transfer coefficient can be de termined. The heat transfer res istances of the evaporator material

  11. Forest - water dynamics in a Mediterranean mountain environment.

    NASA Astrophysics Data System (ADS)

    Eliades, Marinos; Bruggeman, Adriana; Lange, Manfred; Camera, Corrado; Christou, Andreas

    2015-04-01

    In semi-arid Mediterranean mountain environments, the soil layer is very shallow or even absent due to the steep slopes. Soil moisture in these environments is limited, but still vegetation thrives. There is limited knowledge about where the vegetation extracts the water from, how much water it uses, and how it interacts with other processes in the hydrological cycle. The main objective of this study is to quantify the water balance components of a Pinus brutia forest at tree level, by measuring the tree transpiration and the redistribution of the water from trees to the soil and the bedrock fractures. The study area is located on a forested hill slope on the outside edge of Peristerona watershed in Cyprus. The site was mapped with the use of a total station and a differentially-corrected GPS, in order to create a high resolution DEM and soil depth map of the area. Soil depth was measured at a 1-m grid around the trees. Biometric measurements were taken from a total of 45 trees. Four trees were selected for monitoring. Six sap flow sensors are installed in the selected trees for measuring transpiration and reverse flows. Two trees have two sensors each to assess the variability. Four volumetric soil moisture sensors are installed around each tree at distances 1 m and 2 m away from the tree trunk. An additional fifth soil moisture sensor is installed in soil depths exceeding 20-cm depth. Four throughfall rain gauges were installed randomly around each tree to compute interception losses. Stemflow is measured by connecting an opened surface plastic tube collar at 1.6 m height around each tree trunk. The trunk surface gaps were filled with silicon glue in order to avoid any stemflow losses. The plastic collar is connected to a sealed surface rain gauge. A weather station monitors all meteorological variables on an hourly basis. Results showed a maximum sap flow volume of 77.9 L/d, from November to January. The sensors also measured a maximum negative flow of 7.9 L/d, indicating reverse flow. Soil moisture ranged between 10 to 37 % at all sensors. Soil moisture contents showed an increase over 100% after rainfall events, but decreased quickly. Also individual sensor peak values were recorded when rainfall was not occurring, indicating soil moisture increase as a result of reverse flow. Interception losses revealed values, ranging from 10% to 50 % of the total rainfall. Stem flow was recorded after intense rain fall events. To our knowledge, this is the first water use quantification study for Pinus brutia trees. The negative sap flow implies that these trees have the ability to harvest water from the air moisture and redistribute it in the ground. Perhaps part of the intercepted water is captured by the tree and thus contributing to the negative sap flow. All the variables will be monitored for two more years to quantify the role of the trees in the water balance of the area.

  12. Volcano fixes nitrogen into plant-available forms

    USGS Publications Warehouse

    Huebert, B.; Vitousek, P.; Sutton, J.; Elias, T.; Heath, J.; Coeppicus, S.; Howell, S.; Blomquist, B.

    1999-01-01

    Hawaiian montane ecosystems developing on recent tephra deposits contain more fixed nitrogen than conventional sources can explain. Heath and Huebert (1999) demonstrated that cloud water interception is the mechanism by which this extra nitrogen is deposited, but could not identify its source. We show here that atmospheric dinitrogen is fixed at the surface of active lava flows, producing concentrations of NO which are higher than those found in most urban rush hour air pollution. Over a period of hours this NO is blown away from the island and oxidized to nitrate. Interruptions in the trade wind flow can return this nitrate to the island to be deposited in cloud water. Thus, fixation on active lava flows is able to provide nitrogen to developing ecosystems on flows emplaced earlier.

  13. Muscular Proprioception Contributes to the Control of Interceptive Actions

    ERIC Educational Resources Information Center

    Bastin, Julien; Calvin, Sarah; Montagne, Gilles

    2006-01-01

    The authors proposed a model of the control of interceptive action over a ground plane (Chardenon, Montagne, Laurent, & Bootsma, 2004). This model is based on the cancellation of the rate of change of the angle between the current position of the target and the direction of displacement (i.e., the bearing angle). While several sources of visual…

  14. Transport of pesticides and artificial tracers in vertical-flow lab-scale wetlands

    NASA Astrophysics Data System (ADS)

    Durst, Romy; Imfeld, Gwenaël.; Lange, Jens

    2013-01-01

    Wetland systems can be hydrologically connected to a shallow aquifer and intercept upward flow of pesticide-contaminated water during groundwater discharge. However, pesticide transport and attenuation through wetland sediments (WSs) intercepting contaminated water is rarely evaluated quantitatively. The use of artificial tracers to evaluate pesticide transport and associated risks is a fairly new approach that requires evaluation and validation. Here we evaluate during 84 days the transport of two pesticides (i.e., isoproturon (IPU) and metalaxyl (MTX)) and three tracers (i.e., bromide (Br), uranine (UR), and sulforhodamine B (SRB)) in upward vertical-flow vegetated and nonvegetated lab-scale wetlands. The lab-scale wetlands were filled with outdoor WSs and were continuously supplied with tracers and the pesticide-contaminated water. The transport of IPU and UR was characterized by high solute recovery (approximately 80%) and low retardation compared to Br. The detection of desmethylisoproturon in the wetlands indicated IPU degradation. SRB showed larger retardation (>3) and lower recovery (approximately 60%) compared to Br, indicating that sorption controlled SRB transport. MTX was moderately retarded (approximately 1.5), and its load attenuation in the wetland reached 40%. In the vegetated wetland, preferential flow along the roots decreased interactions between solutes and sediments, resulting in larger pesticide and tracer recovery. Our results show that UR and IPU have similar transport characteristics under the tested subsurface-flow conditions, whereas SRB may serve as a proxy for less mobile and more persistent pesticides. Since UR and SRB are not significantly affected by degradation, their use as proxies for fast degrading pollutants may be limited. We anticipate our results to be a starting point for considering artificial tracers for investigating pesticide transport in environments at groundwater/surface-water interfaces.

  15. Intercepting real and simulated falling objects: what is the difference?

    PubMed

    Baurès, Robin; Benguigui, Nicolas; Amorim, Michel-Ange; Hecht, Heiko

    2009-10-30

    The use of virtual reality is nowadays common in many studies in the field of human perception and movement control, particularly in interceptive actions. However, the ecological validity of the simulation is often taken for granted without having been formally established. If participants were to perceive the real situation and its virtual equivalent in a different fashion, the generalization of the results obtained in virtual reality to real life would be highly questionable. We tested the ecological validity of virtual reality in this context by comparing the timing of interceptive actions based upon actually falling objects and their simulated counterparts. The results show very limited differences as a function of whether participants were confronted with a real ball or a simulation thereof. And when present, such differences were limited to the first trial only. This result validates the use of virtual reality when studying interceptive actions of accelerated stimuli.

  16. A novel guidance law using fast terminal sliding mode control with impact angle constraints.

    PubMed

    Sun, Lianghua; Wang, Weihong; Yi, Ran; Xiong, Shaofeng

    2016-09-01

    This paper is concerned with the question of, for a missile interception with impact angle constraints, how to design a guidance law. Firstly, missile interception with impact angle constraints is modeled; secondly, a novel guidance law using fast terminal sliding mode control based on extended state observer is proposed to optimize the trajectory and time of interception; finally, for stationary targets, constant velocity targets and maneuvering targets, the guidance law and the stability of the closed loop system is analyzed and the stability of the closed loop system is analyzed, respectively. Simulation results show that when missile and target are on a collision course, the novel guidance law using fast terminal sliding mode control with extended state observer has more optimized trajectory and effectively reduces the time of interception which has a great significance in modern warfare. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. New Hypervelocity Terminal Intercept Guidance Systems for Deflecting/Disrupting Hazardous Asteroids

    NASA Astrophysics Data System (ADS)

    Lyzhoft, Joshua Richard

    Computational modeling and simulations of visual and infrared (IR) sensors are investigated for a new hypervelocity terminal guidance system of intercepting small asteroids (50 to 150 meters in diameter). Computational software tools for signal-to-noise ratio estimation of visual and IR sensors, estimation of minimum and maximum ranges of target detection, and GPU (Graphics Processing Units)-accelerated simulations of the IR-based terminal intercept guidance systems are developed. Scaled polyhedron models of known objects, such as the Rosetta mission's Comet 67P/C-G, NASA's OSIRIS-REx Bennu, and asteroid 433 Eros, are utilized in developing a GPU-based simulation tool for the IR-based terminal intercept guidance systems. A parallelized-ray tracing algorithm for simulating realistic surface-to-surface shadowing of irregular-shaped asteroids or comets is developed. Polyhedron solid-angle approximation is also considered. Using these computational models, digital image processing is investigated to determine single or multiple impact locations to assess the technical feasibility of new planetary defense mission concepts of utilizing a Hypervelocity Asteroid Intercept Vehicle (HAIV) or a Multiple Kinetic-energy Interceptor Vehicle (MKIV). Study results indicate that the IR-based guidance system outperforms the visual-based system in asteroid detection and tracking. When using an IR sensor, predicting impact locations from filtered images resulted in less jittery spacecraft control accelerations than conducting missions with a visual sensor. Infrared sensors have also the possibility to detect asteroids at greater distances, and if properly used, can aid in terminal phase guidance for proper impact location determination for the MKIV system. Emerging new topics of the Minimum Orbit Intersection Distance (MOID) estimation and the Full-Two-Body Problem (F2BP) formulation are also investigated to assess a potential near-Earth object collision risk and the proximity gravity effects of an irregular-shaped binary-asteroid target on a standoff nuclear explosion mission.

  18. Development of a table tennis robot for ball interception using visual feedback

    NASA Astrophysics Data System (ADS)

    Parnichkun, Manukid; Thalagoda, Janitha A.

    2016-07-01

    This paper presents a concept of intercepting a moving table tennis ball using a robot. The robot has four degrees of freedom(DOF) which are simplified in such a way that The system is able to perform the task within the bounded limit. It employs computer vision to localize the ball. For ball identification, Colour Based Threshold Segmentation(CBTS) and Background Subtraction(BS) methodologies are used. Coordinate Transformation(CT) is employed to transform the data, which is taken based on camera coordinate frame to the general coordinate frame. The sensory system consisted of two HD Web Cameras. The computation time of image processing from web cameras is long .it is not possible to intercept table tennis ball using only image processing. Therefore the projectile motion model is employed to predict the final destination of the ball.

  19. Laminar flow control leading edge glove flight test article development

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.

    1984-01-01

    A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.

  20. Fractional-order information in the visual control of lateral locomotor interception.

    PubMed

    Bootsma, Reinoud J; Ledouit, Simon; Casanova, Remy; Zaal, Frank T J M

    2016-04-01

    Previous work on locomotor interception of a target moving in the transverse plane has suggested that interception is achieved by maintaining the target's bearing angle (often inadvertently confused and/or confounded with the target heading angle) at a constant value. However, dynamics-based model simulations testing the veracity of the underlying control strategy of nulling the rate of change in the bearing angle have been restricted to limited conditions of target motion, and only a few alternatives have been considered. Exploring a wide range of target motion characteristics with straight and curving ball trajectories in a virtual reality setting, we examined how soccer goalkeepers moved along the goal line to intercept long-range shots on goal, a situation in which interception is naturally constrained to movement along a single dimension. Analyses of the movement patterns suggested reliance on combinations of optical position and velocity for straight trajectories and optical velocity and acceleration for curving trajectories. As an alternative to combining such standard integer-order derivatives, we demonstrate with a simple dynamical model that nulling a single informational variable of a self-tuned fractional (rather than integer) order efficiently captures the timing and patterning of the observed interception behaviors. This new perspective could fundamentally change the conception of what perceptual systems may actually provide, both in humans and in other animals. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian river basins during 1985-2005 using variable infiltration capacity approach

    NASA Astrophysics Data System (ADS)

    Das, Pulakesh; Behera, Mukunda Dev; Patidar, Nitesh; Sahoo, Bhabagrahi; Tripathi, Poonam; Behera, Priti Ranjan; Srivastava, S. K.; Roy, Partha Sarathi; Thakur, Praveen; Agrawal, S. P.; Krishnamurthy, Y. V. N.

    2018-03-01

    As a catchment phenomenon, land use and land cover change (LULCC) has a great role in influencing the hydrological cycle. In this study, decadal LULC maps of 1985, 1995, 2005 and predicted-2025 of the Subarnarekha, Brahmani, Baitarani, Mahanadi and Nagavali River basins of eastern India were analyzed in the framework of the variable infiltration capacity (VIC) macro scale hydrologic model to estimate their relative consequences. The model simulation showed a decrease in ET with 0.0276% during 1985-1995, but a slight increase with 0.0097% during 1995-2005. Conversely, runoff and base flow showed an overall increasing trend with 0.0319 and 0.0041% respectively during 1985-1995. In response to the predicted LULC in 2025, the VIC model simulation estimated reduction of ET with 0.0851% with an increase of runoff by 0.051%. Among the vegetation parameters, leaf area index (LAI) emerged as the most sensitive one to alter the simulated water balance. LULC alterations via deforestation, urbanization, cropland expansions led to reduced canopy cover for interception and transpiration that in turn contributed to overall decrease in ET and increase in runoff and base flow. This study reiterates changes in the hydrology due to LULCC, thereby providing useful inputs for integrated water resources management in the principle of sustained ecology.

  2. Influence of the Magnitude and Spatial Distribution of Water Storage in Aquifers on the Character of Baseflow Recessions

    NASA Astrophysics Data System (ADS)

    Nieber, J. L.; Li, W.

    2017-12-01

    The instantaneous groundwater discharge (Qgw) from a watershed is related to volume of drainable water stored (Sgw) within the watershed aquifer(s). The relation is hysteretic and the magnitude of the hysteresis is completely scale-dependent. In the research reported here we apply a previously calibrated (USGS) GSFLOW model to the simulation of surface and subsurface runoff for the Sagehen Creek watershed. This 29.3 km2 watershed is located in the eastern range of the Sierra Nevada Mountains, and most of the precipitation falls in the form of snow. The GSFLOW model is composed of a surface water and shallow subsurface flow hydrology model, PRMS, and a groundwater flow component based on MODFLOW. PRMS is a semi-distributed watershed model, very similar in character to the well-known SWAT model. The PRMS model is coupled with the MODFLOW model in that deep percolation generated within the PRMS model feeds into the MODFLOW model. The simulated baseflow recessions, plotted as -dQ/dt vs Q, show a strong dependence to watershed topography and plot concave downward. These plots show a somewhat weaker dependence on the hydrologic fluxes of evapotranspiration and recharge, with the concave downward shape maintained but somewhat modified by these hydrologic fluxes. As expected the Qgw vs Sgw relation is markedly hysteretic. The cause for this hysteresis is related to the magnitude of water stored, and also the spatial distribution of water stored in the watershed, with the antecedent storage in upland areas controlling the recession flow in late time, while the valley area dominates the recession flow in the early time. Both the minimum streamflow (Qmin ; the flow at the transition between early time and late time uninterrupted recession) and the intercept (intercept of the regression line fit to the recession data on a log-log scale) show a strong relationship with antecedent streamflows. The minimum streamflow, Qmin, is found to be a valid normalizing parameter for producing a unique normalized -dQ/dt vs. Q relation from data manifesting the effects of hysteresis. It is proposed that this normalized relation can be used to improve the performance of low-dimension dynamic models of watershed hydrology that would otherwise not account for hysteresis in Qgw vs Sgw.

  3. Mutual information-based LPI optimisation for radar network

    NASA Astrophysics Data System (ADS)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  4. Indirect interception actions by blind and visually impaired perceivers: echolocation for interceptive actions.

    PubMed

    Vernat, Jean-Philippe; Gordon, Michael S

    2010-02-01

    This research examined the acoustic information used to support interceptive actions by the blind. Congenitally blind and severely visually impaired participants (all wearing an opaque, black eye-mask) were asked to listen to a target ball rolling down a track. In response, participants rolled their own ball along a perpendicular path to intercept the target. To better understand what information was used the echoic conditions and rolling dynamics of the target were varied across test sessions. In addition the rolling speed of the target and the distance of the participant from the target were varied across trials. Results demonstrated that participants tended to perform most accurately at moderate speeds and distances, overestimating the target's arrival at the fastest speed, and underestimating it at the slowest speed. However, changes to the target's dynamics, that is, the amount of deceleration it underwent on approach, did not strongly influence performance. Echoic conditions were found to affect performance, as participants were slightly more accurate in conditions with faster, higher-intensity echoes. Based on these results blind individuals in this research seemed to be using spatial and temporal cues to coordinate their interceptive actions.

  5. Simplified large African carnivore density estimators from track indices.

    PubMed

    Winterbach, Christiaan W; Ferreira, Sam M; Funston, Paul J; Somers, Michael J

    2016-01-01

    The range, population size and trend of large carnivores are important parameters to assess their status globally and to plan conservation strategies. One can use linear models to assess population size and trends of large carnivores from track-based surveys on suitable substrates. The conventional approach of a linear model with intercept may not intercept at zero, but may fit the data better than linear model through the origin. We assess whether a linear regression through the origin is more appropriate than a linear regression with intercept to model large African carnivore densities and track indices. We did simple linear regression with intercept analysis and simple linear regression through the origin and used the confidence interval for ß in the linear model y  =  αx  + ß, Standard Error of Estimate, Mean Squares Residual and Akaike Information Criteria to evaluate the models. The Lion on Clay and Low Density on Sand models with intercept were not significant ( P  > 0.05). The other four models with intercept and the six models thorough origin were all significant ( P  < 0.05). The models using linear regression with intercept all included zero in the confidence interval for ß and the null hypothesis that ß = 0 could not be rejected. All models showed that the linear model through the origin provided a better fit than the linear model with intercept, as indicated by the Standard Error of Estimate and Mean Square Residuals. Akaike Information Criteria showed that linear models through the origin were better and that none of the linear models with intercept had substantial support. Our results showed that linear regression through the origin is justified over the more typical linear regression with intercept for all models we tested. A general model can be used to estimate large carnivore densities from track densities across species and study areas. The formula observed track density = 3.26 × carnivore density can be used to estimate densities of large African carnivores using track counts on sandy substrates in areas where carnivore densities are 0.27 carnivores/100 km 2 or higher. To improve the current models, we need independent data to validate the models and data to test for non-linear relationship between track indices and true density at low densities.

  6. Mean-intercept anisotropy analysis of porous media. II. Conceptual shortcomings of the MIL tensor definition and Minkowski tensors as an alternative.

    PubMed

    Klatt, Michael A; Schröder-Turk, Gerd E; Mecke, Klaus

    2017-07-01

    Structure-property relations, which relate the shape of the microstructure to physical properties such as transport or mechanical properties, need sensitive measures of structure. What are suitable fabric tensors to quantify the shape of anisotropic heterogeneous materials? The mean intercept length is among the most commonly used characteristics of anisotropy in porous media, e.g., of trabecular bone in medical physics. Yet, in this series of two papers we demonstrate that it has conceptual shortcomings that limit the validity of its results. We test the validity of general assumptions regarding the properties of the mean-intercept length tensor using analytical formulas for the mean-intercept lengths in anisotropic Boolean models (derived in part I of this series), augmented by numerical simulations. We discuss in detail the functional form of the mean intercept length as a function of the test line orientations. As the most prominent result, we find that, at least for the example of overlapping grains modeling porous media, the polar plot of the mean intercept length is in general not an ellipse and hence not represented by a second-rank tensor. This is in stark contrast to the common understanding that for a large collection of grains the mean intercept length figure averages to an ellipse. The standard mean intercept length tensor defined by a least-square fit of an ellipse is based on a model mismatch, which causes an intrinsic lack of accuracy. Our analysis reveals several shortcomings of the mean intercept length tensor analysis that pose conceptual problems and limitations on the information content of this commonly used analysis method. We suggest the Minkowski tensors from integral geometry as alternative sensitive measures of anisotropy. The Minkowski tensors allow for a robust, comprehensive, and systematic approach to quantify various aspects of structural anisotropy. We show the Minkowski tensors to be more sensitive, in the sense, that they can quantify the remnant anisotropy of structures not captured by the mean intercept length analysis. If applied to porous tissue and microstructures, this improved structure characterization can yield new insights into the relationships between geometry and material properties. © 2017 American Association of Physicists in Medicine.

  7. Tree Canopy Light Interception Estimates in Almond and a Walnut Orchards Using Ground, Low Flying Aircraft, and Satellite Based Methods to Improve Irrigation Scheduling Programs

    NASA Technical Reports Server (NTRS)

    Rosecrance, Richard C.; Johnson, Lee; Soderstrom, Dominic

    2016-01-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  8. Tree canopy light interception estimates in almond and a walnut orchards using ground, low flying aircraft, and satellite based methods to improve irrigation scheduling programs.

    NASA Astrophysics Data System (ADS)

    Rosecrance, R. C.; Johnson, L.; Soderstrom, D.

    2016-12-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  9. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model.

    PubMed

    Sarlikioti, V; de Visser, P H B; Marcelis, L F M

    2011-04-01

    At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions. Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional-structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions. Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north-south orientation of rows differed from east-west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis. Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the experimental approach of photosynthesis measurements for model parameterization should be revised.

  10. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional–structural plant model

    PubMed Central

    Sarlikioti, V.; de Visser, P. H. B.; Marcelis, L. F. M.

    2011-01-01

    Background and Aims At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions. Methods Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional–structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions. Key Results Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north–south orientation of rows differed from east–west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis. Conclusions Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the experimental approach of photosynthesis measurements for model parameterization should be revised. PMID:21355008

  11. Magnetic Susceptibility as a B0 Field Strength Independent MRI Biomarker of Liver Iron Overload

    PubMed Central

    Hernando, Diego; Cook, Rachel J.; Diamond, Carol; Reeder, Scott B.

    2013-01-01

    Purpose MR-based quantification of liver magnetic susceptibility may enable field strength-independent measurement of liver iron concentration (LIC). However, susceptibility quantification is challenging, due to non-local effects of susceptibility on the B0 field. The purpose of this work is to demonstrate feasibility of susceptibility-based LIC quantification using a fat-referenced approach. Methods Phantoms consisting of vials with increasing iron concentrations immersed between oil/water layers, and twenty-seven subjects (9 controls/18 subjects with liver iron overload) were scanned. Ferriscan (1.5T) provided R2-based reference LIC. Multi-echo 3D-SPGR (1.5T/3T) enabled fat-water, B0- and R2*-mapping. Phantom iron concentration (mg Fe/l) was estimated from B0 differences (ΔB0) between vials and neighboring oil. Liver susceptibility and LIC (mg Fe/g dry tissue) was estimated from ΔB0 between the lateral right lobe of the liver and adjacent subcutaneous adipose tissue (SAT). Results Estimated phantom iron concentrations had good correlation with true iron concentrations (1.5T:slope=0.86, intercept=0.72, r2=0.98; 3T:slope=0.85, intercept=1.73, r2=0.98). In liver, ΔB0 correlated strongly with R2* (1.5T:r2=0.86; 3T:r2=0.93) and B0-LIC had good agreement with Ferriscan-LIC (slopes/intercepts nearly 1.0/0.0, 1.5T:r2=0.67, slope=0.93±0.13, p≈0.50, intercept=1.93±0.78, p≈0.02; 3T:r2=0.84, slope=1.01±0.09, p≈0.90, intercept=0.23±0.52, p≈0.68). Discussion Fat-referenced, susceptibility-based LIC estimation is feasible at both field strengths. This approach may enable improved susceptibility mapping in the abdomen. PMID:23801540

  12. Appraisal of ground water for irrigation in the Little Falls area, Morrison County, Minnesota

    USGS Publications Warehouse

    Helgesen, John O.

    1973-01-01

    Possible future response to pumping was studied through electric analog analyses by stressing the modeled aquifer system in accordance with areal variations in expected well yields. The model interpretation indicates most of the sustained pumpage would be obtained from intercepted base flow and evapotranspiration. Simulated withdrawals totaling 18,000 acre-feet of water per year for 10 years resulted in little adverse effect on the aquifer system. Simulated larger withdrawals, assumed to represent denser well spacing, caused greater depletion of aquifer storage, streamflow, and lake volumes, excessively so in some areas. Results of model analyses provide a guide for ground-water development by identifying the capability of all parts of the aquifer system to support sustained pumping for irrigation.

  13. Flow Field Measurements Using Hotwire Anemometry.

    DTIC Science & Technology

    1987-09-01

    is connected to the differential pressure transducer, the other is connected to an absolute pressure transducer. Static pressure from the absolute ...and intercept data. The seventh variable contains the calibration tunnel temperature in degrees Farenheit . This is0* . used for hotwire compensation...output is then directed to channel five of the Relay Multiplexer. Voltage output from the signal amplifier is zeroed at 0 degrees AOA and is positive for

  14. Optimal Interception of a Maneuvering Long-range Missile

    NASA Astrophysics Data System (ADS)

    X. Vinh, Nguyen; T. Kabamba, Pierre; Takehira, Tetsuya

    2001-01-01

    In a Newtonian central force field, the minimum-fuel interception of a satellite, or a ballistic missile, in elliptic trajectory can be obtained via Lawden's theory of primer vector. To secure interception when the target performs evasive maneuvers, a new control law, with explicit solutions, is implemented. It is shown that by a rotation of coordinate system, the problem of three-dimensional interception is reduced to a planar problem. The general case of planar interception of a long-range ballistic missile is then studied. Examples of interception at a specified time, head-on interception and minimum-fuel interception are presented. In each case, the requirement for the thrust acceleration is expressed explicitly as a function of time.

  15. Separation of Intercepted Multi-Radar Signals Based on Parameterized Time-Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Lu, W. L.; Xie, J. W.; Wang, H. M.; Sheng, C.

    2016-09-01

    Modern radars use complex waveforms to obtain high detection performance and low probabilities of interception and identification. Signals intercepted from multiple radars overlap considerably in both the time and frequency domains and are difficult to separate with primary time parameters. Time-frequency analysis (TFA), as a key signal-processing tool, can provide better insight into the signal than conventional methods. In particular, among the various types of TFA, parameterized time-frequency analysis (PTFA) has shown great potential to investigate the time-frequency features of such non-stationary signals. In this paper, we propose a procedure for PTFA to separate overlapped radar signals; it includes five steps: initiation, parameterized time-frequency analysis, demodulating the signal of interest, adaptive filtering and recovering the signal. The effectiveness of the method was verified with simulated data and an intercepted radar signal received in a microwave laboratory. The results show that the proposed method has good performance and has potential in electronic reconnaissance applications, such as electronic intelligence, electronic warfare support measures, and radar warning.

  16. Rapid design and optimization of low-thrust rendezvous/interception trajectory for asteroid deflection missions

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Zhu, Yongsheng; Wang, Yukai

    2014-02-01

    Asteroid deflection techniques are essential in order to protect the Earth from catastrophic impacts by hazardous asteroids. Rapid design and optimization of low-thrust rendezvous/interception trajectories is considered as one of the key technologies to successfully deflect potentially hazardous asteroids. In this paper, we address a general framework for the rapid design and optimization of low-thrust rendezvous/interception trajectories for future asteroid deflection missions. The design and optimization process includes three closely associated steps. Firstly, shape-based approaches and genetic algorithm (GA) are adopted to perform preliminary design, which provides a reasonable initial guess for subsequent accurate optimization. Secondly, Radau pseudospectral method is utilized to transcribe the low-thrust trajectory optimization problem into a discrete nonlinear programming (NLP) problem. Finally, sequential quadratic programming (SQP) is used to efficiently solve the nonlinear programming problem and obtain the optimal low-thrust rendezvous/interception trajectories. The rapid design and optimization algorithms developed in this paper are validated by three simulation cases with different performance indexes and boundary constraints.

  17. Birch's Crustal Heat Production-Heat Flow Law: Key to Quantifying Mantle Heat Flow as a function of time

    NASA Astrophysics Data System (ADS)

    Blackwell, D. D.; Thakur, M.

    2007-12-01

    Birch (1968) first showed the linear correlation of surface heat flow and radioactive heat production (Qs = Qo + bAs ) in granites in New England, USA and discussed implications to the vertical scale of radioactive heat generation in the crust. Subsequently similar relationships have been found worldwide and numerous papers written describing more details and expanding the implications of Birch's Law. The results are a powerful contribution from heat flow research to the understanding of the lithosphere and its evolution. Models are both well constrained experimentally and simple in implications. However, there still exist thermal models of the crust and lithosphere that do not have the same firm foundation and involve unnecessary ad hoc assumptions. A main point of confusion has been that the several of the original relationships were so low in error as to be considered by some to be "fortuitous". Interestingly a "similar" relationship has been proposed based on regional scale averaging of Qs -As data. A second point of confusion is that one admissible crustal radioactivity distribution model (the constant heat generation to depth b) has been criticized as unrealistic for a number of reasons, including the effect of erosion. However, it is appropriate to refer to the Qs -As relationship as a law because in fact the relationship holds as long as the vertical distribution is "geologically realistic." as will be demonstrated in this paper. All geologic and geophysical models of the continental crust imply decreasing heat production as a function of depth (i.e. the seismic layering for example) except in very special cases. This general decrease with depth is the only condition required for the existence of a "linear" Qs -As relationship. A comparison of all the Qs -As relationships proposed for terrains not affected by thermal events over the last 150 to 200 Ma shows a remarkably uniformity in slope (10 ± 3 km) and intercept value (30 ± 5 mWm-2 ). Therefore these parameters of Birch's Law equation represent the starting place for discussions of lithospheric thermal regime and evolution. The stability of the values of intercept Qo for areas with thermal ages of Paleozoic and older prove that the lithosphere heat flow does not vary significantly with age as is demonstrated in the companion paper. The minimum mantle heat flow for preMesozoic thermal terrains is 20 - 25 mWm-2. This value is consistent with the lack of indication from xenolith data that lithosphere thickness changes with age and with theoretical models of mantle convection.

  18. 15 CFR 742.13 - Communications intercepting devices; software and technology for communications intercepting...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; software and technology for communications intercepting devices. 742.13 Section 742.13 Commerce and Foreign... Communications intercepting devices; software and technology for communications intercepting devices. (a) License... wire, oral, or electronic communications (ECCNs 5A001.i and 5A980); and for related “software...

  19. Analytical solutions for flow fields near drain-and-gate reactive barriers.

    PubMed

    Klammler, Harald; Hatfield, Kirk; Kacimov, Anvar

    2010-01-01

    Permeable reactive barriers (PRBs) are a popular technology for passive contaminant remediation in aquifers through installation of reactive materials in the pathway of a plume. Of fundamental importance are the degree of remediation inside the reactor (residence time) and the portion of groundwater intercepted by a PRB (capture width). Based on a two-dimensional conformal mapping approach (previously used in related work), the latter is studied in the present work for drain-and-gate (DG) PRBs, which may possess a collector and a distributor drain ("full" configuration) or a collector drain only ("simple" configuration). Inherent assumptions are a homogeneous unbounded aquifer with a uniform far field, in which highly permeable drains establish constant head boundaries. Solutions for aquifer flow fields in terms of the complex potential are derived, illustrated, and analyzed for doubly symmetric DG configurations and arbitrary reactor hydraulic resistance as well as ambient groundwater flow direction. A series of practitioner-friendly charts for capture width is given to assist in PRB design and optimization without requiring complex mathematics. DG PRBs are identified as more susceptible to flow divergence around the reactor than configurations using impermeable side structures (e.g., funnel-and-gate), and deployment of impermeable walls on drains is seen to mitigate this problem under certain circumstances.

  20. a Comparison Between Two Ols-Based Approaches to Estimating Urban Multifractal Parameters

    NASA Astrophysics Data System (ADS)

    Huang, Lin-Shan; Chen, Yan-Guang

    Multifractal theory provides a new spatial analytical tool for urban studies, but many basic problems remain to be solved. Among various pending issues, the most significant one is how to obtain proper multifractal dimension spectrums. If an algorithm is improperly used, the parameter spectrums will be abnormal. This paper is devoted to investigating two ordinary least squares (OLS)-based approaches for estimating urban multifractal parameters. Using empirical study and comparative analysis, we demonstrate how to utilize the adequate linear regression to calculate multifractal parameters. The OLS regression analysis has two different approaches. One is that the intercept is fixed to zero, and the other is that the intercept is not limited. The results of comparative study show that the zero-intercept regression yields proper multifractal parameter spectrums within certain scale range of moment order, while the common regression method often leads to abnormal multifractal parameter values. A conclusion can be reached that fixing the intercept to zero is a more advisable regression method for multifractal parameters estimation, and the shapes of spectral curves and value ranges of fractal parameters can be employed to diagnose urban problems. This research is helpful for scientists to understand multifractal models and apply a more reasonable technique to multifractal parameter calculations.

  1. [Complexity and its integrative effects of the time lags of environment factors affecting Larix gmelinii stem sap flow].

    PubMed

    Wang, Hui-Mei; Sun, Wei; Zu, Yuan-Gang; Wang, Wen-Jie

    2011-12-01

    Based on the one-year (2005) observations with a frequency of half hour on the stem sap flow of Larix gmelinii plantation trees planted in 1969 and the related environmental factors air humidity (RH), air temperature (T(air)), photosynthetic components active radiation (PAR), soil temperature (T(soil)), and soil moisture (TDR), principal analysis (PCA) and correction analysis were made on the time lag effect of the stem flow in different seasons (26 days of each season) and in a year via dislocation analysis, with the complexity and its integrative effects of the time lags of environment factors affecting the stem sap flow approached. The results showed that in different seasons and for different environmental factors, the time lag effect varied obviously. In general, the time lag of PAR was 0.5-1 hour ahead of sap flow, that of T(air) and RH was 0-2 hours ahead of or behind the sap flow, and the time lags of T(soil) and TDR were much longer or sometimes undetectable. Because of the complexity of the time lags, no evident improvements were observed in the linear correlations (R2, slope, and intercept) when the time lags based on short-term (20 days) data were used to correct the time lags based on whole year data. However, obvious improvements were found in the standardized and non-standardized correlation coefficients in stepwise multiple regressions, i.e., the time lag corrections could improve the effects of RH, but decreased the effects of PAR, T(air), and T(soil). PCA could be used to simplify the complexity. The first and the second principal components could stand for over 75% information of all the environmental factors in different seasons and in whole year. The time lags of both the first and the second principal components were 1-1.5 hours in advance of the sap flow, except in winter (no time lag effect).

  2. 15 CFR 742.13 - Communications intercepting devices; software and technology for communications intercepting...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; software and technology for communications intercepting devices. 742.13 Section 742.13 Commerce and Foreign... Communications intercepting devices; software and technology for communications intercepting devices. (a) License... wire, oral, or electronic communications (ECCNs 5A001.f.1 and 5A980); and for related “software...

  3. Bayesian Hierarchical Random Intercept Model Based on Three Parameter Gamma Distribution

    NASA Astrophysics Data System (ADS)

    Wirawati, Ika; Iriawan, Nur; Irhamah

    2017-06-01

    Hierarchical data structures are common throughout many areas of research. Beforehand, the existence of this type of data was less noticed in the analysis. The appropriate statistical analysis to handle this type of data is the hierarchical linear model (HLM). This article will focus only on random intercept model (RIM), as a subclass of HLM. This model assumes that the intercept of models in the lowest level are varied among those models, and their slopes are fixed. The differences of intercepts were suspected affected by some variables in the upper level. These intercepts, therefore, are regressed against those upper level variables as predictors. The purpose of this paper would demonstrate a proven work of the proposed two level RIM of the modeling on per capita household expenditure in Maluku Utara, which has five characteristics in the first level and three characteristics of districts/cities in the second level. The per capita household expenditure data in the first level were captured by the three parameters Gamma distribution. The model, therefore, would be more complex due to interaction of many parameters for representing the hierarchical structure and distribution pattern of the data. To simplify the estimation processes of parameters, the computational Bayesian method couple with Markov Chain Monte Carlo (MCMC) algorithm and its Gibbs Sampling are employed.

  4. The use of Natural Flood Management to mitigate local flooding in the rural landscape

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Quinn, Paul; Ghimire, Sohan; Nicholson, Alex; Addy, Steve

    2014-05-01

    The past decade has seen increases in the occurrence of flood events across Europe, putting a growing number of settlements of varying sizes at risk. The issue of flooding in smaller villages is usually not well publicised. In these small communities, the cost of constructing and maintaining traditional flood defences often outweigh the potential benefits, which has led to a growing quest for more cost effective and sustainable approaches. Here we aim to provide such an approach that alongside flood risk reduction, also has multipurpose benefits of sediment control, water quality amelioration, and habitat creation. Natural flood management (NFM) aims to reduce flooding by working with natural features and characteristics to slow down or temporarily store flood waters. NFM measures include dynamic water storage ponds and wetlands, interception bunds, channel restoration and instream wood placement, and increasing soil infiltration through soil management and tree planting. Based on integrated monitoring and modelling studies, we demonstrate the potential to manage runoff locally using NFM in rural systems by effectively managing flow pathways (hill slopes and small channels) and by exploiting floodplains and buffers strips. Case studies from across the UK show that temporary storage ponds (ranging from 300 to 3000m3) and other NFM measures can reduce peak flows in small catchments (5 to 10 km2) by up to 15 to 30 percent. In addition, increasing the overall effective storage capacity by a network of NFM measures was found to be most effective for total reduction of local flood peaks. Hydraulic modelling has shown that the positioning of such features within the catchment, and how they are connected to the main channel, may also affect their effectiveness. Field evidence has shown that these ponds can collect significant accumulations of fine sediment during flood events. On the other hand, measures such as wetlands could also play an important role during low flow conditions, by providing base flows during drought conditions. Ongoing research using hydrological datasets aims to assess how these features function during low flow conditions and how storage ponds could be used as irrigation ponds in arable areas. To allow for effective implementation and upkeep of NFM measures on the ground, demonstration sites have been developed through a process of iterative stakeholder engagement. Coupled with the use of novel visualisation techniques, results are currently being communicated to a wider community of local landowners and catchment managers. The approach of using networks of interception bunds and offline storage areas in the rural landscape could potentially provide a cost effective means to reduce flood risk in small responsive catchments across Europe. As such it could provide an alternative or addition to traditional engineering techniques, while also effectively managing catchments to achieve multiple environmental objectives.

  5. Variable-intercept panel model for deformation zoning of a super-high arch dam.

    PubMed

    Shi, Zhongwen; Gu, Chongshi; Qin, Dong

    2016-01-01

    This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.

  6. Accounting for sensor calibration, data validation, measurement and sampling uncertainties in monitoring urban drainage systems.

    PubMed

    Bertrand-Krajewski, J L; Bardin, J P; Mourad, M; Béranger, Y

    2003-01-01

    Assessing the functioning and the performance of urban drainage systems on both rainfall event and yearly time scales is usually based on online measurements of flow rates and on samples of influent effluent for some rainfall events per year. In order to draw pertinent scientific and operational conclusions from the measurement results, it is absolutely necessary to use appropriate methods and techniques in order to i) calibrate sensors and analytical methods, ii) validate raw data, iii) evaluate measurement uncertainties, iv) evaluate the number of rainfall events to sample per year in order to determine performance indicator with a given uncertainty. Based an previous work, the paper gives a synthetic review of required and techniques, and illustrates their application to storage and settling tanks. Experiments show that, controlled and careful experimental conditions, relative uncertainties are about 20% for flow rates in sewer pipes, 6-10% for volumes, 25-35% for TSS concentrations and loads, and 18-276% for TSS removal rates. In order to evaluate the annual pollutant interception efficiency of storage and settling tanks with a given uncertainty, efforts should first be devoted to decrease the sampling uncertainty by increasing the number of sampled events.

  7. Modeling Rainfall-Runoff Dynamics in Tropical, Urban Socio-Hydrological Systems: Green Infrastructure and Variable Precipitation Interception

    NASA Astrophysics Data System (ADS)

    Nytch, C. J.; Meléndez-Ackerman, E. J.

    2014-12-01

    There is a pressing need to generate spatially-explicit models of rainfall-runoff dynamics in the urban humid tropics that can characterize flow pathways and flood magnitudes in response to erratic precipitation events. To effectively simulate stormwater runoff processes at multiple scales, complex spatio-temporal parameters such as rainfall, evapotranspiration, and antecedent soil moisture conditions must be accurately represented, in addition to uniquely urban factors including stormwater conveyance structures and connectivity between green and gray infrastructure elements. In heavily urbanized San Juan, Puerto Rico, stream flashiness and frequent flooding are major issues, yet still lacking is a hydrological analysis that models the generation and movement of fluvial and pluvial stormwater through the watershed. Our research employs a novel and multifaceted approach to dealing with this problem that integrates 1) field-based rainfall interception and infiltration methodologies to quantify the hydrologic functions of natural and built infrastructure in San Juan; 2) remote sensing analysis to produce a fine-scale typology of green and gray cover types in the city and determine patterns of spatial distribution and connectivity; 3) assessment of precipitation and streamflow variability at local and basin-wide scales using satellite and radar precipitation estimates in concert with rainfall and stream gauge point data and participatory flood mapping; 4) simulation of historical, present-day, and future stormwater runoff scenarios with a fully distributed hydrologic model that couples diverse components of urban socio-hydrological systems from formal and informal knowledge sources; and 5) bias and uncertainty analysis of parameters and model structure within a Bayesian hierarchical framework. Preliminary results from the rainfall interception study suggest that canopy structure and leaf area index of different tree species contribute to variable throughfall and stemflow responses. Additional investigations are pending. The findings from this work will help inform urban planning and design, and build adaptive capacity to reduce flood vulnerability in the context of a changing climate.

  8. A unifying framework for marginalized random intercept models of correlated binary outcomes

    PubMed Central

    Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian M.

    2013-01-01

    We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood-based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data with exchangeable correlation structures. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized random intercept models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts. PMID:25342871

  9. Degradation of turbulent skin-friction drag reduction with superhydrophobic, liquid-infused and riblet surfaces with increasing Reynolds number

    NASA Astrophysics Data System (ADS)

    Akhavan, Rayhaneh; Rastegari, Amirreza

    2017-11-01

    It is shown that the magnitude of Drag Reduction (DR) with Super-Hydrophobic (SH), liquid-infused, or riblet surfaces can be parameterized in terms of the shift, ΔB , in the intercept of a log-law representation of the mean velocity profile and the friction coefficient of the base flow. Available DNS data shows ΔB to be Reynolds number independent and only a function of the geometrical parameters of the surface micro-texture in viscous wall units. This allows the DR results from DNS to be extrapolated to higher Reynolds numbers. It is shown that for a given geometry and size of the wall micro-texture in viscous wall units, the magnitude of DR degrades by factors of 2 - 3 as the friction Reynolds number of the base flow increases from Reτ0 200 of DNS to Reτ0 105 -106 of practical applications. Extrapolation of DNS results in turbulent channel flow at Reτ0 222 and 442 with SH longitudinal microgrooves of width 15 <=g+0 <= 60 and shear-free-fractions of 0.875 - 0.985 shows that the maximum DRs which can be sustained with SH longitudinal micro-grooves of size g+0 <= 20 - 30 in practical applications is limited to DRs of 25 - 35 % at Reτ0 105 and 20 - 25 % at Reτ0 106 .

  10. How kelp produce blade shapes suited to different flow regimes: A new wrinkle.

    PubMed

    Koehl, M A R; Silk, W K; Liang, H; Mahadevan, L

    2008-12-01

    Many species of macroalgae have flat, strap-like blades in habitats exposed to rapidly flowing water, but have wide, ruffled "undulate" blades at protected sites. We used the giant bull kelp, Nereocystis luetkeana, to investigate how these ecomorphological differences are produced. The undulate blades of N. luetkeana from sites with low flow remain spread out and flutter erratically in moving water, thereby not only enhancing interception of light, but also increasing drag. In contrast, strap-like blades of kelp from habitats with rapid flow collapse into streamlined bundles and flutter at low amplitude in flowing water, thus reducing both drag and interception of light. Transplant experiments in the field revealed that shape of the blade in N. luetkeana is a plastic trait. Laboratory experiments in which growing blades from different sites were subjected to tensile forces that mimicked the hydrodynamic drag experienced by blades in different flow regimes showed that change in shape is induced by mechanical stress. During growth experiments in the field and laboratory, we mapped the spatial distribution of growth in both undulate and strap-like blades to determine how these different morphologies were produced. The highest growth rates occur near the proximal ends of N. luetkeana blades of both morphologies, but the rates of transverse growth of narrow, strap-like blades are lower than those of wide, undulate blades. If rates of longitudinal growth at the edges of a blade exceed the rate of longitudinal growth along the midline of the blade, ruffles along the edges of the blade are produced by elastic buckling. In contrast, flat blades are produced when rates of longitudinal growth are similar across the width of a blade. Because ruffles are the result of elastic buckling, a compliant undulate N. luetkeana blade can easily be pushed into different configurations (e.g., the wavelengths of the ruffles along the edges of the blade can change, and the whole blade can twist into left- and right-handed helicoidal shapes), which may enhance movements of the blade in flowing water that reduce self-shading and increase mass exchange along blade surfaces.

  11. Gaps in Border Controls Are Related to Quarantine Alien Insect Invasions in Europe

    PubMed Central

    Bacon, Steven James; Bacher, Sven; Aebi, Alexandre

    2012-01-01

    Alien insects are increasingly being dispersed around the world through international trade, causing a multitude of negative environmental impacts and billions of dollars in economic losses annually. Border controls form the last line of defense against invasions, whereby inspectors aim to intercept and stop consignments that are contaminated with harmful alien insects. In Europe, member states depend on one another to prevent insect introductions by operating a first point of entry rule – controlling goods only when they initially enter the continent. However, ensuring consistency between border control points is difficult because there exists no optimal inspection strategy. For the first time, we developed a method to quantify the volume of agricultural trade that should be inspected for quarantine insects at border control points in Europe, based on global agricultural trade of over 100 million distinct origin-commodity-species-destination pathways. This metric was then used to evaluate the performance of existing border controls, as measured by border interception results in Europe between 2003 and 2007. Alarmingly, we found significant gaps between the trade pathways that should be inspected and actual number of interceptions. Moreover, many of the most likely introduction pathways yielded none or very few insect interceptions, because regular interceptions are only made on only a narrow range of pathways. European countries with gaps in border controls have been invaded by higher numbers of quarantine alien insect species, indicating the importance of proper inspections to prevent insect invasions. Equipped with an optimal inspection strategy based on the underlying risks of trade, authorities globally will be able to implement more effective and consistent border controls. PMID:23112835

  12. Distribution and floristics of moss- and lichen-dominated soil crusts in a patterned Callitris glaucophylla woodland in eastern Australia

    NASA Astrophysics Data System (ADS)

    Eldridge, David J.

    1999-05-01

    The distribution and abundance of soil crust lichens and bryophytes was examined in a patterned Callitris glaucophylla woodland in eastern Australia. Twenty-one lichen species and 26 bryophyte species were collected within thirty quadrats along a sequence of runoff, interception and runoff zones. Crust cover was significantly greatest in the interception zones (79.0 %), followed by the runoff zones (24.0 %), and lowest in the groved, runon zones (6.6 %). Lichens and bryophytes were distributed across all geomorphic zones, and, although there were significantly more moss species in the interception zones (mean = 9.1) compared with either the runoff (4.2) or runon (3.2) zones, the number of lichen species did not vary between zones. Ordination of a reduced data set of 32 species revealed a separation of taxa into distinct groups corresponding to the three geomorphic zones. Canonical correspondence analysis (CCA) of the 32 species and thirteen environmental variables revealed that the most important factors associated with the distribution of species were sheet and scarp erosion, soil stability and coherence, litter cover and crust cover. Surface cracking, microtopography and plant cover were of intermediate importance. The CCA biplot revealed that the timbered runon zones (groves) were dominated by `shade-tolerant' mosses Fissidens vittatus and Barbula hornschuchiana, whilst the heavily eroded runoff zones supported sparse populations of `erosion tolerant' lichens ( Endocarpon rogersii) and mosses (Bryum argenteum and Didymodon torquatus). Interception zones supported a rich suite of `crust forming' mosses and lichens capable of tolerating moderate inundation by overland flow. Two other groups of taxa were identified by this analysis: the `pioneer' group, comprising mainly nitrogen-fixing lichens which occupy the zone of active erosion at the lower edge of the groves, and the `opportunists' dominated by liverworts, occupying the shallow depressions or bays at the margins of the groves and the interception zones. This study confirms that the non-vascular lichens and bryophytes in these arid soil crusts, are, like the vascular plants, strongly patterned according to geomorphic zone, being most strongly associated with soil surface and erosional features.

  13. Does littoral sand bypass the head of Mugu Submarine Canyon? - a modeling study

    USGS Publications Warehouse

    Xu, Jingping; Elias, Edwin; Kinsman, Nicole; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.

    2011-01-01

    A newly developed sand-tracer code for the process-based model Delft3D (Deltares, The Netherlands) was used to simulate the littoral transport near the head of the Mugu Submarine Canyon in California, USA. For westerly swells, which account for more than 90% of the wave conditions in the region, the sand tracers in the downcoast littoral drift were unable to bypass the canyon head. A flow convergence near the upcoast rim of the canyon intercepts the tracers and moves them either offshore onto the shelf just west of the canyon rim (low wave height conditions) or into the canyon head (storm wave conditions). This finding supports the notion that Mugu Canyon is the true terminus of the Santa Barbara Littoral Cell.

  14. The impact of non-isothermal soil moisture transport on evaporation fluxes in a maize cropland

    NASA Astrophysics Data System (ADS)

    Shao, Wei; Coenders-Gerrits, Miriam; Judge, Jasmeet; Zeng, Yijian; Su, Ye

    2018-06-01

    The process of evaporation interacts with the soil, which has various comprehensive mechanisms. Multiphase flow models solve air, vapour, water, and heat transport equations to simulate non-isothermal soil moisture transport of both liquid water and vapor flow, but are only applied in non-vegetated soils. For (sparsely) vegetated soils often energy balance models are used, however these lack the detailed information on non-isothermal soil moisture transport. In this study we coupled a multiphase flow model with a two-layer energy balance model to study the impact of non-isothermal soil moisture transport on evaporation fluxes (i.e., interception, transpiration, and soil evaporation) for vegetated soils. The proposed model was implemented at an experimental agricultural site in Florida, US, covering an entire maize-growing season (67 days). As the crops grew, transpiration and interception became gradually dominated, while the fraction of soil evaporation dropped from 100% to less than 20%. The mechanisms of soil evaporation vary depending on the soil moisture content. After precipitation the soil moisture content increased, exfiltration of the liquid water flow could transport sufficient water to sustain evaporation from soil, and the soil vapor transport was not significant. However, after a sufficient dry-down period, the soil moisture content significantly reduced, and the soil vapour flow significantly contributed to the upward moisture transport in topmost soil. A sensitivity analysis found that the simulations of moisture content and temperature at the soil surface varied substantially when including the advective (i.e., advection and mechanical dispersion) vapour transport in simulation, including the mechanism of advective vapour transport decreased soil evaporation rate under wet condition, while vice versa under dry condition. The results showed that the formulation of advective soil vapor transport in a soil-vegetation-atmosphere transfer continuum can affect the simulated evaporation fluxes, especially under dry condition.

  15. Comparison of nitrate, pesticides, and volatile organic compounds in samples from monitoring and public-supply wells, Kirkwood-Cohansey aquifer system, southern New Jersey

    USGS Publications Warehouse

    Stackelberg, Paul E.; Kauffman, L.J.; Baehr, A.L.; Ayers, M.A.

    2000-01-01

    The number and total concentration of volatile organic compounds (VOCs) per sample were significantly greater in water from public-supply wells than in water from shallow and moderate-depth monitoring wells in the surficial Kirkwood-Cohansey aquifer system in the Glassboro area of southern New Jersey. In contrast, concentrations of nitrate (as nitrogen) and the number and total concentration of pesticides per sample were statistically similar in samples from shallow and moderate-depth monitoring wells and those from public-supply wells. VOCs in ground water typically are derived from point sources, which commonly exist in urban areas and which result in spatially variable contaminant concentrations near the water table. Because larger volumes of water are withdrawn from public-supply wells than from monitoring wells, their contributing areas are larger and, therefore, they are more likely to intercept water flowing from VOC point sources. Additionally, public-supply wells intercept flow paths that span a large temporal interval. Public-supply wells in the Glassboro study area withdraw water flowing along short paths, which contains VOCs that recently entered the aquifer system, and water flowing along relatively long paths, which contains VOCs that originated from the degradation of parent compounds or that are associated with past land uses. Because the volume of water withdrawn from monitoring wells is small and because shallow monitoring wells are screened near the water table, they generally intercept only relatively short flow paths. Therefore, samples from these wells represent relatively recent, discrete time intervals and contain both fewer VOCs and a lower total VOC concentration than samples from public-supply wells. Nitrate and pesticides in ground water typically are derived from nonpoint sources, which commonly are found in both agricultural and urban areas and typically result in lowlevel, relatively uniform concentrations near the water table. Because nonpoint sources are diffuse and because processes such as degradation or sorption/dispersion do not occur at rates sufficient to prevent detection of these constituents in parts of the aquifer used for domestic and public supply in the study area, concentrations of nitrate and pesticides and numbers of pesticide compounds are likely to be similar in samples from shallow monitoring wells and samples from public-supply wells. Results of a comparison of (1) the general characteristics of, and water-quality data from, public-supply wells in the Glassboro study area to available data from public-supply wells screened in the Kirkwood-Cohansey aquifer system outside the study area, and (2) land-use settings, soil characteristics, and aquifer properties in and outside the study area indicate that the findings of this study likely are applicable to the entire extent of the Kirkwood- Cohansey aquifer system in southern New Jersey.

  16. Cometary exploration in the shuttle era

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Wooden, W. H., II

    1978-01-01

    A comprehensive program plan for cometary exploration in the 1980-2000 time frame is proposed. Plans for ground-based observations, a Spacelab cometary observatory, and the Space Telescope are included in the observational program. The cometary mission sequence begins with a dual-spacecraft flyby of Halley's comet. The nominal mission strategy calls for a simultaneous launch of two spacecraft towards an intercept with Halley in March 1986. After the Halley encounter, the spacecraft are retargeted: one to intercept comet Borrelly in January 1988 and the other to intercept comet Tempel-2 in September 1988. The additional cometary intercepts are accomplished by utilizing a novel Earth-swingby technique. The next mission in the cometary program plan, a rendezvous with Encke's comet, is scheduled for launch in early 1990. It is planned to rendezvous with Encke in September 1992 at a heliocentric distance of 4 AU. Following this near-aphelion rendezvous, the spacecraft will remain with with Encke through the next two perihelion passages in February 1994 and May 1997. The rendezvous mission will be terminated about seven months after the second perihelion passage.

  17. A parameter estimation algorithm for LFM/BPSK hybrid modulated signal intercepted by Nyquist folding receiver

    NASA Astrophysics Data System (ADS)

    Qiu, Zhaoyang; Wang, Pei; Zhu, Jun; Tang, Bin

    2016-12-01

    Nyquist folding receiver (NYFR) is a novel ultra-wideband receiver architecture which can realize wideband receiving with a small amount of equipment. Linear frequency modulated/binary phase shift keying (LFM/BPSK) hybrid modulated signal is a novel kind of low probability interception signal with wide bandwidth. The NYFR is an effective architecture to intercept the LFM/BPSK signal and the LFM/BPSK signal intercepted by the NYFR will add the local oscillator modulation. A parameter estimation algorithm for the NYFR output signal is proposed. According to the NYFR prior information, the chirp singular value ratio spectrum is proposed to estimate the chirp rate. Then, based on the output self-characteristic, matching component function is designed to estimate Nyquist zone (NZ) index. Finally, matching code and subspace method are employed to estimate the phase change points and code length. Compared with the existing methods, the proposed algorithm has a better performance. It also has no need to construct a multi-channel structure, which means the computational complexity for the NZ index estimation is small. The simulation results demonstrate the efficacy of the proposed algorithm.

  18. National Test Bed Security and Communications Architecture Working Group Report

    DTIC Science & Technology

    1992-04-01

    computer systems via a physical medium. Most of those physical media are tappable or interceptable. This means that all the data that flows across the...provides the capability for NTBN nodes to support users operating in differing COIs to share the computing resources and communication media and for...representation. Again generally speaking, the NTBN must act as the high-speed, wide-bandwidth communications media that would provide the "near real-time

  19. Eye movement accuracy determines natural interception strategies.

    PubMed

    Fooken, Jolande; Yeo, Sang-Hoon; Pai, Dinesh K; Spering, Miriam

    2016-11-01

    Eye movements aid visual perception and guide actions such as reaching or grasping. Most previous work on eye-hand coordination has focused on saccadic eye movements. Here we show that smooth pursuit eye movement accuracy strongly predicts both interception accuracy and the strategy used to intercept a moving object. We developed a naturalistic task in which participants (n = 42 varsity baseball players) intercepted a moving dot (a "2D fly ball") with their index finger in a designated "hit zone." Participants were instructed to track the ball with their eyes, but were only shown its initial launch (100-300 ms). Better smooth pursuit resulted in more accurate interceptions and determined the strategy used for interception, i.e., whether interception was early or late in the hit zone. Even though early and late interceptors showed equally accurate interceptions, they may have relied on distinct tactics: early interceptors used cognitive heuristics, whereas late interceptors' performance was best predicted by pursuit accuracy. Late interception may be beneficial in real-world tasks as it provides more time for decision and adjustment. Supporting this view, baseball players who were more senior were more likely to be late interceptors. Our findings suggest that interception strategies are optimally adapted to the proficiency of the pursuit system.

  20. Classification of Snowfall Events and Their Effect on Canopy Interception Efficiency in a Temperate Montane Forest.

    NASA Astrophysics Data System (ADS)

    Roth, T. R.; Nolin, A. W.

    2015-12-01

    Forest canopies intercept as much as 60% of snowfall in maritime environments, while processes of sublimation and melt can reduce the amount of snow transferred from the canopy to the ground. This research examines canopy interception efficiency (CIE) as a function of forest and event-scale snowfall characteristics. We use a 4-year dataset of continuous meteorological measurements and monthly snow surveys from the Forest Elevation Snow Transect (ForEST) network that has forested and open sites at three elevations spanning the rain-snow transition zone to the upper seasonal snow zone. Over 150 individual storms were classified by forest and storm type characteristics (e.g. forest density, vegetation type, air temperature, snowfall amount, storm duration, wind speed, and storm direction). The between-site comparisons showed that, as expected, CIE was highest for the lower elevation (warmer) sites with higher forest density compared with the higher elevation sites where storm temperatures were colder, trees were smaller and forests were less dense. Within-site comparisons based on storm type show that this classification system can be used to predict CIE.Our results suggest that the coupling of forest type and storm type information can improve estimates of canopy interception. Understanding the effects of temperature and storm type in temperate montane forests is also valuable for future estimates of canopy interception under a warming climate.

  1. Recurrent bridgehead effects accelerate global alien ant spread.

    PubMed

    Bertelsmeier, Cleo; Ollier, Sébastien; Liebhold, Andrew M; Brockerhoff, Eckehard G; Ward, Darren; Keller, Laurent

    2018-05-22

    Biological invasions are a major threat to biological diversity, agriculture, and human health. To predict and prevent new invasions, it is crucial to develop a better understanding of the drivers of the invasion process. The analysis of 4,533 border interception events revealed that at least 51 different alien ant species were intercepted at US ports over a period of 70 years (1914-1984), and 45 alien species were intercepted entering New Zealand over a period of 68 years (1955-2013). Most of the interceptions did not originate from species' native ranges but instead came from invaded areas. In the United States, 75.7% of the interceptions came from a country where the intercepted ant species had been previously introduced. In New Zealand, this value was even higher, at 87.8%. There was an overrepresentation of interceptions from nearby locations (Latin America for species intercepted in the United States and Oceania for species intercepted in New Zealand). The probability of a species' successful establishment in both the United States and New Zealand was positively related to the number of interceptions of the species in these countries. Moreover, species that have spread to more continents are also more likely to be intercepted and to make secondary introductions. This creates a positive feedback loop between the introduction and establishment stages of the invasion process, in which initial establishments promote secondary introductions. Overall, these results reveal that secondary introductions act as a critical driver of increasing global rates of invasions.

  2. How is rainfall interception in urban area affected by meteorological parameters?

    NASA Astrophysics Data System (ADS)

    Zabret, Katarina; Rakovec, Jože; Mikoš, Matjaž; Šraj, Mojca

    2017-04-01

    Rainfall interception is part of the hydrological cycle. Precipitation, which hits vegetation, is retained on the leaves and branches, from which it eventually evaporates into the atmosphere (interception) or reaches the ground by dripping from the canopy, falling through the gaps (throughfall) and running down the stems (stemflow). The amount of rainfall reaching the ground depends on various meteorological and vegetation parameters. Rainfall, throughfall and stemflow have been measured in the city of Ljubljana, Slovenia since the beginning of 2014. Manual and automatic measurements are performed regularly under Betula pendula and Pinus nigra trees in urban area. In 2014, there were detected 178 rainfall events with total amount of 1672.1 mm. In average B. pendula intercepted 44% of rainfall and P. nigra intercepted 72% of rainfall. In 2015 we have detected 117 events with 1047.4 mm of rainfall, of which 37% was intercepted by B. pendula and 60% by P. nigra. The effect of various meteorological parameters on the rainfall interception was analysed in the study. The parameters included in the analysis were rainfall rate, rainfall duration, drop size distribution (average drop velocity and diameter), average wind speed, and average temperature. The results demonstrate decreasing rainfall interception with longer rainfall duration and higher rainfall intensity although the impact of the latter one is not statistically significant. In the case of very fast or very slow rainfall drops, the interception is higher than for the mean rain drop velocity values. In the case of P. nigra the impact of the rain drop diameter on interception is similar to the one of rain drop velocity while for B. pendula increasing of drop diameter also increases the interception. As expected, interception is higher for warmer events. This trend is more evident for P. nigra than for B. pendula. Furthermore, the amount of intercepted rainfall also increases with wind although it could be relatively high in case of very low wind speeds.

  3. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.

    PubMed

    Reddy, K R; Adams, J A

    2000-02-25

    This paper presents two-dimensional laboratory experiments performed to study how groundwater flow may affect the injected air zone of influence and remedial performance, and how injected air may alter subsurface groundwater flow and contaminant migration during in situ air sparging. Tests were performed by subjecting uniform sand profiles contaminated with dissolved-phase benzene to a hydraulic gradient and two different air flow rates. The results of the tests were compared to a test subjected to a similar air flow rate but a static groundwater condition. The test results revealed that the size and shape of the zone of influence were negligibly affected by groundwater flow, and as a result, similar rates of contaminant removal were realized within the zone of influence with and without groundwater flow. The air flow, however, reduced the hydraulic conductivity within the zone of influence, reducing groundwater flow and subsequent downgradient contaminant migration. The use of a higher air flow rate further reduced the hydraulic conductivity and decreased groundwater flow and contaminant migration. Overall, this study demonstrated that air sparging may be effectively implemented to intercept and treat a migrating contaminant plume.

  4. Field Evaluation of Model II of the Computer-Based, Individual Trainer for the Radar Intercept Officer

    DTIC Science & Technology

    1974-07-01

    of an (almost) completely automated CAI capability for teaching skills for the Radar Intercept Officer’s (RIO’s) job. Contributions made by this...expected) from such features. At present, the utility of developing CAI materials for teaching the utiliza- tion of the AWG-9 system for maintaining...this complexity is necessary even though the trainer -as designed to teach only basic skills used in this performance. Therefore, chc details of the

  5. Techniques for measuring arrival times of pulsar signals 1: DSN observations from 1968 to 1980

    NASA Technical Reports Server (NTRS)

    Downs, G. S.; Reichley, P. E.

    1980-01-01

    Techniques used in the ground based observations of pulsars are described, many of them applicable in a navigation scheme. The arrival times of the pulses intercepting Earth are measured at time intervals from a few days to a few months. Low noise, wide band receivers, amplify signals intercepted by 26 m, 34, and 64 m antennas. Digital recordings of total received signal power versus time are cross correlated with the appropriate pulse template.

  6. Identifying crash-prone traffic conditions under different weather on freeways.

    PubMed

    Xu, Chengcheng; Wang, Wei; Liu, Pan

    2013-09-01

    Understanding the relationships between traffic flow characteristics and crash risk under adverse weather conditions will help highway agencies develop proactive safety management strategies to improve traffic safety in adverse weather conditions. The primary objective is to develop separate crash risk prediction models for different weather conditions. The crash data, weather data, and traffic data used in this study were collected on the I-880N freeway in California in 2008 and 2010. This study considered three different weather conditions: clear weather, rainy weather, and reduced visibility weather. The preliminary analysis showed that there was some heterogeneity in the risk estimates for traffic flow characteristics by weather conditions, and that the crash risk prediction model for all weather conditions cannot capture the impacts of the traffic flow variables on crash risk under adverse weather conditions. The Bayesian random intercept logistic regression models were applied to link the likelihood of crash occurrence with various traffic flow characteristics under different weather conditions. The crash risk prediction models were compared to their corresponding logistic regression model. It was found that the random intercept model improved the goodness-of-fit of the crash risk prediction models. The model estimation results showed that the traffic flow characteristics contributing to crash risk were different across different weather conditions. The speed difference between upstream and downstream stations was found to be significant in each crash risk prediction model. Speed difference between upstream and downstream stations had the largest impact on crash risk in reduced visibility weather, followed by that in rainy weather. The ROC curves were further developed to evaluate the predictive performance of the crash risk prediction models under different weather conditions. The predictive performance of the crash risk model for clear weather was better than those of the crash risk models for adverse weather conditions. The research results could promote a better understanding of the impacts of traffic flow characteristics on crash risk under adverse weather conditions, which will help transportation professionals to develop better crash prevention strategies in adverse weather. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  7. Preliminary Engineering Design Package for the Basin A Neck Groundwater Intercept and Treatment System Interim Response Action

    DTIC Science & Technology

    1989-02-01

    INDICATOR pPOST-FILTERED VITER RPUESIC POST-FILTRATION POLYMER SOLUTION MCUUM BREAKER FILTRATION POLYMER D*+RENTALkL PRESSURE SWITCH FEED PUMPS POLYMER...differential pressure switch signals the need for backwash of the operating filter. At this time, flow is S automatically switched to the standby filter...filter is undergoing backwash or on standby. High differential pressure across the filter bed, as sensed by a differential pressure switch , signals

  8. OSMOSIS: A CAUSE OF APPARENT DEVIATIONS FROM DARCY'S LAW.

    USGS Publications Warehouse

    Olsen, Harold W.

    1985-01-01

    This review of the existing evidence shows that osmosis causes intercepts in flow rate versus hydraulic gradient relationships that are consistent with the observed deviations from Darcy's law at very low gradients. Moreover, it is suggested that a natural cause of osmosis in laboratory samples could be chemical reactions such as those involved in aging effects. This hypothesis is analogous to the previously proposed occurrence of electroosmosis in nature generated by geochemical weathering reactions. Refs.

  9. Is there a geomorphic expression of interbasin groundwater flow in watersheds? Interactions between interbasin groundwater flow, springs, streams, and geomorphology

    NASA Astrophysics Data System (ADS)

    Frisbee, Marty D.; Tysor, Elizabeth H.; Stewart-Maddox, Noah S.; Tsinnajinnie, Lani M.; Wilson, John L.; Granger, Darryl E.; Newman, Brent D.

    2016-02-01

    Interbasin groundwater flow (IGF) can play a significant role in the generation and geochemical evolution of streamflow. However, it is exceedingly difficult to identify IGF and to determine the location and quantity of water that is exchanged between watersheds. How does IGF affect landscape/watershed geomorphic evolution? Can geomorphic metrics be used to identify the presence of IGF? We examine these questions in two adjacent sedimentary watersheds in northern New Mexico using a combination of geomorphic/landscape metrics, springflow residence times, and spatial geochemical patterns. IGF is expressed geomorphically in the landscape placement of springs and flow direction and shape of stream channels. Springs emerge preferentially on one side of stream valleys where landscape incision has intercepted IGF flow paths. Stream channels grow toward the IGF source and show little bifurcation. In addition, radiocarbon residence times of springs decrease and the geochemical composition of springs changes as the connection to IGF is lost.

  10. Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization.

    PubMed

    Li, Zhijun; Xia, Yuanqing; Su, Chun-Yi; Deng, Jun; Fu, Jun; He, Wei

    2015-08-01

    In this brief, the utilization of robust model-based predictive control is investigated for the problem of missile interception. Treating the target acceleration as a bounded disturbance, novel guidance law using model predictive control is developed by incorporating missile inside constraints. The combined model predictive approach could be transformed as a constrained quadratic programming (QP) problem, which may be solved using a linear variational inequality-based primal-dual neural network over a finite receding horizon. Online solutions to multiple parametric QP problems are used so that constrained optimal control decisions can be made in real time. Simulation studies are conducted to illustrate the effectiveness and performance of the proposed guidance control law for missile interception.

  11. Interception loss, throughfall and stemflow in a maritime pine stand. II. An application of Gash's analytical model of interception

    NASA Astrophysics Data System (ADS)

    Loustau, D.; Berbigier, P.; Granier, A.

    1992-10-01

    Interception, throughfall and stemflow were determined in an 18-year-old maritime pine stand for a period of 30 months. This involved 71 rainfall events, each corresponding either to a single storm or to several storms. Gash's analytical model of interception was used to estimate the sensitivity of interception to canopy structure and climatic parameters. The seasonal cumulative interception loss corresponded to 12.6-21.0% of the amount of rainfall, whereas throughfall and stemflow accounted for 77-83% and 1-6%, respectively. On a seasonal basis, simulated data fitted the measured data satisfactorily ( r2 = 0.75). The rainfall partitioning between interception, throughfall and stemflow was shown to be sensitive to (1) the rainfall regime, i.e. the relative importance of light storms to total rainfall, (2) the climatic parameters, rainfall rate and average evaporation rate during storms, and (3) the canopy structure parameters of the model. The low interception rate of the canopy was attributed primarily to the low leaf area index of the stand.

  12. [Dental alveolar bone and dental arch remodeling in children: orthodontic diagnosis and treatments based on individual child arch development].

    PubMed

    Xiaobing, Li

    2016-12-01

    The etiology of malocclusions basically involves both congenital and environmental factors. Malocclusion is the result of the abnormal development of the orofacial complex (including tooth, dental alveolar bone, upper and lower jaws). Early orthodontic interceptive treatments involve the elimination of all congenital and environmental factors that contribute to the malformation of the orofacial complex, as well as interrupt the deviated development of the orofacial complex and the occlusion. Early orthodontic interceptive treatments mainly aim to use children's growth potential to correct abnormal developments of occlusions and orthodontically treat malocclusions more efficiently. The early orthodontic interceptive treatments include correcting the child's bad oral habits, training the abnormal functioned para-oral muscles, maintaining the normal eruptions of succeeding permanent teeth, applying interceptive treatments to the mal-developed teeth, and employing functional orthopedic treatments for abnormal growths of the upper and lower jaws. In orthodontics, correcting mal-positioned teeth is called orthodontic treatment, while rectifying the abnormal relationships of the upper and lower jaws is called functional orthopedic treatment. However, no clear definition is available as regards to the early orthodontic interceptive treatment of malocclusions caused by the deviated development of the dental alveolar bone. This new theory of "early dental alveolar bone and dental arch remodeling technique" was proposed by Professor Li Xiaobing of the Department of Pediatric Dentistry, Faculty of Pediatric Dentistry and Orthodontics in West China Hospital of Stomatology through his clinical analyses and investigation of his early orthodontic interceptive treatments. He defined the early orthodontic corrections of abnormal growth of dental alveolar bone as "remodel". The "early dental alveolar bone and dental arch remodeling theory and technique" is proved useful in malocclusion diagnosis and treatment planning during early orthodontic interceptive treatment with malformed dental arch. With the development of the theory and technique, the author intended to prevent and intercept the malocclusion development more effectively and efficiently. This review presents the development and clinical usages of the theory which to provide a new vision in the analysis of malocclusions on the basis of the developmental mechanism of the alveolar bone and dental arch. With clinical case illustration, the author demonstrateshis successful orthodontic clinical practices with this theory, which may contribute to the development of contemporary orthodontic theories and techniques.

  13. Snow distribution and heat flow in the taiga

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, M.

    1992-05-01

    The trees of the taiga intercept falling snow and cause it to become distributed in an uneven fashion. Around aspen and birch, cone-shaped accumulations form. Beneath large spruce trees, the snow cover is depleted, forming a bowl-shaped depression called a tree well. Small spruce trees become covered with snow, creating cavities that funnel cold air to the snow/ground interface. The depletion of snow under large spruce trees results in greater heat loss from the ground. A finite difference model suggests that heat flow from tree wells can be more than twice that of undisturbed snow. In forested watersheds, this increasemore » can be a significant percentage of the total winter energy exchange.« less

  14. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines.

  15. Estimating Pressure Reactivity Using Noninvasive Doppler-Based Systolic Flow Index.

    PubMed

    Zeiler, Frederick A; Smielewski, Peter; Donnelly, Joseph; Czosnyka, Marek; Menon, David K; Ercole, Ari

    2018-04-05

    The study objective was to derive models that estimate the pressure reactivity index (PRx) using the noninvasive transcranial Doppler (TCD) based systolic flow index (Sx_a) and mean flow index (Mx_a), both based on mean arterial pressure, in traumatic brain injury (TBI). Using a retrospective database of 347 patients with TBI with intracranial pressure and TCD time series recordings, we derived PRx, Sx_a, and Mx_a. We first derived the autocorrelative structure of PRx based on: (A) autoregressive integrative moving average (ARIMA) modeling in representative patients, and (B) within sequential linear mixed effects (LME) models with various embedded ARIMA error structures for PRx for the entire population. Finally, we performed sequential LME models with embedded PRx ARIMA modeling to find the best model for estimating PRx using Sx_a and Mx_a. Model adequacy was assessed via normally distributed residual density. Model superiority was assessed via Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), log likelihood (LL), and analysis of variance testing between models. The most appropriate ARIMA structure for PRx in this population was (2,0,2). This was applied in sequential LME modeling. Two models were superior (employing random effects in the independent variables and intercept): (A) PRx ∼ Sx_a, and (B) PRx ∼ Sx_a + Mx_a. Correlation between observed and estimated PRx with these two models was: (A) 0.794 (p < 0.0001, 95% confidence interval (CI) = 0.788-0.799), and (B) 0.814 (p < 0.0001, 95% CI = 0.809-0.819), with acceptable agreement on Bland-Altman analysis. Through using linear mixed effects modeling and accounting for the ARIMA structure of PRx, one can estimate PRx using noninvasive TCD-based indices. We have described our first attempts at such modeling and PRx estimation, establishing the strong link between two aspects of cerebral autoregulation: measures of cerebral blood flow and those of pulsatile cerebral blood volume. Further work is required to validate.

  16. Effects of feather wear and temperature on prediction of food intake and residual food consumption.

    PubMed

    Herremans, M; Decuypere, E; Siau, O

    1989-03-01

    Heat production, which accounts for 0.6 of gross energy intake, is insufficiently represented in predictions of food intake. Especially when heat production is elevated (for example by lower temperature or poor feathering) the classical predictions based on body weight, body-weight change and egg mass are inadequate. Heat production was reliably estimated as [35.5-environmental temperature (degree C)] x [Defeathering (=%IBPW) + 21]. Including this term (PHP: predicted heat production) in equations predicting food intake significantly increased accuracy of prediction, especially under suboptimal conditions. Within the range of body weights tested (from 1.6 kg in brown layers to 2.8 kg in dwarf broiler breeders), body weight as an independent variable contributed little to the prediction of food intake; especially within strains its effect was better included in the intercept. Significantly reduced absolute values of residual food consumption were obtained over a wide range of conditions by using predictions of food intake based on body-weight change, egg mass, predicted heat production (PHP) and an intercept, instead of body weight, body-weight change, egg mass and an intercept.

  17. Intercepting virtual balls approaching under different gravity conditions: evidence for spatial prediction.

    PubMed

    Russo, Marta; Cesqui, Benedetta; La Scaleia, Barbara; Ceccarelli, Francesca; Maselli, Antonella; Moscatelli, Alessandro; Zago, Myrka; Lacquaniti, Francesco; d'Avella, Andrea

    2017-10-01

    To accurately time motor responses when intercepting falling balls we rely on an internal model of gravity. However, whether and how such a model is also used to estimate the spatial location of interception is still an open question. Here we addressed this issue by asking 25 participants to intercept balls projected from a fixed location 6 m in front of them and approaching along trajectories with different arrival locations, flight durations, and gravity accelerations (0 g and 1 g ). The trajectories were displayed in an immersive virtual reality system with a wide field of view. Participants intercepted approaching balls with a racket, and they were free to choose the time and place of interception. We found that participants often achieved a better performance with 1 g than 0 g balls. Moreover, the interception points were distributed along the direction of a 1 g path for both 1 g and 0 g balls. In the latter case, interceptions tended to cluster on the upper half of the racket, indicating that participants aimed at a lower position than the actual 0 g path. These results suggest that an internal model of gravity was probably used in predicting the interception locations. However, we found that the difference in performance between 1 g and 0 g balls was modulated by flight duration, the difference being larger for faster balls. In addition, the number of peaks in the hand speed profiles increased with flight duration, suggesting that visual information was used to adjust the motor response, correcting the prediction to some extent. NEW & NOTEWORTHY Here we show that an internal model of gravity plays a key role in predicting where to intercept a fast-moving target. Participants also assumed an accelerated motion when intercepting balls approaching in a virtual environment at constant velocity. We also show that the role of visual information in guiding interceptive movement increases when more time is available. Copyright © 2017 the American Physiological Society.

  18. Predictive saccade in the absence of smooth pursuit: interception of moving targets in the archer fish.

    PubMed

    Ben-Simon, Avi; Ben-Shahar, Ohad; Vasserman, Genadiy; Segev, Ronen

    2012-12-15

    Interception of fast-moving targets is a demanding task many animals solve. To handle it successfully, mammals employ both saccadic and smooth pursuit eye movements in order to confine the target to their area centralis. But how can non-mammalian vertebrates, which lack smooth pursuit, intercept moving targets? We studied this question by exploring eye movement strategies employed by archer fish, an animal that possesses an area centralis, lacks smooth pursuit eye movements, but can intercept moving targets by shooting jets of water at them. We tracked the gaze direction of fish during interception of moving targets and found that they employ saccadic eye movements based on prediction of target position when it is hit. The fish fixates on the target's initial position for ∼0.2 s from the onset of its motion, a time period used to predict whether a shot can be made before the projection of the target exits the area centralis. If the prediction indicates otherwise, the fish performs a saccade that overshoots the center of gaze beyond the present target projection on the retina, such that after the saccade the moving target remains inside the area centralis long enough to prepare and perform a shot. These results add to the growing body of knowledge on biological target tracking and may shed light on the mechanism underlying this behavior in other animals with no neural system for the generation of smooth pursuit eye movements.

  19. Significance of Bioturbated Layer (BTL) and Deep Groundwater Storage on Runoff in Steep Saprolitic Tropical Lowlands Catchment

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Ogden, F. L.; Zhu, J.

    2016-12-01

    Bioturbated soil layers (BTLs) play a significant role in hydrological response and provisioning of ecosystem services in steep, saprolitic, tropical lowlands catchments. In this study, a new physically-based model formulation was developed for testing of runoff generation hypotheses. A main feature in the model formulation is explicit simulation of hydrological processes in the BTL including macropores, which our field observations show are ubiquitous, and deep groundwater stores that provide streamflow during the dry season The numerical model developed includes two main flow paths in the BTL, including one-dimensional (1D) vertical infiltration and two-dimensional (2D) lateral flows in both macropores and the soil matrix. Hydrological processes incorporated along with the BTL processes include intercepted rainfall, evapotranspiration, 2D surface flow and 1D deep groundwater discharge. This model was first tested in a 6.5 ha secondary succession catchment, that is under study by the Smithsonian Tropical Research Institute, Agua Salud project in Panama, which is dominated by steep slopes. With the incorporation of lateral macropore flow mechanism in the BTL, the model performs better than only including soil matrix flow in the BTL especially in simulating baseflow dynamics, which illustrates the importance of preferential flow from the BTL to stream discharge dynamics. The increase in the BTL thickness promotes more flow through the BTL and increases storage in both the BTL and the deep groundwater reservoir, but decreases the total streamflow and overland flow. Lateral macropore diameter distribution influences flows more than the macropore number or distribution type. The model has thus far passed falsification tests during the early wet season. Complexity in subsurface storage and base flow generation offer a new challenge for this model. The overall objective is to develop a model formulation that is useful in practical applications related to land-use management, provisioning of ecosystem services, and water security in similar tropical settings with distinct dry and wet seasons or in the humid tropics during periods of drought.

  20. Further discussions on the relationship between cumulated intercepted solar radiation and crop growth

    USGS Publications Warehouse

    Demetriades-Shah, T.H.; Fuchs, M.; Kanemasu, E.T.; Flitcroft, I.D.

    1994-01-01

    A strong correlation exists between intercepted solar radiation and crop growth. We cautioned that many derivations of the functional relationship between solar energy and biomass use cumulated data, and therefore have logical and arithmetic weaknesses. We examined the growth response of plants to solar energy by using rates of change, of both interception and growth. Our analysis revealed that measurements of light interception can only establish the relationship a posteriori. Replacing interception data with normalized random numbers did not change the quality of the relations. Several scientists have contested our views. This article reconfirms the general validity of our analysis and of our conclusions, that it is not possible to determine plant growth on the sole basis of intercepted solar energy.

  1. On the downscaling of actual evapotranspiration maps based on combination of MODIS and landsat-based actual evapotranspiration estimates

    USGS Publications Warehouse

    Singh, Ramesh K.; Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Verdin, James P.

    2014-01-01

     Downscaling is one of the important ways of utilizing the combined benefits of the high temporal resolution of Moderate Resolution Imaging Spectroradiometer (MODIS) images and fine spatial resolution of Landsat images. We have evaluated the output regression with intercept method and developed the Linear with Zero Intercept (LinZI) method for downscaling MODIS-based monthly actual evapotranspiration (AET) maps to the Landsat-scale monthly AET maps for the Colorado River Basin for 2010. We used the 8-day MODIS land surface temperature product (MOD11A2) and 328 cloud-free Landsat images for computing AET maps and downscaling. The regression with intercept method does have limitations in downscaling if the slope and intercept are computed over a large area. A good agreement was obtained between downscaled monthly AET using the LinZI method and the eddy covariance measurements from seven flux sites within the Colorado River Basin. The mean bias ranged from −16 mm (underestimation) to 22 mm (overestimation) per month, and the coefficient of determination varied from 0.52 to 0.88. Some discrepancies between measured and downscaled monthly AET at two flux sites were found to be due to the prevailing flux footprint. A reasonable comparison was also obtained between downscaled monthly AET using LinZI method and the gridded FLUXNET dataset. The downscaled monthly AET nicely captured the temporal variation in sampled land cover classes. The proposed LinZI method can be used at finer temporal resolution (such as 8 days) with further evaluation. The proposed downscaling method will be very useful in advancing the application of remotely sensed images in water resources planning and management.

  2. Successful customer intercept interview recruitment outside small and midsize urban food retailers.

    PubMed

    Pelletier, Jennifer E; Caspi, Caitlin E; Schreiber, Liana R N; Erickson, Darin J; Harnack, Lisa; Laska, Melissa N

    2016-10-05

    Customer intercept interviews are increasingly used to characterize food purchases at retail food outlets and restaurants; however, methodological procedures, logistical issues and response rates using intercept methods are not well described in the food environment literature. The aims of this manuscript were to 1) describe the development and implementation of a customer intercept interview protocol in a large, NIH-funded study assessing food purchases in small and midsize food retailers in Minneapolis and St. Paul, Minnesota, 2) describe intercept interview response rates by store type and environmental factors (e.g., neighborhood socioeconomic status, day/time, weather), and 3) compare demographic characteristics (e.g., gender, race/ethnicity) of participants versus non-participants. After a pilot phase involving 28 stores, a total of 616 interviews were collected from customers exiting 128 stores in fall 2014. The number of eligible customers encountered per hour (a measure of store traffic), participants successfully recruited per hour, and response rates were calculated overall and by store type, neighborhood socio-economic status, day and time of data collection, and weather. Response rates by store type, neighborhood socio-economic status, time and day of data collection, and weather, and characteristics of participants and non-participants were compared using chi-square tests. The overall response rate was 35 %, with significantly higher response rates at corner/small grocery stores (47 %) and dollar stores (46 %) compared to food-gas marts (32 %) and pharmacies (26 %), and for data collection between 4:00-6:00 pm on weekdays (40 %) compared to weekends (32 %). The distribution of race/ethnicity, but not gender, differed between participants and non-participants (p < 0.01), with greater participation rates among those identified as Black versus White. Customer intercept interviews can be successfully used to recruit diverse samples of customers at small and midsize food retailers. Future community-based studies using customer intercept interviews should collect data sufficient to report response rates and consider potential differences between the racial/ethnic composition of the recruited sample and the target population.

  3. Quantifying dominance of intra-storm phase of interception process by small isolated canopies

    NASA Astrophysics Data System (ADS)

    Yerk, Walter; Montalto, Franco

    2014-05-01

    Precipitation interception by vegetation canopies has long been recognized as a major component of the hydrologic cycle; however, historically most research has been dedicated to closed or sparse canopy forests. The goal of our research was to quantify rainfall partitioning by small isolated canopies in an urban setting. The field experiment involved small forms of four shrub species (Prunus laurocerasus, Cornus sericea, Itea virginica and Hydrangea quercifolia) with crown heights 40 - 80 cm and diameters 35 - 60 cm. Each plant had ten rain gauges to measure throughfall with a sampling frequency of 5 seconds. An on-site automated weather station provided meteorological data. Leaf area index (LAI) was measured by manual counting. We estimated the canopy storage capacities of all four species to be less than 0.5 mm. The obtained data showed statistically significant differences in interception properties among all four species, except between Cornus and Itea. Cumulative interception loss for the period of August-December 2013 was 10% for Cornus, 16% for Itea, 29% for Hydrangea, and 49% for Prunus. The observations revealed a weak relationship between interception abilities and LAI for all four species. Throughfall and precipitation intensities (mm/hr) expressed very strong linear relationship (adjusted coefficients of determination were from 0.80 to 0.95) for the entire range of observed rainfall intensities. For Cornus the ratio of throughfall to precipitation intensity was close to 0.93:1, for Itea it was 0.82:1. The ratios were lesser for Hydrangea (0.65:1), and especially for Prunus (0.48:1). Therefore we show that reduced by the canopy, throughfall intensity results in the bulk of precipitation depth intercepted during the rain events. In contrast, the amount of water stored on the canopy and evaporated between and after rain events contributes minimally to interception. Simulations of potential evaporation based on the Penman-Monteith method showed a large underestimation of evaporation from the wet canopies during the rain events. Approaches other than energy balance models of potential evaporation from a still water surface are being discussed in order to explain large evaporation from within a wet isolated canopy.

  4. Amotosalen: Allogeneic Cellular Immunotherapies system, INTERCEPT Plasma System, INTERCEPT Platelet System, S 59.

    PubMed

    2003-01-01

    Adis CommentsCerus Corporation is developing a variety of pathogen-inactivation systems, based on its Helinx technology. Three of the systems include amotosalen [S 59] as the inactivation compound. Amotosalen is a light-activated, DNA-, RNA-crosslinking psoralen compound, which is used to neutralise pathogens. The systems that utilise amotosalen are called the INTERCEPT Platelet System, the INTERCEPT Plasma System and the Allogeneic Cellular Immunotherapies (ACIT) system. The INTERCEPT Platelet System and INTERCEPT Plasma System are two of the systems that make up Cerus' INTERCEPT Blood Systems. The other system is the INTERCEPT Red Blood Cell System, which contains S 303 as the inactivation compound rather than amotosalen. Cerus' Helinx technology is able to prevent replication of DNA or RNA that is present in pathogens but not in the blood components being treated (e.g. platelets and plasma). When added to the blood components, the inactivation agent (in this case amotosalen) crosses the membrane or cell wall of the pathogen. When activated by light, amotosalen binds to the nucleic acid of the pathogen and prevents replication. This process prevents infection. INTERCEPT Platelet System: Cerus developed its INTERCEPT Platelet System, in collaboration with Baxter Healthcare, for use in blood centres. Platelets are an essential component of the coagulation process and may be required by patients undergoing surgery, cancer chemotherapy, transplantation or with bleeding disorders. The system is made up of an illuminator device, a compound absorption device and a processing kit containing amotosalen. In October 2002, the two companies announced that CE Mark approval had been received for the illuminator device for the INTERCEPT trade mark Blood System. Application of this technology to platelets is the first to be approved. As it is a new technology, the system is currently undergoing process validation in accordance with European Blood Bank GMP requirements. This validation process is currently being conducted in Denmark, France, Germany, Sweden and the UK. Marketing approval applications for the INTERCEPT Platelet System have also been submitted in Australia and Canada. In addition, the regulatory submission process has begun in the US. A phase III trial (EuroSPRITE) has been conducted in 103 patients in Europe with pooled random donor platelets. The platelets were collected using the buffy coat process. Another two 20-patient clinical trials have also been conducted in Europe, as well as a 40-patient trial using platelets collected by an apheresis collection system. Cerus has also conducted a phase III trial (SPRINT) in the US. The trial was conducted in 671 patients and used platelets collected by Baxter's apheresis collection system. INTERCEPT Plasma System: Cerus is also developing the INTERCEPT Plasma System in collaboration with Baxter Healthcare. The system also combines amotosalen, an illumination device and a compound absorption device. The two companies are currently preparing regulatory applications for the INTERCEPT Plasma System for the US. This application will be followed by a submission for CE Mark designation in Europe. Patients undergoing surgery, or transplantation, or with bleeding disorders, may require transfusions of plasma, often to control bleeding. The type of plasma is stored in frozen form and is called fresh frozen plasma (FFP). The INTERCEPT Plasma System is currently in phase IIIc development in the US. Patient enrolment in the trial is still ongoing. The trial is comparing INTERCEPT trade mark Plasma System treated versus untreated FFP in 30 patients with thrombotic thrombocytopenic purpura. Allogeneic Cellular Immunotherapies system: Cerus is also investigating the potential of its Helinx technology to improve the outcome of bone marrow transplantation procedures (used to treat leukaemia and lymphoma) through the treatmatment for many forms of leukaemia and is most effective when the donor is very closely matched to the patient for the major human leucocyte antigen (HLA) groups. As part of the transplant procedure, patients receive donor T cells to improve engraftment of the bone marrow transplant and strengthen the patient's immune system. However, donor T cells expose the patient to a high risk of contracting graft-versus-host disease (GVHD) caused by the proliferation of donor T cells, which attack the patient's healthy tissue. GVHD has a high mortality rate. Cerus' ACIT system has been developed to decrease the stringency of matching donors to patients and to inhibit the ability of donor T cells to cause GVHD. Light-activated amotosalen binds and permanently crosslinks DNA, preventing replication and thus stopping proliferation of donor T cells. Phase I development is currently being conducted in this area in the US using amotosalen as the neutralising agent. Cerus completed a phase I study investigating the safety and tolerability of its ACIT system in 2001. The study was conducted in patients receiving closely matched allogeneic bone marrow transplants for leukaemia. The company is currently collaborating with the National Marrow Donor Program in order to conduct further clinical studies in patients receiving bone marrow transplants from unmatched donors. Cerus has development, manufacturing and marketing agreements with Baxter covering the INTERCEPT Blood Systems, which includes the INTERCEPT Platelet system, the INTERCEPT Plasma System, and the INTERCEPT Red Blood Cell System. Under the terms of the agreements the two companies usually share the very early development activities. Cerus then conducts preclinical and clinical trials, while Baxter is responsible for the development of the systems disposables and devices. Following commercialisation Cerus will supply amotosalen and Baxter will supply the other components of the system and market, sell and distribute the system In January 2001, Cereus announced that it has entered into a collaborative agreement with the Pharmaceutical Division of Kirin Brewery in Japan to develop and market products for stem cell transplantation based on Cerus' proprietary Helinx technology. Under terms of the agreement, Cerus and Kirin will jointly develop the products. Cerus has received an initial license fee of US dollar 1 million. In addition it may receive up to US dollar 11 million in future payments upon achievement of development milestones. Kirin will also fund all development expenses for the Asia-Pacific region and a portion of Cerus' development activities aimed at obtaining product approval in the US. Kirin will market the products in the Asia-Pacific region, including Japan, China, Korea and Australia, and Cerus will receive a specified share of product revenues. Cerus will retain marketing rights in the rest of the world, including the US and Europe.

  5. Assessing solar energy and water use efficiencies in winter wheat

    NASA Technical Reports Server (NTRS)

    Asrar, G.; Hipps, L. E.; Kanemasu, E. T.

    1982-01-01

    The water use and solar energy conversion efficiencies of two cultivars of winter wheat (Triticum aestivum L., vars, Centurk and Newton) planted at three densities, were examined during a growing season. Water use, based on soil moisture depletion, was the lowest under the light, and the highest under the heavy planting densities of both cultivars. Water use efficiency of medium and heavy planting densities were greater than the light planting densities in both cultivars. The canopy radiation extinction coefficients of both cultivars increased with increases in planting density. Efficiency of operation interception of photosynthetically active radiation by both cultivars improved from the time of jointing until anthesis, and then decreased during senescence. The efficiency of the conversion of intercepted radiation to dry matter (biochemical efficiency) decreased throughout the growing season both cultivars. The interception, biochemical, and photosynthetic efficiencies improved as planting density increased.

  6. Evaluation of the intercept oral specimen collection device with HIV assays versus paired serum/plasma specimens.

    PubMed

    Beelaert, G; Van Heddegem, L; Van Frankenhuijsen, M; Vandewalle, G; Compernolle, V; Florence, E; Fransen, K

    2016-08-01

    Oral fluid has many advantages over blood-based techniques: it is less invasive, eliminates the occupational risk associated with needle stick accidents and collection can be self-administrated. Each individual test is packaged with a corresponding collection device. This study tested the suitability of the Intercept Oral Specimen Collection Device for different HIV diagnostic tests: three different rapid HIV tests and two adapted ELISAs, which were evaluated and compared with a gold standard on blood. In addition a total IgG quantification was performed to demonstrate the quality of the specimen. HIV antibodies were detected with a sensitivity of 100%, 99.3%, 98.6%, 100% and 95.7% for, DPP, OraQuick, Aware, Genscreen and Vironostika respectively using the Intercept Collection Device. Respective specificities were 100%, 100%, 99.3%, 97.3% and 100%. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Intrastorm scale rainfall interception dynamics in a mature coniferous forest stand

    NASA Astrophysics Data System (ADS)

    Iida, Shin'ichi; Levia, Delphis F.; Shimizu, Akira; Shimizu, Takanori; Tamai, Koji; Nobuhiro, Tatsuhiko; Kabeya, Naoki; Noguchi, Shoji; Sawano, Shinji; Araki, Makoto

    2017-05-01

    Canopy interception of rainfall is an important process in the water balance of forests. The intrastorm dynamics of canopy interception is less well understood than event scale interception. Accordingly, armed with measurements of hourly interception intensity (i) from the field, this study is among the first to examine the differences in canopy interception dynamics between the first and second halves of rainfall events to quantify dynamic storage values for a coniferous forest in Japan. At this site, experimental results demonstrated that: (1) the relationship between interception loss (I) and gross rainfall (GR) at the event scale is better explained by a parabolic curve than a linear relationship, and there is a low correlation between rainfall intensity (gr) and i; (2) the ratio of accumulated i during the first half (IF) to that of gr (GRF) was larger than the second half (IS/GRS), with no significant correlations between potential evaporation during first half (PEF) vs IF or the second half (PES) vs IS; and (3) water storage capacity was similar to the magnitude of maximum I. By emphasizing the comparison between IF and IS, this study concludes that the water storage on tree surface is more important than losses by wet canopy evaporation and splash during rain. This study also adds insights into intrastorm interception dynamics of coniferous forests which are necessary to better model and forecast interception losses.

  8. The impact of splay faults on fluid flow, solute transport, and pore pressure distribution in subduction zones: A case study offshore the Nicoya Peninsula, Costa Rica

    NASA Astrophysics Data System (ADS)

    Lauer, Rachel M.; Saffer, Demian M.

    2015-04-01

    Observations of seafloor seeps on the continental slope of many subduction zones illustrate that splay faults represent a primary hydraulic connection to the plate boundary at depth, carry deeply sourced fluids to the seafloor, and are in some cases associated with mud volcanoes. However, the role of these structures in forearc hydrogeology remains poorly quantified. We use a 2-D numerical model that simulates coupled fluid flow and solute transport driven by fluid sources from tectonically driven compaction and smectite transformation to investigate the effects of permeable splay faults on solute transport and pore pressure distribution. We focus on the Nicoya margin of Costa Rica as a case study, where previous modeling and field studies constrain flow rates, thermal structure, and margin geology. In our simulations, splay faults accommodate up to 33% of the total dewatering flux, primarily along faults that outcrop within 25 km of the trench. The distribution and fate of dehydration-derived fluids is strongly dependent on thermal structure, which determines the locus of smectite transformation. In simulations of a cold end-member margin, smectite transformation initiates 30 km from the trench, and 64% of the dehydration-derived fluids are intercepted by splay faults and carried to the middle and upper slope, rather than exiting at the trench. For a warm end-member, smectite transformation initiates 7 km from the trench, and the associated fluids are primarily transmitted to the trench via the décollement (50%), and faults intercept only 21% of these fluids. For a wide range of splay fault permeabilities, simulated fluid pressures are near lithostatic where the faults intersect overlying slope sediments, providing a viable mechanism for the formation of mud volcanoes.

  9. Downstream Effects of Diversion Dams on Riparian Vegetation Communities in the Routt National Forest, Colorado

    NASA Astrophysics Data System (ADS)

    Caskey, S. T.; Wohl, E. E.; Dwire, K. A.; Merritt, D. M.; Schnackenberg, L.

    2012-12-01

    The relationship between riparian vegetation and changes in fluvial processes as a response to flow diversion is not well understood. Water extraction affects the hydrologic flow regime (i.e., magnitude, duration, and frequency of flows) reducing peak and base-flows, which could negatively impact riparian vegetation. Vegetation communities are temporally and spatially variable and are strongly interrelated with alluvial landforms and hydrograph variability. This research compares riparian community characteristics on diverted and undiverted pool-riffle channels and low gradient valleys to examine changes associated with flow diversion in the Routt National Forest (RNF). The RNF is the only under-appropriated area in Colorado, making future water extraction proposals likely. Many small extraction canals siphon water from small, headwater streams in the RNF, but the site-specific or cumulative effects of these diversions on riverine ecosystems have not been investigated. Systematic investigation is necessary, however, to determine whether existing flow diversions have influenced riparian communities and, if so, which communities are most sensitive to diversions. A total of 36 sites were sampled with five channel cross sections established per site, extending into the riparian zone at distance of two times the active channel width, and vegetation was sampled using the line-point intercept method. Preliminary results suggest a shift in vegetation communities from typical riparian species composition to more upland vegetation. The relative sensitivity of these responses are different depending on valley type; low- gradient, unconfined areas are less tolerant of diversion than steeper, confined reaches. Additionally, when stratified by plant assemblage, Salix abundance is significantly reduced downstream of diversion. The results of this study contribute to the collective understanding of mountain headwater riparian vegetation community response to changes in flow regimes and fluvial processes related directly to water extraction by diversion dams.

  10. Midday Depression vs. Midday Peak in Diurnal Light Interception: Contrasting Patterns at Crown and Leaf Scales in a Tropical Evergreen Tree.

    PubMed

    Ventre-Lespiaucq, Agustina; Flanagan, Nicola S; Ospina-Calderón, Nhora H; Delgado, Juan A; Escudero, Adrián

    2018-01-01

    Crown architecture usually is heterogeneous as a result of foraging in spatially and temporally heterogeneous light environments. Ecologists are only beginning to identify the importance of temporal heterogeneity for light acquisition in plants, especially at the diurnal scale. Crown architectural heterogeneity often leads to a diurnal variation in light interception. However, maximizing light interception during midday may not be an optimal strategy in environments with excess light. Instead, long-lived plants are expected to show crown architectures and leaf positions that meet the contrasting needs of light interception and avoidance of excess light on a diurnal basis. We expected a midday depression in the diurnal course of light interception both at the whole-crown and leaf scales, as a strategy to avoid the interception of excessive irradiance. We tested this hypothesis in a population of guava trees ( Psidium guajava L.) growing in an open tropical grassland. We quantified three crown architectural traits: intra-individual heterogeneity in foliage clumping, crown openness, and leaf position angles. We estimated the diurnal course of light interception at the crown scale using hemispheric photographs, and at the leaf scale using the cosine of solar incidence. Crowns showed a midday depression in light interception, while leaves showed a midday peak. These contrasting patterns were related to architectural traits. At the crown scale, the midday depression of light interception was linked to a greater crown openness and foliage clumping in crown tops than in the lateral parts of the crown. At the leaf scale, an average inclination angle of 45° led to the midday peak in light interception, but with a huge among-leaf variation in position angles. The mismatch in diurnal course of light interception at crown and leaf scales can indicate that different processes are being optimized at each scale. These findings suggest that the diurnal course of light interception may be an important dimension of the resource acquisition strategies of long-lived woody plants. Using a temporal approach as the one applied here may improve our understanding of the diversity of crown architectures found across and within environments.

  11. Midday Depression vs. Midday Peak in Diurnal Light Interception: Contrasting Patterns at Crown and Leaf Scales in a Tropical Evergreen Tree

    PubMed Central

    Ventre-Lespiaucq, Agustina; Flanagan, Nicola S.; Ospina-Calderón, Nhora H.; Delgado, Juan A.; Escudero, Adrián

    2018-01-01

    Crown architecture usually is heterogeneous as a result of foraging in spatially and temporally heterogeneous light environments. Ecologists are only beginning to identify the importance of temporal heterogeneity for light acquisition in plants, especially at the diurnal scale. Crown architectural heterogeneity often leads to a diurnal variation in light interception. However, maximizing light interception during midday may not be an optimal strategy in environments with excess light. Instead, long-lived plants are expected to show crown architectures and leaf positions that meet the contrasting needs of light interception and avoidance of excess light on a diurnal basis. We expected a midday depression in the diurnal course of light interception both at the whole-crown and leaf scales, as a strategy to avoid the interception of excessive irradiance. We tested this hypothesis in a population of guava trees (Psidium guajava L.) growing in an open tropical grassland. We quantified three crown architectural traits: intra-individual heterogeneity in foliage clumping, crown openness, and leaf position angles. We estimated the diurnal course of light interception at the crown scale using hemispheric photographs, and at the leaf scale using the cosine of solar incidence. Crowns showed a midday depression in light interception, while leaves showed a midday peak. These contrasting patterns were related to architectural traits. At the crown scale, the midday depression of light interception was linked to a greater crown openness and foliage clumping in crown tops than in the lateral parts of the crown. At the leaf scale, an average inclination angle of 45° led to the midday peak in light interception, but with a huge among-leaf variation in position angles. The mismatch in diurnal course of light interception at crown and leaf scales can indicate that different processes are being optimized at each scale. These findings suggest that the diurnal course of light interception may be an important dimension of the resource acquisition strategies of long-lived woody plants. Using a temporal approach as the one applied here may improve our understanding of the diversity of crown architectures found across and within environments. PMID:29904391

  12. Context effects on smooth pursuit and manual interception of a disappearing target.

    PubMed

    Kreyenmeier, Philipp; Fooken, Jolande; Spering, Miriam

    2017-07-01

    In our natural environment, we interact with moving objects that are surrounded by richly textured, dynamic visual contexts. Yet most laboratory studies on vision and movement show visual objects in front of uniform gray backgrounds. Context effects on eye movements have been widely studied, but it is less well known how visual contexts affect hand movements. Here we ask whether eye and hand movements integrate motion signals from target and context similarly or differently, and whether context effects on eye and hand change over time. We developed a track-intercept task requiring participants to track the initial launch of a moving object ("ball") with smooth pursuit eye movements. The ball disappeared after a brief presentation, and participants had to intercept it in a designated "hit zone." In two experiments ( n = 18 human observers each), the ball was shown in front of a uniform or a textured background that either was stationary or moved along with the target. Eye and hand movement latencies and speeds were similarly affected by the visual context, but eye and hand interception (eye position at time of interception, and hand interception timing error) did not differ significantly between context conditions. Eye and hand interception timing errors were strongly correlated on a trial-by-trial basis across all context conditions, highlighting the close relation between these responses in manual interception tasks. Our results indicate that visual contexts similarly affect eye and hand movements but that these effects may be short-lasting, affecting movement trajectories more than movement end points. NEW & NOTEWORTHY In a novel track-intercept paradigm, human observers tracked a briefly shown object moving across a textured, dynamic context and intercepted it with their finger after it had disappeared. Context motion significantly affected eye and hand movement latency and speed, but not interception accuracy; eye and hand position at interception were correlated on a trial-by-trial basis. Visual context effects may be short-lasting, affecting movement trajectories more than movement end points. Copyright © 2017 the American Physiological Society.

  13. Interception of spray drift by border structures. Part 1: wind tunnel experiments.

    PubMed

    De Schampheleire, M; Nuyttens, D; Dekeyser, D; Verboven, P; Cornelis, W; Gabriels, D; Spanoghe, P

    2008-01-01

    This research investigated the drift-intercepting potential of structures surrounding the field borders, like artificial screens and crops, which are not yet a part of the drift mitigation measures for field crop sprayers in Belgium. Drift-interception experiments were performed in the wind tunnel of the International Centre for Eremology (Ghent University, Belgium) with various interception structures: Artificial screens with heights of 0.5, 0.75 and 1 m and screen open areas of 16, 36 and 63%; a row of plastic Christmas trees with heights of 0.5 and 0.75 m; and a potato canopy. The interception structure was positioned at 1 m from the field border. From the results it was found that type of border structure has a pronounced effect on the drift interception, while the height of the border structure had no significant effect.

  14. Comparison of the chemical evolution and characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    NASA Astrophysics Data System (ADS)

    Hecobian, A.; Liu, Z.; Hennigan, C. J.; Huey, L. G.; Jimenez, J. L.; Cubison, M. J.; Vay, S.; Diskin, G. S.; Sachse, G. W.; Wisthaler, A.; Mikoviny, T.; Weinheimer, A. J.; Liao, J.; Knapp, D. J.; Wennberg, P. O.; Kürten, A.; Crounse, J. D.; St. Clair, J.; Wang, Y.; Weber, R. J.

    2011-06-01

    This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Extensive investigations of boreal fire plume evolution were undertaken during ARCTAS-B, where four distinct fire plumes that were intercepted by the aircraft over a range of down-wind distances (0.1 to 16 hr transport times) were studied in detail. Based on these analyses, there was no evidence for ozone production and a box model simulation of the data confirmed that net ozone production was slow (on average 1 ppbv h-1 in the first 3 h and much lower afterwards) due to limited NOx. Peroxyacetyl nitrate concentrations (PAN) increased with plume age and the box model estimated an average production rate of ~80 pptv h-1 in the first 3 h. Like ozone, there was also no evidence for net secondary inorganic or organic aerosol formation. There was no apparent increase in aerosol mass concentrations in the boreal fire plumes due to secondary organic aerosol (SOA) formation; however, there were indications of chemical processing of the organic aerosols. In addition to the detailed studies of boreal fire plume evolution, about 500 smoke plumes intercepted by the NASA DC-8 aircraft were segregated by fire source region. The normalized excess mixing ratios (i.e. ΔX/ΔCO) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen (NOx), ozone, PAN) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared.

  15. Implication of Intrastorm Rainfall-Canopy Interaction on Interception Performance of Broadleaf Evergreen Shrubs in Urban Setting

    NASA Astrophysics Data System (ADS)

    Yerk, W.; Montalto, F. A.

    2014-12-01

    Because of its ability to intercept a portion of rainfall, vegetated canopy has a significant influence on the urban hydrological cycle. In turn, urban watersheds, characterized by large impervious areas, have an enormous and often adverse impact on receiving waters. However, most historical interception research has been dedicated to forest canopies. The goal of our research was to quantify rainfall partitioning by isolated evergreen canopies in an urban setting. Two years of the field experiment involved three exemplars of Cherry Laurel (Prunus laurocerasus'Otto Luyken'.) Each plant had ten rain gauges to measure throughfall with a five second sampling frequency. A number of preventive techniques were introduced to minimize the gauges' errors (e.g., splash-in, splash-out and excessive wetting.) Leaf area index was measured manually. We estimated the canopy storage capacity to be less than 0.5 mm. An on-site automated weather station provided meteorological data. Cumulative interception loss for the periods of August-December 2013 and April-July 2014 was 51%. Phenological change did not show a stable pattern of influence on throughfall depths. Measurements in May and July 2014 showed a high variability of stemflow (2-16%) between rain events. Throughfall and precipitation intensities (mm/hr) expressed strong linear relationships (adjusted coefficient of determination R20.79) for the entire range of observed rainfall intensities. The ratio of throughfall to precipitation intensity was 0.49:1. The observations suggest that reduction of throughfall intensity by the canopy during a rainstorm determines the bulk of interception depth. In contrast, the amount of water stored on the canopy and evaporated between and after rain events contributes minimally to interception. Simulations of potential evaporation based on the Penman-Monteith method revealed a serious underestimation of evaporation from the wet canopy surfaces during the rain events. Mechanisms other than heat balance models of potential evaporation from a still water surface are being discussed in order to explain large intrastorm evaporation from within an isolated canopy.

  16. Test study on the performance of shielding configuration with stuffed layer under hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Ke, Fa-wei; Huang, Jie; Wen, Xue-zhong; Ma, Zhao-xia; Liu, Sen

    2016-10-01

    In order to study the cracking and intercepting mechanism of stuffed layer configuration on the debris cloud and to develop stuffed layer configuration with better performance, the hypervelocity impact tests on shielding configurations with stuffed layer were carried out. Firstly, the hypervelocity impact tests on the shielding configuration with stuffed layer of 3 layer ceramic fibre and 3 layer aramid fibre were finished, the study results showed that the debris cloud generated by the aluminum sphere impacting bumper at the velocity of about 6.2 km/s would be racked and intercepted by the stuffed layer configuration efficiently when the ceramic fibre layers and aramid fibre layers were jointed together, however, the shielding performance would be declined when the ceramic fibre layers and aramid fibre layers were divided by some distance. The mechanism of stuffed layer racking and intercepting the debris cloud was analyzed according to the above test results. Secondly, based on the mechanism of the stuffed layer cracking and intercepint debirs cloud the hypervelocity impact tests on the following three stuffed layer structures with the equivalent areal density to the 1 mm-thick aluminum plate were also carried out to compare their performance of cracking and intercepting debris cloud. The mechanisms of stuffed layer racking and intercepting the debris cloud were validated by the test result. Thirdly, the influence of the stuffed layer position on the shielding performance was studied by the test, too. The test results would provide reference for the design of better performance shielding configuration with stuffed layer.

  17. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert.

    PubMed

    Zhang, Zhi-Shan; Zhao, Yang; Li, Xin-Rong; Huang, Lei; Tan, Hui-Juan

    2016-05-17

    In water-limited regions, rainfall interception is influenced by rainfall properties and crown characteristics. Rainfall properties, aside from gross rainfall amount and duration (GR and RD), maximum rainfall intensity and rainless gap (RG), within rain events may heavily affect throughfall and interception by plants. From 2004 to 2014 (except for 2007), individual shrubs of Caragana korshinskii and Artemisia ordosica were selected to measure throughfall during 210 rain events. Various rainfall properties were auto-measured and crown characteristics, i.e., height, branch and leaf area index, crown area and volume of two shrubs were also measured. The relative interceptions of C. korshinskii and A. ordosica were 29.1% and 17.1%, respectively. Rainfall properties have more contributions than crown characteristics to throughfall and interception of shrubs. Throughfall and interception of shrubs can be explained by GR, RI60 (maximum rainfall intensities during 60 min), RD and RG in deceasing importance. However, relative throughfall and interception of two shrubs have different responses to rainfall properties and crown characteristics, those of C. korshinskii were closely related to rainfall properties, while those of A. ordosica were more dependent on crown characteristics. We highlight long-term monitoring is very necessary to determine the relationships between throughfall and interception with crown characteristics.

  18. Supersonic fan engines for military aircraft

    NASA Technical Reports Server (NTRS)

    Franciscus, L. C.

    1983-01-01

    Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines. Previously announced in STAR as N83-34947

  19. When hawks attack: animal-borne video studies of goshawk pursuit and prey-evasion strategies

    PubMed Central

    Kane, Suzanne Amador; Fulton, Andrew H.; Rosenthal, Lee J.

    2015-01-01

    Video filmed by a camera mounted on the head of a Northern Goshawk (Accipiter gentilis) was used to study how the raptor used visual guidance to pursue prey and land on perches. A combination of novel image analysis methods and numerical simulations of mathematical pursuit models was used to determine the goshawk's pursuit strategy. The goshawk flew to intercept targets by fixing the prey at a constant visual angle, using classical pursuit for stationary prey, lures or perches, and usually using constant absolute target direction (CATD) for moving prey. Visual fixation was better maintained along the horizontal than vertical direction. In some cases, we observed oscillations in the visual fix on the prey, suggesting that the goshawk used finite-feedback steering. Video filmed from the ground gave similar results. In most cases, it showed goshawks intercepting prey using a trajectory consistent with CATD, then turning rapidly to attack by classical pursuit; in a few cases, it showed them using curving non-CATD trajectories. Analysis of the prey's evasive tactics indicated that only sharp sideways turns caused the goshawk to lose visual fixation on the prey, supporting a sensory basis for the surprising frequency and effectiveness of this tactic found by previous studies. The dynamics of the prey's looming image also suggested that the goshawk used a tau-based interception strategy. We interpret these results in the context of a concise review of pursuit–evasion in biology, and conjecture that some prey deimatic ‘startle’ displays may exploit tau-based interception. PMID:25609783

  20. Estimation of Stormwater Interception Rate for various LID Facilities

    NASA Astrophysics Data System (ADS)

    Kim, S.; Lee, O.; Choi, J.

    2017-12-01

    In this study, the stormwater interception rate is proposed to apply in the design of LID facilities. For this purpose, EPA-SWMM is built with some areas of Noksan National Industrial Complex where long-term observed stormwater data were monitored and stormwater interception rates for various design capacities of various LID facilities are estimated. While the sensitivity of stormwater interception rate according to design specifications of bio-retention and infiltration trench facilities is not large, the sensitivity of stormwater interception rate according to local rainfall characteristics is relatively big. As a result of comparing the present rainfall interception rate estimation method which is officially operated in Korea with the one proposed in this study, it will be presented that the present method is highly likely to overestimate the performance of the bio-retention and infiltration trench facilities. Finally, a new stormwater interception rate formulas for the bio-retention and infiltration trench LID facilities will be proposed. Acknowledgement This research was supported by a grant (2016000200002) from Public Welfare Technology Development Program funded by Ministry of Environment of Korean government.

  1. Is there a geomorphic expression of interbasin groundwater flow in watersheds? Interactions between interbasin groundwater flow, springs, streams, and geomorphology.

    DOE PAGES

    Frisbee, Marty D.; Tysor, Elizabeth H.; Stewart-Maddox, Noah; ...

    2016-02-13

    Interbasin groundwater flow (IGF) can play a significant role in the generation and geochemical evolution of streamflow. However, it is exceedingly difficult to identify IGF, and to determine the location and quantity of water that is exchanged between watersheds. How does IGF affect landscape/watershed geomorphic evolution? Can geomorphic metrics be used to identify the presence of IGF? We examine these questions in two adjacent sedimentary watersheds in northern New Mexico using a combination of geomorphic/landscape metrics, springflow residence times, and spatial geochemical patterns. IGF is expressed geomorphically in the landscape placement of springs, and flow direction and shape of streammore » channels. Springs emerge preferentially on one side of stream valleys where landscape incision has intercepted IGF flowpaths. Stream channels grow toward the IGF source and show little bifurcation. In addition, radiocarbon residence times of springs decrease and the geochemical composition of springs changes as the connection to IGF is lost.« less

  2. A postscript to Circulation of the blood: men and ideas.

    PubMed

    Riley, R L

    1982-10-01

    Since 1964, when Fishman and Richards published Circulation of the Blood: Men and Ideas, Guyton's model of the circulation, in which mean circulatory pressure serves as the upstream pressure for venous return, has been extended, and the concept of vascular smooth muscle tone acting like the pressure surrounding a Starling resistor has been postulated. According to this scheme, the positive zero flow intercepts of rapidly determined arterial pressure-flow curves are the effective downstream pressures for arterial flow to different tissues. The arterioles, like Starling resistors, determine the downstream pressures and are followed by abrupt pressure drops, or "waterfalls." Capillary pressures are closely linked to those of the venules into which they flow. Capillary-venular pressures are the upstream pressures for venous return. In exercising muscles, reduced arteriolar tone lowers arteriolar pressure and increases arterial flow. This, in turn, raises capillary-venular pressure and increases venous flow. The arteriolar-capillary waterfall is decreased or eliminated. Total blood flow is increased by diversion of blood from tissues with slow venous drainage to muscles with fast venous drainage (low resistance X compliance). The heart pumps away the increased venous return by shifting to a new ventricular function curve.

  3. Which technology to investigate visual perception in sport: video vs. virtual reality.

    PubMed

    Vignais, Nicolas; Kulpa, Richard; Brault, Sébastien; Presse, Damien; Bideau, Benoit

    2015-02-01

    Visual information uptake is a fundamental element of sports involving interceptive tasks. Several methodologies, like video and methods based on virtual environments, are currently employed to analyze visual perception during sport situations. Both techniques have advantages and drawbacks. The goal of this study is to determine which of these technologies may be preferentially used to analyze visual information uptake during a sport situation. To this aim, we compared a handball goalkeeper's performance using two standardized methodologies: video clip and virtual environment. We examined this performance for two response tasks: an uncoupled task (goalkeepers show where the ball ends) and a coupled task (goalkeepers try to intercept the virtual ball). Variables investigated in this study were percentage of correct zones, percentage of correct responses, radial error and response time. The results showed that handball goalkeepers were more effective, more accurate and started to intercept earlier when facing a virtual handball thrower than when facing the video clip. These findings suggested that the analysis of visual information uptake for handball goalkeepers was better performed by using a 'virtual reality'-based methodology. Technical and methodological aspects of these findings are discussed further. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Estimated areal extent of colonies of black-tailed prairie dogs in the northern Great Plains

    USGS Publications Warehouse

    Sidle, John G.; Johnson, Douglas H.; Euliss, Betty R.

    2001-01-01

    During 1997–1998, we undertook an aerial survey, with an aerial line-intercept technique, to estimate the extent of colonies of black-tailed prairie dogs (Cynomys ludovicianus) in the northern Great Plains states of Nebraska, North Dakota, South Dakota, and Wyoming. We stratified the survey based on knowledge of colony locations, computed 2 types of estimates for each stratum, and combined ratio estimates for high-density strata with average density estimates for low-density strata. Estimates of colony areas for black-tailed prairie dogs were derived from the average percentages of lines intercepting prairie dog colonies and ratio estimators. We selected the best estimator based on the correlation between length of transect line and length of intercepted colonies. Active colonies of black-tailed prairie dogs occupied 2,377.8 km2 ± 186.4 SE, whereas inactive colonies occupied 560.4 ± 89.2 km2. These data represent the 1st quantitative assessment of black-tailed prairie dog colonies in the northern Great Plains. The survey dispels popular notions that millions of hectares of colonies of black-tailed prairie dogs exist in the northern Great Plains and can form the basis for future survey efforts.

  5. Design and Processing of a Novel Chaos-Based Stepped Frequency Synthesized Wideband Radar Signal.

    PubMed

    Zeng, Tao; Chang, Shaoqiang; Fan, Huayu; Liu, Quanhua

    2018-03-26

    The linear stepped frequency and linear frequency shift keying (FSK) signal has been widely used in radar systems. However, such linear modulation signals suffer from the range-Doppler coupling that degrades radar multi-target resolution. Moreover, the fixed frequency-hopping or frequency-coded sequence can be easily predicted by the interception receiver in the electronic countermeasures (ECM) environments, which limits radar anti-jamming performance. In addition, the single FSK modulation reduces the radar low probability of intercept (LPI) performance, for it cannot achieve a large time-bandwidth product. To solve such problems, we propose a novel chaos-based stepped frequency (CSF) synthesized wideband signal in this paper. The signal introduces chaotic frequency hopping between the coherent stepped frequency pulses, and adopts a chaotic frequency shift keying (CFSK) and phase shift keying (PSK) composited coded modulation in a subpulse, called CSF-CFSK/PSK. Correspondingly, the processing method for the signal has been proposed. According to our theoretical analyses and the simulations, the proposed signal and processing method achieve better multi-target resolution and LPI performance. Furthermore, flexible modulation is able to increase the robustness against identification of the interception receiver and improve the anti-jamming performance of the radar.

  6. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO.

    PubMed

    Xingling, Shao; Honglun, Wang

    2015-07-01

    This paper proposes a novel composite integrated guidance and control (IGC) law for missile intercepting against unknown maneuvering target with multiple uncertainties and control constraint. First, by using back-stepping technique, the proposed IGC law design is separated into guidance loop and control loop. The unknown target maneuvers and variations of aerodynamics parameters in guidance and control loop are viewed as uncertainties, which are estimated and compensated by designed model-assisted reduced-order extended state observer (ESO). Second, based on the principle of active disturbance rejection control (ADRC), enhanced feedback linearization (FL) based control law is implemented for the IGC model using the estimates generated by reduced-order ESO. In addition, performance analysis and comparisons between ESO and reduced-order ESO are examined. Nonlinear tracking differentiator is employed to construct the derivative of virtual control command in the control loop. Third, the closed-loop stability for the considered system is established. Finally, the effectiveness of the proposed IGC law in enhanced interception performance such as smooth interception course, improved robustness against multiple uncertainties as well as reduced control consumption during initial phase are demonstrated through simulations. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Intercepted photosynthetically active radiation in wheat canopies estimated by spectral reflectance. [Phoenix, Arizona

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Asrar, G.; Kanemasu, E. T.

    1982-01-01

    The interception of photosynthetically active radiation (PAR) was evaluated relative to greenness and normalized difference (MSS 7-5/7+5) for five planting dates of wheat for 1978-79 and 1979-80 in Phoenix. Intercepted PAR was calculated from a model driven by leaf area index and stage of growth. Linear relationships were found between greenness and normalized difference with a separate model representing growth and senescence of the crop. Normalized difference was a significantly better model and would be easier to apply than the empirically derived greenness parameter. For the leaf area growth portion of the season the model between PAR interception and normalized difference was the same over years, however, for the leaf senescence the models showed more variability due to the lack of data on measured interception in sparse canopies. Normalized difference could be used to estimate PAR interception directly for crop growth models.

  8. Interflow dynamics on a low relief forested hillslope: Lots of fill, little spill

    DOE PAGES

    Du, Enhao; Rhett Jackson, C.; Klaus, Julian; ...

    2016-01-27

    In this paper, we evaluated the occurrence of perching and interflow over and within a sandy clay loam argillic horizon within first-order, low-relief, forested catchments at the Savannah River Site (SRS) in the Upper Coastal Plain of South Carolina. We measured soil hydraulic properties, depths to the argillic layer, soil moisture, shallow groundwater behavior, interflow interception trench flows, and streamflow over a 4-year period to explore the nature and variability of soil hydraulic characteristics, the argillic “topography”, and their influence on interflow generation. Perching occurred frequently within and above the restricting argillic horizons during our monitoring period, but interflow wasmore » infrequent due to microtopographic relief and associated depression storage on the argillic layer surface. High percolation rates through the argillic horizon, particularly through soil anomalies, also reduced the importance of interflow. Interflow generation was highly variable across eleven segments of a 121 m interception trench. Hillslopes were largely disconnected from stream behavior during storms. Hillslope processes were consistent with the fill-and-spill hypothesis and featured a sequence of distinct thresholds: vertical wetting front propagation to the argillic layer; saturation of the argillic followed by local perching; filling of argillic layer depressions; and finally connectivity of depressions leading to interflow generation. Lastly, analysis of trench flow data indicated a cumulative rainfall threshold of 60 mm to generate interflow, a value at the high end of the range of thresholds reported elsewhere.« less

  9. Interflow dynamics on a low relief forested hillslope: Lots of fill, little spill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Enhao; Rhett Jackson, C.; Klaus, Julian

    In this paper, we evaluated the occurrence of perching and interflow over and within a sandy clay loam argillic horizon within first-order, low-relief, forested catchments at the Savannah River Site (SRS) in the Upper Coastal Plain of South Carolina. We measured soil hydraulic properties, depths to the argillic layer, soil moisture, shallow groundwater behavior, interflow interception trench flows, and streamflow over a 4-year period to explore the nature and variability of soil hydraulic characteristics, the argillic “topography”, and their influence on interflow generation. Perching occurred frequently within and above the restricting argillic horizons during our monitoring period, but interflow wasmore » infrequent due to microtopographic relief and associated depression storage on the argillic layer surface. High percolation rates through the argillic horizon, particularly through soil anomalies, also reduced the importance of interflow. Interflow generation was highly variable across eleven segments of a 121 m interception trench. Hillslopes were largely disconnected from stream behavior during storms. Hillslope processes were consistent with the fill-and-spill hypothesis and featured a sequence of distinct thresholds: vertical wetting front propagation to the argillic layer; saturation of the argillic followed by local perching; filling of argillic layer depressions; and finally connectivity of depressions leading to interflow generation. Lastly, analysis of trench flow data indicated a cumulative rainfall threshold of 60 mm to generate interflow, a value at the high end of the range of thresholds reported elsewhere.« less

  10. Computer-Based and Paper-Based Measurement of Recognition Performance.

    ERIC Educational Resources Information Center

    Federico, Pat-Anthony

    To determine the relative reliabilities and validities of paper-based and computer-based measurement procedures, 83 male student pilots and radar intercept officers were administered computer and paper-based tests of aircraft recognition. The subject matter consisted of line drawings of front, side, and top silhouettes of aircraft. Reliabilities…

  11. Improved ground hydrology calculations for global climate models (GCMs) - Soil water movement and evapotranspiration

    NASA Technical Reports Server (NTRS)

    Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.

    1988-01-01

    A physically based ground hydrology model is presented that includes the processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff. Data from the Goddard Institute for Space Studies GCM were used as inputs for off-line tests of the model in four 8 x 10 deg regions, including Brazil, Sahel, Sahara, and India. Soil and vegetation input parameters were caculated as area-weighted means over the 8 x 10 deg gridbox; the resulting hydrological quantities were compared to ground hydrology model calculations performed on the 1 x 1 deg cells which comprise the 8 x 10 deg gridbox. Results show that the compositing procedure worked well except in the Sahel, where low soil water levels and a heterogeneous land surface produce high variability in hydrological quantities; for that region, a resolution better than 8 x 10 deg is needed.

  12. ISING MODEL OF CHORIOCAPILLARIS FLOW.

    PubMed

    Spaide, Richard F

    2018-01-01

    To develop a mathematical model of local blood flow in the choriocapillaris using an Ising model. A JavaScript Ising model was used to create images that emulated the development of signal voids as would be seen in optical coherence tomography angiography of the choriocapillaris. The model was produced by holding the temperature near criticality and varying the field strength. Individual frames were evaluated, and a movie video was created to show the hypothetical development of flow-related signal voids over a lifetime. Much the same as actual choriocapillaris images in humans, the model of flow-related signal voids followed a power-law distribution. The slope and intercept both decreased with age, as is seen in human subjects. This model is a working hypothesis, and as such can help predict system characteristics, evaluate conclusions drawn from studies, suggest new research questions, and provide a way of obtaining an estimate of behavior in which experimental data are not yet available. It may be possible to understand choriocapillaris blood flow in health and disease states by determining by observing deviations from an expected model.

  13. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert

    PubMed Central

    Zhang, Zhi-Shan; Zhao, Yang; Li, Xin-Rong; Huang, Lei; Tan, Hui-Juan

    2016-01-01

    In water-limited regions, rainfall interception is influenced by rainfall properties and crown characteristics. Rainfall properties, aside from gross rainfall amount and duration (GR and RD), maximum rainfall intensity and rainless gap (RG), within rain events may heavily affect throughfall and interception by plants. From 2004 to 2014 (except for 2007), individual shrubs of Caragana korshinskii and Artemisia ordosica were selected to measure throughfall during 210 rain events. Various rainfall properties were auto-measured and crown characteristics, i.e., height, branch and leaf area index, crown area and volume of two shrubs were also measured. The relative interceptions of C. korshinskii and A. ordosica were 29.1% and 17.1%, respectively. Rainfall properties have more contributions than crown characteristics to throughfall and interception of shrubs. Throughfall and interception of shrubs can be explained by GR, RI60 (maximum rainfall intensities during 60 min), RD and RG in deceasing importance. However, relative throughfall and interception of two shrubs have different responses to rainfall properties and crown characteristics, those of C. korshinskii were closely related to rainfall properties, while those of A. ordosica were more dependent on crown characteristics. We highlight long-term monitoring is very necessary to determine the relationships between throughfall and interception with crown characteristics. PMID:27184918

  14. Determining hydrological changes in a small Arctic treeline basin using cold regions hydrological modelling and a pseudo-global warming approach

    NASA Astrophysics Data System (ADS)

    Krogh, S. A.; Pomeroy, J. W.

    2017-12-01

    Increasing temperatures are producing higher rainfall ratios, shorter snow-covered periods, permafrost thaw, more shrub coverage, more northerly treelines and greater interaction between groundwater and surface flow in Arctic basins. How these changes will impact the hydrology of the Arctic treeline environment represents a great challenge. To diagnose the future hydrology along the current Arctic treeline, a physically based cold regions model was used to simulate the hydrology of a small basin near Inuvik, Northwest Territories, Canada. The hydrological model includes hydrological processes such as snow redistribution and sublimation by wind, canopy interception of snow/rain and sublimation/evaporation, snowmelt energy balance, active layer freeze/thaw, infiltration into frozen and unfrozen soils, evapotranspiration, horizontal flow through organic terrain and snowpack, subsurface flow and streamflow routing. The model was driven with weather simulated by a high-resolution (4 km) numerical weather prediction model under two scenarios: (1) control run, using ERA-Interim boundary conditions (2001-2013) and (2) future, using a Pseudo-Global Warming (PGW) approach based on the RCP8.5 projections perturbing the control run. Transient changes in vegetation based on recent observations and ecological expectations were then used to re-parameterise the model. Historical hydrological simulations were validated against daily streamflow, snow water equivalent and active layer thickness records, showing the model's suitability in this environment. Strong annual warming ( 6 °C) and more precipitation ( 20%) were simulated by the PGW scenario, with winter precipitation and fall temperature showing the largest seasonal increase. The joint impact of climate and transient vegetation changes on snow accumulation and redistribution, evapotranspiration, active layer development, runoff generation and hydrograph characteristics are analyzed and discussed.

  15. Effects of landscape-based green infrastructure on stormwater ...

    EPA Pesticide Factsheets

    The development of impervious surfaces in urban and suburban catchments affects their hydrological behavior by decreasing infiltration, increasing peak hydrograph response following rainfall events, and ultimately increasing the total volume of water and mass of pollutants reaching streams. These changes have deleterious effects on downstream surface waters. Consequently, strategies to mitigate these impacts are now components of contemporary urban development and stormwater management. This study evaluates the effectiveness of landscape green infrastructure (GI) in reducing stormwater runoff volumes and controlling peak flows in four subdivision-scale suburban catchments (1.88 – 12.97 acres) in Montgomery County, MD, USA. Stormwater flow rates during runoff events were measured in five minute intervals at each catchment outlet. One catchment was built with GI vegetated swales on all parcels with the goal of intercepting, conveying, and infiltrating stormwater before it enters the sewer network. The remaining catchments were constructed with traditional gray infrastructure and “end-of-pipe” best management practices (BMPs) that treat stormwater before entering streams. This study compared characteristics of rainfall-runoff events at the green and gray infrastructure sites to understand their effects on suburban hydrology. The landscape GI strategy generally reduced rainfall-runoff ratios compared to gray infrastructure because of increased infiltration, ul

  16. Fog interception by Ball moss (Tillandsia recurvata)

    NASA Astrophysics Data System (ADS)

    Guevara-Escobar, A.; Cervantes-Jiménez, M.; Suzán-Azpiri, H.; González-Sosa, E.; Hernández-Sandoval, L.; Malda-Barrera, G.; Martínez-Díaz, M.

    2011-08-01

    Interception losses are a major influence in the water yield of vegetated areas. For most storms, rain interception results in less water reaching the ground. However, fog interception can increase the overall water storage capacity of the vegetation and once the storage is exceeded, fog drip is a common hydrological input. Fog interception is disregarded in water budgets of semiarid regions, but for some plant communities, it could be a mechanism offsetting evaporation losses. Tillandsia recurvata is a cosmopolitan epiphyte adapted to arid habitats where fog may be an important water source. Therefore, the interception storage capacity by T. recurvata was measured in controlled conditions and applying simulated rain or fog. Juvenile, vegetative specimens were used to determine the potential upperbound storage capacities. The storage capacity was proportional to dry weight mass. Interception storage capacity (Cmin) was 0.19 and 0.56 mm for rainfall and fog respectively. The coefficients obtained in the laboratory were used together with biomass measurements for T. recurvata in a xeric scrub to calculate the depth of water intercepted by rain. T. recurvata contributed 20 % to the rain interception capacity of their shrub hosts: Acacia farnesiana and Prosopis laevigata and; also potentially intercepted 4.8 % of the annual rainfall. Nocturnal stomatic opening in T. recurvata is not only relevant for CO2 but for water vapor, as suggested by the higher weight change of specimens wetted with fog for 1 h at dark in comparison to those wetted during daylight (543 ± 77 vs. 325 ± 56 mg, p = 0.048). The storage capacity of T. recurvata leaf surfaces could increase the amount of water available for evaporation, but as this species colonise montane forests, the effect could be negative on water recharge, because potential storage capacity is very high, in the laboratory experiments it took up to 12 h at a rate of 0.26 l h-1 to reach saturation conditions when fog was applied.

  17. Fitting rainfall interception models to forest ecosystems of Mexico

    NASA Astrophysics Data System (ADS)

    Návar, José

    2017-05-01

    Models that accurately predict forest interception are essential both for water balance studies and for assessing watershed responses to changes in land use and the long-term climate variability. This paper compares the performance of four rainfall interception models-the sparse Gash (1995), Rutter et al. (1975), Liu (1997) and two new models (NvMxa and NvMxb)-using data from four spatially extensive, structurally diverse forest ecosystems in Mexico. Ninety-eight case studies measuring interception in tropical dry (25), arid/semi-arid (29), temperate (26), and tropical montane cloud forests (18) were compiled and analyzed. Coefficients derived from raw data or published statistical relationships were used as model input to evaluate multi-storm forest interception at the case study scale. On average empirical data showed that, tropical montane cloud, temperate, arid/semi-arid and tropical dry forests intercepted 14%, 18%, 22% and 26% of total precipitation, respectively. The models performed well in predicting interception, with mean deviations between measured and modeled interception as a function of total precipitation (ME) generally <5.8% and Nash-Sutcliffe efficiency E estimators >0.66. Model fitting precision was dependent on the forest ecosystem. Arid/semi-arid forests exhibited the smallest, while tropical montane cloud forest displayed the largest ME deviations. Improved agreement between measured and modeled data requires modification of in-storm evaporation rate in the Liu; the canopy storage in the sparse Gash model; and the throughfall coefficient in the Rutter and the NvMx models. This research concludes on recommending the wide application of rainfall interception models with some caution as they provide mixed results. The extensive forest interception data source, the fitting and testing of four models, the introduction of a new model, and the availability of coefficient values for all four forest ecosystems are an important source of information and a benchmark for future investigations in this area of hydrology.

  18. Amazon river dolphins (Inia geoffrensis) modify biosonar output level and directivity during prey interception in the wild.

    PubMed

    Ladegaard, Michael; Jensen, Frants Havmand; Beedholm, Kristian; da Silva, Vera Maria Ferreira; Madsen, Peter Teglberg

    2017-07-15

    Toothed whales have evolved to live in extremely different habitats and yet they all rely strongly on echolocation for finding and catching prey. Such biosonar-based foraging involves distinct phases of searching for, approaching and capturing prey, where echolocating animals gradually adjust sonar output to actively shape the flow of sensory information. Measuring those outputs in absolute levels requires hydrophone arrays centred on the biosonar beam axis, but this has never been done for wild toothed whales approaching and capturing prey. Rather, field studies make the assumption that toothed whales will adjust their biosonar in the same manner to arrays as they will when approaching prey. To test this assumption, we recorded wild botos ( Inia geoffrensis ) as they approached and captured dead fish tethered to a hydrophone in front of a star-shaped seven-hydrophone array. We demonstrate that botos gradually decrease interclick intervals and output levels during prey approaches, using stronger adjustment magnitudes than predicted from previous boto array data. Prey interceptions are characterised by high click rates, but although botos buzz during prey capture, they do so at lower click rates than marine toothed whales, resulting in a much more gradual transition from approach phase to buzzing. We also demonstrate for the first time that wild toothed whales broaden biosonar beamwidth when closing in on prey, as is also seen in captive toothed whales and bats, thus resulting in a larger ensonified volume around the prey, probably aiding prey tracking by decreasing the risk of prey evading ensonification. © 2017. Published by The Company of Biologists Ltd.

  19. Global canopy interception from satellite observations

    USDA-ARS?s Scientific Manuscript database

    A new methodology for retrieving rainfall interception rates from multi satellite observations is presented. The approach makes use of the daily productof the Global Precipitation Climatology Project (GPCP) as driving data and applies Gash’s analytical model to derive interception rates at global sc...

  20. Modelling the control of interceptive actions.

    PubMed Central

    Beek, P J; Dessing, J C; Peper, C E; Bullock, D

    2003-01-01

    In recent years, several phenomenological dynamical models have been formulated that describe how perceptual variables are incorporated in the control of motor variables. We call these short-route models as they do not address how perception-action patterns might be constrained by the dynamical properties of the sensory, neural and musculoskeletal subsystems of the human action system. As an alternative, we advocate a long-route modelling approach in which the dynamics of these subsystems are explicitly addressed and integrated to reproduce interceptive actions. The approach is exemplified through a discussion of a recently developed model for interceptive actions consisting of a neural network architecture for the online generation of motor outflow commands, based on time-to-contact information and information about the relative positions and velocities of hand and ball. This network is shown to be consistent with both behavioural and neurophysiological data. Finally, some problems are discussed with regard to the question of how the motor outflow commands (i.e. the intended movement) might be modulated in view of the musculoskeletal dynamics. PMID:14561342

  1. Buzzing during biosonar-based interception of prey in the delphinids Tursiops truncatus and Pseudorca crassidens.

    PubMed

    Wisniewska, Danuta M; Johnson, Mark; Nachtigall, Paul E; Madsen, Peter T

    2014-12-15

    Echolocating bats and toothed whales probe their environment with ultrasonic sound pulses, using returning echoes to navigate and find prey in a process that appears to have resulted from a remarkable convergence of the two taxa. Here, we report the first detailed quantification of echolocation behaviour during prey capture in the most studied delphinid species, a false killer whale and a bottlenose dolphin. Using acoustic DTAGs, we demonstrate that just prior to prey interception these delphinids change their acoustic gaze dramatically by reducing inter-click intervals and output >10-fold in a high repetition rate, low output buzz. Buzz click rates of 250-500 Hz for large but agile animals suggest that sampling rates during capture are scaled with the whale's manoeuvrability. These observations support the growing notion that fast sonar sampling accompanied by a low output level is critical for high rate feedback to inform motor patterns during prey interception in all echolocating toothed whales. © 2014. Published by The Company of Biologists Ltd.

  2. The importance of radiation for semiempirical water-use efficiency models

    NASA Astrophysics Data System (ADS)

    Boese, Sven; Jung, Martin; Carvalhais, Nuno; Reichstein, Markus

    2017-06-01

    Water-use efficiency (WUE) is a fundamental property for the coupling of carbon and water cycles in plants and ecosystems. Existing model formulations predicting this variable differ in the type of response of WUE to the atmospheric vapor pressure deficit of water (VPD). We tested a representative WUE model on the ecosystem scale at 110 eddy covariance sites of the FLUXNET initiative by predicting evapotranspiration (ET) based on gross primary productivity (GPP) and VPD. We found that introducing an intercept term in the formulation increases model performance considerably, indicating that an additional factor needs to be considered. We demonstrate that this intercept term varies seasonally and we subsequently associate it with radiation. Replacing the constant intercept term with a linear function of global radiation was found to further improve model predictions of ET. Our new semiempirical ecosystem WUE formulation indicates that, averaged over all sites, this radiation term accounts for up to half (39-47 %) of transpiration. These empirical findings challenge the current understanding of water-use efficiency on the ecosystem scale.

  3. The narrow-leaf syndrome: a functional and evolutionary approach to the form of fog-harvesting rosette plants.

    PubMed

    Martorell, Carlos; Ezcurra, Exequiel

    2007-04-01

    Plants that use fog as an important water-source frequently have a rosette growth habit. The performance of this morphology in relation to fog interception has not been studied. Some first-principles from physics predict that narrow leaves, together with other ancillary traits (large number and high flexibility of leaves, caudices, and/or epiphytism) which constitute the "narrow-leaf syndrome" should increase fog-interception efficiency. This was tested using aluminum models of rosettes that differed in leaf length, width and number and were exposed to artificial fog. The results were validated using seven species of Tillandsia and four species of xerophytic rosettes. The total amount of fog intercepted in rosette plants increased with total leaf area, while narrow leaves maximized interception efficiency (measured as interception per unit area). The number of leaves in the rosettes is physically constrained because wide-leafed plants can only have a few blades. At the limits of this constraint, net fog interception was independent of leaf form, but interception efficiency was maximized by large numbers of narrow leaves. Atmospheric Tillandsia species show the narrow-leaf syndrome. Their fog interception efficiencies were correlated to the ones predicted from aluminum-model data. In the larger xerophytic rosette species, the interception efficiency was greatest in plants showing the narrow-leaf syndrome. The adaptation to fog-harvesting in several narrow-leaved rosettes was tested for evolutionary convergence in 30 xerophytic rosette species using a comparative method. There was a significant evolutionary tendency towards the development of the narrow-leaf syndrome the closer the species grew to areas where fog is frequently available. This study establishes convergence in a very wide group of plants encompassing genera as contrasting as Tillandsia and Agave as a result of their dependence on fog.

  4. Evaporation of impact water droplets in interception processes: Historical precedence of the hypothesis and a brief literature overview

    NASA Astrophysics Data System (ADS)

    Dunkerley, David L.

    2009-10-01

    SummaryIntra-storm evaporation depths exceed post-storm evaporation depths in the interception of rainfall on plant canopies. An important fraction of the intra-storm evaporation may involve the small impact (or splash) droplets produced when raindrops, and perhaps gravity drops (drips released from plant parts), collide with wet plant surfaces. This idea has been presented as a new conception by Murakami [Murakami, S., 2006. A proposal for a new forest canopy interception mechanism: splash droplet evaporation. Journal of Hydrology 319, 72-82; Murakami, S., 2007a. Application of three canopy interception models to a young stand of Japanese cypress and interpretation in terms of interception mechanism. Journal of Hydrology 342, 305-319; Murakami, S., 2007b. A follow-up for the splash droplet evaporation hypothesis of canopy interception and remaining problems: why is humidity unsaturated during rainfall? In: Proceedings of the 20th Annual Conference. Japan Society of Hydrology and Water Resources (in Japanese). < http://www.jstage.jst.go.jp/article/jshwr/20/0/20_62/_article>] but was in fact advanced by Dunin [Dunin, F.X., O'Loughlin, E.M., Reyenga, W., 1988. Interception loss from eucalypt forest: lysimeter determination of hourly rates for long term evaluation. Hydrological Processes 2, 315-329] more than 20 years ago. In addition, Dunin et al. considered that canopy ventilation might be enhanced in intense rain. This note draws attention to the historical precedence of the work of Dunin et al. and also presents a short review of literature on impact droplet production, highlighting areas where data are still required for the full exploration of the role of droplet evaporation in canopy interception. Droplet production needs to be properly parameterised and included in models of interception processes and landsurface-atmosphere interactions.

  5. Simulated impacts of artificial groundwater recharge and discharge of the source area and source volume of an Atlantic Coastal Plain Stream, Delaware, USA

    USGS Publications Warehouse

    Kasper, Joshua W.; Denver, Judish M.; McKenna, Thomas E.; Ullman, William J.

    2010-01-01

    A numerical groundwater-flow model was used to characterize the source area and volume of Phillips Branch, a baseflow-dominated stream incising a highly permeable unconfined aquifer on the low relief Delmarva Peninsula, USA. Particle-tracking analyses indicate that the source area (5.51 km2) is ~20% smaller than the topographically defined watershed (6.85 km2), and recharge entering ~37% of the surface watershed does not discharge to Phillips Branch. Groundwater residence time within the source volume ranges from a few days to almost 100 years, with 95% of the volume "flushing" within 50 years. Artificial discharge from groundwater pumping alters the shape of the source area and reduces baseflow due to the interception of stream flow paths, but has limited impacts on the residence time of groundwater discharged as baseflow. In contrast, artificial recharge from land-based wastewater disposal substantially reduces the source area, lowers the range in residence time due to the elimination of older flow paths to the stream, and leads to increased discharge to adjacent surface-water bodies. This research suggests that, in this and similar hydrogeologic settings, the "watershed" approach to water-resource management may be limited, particularly where anthropogenic stresses alter the transport of soluble contaminants through highly permeable unconfined aquifers.

  6. Evaluating interception of larval pallid sturgeon on the Lower Missouri River- data acquisition, interpolation, and visualization

    NASA Astrophysics Data System (ADS)

    Bulliner, E. A., IV; Erwin, S. O.; Anderson, B. J.; Wilson, H.; Jacobson, R. B.

    2016-12-01

    The transition from endogenous to exogenous feeding is an important life-stage transition for many riverine fish larvae. On the Missouri River, U.S., riverine alteration has decreased connectivity between the navigation channel and complex, food-producing and foraging areas on the channel margins, namely shallow side channels and sandbar complexes. A favored hypothesis, the interception hypothesis, for recruitment failure of pallid sturgeon is that drifting larvae are not able to exit the highly engineered navigation channel, and therefore starve. We present work exploring measures of hydraulic connectivity between the navigation channel and channel margins using multiple data-collection protocols with acoustic Doppler current profilers (ADCPs). As ADCP datasets alone often do not have high enough spatial resolution to characterize interception and connectivity sufficiently at the scale of drifting sturgeon larvae, they are often supplemented with physical and empirical models. Using boat-mounted ADCPs, we collected 3-dimensional current velocities with a variety of driving techniques (specifically, regularly spaced transects, reciprocal transects, and irregular patterns) around areas of potential larval interception. We then used toolkits based in Python to interpolate 3-dimensional velocity fields at spatial scales finer than the original measurements, and visualized resultant velocity vectors and flowlines in the software package Paraview. Using these visualizations, we investigated the necessary resolution of field measurements required to model connectivity with channel margin areas on large, highly engineered river ecosystems such as the Missouri River. We anticipate that results from this work will be used to help inform models of larval interception under current conditions. Furthermore, results from this work will be useful in developing monitoring strategies to evaluate the restoration of channel complexity to support ecological functions.

  7. Mathematical model for the contribution of individual organs to non-zero y-intercepts in single and multi-compartment linear models of whole-body energy expenditure.

    PubMed

    Kaiyala, Karl J

    2014-01-01

    Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit 'local linearity.' Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying 'latent' allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses.

  8. Rainfall interception of three trees in Oakland, California

    Treesearch

    Qingfu Xiao; E. Gregory McPherson

    2011-01-01

    A rainfall interception study was conducted in Oakland, California to determine the partitioning of rainfall and the chemical composition of precipitation, throughfall, and stemflow. Rainfall interception measurements were conducted on a gingko (Ginkgo biloba) (13.5 m tall deciduous tree), sweet gum (Liquidambar styraciflua) (8...

  9. The global topography mission gains momentum

    USGS Publications Warehouse

    Farr, Tom; Evans, Diane; Zebker, Howard; Harding, David; Bufton, Jack; Dixon, Timothy; Vetrella, S.; Gesch, Dean B.

    1995-01-01

    An accurate description of the surface elevation of the Earth is of fundamental importance to many branches of Earth science. Continental topographic data are required for studies of hydrology, ecology, glaciology, geomorphology, and atmospheric circulation. For example, in hydrologic and terrestrial ecosystem studies, topography exerts significant control on intercepted solar radiation, water runoff and subsurface water inventory, microclimate, vegetation type and distribution, and soil development. The topography of the polar ice caps and mountain glaciers directly reflects ice-flow dynamics and is closely linked to global climate and sea level change.

  10. Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions.

    PubMed

    Zago, Myrka; Bosco, Gianfranco; Maffei, Vincenzo; Iosa, Marco; Ivanenko, Yuri P; Lacquaniti, Francesco

    2004-04-01

    Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. Here we present evidence in favor of a different view: the brain makes the best estimate about target motion based on measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from expected dynamics (kinetics). We projected a virtual target moving vertically downward on a wide screen with different randomized laws of motion. In the first series of experiments, subjects were asked to intercept this target by punching a real ball that fell hidden behind the screen and arrived in synchrony with the visual target. Subjects systematically timed their motor responses consistent with the assumption of gravity effects on an object's mass, even when the visual target did not accelerate. With training, the gravity model was not switched off but adapted to nonaccelerating targets by shifting the time of motor activation. In the second series of experiments, there was no real ball falling behind the screen. Instead the subjects were required to intercept the visual target by clicking a mousebutton. In this case, subjects timed their responses consistent with the assumption of uniform motion in the absence of forces, even when the target actually accelerated. Overall, the results are in accord with the theory that motor responses evoked by visual kinematics are modulated by a prior of the target dynamics. The prior appears surprisingly resistant to modifications based on performance errors.

  11. Physician communication coaching effects on patient experience.

    PubMed

    Seiler, Adrianne; Knee, Alexander; Shaaban, Reham; Bryson, Christine; Paadam, Jasmine; Harvey, Rohini; Igarashi, Satoko; LaChance, Christopher; Benjamin, Evan; Lagu, Tara

    2017-01-01

    Excellent communication is a necessary component of high-quality health care. We aimed to determine whether a training module could improve patients' perceptions of physician communication behaviors, as measured by change over time in domains of patient experience scores related to physician communication. We designed a comprehensive physician-training module focused on improving specific "etiquette-based" physician communication skills through standardized simulations and physician coaching with structured feedback. We employed a quasi-experimental pre-post design, with an intervention group consisting of internal medicine hospitalists and residents and a control group consisting of surgeons. The outcome was percent "always" scores for questions related to patients' perceptions of physician communication using the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) survey and a Non-HCAHPS Physician-Specific Patient Experience Survey (NHPPES) administered to patients cared for by hospitalists. A total of 128 physicians participated in the simulation. Responses from 5020 patients were analyzed using HCAHPS survey data and 1990 patients using NHPPES survey data. The intercept shift, or the degree of change from pre-intervention percent "always" responses, for the HCAHPS questions of doctors "treating patients with courtesy" "explaining things in a way patients could understand," and "overall teamwork" showed no significant differences between surgical control and hospitalist intervention patients. Adjusted NHPPES percent excellent survey results increased significantly post-intervention for the questions of specified individual doctors "keeping patient informed" (adjusted intercept shift 9.9% P = 0.019), "overall teamwork" (adjusted intercept shift 11%, P = 0.037), and "using words the patient could understand" (adjusted intercept shift 14.8%, p = 0.001). A simulation based physician communication coaching method focused on specific "etiquette-based" communication behaviors through a deliberate practice framework was not associated with significantly improved HCAHPS physician communication patient experience scores. Further research could reveal ways that this model affects patients' perceptions of physician communication relating to specific physicians or behaviors.

  12. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    2017-12-01

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of ideal anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (v2±) as a function of the net charge asymmetry A±, we find that the linear dependence of Δ v2± ≡ v2- - v2+ on the net charge asymmetry A± can come from a mechanism unrelated to anomalous transport effects. Instead, we find that a finite intercept Δ v2± (A± = 0) can come from anomalous effects.

  13. Saccades to future ball location reveal memory-based prediction in a virtual-reality interception task.

    PubMed

    Diaz, Gabriel; Cooper, Joseph; Rothkopf, Constantin; Hayhoe, Mary

    2013-01-16

    Despite general agreement that prediction is a central aspect of perception, there is relatively little evidence concerning the basis on which visual predictions are made. Although both saccadic and pursuit eye-movements reveal knowledge of the future position of a moving visual target, in many of these studies targets move along simple trajectories through a fronto-parallel plane. Here, using a naturalistic and racquet-based interception task in a virtual environment, we demonstrate that subjects make accurate predictions of visual target motion, even when targets follow trajectories determined by the complex dynamics of physical interactions and the head and body are unrestrained. Furthermore, we found that, following a change in ball elasticity, subjects were able to accurately adjust their prebounce predictions of the ball's post-bounce trajectory. This suggests that prediction is guided by experience-based models of how information in the visual image will change over time.

  14. Saccades to future ball location reveal memory-based prediction in a virtual-reality interception task

    PubMed Central

    Diaz, Gabriel; Cooper, Joseph; Rothkopf, Constantin; Hayhoe, Mary

    2013-01-01

    Despite general agreement that prediction is a central aspect of perception, there is relatively little evidence concerning the basis on which visual predictions are made. Although both saccadic and pursuit eye-movements reveal knowledge of the future position of a moving visual target, in many of these studies targets move along simple trajectories through a fronto-parallel plane. Here, using a naturalistic and racquet-based interception task in a virtual environment, we demonstrate that subjects make accurate predictions of visual target motion, even when targets follow trajectories determined by the complex dynamics of physical interactions and the head and body are unrestrained. Furthermore, we found that, following a change in ball elasticity, subjects were able to accurately adjust their prebounce predictions of the ball's post-bounce trajectory. This suggests that prediction is guided by experience-based models of how information in the visual image will change over time. PMID:23325347

  15. Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function

    PubMed Central

    Osman, Abdimajid; Hitzler, Walter E.; Meyer, Claudius U.; Landry, Patricia; Corduan, Aurélie; Laffont, Benoit; Boilard, Eric; Hellstern, Peter; Vamvakas, Eleftherios C.

    2015-01-01

    Pathogen reduction (PR) systems for platelets, based on chemically induced cross-linking and inactivation of nucleic acids, potentially prevent transfusion transmission of infectious agents, but can increase clinically significant bleeding in some clinical studies. Here, we documented the effects of PR systems on microRNA and mRNA levels of platelets stored in the blood bank, and assessed their impact on platelet activation and function. Unlike platelets subjected to gamma irradiation or stored in additive solution, platelets treated with Intercept (amotosalen + ultraviolet-A [UVA] light) exhibited significantly reduced levels of 6 of the 11 microRNAs, and 2 of the 3 anti-apoptotic mRNAs (Bcl-xl and Clusterin) that we monitored, compared with platelets stored in plasma. Mirasol (riboflavin + UVB light) treatment of platelets did not produce these effects. PR neither affected platelet microRNA synthesis or function nor induced cross-linking of microRNA-sized endogenous platelet RNA species. However, the reduction in the platelet microRNA levels induced by Intercept correlated with the platelet activation (p < 0.05) and an impaired platelet aggregation response to ADP (p < 0.05). These results suggest that Intercept treatment may induce platelet activation, resulting in the release of microRNAs and mRNAs from platelets. The clinical implications of this reduction in platelet nucleic acids secondary to Intercept remain to be established. PMID:24749844

  16. 47 CFR 1.20003 - Policies and procedures for employee supervision and control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or employee responsible for ensuring that any interception of communications or access to call... to implement the interception of communications or access to call-identifying information; (2) An... description of how long it will maintain its records of each interception of communications or access to call...

  17. Exploring the potential of the cosmic-ray neutron method to measure interception storage dynamics

    NASA Astrophysics Data System (ADS)

    Jakobi, Jannis; Bogena, Heye; Huisman, Johan Alexander; Diekkrüger, Bernd; Vereecken, Harry

    2017-04-01

    Cosmic-ray neutron soil moisture probes are an emerging technology that relies on the negative correlation between near-surface fast neutron counts and soil moisture content. Hydrogen atoms in the soil, which are mainly present as water, moderate the secondary neutrons on the way back to the surface. Any application of this method needs to consider the sensitivity of the neutron counts to additional sources of hydrogen (e.g. above- and below-ground biomass, humidity of the lower atmosphere, lattice water of the soil minerals, organic matter and water in the litter layer, intercepted water in the canopy, and soil organic matter). In this study, we analyzed the effects of canopy-intercepted water on the cosmic-ray neutron counts. For this, an arable field cropped with sugar beet was instrumented with several cosmic-ray neutron probes and a wireless sensor network with more than 140 in-situ soil moisture sensors. Additionally rainfall interception was estimated using a new approach coupling throughfall measurements and leaf wetness sensors. The derived interception storage was used to correct for interception effects on cosmic ray neutrons to enhance soil water content prediction. Furthermore, the potential for a simultaneous prediction of above- and below-ground biomass, soil moisture and interception was tested.

  18. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit.

    PubMed

    Simonin, Kevin A; Santiago, Louis S; Dawson, Todd E

    2009-07-01

    Although crown wetting events can increase plant water status, leaf wetting is thought to negatively affect plant carbon balance by depressing photosynthesis and growth. We investigated the influence of crown fog interception on the water and carbon relations of juvenile and mature Sequoia sempervirens trees. Field observations of mature trees indicated that fog interception increased leaf water potential above that of leaves sheltered from fog. Furthermore, observed increases in leaf water potential exceeded the maximum water potential predicted if soil water was the only available water source. Because field observations were limited to two mature trees, we conducted a greenhouse experiment to investigate how fog interception influences plant water status and photosynthesis. Pre-dawn and midday branchlet water potential, leaf gas exchange and chlorophyll fluorescence were measured on S. sempervirens saplings exposed to increasing soil water deficit, with and without overnight canopy fog interception. Sapling fog interception increased leaf water potential and photosynthesis above the control and soil water deficit treatments despite similar dark-acclimated leaf chlorophyll fluorescence. The field observations and greenhouse experiment show that fog interception represents an overlooked flux into the soil-plant-atmosphere continuum that temporarily, but significantly, decouples leaf-level water and carbon relations from soil water availability.

  19. The role of stable isotopes in understanding rainfall ...

    EPA Pesticide Factsheets

    The isotopic composition of water transmitted by the canopy as throughfall or stemflow reflects important hydrologic processes occurring in the canopy. A synthesis of the literature shows that complex spatiotemporal variations of isotopic composition are created by canopy interception. As a whole, the studies suggest a set of controlling factors including fractionation, exchange among liquid and vapor phase water, and spatiotemporal redistribution along varying canopy flowpaths. However, our limited understanding of physical processes and water routing in the canopy limits the ability to discern all details for predicting interception isotope effects. We suggest that the isotopic composition of throughfall and stemflow may be the key to improve our understanding of water storage and transport in the canopy, similar to how isotopic analysis contributed to progress in our understanding of watershed runoff processes. While interception isotope effects have largely been studied under the premise that they are a source of error, previous works also indicate a wide range of possible interactions that intercepted water may have with the canopy and airspace. We identify new research questions that may be answered by stable isotopes as a path forward in examining and generalizing small-scale interception processes that could facilitate integration of interception into watershed ecohydrological concepts. Evaporation from forest canopies (interception loss) is a prominent

  20. The influence of visual motion on interceptive actions and perception.

    PubMed

    Marinovic, Welber; Plooy, Annaliese M; Arnold, Derek H

    2012-05-01

    Visual information is an essential guide when interacting with moving objects, yet it can also be deceiving. For instance, motion can induce illusory position shifts, such that a moving ball can seem to have bounced past its true point of contact with the ground. Some evidence suggests illusory motion-induced position shifts bias pointing tasks to a greater extent than they do perceptual judgments. This, however, appears at odds with other findings and with our success when intercepting moving objects. Here we examined the accuracy of interceptive movements and of perceptual judgments in relation to simulated bounces. Participants were asked to intercept a moving disc at its bounce location by positioning a virtual paddle, and then to report where the disc had landed. Results showed that interceptive actions were accurate whereas perceptual judgments were inaccurate, biased in the direction of motion. Successful interceptions necessitated accurate information concerning both the location and timing of the bounce, so motor planning evidently had privileged access to an accurate forward model of bounce timing and location. This would explain why people can be accurate when intercepting a moving object, but lack insight into the accurate information that had guided their actions when asked to make a perceptual judgment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Peak Flow Responses to Forest Harvesting and Roads in the Maritime Regions of the Pacific Northwest: A Preferential Hillslope Runoff Perspective

    NASA Astrophysics Data System (ADS)

    Alila, Y.; Schnorbus, M.

    2005-12-01

    The debate regarding peak flow responses to forest clearcutting and road building in the maritime regions of the Pacific Northwest has attracted much attention over the past several decades and its outcome is an important scientific and operational concern. Although there appears to be general consensus that small peak discharge events are increased following forest management activities, little conclusive evidence exists regarding the impact of forest management activities on large events. Statistical tests in traditional paired watershed studies have been used to accept or reject hypotheses regarding peak flow responses to clearcutting and roads but provided no insight into watershed processes and other factors leading to their outcome. Furthermore, statistical analyses of peak flow responses to forestry activities in traditional paired watershed studies are confounded by the many factors that may contribute to management effects on watershed hydrology as well as by issues such as shortness of streamflow records and climate variability. To this end, a new perspective is offered in the debate regarding peak flow responses to clearcutting and road building in the maritime regions of the Pacific Northwest by combining numerical modeling with high-quality hydro-meteorological data collected at the 10-km2 Carnation Creek on the west coast of Vancouver Island, British Columbia (BC). In this approach we explicitly account for changes in evapotranspiration loss, forest road construction and, in particular, introduce the concept of the competing influences of matrix versus preferential hillslope runoff. For scenarios involving road construction, forest clearcutting (52% cut rate) and roads and clearcutting combined, peak discharge increases decrease with decreasing event frequency and statistically significant ( = 0.05) increases in peak flow are confined to events with a 1 year or lower return period. For a range of return periods from 0.17 to 20 years, the effect (i.e. increase in peak discharge) of clearcutting alone is more severe than roads alone whereas the combined effect of roads and clearcutting is equal to the addition of the isolated treatments effects. The lower efficiency of the forest canopy in intercepting rainfall for large storms compared to small storms and the increasing proportion of preferential flow in hillslope runoff as event size increases appears to be the main reason for the declining peak flow response to clearcutting. Changes in soil moisture conditions are thought to be relatively unimportant given the significance of preferential hillslope runoff. The weakening response of peak flows to roads with increasing event size is related to higher subsurface flow rates associated with preferential flow coupled with a general lowering of the water table below road cuts; this reduces direct channel interception of hillslope runoff and tends to offset gains in channel flow from direct culvert discharge from the road network.

  2. Effect of reforestation on streamflow in central New York

    USGS Publications Warehouse

    Schneider, William Joseph; Ayer, Gordon Roundy

    1961-01-01

    Hydrologic data have been collected since 1932 in central New York State to determine the effect of reforestation on streamflow. Data are available for three small partly reforested areas and for one nonreforested control area. From 35 to 58 percent of the 3 areas were reforested, mostly with species of pine and spruce. The trees were allowed to grow without thinning or cutting, and by 1958 these reforested areas had developed into dense coniferous woodlots. Intensive statistical analyses of the data from the four study areas were made in 1958. Analyses were made for three hydrologic periods: the dormant season represented by the 6-month period ending April 30, the growing season represented by the 6-month period ending October 31, and the year represented by the 12-month period ending April 30. Analyses of the hydrologic data using multiple correlation with time as a variable and analyses of covariance between early and late periods of record indicated that several significant changes had occurred in the streamflow from the partly reforested study areas. Based on correlation with precipitation, total runoff for the dormant season from the 3 study areas was reduced by annual rates of 0.17 to 0.29 inches per year. Based on correlations with streamflow from a control area, total runoff from the partly reforested Shackham Brook area was reduced by average rates of 0.14 inches per growing season, 0.23 inches per dormant season, and 0.36 inches per hydrologic year. Peak discharges on Shackham Brook during the dormant season were reduced by 1958 by an average of 41 percent for the season, with reductions ranging from an average of 66 percent for November to an average of 16 percent for April. No significant changes were found in the peak discharges for the growing season, rates of base-flow recession, volumes of direct runoff, or annual low flows of streams in the three partly reforested areas. The significant reductions in total runoff are attributed to increases in interception and transpiration in the reforested areas. The reductions in peak discharges during the dormant period are attributed largely to increased interception and sublimation of snowfall, and a gradual desynchronization of snowmelt runoff from the wooded and open areas of partly reforested watersheds. The changes in streamflow occurred gradually over the years; it could not be determined from the data whether changes in streamflow were still occurring in 1958, or whether they had reached a maximum.

  3. Contrasting roles of interception and transpiration in the hydrological cycle - Part 2: Moisture recycling

    NASA Astrophysics Data System (ADS)

    van der Ent, R. J.; Wang-Erlandsson, L.; Keys, P. W.; Savenije, H. H. G.

    2014-12-01

    The contribution of land evaporation to local and remote precipitation (i.e. moisture recycling) is of significant importance to sustain water resources and ecosystems. But how important are different evaporation components in sustaining precipitation? This is the first paper to present moisture recycling metrics for partitioned evaporation. In the companion paper Wang-Erlandsson et al. (2014) (hereafter Part 1), evaporation was partitioned into vegetation interception, floor interception, soil moisture evaporation and open-water evaporation (constituting the direct, purely physical fluxes, largely dominated by interception), and transpiration (delayed, biophysical flux). Here, we track these components forward as well as backward in time. We also include age tracers to study the atmospheric residence times of these evaporation components. We present a new image of the global hydrological cycle that includes quantification of partitioned evaporation and moisture recycling as well as the atmospheric residence times of all fluxes. We demonstrate that evaporated interception is more likely to return as precipitation on land than transpired water. On average, direct evaporation (essentially interception) is found to have an atmospheric residence time of 8 days, while transpiration typically resides for 9 days in the atmosphere. The process scale over which evaporation recycles is more local for interception compared to transpiration; thus interception generally precipitates closer to its evaporative source than transpiration, which is particularly pronounced outside the tropics. We conclude that interception mainly works as an intensifier of the local hydrological cycle during wet spells and wet seasons. On the other hand, transpiration remains active during dry spells and dry seasons and is transported over much larger distances downwind, where it can act as a significant source of moisture. Thus, as various land-use types can differ considerably in their partitioning between interception and transpiration, our results stress that land-use changes (e.g. forest-to-cropland conversion) do not only affect the magnitude of moisture recycling, but could also influence the moisture recycling patterns and lead to a redistribution of water resources. As such, this research highlights that land-use changes can have complex effects on the atmospheric branch of the hydrological cycle.

  4. Contrasting roles of interception and transpiration in the hydrological cycle - Part 2: Moisture recycling

    NASA Astrophysics Data System (ADS)

    van der Ent, R. J.; Wang-Erlandsson, L.; Keys, P. W.; Savenije, H. H. G.

    2014-03-01

    The contribution of land evaporation to local and remote precipitation (i.e., moisture recycling) is of significant importance to sustain water resources and ecosystems. But how important are different evaporation components in sustaining precipitation? This is the first paper to present moisture recycling metrics for partitioned evaporation. In the companion paper, Part 1, evaporation was partitioned into vegetation interception, floor interception, soil moisture evaporation and open water evaporation (constituting the direct, purely physical fluxes, largely dominated by interception), and transpiration (delayed, biophysical flux). Here, we track these components forward as well as backward in time. We also include age tracers to study the atmospheric residence times of these evaporation components. As the main result we present a new image of the global hydrological cycle that includes quantification of partitioned evaporation and moisture recycling as well as the atmospheric residence times of all fluxes. We demonstrate that evaporated interception is more likely to return as precipitation on land than transpired water. On average, direct evaporation (essentially interception) is found to have an atmospheric residence time of eight days, while transpiration typically resides nine days in the atmosphere. Interception recycling has a much shorter local length scale than transpiration recycling, thus interception generally precipitates closer to its evaporative source than transpiration, which is particularly pronounced outside the tropics. We conclude that interception mainly works as an intensifier of the local hydrological cycle during wet spells. On the other hand, transpiration remains active during dry spells and is transported over much larger distances downwind where it can act as a significant source of moisture. Thus, as various land-use types can differ considerably in their partitioning between interception and transpiration, our results stress that land-use changes (e.g., forest to cropland conversion) do not only affect the magnitude of moisture recycling, but could also influence the moisture recycling patterns and lead to a redistribution of water resources. As such, this research highlights that land-use changes can have complex effects on the atmospheric branch of the hydrological cycle.

  5. How might Australian rainforest cloud interception respond to climate change?

    NASA Astrophysics Data System (ADS)

    Wallace, Jim; McJannet, Dave

    2013-02-01

    SummaryThe lower and upper montane rainforests in northern Queensland receive significant amounts of cloud interception that affect both in situ canopy wetness and downstream runoff. Cloud interception contributes 5-30% of the annual water input to the canopy and this increases to 40-70% of the monthly water input during the dry season. This occult water is therefore an important input to the canopy, sustaining the epiphytes, mosses and other species that depend on wet canopy conditions. The potential effect of climate change on cloud interception was examined using the relationship between cloud interception and cloud frequency derived from measurements made at four different rainforest locations. Any given change in cloud frequency produces a greater change in cloud interception and this 'amplification' increases from 1.1 to 1.7 as cloud frequency increases from 5% to 70%. This means that any changes in cloud frequency will have the greatest relative effects at the higher altitude sites where cloud interception is greatest. As cloud frequency is also a major factor affecting canopy wetness, any given change in cloud frequency will therefore have a greater impact on canopy wetness at the higher altitude sites. These changes in wetness duration will augment those due to changes in rainfall and may have important implications for the fauna and flora that depend on wet canopy conditions. We also found that the Australian rainforests may be more efficient (by ˜50% on average) in intercepting cloud water than American coniferous forests, which may be due to differences in canopy structure and exposure at the different sites.

  6. Development and testing of a snow interceptometer to quantify canopy water storage and interception processes in the rain/snow transition zone of the North Cascades, Washington, USA

    NASA Astrophysics Data System (ADS)

    Martin, Kael A.; Van Stan, John T.; Dickerson-Lange, Susan E.; Lutz, James A.; Berman, Jeffrey W.; Gersonde, Rolf; Lundquist, Jessica D.

    2013-06-01

    Tree canopy snow interception is a significant hydrological process, capable of removing up to 60% of snow from the ground snowpack. Our understanding of canopy interception has been limited by our ability to measure whole canopy water storage in an undisturbed forest setting. This study presents a relatively inexpensive technique for directly measuring snow canopy water storage using an interceptometer, adapted from Friesen et al. (2008). The interceptometer is composed of four linear motion position sensors distributed evenly around the tree trunk. We incorporate a trunk laser-mapping installation method for precise sensor placement to reduce signal error due to sensor misalignment. Through calibration techniques, the amount of canopy snow required to produce the measured displacements can be calculated. We demonstrate instrument performance on a western hemlock (Tsuga heterophylla) for a snow interception event in November 2011. We find a snow capture efficiency of 83 ± 15% of accumulated ground snowfall with a maximum storage capacity of 50 ± 8 mm snow water equivalent (SWE). The observed interception event is compared to simulated interception, represented by the variable infiltration capacity (VIC) hydrologic model. The model generally underreported interception magnitude by 33% using a leaf area index (LAI) of 5 and 16% using an LAI of 10. The interceptometer captured intrastorm accumulation and melt rates up to 3 and 0.75 mm SWE h-1, respectively, which the model failed to represent. While further implementation and validation is necessary, our preliminary results indicate that forest interception magnitude may be underestimated in maritime areas.

  7. SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig)

    NASA Image and Video Library

    2017-06-11

    SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig) is a cryogenic test tank developed to evaluate heat intercept concepts. It arrived at Marshall Space Flight Center on August 10, 2017. The tank will receive heat sensors and spray-on foam insulation before making its way to Plum Brook station for further insulation and testing.

  8. Gravity settling

    DOEpatents

    Davis, Hyman R.; Long, R. H.; Simone, A. A.

    1979-01-01

    Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.

  9. Artificial night light alters nocturnal prey interception outcomes for morphologically variable spiders.

    PubMed

    Yuen, Suet Wai; Bonebrake, Timothy C

    2017-01-01

    Artificial night light has the potential to significantly alter visually-dependent species interactions. However, examples of disruptions of species interactions through changes in light remain rare and how artificial night light may alter predator-prey relationships are particularly understudied. In this study, we examined whether artificial night light could impact prey attraction and interception in Nephila pilipes orb weaver spiders, conspicuous predators who make use of yellow color patterns to mimic floral resources and attract prey to their webs. We measured moth prey attraction and interception responses to treatments where we experimentally manipulated the color/contrast of spider individuals in the field (removed yellow markings) and also set up light manipulations. We found that lit webs had lower rates of moth interception than unlit webs. Spider color, however, had no clear impact on moth interception or attraction rates in lit nor unlit webs. The results show that night light can reduce prey interception for spiders. Additionally, this study highlights how environmental and morphological variation can complicate simple predictions of ecological light pollution's disruption of species interactions.

  10. The Impact of Biofuels on Climate Change from Marginal Land over East Asia using the RegCM4

    NASA Astrophysics Data System (ADS)

    Kim, S.; Lee, O.; Choi, J.

    2016-12-01

    In this study, the stormwater interception rate is proposed to apply in the design of LID facilities. For this purpose, EPA-SWMM is built with some areas of Noksan National Industrial Complex where long-term observed stormwater data were monitored and stormwater interception rates for various design capacities of various LID facilities are estimated. While the sensitivity of stormwater interception rate according to design specifications of bio-retention and infiltration trench facilities is not large, the sensitivity of stormwater interception rate according to local rainfall characteristics is relatively big. As a result of comparing the present rainfall interception rate estimation method which is officially operated in Korea with the one proposed in this study, it will be presented that the present method is highly likely to overestimate the performance of the bio-retention and infiltration trench facilities. Finally, a new stormwater interception rate formulas for the bio-retention and infiltration trench LID facilities will be proposed. Acknowledgement This research was supported by a grant (2016000200002) from Public Welfare Technology Development Program funded by Ministry of Environment of Korean government.

  11. Visuo-motor coordination and internal models for object interception.

    PubMed

    Zago, Myrka; McIntyre, Joseph; Senot, Patrice; Lacquaniti, Francesco

    2009-02-01

    Intercepting and avoiding collisions with moving objects are fundamental skills in daily life. Anticipatory behavior is required because of significant delays in transforming sensory information about target and body motion into a timed motor response. The ability to predict the kinematics and kinetics of interception or avoidance hundreds of milliseconds before the event may depend on several different sources of information and on different strategies of sensory-motor coordination. What are exactly the sources of spatio-temporal information and what are the control strategies remain controversial issues. Indeed, these topics have been the battlefield of contrasting views on how the brain interprets visual information to guide movement. Here we attempt a synthetic overview of the vast literature on interception. We discuss in detail the behavioral and neurophysiological aspects of interception of targets falling under gravity, as this topic has received special attention in recent years. We show that visual cues alone are insufficient to predict the time and place of interception or avoidance, and they need to be supplemented by prior knowledge (or internal models) about several features of the dynamic interaction with the moving object.

  12. Calibrated intercepts for solar radiometers used in remote sensor calibration

    NASA Technical Reports Server (NTRS)

    Gellman, David I.; Biggar, Stuart F.; Slater, Philip N.; Bruegge, Carol J.

    1991-01-01

    Calibrated solar radiometer intercepts allow spectral optical depths to be determined for days with intermittently clear skies. This is of particular importance on satellite sensor calibration days that are cloudy except at the time of image acquisition. This paper describes the calibration of four solar radiometers using the Langley-Bouguer technique for data collected on days with a clear, stable atmosphere. Intercepts are determined with an uncertainty of less than six percent, corresponding to a maximum uncertainty of 0.06 in optical depth. The spread of voltage intercepts calculated in this process is carried through three methods of radiometric calibration of satellite sensors to yield an uncertainty in radiance at the top of the atmosphere of less than one percent associated with the uncertainty in solar radiometer intercepts for a range of ground reflectances.

  13. A Simple, Efficient and Effective Modeling Approach to Determine Baseflow Based on Concentration-Discharge Relationships

    NASA Astrophysics Data System (ADS)

    Liu, F.; Miller, M. P.; Conklin, M. H.

    2017-12-01

    Concentration-discharge relationships in streamflow are a precursor for diagnosing endmember mixing. With a strong power-law relationship between concentration and discharge, previous studies have shown that conservative solute concentrations in streamflow can be explained by mixing of two endmembers, i.e., quick runoff (QR) and baseflow (BF). This current study showed that the unique concentration-discharge power-law curve provides two characteristic values of solute concentrations at extremely high and low flows and these envelope values can be used to aid two-endmember mixing models. In an example conducted in the Upper Colorado River Basin (UCRB), daily specific conductance (SC) and discharge were strongly correlated by a power-law function on both rising and falling limbs from 1983 to 2015 (R2 > 0.9 for all years). The high envelope SC value in each year was directly used to characterize baseflow for that year, while the low envelope SC value was adjusted to represent quick runoff, a collective term for surface runoff and responsive shallow subsurface runoff. The peak flow was considered to be dominated by QR with only a small portion of BF. The ratio of minimum to maximum flows was used to calibrate the low envelope SC value. This ratio represents the least fraction of baseflow to total flow at the peak flow, as baseflow increases with total flow based on published studies. The SC value at the peak flow was considered to be a mixture of QR and BF with the minimum/maximum flow ratio as baseflow fraction and thus SC value in QR was determined with a mass balance equation. The baseflow fractions determined in two-endmember mixing models by this characterization of QR from 1983 to 2011 match those by Miller et al. [2014] very well (R2 = 0.96, slope = 1.07, intercept = -0.13). Baseflow fractions were slightly under-estimated by this approach mainly due to the fact that responsive shallow subsurface runoff was considered to be part of quick flow in this study rather than part of baseflow. This approach provides a simple, efficient and effective modeling tool for estimating baseflow without requiring any samples from endmembers in catchments with a strong power-law relation.

  14. Performance Trends During Sleep Deprivation on a Tilt-Based Control Task.

    PubMed

    Bolkhovsky, Jeffrey B; Ritter, Frank E; Chon, Ki H; Qin, Michael

    2018-07-01

    Understanding human behavior under the effects of sleep deprivation allows for the mitigation of risk due to reduced performance. To further this goal, this study investigated the effects of short-term sleep deprivation using a tilt-based control device and examined whether existing user models accurately predict targeting performance. A task in which the user tilts a surface to roll a ball into a target was developed to examine motor performance. A model was built to predict human performance for this task under various levels of sleep deprivation. Every 2 h, 10 subjects completed the task until they reached 24 h of wakefulness. Performance measurements of this task, which were based on Fitts' law, included movement time, task throughput, and time intercept. The model predicted significant performance decrements over the 24-h period with an increase in movement time (R2 = 0.61), a decrease in throughput (R2 = 0.57), and an increase in time intercept (R2 = 0.60). However, it was found that in experimental trials there was no significant change in movement time (R2 = 0.11), throughput (R2 = 0.15), or time intercept (R2 = 0.27). The results found were unexpected as performance decrement is frequently reported during sleep deprivation. These findings suggest a reexamination of the initial thought of sleep loss leading to a decrement in all aspects of performance.Bolkovsky JB, Ritter FE, Chon KH, Qin M. Performance trends during sleep deprivation on a tilt-based control task. Aerosp Med Hum Perform. 2018; 89(7):626-633.

  15. Gaze Behaviour during Interception in Children with Spastic Unilateral Cerebral Palsy

    ERIC Educational Resources Information Center

    van Kampen, P. M.; Ledebt, A.; Smorenburg, A. R. P.; Vermeulen, R. J.; Kelder, M. E.; van der Kamp, J.; Savelsbergh, G. J. P.

    2012-01-01

    Anticipatory gaze behaviour during interceptive movements was investigated in children with Spastic Unilateral Cerebral Palsy (SUCP), and related to the side of the intracerebral lesion. Five children with lesions of the right hemisphere (RHL) and five children with lesions of the left hemisphere (LHL) had to walk towards and intercept a ball that…

  16. Marginal and Random Intercepts Models for Longitudinal Binary Data with Examples from Criminology

    ERIC Educational Resources Information Center

    Long, Jeffrey D.; Loeber, Rolf; Farrington, David P.

    2009-01-01

    Two models for the analysis of longitudinal binary data are discussed: the marginal model and the random intercepts model. In contrast to the linear mixed model (LMM), the two models for binary data are not subsumed under a single hierarchical model. The marginal model provides group-level information whereas the random intercepts model provides…

  17. WATERSHED SCALE RAINFALL INTERCEPTION ON TWO FORESTED WATERSHEDS IN THE LUQUILLO MOUNTAINS OF PUERTO RICO

    Treesearch

    F.N. SCATENA

    1990-01-01

    Interception losses were monitored for one year and related to vegetation characteristics in two forested watersheds in the Luquillo Experimental Forest of Puerto Rico. Total watershed interception was then modeled by weighting values of throughfall measured in representative areas of different vegetation types by the total watershed area of that vegetation group....

  18. Rainfall interception by annual grass and chaparral . . . losses compared

    Treesearch

    Edward S. Corbett; Robert P. Crouse

    1968-01-01

    Loss of precipitation due to interception by annual grass and grass litter was measured during three rainy seasons on the San Dimas Experimental Forest, in southern California. Interception loss from annual grass averaged 7.9 percent; that from mature chaparral cover, 12.8 percent. If chaparral stands were converted to grass, an estimated 1.3 inches of gross...

  19. Measurement of Vapor Flow As an Important Source of Water in Dry Land Eco-Hydrology

    NASA Astrophysics Data System (ADS)

    Wang, Z.; He, Z.; Wang, Y.; Gao, Z.; Hishida, K.

    2014-12-01

    When the temperature of land surface is lower than that of air and deeper soils, water vapor gathers toward the ground surface where dew maybe formed depending on the prevailing dew point and wind speed. Some plants are able to absorb the dew and vapor flow while the soil can readily absorb both. Certain animals such as desert beetles and ants harvest the dew or fog for daily survival. Recently, it is also realized that the dew and vapor flow can be a life-saving amount of water for plant survival at the driest seasons of the year in arid and semi-arid regions. Researches are conducted to quantify the amount of near-surface vapor flow in arid and semi-arid regions in China and USA. Quantitative leaf water absorption and desorption functions were derived based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of plant is characterized by the absorption and desorption functions derived for plant physiology and water balance studies. Field studies are conducted to measure the dynamic vapor flow movements from the atmosphere and the groundwater table to soil surface. Results show that dew is usually formed on soil and plant surfaces during the daily hours when the temperature gradients are inverted toward the soil surface. The amount of dew harvested using gravels on the soil surface was enough to support water melon agriculture on deserts. The vapor flow can be effectively intercepted by artificially seeded plants in semi-arid regions forming new forests. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  20. Analysis of gravity-induced particle motion and fluid perfusion flow in the NASA-designed rotating zero-head-space tissue culture vessel

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Schwarz, Ray P.

    1991-01-01

    The gravity induced motions, through the culture media, is calculated of living tissue segments cultured in the NASA rotating zero head space culture vessels. This is then compared with the media perfusion speed which is independent of gravity. The results may be interpreted as a change in the physical environment which will occur by operating the NASA tissue culture systems in actual microgravity (versus unit gravity). The equations governing particle motions which induce flows at the surface of tissues contain g terms. This allows calculation of the fluid flow speed, with respect to a cultured particle, as a function of the external gravitational field strength. The analysis is approached from a flow field perspective. Flow is proportional to the shear exerted on a structure which maintains position within the field. The equations are solved for the deviation of a particle from its original position in a circular streamline as a function of time. The radial deviation is important for defining the operating limits and dimensions of the vessel because of the finite radius at which particles necessarily intercept the wall. This analysis uses a rotating reference frame concept.

  1. Opportunities for ballistic missions to Halley's comet

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Wooden, W. H., II

    1977-01-01

    Alternative strategies for ballistic missions to Halley's comet in 1985-86 are described. It is shown that a large science return would be acquired from a ballistic Halley intercept in spite of the high flyby speeds of almost 60 km/sec that are associated with this mission mode. The possibility of retargeting the cometary spacecraft to additional comets after the Halley intercept also exists. In one scenario two cometary spacecraft of identical design would be used to carry out four separate cometary encounters over a three-year period. One spacecraft would intercept Halley before its perihelion passage in December 1985 and then go on to comet Borrelly witn an encounter in January 1988. The other spacecraft would be targeted for a post-perihelion Halley intercept in March 1986 before proceeding towards an encounter with comet Tempel-2 in September 1988. The flyby speeds for the Borrelly and Tempel-2 intercepts are 21 and 13 km/sec, respectively.

  2. Hydrology of the Johnson Creek Basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    The Johnson Creek basin is an important resource in the Portland, Oregon, metropolitan area. Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the cities of Milwaukie, Portland, and Gresham, and rural and agricultural areas of Multnomah and Clackamas Counties. The basin has changed as a result of agricultural and urban development, stream channelization, and construction of roads, drains, and other features characteristic of human occupation. Flooding of Johnson Creek is a concern for the public and for water management officials. The interaction of the groundwater and surface-water systems in the Johnson Creek basin also is important. The occurrence of flooding from high groundwater discharge and from a rising water table prompted this study. As the Portland metropolitan area continues to grow, human-induced effects on streams in the Johnson Creek basin will continue. This report provides information on the groundwater and surface-water systems over a range of hydrologic conditions, as well as the interaction these of systems, and will aid in management of water resources in the area. High and low flows of Crystal Springs Creek, a tributary to Johnson Creek, were explained by streamflow and groundwater levels collected for this study, and results from previous studies. High flows of Crystal Springs Creek began in summer 1996, and did not diminish until 2000. Low streamflow of Crystal Springs Creek occurred in 2005. Flow of Crystal Springs Creek related to water-level fluctuations in a nearby well, enabling prediction of streamflow based on groundwater level. Holgate Lake is an ephemeral lake in Southeast Portland that has inundated residential areas several times since the 1940s. The water-surface elevation of the lake closely tracked the elevation of the water table in a nearby well, indicating that the occurrence of the lake is an expression of the water table. Antecedent conditions of the groundwater level and autumn and winter precipitation totals were used to anticipate flooding of Holgate Lake. Several factors affect annual mean flow of Johnson Creek. More precipitation falls in the southeastern area of the basin because of the topographic setting. Runoff from much of the northern and western areas of the basin does not flow into Johnson Creek due to permeable deposits, interception by combined sewer systems, and by groundwater flow away from Johnson Creek. Inflow from Crystal Springs Creek accounts for one-half of the increase in streamflow of Johnson Creek between the Sycamore and Milwaukie sites. Low flows of Johnson Creek vary as a result of fluctuations in groundwater discharge to the creek, although past water uses may have decreased flows. The groundwater contributions to streamflow upstream of river mile (RM) 5.5 are small compared to contributions downstream of this point. Comparison of flows to a nearby basin indicates that diversions of surface water may have resulted in a 50 percent decrease in low flows from about 1955 to 1977. Runoff from the drainage basin area upstream of the Johnson Creek at Sycamore site contributes more to peak streamflow and peak volume than the drainage basin area between the Sycamore and Milwaukie sites. The average increase in annual peak streamflow and annual peak volume between the two sites was 11 and 24 percent, respectively. Decreased contribution in the lower area of the drainage basin is a result of infiltration, interception by drywell and combined sewer systems, and temporary overbank storage. Trends in flow typically associated with increasing urban development were absent in Johnson Creek. Annual, low, and high flows showed no trend from 1941 to 2006. Much of the infrastructure that may affect runoff from agricultural, residential, and urban development was in place prior to collection of hydrologic data in the basin. Management of stormwater in the urban areas by routing runoff from impervious surfaces to dry

  3. The importance of radiation for semiempirical water-use efficiency models

    DOE PAGES

    Boese, Sven; Jung, Martin; Carvalhais, Nuno; ...

    2017-06-22

    Water-use efficiency (WUE) is a fundamental property for the coupling of carbon and water cycles in plants and ecosystems. Existing model formulations predicting this variable differ in the type of response of WUE to the atmospheric vapor pressure deficit of water (VPD). We tested a representative WUE model on the ecosystem scale at 110 eddy covariance sites of the FLUXNET initiative by predicting evapotranspiration (ET) based on gross primary productivity (GPP) and VPD. We found that introducing an intercept term in the formulation increases model performance considerably, indicating that an additional factor needs to be considered. We demonstrate that thismore » intercept term varies seasonally and we subsequently associate it with radiation. Replacing the constant intercept term with a linear function of global radiation was found to further improve model predictions of ET. Our new semiempirical ecosystem WUE formulation indicates that, averaged over all sites, this radiation term accounts for up to half (39–47 %) of transpiration. These empirical findings challenge the current understanding of water-use efficiency on the ecosystem scale.« less

  4. A New High-Resolution Direction Finding Architecture Using Photonics and Neural Network Signal Processing for Miniature Air Vehicle Applications

    DTIC Science & Technology

    2015-09-01

    3 4. Probability of Intercept .................................................................3 5. Superresolution ...intercept. This alignment gives the shortest mean-time-to-intercept and can be less than one second. 4 5. Superresolution For single signals...at each antenna element. For multiple signals, superresolution DF techniques are often used. These techniques can be broken down into beamforming

  5. Growth in relation to canopy light interception in a red pine (Pinus resinosa) thinning study

    Treesearch

    Beverly E. Law; Kurt H. Riitters; Lewis F. Ohmann

    1992-01-01

    Growth data from the most recent 5 years of a 40-year thinning study in an even-aged red pine (Pinus resinosa) forest in cutfoot sioux experimental forest, Minnesota, were used with intercepted photosynthetically active radiation (IPAR) data to determine the relationship between light interception and growth for a range ofstand densities. Stand basal...

  6. Interception of precipitation by northern hardwoods

    Treesearch

    Raymond E. Leonard

    1961-01-01

    When forest watershed management research was begun at the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire in 1955, we felt certain that at least one aspect of hydrology would not require study-interception. Interception has been studied for a long time, in fact, as early as 1889 (Horton, 1919). It has been well known that a certain amount of...

  7. Intercepted Scolytidae (Coleoptera) at U.S. ports of entry: 1985-2000.

    Treesearch

    Robert A. Haack

    2001-01-01

    Since 1985, the U.S. Department of Agriculture, Animal and Plant Health Inspection Service has maintained the 'Port Information Network' (PIN) database for plant pests intercepted at the U.S. ports of entry. As of August 2001, PIN contained 6825 records of beetles (Coleoptera) in the family Scolytidae that had been intercepted during the years 1985-2000 from...

  8. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  9. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  10. Acute tamponade alters subendo- and subepicardial pressure-flow relations differently during vasodilation.

    PubMed

    Kingma, J G; Martin, J; Rouleau, J R

    1994-07-01

    Instantaneous diastolic left coronary artery pressure-flow relations (PFR) shift during acute tamponade as pressure surrounding the heart increases. Coronary pressure at zero flow (Pf = 0) on the linear portion of the PFR is the weighted mean of the different myocardial waterfall pressures, the distribution of which varies across the left ventricular wall during diastole. However, instantaneous PFR measured in large epicardial coronary arteries cannot be used to estimate Pf = 0 in the different myocardial tissue layers. During coronary vasodilatation in a capacitance-free model, myocardial PFR differs from subendocardium to subepicardium. Therefore, we studied the effects of acute tamponade during maximal pharmacology induced coronary vasodilatation on myocardial PFR in in situ anesthetized dogs. Tamponade reduced cardiac output, aortic pressure, and coronary blood flow. Results demonstrate that different mechanisms influence distribution of myocardial blood flow during tamponade. Subepicardial vascular resistance is unchanged and the extrapolated Pf = 0 is increased, thereby shifting PFR to a higher intercept on the pressure axis. Subendocardial vascular resistance is increased while the extrapolated Pf = 0 remains unchanged. Results indicate that in the setting of acute tamponade with coronary vasodilatation different mechanisms regulate the distribution of myocardial blood flow: in the subepicardium only outflow pressure increases, whereas in the subendocardium only vascular resistance increases.

  11. Borehole flowmeter logging for the accurate design and analysis of tracer tests.

    PubMed

    Basiricò, Stefano; Crosta, Giovanni B; Frattini, Paolo; Villa, Alberto; Godio, Alberto

    2015-04-01

    Tracer tests often give ambiguous interpretations that may be due to the erroneous location of sampling points and/or the lack of flow rate measurements through the sampler. To obtain more reliable tracer test results, we propose a methodology that optimizes the design and analysis of tracer tests in a cross borehole mode by using vertical borehole flow rate measurements. Experiments using this approach, herein defined as the Bh-flow tracer test, have been performed by implementing three sequential steps: (1) single-hole flowmeter test, (2) cross-hole flowmeter test, and (3) tracer test. At the experimental site, core logging, pumping tests, and static water-level measurements were previously carried out to determine stratigraphy, fracture characteristics, and bulk hydraulic conductivity. Single-hole flowmeter testing makes it possible to detect the presence of vertical flows as well as inflow and outflow zones, whereas cross-hole flowmeter testing detects the presence of connections along sets of flow conduits or discontinuities intercepted by boreholes. Finally, the specific pathways and rates of groundwater flow through selected flowpaths are determined by tracer testing. We conclude that the combined use of single and cross-borehole flowmeter tests is fundamental to the formulation of the tracer test strategy and interpretation of the tracer test results. © 2014, National Ground Water Association.

  12. Security proof of counterfactual quantum cryptography against general intercept-resend attacks and its vulnerability

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Wang, Jian; Tang, Chao-Jing

    2012-06-01

    Counterfactual quantum cryptography, recently proposed by Noh, is featured with no transmission of signal particles. This exhibits evident security advantages, such as its immunity to the well-known photon-number-splitting attack. In this paper, the theoretical security of counterfactual quantum cryptography protocol against the general intercept-resend attacks is proved by bounding the information of an eavesdropper Eve more tightly than in Yin's proposal [Phys. Rev. A 82 042335 (2010)]. It is also shown that practical counterfactual quantum cryptography implementations may be vulnerable when equipped with imperfect apparatuses, by proving that a negative key rate can be achieved when Eve launches a time-shift attack based on imperfect detector efficiency.

  13. Distortion Properties of GaN Switches at High-Temperatures

    NASA Astrophysics Data System (ADS)

    Kameche, Mohamed

    2006-08-01

    The origins of HEMT distortion in passive control applications as SPST switch are presented in this paper. Also, this paper describes the change of the AlGaN/GaN HEMT switch distortion properties (second-and third distortion intercept points) over a wide range of temperature. The results indicate that the change in second-and third-order distortion intercept points is smaller (about 2dBm) over a wide range of temperature from -50 to +300°C. A comparison of the GaN-based HEMT switch with InP-and GaAs-HEMT switches shows that the GaN technology generates lower distortion than its InP and GaAs technologies counterpart.

  14. Measuring and modelling interception loss by an isolated olive tree in a traditional olive grove - pasture system

    NASA Astrophysics Data System (ADS)

    Nóbrega, Cristina; Pereira, Fernando L.; Valente, Fernanda

    2015-04-01

    Water losses associated to the rainfall interception process by trees can be an important component of the local hydrologic balance and must be accounted for when implementing any sustainable water management programme. In many dry areas of the Mediterranean region where agro-forestry systems are common, those programmes are crucial to foster adequate water conservation measures. Recent studies have shown that the evaluation of interception loss in sparse forests or tree plantations should be made for individual trees, being the total value determined as the sum of the individual contributions. Following this approach, rainfall interception was measured and modelled over two years, in an isolated Olea europeaea L. tree, in a traditional low-density olive grove in Castelo Branco, central Portugal. Total interception loss over the experimental period was 243.5 mm, on a tree crown projected area basis, corresponding to 18.0% of gross rainfall (Pg). Modelling made for each rainfall event using the sparse version of the Gash model, slightly underestimated interception loss with a value of 240.5 mm, i.e., 17.8 % ofPg. Modelling quality, evaluated according to a number of criteria, was good, allowing the conclusion that the methodology used was adequate. Modelling was also made on a daily basis, i.e., assuming a single storm per rainday. In this case, interception loss was overestimated by 12%, mostly because 72% of all rainfall events lasted for more than a day.

  15. Impact of large beam-induced heat loads on the transient operation of the beam screens and the cryogenic plants of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Correia Rodrigues, H.; Tavian, L.

    2017-12-01

    The Future Circular Collider (FCC) under study at CERN will produce 50-TeV high-energy proton beams. The high-energy particle beams are bent by 16-T superconducting dipole magnets operating at 1.9 K and distributed over a circumference of 80 km. The circulating beams induce 5 MW of dynamic heat loads by several processes such as synchrotron radiation, resistive dissipation of beam image currents and electron clouds. These beam-induced heat loads will be intercepted by beam screens operating between 40 and 60 K and induce transients during beam injection. Energy ramp-up and beam dumping on the distributed beam-screen cooling loops, the sector cryogenic plants and the dedicated circulators. Based on the current baseline parameters, numerical simulations of the fluid flow in the cryogenic distribution system during a beam operation cycle were performed. The effects of the thermal inertia of the headers on the helium flow temperature at the cryogenic plant inlet as well as the temperature gradient experienced by the beam screen has been assessed. Additionally, this work enabled a thorough exergetic analysis of different cryogenic plant configurations and laid the building-block for establishing design specification of cold and warm circulators.

  16. Quantification of Absolute Fat Mass by Magnetic Resonance Imaging: a Validation Study against Chemical Analysis

    PubMed Central

    Hu, Houchun H.; Li, Yan; Nagy, Tim R.; Goran, Michael I.; Nayak, Krishna S.

    2011-01-01

    Objective To develop a magnetic resonance imaging (MRI)-based approach for quantifying absolute fat mass in organs, muscles, and adipose tissues, and to validate its accuracy against reference chemical analysis (CA). Methods Chemical-shift imaging can accurately decompose water and fat signals from the acquired MRI data. A proton density fat fraction (PDFF) can be computed from the separated images, and reflects the relative fat content on a voxel-by-voxel basis. The PDFF is mathematically closely related to the fat mass fraction and can be converted to absolute fat mass in grams by multiplying by the voxel volume and the mass density of fat. In this validation study, 97 freshly excised and unique samples from four pigs, comprising of organs, muscles, and adipose and lean tissues were imaged by MRI and then analyzed independently by CA. Linear regression was used to assess correlation, agreement, and measurement differences between MRI and CA. Results Considering all 97 samples, a strong correlation and agreement was obtained between MRI and CA-derived fat mass (slope = 1.01, intercept = 1.99g, r2 = 0.98, p < 0.01). The mean difference d between MRI and CA was 2.17±3.40g. MRI did not exhibit any tendency to under or overestimate CA (p > 0.05). When considering samples from each pig separately, the results were (slope = 1.05, intercept = 1.11g, r2 = 0.98, d = 2.66±4.36g), (slope = 0.99, intercept = 2.33g, r2 = 0.99, d = 1.88±2.68g), (slope = 1.07, intercept = 1.52g, r2 = 0.96, d = 2.73±2.50g), and (slope=0.92, intercept=2.84g, r2 = 0.97, d = 1.18±3.90g), respectively. Conclusion Chemical-shift MRI and PDFF provides an accurate means of determining absolute fat mass in organs, muscles, and adipose and lean tissues. PMID:23204926

  17. Mathematical Model for the Contribution of Individual Organs to Non-Zero Y-Intercepts in Single and Multi-Compartment Linear Models of Whole-Body Energy Expenditure

    PubMed Central

    Kaiyala, Karl J.

    2014-01-01

    Mathematical models for the dependence of energy expenditure (EE) on body mass and composition are essential tools in metabolic phenotyping. EE scales over broad ranges of body mass as a non-linear allometric function. When considered within restricted ranges of body mass, however, allometric EE curves exhibit ‘local linearity.’ Indeed, modern EE analysis makes extensive use of linear models. Such models typically involve one or two body mass compartments (e.g., fat free mass and fat mass). Importantly, linear EE models typically involve a non-zero (usually positive) y-intercept term of uncertain origin, a recurring theme in discussions of EE analysis and a source of confounding in traditional ratio-based EE normalization. Emerging linear model approaches quantify whole-body resting EE (REE) in terms of individual organ masses (e.g., liver, kidneys, heart, brain). Proponents of individual organ REE modeling hypothesize that multi-organ linear models may eliminate non-zero y-intercepts. This could have advantages in adjusting REE for body mass and composition. Studies reveal that individual organ REE is an allometric function of total body mass. I exploit first-order Taylor linearization of individual organ REEs to model the manner in which individual organs contribute to whole-body REE and to the non-zero y-intercept in linear REE models. The model predicts that REE analysis at the individual organ-tissue level will not eliminate intercept terms. I demonstrate that the parameters of a linear EE equation can be transformed into the parameters of the underlying ‘latent’ allometric equation. This permits estimates of the allometric scaling of EE in a diverse variety of physiological states that are not represented in the allometric EE literature but are well represented by published linear EE analyses. PMID:25068692

  18. CARBON-BASED REACTIVE BARRIER FOR NITRATE ...

    EPA Pesticide Factsheets

    Nitrate (NO3-) is a common ground water contaminant related to agricultural activity, waste water disposal, leachate from landfills, septic systems, and industrial processes. This study reports on the performance of a carbon-based permeable reactive barrier (PRB) that was constructed for in-situ bioremediation of a ground water nitrate plume caused by leakage from a swine CAFO (concentrated animal feeding operation) lagoon. The swine CAFO, located in Logan County, Oklahoma, was in operation from 1992-1999. The overall site remediation strategy includes an ammonia recovery trench to intercept ammonia-contaminated ground water and a hay straw PRB which is used to intercept a nitrate plume caused by nitrification of sorbed ammonia. The PRB extends approximately 260 m to intercept the nitrate plume. The depth of the trench averages 6 m and corresponds to the thickness of the surficial saturated zone; the width of the trench is 1.2 m. Detailed quarterly monitoring of the PRB began in March, 2004, about 1 year after construction activities ended. Nitrate concentrations hydraulically upgradient of the PRB have ranged from 23 to 77 mg/L N, from 0 to 3.2 mg/L N in the PRB, and from 0 to 65 mg/L N hydraulically downgradient of the PRB. Nitrate concentrations have generally decreased in downgradient locations with successive monitoring events. Mass balance considerations indicate that nitrate attenuation is dominantly from denitrification but with some component of

  19. SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig)

    NASA Image and Video Library

    2017-06-11

    SHIIVER Tank Arrives at NASA’s Marshall Center for Spray-On Foam InsulationSHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig) is a cryogenic test tank developed to evaluate heat intercept concepts. It arrived at Marshall Space Flight Center on August 10, 2017. The tank will receive heat sensors and spray-on foam insulation before making its way to Plum Brook station for further insulation and testing.

  20. SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig)

    NASA Image and Video Library

    2017-06-11

    SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig) is a cryogenic test tank developed to evaluate heat intercept concepts. It arrived at Marshall Space Flight Center on August 10, 2017. The tank will receive heat sensors and spray-on foam insulation before making its way to Plum Brook station for further insulation and testing.SHIIVER Tank Arrives at NASA’s Marshall Center for Spray-On Foam Insulation

  1. Analysis of a 10 megawatt space-based solar-pumped neodymium laser system

    NASA Technical Reports Server (NTRS)

    Kurweg, U. H.

    1984-01-01

    A ten megawatt solar-pumped continuous liquid laser system for space applications is examined. It is found that a single inflatable mirror of 434 m diameter used in conjunction with a conical secondary concentrator is sufficient to side pump a liquid neodymium lasant in an annular tube of 6 m length and 1 m outer and 0.8 m inner diameter. About one fourth of intercepted radiation converging on the laser tube is absorbed and one fifth of this radiation is effective in populating the upper levels. The liquid lasant is flowed through the annular laser cavity at 1.9 m/s and is cooled via a heat exchanger and a large radiator surface comparable in size to the concentrating mirror. The power density of incident light within the lasant of approximately 68 watt/cu cm required for cw operation is exceeded in the present annular configuration. Total system weight corresponds to 20,500 kg and is thus capable of being transported to near Earth orbit by a single shuttle flight.

  2. Monitoring of continuous-variable quantum key distribution system in real environment.

    PubMed

    Liu, Weiqi; Peng, Jinye; Huang, Peng; Huang, Duan; Zeng, Guihua

    2017-08-07

    How to guarantee the practical security of continuous-variable quantum key distribution (CVQKD) system has been an important issue in the quantum cryptography applications. In contrast to the previous practical security strategies, which focus on the intercept-resend attack or the Gaussian attack, we investigate the practical security strategy based on a general attack, i.e., an arbitrated individual attack or collective attack on the system by Eve in this paper. The low bound of intensity disturbance of the local oscillator signal for eavesdropper successfully concealing herself is obtained, considering all noises can be used by Eve in the practical environment. Furthermore, we obtain an optimal monitoring condition for the practical CVQKD system so that legitimate communicators can monitor the general attack in real-time. As examples, practical security of two special systems, i.e., the Gaussian modulated coherent state CVQKD system and the middle-based CVQKD system, are investigated under the intercept-resend attacks.

  3. Hepatitis B virus DNA-positive, hepatitis B surface antigen-negative blood donations intercepted by anti-hepatitis B core antigen testing: the Canadian Blood Services experience.

    PubMed

    O'Brien, Sheila F; Fearon, Margaret A; Yi, Qi-Long; Fan, Wenli; Scalia, Vito; Muntz, Irene R; Vamvakas, Eleftherios C

    2007-10-01

    The benefit of introducing anti-hepatitis B core antigen (HBc) screening for intercepting potentially infectious donations missed by hepatitis B surface antigen (HBsAg) screening in Canada was studied. Anti-HBc testing of all donations was implemented in April 2005, along with antibody to hepatitis B surface antigen (anti-HBs) and hepatitis B virus (HBV) DNA supplemental testing of anti-HBc repeat-reactive, HBsAg-negative donations. The proportion of potentially infectious donations intercepted by anti-HBc over the initial 18 months of testing was calculated based on three assumptions relating infectivity of HBV DNA-positive units to anti-HBs levels. Lookback was conducted for all DNA-positive donations. Of 493,344 donors, 5,585 (1.13%) were repeat-reactive for the presence of anti-HBc, with 29 (0.52%) being HBV DNA-positive and HBsAg-negative. The proportion of potentially infectious donations intercepted by anti-HBc screening was 1 in 17,800 if all HBV DNA-positive donations were infectious, 1 in 26,900 if infectivity was limited to donations with an anti-HBs level of not more than 100 mIU per mL, and 1 in 69,300 if only donations with undetectable anti-HBs were infectious. For 279 components in the lookback study, no traced recipients were HBsAg-positive and 7 recipients were anti-HBc-reactive in association with 4 donors, 3 of whom had an anti-HBs level of more than 100 mIU per mL and 1 of whom had a level of 61 mIU per mL. Implementation of anti-HBc screening reduced the risk of transfusing potentially infectious units by at least as much as had been expected based on the literature. The lookback did not provide proof of transfusion transmission of HBV from HBV DNA-positive, anti-HBc-reactive, HBsAg-negative donors but it did not establish lack of transmission either.

  4. Variations in canopy and litter interception across a forest chronosequence in the southern Appalachian Mountains

    Treesearch

    Steven T. Brantley; Paul V. Bolstad; Stephanie H. Laseter; A. Christopher Oishi; Kimberly A. Novick; Chelcy F. Miniat

    2016-01-01

    Variations in evapotranspiration (ET) have been well documented across a variety of forest types and climates in recent decades; however, most of these data have focused on mature, secondgrowth stands. Here we present data on two important fluxes of water, canopy interception (Ic) and forest floor litter interception (Iff), across a chronosequence of forest age in the...

  5. An Optimal t-{Delta}v Guidance Law for Intercepting a Boosting Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, L.C.; Breitfeller, E.; Ledebuhr, A.G.

    2002-06-30

    Lawrence Livermore National Laboratory (LLNL) have developed a new missile guidance law for intercepting a missile during boost phase. Unlike other known missile guidance laws being used today, the new t-{Delta}v guidance law optimally trades an interceptor's onboard fuel capacity against time-to-go before impact. In particular, this guidance law allows a missile designer to program the interceptor to maximally impact a boosting missile before burnout or burn termination and thus negating its ability to achieve the maximum kinetic velocity. For an intercontinental range ballistic missile (ICBM), it can be shown that for every second of earlier intercept prior to burnout,more » the ICBM ground range is reduced by 350 km. Therefore, intercepting a mere 15 seconds earlier would result in amiss of 5,250 km from the intended target or approximately a distance across the continental US. This paper also shows how the t-{Delta}v guidance law can incorporate uncertainties in target burnout time, predicted intercept point (PIP) error, time-to-go error, and other track estimation errors. The authors believe that the t-{Delta}v guidance law is a step toward the development of a new and smart missile guidance law that would enhance the probability of achieving a boost phase intercept.« less

  6. Suborbital Asteroid Intercept and Fragmentation for Very Short Warning Time Scenarios

    NASA Technical Reports Server (NTRS)

    Hupp, Ryan; Dewald, Spencer; Wie, Bong; Barbee, Brent W.

    2015-01-01

    Small near-Earth objects (NEOs) 50150 m in size are far more numerous (hundreds of thousands to millions yet to be discovered) than larger NEOs. Small NEOs, which are mostly asteroids rather than comets, are very faint in the night sky due to their small sizes, and are, therefore, difficult to discover far in advance of Earth impact. However, even small NEOs are capable of creating explosions with energies on the order of tens or hundreds of megatons (Mt).We are, therefore, motivated to prepare to respond effectively to short warning time, small NEO impact scenarios. In this paper we explore the lower bound on actionable warning time by investigating the performance of notional upgraded Intercontinental Ballistic Missiles (ICBMs) to carry Nuclear Explosive Device (NED) payloads to intercept and disrupt a fictitious incoming NEO at high altitudes (generally, at least 2500 km above Earth). We conduct this investigation by developing optimal NEO intercept trajectories for a range of cases and comparing their performances.Our results show that suborbital NEO intercepts using Minuteman III or SM-3 IIA launch vehicles could achieve NEO intercept a few minutes prior to when the NEOwould strike Earth. We also find that more powerful versions of the launch vehicles (e.g., total V 9.511 kms) could intercept incoming NEOs over a day prior to when the NEO would strike Earth, if launched at least several days prior to the time of NEO intercept. Finally, we discuss a number of limiting factors and practicalities that affect whether the notional systems we describe could become feasible.

  7. First-Grade Cognitive Abilities as Long-Term Predictors of Reading Comprehension and Disability Status

    PubMed Central

    Fuchs, Douglas; Compton, Donald L.; Fuchs, Lynn S.; Bryant, V. Joan; Hamlett, Carol L.; Lambert, Warren

    2012-01-01

    In a sample of 195 first graders selected for poor reading performance, the authors explored four cognitive predictors of later reading comprehension and reading disability (RD) status. In fall of first grade, the authors measured the children’s phonological processing, rapid automatized naming (RAN), oral language comprehension, and nonverbal reasoning. Throughout first grade, they also modeled the students’ reading progress by means of weekly Word Identification Fluency (WIF) tests to derive December and May intercepts. The authors assessed their reading comprehension in the spring of Grades 1–5. With the four cognitive variables and the WIF December intercept as predictors, 50.3% of the variance in fifth-grade reading comprehension was explained: 52.1% of this 50.3% was unique to the cognitive variables, 13.1% to the WIF December intercept, and 34.8% was shared. All five predictors were statistically significant. The same four cognitive variables with the May (rather than December) WIF intercept produced a model that explained 62.1% of the variance. Of this amount, the cognitive variables and May WIF intercept accounted for 34.5% and 27.7%, respectively; they shared 37.8%. All predictors in this model were statistically significant except RAN. Logistic regression analyses indicated that the accuracy with which the cognitive variables predicted end-of-fifth-grade RD status was 73.9%. The May WIF intercept contributed reliably to this prediction; the December WIF intercept did not. Results are discussed in terms of a role for cognitive abilities in identifying, classifying, and instructing students with severe reading problems. PMID:22539057

  8. First-grade cognitive abilities as long-term predictors of reading comprehension and disability status.

    PubMed

    Fuchs, Douglas; Compton, Donald L; Fuchs, Lynn S; Bryant, V Joan; Hamlett, Carol L; Lambert, Warren

    2012-01-01

    In a sample of 195 first graders selected for poor reading performance, the authors explored four cognitive predictors of later reading comprehension and reading disability (RD) status. In fall of first grade, the authors measured the children's phonological processing, rapid automatized naming (RAN), oral language comprehension, and nonverbal reasoning. Throughout first grade, they also modeled the students' reading progress by means of weekly Word Identification Fluency (WIF) tests to derive December and May intercepts. The authors assessed their reading comprehension in the spring of Grades 1-5. With the four cognitive variables and the WIF December intercept as predictors, 50.3% of the variance in fifth-grade reading comprehension was explained: 52.1% of this 50.3% was unique to the cognitive variables, 13.1% to the WIF December intercept, and 34.8% was shared. All five predictors were statistically significant. The same four cognitive variables with the May (rather than December) WIF intercept produced a model that explained 62.1% of the variance. Of this amount, the cognitive variables and May WIF intercept accounted for 34.5% and 27.7%, respectively; they shared 37.8%. All predictors in this model were statistically significant except RAN. Logistic regression analyses indicated that the accuracy with which the cognitive variables predicted end-of-fifth-grade RD status was 73.9%. The May WIF intercept contributed reliably to this prediction; the December WIF intercept did not. Results are discussed in terms of a role for cognitive abilities in identifying, classifying, and instructing students with severe reading problems.

  9. A comparison of four-sample slope-intercept and single-sample 51Cr-EDTA glomerular filtration rate measurements.

    PubMed

    Porter, Charlotte A; Bradley, Kevin M; McGowan, Daniel R

    2018-05-01

    The aim of this study was to verify, with a large dataset of 1394 Cr-EDTA glomerular filtration rate (GFR) studies, the equivalence of slope-intercept and single-sample GFR. Raw data from 1394 patient studies were used to calculate four-sample slope-intercept GFR in addition to four individual single-sample GFR values (blood samples taken at 90, 150, 210 and 270 min after injection). The percentage differences between the four-sample slope-intercept and each of the single-sample GFR values were calculated, to identify the optimum single-sample time point. Having identified the optimum time point, the percentage difference between the slope-intercept and optimal single-sample GFR was calculated across a range of GFR values to investigate whether there was a GFR value below which the two methodologies cannot be considered equivalent. It was found that the lowest percentage difference between slope-intercept and single-sample GFR was for the third blood sample, taken at 210 min after injection. The median percentage difference was 2.5% and only 6.9% of patient studies had a percentage difference greater than 10%. Above a GFR value of 30 ml/min/1.73 m, the median percentage difference between the slope-intercept and optimal single-sample GFR values was below 10%, and so it was concluded that, above this value, the two techniques are sufficiently equivalent. This study supports the recommendation of performing single-sample GFR measurements for GFRs greater than 30 ml/min/1.73 m.

  10. Wet season water distribution in a tropical Andean cloud forest of Boyacá (Colombia) during the dry climate of El Niño

    NASA Astrophysics Data System (ADS)

    Garcia-Santos, G.; Berdugo, M. B.

    2010-07-01

    Fog has been demonstrated as the only source of moisture during the dry climate of El Niño in the tropical Andean cloud forest of Boyacá region in Colombia, yet its importance for the forest is virtually unknown. We assessed fog water distribution during the wet season inside the forest and outside in a practically deforested area. Water intercepted by plant was measured at different vertical stratus. Soil moisture in the first centimetres was also measured. During the anomalous drier wet season there was lack of rainfall and the total recorded cloud water was lower compared with the same period during the previous year. Our results indicated that the upper part of the forest mass intercepts most of the fog water compared with lower stratus when the fog event starts. However upper most stratus became rapidly drier after the event, which is explained because water is released to the atmosphere due to high heat atmosphere-leaves interface fluctuations caused by wind and solar radiation, flows towards a different water potential and drips from the leaves. Low amount of fog dripped from tree foliage into the soil, indicating a large water storage capacity of the epiphyte and bryophyte vegetation. Despite the small amount of throughfall, understory vegetation and litter remained wet, which might be explained by the water flowing through the epiphyte vegetation or the high capacity of the understory to absorb moisture from the air. Soil water did not infiltrate in depth, which underlines the importance of fog as water and cool source for seedling growth and shallow rooted understory species, especially during drier conditions.

  11. Bymixer system can measure O2 uptake and CO2 elimination in the anesthesia circle circuit.

    PubMed

    Rosenbaum, Abraham; Kirby, Christopher W; Breen, Peter H

    2007-06-01

    The ability to measure carbon dioxide elimination (Vco(2)), oxygen uptake (Vo(2)), and R (respiratory exchange ratio, Vco(2)/Vo(2)) during anesthesia may help the non-invasive detection of critical events (e.g., abrupt decrease in cardiac output) and metabolic upset (e.g., onset of anaerobic metabolism). We have developed a new clinical bymixer (inline mixing chamber) that can measure mixed inspired and expired gas fractions in the anesthesia circle circuit. The addition of a standard anesthesia gas analyzer and flowmeter, and a new airway temperature and humidity sensor, allow determinations of Vco(2) and Vo(2) at the airway opening of the circle circuit. Over a range of tidal volume and frequency, Vco(2) and Vo(2) were compared to reference values generated by the combustion of metered liquid ethanol in a new metabolic lung simulator. By linear regression, bymixer-flow measurements of Vco(2) (slope = 1.02, Y-intercept = -5.31, coefficient of determination, R(2) = 0.998) and Vo(2) (slope = 1.05, Y-intercept = -4.34, R(2) = 0.993) correlated closely to the reference values generated by the metabolic lung simulator. Limits of agreement analysis generated percent errors (mean +/- 1.96 SD) of -1.2 +/- 7.2% for Vco(2) and 2.5 +/- 9.8% for Vo(2). The new clinical bymixer is compact, lightweight, disposable, inexpensive, and has a fast and adjustable response time (time constant about 14 sec). Anesthesia circle circuit integrity is maintained. Bymixer-flow measurements of Vco(2) and Vo(2) are accurate and may add to clinical monitoring under anesthesia and surgery.

  12. Contrasting plant height can improve the control of rain-borne diseases in wheat cultivar mixture: modelling splash dispersal in 3-D canopies.

    PubMed

    Vidal, T; Gigot, C; de Vallavieille-Pope, C; Huber, L; Saint-Jean, S

    2018-06-08

    Growing cultivars differing by their disease resistance level together (cultivar mixtures) can reduce the propagation of diseases. Although architectural characteristics of cultivars are little considered in mixture design, they could have an effect on disease, in particular through spore dispersal by rain splash, which occurs over short distances. The objective of this work was to assess the impact of plant height of wheat cultivars in mixtures on splash dispersal of Zymoseptoria tritici, which causes septoria tritici leaf blotch. We used a modelling approach involving an explicit description of canopy architecture and splash dispersal processes. The dispersal model computed raindrop interception by a virtual canopy as well as the production, transport and interception of splash droplets carrying inoculum. We designed 3-D virtual canopies composed of susceptible and resistant plants, according to field measurements at the flowering stage. In numerical experiments, we tested different heights of virtual cultivars making up binary mixtures to assess the influence of this architectural trait on dispersal patterns of spore-carrying droplets. Inoculum interception decreased exponentially with the height relative to the main inoculum source (lower diseased leaves of susceptible plants), and little inoculum was intercepted further than 40 cm above the inoculum source. Consequently, tall plants intercepted less inoculum than smaller ones. Plants with twice the standard height intercepted 33 % less inoculum than standard height plants. In cases when the height of suscpeptible plants was doubled, inoculum interception by resistant leaves was 40 % higher. This physical barrier to spore-carrying droplet trajectories reduced inoculum interception by tall susceptible plants and was modulated by plant height differences between cultivars of a binary mixture. These results suggest that mixture effects on spore dispersal could be modulated by an adequate choice of architectural characteristics of cultivars. In particular, even small differences in plant height could reduce spore dispersal.

  13. Rainfall-Runoff Dynamics Following Wildfire in Mountainous Headwater Catchments, Alberta, Canada.

    NASA Astrophysics Data System (ADS)

    Williams, C.; Silins, U.; Bladon, K. D.; Martens, A. M.; Wagner, M. J.; Anderson, A.

    2015-12-01

    Severe wildfire has been shown to increase the magnitude and advance the timing of rainfall-generated stormflows across a range of hydro-climate regions. Loss of canopy and forest floor interception results in increased net precipitation which, along with the removal of forest organic layers and increased shorter-term water repellency, can result in strongly increased surface flow pathways and efficient routing of precipitation to streams. These abrupt changes have the potential to exacerbate flood impacts and alter the timing of runoff delivery to streams. However, while these effects are well documented in drier temperate mountain regions, changes in post-fire rainfall-runoff processes are less well understood in colder, more northern, snowfall dominated regimes. The objectives of this study are to explore longer term precipitation and runoff dynamics of burned and unburned (reference) watersheds from the Southern Rockies Watershed Project (SRWP) after the 2003 Lost Creek wildfire in the front-range Rocky Mountains of southwestern Alberta, Canada. Streamflow and precipitation were measured in 5 watersheds (3.7 - 10.4 km2) for 10 years following the wildfire (2005-2014). Measurements were collected from a dense network of meteorological and hydrometric stations. Stormflow volume, peak flow, time to peak flow, and total annual streamflow were compared between burned and reference streams. Event-based data were separated into 3 post-fire periods to detect changes in rainfall-runoff dynamics as vegetation regenerated. Despite large increases in post-fire snowpacks and net summer rainfall, rainfall-generated runoff from fire-affected watersheds was not large in comparison to that reported from more temperate snowfall-dominated Rocky Mountain hydrologic settings. High proportions of groundwater contribution to annual runoff regimes (as opposed to surface flow pathways) and groundwater storage were likely contributors to greater watershed resistance to wildfire effects in these northern Rocky Mountain catchments.

  14. Bubble gate for in-plane flow control.

    PubMed

    Oskooei, Ali; Abolhasani, Milad; Günther, Axel

    2013-07-07

    We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.

  15. Barriers and dispersal surfaces in minimum-time interception

    NASA Technical Reports Server (NTRS)

    Rajan, N.; Ardema, M. D.

    1982-01-01

    Minimum time interception of a target moving in a horizontal plane is analyzed as a one-player differential game. Dispersal points and points on the barrier are located for a class of pursuit evasion and interception problems. These points are determined by constructing cross sections of the isochrones and hence obtaining the barrier, dispersal, and control level surfaces. The game solution maps the controls as a function of the state within the capture region.

  16. Opportunities for ballistic missions to Halley's comet

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Wooden, W. H., II

    1977-01-01

    Alternative strategies for ballistic missions to Halley's comet in 1985-86 are described. A large scientific return would be acquired from a ballistic Halley intercept in spite of the high flyby speeds that are associated with this mission mode. The possibility of retargeting the cometary spacecraft to additional comets after the Halley intercept also exists. Two cometary spacecraft of identical design would be used to carry out four separate cometary encounters over a 3 year period. One spacecraft would intercept Halley's comet before its perihelion passage in December 1985 and then go on to comet Borrelly with an encounter in January 1988. The other spacecraft would be targeted for a postperihelion Halley intercept in March 1986 before proceeding toward an encounter with comet Tempel 2 in September 1988.

  17. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  18. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE PAGES

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    2017-12-10

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  19. A system study for the application of microcomputers to research flight test techniques

    NASA Technical Reports Server (NTRS)

    Smyth, R. K.

    1983-01-01

    The onboard simulator is a three degree of freedom aircraft behavior simulator which provides parameters used by the interception procedure. These parameters can be used for verifying closed loop performance before flight. The air to air intercept mode is a software package integrated in the simulation process that generates a target motion and performs a tracking procedure that predicts the most likely next target position, for a defined time step. This procedure also updates relative position parameters and gives adequate fire commands. A microcomputer based on an aircraft spin warning system periodically samples the assymetric thrust and yaw rate of an airplane and then issues voice synthesized warnings and /or suggests to the ilot how to respond to the situation.

  20. Evaluation of a social marketing campaign to increase awareness of immunizations for urban low-income children.

    PubMed

    Ngui, Emmanuel M; Hamilton, Chelsea; Nugent, Melodee; Simpson, Pippa; Willis, Earnestine

    2015-02-01

    To assess community awareness of childhood immunizations and intent to immunize children after a social marketing immunization campaign. We used 2 interviewer-assisted street-intercept surveys to evaluate awareness of childhood immunizations and intent to immunize low-income children. The "Take Control! Immunize" social marketing campaign was developed using a community-based participatory research approach and used billboards, flyers, and various "walking billboard" (eg, backpacks, pens) to deliver immunization messages in the community settings. Over 85% of community members recalled the "Take Control! Immunize" message. Almost half of those who saw the immunization message indicated that the message motivated them to act, including getting their children immunized or calling their physician to inquire about their children's immunizations status. All respondents indicated that immunizations were important for children and that they were likely or very likely to immunize their children. Respondents who reported that "Take Control!" messages motivated them to act in the first intercept survey were significantly more likely than those in the second intercept to report being likely or very likely to immunize their children. Culturally appropriate social marketing immunization messages in targeted urban settings can increase parental awareness and behavioral intention to immunize children.

  1. Landscape co-evolution and river discharge.

    NASA Astrophysics Data System (ADS)

    van der Velde, Ype; Temme, Arnaud

    2015-04-01

    Fresh water is crucial for society and ecosystems. However, our ability to secure fresh water resources under climatic and anthropogenic change is impaired by the complexity of interactions between human society, ecosystems, soils, and topography. These interactions cause landscape properties to co-evolve, continuously changing the flow paths of water through the landscape. These co-evolution driven flow path changes and their effect on river runoff are, to-date, poorly understood. In this presentation we introduce a spatially distributed landscape evolution model that incorporates growing vegetation and its effect on evapotranspiration, interception, infiltration, soil permeability, groundwater-surface water exchange and erosion. This landscape scale (10km2) model is calibrated to evolve towards well known empirical organising principles such as the Budyko curve and Hacks law under different climate conditions. To understand how positive and negative feedbacks within the model structure form complex landscape patterns of forests and peat bogs that resemble observed landscapes under humid and boreal climates, we analysed the effects of individual processes on the spatial distribution of vegetation and river peak and mean flows. Our results show that especially river peak flows and droughts decrease with increasing evolution of the landscape, which is a result that has direct implications for flood management.

  2. Living on the edge: transfer and traffic of E. coli in a confined flow.

    PubMed

    Figueroa-Morales, Nuris; Leonardo Miño, Gastón; Rivera, Aramis; Caballero, Rogelio; Clément, Eric; Altshuler, Ernesto; Lindner, Anke

    2015-08-21

    We quantitatively study the transport of E. coli near the walls of confined microfluidic channels, and in more detail along the edges formed by the interception of two perpendicular walls. Our experiments establish the connection between bacterial motion at the flat surface and at the edges and demonstrate the robustness of the upstream motion at the edges. Upstream migration of E. coli at the edges is possible at much larger flow rates compared to motion at the flat surfaces. Interestingly, the speed of bacteria at the edges mainly results from collisions between bacteria moving along this single line. We show that upstream motion not only takes place at the edge but also in an "edge boundary layer" whose size varies with the applied flow rate. We quantify the bacterial fluxes along the bottom walls and the edges and show that they result from both the transport velocity of bacteria and the decrease of surface concentration with increasing flow rate due to erosion processes. We rationalize our findings as a function of local variations in the shear rate in the rectangular channels and hydrodynamic attractive forces between bacteria and walls.

  3. Influence of rainfall microstructure on rainfall interception

    NASA Astrophysics Data System (ADS)

    Zabret, Katarina; Rakovec, Jože; Mikoš, Matjaž; Šraj, Mojca

    2016-04-01

    Rainfall interception is part of the hydrological cycle. Precipitation, which hits vegetation, is retained on the leaves and branches, from which it eventually evaporates into the atmosphere (interception) or reaches the ground by dripping from the canopy, falling through the gaps (throughfall) and running down the stems (stemflow). The process is influenced by various meteorological and vegetation parameters. Often neglected meteorological parameter influencing rainfall interception is also rainfall microstructure. Rain is a discrete process consisting of various numbers of individual raindrops with different sizes and velocities. This properties describe rainfall microstructure which is often neglected in hydrological analysis and replaced with rainfall intensity. Throughfall, stemflow and rainfall microstructure have been measured since the beginning of the year 2014 under two tree species (Betula pendula and Pinus nigra) on a study plot in Ljubljana, Slovenia. The preliminary analysis of the influence of rainfall microstructure on rainfall interception has been conducted using three events with different characteristics measured in May 2014. Event A is quite short with low rainfall amount and moderate rainfall intensity, whereas events B and C have similar length but low and high intensities, respectively. Event A was observed on the 1st of May 2014. It was 22 minutes long and delivered 1.2 mm of rainfall. The average rainfall intensity was equal to 3.27 mm/h. The event consisted of 1,350 rain drops with average diameter of 1.517 mm and average velocity of 5.110 m/s. Both Betula pendula and Pinus nigra intercepted similar amount of rainfall, 68 % and 69 %, respectively. Event B was observed in the night from the 7th to 8th of May 2014, it was 16 hours and 18 minutes long, and delivered 4.2 mm of rainfall with average intensity of 0.97 mm/h. There were 39,108 raindrops detected with average diameter of 0.858 mm and average velocity of 3.855 m/s. Betula pendula (23 %) has intercepted significantly less rainfall than Pinus nigra (85%). Event C was also observed in the night time between 11th and 12th of May 2014, it lasted 4 hours and 12 minutes and delivered 34.6 mm of rainfall with an average intensity equal to 8.24 mm/h. During the event 147,236 raindrops with average diameter of 1.020 mm and average velocity of 4.078 m/s were detected. Betula pendula has intercepted only 6 % of rainfall whereas Pinus nigra intercepted majority of rainfall, namely 85 %. In case of B. pendula rainfall interception is increasing with higher velocity whereas it is lower for medium diameters than for smaller or larger diameters. Rainfall interception under P. nigra is decreasing with higher velocities and behaving similar as under B. pendula for different diameters but with less obvious difference between diameter classes. We will continue with the measurements and further analysis of several rainfall events will be prepared.

  4. Numerical simulation of groundwater flow at Puget Sound Naval Shipyard, Naval Base Kitsap, Bremerton, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Johnson, Kenneth H.; Frans, Lonna M.

    2016-08-18

    Information about groundwater-flow paths and locations where groundwater discharges at and near Puget Sound Naval Shipyard is necessary for understanding the potential migration of subsurface contaminants by groundwater at the shipyard. The design of some remediation alternatives would be aided by knowledge of whether groundwater flowing at specific locations beneath the shipyard will eventually discharge directly to Sinclair Inlet of Puget Sound, or if it will discharge to the drainage system of one of the six dry docks located in the shipyard. A 1997 numerical (finite difference) groundwater-flow model of the shipyard and surrounding area was constructed to help evaluate the potential for groundwater discharge to Puget Sound. That steady-state, multilayer numerical model with homogeneous hydraulic characteristics indicated that groundwater flowing beneath nearly all of the shipyard discharges to the dry-dock drainage systems, and only shallow groundwater flowing beneath the western end of the shipyard discharges directly to Sinclair Inlet.Updated information from a 2016 regional groundwater-flow model constructed for the greater Kitsap Peninsula was used to update the 1997 groundwater model of the Puget Sound Naval Shipyard. That information included a new interpretation of the hydrogeologic units underlying the area, as well as improved recharge estimates. Other updates to the 1997 model included finer discretization of the finite-difference model grid into more layers, rows, and columns, all with reduced dimensions. This updated Puget Sound Naval Shipyard model was calibrated to 2001–2005 measured water levels, and hydraulic characteristics of the model layers representing different hydrogeologic units were estimated with the aid of state-of-the-art parameter optimization techniques.The flow directions and discharge locations predicted by this updated model generally match the 1997 model despite refinements and other changes. In the updated model, most groundwater discharge recharged within the boundaries of the shipyard is to the dry docks; only at the western end of the shipyard does groundwater discharge directly to Puget Sound. Particle tracking for the existing long-term monitoring well network suggests that only a few wells intercept groundwater that originates as recharge within the shipyard boundary.

  5. Suborbital Intercept and Fragmentation of an Asteroid with Very Short Warning Time Scenario

    NASA Technical Reports Server (NTRS)

    Hupp, Ryan; DeWald, Spencer; Wie, Bong; Barbee, Brent W.

    2015-01-01

    Small near-Earth objects (NEOs) is approx. 50-150 m in size are far more numerous (hundreds of thousands to millions yet to be discovered) than larger NEOs. Small NEOs, which are mostly asteroids rather than comets, are very faint in the night sky due to their small sizes, and are, therefore, difficult to discover far in advance of Earth impact. Furthermore, even small NEOs are capable of creating explosions with energies on the order of tens or hundreds of megatons (Mt). We are, therefore, motivated to prepare to respond effectively to short warning time, small NEO impact scenarios. In this paper we explore the lower bound on actionable warning time by investigating the performance of notional upgraded Intercontinental Ballistic Missiles (ICBMs) to carry Nuclear Explosive Device (NED) payloads to intercept and disrupt a hypothetical incoming NEO at high altitudes (generally at least 2500 km above Earth). We conduct this investigation by developing optimal NEO intercept trajectories for a range of cases and comparing their performances. Our results show that suborbital NEO intercepts using Minuteman III or SM-3 IIA launch vehicles could achieve NEO intercept a few minutes prior to when the NEO would strike Earth. We also find that more powerful versions of the launch vehicles (e.g., total deltaV is approx. 9.5-11 km/s) could intercept incoming NEOs several hours prior to when the NEO would strike Earth, if launched at least several days prior to the time of intercept. Finally, we discuss a number of limiting factors and practicalities that affect whether the notional systems we describe could become feasible.

  6. Mission Design and Analysis for Suborbital Intercept and Fragmentation of an Asteroid with Very Short Warning Time

    NASA Technical Reports Server (NTRS)

    Hupp, Ryan; DeWald, Spencer; Wie, Bong; Barbee, Brent W.

    2014-01-01

    Small near-Earth objects (NEOs) approximately 50-150 m in size are far more numerous (hundreds of thousands to millions yet to be discovered) than larger NEOs. Small NEOs, which are mostly asteroids rather than comets, are very faint in the night sky due to their small sizes, and are, therefore, difficult to discover far in advance of Earth impact. Furthermore, even small NEOs are capable of creating explosions with energies on the order of tens or hundreds of megatons (Mt). We are, therefore, motivated to prepare to respond effectively to short warning time, small NEO impact scenarios. In this paper we explore the lower bound on actionable warning time by investigating the performance of notional upgraded Intercontinental Ballistic Missiles (ICBMs) to carry Nuclear Explosive Device (NED) payloads to intercept and disrupt a hypothetical incoming NEO at high altitudes (generally at least 2500 km above Earth). We conduct this investigation by developing optimal NEO intercept trajectories for a range of cases and comparing their performances. Our results show that suborbital NEO intercepts using Minuteman III or SM-3 IIA launch vehicles could achieve NEO intercept a few minutes prior to when the NEO would strike Earth. We also find that more powerful versions of the launch vehicles (e.g., total delta V of approximately 9.5-11 km/s) could intercept incoming NEOs several hours prior to when the NEO would strike Earth, if launched at least several days prior to the time of intercept. Finally, we discuss a number of limiting factors and practicalities that affect whether the notional systems we describe could become feasible.

  7. Can Collimated Extraterrestrial Signals be Intercepted?

    NASA Astrophysics Data System (ADS)

    Forgan, D. H.

    2014-06-01

    The Optical Search for Extraterrestrial Intelligence (OSETI) attempts to detect collimated, narrow-band pulses of electromagnetic radiation. These pulses may either consist of signals intentionally directed at the Earth, or signals between two star systems with a vector that unintentionally intersects the Solar System, allowing Earth to intercept the communication. But should we expect to be able to intercept these unintentional signals? And what constraints can we place upon the frequency of intelligent civilisations if we do? We carry out Monte Carlo Realisation simulations of interstellar communications between civilisations in the Galactic Habitable Zone (GHZ) using collimated beams. We measure the frequency with which beams between two stars are intercepted by a third. The interception rate increases linearly with the fraction of communicating civilisations, and as the cube of the beam opening angle, which is somewhat stronger than theoretical expectations, which we argue is due to the geometry of the GHZ. We find that for an annular GHZ containing 10,000 civilisations, intersections are unlikely unless the beams are relatively uncollimated. These results indicate that optical SETI is more likely to find signals deliberately directed at the Earth than accidentally intercepting collimated communications. Equally, civilisations wishing to establish a network of communicating species may use weakly collimated beams to build up the network through interception, if they are willing to pay a cost penalty that is lower than that meted by fully isotropic beacons. Future SETI searches should consider the possibility that communicating civilisations will attempt to strike a balance between optimising costs and encouraging contact between civilisations, and look for weakly collimated pulses as well as narrow-beam pulses directed deliberately at the Earth.

  8. Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States

    NASA Astrophysics Data System (ADS)

    Storck, Pascal; Lettenmaier, Dennis P.; Bolton, Susan M.

    2002-11-01

    The results of a 3 year field study to observe the processes controlling snow interception by forest canopies and under canopy snow accumulation and ablation in mountain maritime climates are reported. The field study was further intended to provide data to develop and test models of forest canopy effects on beneath-canopy snowpack accumulation and melt and the plot and stand scales. Weighing lysimeters, cut-tree experiments, and manual snow surveys were deployed at a site in the Umpqua National Forest, Oregon (elevation 1200 m). A unique design for a weighing lysimeter was employed that allowed continuous measurements of snowpack evolution beneath a forest canopy to be taken at a scale unaffected by variability in canopy throughfall. Continuous observations of snowpack evolution in large clearings were made coincidentally with the canopy measurements. Large differences in snow accumulation and ablation were observed at sites beneath the forest canopy and in large clearings. These differences were not well described by simple relationships between the sites. Over the study period, approximately 60% of snowfall was intercepted by the canopy (up to a maximum of about 40 mm water equivalent). Instantaneous sublimation rates exceeded 0.5 mm per hour for short periods. However, apparent average sublimation from the intercepted snow was less than 1 mm per day and totaled approximately 100 mm per winter season. Approximately 72 and 28% of the remaining intercepted snow was removed as meltwater drip and large snow masses, respectively. Observed differences in snow interception rate and maximum snow interception capacity between Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and lodgepole pine (Pinus contorta) were minimal.

  9. Size-exclusion chromatography of tea tannins and intercepting potentials of peptides for the inhibition of trypsin-caseinolytic activity by tea tannins.

    PubMed

    Kasai, Naoya; Nakatsubo, Genki

    2006-07-12

    Molecular-weight distribution and characterization of tea tannin were investigated by high-performance liquid chromatography and the equivalent preparative exclusion gel chromatography using Sephadex G-25. The characteristics of the fractions were studied regarding the amounts of terminal catechin, sugar, and gallic acid, the color reaction of the Folin-Chiocalteu reagent, the UV absorbance, and the inhibition activity for the trypsin-caseinolytic activity per weight. Furthermore, we investigated the intercepting activities of the inhibition by the amino acids, peptides, their analogues, poly(ethylene glycol)s (PEGs), and histatin 5 using the inhibition of trypsin-caseinolytic activity by tea. Arg, Lys, and their peptides had strong intercepting activities for the inhibition, but only a weak activity was detected in the Pro peptides or gelatin-like peptides of (Pro-Pro-Gly)(n) (n = 5 or 10). The guanidyl group of Arg and the amino methylene group of Lys were important for the intercepting activity, but the activity was weakly dependent upon the peptide bond formation. The intercepting activity of the peptides or PEG exponentially increased with the number of polymerizations. Histatin 5 did not have a remarkably strong intercepting activity considering the peptide length. The activity of the synthetic histatin 5 in which all of the Lys and Arg were substituted by Ala was at the same level as histatin 5.

  10. Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, Paul B.; Zaveri, Rahul A.; Flocke, Frank M.

    2010-08-04

    One of the major objectives of the Megacities Initiative: Local And Global Research 3 Observations (MILAGRO 2006) campaign was to investigate the long-range transport of 4 Mexico City Metropolitan Area (MCMA) pollution outflow and its downwind impacts on air 5 quality and climate. Four aircraft (DOE G-1, NSF/NCAR C-130, NASA-J31, and NASA 6 DC-8) made extensive chemical, aerosol, and radiation measurements above MCMA and over 7 1000 km downwind in order to characterize the evolution of MCMA pollution as it aged and 8 dispersed over the central Mexican plateau and the Gulf of Mexico. As part of this effort, 9more » free-floating Controlled-Meteorological (CMET) balloons, capable of changing altitude on 10 command via satellite, characterized the MCMA outflow by performing repeated soundings 11 during the transit. In this paper, we present an analysis based on the data from two CMET 12 balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated 13 downwind with the outflow for nearly 30 hours. Continuous profile measurements made by 14 the balloons show the evolving structure of the MCMA outflow in considerable detail: its 15 stability and stratification, interaction with other air masses, mixing episodes, and dispersion 16 into the regional background. Air parcel trajectories, computed directly from the balloon 17 wind profiles, show three different transport pathways for Mexico City outflow on 18-19 18 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) low-altitude flow 19 over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf, 20 and (c) the same decoupling scenario with entrainment into a cleaner westerly jet below the 21 plateau. The C-130 intercepted the balloon-based trajectories three times on 19 March, once 22 along each transport pathway. In all three cases, distinct peaks in the urban tracer signature 23 and LIDAR backscatter imagery provided evidence for Mexico City air. The coherence of the 24 high-altitude outflow was well preserved after 25 hours whereas that lower in the atmosphere 25 was more widely dispersed over the same time period. Other C-130 intercepts, previously 26 thought to be from Mexico City, are shown to have likely originated elsewhere. These 27 findings address key questions about the long-range transport of Mexico City pollution and its 28 impact on the regional background. The particular intercepts identified should prove useful in 29 answering a wide range scientific questions pertaining to the transport, transformation, and 30 downwind impacts of megacity air pollution. 31 32« less

  11. 47 CFR 0.251 - Authority delegated.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... interception of telephone conversations. Nothing in this paragraph, however, shall affect the authority of the Inspector General to intercept or record telephone conversations as necessary in the conduct of...

  12. The "Supercritical Pile" Model for GRB: Tapping the Proton Energy and Getting the v F(sub V) Peak at Approx. 1 MeV

    NASA Technical Reports Server (NTRS)

    Kazanas, D.; Georganopoulos, M.; Mastichladis, A.

    2003-01-01

    We propose a process by which the kinetic energy of the protons, that carry most of the energy of GRB relativistic blast waves (RBW) of Lorentz factor is converted explosively into relativistic electrons of the same Lorentz factor, which subsequently produce the observed prompt gamma-ray emission of the burst. This conversion is the result of the combined effects of the reflection of photons produced within the flow by upstream located matter, their re-interception and conversion into e(+) e(-) pairs on the RBW by the p gamma (right arrow) p e(+) e(-) reaction.

  13. Kinetics of Static Strain Aging in Polycrystalline NiAl-based Alloys

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Kaufman, M. J.; Noebe, R. D.

    1996-01-01

    The kinetics of yield point return have been studied in two NiAl-based alloys as a function of aging time at temperatures between 300 and 700 K. The results indicate that the upper yield stress increment, Delta sigma(sub u) (i.e., stress difference between the upper yield point and the final flow stress achieved during prestraining), in conventional purity (CP-NiAl) and in high purity carbon-doped (NiAl-C) material first increased with a t(exp 2/3) relationship before reaching a plateau. This behavior suggests that a Cottrell locking mechanism is the cause for yield points in NiAl. In addition, positive y-axis intercepts were observed in plots of Delta sigma(sub u) versus t(exp 2/3) suggesting the operation of a Snoek mechanism. Analysis according to the Cottrell Bilby model of atmosphere formation around dislocations yields an activation energy for yield point return in the range 70 to 76 kJ/mol which is comparable to the activation energy for diffusion of interstitial impurities in bcc metals. It is, thus, concluded that the kinetics of static strain aging in NiAl are controlled by the locking of dislocations by Cottrell atmospheres of carbon atoms around dislocations.

  14. Automated Flight Routing Using Stochastic Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Ng, Hok K.; Morando, Alex; Grabbe, Shon

    2010-01-01

    Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.

  15. A passerine spreads its tail to facilitate a rapid recovery of its body posture during hovering

    PubMed Central

    Su, Jian-Yuan; Ting, Shang-Chieh; Chang, Yu-Hung; Yang, Jing-Tang

    2012-01-01

    We demonstrate experimentally that a passerine exploits tail spreading to intercept the downward flow induced by its wings to facilitate the recovery of its posture. The periodic spreading of its tail by the White-eye bird exhibits a phase correlation with both wingstroke motion and body oscillation during hovering flight. During a downstroke, a White-eye's body undergoes a remarkable pitch-down motion, with the tail undergoing an upward swing. This pitch-down motion becomes appropriately suppressed at the end of the downstroke; the bird's body posture then recovers gradually to its original status. Employing digital particle-image velocimetry, we show that the strong downward flow induced by downstroking the wings serves as an external jet flow impinging upon the tail, providing a depressing force on the tail to counteract the pitch-down motion of the bird's body. Spreading of the tail enhances a rapid recovery of the body posture because increased forces are experienced. The maximum force experienced by a spread tail is approximately 2.6 times that of a non-spread tail. PMID:22258552

  16. A passerine spreads its tail to facilitate a rapid recovery of its body posture during hovering.

    PubMed

    Su, Jian-Yuan; Ting, Shang-Chieh; Chang, Yu-Hung; Yang, Jing-Tang

    2012-07-07

    We demonstrate experimentally that a passerine exploits tail spreading to intercept the downward flow induced by its wings to facilitate the recovery of its posture. The periodic spreading of its tail by the White-eye bird exhibits a phase correlation with both wingstroke motion and body oscillation during hovering flight. During a downstroke, a White-eye's body undergoes a remarkable pitch-down motion, with the tail undergoing an upward swing. This pitch-down motion becomes appropriately suppressed at the end of the downstroke; the bird's body posture then recovers gradually to its original status. Employing digital particle-image velocimetry, we show that the strong downward flow induced by downstroking the wings serves as an external jet flow impinging upon the tail, providing a depressing force on the tail to counteract the pitch-down motion of the bird's body. Spreading of the tail enhances a rapid recovery of the body posture because increased forces are experienced. The maximum force experienced by a spread tail is approximately 2.6 times that of a non-spread tail.

  17. The Caltech experimental investigation of fast 3D non-equilbrium dynamics: an overview

    NASA Astrophysics Data System (ADS)

    Bellan, Paul; Shikama, Taiichi; Chai, Kilbyoung; Ha, Bao; Chaplin, Vernon; Kendall, Mark; Moser, Auna; Stenson, Eve; Tobin, Zachary; Zhai, Xiang

    2012-10-01

    The formation and dynamics of writhing, plasma-filled, twisted open magnetic flux tubes is being investigated using pulsed-power laboratory experiments. This work is relevant to solar corona loops, astrophysical jets, spheromak formation, and open field lines in tokamaks and RFP's. MHD forces have been observed to drive fast axial plasma flows into the flux tube from the boundary it intercepts. These flows fill the flux tube with plasma while simultaneously injecting linked frozen-in azimuthal flux; helicity injection is thus associated with mass injection. Recent results include observation of a secondary instability (Rayleigh-Taylor driven by the effective gravity of an exponentially growing kink mode), color-coded plasmas manifesting bidirectional axial flows in a geometry similar to a solar corona loop, and spectroscopic measurements of the internal vector magnetic field. Experiments underway include investigating how an external magnetic field straps down a solar loop, investigation of the details of the Rayleigh-Taylor instability, development of a fast EUV movie camera, increasing the jet velocity, excitation of Alfven waves, and investigating 3D magnetic reconnection.

  18. Asynchronous beating of cilia enhances particle capture rate

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Kanso, Eva

    2014-11-01

    Many aquatic micro-organisms use beating cilia to generate feeding currents and capture particles in surrounding fluids. One of the capture strategies is to ``catch up'' with particles when a cilium is beating towards the overall flow direction (effective stroke) and intercept particles on the downstream side of the cilium. Here, we developed a 3D computational model of a cilia band with prescribed motion in a viscous fluid and calculated the trajectories of the particles with different sizes in the fluid. We found an optimal particle diameter that maximizes the capture rate. The flow field and particle motion indicate that the low capture rate of smaller particles is due to the laminar flow in the neighbor of the cilia, whereas larger particles have to move above the cilia tips to get advected downstream which decreases their capture rate. We then analyzed the effect of beating coordination between neighboring cilia on the capture rate. Interestingly, we found that asynchrony of the beating of the cilia can enhance the relative motion between a cilium and the particles near it and hence increase the capture rate.

  19. Visual Attention to Radar Displays

    NASA Technical Reports Server (NTRS)

    Moray, N.; Richards, M.; Brophy, C.

    1984-01-01

    A model is described which predicts the allocation of attention to the features of a radar display. It uses the growth of uncertainty and the probability of near collision to call the eye to a feature of the display. The main source of uncertainty is forgetting following a fixation, which is modelled as a two dimensional diffusion process. The model was used to predict information overload in intercept controllers, and preliminary validation obtained by recording eye movements of intercept controllers in simulated and live (practice) interception.

  20. Comparison of Hydrologic and Water-Quality Characteristics of Two Native Tallgrass Prairie Streams with Agricultural Streams in Missouri and Kansas

    USGS Publications Warehouse

    Heimann, David C.

    2009-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, to analyze and compare hydrologic and water-quality characteristics of tallgrass prairie and agricultural basins located within the historical distribution of tallgrass prairie in Missouri and Kansas. Streamflow and water-quality data from two remnant, tallgrass prairie basins (East Drywood Creek at Prairie State Park, Missouri, and Kings Creek near Manhattan, Kansas) were compared to similar data from agricultural basins in Missouri and Kansas. Prairie streams, especially Kings Creek in eastern Kansas, received a higher percentage of base flow and a lower percentage of direct runoff than similar-sized agricultural streams in the region. A larger contribution of direct runoff from the agricultural streams made them much flashier than prairie streams. During 22 years of record, the Kings Creek base-flow component averaged 66 percent of total flow, but base flow was only 16 to 26 percent of flows at agricultural sites of various record periods. The large base-flow component likely is the result of greater infiltration of precipitation in prairie soils and the resulting greater contribution of groundwater to streamflow. The 1- and 3-day annual maximum flows were significantly greater at three agricultural sites than at Kings Creek. The effects of flashier agricultural streams on native aquatic biota are unknown, but may be an important factor in the sustainability of some native aquatic species. There were no significant differences in the distribution of dissolved-oxygen concentrations at prairie and agricultural sites, and some samples from most sites fell below the 5 milligrams per liter Missouri and Kansas standard for the protection of aquatic life. More than 10 percent of samples from the East Drywood Creek prairie stream were less than this standard. These data indicate low dissolved-oxygen concentrations during summer low-flow periods may be a natural phenomenon for small prairie streams in the Osage Plains. Nutrient concentrations including total nitrogen, ammonia, nitrate, and total phosphorus were significantly less in base-flow and runoff samples from prairie streams than from agricultural streams. The total nitrogen concentration at all sites other than one of two prairie sampling sites were, on occasion, above the U.S. Environmental Protection Agency recommended criterion for total nitrogen for the prevention of nutrient enrichment, and typically were above this recommended criterion in runoff samples at all sites. Nitrate and total phosphorus concentrations in samples from the prairie streams generally were below the U.S. Environmental Protection Agency recommended nutrient criteria in base-flow and runoff samples, whereas samples from agricultural sites generally were below the criteria in base-flow samples and generally above in runoff samples. The lower concentrations of nutrient species in prairie streams is likely because prairies are not fertilized like agricultural basins and prairie basins are able to retain nutrients better than agricultural basins. This retention is enhanced by increased infiltration of precipitation into the prairie soils, decreased surface runoff, and likely less erosion than in agricultural basins. Streamflow in the small native prairie streams had more days of zero flow and lower streamflow yields than similar-sized agricultural streams. The prairie streams were at zero flow about 50 percent of the time, and the agricultural streams were at zero flow 25 to 35 percent of the time. Characteristics of the prairie basins that could account for the greater periods of zero flow and lower yields when compared to agricultural streams include greater infiltration, greater interception and evapotranspiration, shallower soils, and possible greater seepage losses in the prairie basins. Another difference between the prairie and agricultural strea

  1. Fog interception by Ball moss (Tillandsia recurvata)

    NASA Astrophysics Data System (ADS)

    Guevara-Escobar, A.; Cervantes-Jiménez, M.; Suzán-Azpiri, H.; González-Sosa, E.; Hernández-Sandoval, L.; Malda-Barrera, G.; Martínez-Díaz, M.

    2010-03-01

    Interception losses are a major influence in the water yield of vegetated areas. For most storms, interception results in less water reaching the ground. However, fog drip or occult precipitation can result in negative interception because small drops are deposited on all plant surfaces and subsequently fall to the ground once vegetation storage capacities are exceeded. Fog drip is normally disregarded, but for some plant communities, it could be a mechanism offsetting evaporation losses. Tillandsia recurvata is a cosmopolitan epiphyte adapted to arid habitats where fog may be an important water source. Therefore, the interception storage capacity by T. recurvata was measured in controlled conditions through applying simulated rain or fog. The storage capacity was proportional to dry weight mass. Nocturnal stomatic opening in T. recurvata is not only relevant for CO2 but for water vapor, as suggested by the higher weight change of specimens wetted with fog for 1 h at dark in comparison to those wetted during daylight (543±77 vs. 325±56 mg, p=0.048). The coefficients obtained in the laboratory were used together with biomass measurements for T. recurvata in a xeric scrub to calculate the depth of water intercepted. Interception storage capacity (Cmin) was 0.19 and 0.54 mm for rainfall and fog respectively. T. recurvata contributed 20% to the rain interception of their shrub hosts: Acacia farnesiana and Prosopis laevigata. Meteorological data registered during one year at Cadereyta, México showed that radiative fog formation was possible during the dry season. The results showed the potential role of T. recurvata in capturing fog, which probably is a main source of water during the dry season that supports their reproductive and physiological activity at that time. The storage capacity of T. recurvata leaf surfaces could increase the amount of water available for evaporation, but as this species colonise montane forests, the effect could be negative on water recharge, because in the laboratory experiments it took up to 12 h to reach saturation conditions when fog was applied.

  2. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (smallmore » ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.« less

  3. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    PubMed Central

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.

    2015-01-01

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length. PMID:26328984

  4. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length.

    PubMed

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F

    2015-09-01

    Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  5. The Water, Energy, and Biogeochemical Model (WEBMOD): A TOPMODEL application developed within the Modular Modeling System

    NASA Astrophysics Data System (ADS)

    Webb, R. M.; Wolock, D. M.; Linard, J. I.; Wieczorek, M. E.

    2004-12-01

    Process-based flow and transport simulation models can help increase understanding of how hydrologic flow paths affect biogeochemical mixing and reactions in watersheds. This presentation describes the Water, Energy, and Biogeochemical Model (WEBMOD), a new model designed to simulate water and chemical transport in both pristine and agricultural watersheds. WEBMOD simulates streamflow using TOPMODEL algorithms and also simulates irrigation, canopy interception, snowpack, and tile-drain flow; these are important processes for successful multi-year simulations of agricultural watersheds. In addition, the hydrologic components of the model are linked to the U.S. Geological Survey's (USGS) geochemical model PHREEQC such that solute chemistry for the hillslopes and streams also are computed. Model development, execution, and calibration take place within the USGS Modular Modeling System. WEBMOD is being validated at ten research watersheds. Five of these watersheds are nearly pristine and comprise the USGS Water, Energy, and Biogeochemical Budget (WEBB) Program field sites: Loch Vale, Colorado; Trout Lake, Wisconsin; Sleepers River, Vermont; Panola Mountain, Georgia; and the Luquillo Experimental Forest, Puerto Rico. The remaining five watersheds contain intensely cultivated fields being studied by USGS National Water Quality Assessment Program: Merced River, California; Granger Drain, Washington; Maple Creek, Nebraska; Sugar Creek, Indiana; and Morgan Creek, Delaware. Model calibration improved understanding of observed variations in soil moisture, solute concentrations, and stream discharge at the five WEBB watersheds and is now being set up to simulate the processes at the five agricultural watersheds that are now ending their first year of data collection.

  6. Bottles as models: predicting the effects of varying swimming speed and morphology on size selectivity and filtering efficiency in fishes.

    PubMed

    Paig-Tran, E W Misty; Bizzarro, Joseph J; Strother, James A; Summers, Adam P

    2011-05-15

    We created physical models based on the morphology of ram suspension-feeding fishes to better understand the roles morphology and swimming speed play in particle retention, size selectivity and filtration efficiency during feeding events. We varied the buccal length, flow speed and architecture of the gills slits, including the number, size, orientation and pore size/permeability, in our models. Models were placed in a recirculating flow tank with slightly negatively buoyant plankton-like particles (~20-2000 μm) collected at the simulated esophagus and gill rakers to locate the highest density of particle accumulation. Particles were captured through sieve filtration, direct interception and inertial impaction. Changing the number of gill slits resulted in a change in the filtration mechanism of particles from a bimodal filter, with very small (≤ 50 μm) and very large (>1000 μm) particles collected, to a filter that captured medium-sized particles (101-1000 μm). The number of particles collected on the gill rakers increased with flow speed and skewed the size distribution towards smaller particles (51-500 μm). Small pore sizes (105 and 200 μm mesh size) had the highest filtration efficiencies, presumably because sieve filtration played a significant role. We used our model to make predictions about the filtering capacity and efficiency of neonatal whale sharks. These results suggest that the filtration mechanics of suspension feeding are closely linked to an animal's swimming speed and the structural design of the buccal cavity and gill slits.

  7. Stable isotope-based approach to validate effects of understory vegetation on shallow soil water movement in a Japanese cypress plantation

    NASA Astrophysics Data System (ADS)

    Sakashita, W.; Onda, Y.; Boutefnouchet, M. R.; Kato, H.; Gomi, T.

    2017-12-01

    Evapotranspiration is an important controlling factor of the hydrological cycle in forested watershed. In general, the evapotranspiration is partitioned into three components (evaporation, transpiration, and interception). In a Japanese cypress plantation, our previous work using hydrometric method revealed that total evapotranspiration rate was 47.5% of the total rainfall amount during the growing season. This research also provided the contribution rates of three evapotranspiration components. Our previous study reported the difference of forest floor evaporation between pre-thinning and post-thinning periods (pre-thinning: Nov 2010-Oct 2011; post-thinning: Nov 2011-Oct 2012), indicating that a significant change appeared in the evaporation flux after the thinning. To examine the long-term changes of evapotranspiration, we have to consider the influence of increased understory vegetation. However, hydrometric-based method using such as weighting lysimeter is sensitive to vegetation conditions inside and outside lysimeter. This disadvantage makes it difficult to evaluate the contribution rates of each evapotranspiration components. In this study, we focus on the isotope-based method to obtain each flux of evapotranspiration under the condition including understory vegetation. Our study site is Mt. Karasawa, Tochigi Prefecture, in central Japan (139°36'E, 36°22'N; 198 m a.s.l.), and we prepare both sparse and dense areas of understory vegetation. In these two plots, we collect soil water samples from shallow depth profiles after various intensity precipitation events. Throughfall and understory-intercepted water are also obtained. Stable water isotope measurements of these samples may provide information about (a) effects of understory vegetation on shallow soil water movement and (b) interception flux of understory vegetation. In this paper, we report the results and interpretations of our measurements.

  8. Is orthodontics prior to 11 years of age evidence-based? A systematic review and meta-analysis.

    PubMed

    Sunnak, R; Johal, A; Fleming, P S

    2015-05-01

    To determine whether interceptive orthodontics prior to the age of 11 years is more effective than later treatment in the short- and long-term. Multiple electronic databases were searched, authors were contacted as required and reference lists of included studies were screened. Randomised and quasi-randomised controlled trials were included, comparing children under the age of 11 years requiring interceptive orthodontic correction for a range of occlusal problems, to an untreated or positive control group. Data extraction and quality assessment were performed independently and in duplicate. Twenty-two studies were potentially eligible for meta-analysis, the majority related to growth modification. Other outcomes considered included correction of unilateral posterior crossbite, anterior openbite, extractions and ectopic maxillary canines. Meta-analysis was possible for 11 comparisons. For Class II correction in the short-term, meta-analyses demonstrated a statistically significant reduction in ANB (-1.4 degrees, 95 CI: -2.17, -0.64) and overjet (-5.81mm, 95 CI: -6.37, -5.25) with both functional appliances and headgear versus control. In the long-term, however, statistical significance was not found for the same outcomes. Treatment duration was prolonged with both functional appliances (6.85 months, 95 CI: 3.24, 10.45) and headgear (12.47 months, 95 CI: 8.67, 16.26) compared to adolescent treatments. Meta-analyses were not possible for comparisons of other interceptive treatments due to heterogeneity and methodological limitations. The results suggest a lack of evidence to prove that early treatment carries additional benefit over and above that achieved with treatment commencing later; however, this does not necessarily imply that early treatment is ineffective. Further high quality trials are required to assess the effectiveness of early treatment compared to later intervention. Interceptive orthodontics is variously recommended for a range of malocclusions both of skeletal and dental aetiology. The merits of interceptive treatment, however, are often disputed. Further high quality trials are required to assess the effectiveness of early treatment compared to later intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Barriers and dispersal surfaces in minimum-time interception. [for optimizing aircraft flight paths

    NASA Technical Reports Server (NTRS)

    Rajan, N.; Ardema, M. D.

    1984-01-01

    A method is proposed for mapping the barrier, dispersal, and control-level surfaces for a class of minimum-time interception and pursuit-evasion problems. Minimum-time interception of a target moving in a horizontal plane is formulated in a coordinate system whose origin is at the interceptor's terminal position and whose x-axis is along the terminal line of sight. This approach makes it possible to discuss the nature of the interceptor's extremals, using its extremal trajectory maps (ETMs), independently of target motion. The game surfaces are constructed by drawing sections of the isochrones, or constant minimum-time loci, from the interceptor and target ETMs. In this way, feedback solutions for the optimal controls are obtained. An example involving the interception of a target moving in a straight line at constant speed is presented.

  10. Novel Use of Time Domain Reflectometry in Infiltration-based Low Impact Development Practices

    EPA Science Inventory

    Low impact development (LID) practices are structures that intercept stormwater runoff and infiltrate it through a range of media types, including aggregate, rain garden media, and underlying soils. Hydrologic performance is typically evaluated by comparing inlet and underdrain o...

  11. When up is down in 0g: how gravity sensing affects the timing of interceptive actions.

    PubMed

    Senot, Patrice; Zago, Myrka; Le Séac'h, Anne; Zaoui, Mohammed; Berthoz, Alain; Lacquaniti, Francesco; McIntyre, Joseph

    2012-02-08

    Humans are known to regulate the timing of interceptive actions by modeling, in a simplified way, Newtonian mechanics. Specifically, when intercepting an approaching ball, humans trigger their movements a bit earlier when the target arrives from above than from below. This bias occurs regardless of the ball's true kinetics, and thus appears to reflect an a priori expectation that a downward moving object will accelerate. We postulate that gravito-inertial information is used to tune visuomotor responses to match the target's most likely acceleration. Here we used the peculiar conditions of parabolic flight--where gravity's effects change every 20 s--to test this hypothesis. We found a striking reversal in the timing of interceptive responses performed in weightlessness compared with trials performed on ground, indicating a role of gravity sensing in the tuning of this response. Parallels between these observations and the properties of otolith receptors suggest that vestibular signals themselves might plausibly provide the critical input. Thus, in addition to its acknowledged importance for postural control, gaze stabilization, and spatial navigation, we propose that detecting the direction of gravity's pull plays a role in coordinating quick reactions intended to intercept a fast-moving visual target.

  12. Traveler information services in rural tourism areas : appendix A, tourist intercept surveys

    DOT National Transportation Integrated Search

    2000-06-30

    This document presents documentation regarding tourist intercept surveys for traveler information services in rural areas. It documents data collection functions and information dissemination functions, and provides an interpretive description of tra...

  13. Optimal feedback strategies for pursuit-evasion and interception in a plane

    NASA Technical Reports Server (NTRS)

    Rajan, N.; Ardema, M. D.

    1983-01-01

    Variable-speed pursuit-evasion and interception for two aircraft moving in a horizontal plane are analyzed in terms of a coordinate frame fixed in the plane at termination. Each participant's optimal motion can be represented by extremal trajectory maps. These maps are used to discuss sub-optimal approximations that are independent of the other participant. A method of constructing sections of the barrier, dispersal, and control-level surfaces and thus determining feedback strategies is described. Some examples are shown for pursuit-evasion and the minimum-time interception of a straight-flying target.

  14. Proceedings of the Near-Earth-Object Interception Workshop

    NASA Technical Reports Server (NTRS)

    Canavan, G. J. (Editor); Solem, J. C. (Editor); Rather, John D. G. (Editor)

    1993-01-01

    The National Aeronautics and Space Administration Headquarters sponsored the Near-Earth-Object Interception Workshop hosted by the Los Alamos National Laboratory on 14-16 Jan. 1992 at the J. Robert Oppenheimer Study Center in Los Alamos, New Mexico. The Workshop evaluated the issues involved in intercepting celestial objects that could hit the Earth. It covered the technologies for acquiring, tracking, and homing, as well as those for sending interceptors to inspect, rendezvous with, land on, irradiate, deflect, or destroy them. This report records the presentations and technical options reviewed.

  15. Action specificity increases anticipatory performance and the expert advantage in natural interceptive tasks.

    PubMed

    Mann, David L; Abernethy, Bruce; Farrow, Damian

    2010-09-01

    The relationship between perception-action coupling and anticipatory skill in an interceptive task was examined using an in-situ temporal occlusion paradigm. Skilled and novice cricket batsmen were required to predict the direction of balls bowled towards them under four counterbalanced response conditions of increasing perception-action coupling: (i) verbal, (ii) lower-body movement only, (iii) full-body movement (no bat), and (iv) full-body movement with bat (i.e., the usual batting response). Skilled but not novice anticipation was found to improve as a function of coupling when responses were based on either no ball-flight, or early ball-flight information, with a response requiring even the lowest degree of body movement found to enhance anticipation when compared to a verbal prediction. Most importantly, a full-body movement using a bat elicited greater anticipation than an equivalent movement with no bat. This result highlights the important role that the requirement and/or opportunity to make bat-ball interception may play in eliciting skill differences for anticipation. Results verify the importance of using experimental conditions and task demands that closely reflect the natural performance environment in order to reveal the full nature of the expert advantage. 2010. Published by Elsevier B.V. All rights reserved.

  16. Evaluation of a Social Marketing Campaign to Increase Awareness of Immunizations for Urban Low-Income Children

    PubMed Central

    Ngui, Emmanuel M.; Hamilton, Chelsea; Nugent, Melodee; Simpson, Pippa; Willis, Earnestine

    2015-01-01

    Objective To assess community awareness of childhood immunizations and intent to immunize children after a social marketing immunization campaign. Methods We used 2 interviewer-assisted street-intercept surveys to evaluate awareness of childhood immunizations and intent to immunize low-income children. The “Take Control! Immunize” social marketing campaign was developed using a community-based participatory research approach and used billboards, flyers, and various “walking billboard” (eg, backpacks, pens) to deliver immunization messages in the community settings. Results Over 85% of community members recalled the “Take Control! Immunize” message. Almost half of those who saw the immunization message indicated that the message motivated them to act, including getting their children immunized or calling their physician to inquire about their children's immunizations status. All respondents indicated that immunizations were important for children and that they were likely or very likely to immunize their children. Respondents who reported that “Take Control!” messages motivated them to act in the first intercept survey were significantly more likely than those in the second intercept to report being likely or very likely to immunize their children. Conclusion Culturally appropriate social marketing immunization messages in targeted urban settings can increase parental awareness and behavioral intention to immunize children. PMID:25845130

  17. Reading and lexical-decision tasks generate different patterns of individual variability as a function of condition difficulty.

    PubMed

    Zoccolotti, Pierluigi; De Luca, Maria; Di Filippo, Gloria; Marinelli, Chiara Valeria; Spinelli, Donatella

    2018-06-01

    We reanalyzed previous experiments based on lexical-decision and reading-aloud tasks in children with dyslexia and control children and tested the prediction of the difference engine model (DEM) that mean condition reaction times (RTs) and standard deviations (SDs) would be linearly related (Myerson et al., 2003). Then we evaluated the slope and the intercept with the x-axis of these linear functions in comparison with previously reported values (i.e., slope of about 0.30 and intercept of about 300 ms). In the case of lexical decision, the parameters were close to these values; by contrast, in the case of reading aloud, a much steeper slope (0.66) and a greater intercept (482.6 ms) were found. Therefore, interindividual variability grows at a much faster rate as a function of condition difficulty for reading than for lexical-decision tasks (or for other tasks reported in the literature). According to the DEM, the slope of the regression that relates means and SDs indicates the degree of correlation among the durations of the stages of processing. We propose that the need for a close coupling between orthographic and phonological processing in reading is what drives the particularly strong relationship between performance and interindividual variability that we observed in reading tasks.

  18. Corruption, development and governance indicators predict invasive species risk from trade

    PubMed Central

    Brenton-Rule, Evan C.; Barbieri, Rafael F.; Lester, Philip J.

    2016-01-01

    Invasive species have an enormous global impact, with international trade being the leading pathway for their introduction. Current multinational trade deals under negotiation will dramatically change trading partnerships and pathways. These changes have considerable potential to influence biological invasions and global biodiversity. Using a database of 47 328 interceptions spanning 10 years, we demonstrate how development and governance socio-economic indicators of trading partners can predict exotic species interceptions. For import pathways associated with vegetable material, a significantly higher risk of exotic species interceptions was associated with countries that are poorly regulated, have more forest cover and have surprisingly low corruption. Corruption and indicators such as political stability or adherence to rule of law were important in vehicle or timber import pathways. These results will be of considerable value to policy makers, primarily by shifting quarantine procedures to focus on countries of high risk based on their socio-economic status. Further, using New Zealand as an example, we demonstrate how a ninefold reduction in incursions could be achieved if socio-economic indicators were used to select trade partners. International trade deals that ignore governance and development indicators may facilitate introductions and biodiversity loss. Development and governance within countries clearly have biodiversity implications beyond borders. PMID:27306055

  19. Corruption, development and governance indicators predict invasive species risk from trade.

    PubMed

    Brenton-Rule, Evan C; Barbieri, Rafael F; Lester, Philip J

    2016-06-15

    Invasive species have an enormous global impact, with international trade being the leading pathway for their introduction. Current multinational trade deals under negotiation will dramatically change trading partnerships and pathways. These changes have considerable potential to influence biological invasions and global biodiversity. Using a database of 47 328 interceptions spanning 10 years, we demonstrate how development and governance socio-economic indicators of trading partners can predict exotic species interceptions. For import pathways associated with vegetable material, a significantly higher risk of exotic species interceptions was associated with countries that are poorly regulated, have more forest cover and have surprisingly low corruption. Corruption and indicators such as political stability or adherence to rule of law were important in vehicle or timber import pathways. These results will be of considerable value to policy makers, primarily by shifting quarantine procedures to focus on countries of high risk based on their socio-economic status. Further, using New Zealand as an example, we demonstrate how a ninefold reduction in incursions could be achieved if socio-economic indicators were used to select trade partners. International trade deals that ignore governance and development indicators may facilitate introductions and biodiversity loss. Development and governance within countries clearly have biodiversity implications beyond borders. © 2016 The Author(s).

  20. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine.

    PubMed

    Chmura, Daniel J; Tjoelker, Mark G

    2008-05-01

    Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.

  1. Canopy architectural and physiological characterization of near-isogenic wheat lines differing in the tiller inhibition gene tin.

    PubMed

    Moeller, Carina; Evers, Jochem B; Rebetzke, Greg

    2014-01-01

    Tillering is a core constituent of plant architecture, and influences light interception to affect plant and crop performance. Near-isogenic lines (NILs) varying for a tiller inhibition (tin) gene and representing two genetic backgrounds were investigated for tillering dynamics, organ size distribution, leaf area, light interception, red: far-red ratio, and chlorophyll content. Tillering ceased earlier in the tin lines to reduce the frequencies of later primary and secondary tillers compared to the free-tillering NILs, and demonstrated the genetically lower tillering plasticity of tin-containing lines. The distribution of organ sizes along shoots varied between NILs contrasting for tin. Internode elongation commenced at a lower phytomer, and the peduncle was shorter in the tin lines. The flag leaves of tin lines were larger, and the longest leaf blades were observed at higher phytomers in the tin than in free-tillering lines. Total leaf area was reduced in tin lines, and non-tin lines invested more leaf area at mid-canopy height. The tiller economy (ratio of seed-bearing shoots to numbers of shoots produced) was 10% greater in the tin lines (0.73-0.76) compared to the free-tillering sisters (0.62-0.63). At maximum tiller number, the red: far-red ratio (light quality stimulus that is thought to induce the cessation of tillering) at the plant-base was 0.18-0.22 in tin lines and 0.09-0.11 in free-tillering lines at levels of photosynthetic active radiation of 49-53% and 30-33%, respectively. The tin lines intercepted less radiation compared to their free-tillering sisters once genotypic differences in tiller numbers had established, and maintained green leaf area in the lower canopy later into the season. Greater light extinction coefficients (k) in tin lines prior to, but reduced k after, spike emergence indicated that differences in light interception between NILs contrasting in tin cannot be explained by leaf area alone but that geometric and optical canopy properties contributed. The careful characterization of specifically-developed NILs is refining the development of a physiology-based model for tillering to improve understanding of the value of architectural traits for use in cereal improvement.

  2. Measurement and modelling of rainfall interception by tropical secondary forests in upland Eastern Madagascar

    NASA Astrophysics Data System (ADS)

    Prasad Ghimire, Chandra; van Meerveld, Ilja H. J.; Zwartendijk, Bob W.; Ravelona, Maafaka; Lahitiana, Jaona; Lubczynski, Maciek W.; Bruijnzeel, L. Adrian

    2016-04-01

    Secondary forests occupy a larger area than old-growth forest in many tropical regions but their hydrological functioning is still poorly understood. As part of a larger venture investigating the "trade-off" between the possibly strongly enhanced water use of vigorously regenerating secondary forest versus likely improved infiltration compared to degraded grassland (baseline situation) in Eastern Madagascar, this presentation reports on a comparison of measured and modelled canopy interception losses for a mature (ca. 20 years; basal area BA 35.5 m2 ha-1, LAI 3.39) and a young (5-7 years; BA 6.3 m2 ha-1, LAI 1.83) secondary forest. Measurements of gross rainfall (P), throughfall (TF) and stemflow (SF) were made in both forests over a one-year period (October 2014-September 2015). Interception losses (I) from the two forests were also simulated using the revised analytical model of Gash et al. (1995), representing a first for tropical secondary forest. Overall measured TF, SF and derived I in the mature secondary forest were 71.0%, 1.7% and 27.3% of incident P, respectively. Corresponding values for the young secondary forest were 75.8%, 6.2% and 18.0%. The high SF found for the latter forest reflects the strongly upward thrusting habit of the branches of the dominant species (Psiadia altissima) which favours funneling of incident P. The presently found I for the mature forest is similar to that reported for other tropical montane rainforests not affected by fog but that for the younger forest is higher than reported for similarly aged lowland forests. These findings can be explained by the prevailing low rainfall intensities and frequent occurrence of small rainfall events (~70% < 5 mm). The Gash model was able to reproduce measured cumulative I at both sites accurately and succeeded in capturing the variability in I associated with seasonal variability in rainfall characteristics, provided the TF-based value for wet-canopy evaporation rate was used instead of that based on the Penman-Monteith equation. Key words: Secondary tropical forest, Stemflow, Throughfall, Gash's analytical interception model

  3. Tephritid fruit fly Populations in a Dragonfruit Orchard in Hawaii: Border Plant Use and Infestation

    USDA-ARS?s Scientific Manuscript database

    Dragonfruit, Hylocereus undatus, has been grown commercially in Southeast Asia, Australia, South America, Israel and the United States. In Hawaii, commercial fruit production has recently begun, based on newly introduced varieties. Dragonfruit originating from Vietnam, but intercepted in Japan, ha...

  4. 40 CFR 53.34 - Test procedure for methods for PM10 and Class I methods for PM2.5.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... linear regression parameters (slope, intercept, and correlation coefficient) describing the relationship... correlation coefficient. (2) To pass the test for comparability, the slope, intercept, and correlation...

  5. Spectral estimates of solar radiation intercepted by corn canopies

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Daughtry, C. S. T.; Gallo, K. P.

    1982-01-01

    Reflectance factor data were acquired with a Landsat band radiometer throughout two growing seasons for corn (Zea mays L.) canopies differing in planting dates, populations, and soil types. Agronomic data collected included leaf area index (LAI), biomass, development stage, and final grain yields. The spectral variable, greenness, was associated with 78 percent of the variation in LAI over all treatments. Single observations of LAI or greenness have limited value in predicting corn yields. The proportions of solar radiation intercepted (SRI) by these canopies were estimated using either measured LAI or greenness. Both SRI estimates, when accumulated over the growing season, accounted for approximately 65 percent of the variation in yields. Models which simulated the daily effects of weather and intercepted solar radiation on growth had the highest correlations to grain yields. This concept of estimating intercepted solar radiation using spectral data represents a viable approach for merging spectral and meteorological data for crop yield models.

  6. Choriocapillaris Flow Features Follow a Power Law Distribution: Implications for Characterization and Mechanisms of Disease Progression.

    PubMed

    Spaide, Richard F

    2016-10-01

    To investigate flow characteristics of the choriocapillaris using optical coherence tomography angiography. Retrospective observational case series. Visualization of flow in individual choriocapillary vessels is below the current resolution limit of optical coherence tomography angiography instruments, but areas of absent flow signal, called flow voids, are resolvable. The central macula was imaged with the Optovue RTVue XR Avanti using a 10-μm slab thickness in 104 eyes of 80 patients who ranged in age from 24 to 99 years of age. Automatic local thresholding of the resultant raw data with the Phansalkar method was analyzed with generalized estimating equations. The distribution of flow voids vs size of the voids was highly skewed. The data showed a linear log-log plot and goodness-of-fit methods showed the data followed a power law distribution over the relevant range. A slope intercept relationship was also evaluated for the log transform and significant predictors for variables included age, hypertension, pseudodrusen, and the presence of late age-related macular degeneration (AMD) in the fellow eye. The pattern of flow voids forms a scale invariant pattern in the choriocapillaris starting at a size much smaller than a choroidal lobule. Age and hypertension affect the choriocapillaris, a flat layer of capillaries that may serve as an observable surrogate for the neural or systemic microvasculature. Significant alterations detectable in the flow pattern in eyes with pseudodrusen and in eyes with late AMD in the fellow eye offer diagnostic possibilities and impact theories of disease pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Risk of groundwater inrush in subterranean gypsum quarries: the case study of Moncalvo near Asti (North Italy)

    NASA Astrophysics Data System (ADS)

    Banzato, Cinzia; Fiorucci, Adriano; Gianotti, Alberto; de Waele, Jo; Vigna, Bartolomeo

    2010-05-01

    During the realisation of underground excavations in gypsum bedrock there is a possibility of intercepting large karst voids that can be completely filled with water under a considerable hydraulic pressure. The casual breaching of such voids can cause sudden and abundant water inrushes with consequences concerning safety of the excavation area and flooding of the tunnels. The presence of air-filled caves of great dimensions can also cause problems related to collapse of walls, ceilings and floors. In the subterranean quarry of Moncalvo d'Asti (Central Piedmont, Italy) in January 2005 an important inrush (60,000 m3 overnight) occurred causing damage to machinery and the flooding of several kilometres of underground tunnels. This inrush was caused by the breaching of a thin diaphragm of rock that separated the quarry from a large water-filled cave with water pressure of around 300 kPa along the front of the excavation. The rapid emptying of this void has caused a partial collapse of the roof of one of the largest cave chambers with the formation at the surface of a 20 metre wide sinkhole. To prevent similar phenomena to happen in the future a hydrogeological study concerning the entire gypsum mass was carried out. These investigations included monitoring of water levels intercepted by a series of boreholes, measurements of flow rates of water veins encountered by the excavations and chemical analysis of the different types of water coming from several points. This study has evidenced the presence of different drainage networks and the existence of a main karst circuit fed by diffused infiltration and recharge from the overlying marly-silty deposits and from adjacent minor less karstified systems in particularly fractured sectors of the gypsum. The waters coming from the main karst circuit are chemically very different from the waters deriving from deeper pathways. To be able to continue the excavation of gypsum in safe conditions the water levels were lowered for a couple of metres through the realisation of a series of boreholes located at lower elevations. These boreholes have intercepted the most conductive aquifer developed along a marly limestone level located at the base of the Messinian evaporite sequence. Some near-horizontal drill holes carried out along the front of the excavations have also been realised and have intercepted a second karst system with water under pressure (> 300 kPa), independent from the main one. A controlled drainage is now being carried out (30 l/s) to slowly lower the hydraulic head so to avoid future collapse of these new karst voids. Some geophysical surveys have also been carried out to discover other karst voids of great dimensions, but these did not give positive results. The performed investigations have shown the importance of hydrogeological studies and speleological surveys in understanding better the development of the karst systems and in the realisation of the excavation activities in conditions of safety, allowing to avoid expensive interruptions of the mining operations.

  8. Data Elevator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BYNA, SUNRENDRA; DONG, BIN; WU, KESHENG

    Data Elevator: Efficient Asynchronous Data Movement in Hierarchical Storage Systems Multi-layer storage subsystems, including SSD-based burst buffers and disk-based parallel file systems (PFS), are becoming part of HPC systems. However, software for this storage hierarchy is still in its infancy. Applications may have to explicitly move data among the storage layers. We propose Data Elevator for transparently and efficiently moving data between a burst buffer and a PFS. Users specify the final destination for their data, typically on PFS, Data Elevator intercepts the I/O calls, stages data on burst buffer, and then asynchronously transfers the data to their final destinationmore » in the background. This system allows extensive optimizations, such as overlapping read and write operations, choosing I/O modes, and aligning buffer boundaries. In tests with large-scale scientific applications, Data Elevator is as much as 4.2X faster than Cray DataWarp, the start-of-art software for burst buffer, and 4X faster than directly writing to PFS. The Data Elevator library uses HDF5's Virtual Object Layer (VOL) for intercepting parallel I/O calls that write data to PFS. The intercepted calls are redirected to the Data Elevator, which provides a handle to write the file in a faster and intermediate burst buffer system. Once the application finishes writing the data to the burst buffer, the Data Elevator job uses HDF5 to move the data to final destination in an asynchronous manner. Hence, using the Data Elevator library is currently useful for applications that call HDF5 for writing data files. Also, the Data Elevator depends on the HDF5 VOL functionality.« less

  9. Prospective versus predictive control in timing of hitting a falling ball.

    PubMed

    Katsumata, Hiromu; Russell, Daniel M

    2012-02-01

    Debate exists as to whether humans use prospective or predictive control to intercept an object falling under gravity (Baurès et al. in Vis Res 47:2982-2991, 2007; Zago et al. in Vis Res 48:1532-1538, 2008). Prospective control involves using continuous information to regulate action. τ, the ratio of the size of the gap to the rate of gap closure, has been proposed as the information used in guiding interceptive actions prospectively (Lee in Ecol Psychol 10:221-250, 1998). This form of control is expected to generate movement modulation, where variability decreases over the course of an action based upon more accurate timing information. In contrast, predictive control assumes that a pre-programmed movement is triggered at an appropriate criterion timing variable. For a falling object it is commonly argued that an internal model of gravitational acceleration is used to predict the motion of the object and determine movement initiation. This form of control predicts fixed duration movements initiated at consistent time-to-contact (TTC), either across conditions (constant criterion operational timing) or within conditions (variable criterion operational timing). The current study sought to test predictive and prospective control hypotheses by disrupting continuous visual information of a falling ball and examining consistency in movement initiation and duration, and evidence for movement modulation. Participants (n = 12) batted a ball dropped from three different heights (1, 1.3 and 1.5 m), under both full-vision and partial occlusion conditions. In the occlusion condition, only the initial ball drop and the final 200 ms of ball flight to the interception point could be observed. The initiation of the swing did not occur at a consistent TTC, τ, or any other timing variable across drop heights, in contrast with previous research. However, movement onset was not impacted by occluding the ball flight for 280-380 ms. This finding indicates that humans did not need to be continuously coupled to vision of the ball to initiate the swing accurately, but instead could use predictive control based on acceleration timing information (TTC2). However, other results provide evidence for movement modulation, a characteristic of prospective control. Strong correlations between movement initiation and duration and reduced timing variability from swing onset to arrival at the interception point, both support compensatory variability. An analysis of modulation within the swing revealed that early in the swing, the movement acceleration was strongly correlated to the required mean velocity at swing onset and that later in the swing, the movement acceleration was again strongly correlated with the current required mean velocity. Rather than a consistent movement initiated at the same time, these findings show that the swing was variable but modulated for meeting the demands of each trial. A prospective model of coupling τ (bat-ball) with τ (ball-target) was found to provide a very strong linear fit for an average of 69% of the movement duration. These findings provide evidence for predictive control based on TTC2 information in initiating the swing and prospective control based on τ in guiding the bat to intercept the ball.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    FUHRMANN,M.SULLIVAN,T.

    The objective of this report is to discuss the degree of sorption and desorption of {sup 137}Cs and {sup 60}Co that may be associated with the granite bedrock and the ''popcorn'' cement drain system that underlie the Maine Yankee Containment Foundation. The purpose is to estimate how much retardation of these two radionuclides takes place in groundwater that flows in the near-field of the Containment Foundation, specifically with respect to contamination originating at the PAB Test Pit. Specific concerns revolve around the potential for the contamination originating near the PAB to create a radioactive dose to a hypothetical ''resident farmer''more » using a well intercepting this water to exceed 4 millirems/yr.« less

  11. Comparison of statistical models to estimate parasite growth rate in the induced blood stage malaria model.

    PubMed

    Wockner, Leesa F; Hoffmann, Isabell; O'Rourke, Peter; McCarthy, James S; Marquart, Louise

    2017-08-25

    The efficacy of vaccines aimed at inhibiting the growth of malaria parasites in the blood can be assessed by comparing the growth rate of parasitaemia in the blood of subjects treated with a test vaccine compared to controls. In studies using induced blood stage malaria (IBSM), a type of controlled human malaria infection, parasite growth rate has been measured using models with the intercept on the y-axis fixed to the inoculum size. A set of statistical models was evaluated to determine an optimal methodology to estimate parasite growth rate in IBSM studies. Parasite growth rates were estimated using data from 40 subjects published in three IBSM studies. Data was fitted using 12 statistical models: log-linear, sine-wave with the period either fixed to 48 h or not fixed; these models were fitted with the intercept either fixed to the inoculum size or not fixed. All models were fitted by individual, and overall by study using a mixed effects model with a random effect for the individual. Log-linear models and sine-wave models, with the period fixed or not fixed, resulted in similar parasite growth rate estimates (within 0.05 log 10 parasites per mL/day). Average parasite growth rate estimates for models fitted by individual with the intercept fixed to the inoculum size were substantially lower by an average of 0.17 log 10 parasites per mL/day (range 0.06-0.24) compared with non-fixed intercept models. Variability of parasite growth rate estimates across the three studies analysed was substantially higher (3.5 times) for fixed-intercept models compared with non-fixed intercept models. The same tendency was observed in models fitted overall by study. Modelling data by individual or overall by study had minimal effect on parasite growth estimates. The analyses presented in this report confirm that fixing the intercept to the inoculum size influences parasite growth estimates. The most appropriate statistical model to estimate the growth rate of blood-stage parasites in IBSM studies appears to be a log-linear model fitted by individual and with the intercept estimated in the log-linear regression. Future studies should use this model to estimate parasite growth rates.

  12. Intraoperative centration during small incision lenticule extraction (SMILE)

    PubMed Central

    Wong, John X.; Wong, Elizabeth P.; Htoon, Hla M.; Mehta, Jodhbir S.

    2017-01-01

    Abstract To evaluate intraoperative decentration from pupil center and kappa intercept during small incision lenticule extraction (SMILE) and its impact on visual outcomes. This was a retrospective noncomparative case series. A total of 164 eyes that underwent SMILE at the Singapore National Eye Center were included. Screen captures of intraoperative videos were analyzed. Preoperative and 3 month postoperative vision and refractive data were analyzed against decentration. The mean preoperative spherical equivalent (SE) was −5.84 ± 1.77. The mean decentration from the pupil center and from kappa intercept were 0.13 ± 0.06 mm and 0.47mm ± 0.25 mm, respectively. For efficacy and predictability, 69.6% and 95.0% of eyes achieved a visual acuity (VA) of 20/20 and 20/30, respectively, while 83.8% and 97.2% of eyes were within ±0.5D and ±1.0D of the targeted SE. When analyzed across 3 groups of decentration from the pupil center (<0.1 mm, 0.1–0.2 mm, and >0.2 mm), there was no statistically significant association between decentration, safety, efficacy, and predictability. When analyzed across 4 groups of decentration from kappa intercept (<0.2 mm, 0.2–<0.4 mm, 0.4–<0.6 mm, and ≥0.6 mm), there was a trend toward higher efficacy for eyes with decentration of kappa intercept between 0.4 and <0.6 mm (P = .097). A total of 85.4% of eyes in the 0.4 to <0.6 mm group had unaided distance VA of 20/20 or better, as compared to only 57.8% of eyes in ≥0.6 mm group. Decentration of 0.13 mm from the pupil center does not result in compromised visual outcomes. Decentration of greater than 0.6 mm from the kappa intercept may result in compromised visual outcomes. There was a trend toward better efficacy in eyes which had decentered treatment from 0.4 to <0.6 mm from the kappa intercept. Patients with a large kappa intercept (>0.6 mm) should have their lenticule created 0.4 to 0.6 mm from the kappa intercept and not close to the pupil. PMID:28422822

  13. Transformations of snow chemistry in the boreal forest: Accumulation and volatilization

    USGS Publications Warehouse

    Pomeroy, J.W.; Davies, T.D.; Jones, H.G.; Marsh, P.; Peters, N.E.; Tranter, M.

    1999-01-01

    This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation and loss in boreal forest snow during the cold winter period at a northern and southern location in the boreal forest of western Canada. Field observations from Inuvik, Northwest Territories and Waskesiu, Saskatchewan, Canada were used to link chemical transformations and physical processes in boreal forest snow. Data on the disposition and overwinter transformation of snow water equivalent, NO3-, SO42- and other major ions were examined. No evidence of enhanced dry deposition of chemical species to intercepted snow was found at either site except where high atmospheric aerosol concentrations prevailed. At Inuvik, concentrations of SO42- and Cl- were five to six times higher in intercepted snow than in surface snow away from the trees. SO4-S and Cl loads at Inuvik were correspondingly enhanced three-fold within the nearest 0.5 m to individual tree stems. Measurements of snow affected by canopy interception without rapid sublimation provided no evidence of ion volatilization from intercepted snow. Where intercepted snow sublimation rates were significant, ion loads in sub-canopy snow suggested that NO3- volatized with an efficiency of about 62% per snow mass sublimated. Extrapolating this measurement from Waskesiu to sublimation losses observed in other southern boreal environments suggests that 19-25% of snow inputs of NO3- can be lost during intercepted snow sublimation. The amount of N lost during sublimation may be large in high-snowfall, high N load southern boreal forests (Quebec) where 0.42 kg NO3-N ha-1 is estimated as a possible seasonal NO3- volatilization. The sensitivity of the N fluxes to climate and forest canopy variation and implications of the winter N losses for N budgets in the boreal forest are discussed.This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation and loss in boreal forest snow during the cold winter period at a northern and southern location in the boreal forest of western Canada. Field observations from Inuvik. Northwest Territories and Waskesiu, Saskatchewan, Canada were used to link chemical transformations and physical processes in boreal forest snow. Data on the disposition and overwinter transformation of snow water equivalent, NO3-, SO42- and other major ions were examined. No evidence of enhanced dry deposition of chemical species to intercepted snow was found at either site except where high atmospheric aerosol concentrations prevailed. At Inuvik, concentrations of SO42- and Cl- were five to six times higher in intercepted snow than in surface snow away from the trees. SO4-S and Cl loads at Inuvik were correspondingly enhanced three-fold within the nearest 0.5 m to individual tree stems. Measurements of snow affected by canopy interception without rapid sublimation provided no evidence of ion volatilization from intercepted snow. Where intercepted snow sublimation rates were significant, ion loads in sub-canopy snow suggested that NO3- volatized with an efficiency of about 62% per snow mass sublimated. Extrapolating this measurement from Waskesiu to sublimation losses observed in other southern boreal environments suggests that 19-25% of snow inputs of NO3- can be lost during intercepted snow sublimation. The amount of N lost during sublimation may be large in high-snowfall, high N load southern boreal forests (Quebec) where 0.42 kg NO3-N ha-1 is estimated as a possible seasonal NO3- volatilization. The sensitivity of the N fluxes to climate and forest canopy variation and implications of the winter N losses for N budgets in the boreal forest are discussed.

  14. Proposed algorithm for determining the delta intercept of a thermocouple psychrometer curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzmack, M.A.

    1993-07-01

    The USGS Hydrologic Investigations Program is currently developing instrumentation to study the unsaturated zone at Yucca Mountain in Nevada. Surface-based boreholes up to 2,500 feet in depth will be drilled, and then instrumented in order to define the water potential field within the unsaturated zone. Thermocouple psychrometers will be used to monitor the in-situ water potential. An algorithm is proposed for simply and efficiently reducing a six wire thermocouple psychrometer voltage output curve to a single value, the delta intercept. The algorithm identifies a plateau region in the psychrometer curve and extrapolates a linear regression back to the initial startmore » of relaxation. When properly conditioned for the measurements being made, the algorithm results in reasonable results even with incomplete or noisy psychrometer curves over a 1 to 60 bar range.« less

  15. Visual perception and interception of falling objects: a review of evidence for an internal model of gravity.

    PubMed

    Zago, Myrka; Lacquaniti, Francesco

    2005-09-01

    Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. However, there are limitations in the visual system that raise questions about the general validity of these theories. Most notably, vision is poorly sensitive to arbitrary accelerations. How then does the brain deal with the motion of objects accelerated by Earth's gravity? Here we review evidence in favor of the view that the brain makes the best estimate about target motion based on visually measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from the expected kinetics in the Earth's gravitational field.

  16. PCE/TCE DEGRADATION USING MULCH BIOWALLS

    EPA Science Inventory

    A passive reactive barrier (Biowall) was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contamin...

  17. Bayesian Non-Stationary Flood Frequency Estimation at Ungauged Basins Using Climate Information and a Scaling Model

    NASA Astrophysics Data System (ADS)

    Lima, C. H.; Lall, U.

    2010-12-01

    Flood frequency statistical analysis most often relies on stationary assumptions, where distribution moments (e.g. mean, standard deviation) and associated flood quantiles do not change over time. In this sense, one expects that flood magnitudes and their frequency of occurrence will remain constant as observed in the historical information. However, evidence of inter-annual and decadal climate variability and anthropogenic change as well as an apparent increase in the number and magnitude of flood events across the globe have made the stationary assumption questionable. Here, we show how to estimate flood quantiles (e.g. 100-year flood) at ungauged basins without needing to consider stationarity. A statistical model based on the well known flow-area scaling law is proposed to estimate flood flows at ungauged basins. The slope and intercept scaling law coefficients are assumed time varying and a hierarchical Bayesian model is used to include climate information and reduce parameter uncertainties. Cross-validated results from 34 streamflow gauges located in a nested Basin in Brazil show that the proposed model is able to estimate flood quantiles at ungauged basins with remarkable skills compared with data based estimates using the full record. The model as developed in this work is also able to simulate sequences of flood flows considering global climate changes provided an appropriate climate index developed from the General Circulation Model is used as a predictor. The time varying flood frequency estimates can be used for pricing insurance models, and in a forecast mode for preparations for flooding, and finally, for timing infrastructure investments and location. Non-stationary 95% interval estimation for the 100-year Flood (shaded gray region) and 95% interval for the 100-year flood estimated from data (horizontal dashed and solid lines). The average distribution of the 100-year flood is shown in green in the right side.

  18. Final report for the Multiprotocol Label Switching (MPLS) control plane security LDRD project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torgerson, Mark Dolan; Michalski, John T.; Tarman, Thomas David

    2003-09-01

    As rapid Internet growth continues, global communications becomes more dependent on Internet availability for information transfer. Recently, the Internet Engineering Task Force (IETF) introduced a new protocol, Multiple Protocol Label Switching (MPLS), to provide high-performance data flows within the Internet. MPLS emulates two major aspects of the Asynchronous Transfer Mode (ATM) technology. First, each initial IP packet is 'routed' to its destination based on previously known delay and congestion avoidance mechanisms. This allows for effective distribution of network resources and reduces the probability of congestion. Second, after route selection each subsequent packet is assigned a label at each hop, whichmore » determines the output port for the packet to reach its final destination. These labels guide the forwarding of each packet at routing nodes more efficiently and with more control than traditional IP forwarding (based on complete address information in each packet) for high-performance data flows. Label assignment is critical in the prompt and accurate delivery of user data. However, the protocols for label distribution were not adequately secured. Thus, if an adversary compromises a node by intercepting and modifying, or more simply injecting false labels into the packet-forwarding engine, the propagation of improperly labeled data flows could create instability in the entire network. In addition, some Virtual Private Network (VPN) solutions take advantage of this 'virtual channel' configuration to eliminate the need for user data encryption to provide privacy. VPN's relying on MPLS require accurate label assignment to maintain user data protection. This research developed a working distributive trust model that demonstrated how to deploy confidentiality, authentication, and non-repudiation in the global network label switching control plane. Simulation models and laboratory testbed implementations that demonstrated this concept were developed, and results from this research were transferred to industry via standards in the Optical Internetworking Forum (OIF).« less

  19. The pattern of the discovery of medication errors in a tertiary hospital in Hong Kong.

    PubMed

    Samaranayake, N R; Cheung, S T D; Chui, W C M; Cheung, B M Y

    2013-06-01

    The primary goal of reducing medication errors is to eliminate those that reach the patient. We aimed to study the pattern of interceptions to tackle medication errors along the medication use processes. Tertiary care hospital in Hong Kong. The 'Swiss Cheese Model' was used to explain the interceptions targeting medication error reporting over 5 years (2006-2010). Proportions of prescribing, dispensing and drug administration errors intercepted by pharmacists and nurses; proportions of prescribing, dispensing and drug administration errors that reached the patient. Our analysis included 1,268 in-patient medication errors, of which 53.4% were related to prescribing, 29.0% to administration and 17.6% to dispensing. 34.1% of all medication errors (4.9% prescribing, 26.8% drug administration and 2.4% dispensing) were not intercepted. Pharmacy staff intercepted 85.4% of the prescribing errors. Nurses detected 83.0% of dispensing and 5.0% of prescribing errors. However, 92.4% of all drug administration errors reached the patient. Having a preventive measure at each stage of the medication use process helps to prevent most errors. Most drug administration errors reach the patient as there is no defense against these. Therefore, more interventions to prevent drug administration errors are warranted.

  20. A new terminal guidance sensor system for asteroid intercept or rendezvous missions

    NASA Astrophysics Data System (ADS)

    Lyzhoft, Joshua; Basart, John; Wie, Bong

    2016-02-01

    This paper presents the initial conceptual study results of a new terminal guidance sensor system for asteroid intercept or rendezvous missions, which explores the use of visual, infrared, and radar devices. As was demonstrated by NASA's Deep Impact mission, visual cameras can be effectively utilized for hypervelocity intercept terminal guidance for a 5 kilometer target. Other systems such as Raytheon's EKV (Exoatmospheric Kill Vehicle) employ a different scheme that utilizes infrared target information to intercept ballistic missiles. Another example that uses infrared information is the NEOWISE telescope, which is used for asteroid detection and tracking. This paper describes the signal-to-noise ratio estimation problem for infrared sensors, minimum and maximum range of detection, and computational validation using GPU accelerated simulations. Small targets (50-100 m in diameter) are considered, and scaled polyhedron models of known objects, such as the Rosetta mission's Comet 67P/Churyumov-Gerasimenko, 101,955 Bennu, target of the OSIRIS-REx mission, and asteroid 433 Eros, are utilized. A parallelized ray tracing algorithm to simulate realistic surface-to-surface shadowing of a given celestial body is developed. By using the simulated models and parameters given from the formulation of the different sensors, impact mission scenarios are used to verify the feasibility for intercepting a small target.

  1. Interception of nutrient rich submarine groundwater discharge seepage on European temperate beaches by the acoel flatworm, Symsagittifera roscoffensis.

    PubMed

    Carvalho, Liliana F; Rocha, Carlos; Fleming, Alexandra; Veiga-Pires, Cristina; Aníbal, Jaime

    2013-10-15

    Submarine groundwater discharge (SGD) occurs in intertidal areas, representing a largely unquantified source of solute fluxes to adjacent coastal zones, with nitrogen being constantly the keynote chemical of concern. In Olhos de Água SGD is present as groundwater springs or merely sub-aerial runoff. The occurrence of the flatworm Symsagittifera roscoffensis is described for the first time in Olhos de Água in connection to seepage flows. To assess the impact of this symbiotic flatworm on the nitrogen associated to groundwater discharge flow at the beach, nitrate uptake experiments were conducted in laboratory microcosms. Our results show that S. roscoffensis actively uptakes nitrate at different rates depending on light availability, with rates ≈ 10 times higher than that of its symbiotic microalgae alone. This supports the hypothesis that S. roscoffensis could be an important in situ nitrate interceptor, potentially playing a biological role on the transformation of groundwater-borne nitrate loads at the land-ocean boundary. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A study on crown interception with four dominant tree species: a direct measurement

    Treesearch

    Xiang Li; Jianzhi Niu; Linus Zhang; Qingfu Xiao; Gregory E. McPherson; Natalie van Doorn; Xinxiao Yu; Baoyuan Xie; Salli Dymond; Jiao Li; Chen Meng; Ziteng Luo

    2016-01-01

    An experiment was conducted to concentrate on the rainfall interception process of individual trees for four common species in Beijing, China, which included needle species (Platycladus orientalis and Pinus tabulaeformis) and broadleaf species (Quercus variabilis and Acer truncatum)....

  3. The dynamics of rainfall interception by a seasonal temperate rainforest.

    Treesearch

    Timothy E. Link; Mike Unsworth; Danny Marks

    2004-01-01

    Net canopy interception (Inet) during rainfall in an old-growth Douglas-fir-western hemlock ecosystem was 22.8 and 25.0% of the gross rainfall (PG) for 1999 and 2000, respectively. The average direct throughfall proportion (p) and canopy storage capacity (

  4. How Funding Instability Affects Army Programs

    DTIC Science & Technology

    2007-01-01

    rocket motor, aerodynamic vane controls, and inertial guidance to navigate to an intercept point. Shortly before arrival at the intercept point, the...responsiveness. Significant features of the C-17 include: super-critical wing design and winglets to reduce drag and increase fuel efficiency and

  5. Coronary microvascular dysfunction after myocardial infarction: increased coronary zero flow pressure both in the infarcted and in the remote myocardium is mainly related to left ventricular filling pressure.

    PubMed

    Van Herck, P L; Carlier, S G; Claeys, M J; Haine, S E; Gorissen, P; Miljoen, H; Bosmans, J M; Vrints, C J

    2007-10-01

    To investigate the underlying mechanisms of a decreased coronary flow reserve after myocardial infarction (MI) by analysing the characteristics of the diastolic hyperaemic coronary pressure-flow relationship. Prospective study. Tertiary care hospital. 68 patients with a recent MI and 27 patients with stable angina pectoris (AP; control group). The intercept with the pressure axis (the zero flow pressure or Pzf) and slope index of the pressure-flow relationship (SIPF) were calculated from the simultaneously recorded hyperaemic intracoronary blood flow velocity and aortic pressure after successful coronary stenting. A stepwise increase in Pzf from AP (14.6 (8.0) mm Hg), over non-Q-wave MI (22.5 (9.1) mm Hg), to Q-wave MI (37.1 (12.9) mm Hg; p<0.001) was observed. Similar changes in Pzf were found in a reference artery perfusing the non-infarcted myocardium. Multivariate analysis showed that in both regions the left ventricular end-diastolic pressure (LVEDP) was the most important determinant of the Pzf. The SIPF was not statistically different in the treated vessel between patients with MI and AP, but was increased in MI patients with a markedly increased LVEDP. After an MI, the coronary pressure-flow relationship is shifted to the right both in the infarcted and in the non-infarcted remote myocardium, as shown by the increased Pzf. The correlation with Pzf suggests that elevated left ventricular filling pressures contribute to the impediment of myocardial perfusion in patients with infarction.

  6. Effects of forest structure on hydrological processes in China

    NASA Astrophysics Data System (ADS)

    Sun, Jiamei; Yu, Xinxiao; Wang, Henian; Jia, Guodong; Zhao, Yang; Tu, Zhihua; Deng, Wenping; Jia, Jianbo; Chen, Jungang

    2018-06-01

    There are serious concerns between forest and water quantity, Chinese extensive land area makes the relationship more complicated, thus, the effects of forest structure on hydrological processes in China were not fully comprehended. In this research, forest's hydrological functions, including rainfall partitioning, litter interception, evapotranspiration (ET), were analyzed in China. The results showed that throughfall was the largest proportion of gross precipitation with fraction between 69.3 ± 8.8% and 84.4 ± 5.6%. Then was canopy interception which varied from 14.6 ± 1.4% to 29.1 ± 3.3%. Throughfall was correlated with gross precipitation, canopy thickness and canopy density. Canopy interception was correlated with gross precipitation, LAI, canopy density, biomass, mixed degree, uniform angle index, aggregation index. Stemflow accounted for only 1.2 ± 0.32% of gross precipitation, with the greatest fraction of 2.1 ± 0.2% in XBH site and the least fraction of 0.3 ± 0.1% in DB site. Gross precipitation was the main factor in determining stemflow. DB site had the greatest litter interception (7.7 ± 0.8 mm) and HB site had the least (0.9 ± 0.3 mm). Litter interception had closer correlation with undecomposed litter mass (0.66) than total litter mass (0.46). Path-coefficient analysis showed that stand density, Shannon-Wiener index, litter mass, size ratio had greater impact on litter interception than other factors. ET was mainly influenced by precipitation, and it also correlated with LAI, canopy density and biomass. In north China, ET percentage (the ratio of ET and precipitation) was 82.7-109.5%, while it decreased to 63.1-88.5% in south China, ET demand in XBS site was larger than precipitation. ET percentage increased with increasing latitude and elevation, decreased with increasing temperature.

  7. Corner store purchases made by adults, adolescents and children: items, nutritional characteristics and amount spent.

    PubMed

    Lent, Michelle R; Vander Veur, Stephanie; Mallya, Giridhar; McCoy, Tara A; Sanders, Timothy A; Colby, Lisa; Rauchut Tewksbury, Colleen; Lawman, Hannah G; Sandoval, Brianna; Sherman, Sandy; Wylie-Rosett, Judith; Foster, Gary D

    2015-06-01

    Corner stores, also known as bodegas, are prevalent in low-income urban areas and primarily stock high-energy foods and beverages. Little is known about individual-level purchases in these locations. The purpose of the present study was to assess corner store purchases (items, nutritional characteristics and amount spent) made by children, adolescents and adults in a low-income urban environment. Evaluation staff used 9238 intercept surveys to directly examine food and beverage purchases. Intercepts were collected at 192 corner stores in Philadelphia, PA, USA. Participants were adult, adolescent and child corner store shoppers. Among the 9238 intercept surveys, there were 20 244 items. On average, at each corner store visit, consumers purchased 2.2 (sd 2.1) items (1.3 (sd 2.0) foods and 0.9 (sd 0.9) beverages) that cost $US 2.74 (sd $US 3.52) and contained 2786.5 (sd 4454.2) kJ (666.0 (sd 1064.6) kcal). Whether the data were examined as a percentage of total items purchased or as a percentage of intercepts, the most common corner store purchases were beverages, chips, prepared food items, pastries and candy. Beverage purchases occurred during 65.9% of intercepts and accounted for 39.2% of all items. Regular soda was the most popular beverage purchase. Corner store purchases averaged 66.2 g of sugar, 921.1 mg of sodium and 2.5 g of fibre per intercept. Compared with children and adolescents, adults spent the most money and purchased the most energy. Urban corner store shoppers spent almost $US 3.00 for over 2700 kJ (650 kcal) per store visit. Obesity prevention efforts may benefit from including interventions aimed at changing corner store food environments in low-income, urban areas.

  8. Effects of spatial configuration of imperviousness and green infrastructure networks on hydrologic response in a residential sewershed

    NASA Astrophysics Data System (ADS)

    Lim, Theodore C.; Welty, Claire

    2017-09-01

    Green infrastructure (GI) is an approach to stormwater management that promotes natural processes of infiltration and evapotranspiration, reducing surface runoff to conventional stormwater drainage infrastructure. As more urban areas incorporate GI into their stormwater management plans, greater understanding is needed on the effects of spatial configuration of GI networks on hydrological performance, especially in the context of potential subsurface and lateral interactions between distributed facilities. In this research, we apply a three-dimensional, coupled surface-subsurface, land-atmosphere model, ParFlow.CLM, to a residential urban sewershed in Washington DC that was retrofitted with a network of GI installations between 2009 and 2015. The model was used to test nine additional GI and imperviousness spatial network configurations for the site and was compared with monitored pipe-flow data. Results from the simulations show that GI located in higher flow-accumulation areas of the site intercepted more surface runoff, even during wetter and multiday events. However, a comparison of the differences between scenarios and levels of variation and noise in monitored data suggests that the differences would only be detectable between the most and least optimal GI/imperviousness configurations.

  9. Efficiency of source control systems for reducing runoff pollutant loads: feedback on experimental catchments within Paris conurbation.

    PubMed

    Bressy, Adèle; Gromaire, Marie-Christine; Lorgeoux, Catherine; Saad, Mohamed; Leroy, Florent; Chebbo, Ghassan

    2014-06-15

    Three catchments, equipped with sustainable urban drainage systems (SUDS: vegetated roof, underground pipeline or tank, swale, grassed detention pond) for peak flow mitigation, have been compared to a reference catchment drained by a conventional separate sewer system in terms of hydraulic behaviour and discharged contaminant fluxes (organic matter, organic micropollutants, metals). A runoff and contaminant emission model has been developed in order to overcome land use differences. It has been demonstrated that the presence of peak flow control systems induces flow attenuation even for frequent rain events and reduces water discharges at a rate of about 50% depending on the site characteristics. This research has also demonstrated that this type of SUDS contributes to a significant reduction of runoff pollutant discharges, by 20%-80%. This level of reduction varies depending on the considered contaminant and on the design of the drainage system but is mostly correlated with the decrease in runoff volume. It could be improved if the design of these SUDS focused not only on the control of exceptional events but also targeted more explicitly the interception of frequent rain events. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Geohydrologic Framework of the Edwards and Trinity Aquifers, South-Central Texas

    USGS Publications Warehouse

    Blome, Charles D.; Faith, Jason R.; Ozuna, George B.

    2007-01-01

    This five-year USGS project, funded by the National Cooperative Geologic Mapping Program, is using multidisciplinary approaches to reveal the surface and subsurface geologic architecture of two important Texas aquifers: (1) the Edwards aquifer that extends from south of Austin to west of San Antonio and (2) the southern part of the Trinity aquifer in the Texas Hill Country west and south of Austin. The project's principal areas of research include: Geologic Mapping, Geophysical Surveys, Geochronology, Three-dimensional Modeling, and Noble Gas Geochemistry. The Edwards aquifer is one of the most productive carbonate aquifers in the United States. It also has been designated a sole source aquifer by the U.S. Environmental Protection Agency and is the primary source of water for San Antonio, America's eighth largest city. The Trinity aquifer forms the catchment area for the Edwards aquifer and it intercepts some surface flow above the Edwards recharge zone. The Trinity may also contribute to the Edwards water budget by subsurface flow across formation boundaries at considerable depths. Dissolution, karst development, and faulting and fracturing in both aquifers directly control aquifer geometry by compartmentalizing the aquifer and creating unique ground-water flow paths.

  11. Hydrogeologic controls on the groundwater interactions with an acidic lake in karst terrain, Lake Barco, Florida

    USGS Publications Warehouse

    Lee, T.M.

    1996-01-01

    Transient groundwater interactions and lake stage were simulated for Lake Barco, an acidic seepage lake in the mantled karst of north central Florida. Karst subsidence features affected groundwater flow patterns in the basin and groundwater fluxes to and from the lake. Subsidence features peripheral to the lake intercepted potential groundwater inflow and increased leakage from the shallow perimeter of the lake bed. Simulated groundwater fluxes were checked against net groundwater flow derived from a detailed lake hydrologic budget with short-term lake evaporation computed by the energy budget method. Discrepancies between modeled and budget-derived net groundwater flows indicated that the model underestimated groundwater inflow, possibly contributed to by transient water table mounding near the lake. Recharge from rainfall reduced lake leakage by 10 to 15 times more than it increased groundwater inflow. As a result of the karst setting, the contributing groundwater basin to the lake was 2.4 ha for simulated average rainfall conditions, compared to the topographically derived drainage basin area of 81 ha. Short groundwater inflow path lines and rapid travel times limit the contribution of acid-neutralizing solutes from the basin, making Lake Barco susceptible to increased acidification by acid rain.

  12. Modeling the distributed effects of forest thinning on the long-term water balance and stream flow extremes for a semi-arid basin in the southwestern US

    NASA Astrophysics Data System (ADS)

    Moreno, H. A.; Gupta, H. V.; White, D. D.; Sampson, D. A.

    2015-10-01

    To achieve water resources sustainability in the water-limited Southwestern US, it is critical to understand the potential effects of proposed forest thinning on the hydrology of semi-arid basins, where disturbances to headwater catchments can cause significant changes in the local water balance components and basin-wise stream flows. In Arizona, the Four Forest Restoration Initiative (4FRI) is being developed with the goal of restoring 2.4 million acres of ponderosa pine along the Mogollon Rim. Using the physically based, spatially distributed tRIBS model, we examine the potential impacts of the 4FRI on the hydrology of Tonto Creek, a basin in the Verde-Tonto-Salt (VTS) system, which provides much of the water supply for the Phoenix Metropolitan Area. Long-term (20 year) simulations indicate that forest removal can trigger significant shifts in the spatio-temporal patterns of various hydrological components, causing increases in net radiation, surface temperature, wind speed, soil evaporation, groundwater recharge, and runoff, at the expense of reductions in interception and shading, transpiration, vadose zone moisture and snow water equivalent, with south facing slopes being more susceptible to enhanced atmospheric losses. The net effect will likely be increases in mean and maximum stream flow, particularly during El Niño events and the winter months, and chiefly for those scenarios in which soil hydraulic conductivity has been significantly reduced due to thinning operations. In this particular climate, forest thinning can lead to net loss of surface water storage by vegetation and snow pack, increasing the vulnerability of ecosystems and populations to larger and more frequent hydrologic extreme conditions on these semi-arid systems.

  13. A review of model applications for structured soils: b) Pesticide transport.

    PubMed

    Köhne, John Maximilian; Köhne, Sigrid; Simůnek, Jirka

    2009-02-16

    The past decade has seen considerable progress in the development of models simulating pesticide transport in structured soils subject to preferential flow (PF). Most PF pesticide transport models are based on the two-region concept and usually assume one (vertical) dimensional flow and transport. Stochastic parameter sets are sometimes used to account for the effects of spatial variability at the field scale. In the past decade, PF pesticide models were also coupled with Geographical Information Systems (GIS) and groundwater flow models for application at the catchment and larger regional scales. A review of PF pesticide model applications reveals that the principal difficulty of their application is still the appropriate parameterization of PF and pesticide processes. Experimental solution strategies involve improving measurement techniques and experimental designs. Model strategies aim at enhancing process descriptions, studying parameter sensitivity, uncertainty, inverse parameter identification, model calibration, and effects of spatial variability, as well as generating model emulators and databases. Model comparison studies demonstrated that, after calibration, PF pesticide models clearly outperform chromatographic models for structured soils. Considering nonlinear and kinetic sorption reactions further enhanced the pesticide transport description. However, inverse techniques combined with typically available experimental data are often limited in their ability to simultaneously identify parameters for describing PF, sorption, degradation and other processes. On the other hand, the predictive capacity of uncalibrated PF pesticide models currently allows at best an approximate (order-of-magnitude) estimation of concentrations. Moreover, models should target the entire soil-plant-atmosphere system, including often neglected above-ground processes such as pesticide volatilization, interception, sorption to plant residues, root uptake, and losses by runoff. The conclusions compile progress, problems, and future research choices for modelling pesticide displacement in structured soils.

  14. Department of Defense high power laser program guidance

    NASA Astrophysics Data System (ADS)

    Muller, Clifford H.

    1994-06-01

    The DoD investment of nominally $200 million per year is focused on four high power laser (HPL) concepts: Space-Based Laser (SBL), a Ballistic Missile Defense Organization effort that addresses boost-phase intercept for Theater Missile Defense and National Missile Defense; Airborne Laser (ABL), an Air Force effort that addresses boost-phase intercept for Theater Missile Defense; Ground-Based Laser (GBL), an Air Force effort addressing space control; and Anti-Ship Missile Defense (ASMD), a Navy effort addressing ship-based defense. Each organization is also supporting technology development with the goal of achieving less expensive, brighter, and lighter high power laser systems. These activities represent the building blocks of the DoD program to exploit the compelling characteristics of the high power laser. Even though DoD's HPL program are focused and moderately strong, additional emphasis in a few technical areas could help reduce risk in these programs. In addition, a number of options are available for continuing to use the High-Energy Laser System Test Facility (HELSTF) at White Sands Missile Range. This report provides a brief overview and guidance for the five efforts which comprise the DoD HPL program (SBL, ABL, GBL, ASMD, HELSTF).

  15. 17 CFR 200.113 - Opportunity to respond; interception.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false Opportunity to respond; interception. 200.113 Section 200.113 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION ORGANIZATION; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Code of Behavior Governing Ex Parte...

  16. 17 CFR 200.113 - Opportunity to respond; interception.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Opportunity to respond; interception. 200.113 Section 200.113 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION ORGANIZATION; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Code of Behavior Governing Ex Parte...

  17. 17 CFR 200.113 - Opportunity to respond; interception.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Opportunity to respond; interception. 200.113 Section 200.113 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION ORGANIZATION; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Code of Behavior Governing Ex Parte...

  18. 17 CFR 200.113 - Opportunity to respond; interception.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 3 2014-04-01 2014-04-01 false Opportunity to respond; interception. 200.113 Section 200.113 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION ORGANIZATION; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Code of Behavior Governing Ex Parte...

  19. 17 CFR 200.113 - Opportunity to respond; interception.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Opportunity to respond; interception. 200.113 Section 200.113 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION ORGANIZATION; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Code of Behavior Governing Ex Parte...

  20. Motion patterns and phase-transition of a defender-intruder problem and optimal interception strategy of the defender

    NASA Astrophysics Data System (ADS)

    Wang, Jiangliu; Li, Wei

    2015-10-01

    In this paper, we consider a defense-intrusion interaction, in which an intruder is attracted by a protected stationary target but repulsed by a defender; while the defender tries to move towards an appropriate interception position (IP) between the intruder and the target in order to intercept the intruder and expel the intruder away from the target as maximum as possible. Intuitionally, to keep the intruder further away, one may wonder that: is it a better strategy for the defender trying to approach the intruder as near as possible? Unexpectedly and interestingly enough, this is not always the case. We first introduce the flexibility for IP selection, then investigate the system dynamics and the stable motion patterns, and characterize the phase-transition surface for the motion patterns. We show that, the phase-transition surface just defines the optimal interception strategy of the defender for IP selection; and from the perspective of mobility of agents, the optimal strategy just depends on relative mobility of the two agents.

  1. Composition-dependence of stacking fault energy in austenitic stainless steels through linear regression with random intercepts

    NASA Astrophysics Data System (ADS)

    Meric de Bellefon, G.; van Duysen, J. C.; Sridharan, K.

    2017-08-01

    The stacking fault energy (SFE) plays an important role in deformation behavior and radiation damage of FCC metals and alloys such as austenitic stainless steels. In the present communication, existing expressions to calculate SFE in those steels from chemical composition are reviewed and an improved multivariate linear regression with random intercepts is used to analyze a new database of 144 SFE measurements collected from 30 literature references. It is shown that the use of random intercepts can account for experimental biases in these literature references. A new expression to predict SFE from austenitic stainless steel compositions is proposed.

  2. Ni-Catalyzed Regioselective 1,2-Dicarbofunctionalization of Olefins by Intercepting Heck Intermediates as Imine-Stabilized Transient Metallacycles

    DOE PAGES

    Shrestha, Bijay; Basnet, Prakash; Dhungana, Roshan K.; ...

    2017-07-24

    We disclose a strategy for Ni-catalyzed regioselective dicarbofunctionalization of olefins in styrene derivatives by intercepting Heck C(sp 3)-NiX intermediates with arylzinc reagents. This approach utilizes a readily removable imine as a coordinating group that plays a dual role of intercepting oxidative addition species derived from aryl halides and triflates to promote Heck carbometallation, and stabilizing the Heck C(sp 3)-NiX intermediates as transient metallacycles to suppress β-hydride elimination and facilitate transmetalation/reductive elimination steps. This method affords diversely-substituted 1,1,2-riarylethyl products that occur as structural motifs in various natural products.

  3. Influence of septic systems on stream base flow in the Apalachicola-Chattahoochee-Flint River Basin near Metropolitan Atlanta, Georgia, 2012

    USGS Publications Warehouse

    Clarke, John S.; Painter, Jaime A.

    2014-01-01

    Septic systems were identified at 241,733 locations in a 2,539-square-mile (mi2) study area that includes all or parts of 12 counties in the Metropolitan Atlanta, Georgia, area. Septic system percolation may locally be an important component of streamflow in small drainage basins where it augments natural groundwater recharge, especially during extreme low-flow conditions. The amount of groundwater reaching streams depends on how much is intercepted by plants or infiltrates to deeper parts of the groundwater system that flows beyond a basin divide and does not discharge into streams within a basin. The potential maximum percolation from septic systems in the study area is 62 cubic feet per second (ft3/s), of which 52 ft3/s is in the Chattahoochee River Basin and 10 ft3/s is in the Flint River Basin. These maximum percolation rates represent 0.4 to 5.7 percent of daily mean streamflow during the 2011–12 period at the farthest downstream gaging site (station 02338000) on the Chattahoochee River, and 0.5 to 179 percent of daily mean streamflow at the farthest downstream gaging site on the Flint River (02344350). To determine the difference in base flow between basins having different septic system densities, hydrograph separation analysis was completed using daily mean streamflow data at streamgaging stations at Level Creek (site 02334578), with a drainage basin having relatively high septic system density of 101 systems per square mile, and Woodall Creek (site 02336313), with a drainage basin having relatively low septic system density of 18 systems per square mile. Results indicated that base-flow yield during 2011–12 was higher at the Level Creek site, with a median of 0.47 cubic feet per second per square mile ([ft3/s]/mi2), compared to a median of 0.16 (ft3/s)/mi2, at the Woodall Creek site. At the less urbanized Level Creek site, there are 515 septic systems with a daily maximum percolation rate of 0.14 ft3/s, accounting for 11 percent of the base flow in September 2012. At the more urban Woodall Creek site, there are 50 septic systems with an average daily maximum percolation rate of 0.0097 ft3/s, accounting for 5 percent of base flow in September 2012. Streamflow measurements at 133 small drainage basins (less than 5 mi2 in area) during September 2012 indicated no statistically significant difference in streamflow or specific conductance between basins having high and low density of septic systems (HDS and LDS, respectively). The median base-flow yield was 0.04 (f3/s)/mi2 for HDS sites, ranging from 0 to 0.52 (ft3/s)/mi2, and 0.10 (ft3/s)/mi2 for LDS sites, ranging from 0 to 0.49 (ft3/s)/mi2. A Wilcoxon rank-sum test indicated the median base-flow yields for HDS and LDS sites were not statistically different, with a p-value of 0.345. Because of the large size of the study area and associated variations in basin characteristics, data collected in September 2012 were also evaluated on the basis of the basins physical characteristics in an attempt to reduce or eliminate other basin characteristics that might affect base flow. Basins were evaluated based on geologic area, four geographic subareas, and 45-meter (147.6 ft) buffer zone; there were no statistically significant differences between median base-flow yield for HDS and LDS basins. It is probable that detection of the contribution from septic system percolation in base flow at many of the sites visited in September 2012 was obscured by a combination of the limitations of measurement accuracy and evapotranspiration. Detection of septic system percolation may also have been complicated by leaky water and sewer mains, which may have resulted in higher streamflows in LDS basins relative to HDS basins.

  4. Differential Susceptibility and the Early Development of Aggression: Interactive Effects of Respiratory Sinus Arrhythmia and Environmental Quality

    PubMed Central

    Eisenberg, Nancy; Sulik, Michael J.; Spinrad, Tracy L.; Edwards, Alison; Eggum, Natalie D.; Liew, Jeffrey; Sallquist, Julie; Popp, Tierney K.; Smith, Cynthia L.; Hart, Daniel

    2012-01-01

    The purpose of the current study was to predict the development of aggressive behavior from young children’s respiratory sinus arrhythmia (RSA) and environmental quality. In a longitudinal sample of 213 children, baseline RSA, RSA suppression in response to a film of crying babies, and a composite measure of environmental quality (incorporating socioeconomic status and marital adjustment) were measured, and parent-reported aggression was assessed from 18 to 54 months of age. Predictions based on biological sensitivity-to-context/differential susceptibility and diathesis-stress models, as well as potential moderation by child sex, were examined. The interaction of baseline RSA with environmental quality predicted the development (slope) and 54-month intercept of mothers’ reports of aggression. For girls only, the interaction between baseline RSA and environmental quality predicted the 18-month intercept of fathers’ reports. In general, significant negative relations between RSA and aggression were found primarily at high levels of environmental quality. In addition, we found a significant Sex × RSA interaction predicting the slope and 54-month intercept of fathers’ reports of aggression, such that RSA was negatively related to aggression for boys but not for girls. Contrary to predictions, no significant main effects or interactions were found for RSA suppression. The results provide mixed but not full support for differential susceptibility theory and provide little support for the diathesis-stress model. PMID:22182294

  5. RATE OF TCE DEGRADATION IN A PLANT MULCH PASSIVE REACTIVE BARRIER (BIOWALL)

    EPA Science Inventory

    A passive reactive barrier was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contaminated groun...

  6. Fuel Load (FL)

    Treesearch

    Duncan C. Lutes; Robert E. Keane

    2006-01-01

    The Fuel Load method (FL) is used to sample dead and down woody debris, determine depth of the duff/ litter profile, estimate the proportion of litter in the profile, and estimate total vegetative cover and dead vegetative cover. Down woody debris (DWD) is sampled using the planar intercept technique based on the methodology developed by Brown (1974). Pieces of dead...

  7. Reducing Youth Gun Violence: An Overview of Programs and Initiatives. Program Report.

    ERIC Educational Resources Information Center

    Department of Justice, Washington, DC. Office of Juvenile Justice and Delinquency Prevention.

    This report discusses a wide array of violence prevention strategies used across the United States, ranging from school-based prevention to gun market interception. Relevant research, evaluation, and legislation are included to ground these programs and provide a context for their successful implementation. The first section of the report is an…

  8. The Development and Demonstration of Multiple Regression Models for Operant Conditioning Questions.

    ERIC Educational Resources Information Center

    Fanning, Fred; Newman, Isadore

    Based on the assumption that inferential statistics can make the operant conditioner more sensitive to possible significant relationships, regressions models were developed to test the statistical significance between slopes and Y intercepts of the experimental and control group subjects. These results were then compared to the traditional operant…

  9. Comparison of five canopy cover estimation techniques in the western Oregon Cascades.

    Treesearch

    Anne C.S. Fiala; Steven L. Garman; Andrew N. Gray

    2006-01-01

    Estimates of forest canopy cover are widely used in forest research and management, yet methods used to quantify canopy cover and the estimates they provide vary greatly. Four commonly used ground-based techniques for estimating overstory cover - line-intercept, spherical densiometer, moosehorn, and hemispherical photography - and cover estimates generated from crown...

  10. Acidity of open and intercepted precipitation in forests

    Treesearch

    J. Baker; Drake Hocking; Marvin Nyborg

    1976-01-01

    Emissions of sulphur dioxide appear to have an acidifying effect on grossfall (open rainfall), throughfall, stemflow and soil solution at sites near major sources. Resulting effects on soil chemistry include elevated extractable acidity and aluminum and depressed exchangeable bases, especially calcium and magnesium. These changes are mostly in the incipient phases in...

  11. 77 FR 18707 - USPS Package Intercept-New Product Offerings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... service that replaced the former recall of mail process. Plans were announced to implement new features.... Additionally, customers using the electronic process will have the option of adding selected extra services to... POSTAL SERVICE 39 CFR Part 111 USPS Package Intercept--New Product Offerings AGENCY: Postal...

  12. Understanding the City Size Wage Gap*

    PubMed Central

    Baum-Snow, Nathaniel; Pavan, Ronni

    2013-01-01

    In this paper, we decompose city size wage premia into various components. We base these decompositions on an estimated on-the-job search model that incorporates latent ability, search frictions, firm-worker match quality, human capital accumulation and endogenous migration between large, medium and small cities. Counterfactual simulations of the model indicate that variation in returns to experience and differences in wage intercepts across location type are the most important mechanisms contributing to observed city size wage premia. Variation in returns to experience is more important for generating wage premia between large and small locations while differences in wage intercepts are more important for generating wage premia betwen medium and small locations. Sorting on unobserved ability within education group and differences in labor market search frictions and distributions of firm-worker match quality contribute little to observed city size wage premia. These conclusions hold for separate samples of high school and college graduates. PMID:24273347

  13. Understanding the City Size Wage Gap.

    PubMed

    Baum-Snow, Nathaniel; Pavan, Ronni

    2012-01-01

    In this paper, we decompose city size wage premia into various components. We base these decompositions on an estimated on-the-job search model that incorporates latent ability, search frictions, firm-worker match quality, human capital accumulation and endogenous migration between large, medium and small cities. Counterfactual simulations of the model indicate that variation in returns to experience and differences in wage intercepts across location type are the most important mechanisms contributing to observed city size wage premia. Variation in returns to experience is more important for generating wage premia between large and small locations while differences in wage intercepts are more important for generating wage premia betwen medium and small locations. Sorting on unobserved ability within education group and differences in labor market search frictions and distributions of firm-worker match quality contribute little to observed city size wage premia. These conclusions hold for separate samples of high school and college graduates.

  14. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform.

    PubMed

    Cabrera-Bosquet, Llorenç; Fournier, Christian; Brichet, Nicolas; Welcker, Claude; Suard, Benoît; Tardieu, François

    2016-10-01

    Light interception and radiation-use efficiency (RUE) are essential components of plant performance. Their genetic dissections require novel high-throughput phenotyping methods. We have developed a suite of methods to evaluate the spatial distribution of incident light, as experienced by hundreds of plants in a glasshouse, by simulating sunbeam trajectories through glasshouse structures every day of the year; the amount of light intercepted by maize (Zea mays) plants via a functional-structural model using three-dimensional (3D) reconstructions of each plant placed in a virtual scene reproducing the canopy in the glasshouse; and RUE, as the ratio of plant biomass to intercepted light. The spatial variation of direct and diffuse incident light in the glasshouse (up to 24%) was correctly predicted at the single-plant scale. Light interception largely varied between maize lines that differed in leaf angles (nearly stable between experiments) and area (highly variable between experiments). Estimated RUEs varied between maize lines, but were similar in two experiments with contrasting incident light. They closely correlated with measured gas exchanges. The methods proposed here identified reproducible traits that might be used in further field studies, thereby opening up the way for large-scale genetic analyses of the components of plant performance. © 2016 INRA New Phytologist © 2016 New Phytologist Trust.

  15. Tafilalet OASIS System: Water Resources Management and Investigation by GIS and Groundwater Flow Model

    NASA Astrophysics Data System (ADS)

    Bouaamlat, I.; Larabi, A.; Faouzi, M.

    2014-12-01

    The geographical location of Tafilalet oasis system (TOS) in the south of the valley of Ziz (Morocco) offers him a particular advantage on the plane of water potential. The surface water which comes from humid regions of the High Atlas and intercepted by a dam then converged through the watercourse of Ziz towards the plain of the TOS, have created the conditions for the formation of a water table relatively rich with regard to the local climatic conditions (arid climate with recurrent drought). Given the role of the water table in the economic development of the region, a hydrogeological study was conducted to understand the impact of artificial recharge and recurrent droughts on the development of the groundwater reserves of TOS. In this study, a three-dimensional model of groundwater flow was developed for the TOS, to assist the decision makers as a "management tool" in order to assess alternative schemes for development and exploitation of groundwater resources based on the variation of artificial recharge and drought. The results from this numerical investigation of the TOS aquifer shows that the commissioning of the dam to control the flows of extreme flood and good management of water releases, has avoided the losses of irrigation water and consequently the non-overexploitation of the groundwater. So that with one or two water releases per year from the dam of flow rate more than 28 million m3/year it is possible to reconstruct the volume of water abstracted by wells. The idea of lowering water table by pumping wells is not exactly true, as well the development of groundwater abstraction has not prevented the wound of water table in these last years, the pumping wells accompanied more than it triggers the lowering of water table and it is mainly the succession of dry periods causing the decreases of the piezometric level. This situation confirms the important role that groundwater plays as a "buffer" during the drought periods.

  16. Constructing a framework for risk analyses of climate change effects on the water budget of differently sloped vineyards with a numeric simulation using the Monte Carlo method coupled to a water balance model

    PubMed Central

    Hofmann, Marco; Lux, Robert; Schultz, Hans R.

    2014-01-01

    Grapes for wine production are a highly climate sensitive crop and vineyard water budget is a decisive factor in quality formation. In order to conduct risk assessments for climate change effects in viticulture models are needed which can be applied to complete growing regions. We first modified an existing simplified geometric vineyard model of radiation interception and resulting water use to incorporate numerical Monte Carlo simulations and the physical aspects of radiation interactions between canopy and vineyard slope and azimuth. We then used four regional climate models to assess for possible effects on the water budget of selected vineyard sites up 2100. The model was developed to describe the partitioning of short-wave radiation between grapevine canopy and soil surface, respectively, green cover, necessary to calculate vineyard evapotranspiration. Soil water storage was allocated to two sub reservoirs. The model was adopted for steep slope vineyards based on coordinate transformation and validated against measurements of grapevine sap flow and soil water content determined down to 1.6 m depth at three different sites over 2 years. The results showed good agreement of modeled and observed soil water dynamics of vineyards with large variations in site specific soil water holding capacity (SWC) and viticultural management. Simulated sap flow was in overall good agreement with measured sap flow but site-specific responses of sap flow to potential evapotranspiration were observed. The analyses of climate change impacts on vineyard water budget demonstrated the importance of site-specific assessment due to natural variations in SWC. The improved model was capable of describing seasonal and site-specific dynamics in soil water content and could be used in an amended version to estimate changes in the water budget of entire grape growing areas due to evolving climatic changes. PMID:25540646

  17. Pursuing realistic hydrologic model under SUPERFLEX framework in a semi-humid catchment in China

    NASA Astrophysics Data System (ADS)

    Wei, Lingna; Savenije, Hubert H. G.; Gao, Hongkai; Chen, Xi

    2016-04-01

    Model realism is pursued perpetually by hydrologists for flood and drought prediction, integrated water resources management and decision support of water security. "Physical-based" distributed hydrologic models are speedily developed but they also encounter unneglectable challenges, for instance, computational time with low efficiency and parameters uncertainty. This study step-wisely tested four conceptual hydrologic models under the framework of SUPERFLEX in a small semi-humid catchment in southern Huai River basin of China. The original lumped FLEXL has hypothesized model structure of four reservoirs to represent canopy interception, unsaturated zone, subsurface flow of fast and slow components and base flow storage. Considering the uneven rainfall in space, the second model (FLEXD) is developed with same parameter set for different rain gauge controlling units. To reveal the effect of topography, terrain descriptor of height above the nearest drainage (HAND) combined with slope is applied to classify the experimental catchment into two landscapes. Then the third one (FLEXTOPO) builds different model blocks in consideration of the dominant hydrologic process corresponding to the topographical condition. The fourth one named FLEXTOPOD integrating the parallel framework of FLEXTOPO in four controlled units is designed to interpret spatial variability of rainfall patterns and topographic features. Through pairwise comparison, our results suggest that: (1) semi-distributed models (FLEXD and FLEXTOPOD) taking precipitation spatial heterogeneity into account has improved model performance with parsimonious parameter set, and (2) hydrologic model architecture with flexibility to reflect perceived dominant hydrologic processes can include the local terrain circumstances for each landscape. Hence, the modeling actions are coincided with the catchment behaviour and close to the "reality". The presented methodology is regarding hydrologic model as a tool to test our hypothesis and deepen our understanding of hydrologic processes, which will be helpful to improve modeling realism.

  18. Physician communication coaching effects on patient experience

    PubMed Central

    Seiler, Adrianne; Knee, Alexander; Shaaban, Reham; Bryson, Christine; Paadam, Jasmine; Harvey, Rohini; Igarashi, Satoko; LaChance, Christopher; Benjamin, Evan; Lagu, Tara

    2017-01-01

    Background Excellent communication is a necessary component of high-quality health care. We aimed to determine whether a training module could improve patients’ perceptions of physician communication behaviors, as measured by change over time in domains of patient experience scores related to physician communication. Study design We designed a comprehensive physician-training module focused on improving specific “etiquette-based” physician communication skills through standardized simulations and physician coaching with structured feedback. We employed a quasi-experimental pre-post design, with an intervention group consisting of internal medicine hospitalists and residents and a control group consisting of surgeons. The outcome was percent “always” scores for questions related to patients’ perceptions of physician communication using the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) survey and a Non-HCAHPS Physician-Specific Patient Experience Survey (NHPPES) administered to patients cared for by hospitalists. Results A total of 128 physicians participated in the simulation. Responses from 5020 patients were analyzed using HCAHPS survey data and 1990 patients using NHPPES survey data. The intercept shift, or the degree of change from pre-intervention percent “always” responses, for the HCAHPS questions of doctors “treating patients with courtesy” “explaining things in a way patients could understand,” and “overall teamwork” showed no significant differences between surgical control and hospitalist intervention patients. Adjusted NHPPES percent excellent survey results increased significantly post-intervention for the questions of specified individual doctors “keeping patient informed” (adjusted intercept shift 9.9% P = 0.019), “overall teamwork” (adjusted intercept shift 11%, P = 0.037), and “using words the patient could understand” (adjusted intercept shift 14.8%, p = 0.001). Conclusion A simulation based physician communication coaching method focused on specific “etiquette-based” communication behaviors through a deliberate practice framework was not associated with significantly improved HCAHPS physician communication patient experience scores. Further research could reveal ways that this model affects patients’ perceptions of physician communication relating to specific physicians or behaviors. PMID:28678872

  19. Evaporation components of a boreal forest: variations during the growing season

    NASA Astrophysics Data System (ADS)

    Grelle, A.; Lundberg, A.; Lindroth, A.; Morén, A.-S.; Cienciala, E.

    1997-10-01

    To improve the understanding of interactions between the boreal forest and the climate system as a key issue for global climate change, the water budget of a mixed pine and spruce forest in central Sweden was estimated by measurements of the water flux components and the total evaporation flux during the period 16 May-31 October 1995. Total evaporation was measured using eddy correlation and the components were obtained using measurements of precipitation, throughfall, tree transpiration, and forest floor evaporation. On a daily basis, tree transpiration was the dominant evaporation component during the vegetation period. However, it could be efficiently blocked by a wet canopy associated with large interception evaporation. The accumulated total evaporation was 399 mm, transpiration was 243 mm, forest floor evaporation was 56 mm and interception evaporation was 74 mm. The accumulated sum of interception, transpiration, and floor evaporation was 51 mm larger than the actual measured total evaporation. This difference was mainly attributed to the fact that transpiration was measured in a rather dense 50-year-old stand while total evaporation represented the average conditions of older, roughly 100-year-old stands. To compare eddy-correlation measurements with small-scale measurements of evaporation components, a source area analysis was made to select the flux data that give the best representation of the investigated stand. Especially under stable atmospheric conditions the requirements for surface homogeneity were very high and extreme care had to be taken to be aware of the flux source areas. Canopy water storage was determined by two methods: by the water balance of the canopy, which gave a result of 3.3 mm; and by the so-called minimum method based on plots of throughfall versus precipitation, which gave a much lower value of 1.5 mm. Seasonal interception evaporation constituted 30% of the precipitation.

  20. Linking ice accretion and crown structure: towards a model of the effect of freezing rain on tree canopies

    PubMed Central

    Nock, Charles A.; Lecigne, Bastien; Taugourdeau, Olivier; Greene, David F.; Dauzat, Jean; Delagrange, Sylvain; Messier, Christian

    2016-01-01

    Background and Aims Despite a longstanding interest in variation in tree species vulnerability to ice storm damage, quantitative analyses of the influence of crown structure on within-crown variation in ice accretion are rare. In particular, the effect of prior interception by higher branches on lower branch accumulation remains unstudied. The aim of this study was to test the hypothesis that intra-crown ice accretion can be predicted by a measure of the degree of sheltering by neighbouring branches. Methods Freezing rain was artificially applied to Acer platanoides L., and in situ branch-ice thickness was measured directly and from LiDAR point clouds. Two models of freezing rain interception were developed: ‘IceCube’, which uses point clouds to relate ice accretion to a voxel-based index (sheltering factor; SF) of the sheltering effect of branch elements above a measurement point; and ‘IceTree’, a simulation model for in silico evaluation of the interception pattern of freezing rain in virtual tree crowns. Key Results Intra-crown radial ice accretion varied strongly, declining from the tips to the bases of branches and from the top to the base of the crown. SF for branches varied strongly within the crown, and differences among branches were consistent for a range of model parameters. Intra-crown variation in ice accretion on branches was related to SF (R2 = 0·46), with in silico results from IceTree supporting empirical relationships from IceCube. Conclusions Empirical results and simulations confirmed a key role for crown architecture in determining intra-crown patterns of ice accretion. As suspected, the concentration of freezing rain droplets is attenuated by passage through the upper crown, and thus higher branches accumulate more ice than lower branches. This is the first step in developing a model that can provide a quantitative basis for investigating intra-crown and inter-specific variation in freezing rain damage. PMID:27107412

  1. Expected scientific results on ballistic spacecraft missions to comet Encke during the 1980 apparition

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1976-01-01

    Summarized are three proposed ballistic spacecraft missions to intercept P/Encke during the 1980 apparition. A baseline physical activity model for P/Encke is established and the performances of the neutral mass spectrometer and of the imaging experiment on each intercept mission are assessed.

  2. 42 CFR 410.40 - Coverage of ambulance services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., level 2 (ALS2). (4) Paramedic ALS intercept (PI). (5) Specialty care transport (SCT). (6) Fixed wing transport (FW). (7) Rotary wing transport (RW). (c) Paramedic ALS intercept services. Paramedic ALS...) Be prohibited by State law from billing for any service. (3) Be furnished by a paramedic ALS...

  3. 42 CFR 410.40 - Coverage of ambulance services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., level 2 (ALS2). (4) Paramedic ALS intercept (PI). (5) Specialty care transport (SCT). (6) Fixed wing transport (FW). (7) Rotary wing transport (RW). (c) Paramedic ALS intercept services. Paramedic ALS...) Be prohibited by State law from billing for any service. (3) Be furnished by a paramedic ALS...

  4. 42 CFR 410.40 - Coverage of ambulance services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., level 2 (ALS2). (4) Paramedic ALS intercept (PI). (5) Specialty care transport (SCT). (6) Fixed wing transport (FW). (7) Rotary wing transport (RW). (c) Paramedic ALS intercept services. Paramedic ALS...) Be prohibited by State law from billing for any service. (3) Be furnished by a paramedic ALS...

  5. 42 CFR 410.40 - Coverage of ambulance services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., level 2 (ALS2). (4) Paramedic ALS intercept (PI). (5) Specialty care transport (SCT). (6) Fixed wing transport (FW). (7) Rotary wing transport (RW). (c) Paramedic ALS intercept services. Paramedic ALS...) Be prohibited by State law from billing for any service. (3) Be furnished by a paramedic ALS...

  6. 42 CFR 410.40 - Coverage of ambulance services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., level 2 (ALS2). (4) Paramedic ALS intercept (PI). (5) Specialty care transport (SCT). (6) Fixed wing transport (FW). (7) Rotary wing transport (RW). (c) Paramedic ALS intercept services. Paramedic ALS...) Be prohibited by State law from billing for any service. (3) Be furnished by a paramedic ALS...

  7. Handling Correlations between Covariates and Random Slopes in Multilevel Models

    ERIC Educational Resources Information Center

    Bates, Michael David; Castellano, Katherine E.; Rabe-Hesketh, Sophia; Skrondal, Anders

    2014-01-01

    This article discusses estimation of multilevel/hierarchical linear models that include cluster-level random intercepts and random slopes. Viewing the models as structural, the random intercepts and slopes represent the effects of omitted cluster-level covariates that may be correlated with included covariates. The resulting correlations between…

  8. The case of the 1981 eruption of Mount Etna: An example of very fast moving lava flows

    NASA Astrophysics Data System (ADS)

    Coltelli, Mauro; Marsella, Maria; Proietti, Cristina; Scifoni, Silvia

    2012-01-01

    Mount Etna despite being an extremely active volcano which, during the last 400 years, has produced many lava flow flank eruptions has rarely threatened or damaged populated areas. The reconstruction of the temporal evolution of potentially hazardous flank eruptions represents a useful contribution to reducing the impact of future eruptions by and analyzing actions to be taken for protecting sensitive areas. In this work, we quantitatively reconstructed the evolution of the 1981 lava flow field of Mt Etna, which threatened the town of Randazzo. This reconstruction was used to evaluate the cumulated volume, the time averaged discharge rate trend and to estimate its maximum value. The analysis was conducted by comparing pre- and post-eruption topographic surfaces, extracted by processing historical photogrammetric data sets and by utilizing the eruption chronology to establish the lava flow front positions at different times. An unusually high discharge rate (for Etna) of 640 m3/s was obtained, which corresponds well with the very fast advance rate observed for the main lava flow. A comparison with other volcanoes, presenting high discharge rate, was proposed for finding a clue to unveil the 1981 Etna eruptive mechanism. A model was presented to explain the high discharge rate, which includes an additional contribution to the lava discharge caused by the interception of a shallow magma reservoir by a dike rising from depth and the subsequent emptying of the reservoir.

  9. X-Ray Quasi-periodic Oscillations in the Lense–Thirring Precession Model. I. Variability of Relativistic Continuum

    NASA Astrophysics Data System (ADS)

    You, Bei; Bursa, Michal; Życki, Piotr T.

    2018-05-01

    We develop a Monte Carlo code to compute the Compton-scattered X-ray flux arising from a hot inner flow that undergoes Lense–Thirring precession. The hot flow intercepts seed photons from an outer truncated thin disk. A fraction of the Comptonized photons will illuminate the disk, and the reflected/reprocessed photons will contribute to the observed spectrum. The total spectrum, including disk thermal emission, hot flow Comptonization, and disk reflection, is modeled within the framework of general relativity, taking light bending and gravitational redshift into account. The simulations are performed in the context of the Lense–Thirring precession model for the low-frequency quasi-periodic oscillations, so the inner flow is assumed to precess, leading to periodic modulation of the emitted radiation. In this work, we concentrate on the energy-dependent X-ray variability of the model and, in particular, on the evolution of the variability during the spectral transition from hard to soft state, which is implemented by the decrease of the truncation radius of the outer disk toward the innermost stable circular orbit. In the hard state, where the Comptonizing flow is geometrically thick, the Comptonization is weakly variable with a fractional variability amplitude of ≤10% in the soft state, where the Comptonizing flow is cooled down and thus becomes geometrically thin, the fractional variability of the Comptonization is highly variable, increasing with photon energy. The fractional variability of the reflection increases with energy, and the reflection emission for low spin is counterintuitively more variable than the one for high spin.

  10. Efficient Thermally Conductive Strap Design for Cryogenic Propellant Tank Supports and Plumbing

    NASA Technical Reports Server (NTRS)

    Elchert, J. P.; Christie, R.; Kashani, A.; Opalach, C.

    2012-01-01

    After evaluating NASA space architecture goals, the Office of Chief Technologist identified the need for developing enabling technology for long term loiters in space with cryogenic fluids. One such technology is structural heat interception. In this prototype, heat interception at the tank support strut was accomplished using a thermally conductive link to the broad area cooled shield. The design methodology for both locating the heat intercept and predicting the reduction in boil-off heat leak is discussed in detail. Results from the chosen design are presented. It was found that contact resistance resulting from different mechanical attachment techniques played a significant role in the form and functionality of a successful design.

  11. The chemical composition of fogs and intercepted clouds in the United States

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey L.; Bator, Aaron; Sherman, D. Eli; Moore, Katharine F.; Hoag, Katherine J.; Demoz, Belay B.; Rao, Xin; Reilly, Jill E.

    Over the past decade, the chemical compositions of fogs and intercepted clouds have been investigated at more than a dozen locations across the United States. Sampling sites have been located in the northeast, southeast, Rocky Mountain, and west coast regions of the US. They include both pristine and heavily polluted locations. Frontal/orographic clouds (warm and supercooled), intercepted coastal stratiform clouds, and radiation fogs have all been examined. Sample pH values range from below 3 to above 7. Major ions also exhibit a wide concentration range, with clouds at some locations exhibiting high sea salt concentrations, while composition at other locations is dominated by ammonium and sulfate or nitrate.

  12. Efficient Thermally Conductive Strap Design for Cryogenic Propellant Tank Supports and Plumbing

    NASA Technical Reports Server (NTRS)

    Elchert, J. P.; Christie, R.; Gebby, P.; Kashani, A.

    2012-01-01

    After evalu1ating NASA space architecture goals, the Office of Chief Technologist identified the need for developing enabling technology for long term loiters in space with cryogenic fluids. One such technology is structural heat interception. In this prototype, heat interception at the tank support strut was accomplished using a thermally conductive link to the broad area cooled shield. The design methodology for both locating the heat intercept and predicting the reduction in boil-off heat leak is discussed in detail. Results from the chosen design are presented. It was found that contact resistance resulting from different mechanical attachment techniques played a significant role in the form and functionality of a successful design.

  13. Intercept-Resend-Measure Attack Towards Quantum Private Comparison Protocol Using Genuine Four-Particle Entangled States and its Improvement

    NASA Astrophysics Data System (ADS)

    Pan, Hong-Ming

    2018-03-01

    Recently, Jia et al. proposed the quantum private comparison protocol with the genuine four-particle entangled states (Jia et al., Int. J. Theor. Phys. 51(4), 1187-1194 (2012)). Jia et al. claimed that in this protocol, TP cannot obtain Alice and Bob's secrets and only knows their comparison result. However, in this paper, we demonstrate that if TP is a genuine semi-honest third party, he can totally obtain Alice and Bob's secrets by launching a particular intercept-resend-measure attack. After suggesting the intercept-resend-measure attack strategy from TP first, we put forward one corresponding improvement to prevent this attack.

  14. Stationarity and Inequality from the Mississippi to the Kissimmee: Climatic Control of Temporal Patterns in Catchment Discharge and Solute Export

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.

    2011-12-01

    What are the relative contributions of climatic variability, land management, and local geomorphology in determining the temporal dynamics of streamflow and the export of solutes from watersheds to receiving water bodies? A simple analytical framework is introduced for characterizing the temporal inequality of stream discharge and solute export from catchments using Lorenz diagrams and the associated Gini coefficient. These descriptors are used to illustrate a broad range of observed flow variability with a synthesis of multi-decadal flow data from 22 rivers in Florida. The analytical framework is extended to comprehensively link variability in flows and loads to climatically-driven inputs in terms of these inequality-based metrics. Further, based on a synthesis of data from the basins of the Baltic Sea, the Mississippi River, the Kissimmee River and other tributaries to Lake Okeechobee, FL, it is shown that inter-annual variations in exported loads for geogenic constituents, and for total N and total P, are dominantly controlled by discharge. Emergence of this consistent pattern across diverse managed catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents. Multi-decadal phosphorus load data from 4 of the primary tributaries to Lake Okeechobee and sodium and nitrate load data from 9 of the Hubbard Brook, NH long-term study site catchments are used to examine the relation between inequality of climatic inputs, river flows and catchment loads. The intra-annual loads to Lake Okeechobee are shown to be highly unequal, such that 90% of annual load is delivered in as little as 15% of the time. Analytic expressions are developed for measures of inequality in terms of parameters of the lognormal distribution under general conditions that include intermittency. In cases where climatic variability is high compared to that of concentrations (chemostatic conditions), such as for P in the Lake Okeechobee basin and Na in Hubbard Brook, the temporal inequality of rainfall and flow are strong surrogates for load inequality. However, in cases where variability of concentrations is high compared to that of flows (chemodynamic conditions), such as for nitrate in the Hubbard Brook catchments, load inequality is greater than rainfall or flow inequality. The measured degree of correspondence between climatic, flow, and load inequality for these data sets are shown to be well described using the general inequality framework introduced here. Important implications are that (1) variations in hydro-climatic or anthropogenic forcing can be used to robustly predict inter-annual variations in flows and loads, (2) water quality problems in receiving inland and coastal waters may persist until the accumulated storages of nutrients have been substantially depleted, and (3) remedial measures designed to intercept or capture exported flows and loads must be designed with consideration of the intra-annual inequality.

  15. 46 CFR 174.255 - Restricted service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... wind heeling moment, either to the angle of the second intercept of those curves or to the angle of heel at which downflooding would occur, whichever angle is less. (iii) A residual righting energy of at... righting moment and wind heeling moment, either to the angle of the second intercept of those curves or to...

  16. 46 CFR 174.255 - Restricted service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... wind heeling moment, either to the angle of the second intercept of those curves or to the angle of heel at which downflooding would occur, whichever angle is less. (iii) A residual righting energy of at... righting moment and wind heeling moment, either to the angle of the second intercept of those curves or to...

  17. 46 CFR 174.255 - Restricted service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... wind heeling moment, either to the angle of the second intercept of those curves or to the angle of heel at which downflooding would occur, whichever angle is less. (iii) A residual righting energy of at... righting moment and wind heeling moment, either to the angle of the second intercept of those curves or to...

  18. Point Intercept (PO)

    Treesearch

    John F. Caratti

    2006-01-01

    The FIREMON Point Intercept (PO) method is used to assess changes in plant species cover or ground cover for a macroplot. This method uses a narrow diameter sampling pole or sampling pins, placed at systematic intervals along line transects to sample within plot variation and quantify statistically valid changes in plant species cover and height over time. Plant...

  19. Establishing conservation buffers using precision information

    Treesearch

    Mike G. Dosskey; Dean E. Eisenhauer; Matthew J. Helmers

    2005-01-01

    Conservation buffers, such as filter strips and riparian forest buffers, are widely prescribed to improve and protect water quality in agricultural landscapes. These buffers intercept field runoff and retain some of its pollutant load before it reaches a waterway. A buffer typically is designed to have uniform width along a field margin and to intercept runoff that...

  20. Human Factors Evaluation of the Hidalgo Equivital EQ-02 Physiological Status Monitoring System

    DTIC Science & Technology

    2013-10-11

    Destruction – Civil Support Team (WMD-CST) responding (11), and ricin letters that were intercepted en route to a member of Congress and the President...positive for ricin at Washington mail facility. CNN U.S., April 17, 2013. (http://www.cnn.com/2013/04/16/us/tainted-letter- intercepted accessed

  1. An Experimental System for Research on Dynamic Skills Training.

    DTIC Science & Technology

    1981-09-01

    Bogey to be intercepted. The student enters B1 . The system then displays a recommended intercept heading, say 270 degrees. The student must now send this...DRIVE LRDC OTTAWA, CANADA K1A 0K2 UNIVERSITY OF PITTSBURGH 3939 O’HARA STREET ERIC Facility-Acquisitions PITTSBURGH, PA 15213 4833 Rugby Avenue Bethesda

  2. Statistical Power for a Simultaneous Test of Factorial and Predictive Invariance

    ERIC Educational Resources Information Center

    Olivera-Aguilar, Margarita; Millsap, Roger E.

    2013-01-01

    A common finding in studies of differential prediction across groups is that although regression slopes are the same or similar across groups, group differences exist in regression intercepts. Building on earlier work by Birnbaum (1979), Millsap (1998) presented an invariant factor model that would explain such intercept differences as arising due…

  3. An analysis of arthropod interceptions by APHIS-PPQ and Customs and Border Patrol in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    USDA Animal Plant Health Inspection Service Plant Protection and Quarantine (APHIS-PPQ) and Customs and Border Patrol (CBP) inspect traffic entering the United States for arthropods that pose a threat to national agriculture and/or ecosystems. We analyzed interceptions made by these agencies in Puer...

  4. Line Intercept (LI)

    Treesearch

    John F. Caratti

    2006-01-01

    The FIREMON Line Intercept (LI) method is used to assess changes in plant species cover for a macroplot. This method uses multiple line transects to sample within plot variation and quantify statistically valid changes in plant species cover and height over time. This method is suited for most forest and rangeland communities, but is especially useful for sampling...

  5. HOWARD FORK ACID ROCK DRAINAGE SOURCE INTERCEPTION STUDY; HOWARD FORK OF THE SAN MIGUEL RIVER NEAR OPHIR, COLORADO

    EPA Science Inventory

    This project proposes to analyze regional hydrogeology as it relates to mine workings which discharge significant heavy metals into the Howard Fork of the San Miguel River and recommend strategies to intercept and divert water away from mineralized zones. The study also includes...

  6. Canopy Light Interception of a Conventional and an Erect Leaf Mutant Sorghum

    USDA-ARS?s Scientific Manuscript database

    Two sorghum lines, an erect leafed mutant sorghum and the wild type from which the mutant was generated, were field grown in rectilinear arrays at low (23 plants per square meter) and high (10 plants per square meter) population densities. Canopy light interception, biomass accretion and yield were ...

  7. A comparison of cover calculation techniques for relating point-intercept vegetation sampling to remote sensing imagery

    USDA-ARS?s Scientific Manuscript database

    Accurate and timely spatial predictions of vegetation cover from remote imagery are an important data source for natural resource management. High-quality in situ data are needed to develop and validate these products. Point-intercept sampling techniques are a common method for obtaining quantitativ...

  8. Interception processes during snowstorms

    Treesearch

    David H. Miller

    1964-01-01

    Four processes are identified as determining the initial interception of falling snow by forest during storms: delivery of snow particles from the airstream to the forest; true throughfall of particles to the forest floor; impaction and adhesion of particles to foliage and branches; and cohesion of particles into masses of snow. Delivery and impaction processes seem...

  9. Expert Anticipatory Skill in Striking Sports: A Review and a Model

    ERIC Educational Resources Information Center

    Muller, Sean; Abernethy, Bruce

    2012-01-01

    Expert performers in striking sports can hit objects moving at high speed with incredible precision. Exceptionally well developed anticipation skills are necessary to cope with the severe constraints on interception. In this paper, we provide a review of the empirical evidence regarding expert interception in striking sports and propose a…

  10. Interception of LPI radar signals

    NASA Astrophysics Data System (ADS)

    Lee, Jim P.

    1991-11-01

    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  11. Illicit Drug Use in a Community-Based Sample of Heterosexually Identified Emerging Adults

    ERIC Educational Resources Information Center

    Halkitis, Perry N.; Manasse, Ashley N.; McCready, Karen C.

    2010-01-01

    In this study we assess lifetime and recent drug use patterns among 261 heterosexually identified 18- to 25-year-olds through brief street intercept surveys conducted in New York City. Marijuana, hallucinogens, powder cocaine, and ecstasy were the most frequently reported drugs for both lifetime and recent use. Findings further suggest significant…

  12. FIELD SCALE EVALUATION OF TREATMENT OF TCE IN A BIOWALL AT THE OU-1 SITE

    EPA Science Inventory

    A passive reactive barrier (Biowall) was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contamin...

  13. Family differences in equations for predicting biomass and leaf area in Douglas-fir (Pseudotsuga menziesii var. menziesii).

    Treesearch

    J.B. St. Clair

    1993-01-01

    Logarithmic regression equations were developed to predict component biomass and leaf area for an 18-yr-old genetic test of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) based on stem diameter or cross-sectional sapwood area. Equations did not differ among open-pollinated families in slope, but intercepts...

  14. Historic role of fire in determining annual water yield from Tenderfoot Creek Experimental Forest, Montana, USA

    Treesearch

    Ward W. McCaughey; Phillip E. Farnes; Katherine J. Hansen

    1997-01-01

    Water production from mountain watersheds depends on total precipitation input, the type and distribution of precipitation, the amount intercepted in tree canopies, and losses to evaporation, transpiration and groundwater. A systematic process was developed to estimate historic average annual runoff based on fire patterns, habitat cover types and precipitation patterns...

  15. Ballistic Missile Intercept from UCAV

    DTIC Science & Technology

    2011-12-01

    aerodynamic forces acting on the ballistic missile , generates a ballistic flight path of the ballistic missile target based on the model developed by...for use against ballistic missile targets) [14] Hutchins, R., ME4703 “ Missile Flight Analysis ” Course Notes, Spring 2005. [15] Stevens, B., and...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited BALLISTIC MISSILE

  16. Coronary microvascular dysfunction after myocardial infarction: increased coronary zero flow pressure both in the infarcted and in the remote myocardium is mainly related to left ventricular filling pressure

    PubMed Central

    Van Herck, P L; Carlier, S G; Claeys, M J; Haine, S E; Gorissen, P; Miljoen, H; Bosmans, J M; Vrints, C J

    2007-01-01

    Objective To investigate the underlying mechanisms of a decreased coronary flow reserve after myocardial infarction (MI) by analysing the characteristics of the diastolic hyperaemic coronary pressure–flow relationship. Design Prospective study. Setting Tertiary care hospital. Patients 68 patients with a recent MI and 27 patients with stable angina pectoris (AP; control group). Main outcome measures The intercept with the pressure axis (the zero flow pressure or Pzf) and slope index of the pressure–flow relationship (SIPF) were calculated from the simultaneously recorded hyperaemic intracoronary blood flow velocity and aortic pressure after successful coronary stenting. Results A stepwise increase in Pzf from AP (14.6 (8.0) mm Hg), over non‐Q‐wave MI (22.5 (9.1) mm Hg), to Q‐wave MI (37.1 (12.9) mm Hg; p<0.001) was observed. Similar changes in Pzf were found in a reference artery perfusing the non‐infarcted myocardium. Multivariate analysis showed that in both regions the left ventricular end‐diastolic pressure (LVEDP) was the most important determinant of the Pzf. The SIPF was not statistically different in the treated vessel between patients with MI and AP, but was increased in MI patients with a markedly increased LVEDP. Conclusions After an MI, the coronary pressure–flow relationship is shifted to the right both in the infarcted and in the non‐infarcted remote myocardium, as shown by the increased Pzf. The correlation with Pzf suggests that elevated left ventricular filling pressures contribute to the impediment of myocardial perfusion in patients with infarction. PMID:17395671

  17. Hydrological heterogeneity in agricultural riparian buffer strips

    NASA Astrophysics Data System (ADS)

    Hénault-Ethier, Louise; Larocque, Marie; Perron, Rachel; Wiseman, Natalie; Labrecque, Michel

    2017-03-01

    Riparian buffer strips (RBS) may protect surface water and groundwater in agricultural settings, although their effectiveness, observed in field-scale studies, may not extend to a watershed scale. Hydrologically-controlled leaching plots have often shown RBS to be effective at buffering nutrients and pesticides, but uncontrolled field studies have sometimes suggested limited effectiveness. The limited RBS effectiveness may be explained by the spatiotemporal hydrological heterogeneity near non-irrigated fields. This hypothesis was tested in conventional corn and soy fields in the St. Lawrence Lowlands of southern Quebec (Canada), where spring melt brings heavy and rapid runoff, while summer months are hot and dry. One field with a mineral soil (Saint-Roch-de-l'Achigan) and another with an organic-rich soil (Boisbriand) were equipped with passive runoff collectors, suction cup lysimeters, and piezometers placed before and after a 3 m-wide RBS, and monitored from 2011 to 2014. Soil topography of the RBS was mapped to a 1 cm vertical precision and a 50 cm sampling grid. On average, surface runoff intersects the RBS perpendicularly, but is subject to substantial local heterogeneity. Groundwater saturates the root zones, but flows little at the time of snowmelt. Groundwater flow is not consistently perpendicular to the RBS, and may reverse, flowing from stream to field under low water flow regimes with stream-aquifer connectivity, thus affecting RBS effectiveness calculations. Groundwater flow direction can be influenced by stratigraphy, local soil hydraulic properties, and historical modification of the agricultural stream beds. Understanding the spatiotemporal heterogeneity of surface and groundwater flows is essential to correctly assess the effectiveness of RBS in intercepting agro-chemical pollution. The implicit assumption that water flows across vegetated RBS, from the field to the stream, should always be verified.

  18. Reconnecting tile drainage to riparian buffer hydrology for enhanced nitrate removal.

    PubMed

    Jaynes, D B; Isenhart, T M

    2014-03-01

    Riparian buffers are a proven practice for removing NO from overland flow and shallow groundwater. However, in landscapes with artificial subsurface (tile) drainage, most of the subsurface flow leaving fields is passed through the buffers in drainage pipes, leaving little opportunity for NO removal. We investigated the feasibility of re-routing a fraction of field tile drainage as subsurface flow through a riparian buffer for increasing NO removal. We intercepted an existing field tile outlet draining a 10.1-ha area of a row-cropped field in central Iowa and re-routed a fraction of the discharge as subsurface flow along 335 m of an existing riparian buffer. Tile drainage from the field was infiltrated through a perforated pipe installed 75 cm below the surface by maintaining a constant head in the pipe at a control box installed in-line with the existing field outlet. During 2 yr, >18,000 m (55%) of the total flow from the tile outlet was redirected as infiltration within the riparian buffer. The redirected water seeped through the 60-m-wide buffer, raising the water table approximately 35 cm. The redirected tile flow contained 228 kg of NO. On the basis of the strong decrease in NO concentrations within the shallow groundwater across the buffer, we hypothesize that the NO did not enter the stream but was removed within the buffer by plant uptake, microbial immobilization, or denitrification. Redirecting tile drainage as subsurface flow through a riparian buffer increased its NO removal benefit and is a promising management practice to improve surface water quality within tile-drained landscapes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Nonlinear isochrones in murine left ventricular pressure-volume loops: how well does the time-varying elastance concept hold?

    PubMed

    Claessens, T E; Georgakopoulos, D; Afanasyeva, M; Vermeersch, S J; Millar, H D; Stergiopulos, N; Westerhof, N; Verdonck, P R; Segers, P

    2006-04-01

    The linear time-varying elastance theory is frequently used to describe the change in ventricular stiffness during the cardiac cycle. The concept assumes that all isochrones (i.e., curves that connect pressure-volume data occurring at the same time) are linear and have a common volume intercept. Of specific interest is the steepest isochrone, the end-systolic pressure-volume relationship (ESPVR), of which the slope serves as an index for cardiac contractile function. Pressure-volume measurements, achieved with a combined pressure-conductance catheter in the left ventricle of 13 open-chest anesthetized mice, showed a marked curvilinearity of the isochrones. We therefore analyzed the shape of the isochrones by using six regression algorithms (two linear, two quadratic, and two logarithmic, each with a fixed or time-varying intercept) and discussed the consequences for the elastance concept. Our main observations were 1) the volume intercept varies considerably with time; 2) isochrones are equally well described by using quadratic or logarithmic regression; 3) linear regression with a fixed intercept shows poor correlation (R(2) < 0.75) during isovolumic relaxation and early filling; and 4) logarithmic regression is superior in estimating the fixed volume intercept of the ESPVR. In conclusion, the linear time-varying elastance fails to provide a sufficiently robust model to account for changes in pressure and volume during the cardiac cycle in the mouse ventricle. A new framework accounting for the nonlinear shape of the isochrones needs to be developed.

  20. Estimation of air-to-grass mass interception factors for iodine.

    PubMed

    Karunakara, N; Ujwal, P; Yashodhara, I; Sudeep Kumara, K; Mohan, M P; Bhaskar Shenoy, K; Geetha, P V; Dileep, B N; James, Joshi P; Ravi, P M

    2018-06-01

    Air-to-grass mass interception factors for radionuclide are important basic input parameter for the estimation of radiation dose to the public around a nuclear power plant. In this paper, we present the determination of air-to- grass mass interception factors for iodine using a 2 m × 2 m × 2 m (l × b × h) size environmental chamber. The temperature, humidity, and rainfall inside the environmental chamber was controlled to required values to simulate different environmental conditions. Grass (Pennisetum purpureum, Schum), grown in pots, was kept inside the environmental chamber and stable iodine in elemental form was sublimed quickly inside the chamber to simulate an accidental release of iodine to the environment. The concentration of iodine in the air was measured periodically by drawing air through a bubbling setup, containing 1% sodium carbonate solution. The mass interception factor for dry deposition varied in the range of 0.25-7.7 m 2  kg -1 with mean value of 2.2 m 2  kg -1 with respect to fresh weight of grass, and that due to wet deposition varied in the range of 0.6-4.8 m 2  kg -1 with mean value of 2.3 m 2  kg -1 . The mass interception factor was inversely correlated with the total iodine deposited through dry deposition as well as with the rainfall. Copyright © 2017. Published by Elsevier Ltd.

  1. Research on air and missile defense task allocation based on extended contract net protocol

    NASA Astrophysics Data System (ADS)

    Zhang, Yunzhi; Wang, Gang

    2017-10-01

    Based on the background of air and missile defense distributed element corporative engagement, the interception task allocation problem of multiple weapon units with multiple targets under network condition is analyzed. Firstly, a mathematical model of task allocation is established by combat task decomposition. Secondly, the initialization assignment based on auction contract and the adjustment allocation scheme based on swap contract were introduced to the task allocation. Finally, through the simulation calculation of typical situation, the model can be used to solve the task allocation problem in complex combat environment.

  2. An Efficient Ray-Tracing Method for Determining Terrain Intercepts in EDL Simulations

    NASA Technical Reports Server (NTRS)

    Shidner, Jeremy D.

    2016-01-01

    The calculation of a ray's intercept from an arbitrary point in space to a prescribed surface is a common task in computer simulations. The arbitrary point often represents an object that is moving according to the simulation, while the prescribed surface is fixed in a defined frame. For detailed simulations, this surface becomes complex, taking the form of real-world objects such as mountains, craters or valleys which require more advanced methods to accurately calculate a ray's intercept location. Incorporation of these complex surfaces has commonly been implemented in graphics systems that utilize highly optimized graphics processing units to analyze such features. This paper proposes a simplified method that does not require computationally intensive graphics solutions, but rather an optimized ray-tracing method for an assumed terrain dataset. This approach was developed for the Mars Science Laboratory mission which landed on the complex terrain of Gale Crater. First, this paper begins with a discussion of the simulation used to implement the model and the applicability of finding surface intercepts with respect to atmosphere modeling, altitude determination, radar modeling, and contact forces influencing vehicle dynamics. Next, the derivation and assumptions of the intercept finding method are presented. Key assumptions are noted making the routines specific to only certain types of surface data sets that are equidistantly spaced in longitude and latitude. The derivation of the method relies on ray-tracing, requiring discussion on the formulation of the ray with respect to the terrain datasets. Further discussion includes techniques for ray initialization in order to optimize the intercept search. Then, the model implementation for various new applications in the simulation are demonstrated. Finally, a validation of the accuracy is presented along with the corresponding data sets used in the validation. A performance summary of the method will be shown using the analysis from the Mars Science Laboratory's terminal descent sensing model. Alternate uses will also be shown for determining horizon maps and orbiter set times.

  3. Pathogen inactivation efficacy of Mirasol PRT System and Intercept Blood System for non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma.

    PubMed

    Kwon, S Y; Kim, I S; Bae, J E; Kang, J W; Cho, Y J; Cho, N S; Lee, S W

    2014-10-01

    This study was conducted to evaluate the efficacy of pathogen inactivation (PI) in non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma using the Mirasol PRT System and the Intercept Blood System. Platelets were pooled using the Acrodose PL system and separated into two aliquots for Mirasol and Intercept treatment. Four replicates of each viral strain were used for the evaluation. For bacteria, both low-titre (45-152 CFU/unit) inoculation and high-titre (7·34-10·18 log CFU/unit) inoculation with two replicates for each bacterial strain were used. Platelets with non-detectable bacterial growth and platelets inoculated with a low titre were stored for 5 days, and culture was performed with the BacT/ALERT system. The inactivation efficacy expressed as log reduction for Mirasol and Intercept systems for viruses was as follows: human immunodeficiency virus 1, ≥4·19 vs. ≥4·23; bovine viral diarrhoea virus, 1·83 vs. ≥6·03; pseudorabies virus, 2·73 vs. ≥5·20; hepatitis A virus, 0·62 vs. 0·76; and porcine parvovirus, 0·28 vs. 0·38. The inactivation efficacy for bacteria was as follows: Escherichia coli, 5·45 vs. ≥9·22; Staphylococcus aureus, 4·26 vs. ≥10·11; and Bacillus subtilis, 5·09 vs. ≥7·74. Postinactivation bacterial growth in platelets inoculated with a low titre of S. aureus or B. subtilis was detected only with Mirasol. Pathogen inactivation efficacy of Intercept for enveloped viruses was found to be satisfactory. Mirasol showed satisfactory inactivation efficacy for HIV-1 only. The two selected non-enveloped viruses were not inactivated by both systems. Inactivation efficacy of Intercept was more robust for all bacteria tested at high or low titres. © 2014 International Society of Blood Transfusion.

  4. A pragmatic approach for mortality prediction after surgery in infective endocarditis: optimizing and refining EuroSCORE.

    PubMed

    Fernández-Hidalgo, N; Ferreria-González, I; Marsal, J R; Ribera, A; Aznar, M L; de Alarcón, A; García-Cabrera, E; Gálvez-Acebal, J; Sánchez-Espín, G; Reguera-Iglesias, J M; De La Torre-Lima, J; Lomas, J M; Hidalgo-Tenorio, C; Vallejo, N; Miranda, B; Santos-Ortega, A; Castro, M A; Tornos, P; García-Dorado, D; Almirante, B

    2018-03-03

    To simplify and optimize the ability of EuroSCORE I and II to predict early mortality after surgery for infective endocarditis (IE). Multicentre retrospective study (n = 775). Simplified scores, eliminating irrelevant variables, and new specific scores, adding specific IE variables, were created. The performance of the original, recalibrated and specific EuroSCOREs was assessed by Brier score, C-statistic and calibration plot in bootstrap samples. The Net Reclassification Index was quantified. Recalibrated scores including age, previous cardiac surgery, critical preoperative state, New York Heart Association >I, and emergent surgery (EuroSCORE I and II); renal failure and pulmonary hypertension (EuroSCORE I); and urgent surgery (EuroSCORE II) performed better than the original EuroSCOREs (Brier original and recalibrated: EuroSCORE I: 0.1770 and 0.1667; EuroSCORE II: 0.2307 and 0.1680). Performance improved with the addition of fistula, staphylococci and mitral location (EuroSCORE I and II) (Brier specific: EuroSCORE I 0.1587, EuroSCORE II 0.1592). Discrimination improved in specific models (C-statistic original, recalibrated and specific: EuroSCORE I: 0.7340, 0.7471 and 0.7728; EuroSCORE II: 0.7442, 0.7423 and 0.7700). Calibration improved in both EuroSCORE I models (intercept 0.295, slope 0.829 (original); intercept -0.094, slope 0.888 (recalibrated); intercept -0.059, slope 0.925 (specific)) but only in specific EuroSCORE II model (intercept 2.554, slope 1.114 (original); intercept -0.260, slope 0.703 (recalibrated); intercept -0.053, slope 0.930 (specific)). Net Reclassification Index was 5.1% and 20.3% for the specific EuroSCORE I and II CONCLUSIONS: The use of simplified EuroSCORE I and EuroSCORE II models in IE with the addition of specific variables may lead to simpler and more accurate models. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  5. Power allocation for target detection in radar networks based on low probability of intercept: A cooperative game theoretical strategy

    NASA Astrophysics Data System (ADS)

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2017-08-01

    Distributed radar network systems have been shown to have many unique features. Due to their advantage of signal and spatial diversities, radar networks are attractive for target detection. In practice, the netted radars in radar networks are supposed to maximize their transmit power to achieve better detection performance, which may be in contradiction with low probability of intercept (LPI). Therefore, this paper investigates the problem of adaptive power allocation for radar networks in a cooperative game-theoretic framework such that the LPI performance can be improved. Taking into consideration both the transmit power constraints and the minimum signal to interference plus noise ratio (SINR) requirement of each radar, a cooperative Nash bargaining power allocation game based on LPI is formulated, whose objective is to minimize the total transmit power by optimizing the power allocation in radar networks. First, a novel SINR-based network utility function is defined and utilized as a metric to evaluate power allocation. Then, with the well-designed network utility function, the existence and uniqueness of the Nash bargaining solution are proved analytically. Finally, an iterative Nash bargaining algorithm is developed that converges quickly to a Pareto optimal equilibrium for the cooperative game. Numerical simulations and theoretic analysis are provided to evaluate the effectiveness of the proposed algorithm.

  6. A Novel Passive Tracking Scheme Exploiting Geometric and Intercept Theorems

    PubMed Central

    Zhou, Biao; Sun, Chao; Ahn, Deockhyeon; Kim, Youngok

    2018-01-01

    Passive tracking aims to track targets without assistant devices, that is, device-free targets. Passive tracking based on Radio Frequency (RF) Tomography in wireless sensor networks has recently been addressed as an emerging field. The passive tracking scheme using geometric theorems (GTs) is one of the most popular RF Tomography schemes, because the GT-based method can effectively mitigate the demand for a high density of wireless nodes. In the GT-based tracking scheme, the tracking scenario is considered as a two-dimensional geometric topology and then geometric theorems are applied to estimate crossing points (CPs) of the device-free target on line-of-sight links (LOSLs), which reveal the target’s trajectory information in a discrete form. In this paper, we review existing GT-based tracking schemes, and then propose a novel passive tracking scheme by exploiting the Intercept Theorem (IT). To create an IT-based CP estimation scheme available in the noisy non-parallel LOSL situation, we develop the equal-ratio traverse (ERT) method. Finally, we analyze properties of three GT-based tracking algorithms and the performance of these schemes is evaluated experimentally under various trajectories, node densities, and noisy topologies. Analysis of experimental results shows that tracking schemes exploiting geometric theorems can achieve remarkable positioning accuracy even under rather a low density of wireless nodes. Moreover, the proposed IT scheme can provide generally finer tracking accuracy under even lower node density and noisier topologies, in comparison to other schemes. PMID:29562621

  7. Is complex allometry in field metabolic rates of mammals a statistical artifact?

    PubMed

    Packard, Gary C

    2017-01-01

    Recent reports indicate that field metabolic rates (FMRs) of mammals conform to a pattern of complex allometry in which the exponent in a simple, two-parameter power equation increases steadily as a dependent function of body mass. The reports were based, however, on indirect analyses performed on logarithmic transformations of the original data. I re-examined values for FMR and body mass for 114 species of mammal by the conventional approach to allometric analysis (to illustrate why the approach is unreliable) and by linear and nonlinear regression on untransformed variables (to illustrate the power and versatility of newer analytical methods). The best of the regression models fitted directly to untransformed observations is a three-parameter power equation with multiplicative, lognormal, heteroscedastic error and an allometric exponent of 0.82. The mean function is a good fit to data in graphical display. The significant intercept in the model may simply have gone undetected in prior analyses because conventional allometry assumes implicitly that the intercept is zero; or the intercept may be a spurious finding resulting from bias introduced by the haphazard sampling that underlies "exploratory" analyses like the one reported here. The aforementioned issues can be resolved only by gathering new data specifically intended to address the question of scaling of FMR with body mass in mammals. However, there is no support for the concept of complex allometry in the relationship between FMR and body size in mammals. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Seasonality on the rainfall partitioning of a fast-growing tree plantation under Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    molina, antonio; llorens, pilar; biel, carme

    2014-05-01

    Studies on rainfall interception in fast-growing tree plantations are less numerous than those in natural forests. Trees in these plantations are regularly distributed, and the canopy cover is clumped but changes quickly, resulting on high variability in the volume and composition of water that reach the soil. In addition, irrigation supply is normally required in semiarid areas to get optimal wood production; consequently, knowing rainfall interception and its yearly evolution is crucial to manage the irrigation scheme properly. This work studies the rainfall partitioning seasonality in a cherry tree (Prunus avium) plantation orientated to timber production under Mediterranean conditions. The monitoring design started on March 2012 and consists of a set of 58 throughfall tipping buckets randomly distributed (based on a 1x1 m2 grid) in a plot of 128 m2 with 8 trees. Stemflow is measured in all the trees with 2 tipping buckets and 6 accumulative collectors. Canopy cover is regularly measured throughout the study period, in leaf and leafless periods, by mean of sky-orientated photographs taken 50 cm above the center of each tipping bucket. Others tree biometrics are also measured such as diameter and leaf area index. Meteorological conditions are measured at 2 m above the forest cover. This work presents the first analyses describing the rainfall partitioning and its dependency on canopy cover, distance to tree and meteorological conditions. The modified Gash' model for rainfall interception in dispersed vegetation is also preliminary evaluated.

  9. Constructing Graphical Representations: Middle Schoolers' Intuitions and Developing Knowledge about Slope and Y-Intercept

    ERIC Educational Resources Information Center

    Hattikudur, Shanta; Prather, Richard W.; Asquith, Pamela; Alibali, Martha W.; Knuth, Eric J.; Nathan, Mitchell

    2012-01-01

    Middle-school students are expected to understand key components of graphs, such as slope and y-intercept. However, constructing graphs is a skill that has received relatively little research attention. This study examined students' construction of graphs of linear functions, focusing specifically on the relative difficulties of graphing slope and…

  10. Beetle fauna captured in traps baited with Tomicus piniperda pheromone blends in a pine stand in Central Croatia

    Treesearch

    Milan Pernek; Boris Hrasovec; Miljenko Zupanic

    2003-01-01

    During field evaluations of pheromone blends used for monitoring Tomicus piniperda beetles, many non-target beetles were captured and identified. Five pheromone blends, plus commercially available TOMODOR were used in two different traps: the IPM Tech Intercept PTBB and the THEYSOHN intercept barrier trap. In addition to Tomicus...

  11. Interception in three dimensions - An energy formulation

    NASA Technical Reports Server (NTRS)

    Rajan, N.; Ardema, M. D.

    1983-01-01

    The problem of minimum-time interception of a target flying in three dimensional space is analyzed with the interceptor aircraft modeled through energy-state approximation. A coordinate transformation that uncouples the interceptor's extremals from the target motion in an open-loop sense is introduced, and the necessary conditions for optimality and the optimal controls are derived. Example extremals are shown.

  12. The Calculus of Elasticity

    ERIC Educational Resources Information Center

    Gordon, Warren B.

    2006-01-01

    This paper examines the elasticity of demand, and shows that geometrically, it may be interpreted as the ratio of two simple distances along the tangent line: the distance from the point on the curve to the x-intercept to the distance from the point on the curve to the y-intercept. It also shows that total revenue is maximized at the transition…

  13. Children's Age-Related Speed--Accuracy Strategies in Intercepting Moving Targets in Two Dimensions

    ERIC Educational Resources Information Center

    Rothenberg-Cunningham, Alek; Newell, Karl M.

    2013-01-01

    Purpose: This study investigated the age-related speed--accuracy strategies of children, adolescents, and adults in performing a rapid striking task that allowed the self-selection of the interception position in a virtual, two-dimensional environment. Method: The moving target had curvilinear trajectories that were determined by combinations of…

  14. Anti-Smoking Practice in Hospitals: An Intercept Survey among Patients in Hubei Province, China

    ERIC Educational Resources Information Center

    Zhou, Dunjin; Yan, Yaqiong; Yu, Huihong; Xia, Qinghua; Yang, Niannian; Zhang, Zhifeng; Zhu, Zhaoyang; Li, Fang; Gong, Jie

    2012-01-01

    Purpose: This study aims to examine whether, in the opinion of patients selected in 13 hospitals of Hubei province, China, hospitals are smoke free. Patients were also asked whether their physicians had inquired about their smoking status. Design/methodology/approach: Patients were recruited through an intercept method (i.e. stopped by the…

  15. The densiometer for measurement of crown intercept above a line transect.

    Treesearch

    J. Edward Dealy

    1960-01-01

    An adaptation in the use of Lemmon's spherical densiometer, has been developed to measure low overstory crown foliage as intercept above a line transect. This adaptation provides added information for the evaluation of ecological relationships within and among plant communities where some species are too low for overstory density estimates and too high for direct...

  16. Comparing Food Label Experiments Using Samples from Web Panels versus Mall Intercepts

    ERIC Educational Resources Information Center

    Chang, LinChiat; Lin, Chung-Tung Jordan

    2015-01-01

    To regulate health messages on food labels, the U.S. Food and Drug Administration (FDA) traditionally relied on mall intercepts to collect consumer data. In recent years, web surveys have presented a viable alternative for presenting visual stimuli with more control and efficiency in data collection. However, there is a paucity of empirical data…

  17. Rainfall Interception by Hardwood Forest Litter in the Southern Appalachians

    Treesearch

    J.D. Helvey

    1964-01-01

    The portion of rainfall over forest cover which does not reach mineral soil can be separated into the parts evaporated from the canopy and from the litter. Canopy interception loss is usually estimated by subtracting the sum of throughfall (water falling through tree crowns) and stemflow (water running down stems) from rainfall measured in forest openings (Hamilton...

  18. Action-perception dissociation in response to target acceleration.

    PubMed

    Dubrowski, Adam; Carnahan, Heather

    2002-05-01

    The purpose of this study was to investigate whether information about the acceleration characteristics of a moving target can be used for both action and perception. Also of interest was whether prior movement experience altered perceptual judgements. Participants manually intercepted targets moving with various acceleration, velocity and movement time characteristics. They also made perceptual judgements about the acceleration characteristics of these targets either with or without prior manual interception experience. Results showed that while aiming kinematics were sensitive to the acceleration characteristics of the target, participants were only able to perceptually discriminate the velocity characteristics of target motion, even after performing interceptive actions to the same targets. These results are discussed in terms of a two channel (action-perception) model of visuomotor control.

  19. Conceptual Design of a Hypervelocity Asteroid Intercept Vehicle (HAIV) Flight Validation Mission

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2013-01-01

    In this paper we present a detailed overview of the MDL study results and subsequent advances in the design of GNC algorithms for accurate terminal guidance during hypervelocity NEO intercept. The MDL study produced a conceptual con guration of the two-body HAIV and its subsystems; a mission scenario and trajectory design for a notional flight validation mission to a selected candidate target NEO; GNC results regarding the ability of the HAIV to reliably intercept small (50 m) NEOs at hypervelocity (typically greater than 10 km/s); candidate launch vehicle selection; a notional operations concept and cost estimate for the flight validation mission; and a list of topics to address during the remainder of our NIAC Phase II study.

  20. Analysis of a range estimator which uses MLS angle measurements

    NASA Technical Reports Server (NTRS)

    Downing, David R.; Linse, Dennis

    1987-01-01

    A concept that uses the azimuth signal from a microwave landing system (MLS) combined with onboard airspeed and heading data to estimate the horizontal range to the runway threshold is investigated. The absolute range error is evaluated for trajectories typical of General Aviation (GA) and commercial airline operations (CAO). These include constant intercept angles for GA and CAO, and complex curved trajectories for CAO. It is found that range errors of 4000 to 6000 feet at the entry of MLS coverage which then reduce to 1000-foot errors at runway centerline intercept are possible for GA operations. For CAO, errors at entry into MLS coverage of 2000 feet which reduce to 300 feet at runway centerline interception are possible.

  1. Assessment of coronary fractional flow reserve using a monorail pressure catheter: the first-in-human ACCESS-NZ trial.

    PubMed

    Menon, Madhav; Jaffe, Warwick; Watson, Tim; Webster, Mark

    2015-07-01

    FFR measurements have been limited by the handling characteristics of pressure wire (PW) systems, and by signal drift. This first-in-human study evaluated the safety and efficacy of a new monorail catheter (Navvus) to assess coronary FFR, compared to a PW system. Resting measurements were acquired with both systems. After initiating IV adenosine, FFR was measured with the PW alone, simultaneously using both systems, and again with PW alone. Any zero offset of PW or Navvus was then recorded. Navvus measured FFR in all patients in whom a PW recording was obtained (50 of 58 patients); there were no complications related to Navvus. Navvus FFR correlated well with PW FFR (r=0.87, slope 1.0, intercept -0.02). Within PW measurement accuracy, in no cases did Navvus FFR classify lesion significance differently from PW FFR. PW signal drift was significantly greater than Navvus (0.06±0.12 vs. 0.02±0.02, p=0.014). Navvus and PW FFR correlated well. Navvus had less sensor drift. This new catheter-based system offers an alternative method for measuring FFR, with some potential advantages over PW.

  2. Dewatering of Chlorella pyrenoidosa using diatomite dynamic membrane: filtration performance, membrane fouling and cake behavior.

    PubMed

    Zhang, Yalei; Zhao, Yangying; Chu, Huaqiang; Zhou, Xuefei; Dong, Bingzhi

    2014-01-01

    The diatomite dynamic membrane (DDM) was utilized to dewater Chlorella pyrenoidosa of 2 g dry weight/L under continuous-flow mode, whose ultimate algae concentration ranged from 43 g to 22 g dry weight/L of different culture time. The stable flux of DDM could reach 30 L/m(2) h over a 24 h operation time without backwash. Influences of extracellular organic matters (EOM) on filtration behavior and membrane fouling were studied. The DDM was divided into three sub-layers, the slime layer, the algae layer and the diatomite layer from the outside to the inside of the cake layer based on components and morphologies. It was found that EOM caused membrane fouling by accumulating in the slime and algae layers. The DDM intercepted polysaccharides, protein-like substances, humic-like substances and some low-MW organics. Proteins were indicated the major membrane foulants with increased protein/polysaccharide ratio from the slime layer to the diatomite layer as culture time increased. This method could be applied to subsequent treatment of microalgae coupling technology of wastewater treatment or microalgae harvesting for producing biofuel. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Urban runoff (URO) process for MODFLOW 2005: simulation of sub-grid scale urban hydrologic processes in Broward County, FL

    USGS Publications Warehouse

    Decker, Jeremy D.; Hughes, J.D.

    2013-01-01

    Climate change and sea-level rise could cause substantial changes in urban runoff and flooding in low-lying coast landscapes. A major challenge for local government officials and decision makers is to translate the potential global effects of climate change into actionable and cost-effective adaptation and mitigation strategies at county and municipal scales. A MODFLOW process is used to represent sub-grid scale hydrology in urban settings to help address these issues. Coupled interception, surface water, depression, and unsaturated zone storage are represented. A two-dimensional diffusive wave approximation is used to represent overland flow. Three different options for representing infiltration and recharge are presented. Additional features include structure, barrier, and culvert flow between adjacent cells, specified stage boundaries, critical flow boundaries, source/sink surface-water terms, and the bi-directional runoff to MODFLOW Surface-Water Routing process. Some abilities of the Urban RunOff (URO) process are demonstrated with a synthetic problem using four land uses and varying cell coverages. Precipitation from a hypothetical storm was applied and cell by cell surface-water depth, groundwater level, infiltration rate, and groundwater recharge rate are shown. Results indicate the URO process has the ability to produce time-varying, water-content dependent infiltration and leakage, and successfully interacts with MODFLOW.

  4. Tracing hydrologic pathways using chloride at the Panola mountain research watershed, Georgia, USA

    USGS Publications Warehouse

    Peters, N.E.; Ratcliffe, E.B.

    1998-01-01

    An analysis of chloride (Cl-) concentrations and fluxes at the 41 ha Panola Mountain Research Watershed indicates that Cl- may be used effectively to differentiate 'new' and 'old' water flow through the hillslope and their respective contributions to streamwater. Rainfall and throughfall, the 'new' water inputs, are marked by low Cl- concentrations (30 ??eq L-1). Timing of soil water transport is not sufficiently rapid to suggest that soil water from this hillslope site (20 m from the stream) contributes to streamwater during individual rainstorms. The source of streamflow, therefore, must be a combination of channel interception, overland flow and soil water from nearchannel areas, and run off from a 3 ha bedrock outcrop in the headwaters Groundwater contribution to streamflow was estimated using Cl- concentrations of throughfall and groundwater as the two end members for a two-component hydrograph separation. For the study period, groundwater contributed 79% of the streamflow and from 1985 to 1995, contributed 75% of the streamflow. Rainfall was the source of 45% of the Cl- flux from the watershed in the long term; the remaining Cl- is hypothesized to be derived from dry deposition, consistent with the enrichment noted for throughfall. At peak flow during individual rainstorms, 'new' water can contribute 95% of the runoff.

  5. Massive shelf dense water flow influences plankton community structure and particle transport over long distance.

    PubMed

    Bernardi Aubry, Fabrizio; Falcieri, Francesco Marcello; Chiggiato, Jacopo; Boldrin, Alfredo; Luna, Gian Marco; Finotto, Stefania; Camatti, Elisa; Acri, Francesco; Sclavo, Mauro; Carniel, Sandro; Bongiorni, Lucia

    2018-03-14

    Dense waters (DW) formation in shelf areas and their cascading off the shelf break play a major role in ventilating deep waters, thus potentially affecting ecosystem functioning and biogeochemical cycles. However, whether DW flow across shelves may affect the composition and structure of plankton communities down to the seafloor and the particles transport over long distances has not been fully investigated. Following the 2012 north Adriatic Sea cold outbreak, DW masses were intercepted at ca. 460 km south the area of origin and compared to resident ones in term of plankton biomass partitioning (pico to micro size) and phytoplankton species composition. Results indicated a relatively higher contribution of heterotrophs in DW than in deep resident water masses, probably as result of DW-mediated advection of fresh organic matter available to consumers. DWs showed unusual high abundances of Skeletonema sp., a diatom that bloomed in the north Adriatic during DW formation. The Lagrangian numerical model set up on this diatom confirmed that DW flow could be an important mechanism for plankton/particles export to deep waters. We conclude that the predicted climate-induced variability in DW formation events could have the potential to affect the ecosystem functioning of the deeper part of the Mediterranean basin, even at significant distance from generation sites.

  6. Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds

    USGS Publications Warehouse

    Bearup, Lindsay A.; Maxwell, Reed M.; Clow, David W.; McCray, John E.

    2014-01-01

    The recent climate-exacerbated mountain pine beetle infestation in the Rocky Mountains of North America has resulted in tree death that is unprecedented in recorded history. The spatial and temporal heterogeneity inherent in insect infestation creates a complex and often unpredictable watershed response, influencing the primary storage and flow components of the hydrologic cycle. Despite the increased vulnerability of forested ecosystems under changing climate1, watershed-scale implications of interception, ground evaporation, and transpiration changes remain relatively unknown, with conflicting reports of streamflow perturbations across regions. Here, contributions to streamflow are analysed through time and space to investigate the potential for increased groundwater inputs resulting from hydrologic change after infestation. Results demonstrate that fractional late-summer groundwater contributions from impacted watersheds are 30 ± 15% greater after infestation and when compared with a neighbouring watershed that experienced earlier and less-severe attack, albeit uncertainty propagations through time and space are considerable. Water budget analysis confirms that transpiration loss resulting from beetle kill can account for the relative increase in groundwater contributions to streams, often considered the sustainable flow fraction and critical to mountain water supplies and ecosystems.

  7. Aerodynamic tricks for pitching oscillation and visual stabilization in a hovering bird

    NASA Astrophysics Data System (ADS)

    Su, Jian-Yuan; Ting, Shang-Chieh; Yang, Jing-Tang

    2010-11-01

    We experimentally investigate how small birds attain a stabilized vision and body posture during hovering. Wing-beats of finches and passerines executing asymmetrical hovering provide lift merely during the downstroke. The downstroke lift is significantly greater than the bird weight, thereby causing a pitch-up swing of the bird body. A hovering bird skillfully and unceasingly tunes the position and orientation of lift force to stabilize its vision, so that the eye displacement is approximately one-tenth less than the tail, causing an illusion that the bird body is rotating about the eye. The hovering birds also spread and fold periodically their tail with an evident phase relationship with respect to the beating wings. We found that hovering birds use their tail to intercept the strong downward air-flow induced by the downstroking wings, and sophisticatedly spread their tail upon the arrival of the downward air-flow, rendering a pitch-up moment that effectively counteracts the pitch-down body rotation. Hence during hovering the bird essentially undergoes a dynamically-stable pitching oscillation, and concurrently attains a stabilized vision.

  8. First flush of storm runoff pollution from an urban catchment in China.

    PubMed

    Li, Li-Qing; Yin, Cheng-Qing; He, Qing-Ci; Kong, Ling-Li

    2007-01-01

    Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events. The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity. The fractions of pollution load transported by the first 30% of runoff volume (FF30) were 52.2%-72.1% for total suspended solids (TSS), 53.0%-65.3% for chemical oxygen demand (COD), 40.4%-50.6% for total nitrogen (TN), and 45.8%-63.2% for total phosphorus (TP), respectively. Runoff pollution was positively related to non-raining days before the rainfall. Intercepting the first 30% of runoff volume can remove 62.4% of TSS load, 59.4% of COD load, 46.8% of TN load, and 54.1% of TP load, respectively, according to all the storm events. It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.

  9. Remote sensing requirements as suggested by watershed model sensitivity analyses

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Rango, A.; Ormsby, J. P.; Ambaruch, R.

    1975-01-01

    A continuous simulation watershed model has been used to perform sensitivity analyses that provide guidance in defining remote sensing requirements for the monitoring of watershed features and processes. The results show that out of 26 input parameters having meaningful effects on simulated runoff, 6 appear to be obtainable with existing remote sensing techniques. Of these six parameters, 3 require the measurement of the areal extent of surface features (impervious areas, water bodies, and the extent of forested area), two require the descrimination of land use that can be related to overland flow roughness coefficient or the density of vegetation so as to estimate the magnitude of precipitation interception, and one parameter requires the measurement of distance to get the length over which overland flow typically occurs. Observational goals are also suggested for monitoring such fundamental watershed processes as precipitation, soil moisture, and evapotranspiration. A case study on the Patuxent River in Maryland shows that runoff simulation is improved if recent satellite land use observations are used as model inputs as opposed to less timely topographic map information.

  10. Elucidating the role of vegetation in the initiation of rainfall-induced shallow landslides: Insights from an extreme rainfall event in the Colorado Front Range

    USGS Publications Warehouse

    McGuire, Luke; Rengers, Francis K.; Kean, Jason W.; Coe, Jeffrey A.; Mirus, Benjamin B.; Baum, Rex L.; Godt, Jonathan W.

    2016-01-01

    More than 1100 debris flows were mobilized from shallow landslides during a rainstorm from 9 to 13 September 2013 in the Colorado Front Range, with the vast majority initiating on sparsely vegetated, south facing terrain. To investigate the physical processes responsible for the observed aspect control, we made measurements of soil properties on a densely forested north facing hillslope and a grassland-dominated south facing hillslope in the Colorado Front Range and performed numerical modeling of transient changes in soil pore water pressure throughout the rainstorm. Using the numerical model, we quantitatively assessed interactions among vegetation, rainfall interception, subsurface hydrology, and slope stability. Results suggest that apparent cohesion supplied by roots was responsible for the observed connection between debris flow initiation and slope aspect. Results suggest that future climate-driven modifications to forest structure could substantially influence landslide hazards throughout the Front Range and similar water-limited environments where vegetation communities may be more susceptible to small variations in climate.

  11. Definition of Tenuipalpus sensu stricto (Acari, Tenuipalpidae), with redescription of Tenuipalpus caudatus (Dugès) and description of a new species from Costa Rica

    USDA-ARS?s Scientific Manuscript database

    We discuss the taxonomic history of the genus Tenuipalpus Donnadieu and re-describe Tenuipalpus caudatus (Dugès) (= T. palmatus Donnadieu) based on specimens from Portugal intercepted at the United States ports of entry, and references including photographic records of the neotype of T. caudatus. In...

  12. Supporting Safe Content-Inspection of Web Traffic

    DTIC Science & Technology

    2008-09-01

    domain exchanges are cases in point. A number of interception-based func- tions require deep inspection of the traffic, meaning operations that need to...suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway...distribution unlimited 13. SUPPLEMENTARY NOTES CROSSTALK The Journal of Defense Software Engineering September 2008 14. ABSTRACT 15. SUBJECT

  13. Surface storage of rainfall in tree crowns: not all trees are equal

    Treesearch

    E. Gregory McPherson; Q. Xiao; Natalie van Doorn; P. Peper; E. Teach

    2017-01-01

    Urban forests can be an effective strategy for managing stormwater. The soil that supports tree growth acts like a reservoir that reduces runoff. The tree crown intercepts rainfall on leaves and stems and its evaporation reduces water reaching the ground below. Until now surface storage capacities have been studied only for forest trees. Based on forest research, green...

  14. Department of the Navy 1994 Posture Statement. ’Revolutionizing Our Naval Forces’

    DTIC Science & Technology

    1994-01-01

    heavy metals . "* Marine biochemistry and remediation of harbor sediments . "* Vessel anti-fouling coatings based on environmentally benign compounds...Naval: and Coast Guard assets, often in company with foreign navies, are performing Maritime Interception Operations in-theRed Sea and Northern Arabian ...FROM THE SEA : NAVAL FORCES IN ACTION ......................... 7 NATIONAL COMMAND AUTHORITIES ................................. 8

  15. Debugging classification and anti-debugging strategies

    NASA Astrophysics Data System (ADS)

    Gao, Shang; Lin, Qian; Xia, Mingyuan; Yu, Miao; Qi, Zhengwei; Guan, Haibing

    2011-12-01

    Debugging, albeit useful for software development, is also a double-edge sword since it could also be exploited by malicious attackers. This paper analyzes the prevailing debuggers and classifies them into 4 categories based on the debugging mechanism. Furthermore, as an opposite, we list 13 typical anti-debugging strategies adopted in Windows. These methods intercept specific execution points which expose the diagnostic behavior of debuggers.

  16. Water Holding as Determinant for the Elastically Stored Energy in Protein-Based Gels.

    PubMed

    Pouvreau, Laurice; van Wijlen, Emke; Klok, Jan; Urbonaite, Vaida; Munialo, Claire D; de Jongh, Harmen H J

    2016-04-01

    To evaluate the importance of the water holding capacity for the elastically stored energy of protein gels, a range of gels were created from proteins from different origin (plant: pea and soy proteins, and animal: whey, blood plasma, egg white proteins, and ovalbumin) varying in network morphology set by the protein concentration, pH, ionic strength, or the presence of specific ions. The results showed that the observed positive and linear relation between water holding (WH) and elastically stored energy (RE) is generic for globular protein gels studied. The slopes of this relation are comparable for all globular protein gels (except for soy protein gels) whereas the intercept is close to 0 for most of the systems except for ovalbumin and egg white gels. The slope and intercept obtained allows one to predict the impact of tuning WH, by gel morphology or network stiffness, on the mechanical deformation of the protein-based gel. Addition of charged polysaccharides to a protein system leads to a deviation from the linear relation between WH and RE and this deviation coincides with a change in phase behavior. © 2016 Institute of Food Technologists®

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. CANAVAN

    Space Based Interceptor (SBI) have ranges that are adequate to address rogue ICBMs. They are not overly sensitive to 30-60 s delay times. Current technologies would support boost phase intercept with about 150 interceptors. Higher acceleration and velocity could reduce than number by about a factor of 3 at the cost of heavier and more expensive Kinetic Kill Vehicles (KKVs). 6g SBI would reduce optimal constellation costs by about 35%; 8g SBI would reduce them another 20%. Interceptor ranges fall rapidly with theater missile range. Constellations increase significantly for ranges under 3,000 km, even with advanced interceptor technology. For distributedmore » launches, these estimates recover earlier strategic scalings, which demonstrate the improved absentee ratio for larger or multiple launch areas. Constellations increase with the number of missiles and the number of interceptors launched at each. The economic estimates above suggest that two SBI per missile with a modest midcourse underlay is appropriate. The SBI KKV technology would appear to be common for space- and surface-based boost phase systems, and could have synergisms with improved midcourse intercept and discrimination systems. While advanced technology could be helpful in reducing costs, particularly for short range theater missiles, current technology appears adequate for pressing rogue ICBM, accidental, and unauthorized launches.« less

  18. Risk Reduction and Soil Ecosystem Restoration in an Active Oil Producing Area in an Ecologically Sensitive Setting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerry L. Sublette; Greg Thoma; Kathleen Duncan

    2006-01-01

    The empowerment of small independent oil and gas producers to solve their own remediation problems will result in greater environmental compliance and more effective protection of the environment as well as making small producers more self-reliant. In Chapter 1 we report on the effectiveness of a low-cost method of remediation of a combined spill of crude oil and brine in the Tallgrass Prairie Preserve in Osage County, OK. Specifically, we have used hay and fertilizer as amendments for remediation of both the oil and the brine. No gypsum was used. Three spills of crude oil plus produced water brine weremore » treated with combinations of ripping, fertilizers and hay, and a downslope interception trench in an effort to demonstrate an inexpensive, easily implemented, and effective remediation plan. There was no statistically significant effect of treatment on the biodegradation of crude oil. However, TPH reduction clearly proceeded in the presence of brine contamination. The average TPH half-life considering all impacted sites was 267 days. The combination of hay addition, ripping, and a downslope interception trench was superior to hay addition with ripping, or ripping plus an interception trench in terms of rates of sodium and chloride leaching from the impacted sites. Reductions in salt inventories (36 months) were 73% in the site with hay addition, ripping and an interception trench, 40% in the site with hay addition and ripping only, and < 3% in the site with ripping and an interception trench.« less

  19. Quantifying interception associated with new urban vegetation canopies

    NASA Astrophysics Data System (ADS)

    Yerk, W.; Montalto, F. A.

    2013-12-01

    Interception of precipitation by vegetation canopies has long been recognized as an important component of the hydrologic cycle, though most research has been in closed or sparse canopy forests. Much less work has been published on interception by urban vegetation, and especially associated with the low growing shrubs commonly installed in green infrastructure program. To inform urban watershed model with vegetation-specific interception data, a field experiment was designed to directly measure canopy throughfall associated with two shrub species commonly included in urban greening programs. Data was collected at a high (e.g. five second) sampling frequency. A non-parametric Kruskal-Wallis test performed on data collected between August and October of 2012 demonstrated statistically significant (p= 0.0011) differences in recorded throughfall between two species (94% for Itea virginica, 86% for Cornus sericea). Additionally, the results suggested that the relationship of throughfall to rainfall intensity varied by species. For Itea, the ratio of throughfall to precipitation intensity was close to 1:1. However, for Cornus, the throughfall rate was on average slower (or 0.85 of the precipitation intensity). An improved and expanded set-up installed in 2013 added two additional species (Prunus laurocerasus and Hydrangea quercifolia). The 2013 results confirm interspecies differences in both throughfall amount, and in the relationship of throughfall rate to precipitation intensity. The results are discussed with respect to droplet splashing and enhanced evaporation within the canopy. Both years' findings suggest that the quantity of water intercepted by vegetation canopies exceeds the canopy storage capacity, as assumed in many conventional hydrologic models.

  20. Metastability and emergent performance of dynamic interceptive actions.

    PubMed

    Pinder, Ross A; Davids, Keith; Renshaw, Ian

    2012-09-01

    Adaptive patterning of human movement is context specific and dependent on interacting constraints of the performer-environment relationship. Flexibility of skilled behaviour is predicated on the capacity of performers to move between different states of movement organisation to satisfy dynamic task constraints, previously demonstrated in studies of visual perception, bimanual coordination, and an interceptive combat task. Metastability is a movement system property that helps performers to remain in a state of relative coordination with their performance environments, poised between multiple co-existing states (stable and distinct movement patterns or responses). The aim of this study was to examine whether metastability could be exploited in externally paced interceptive actions in fast ball sports, such as cricket. Here we report data on metastability in performance of multi-articular hitting actions by skilled junior cricket batters (n=5). Participants' batting actions (key movement timings and performance outcomes) were analysed in four distinct performance regions varied by ball pitching (bounce) location. Results demonstrated that, at a pre-determined distance to the ball, participants were forced into a meta-stable region of performance where rich and varied patterns of functional movement behaviours emerged. Participants adapted the organisation of responses, resulting in higher levels of variability in movement timing in this performance region, without detrimental effects on the quality of interceptive performance outcomes. Findings provide evidence for the emergence of metastability in a dynamic interceptive action in cricket batting. Flexibility and diversity of movement responses were optimised using experiential knowledge and careful manipulation of key task constraints of the specific sport context. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using a dynamic functional–structural plant model

    PubMed Central

    Chen, Tsu-Wei; Nguyen, Thi My Nguyet; Kahlen, Katrin; Stützel, Hartmut

    2014-01-01

    There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional–structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length:width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is ‘ideal’ in a given environment. PMID:25183746

  2. Synchronizing Self and Object Movement: How Child and Adult Cyclists Intercept Moving Gaps in a Virtual Environment

    ERIC Educational Resources Information Center

    Chihak, Benjamin J.; Plumert, Jodie M.; Ziemer, Christine J.; Babu, Sabarish; Grechkin, Timofey; Cremer, James F.; Kearney, Joseph K.

    2010-01-01

    Two experiments examined how 10- and 12-year-old children and adults intercept moving gaps while bicycling in an immersive virtual environment. Participants rode an actual bicycle along a virtual roadway. At 12 test intersections, participants attempted to pass through a gap between 2 moving, car-sized blocks without stopping. The blocks were…

  3. Recurrent bridgehead effects accelerate global alien ant spread

    Treesearch

    Cleo Bertelsmeier; Sébastien Ollier; Andrew M. Liebhold; Eckehard G. Brockerhoff; Darren Ward; Laurent Keller

    2018-01-01

    Biological invasions are a major threat to biological diversity, agriculture, and human health. To predict and prevent new invasions, it is crucial to develop a better understanding of the drivers of the invasion process. The analysis of 4,533 border interception events revealed that at least 51 different alien ant species were intercepted at US ports over a period of...

  4. Top-Level Players' Visual Control of Interceptive Actions: Bootsma and Van Wieringen (1990) 20 Years Later

    ERIC Educational Resources Information Center

    Bootsma, Reinoud J.; Fernandez, Laure; Morice, Antoine H. P.; Montagne, Gilles

    2010-01-01

    Using a two-step approach, Van Soest et al. (2010) recently questioned the pertinence of the conclusions drawn by Bootsma and Van Wieringen (1990) with respect to the visual regulation of an exemplary rapid interceptive action: the attacking forehand drive in table tennis. In the first step, they experimentally compared the movement behaviors of…

  5. An improved growth intercept method for estimating site index of red pine.

    Treesearch

    David H. Alban

    1972-01-01

    Equations for predicting red pine (Pinus resinosa Ait.) site index from various internode lengths were developed from ring counts on sectioned trees form 69 natural stands in Minnesota. The precision of estimating site index was much improved by measuring the 5-year growth intercept beginning at 7 feet above the ground rather than at the conventional breast height....

  6. Test of Slope and Intercept Bias in College Admissions: A Response to Aguinis, Culpepper, and Pierce (2010)

    ERIC Educational Resources Information Center

    Mattern, Krista D.; Patterson, Brian F.

    2013-01-01

    Research on the predictive bias of cognitive tests has generally shown (a) no slope effects and (b) small intercept effects, typically favoring the minority group. Aguinis, Culpepper, and Pierce (2010) simulated data and demonstrated that statistical artifacts may have led to a lack of power to detect slope differences and an overestimate of the…

  7. Evaluation of Model Specification, Variable Selection, and Adjustment Methods in Relation to Propensity Scores and Prognostic Scores in Multilevel Data

    ERIC Educational Resources Information Center

    Yu, Bing; Hong, Guanglei

    2012-01-01

    This study uses simulation examples representing three types of treatment assignment mechanisms in data generation (the random intercept and slopes setting, the random intercept setting, and a third setting with a cluster-level treatment and an individual-level outcome) in order to determine optimal procedures for reducing bias and improving…

  8. Intercept™ Panel Trap (INT PT) effective in management of forest Coleoptera

    Treesearch

    D. Czokajlo; J. McLaughlin; L. I. Abu Ayyash; S. Teale; J. Wickham; J. Warren; R. Hoffman; B. Aukema; K. Raffa; P. Kirsch

    2003-01-01

    Trap efficacy in capturing economically important forest Coleoptera was measured in field trials comparing the Intercept Panel Trap (INT PT) with the Multi-Funnel Trap. The INT PT was designed to provide a better option for the monitoring of forest Coleoptera. The trap is made of corrugated plastic and is very robust under rigorous field conditions, but still...

  9. Dilution of Fluon Before Trap Surface Treatment Has No Effect on Longhorned Beetle (Coleoptera: Cerambycidae) Captures

    Treesearch

    Jeremy D. Allison; Elizabeth E. Graham; Therese M. Poland; Brian L. Strom

    2016-01-01

    Several studies have observed that trap captures of longhorned beetles (Coleoptera: Cerambycidae) can be increased by treating the surface of intercept traps with a lubricant. In addition to being expensive, these treatments can alter the spectral properties of intercept traps when applied neat. These surface treatments, particularly Fluon, are commonly used diluted as...

  10. Average Annual Rainfall over the Globe

    ERIC Educational Resources Information Center

    Agrawal, D. C.

    2013-01-01

    The atmospheric recycling of water is a very important phenomenon on the globe because it not only refreshes the water but it also redistributes it over land and oceans/rivers/lakes throughout the globe. This is made possible by the solar energy intercepted by the Earth. The half of the globe facing the Sun, on the average, intercepts 1.74 ×…

  11. A method to study response of large trees to different amounts of available soil water

    Treesearch

    D.H. Marx; Shi-Jean S. Sung; J.S. Cunningham; M.D. Thompson; L.M. White

    1995-01-01

    A method was developed to manipulate available soil water on large trees by intercepting thrufall with gutters placed under tree canopies and irrigating the intercepted thrufall onto other trees. With this design, trees were exposed for 2 years to either 25% less thrufall, normal thrufall, or 25% additional thrufall.Undercanopy construction in these plots moderately...

  12. A Method to Study Response of Large Trees to Different Amounts of Available Soil Water

    Treesearch

    Donald H. Marx; Shi-jean S. Sung; James S. Cunningham; Michael D. Thompson; Linda M. White

    1995-01-01

    A method was developed to manipulate available soil water on large trees by intercepting thrufall with gutters placed under tree canopies and irrigating the intercepted thrufall onto other trees. With this design, trees were exposed for 2 years to either 25 percent less thrufall, normal tbrufall,or 25 percent additional thrufall. Undercanopy construction in these plots...

  13. Using Multisite Experiments to Study Cross-Site Variation in Treatment Effects: A Hybrid Approach with Fixed Intercepts and A Random Treatment Coefficient

    ERIC Educational Resources Information Center

    Bloom, Howard S.; Raudenbush, Stephen W.; Weiss, Michael J.; Porter, Kristin

    2017-01-01

    The present article considers a fundamental question in evaluation research: "By how much do program effects vary across sites?" The article first presents a theoretical model of cross-site impact variation and a related estimation model with a random treatment coefficient and fixed site-specific intercepts. This approach eliminates…

  14. Trajectories of teacher-student warmth and conflict at the transition to middle school: Effects on academic engagement and achievement.

    PubMed

    Hughes, Jan N; Cao, Qian

    2018-04-01

    Using piece-wise longitudinal trajectory analysis, this study investigated trajectories of teacher-reported warmth and conflict in their relationships with students 4years prior to and 3years following the transition to middle school in a sample of 550 academically at-risk and ethnically diverse adolescents. At the transition to middle school, teacher reports of warmth showed a significant drop (shift in intercept), above age-related declines. Both warmth and conflict declined across the middle school years. Structural equation modeling (SEM) tested effects of the shifts in intercept and the post-transition slopes on reading and math achievement, teacher-rated engagement, and student-reported school belonging 3years post-transition, above pre-transition levels of the outcome. For warmth, a drop in intercept predicted lower math scores and engagement, and a more positive slope predicted higher engagement. For conflict, an increase in intercept and a negative slope predicted lower engagement. Implications of findings for reducing normative declines in academic engagement in middle school are discussed. Copyright © 2017 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  15. The influence of sugarcane crop development on rainfall interception losses

    NASA Astrophysics Data System (ADS)

    Fernandes, Rafael Pires; Silva, Robson Willians da Costa; Salemi, Luiz Felippe; Andrade, Tatiana Morgan Berteli de; Moraes, Jorge Marcos de; Dijk, Albert I. J. M. Van; Martinelli, Luiz Antonio

    2017-08-01

    The expansion of sugarcane plantations in Brazil has raised concerns regarding its hydrological impacts. One of these impacts is related to rainfall interception, which can be expected to vary in response to substantial changes in canopy structure throughout the cropping cycle. We collected field measurements to determine interception losses and interpreted the observations using an adapted Gash model during different stages of a sugarcane ratoon cropping cycle. Cumulative gross rainfall (PG), throughfall (TF) and stemflow (SF) were measured biweekly, along with vegetation structure measurements of leaf area index (LAI) and plant height. For the first 300 days after the first harvest, the cumulative PG of 1095 mm was partitioned into 635 mm TF (58%) and 263 mm SF (24%). The inferred interception loss (IL) was 263 mm (24%). There was a gradual and clear increase in IL from 3% to 46% while partitioning between TF and SF also changed during ratoon regrowth. After model parameter optimisation, observed IL was simulated satisfactorily. Model estimates suggested that evaporation from the saturated canopy is the main IL pathway, followed by evaporation after storms. Plant architecture, LAI and meteorological conditions during the cropping cycle appeared the main factors determining IL.

  16. [Characteristics of rainfall interception by Caragana korshinskii and Hippophae rhamnoides in Loess Plateau of Northwest China].

    PubMed

    Jian, Sheng-Qi; Zhao, Chuan-Yan; Fang, Shu-Min; Yu, Kai; Wang, Yang; Liu, Yi-Yue; Zheng, Xiang-Lin; Peng, Shou-Zhang

    2012-09-01

    From May to October 2011, an investigation was conducted on the effects of rainfall and its intensity on the canopy interception, throughfall, and stemflow of Caragana korshinskii and Hippophae rhamnoides, the main shrub species commonly planted to stabilize soil and water in the Anjiagou catchment of Loess Plateau. A total of 47 rainfall events were observed, most of which were featured with low intensity, and the total amount and average intensity of the rainfalls were 208.9 mm and 2.82 mm x h(-1), respectively. As a whole, the rainfall events of 2-10 mm and 0.1-2 mm x h(-1) had the highest frequency. The canopy interception, throughfall, and stemflow of C. korshinski were 58.5 mm (28%), 124.7 mm (59.7%), and 25.7 mm (12.3%), while those of H. rhamnoides were 17.6 mm (8.4%), 153. 1 mm (73.3%), and 38.2 mm (18.3%), respectively. Regression analysis showed that the canopy interception, throughfall, and stemflow of the two shrub species all had significant positive correlations with the rainfall amount, and had exponent or power correlations with the rainfall amount and the maximum rainfall intensity in 10 minutes.

  17. Do executive functions explain the covariance between internalizing and externalizing behaviors?

    PubMed

    Hatoum, Alexander S; Rhee, Soo Hyun; Corley, Robin P; Hewitt, John K; Friedman, Naomi P

    2017-11-16

    This study examined whether executive functions (EFs) might be common features of internalizing and externalizing behavior problems across development. We examined relations between three EF latent variables (a common EF factor and factors specific to updating working memory and shifting sets), constructed from nine laboratory tasks administered at age 17, to latent growth intercept (capturing stability) and slope (capturing change) factors of teacher- and parent-reported internalizing and externalizing behaviors in 885 individual twins aged 7 to 16 years. We then estimated the proportion of intercept-intercept and slope-slope correlations predicted by EF as well as the association between EFs and a common psychopathology factor (P factor) estimated from all 9 years of internalizing and externalizing measures. Common EF was negatively associated with the intercepts of teacher-rated internalizing and externalizing behavior in males, and explained 32% of their covariance; in the P factor model, common EF was associated with the P factor in males. Shifting-specific was positively associated with the externalizing slope across sex. EFs did not explain covariation between parent-rated behaviors. These results suggest that EFs are associated with stable problem behavior variation, explain small proportions of covariance, and are a risk factor that that may depend on gender.

  18. Interception of moving objects while walking in children with spastic hemiparetic cerebral palsy.

    PubMed

    Ricken, Annieck X C; Savelsbergh, G J P; Bennett, S J

    2007-01-15

    The purpose of the study was to examine the coordination of reaching and walking behaviour when children with Spastic Hemiparetic Cerebral Palsy (SHCP) intercept an approaching and hence externally-timed object. Using either the impaired or non-impaired arm, children intercepted a ball approaching from a fixed distance with one of three velocities. Each participant's initial starting position was scaled to their maximum walking velocity determined prior to testing; for the medium ball velocity, participants would arrive at the point of interception at the correct time if they walked with their maximum velocity. Children with SHCP adapted their reaching and walking behaviour to the different ball approach velocities. These adaptations were exhibited when using the impaired and non-impaired arm, and resulted in similar outcome performance irrespective of which arm was used. Still, children with SHCP found it necessary to increase trunk movement to compensate for the decreased elbow excursion and a decreased peak velocity of the impaired arm. Children with SHCP exhibited specific adaptations to their altered movement capabilities when performing a behaviourally-realistic task. The provision of an external timing constraint appeared to facilitate both reaching and walking movements and hence could represent a useful technique in rehabilitation.

  19. To what extent can green infrastructure mitigate downstream flooding in a peri-urban catchment?

    NASA Astrophysics Data System (ADS)

    Schubert, J. E.; Burns, M.; Sanders, B. F.; Flethcher, T.

    2016-12-01

    In this research, we couple an urban hydrologic model (MUSIC, eWater, AUS) with a fine resolution 2D hydrodynamic model (BreZo, UC Irvine, USA) to test to what extent retrofitting an urban watershed with stormwater control measures (SCMs) can propagate flood management benefits downstream. Our study site is the peri-urban Little Stringybark Creek (LSC) catchment in eastern Melbourne, AUS, with an area of 4.5 km2 and connected impervious area of 9%. Urban development is mainly limited to the upper 2 km2of the catchment. Since 2009 the LSC catchment has been the subject of a large-scale experiment aiming to restore morenatural flow by implementing over 300 SCMs, such as rain tanks and infiltration trenches, resulting in runoff from 50% of connected impervious areas now being intercepted by some form of SCM. For our study we calibrated the hydrologic and hydraulic models based on current catchment conditions, then we developed models representing alternative SCM scenarios including a complete lack of SCMs versus a full implementation of SCMs. Flow in the hydrologic/hydraulic models is forced using a range of synthetic rainfall events with annual exceedance probabilities (AEPs) between 63-1% and durations between 10 min to 24 hr. Metrics of SCM efficacy in changing flood regime include flood depths and extents, flow intensity (m2/s), flood duration, and critical storm duration leading to maximum flood conditions. Results indicate that across the range of AEPs tested and for storm durations equal or less than 3 hours, current SCM conditions reduce downstream flooded area on average by 29%, while a full implementation of SCMs would reduce downstream flooded area on average by 91%. A full implementation of SCMs could also lower maximum flow intensities by 83% on average, reducing damage potential to structures in the flow path and increasing the ability for vehicles to evacuate flooded streets. We also found that for storm durations longer than 3 hours, the SCMs capacity to retain rainfall runoff volumes is much decreased, with a full implementation of SCMs only reducing flooded area by 8% and flow intensity by 5.5%. Therefore additional measures are required for downstream flood hazard mitigation from long duration events.

  20. Habituation in acoustic startle reflex: individual differences in personality.

    PubMed

    Blanch, Angel; Balada, Ferran; Aluja, Anton

    2014-03-01

    This study analyzed the relationship of individual differences in personality with habituation in the acoustic startle response (ASR). Data from nine trials in ASR to white noise bursts and a personality questionnaire based on the alternative big five personality approach were modelled with a latent growth curve (LCM) including intercept and slope habituation growth factors. There was a negative correlation between the intercept and slope, indicating that individuals with higher initial ASR levels had also a more pronounced and faster decrease in the ASR. Contrary to expectations, Extraversion and Sensation Seeking did not relate with habituation in ASR. Neuroticism and Aggressiveness related asymmetrically with the habituation rate in ASR. Higher levels of Neuroticism were related with faster habituation, whereas higher levels of Aggressiveness were related with slower habituation. Further studies with the LCM should be undertaken to clarify in a greater extent the association of personality with habituation in ASR. Copyright © 2014 Elsevier B.V. All rights reserved.

Top