Sample records for intercomparison studies program

  1. ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann; Ackerman, Andrew; Petch, Jon; Field, Paul; Hill, Adrian; McFarquhar, Greg; Xie, Shaocheng; Zhang, Minghua

    2010-01-01

    Specifications are provided for running a cloud-resolving model (CRM) and submitting results in a standardized format for inclusion in a n intercomparison study and archiving for public access. The simulated case study is based on measurements obtained during the 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) led by the U. S. department of Energy Atmospheric Radiation Measurement (ARM) program. The modeling intercomparison study is based on objectives developed in concert with the Stratospheric Processes And their Role in Climate (SPARC) program and the GEWEX cloud system study (GCSS) program. The Global Energy and Water Cycle Experiment (GEWEX) is a core project of the World Climate Research PRogramme (WCRP).

  2. ISMIP6: Ice Sheet Model Intercomparison Project for CMIP6

    NASA Technical Reports Server (NTRS)

    Nowicki, S.

    2015-01-01

    ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6) targets the Cryosphere in a Changing Climate and the Future Sea Level Grand Challenges of the WCRP (World Climate Research Program). Primary goal is to provide future sea level contribution from the Greenland and Antarctic ice sheets, along with associated uncertainty. Secondary goal is to investigate feedback due to dynamic ice sheet models. Experiment design uses and augment the existing CMIP6 (Coupled Model Intercomparison Project Phase 6) DECK (Diagnosis, Evaluation, and Characterization of Klima) experiments. Additonal MIP (Model Intercomparison Project)- specific experiments will be designed for ISM (Ice Sheet Model). Effort builds on the Ice2sea, SeaRISE (Sea-level Response to Ice Sheet Evolution) and COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) efforts.

  3. Radon intercomparisons at EML, January 1983 and February 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.; George, A.C.; Keller, H.W.

    1985-02-01

    This report summarizes the results of two radon measurement intercomparison exercises held at the Environmental Measurements Laboratory (EML) in January 1983 and February 1984. Nineteen organizations, including five US federal facilities, one national laboratory, two state laboratories, six universities, three private sector laboratories and two non-US facilities participated in these exercises. The results indicate good agreement among the participants at /sup 222/Rn concentration levels of 50 and 80 pCi.L/sup -1/. Improvements in the EML calibration facilities, and the participation of two US laboratories in a Nuclear Energy Agency intercomparison program are also discussed. 8 references, 6 figures, 8 tables.

  4. PM 2.5 CHEMICAL SPECIATION SAMPLER EVALUATION FIELD PROGRAM: RESULTS FROM THE FOUR CITY STUDY

    EPA Science Inventory

    The objective of this sampler intercomparison field study is to determine the performance characteristics for the collection of the chemical components of PM2.5 by the chemical speciation monitors developed for the national network relative to each other, to the Federal Referen...

  5. Data Quality Assessment of In Situ and Altimeter Observations Through Two-Way Intercomparison Methods

    NASA Astrophysics Data System (ADS)

    Guinehut, Stephanie; Valladeau, Guillaume; Legeais, Jean-Francois; Rio, Marie-Helene; Ablain, Michael; Larnicol, Gilles

    2013-09-01

    This proceeding presents an overview of the two-way inter-comparison activities performed at CLS for both space and in situ observation agencies and why this activity is a required step to obtain accurate and homogenous data sets that can then be used together for climate studies or in assimilation/validation tools. We first describe the work performed in the frame of the SALP program to assess the stability of altimeter missions through SSH comparisons with tide gauges (GLOSS/CLIVAR network). Then, we show how the SSH comparison between the Argo array and altimeter time series allows the detection of drifts or jumps in altimeter (SALP program) but also for some Argo floats (Ifremer/Coriolis center). Lastly, we describe how the combine use of altimeter and wind observations helps the detection of drogue loss of surface drifting buoys (GDP network) and allow the computation of a correction term for wind slippage.

  6. Intercomparisons of radiosondes and an airborne refractometer for measuring radio ducts

    NASA Astrophysics Data System (ADS)

    Morrissey, J. F.; Izumi, Y.; Cote, O. R.

    1986-07-01

    The capabilities of two types of radiosondes and an aircraft refractometer to measure radio ducting conditions were compared in a series of flights in September 1985 at Chatham, Mass., on Cape Cod. The tests were part of a program studying radio propagation on Air Force communication links. The intercomparisons were made between data from a refractometer mounted on a small single engine aircraft (Cessna 172) and data from an operational National Weather Service synoptic sounding system. The synoptic sonde and the portable sonde were often on the same balloon train. The comparisons show that the aircraft refractometer data indicate the highest number of ducts and the synoptic data the least number of ducts.

  7. An intercomparison of carbon monoxide, nitric oxide, and hydroxyl measurement techniques - Overview of results

    NASA Technical Reports Server (NTRS)

    Hoell, J. M.; Gregory, G. L.; Carroll, M. A.; Mcfarland, M.; Ridley, B. A.; Davis, D. D.; Bradshaw, J.; Rodgers, M. O.; Torres, A. L.; Condon, E. P.

    1984-01-01

    Results from an intercomparison of methods to measure carbon monoxide (CO), nitric oxide (NO), and the hydroxyl radical (OH) are discussed. The intercomparison was conducted at Wallops Island, Virginia, in July 1983 and included a laser differential absorption and three grab sample/gas chromatograph methods for CO, a laser-induced fluorescence (LIF) and two chemiluminescence methods for NO, and two LIF methods and a radiocarbon tracer method for OH. The intercomparison was conducted as a field measurement program involving ambient measurements of CO (150-300 ppbv) and NO (10-180 pptv) from a common manifold with controlled injection of CO in incremental steps from 20 to 500 ppbv and NO in steps from 10 to 220 pptv. Only ambient measurements of OH were made. The agreement between the techniques was on the order of 14 percent for CO and 17 percent for NO. Hardware difficulties during the OH tests resulted in a data base with insufficient data and uncertanties too large to permit a meaningful intercomposition.

  8. Climate observing system studies: An element of the NASA Climate Research Program: Workshop report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Plans for NASA's efforts in climatology were discussed. Targets for a comprehensive observing system for the early 1990's were considered. A program to provide useful data in the near and mid-term, and a program to provide for a feasibility assessment of instruments and methods for the development of a long-term system were discussed. Climate parameters that cannot be measured from space were identified. Long-term calibration, intercomparison, standards, and ground truth were discussed.

  9. RESULTS FROM THE NORTH AMERICAN MERCURY MODEL INTER-COMPARISON STUDY (NAMMIS)

    EPA Science Inventory

    A North American Mercury Model Intercomparison Study (NAMMIS) has been conducted to build upon the findings from previous mercury model intercomparison in Europe. In the absence of mercury measurement networks sufficient for model evaluation, model developers continue to rely on...

  10. Comprehensive Australasian multicentre dosimetric intercomparison: issues, logistics and recommendations.

    PubMed

    Ebert, M A; Harrison, K M; Cornes, D; Howlett, S J; Joseph, D J; Kron, T; Hamilton, C S; Denham, J W

    2009-02-01

    The present paper describes the logistics of the 2004-2008 Australasian Level III Dosimetry Intercomparison. Dosimetric intercomparisons (or 'audits') can be used in radiotherapy to evaluate the accuracy and quality of radiation delivery. An intercomparison was undertaken in New Zealand and Australia to evaluate the feasibility and logistics of ongoing dosimetric intercomparisons that evaluate all steps in the radiotherapy treatment process, known as a 'Level III' intercomparison. The study commenced in 2002 with the establishment of a study team, definition of the study protocol, acquisition of appropriate equipment and recruitment of participating radiotherapy centres. Measurements were undertaken between October 2004 and March 2008, and included collation of data on time, costs and logistics of the study. Forty independent Australian and New Zealand radiotherapy centres agreed to participate. Measurement visits were made to 37 of these centres. Data is presented on the costs of the study and the level of support required. The study involved the participation of 16 staff at the study centre who invested over 4000 hours in the study, and of over 200 professionals at participating centres. Recommendations are provided for future phantom-based intercomparisons. It is hoped that the present paper will be of benefit to any centres or groups contemplating similar activities by identifying the processes involved in establishing the study, the potential hazards and pitfalls, and expected resource requirements.

  11. Earth orientation from lunar laser ranging and an error analysis of polar motion services

    NASA Technical Reports Server (NTRS)

    Dickey, J. O.; Newhall, X. X.; Williams, J. G.

    1985-01-01

    Lunar laser ranging (LLR) data are obtained on the basis of the timing of laser pulses travelling from observatories on earth to retroreflectors placed on the moon's surface during the Apollo program. The modeling and analysis of the LLR data can provide valuable insights into earth's dynamics. The feasibility to model accurately the lunar orbit over the full 13-year observation span makes it possible to conduct relatively long-term studies of variations in the earth's rotation. A description is provided of general analysis techniques, and the calculation of universal time (UT1) from LLR is discussed. Attention is also given to a summary of intercomparisons with different techniques, polar motion results and intercomparisons, and a polar motion error analysis.

  12. Emergency radiobioassay preparedness exercises through the NIST radiochemistry intercomparison program.

    PubMed

    Nour, Svetlana; LaRosa, Jerry; Inn, Kenneth G W

    2011-08-01

    The present challenge for the international emergency radiobioassay community is to analyze contaminated samples rapidly while maintaining high quality results. The National Institute of Standards and Technology (NIST) runs a radiobioassay measurement traceability testing program to evaluate the radioanalytical capabilities of participating laboratories. The NIST Radiochemistry Intercomparison Program (NRIP) started more than 10 years ago, and emergency performance testing was added to the program seven years ago. Radiobioassay turnaround times under the NRIP program for routine production and under emergency response scenarios are 60 d and 8 h, respectively. Because measurement accuracy and sample turnaround time are very critical in a radiological emergency, response laboratories' analytical systems are best evaluated and improved through traceable Performance Testing (PT) programs. The NRIP provides participant laboratories with metrology tools to evaluate their performance and to improve it. The program motivates the laboratories to optimize their methodologies and minimize the turnaround time of their results. Likewise, NIST has to make adjustments and periodical changes in the bioassay test samples in order to challenge the participating laboratories continually. With practice, radioanalytical measurements turnaround time can be reduced to 3-4 h.

  13. Intercomparison of Clean Air Status and Trends Network (CASTNET) NO3 - and HNO3 Measurements with Data from Other Monitoring Programs

    EPA Science Inventory

    The EPA Clean Air Status and Trends Network (CASTNET) utilizes an open face filter pack system to measure concentrations of atmospheric sulfur and nitrogen species. The purpose of this study was to estimate the uncertainty in seasonal and annual concentrations of HNO3, NO3 - , ...

  14. The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation research activity for historical period model intercomparison and future climate change conditions with participation of multiple crop and agricultural economic model groups around the...

  15. PNNL Results from 2010 CALIBAN Criticality Accident Dosimeter Intercomparison Exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Robin L.; Conrady, Matthew M.

    2011-10-28

    This document reports the results of the Hanford personnel nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on September 20-23, 2010. Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimeter intercomparison exercise at the Commissariat a Energie Atomique (CEA) Valduc Center near Dijon, France on September 20-23, 2010. The intercomparison exercise was funded by the U.S. Department of Energy, Nuclear Criticality Safety Program, with Lawrence Livermore National Laboratory as the lead Laboratory. PNNL was one of six invited DOE Laboratory participants. The other participatingmore » Laboratories were: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 National Security Complex at Oak Ridge, and Sandia National Laboratory (SNL). The goals of PNNL's participation in the intercomparison exercise were to test and validate the procedures and algorithm currently used for the Hanford personnel nuclear accident dosimeters (PNADs) on the metallic reactor, CALIBAN, to test exposures to PNADs from the side and from behind a phantom, and to test PNADs that were taken from a historical batch of Hanford PNADs that had varying degrees of degradation of the bare indium foil. Similar testing of the PNADs was done on the Valduc SILENE test reactor in 2009 (Hill and Conrady, 2010). The CALIBAN results are reported here.« less

  16. The Program for climate Model diagnosis and Intercomparison: 20-th anniversary Symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Gerald L; Bader, David C; Riches, Michael

    Twenty years ago, W. Lawrence (Larry) Gates approached the U.S. Department of Energy (DOE) Office of Energy Research (now the Office of Science) with a plan to coordinate the comparison and documentation of climate model differences. This effort would help improve our understanding of climate change through a systematic approach to model intercomparison. Early attempts at comparing results showed a surprisingly large range in control climate from such parameters as cloud cover, precipitation, and even atmospheric temperature. The DOE agreed to fund the effort at the Lawrence Livermore National Laboratory (LLNL), in part because of the existing computing environment andmore » because of a preexisting atmospheric science group that contained a wide variety of expertise. The project was named the Program for Climate Model Diagnosis and Intercomparison (PCMDI), and it has changed the international landscape of climate modeling over the past 20 years. In spring 2009 the DOE hosted a 1-day symposium to celebrate the twentieth anniversary of PCMDI and to honor its founder, Larry Gates. Through their personal experiences, the morning presenters painted an image of climate science in the 1970s and 1980s, that generated early support from the international community for model intercomparison, thereby bringing PCMDI into existence. Four talks covered Gates's early contributions to climate research at the University of California, Los Angeles (UCLA), the RAND Corporation, and Oregon State University through the founding of PCMDI to coordinate the Atmospheric Model Intercomparison Project (AMIP). The speakers were, in order of presentation, Warren Washington [National Center for Atmospheric Research (NCAR)], Kelly Redmond (Western Regional Climate Center), George Boer (Canadian Centre for Climate Modelling and Analysis), and Lennart Bengtsson [University of Reading, former director of the European Centre for Medium-Range Weather Forecasts (ECMWF)]. The afternoon session emphasized the scientific ideas that are the basis of PCMDI's success, summarizing their evolution and impact. Four speakers followed the various PCMDI-supported climate model intercomparison projects, beginning with early work on cloud representations in models, presented by Robert D. Cess (Distinguished Professor Emeritus, Stony Brook University), and then the latest Cloud Feedback Model Intercomparison Projects (CFMIPs) led by Sandrine Bony (Laboratoire de M'©t'©orologie Dynamique). Benjamin Santer (LLNL) presented a review of the climate change detection and attribution (D & A) work pioneered at PCMDI, and Gerald A. Meehl (NCAR) ended the day with a look toward the future of climate change research.« less

  17. The April 1994 and October 1994 radon intercomparisons at EML

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.; George, A.C.; Perry, P.M.

    1995-10-01

    Quality assurance/quality control (QA/QC) are the backbone of many commercial and research processes and programs. QA/QC research tests the state of a functioning system, be it the production of manufactured goods or the ability to make accurate and precise measurements. The quality of the radon measurements in the US have been tested under controlled conditions in semi-annual radon gas intercomparison exercises sponsored by the Environmental Measurements Laboratory (EML) since 1981. The two Calendar Year 1994 radon gas intercomparison exercises were conducted in the EML exposure chamber. Thirty-two groups including US Federal facilities, USDOE contractors, national and state laboratories, universities andmore » foreign institutions participated in these exercises. The majority of the participant`s results were within {+-}10% of the EML value at radon concentrations of 570 and 945 Bq m{sup {minus}3}.« less

  18. Benefits of Sharing Information: Supermodel Ensemble and Applications in South America

    NASA Astrophysics Data System (ADS)

    Dias, P. L.

    2006-05-01

    A model intercomparison program involving a large number of academic and operational institutions has been implemented in South America since 2003, motivated by the SALLJEX Intercomparison Program in 2003 (a research program focused on the identification of the role of the Andes low level jet moisture transport from the Amazon to the Plata basin) and the WMO/THORPEX (www.wmo.int/thorpex) goals to improve predictability through the proper combination of numerical weather forecasts. This program also explores the potential predictability associated with the combination of a large number of possible scenarios in the time scale of a few days to up to 15 days. Five academic institutions and five operational forecasting centers in several countries in South America, 1 academic institution in the USA, and the main global forecasting centers (NCEP, UKMO, ECMWF) agreed to provide numerical products based on operational and experimental models. The metric for model validation is concentrated on the fit of the forecast to surface observations. Meteorological data from airports, synoptic stations operated by national weather services, automatic data platforms maintained by different institutions, the PIRATA buoys etc are all collected through LDM/NCAR or direct transmission. Approximately 40 models outputs are available on a daily basis, twice a day. A simple procedure based on data assimilation principles was quite successful in combining the available forecasts in order to produce temperature, dew point, wind, pressure and precipitation forecasts at station points in S. America. The procedure is based on removing each model bias at the observational point and a weighted average based on the mean square error of the forecasts. The base period for estimating the bias and mean square error is of the order of 15 to 30 days. Products of the intercomparison model program and the optimal statistical combination of the available forecasts are public and available in real time (www.master.iag.usp.br/). Monitoring of the use of the products reveal a growing trend in the last year (reaching about 10.000 accesses per day in recent months). The intercomparison program provides a rich data set for educational products (real time use in Synoptic Meteorology and Numerical Weather Forecasting lectures), operational weather forecasts in national or regional weather centers and for research purposes. During the first phase of the program it was difficult to convince potential participants to share the information in the public homepage. However, as the system evolved, more and more institutions became associated with the program. The general opinion of the participants is that the system provides an unified metric for evaluation, a forum for discussion of the physical origin of the model forecast differences and therefore improvement of the quality of the numerical guidance.

  19. Airborne sulfur trace species intercomparison campaign: Sulfur dioxide, dimethylsulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Hoell, James M., Jr.; Davis, Douglas D.

    1991-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of sulfur trace gases are presented. The intercomparison was part of the NASA Global Tropospheric Experiment (GTE) and was conducted during the summer of 1989. The intercomparisons were conducted on the Wallops Electra aircraft during flights from Wallops Island, Virginia, and Natal, Brazil. Sulfur measurements intercompared included sulfur dioxide (SO2), dimethylsulfide (DMS), hydrogen sulfide (H2S), carbon disulfide (CS2), and carbonyl sulfide (OCS). Measurement techniques ranged from filter collection systems with post-flight analyses to mass spectrometer and gas chromatograph systems employing various methods for measuring and identifying the sulfur gases during flight. Sampling schedules for the techniques ranged from integrated collections over periods as long as 50 minutes to one- to three-minute samples every ten or fifteen minutes. Several of the techniques provided measurements of more than one sulfur gas. Instruments employing different detection principles were involved in each of the sulfur intercomparisons. Also included in the intercomparison measurement scenario were a host of supporting measurements (i.e., ozone, nitrogen oxides, carbon monoxide, total sulfur, aerosols, etc.) for purposes of: (1) interpreting results (i.e., correlation of any noted instrument disagreement with the chemical composition of the measurement environment); and (2) providing supporting chemical data to meet CITE-3 science objectives of studying ozone/sulfur photochemistry, diurnal cycles, etc. The results of the intercomparison study are briefly discussed.

  20. [Implementation of quality standard UNE-EN ISO/IEC 17043 in the External Quality Control Program of the Spanish Society of Infectious Diseases and Clinical Microbiology].

    PubMed

    Poveda Gabaldón, Marta; Ovies, María Rosario; Orta Mira, Nieves; Serrano, M del Remedio Guna; Avila, Javier; Giménez, Alicia; Cardona, Concepción Gimeno

    2011-12-01

    The quality standard "UNE-EN-ISO 17043: 2010. Conformity assessment. General requirements for proficiency testing" applies to centers that organize intercomparisons in all areas. In the case of clinical microbiology laboratories, these intercomparisons must meet the management and technical standards required to achieve maximum quality in the performance of microbiological analysis and the preparation of test items (sample, product, data or other information used in the proficiency test) to enable them to be accredited. Once accredited, these laboratories can operate as a tool for quality control laboratories and competency assessment. In Spain, accreditation is granted by the Spanish Accreditation Body [Entidad Nacional de Acreditación (ENAC)]. The objective of this review is to explain how to apply the requirements of the standard to laboratories providing intercomparisons in the field of clinical microbiology (the organization responsible for all the tasks related to the development and operation of a proficiency testing program). This requires defining the scope and specifying the technical requirements (personnel management, control of equipment, facilities and environment, the design of the proficiency testing and data analysis for performance evaluation, communication with participants and confidentiality) and management requirements (document control, purchasing control, monitoring of complaints / claims, non-compliance, internal audits and management reviews). Copyright © 2011 Elsevier España S.L. All rights reserved.

  1. Low-cost solar array project: Four absolute cavity radiometer (pyrheliometer) intercomparisons at New River, Arizona: Radiometer standards

    NASA Technical Reports Server (NTRS)

    Estey, R. S.; Seaman, C. H.

    1981-01-01

    Four detailed intercomparisons were made for a number of models of cavity-type self-calibrating radiometers (pyrheliometers). Each intercomparison consisted of simultaneous readings of pyrheliometers at 30-second intervals in runs of 10 minutes, with at least 15 runs per intercomparison. Twenty-seven instruments were in at least one intercomparison, and five were in all four. Summarized results and all raw data are provided from the intercomparisons.

  2. Middle Atmosphere Program. Handbook for MAP. Volume 12: Coordinated Study of the Behavior of the Middle Atmosphere in Winter (PMP-1) Workshops

    NASA Technical Reports Server (NTRS)

    Rodgers, C. D. (Editor)

    1984-01-01

    Intercomparison of middle atmosphere meteorological data from a variety of sources is discussed. The primary aim was to intercompare data on stratospheric and mesospheric temperatures from a variety of sounding systems in order to characterize the differences, to understand the reasons for them, and to help users of the data to understand how these differences will affect derived quantities such as heat and momentum fluxes which are significant in studies of stratospheric dynamics.

  3. NOAA National Status and Trends Program Twelfth Round Intercomparison Exercise Results for Trace Metals in Marine Sediments and Biological Tissues. National Status and Trends Program for marine environmental quality: Technical memo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willie, S.

    1998-11-01

    The report summarizes the results of the Twelfth Round Intercomparison for Trace Metals in Marine Sediments and Biological Tissues under the directive of the NOAA National Status and Trends Program. A total of forty-four participants were included in the exercise, including NOAA, USEPA, state, Austrailian, Canadian, Mexican and Argentinean laboratories. Two samples were sent by NRC to each participant, a marine sediment collected on the east coast of Canada and a freeze-dried mussel tissue. Laboratories were also asked to analyze two certified reference materials (CRMs) MESS-2 and CRM 2976. The elements to be determined were Al, Cr, Fe, Ni, Cu,more » Zn, As, Se, Ag, Cd, Sn, Hg, and Pb for both matrices, plus Be, Si, Mn, Sb, and Tl for the sediments. An accepted mean and confidence interval was calculated for each analyte in the two unknown samples, laboratory biases were identified and an overall rating of superior, good, fair or others were assigned to each laboratory.« less

  4. INTERCOMPARISON STUDY OF ATMOSPHERIC MERCURY MODELS: 1. COMPARISON OF MODELS WITH SHORT-TERM MEASUREMENTS

    EPA Science Inventory

    Five regional scale models with a horizontal domain covering the European continent and its surrounding seas, one hemispheric and one global scale model participated in an atmospheric mercury modelling intercomparison study. Model-predicted concentrations in ambient air were comp...

  5. Invited Article: Radon and thoron intercomparison experiments for integrated monitors at NIRS, Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janik, M., E-mail: mirek@fml.nirs.go.jp; Ishikawa, T.; Omori, Y.

    Inhalation of radon ({sup 222}Rn) and its short-lived decay products and of products of the thoron ({sup 220}Rn) series accounts for more than half of the effective dose from natural radiation sources. At this time, many countries have begun large-scale radon and thoron surveys and many different measurement methods and instruments are used in these studies. Consequently, it is necessary to improve and standardize technical methods of measurements and to verify quality assurance by intercomparisons between laboratories. Four international intercomparisons for passive integrating radon and thoron monitors were conducted at the NIRS (National Institute of Radiological Sciences, Japan). Radon exercisesmore » were carried out in the 24.4 m{sup 3} inner volume walk-in radon chamber that has systems to control radon concentration, temperature, and humidity. Moreover, the NIRS thoron chamber with a 150 dm{sup 3} inner volume was utilized to provide three thoron intercomparisons. At present, the NIRS is the only laboratory world-wide that has carried out periodic thoron intercomparison of passive monitors. Fifty laboratories from 26 countries participated in the radon intercomparison, using six types of detectors (charcoal, CR-39, LR 115, polycarbonate film, electret plate, and silicon photodiode). Eighteen laboratories from 12 countries participated in the thoron intercomparisons, using two etch-track types (CR-39 and polycarbonate) detectors. The tests were made under one to three different exposures to radon and thoron. The data presented in this paper indicated that the performance quality of laboratories for radon measurement has been gradually increasing. Results of thoron exercises showed that the quality for thoron measurements still needs further development and additional studies are needed to improve its measuring methods. The present paper provides a summary of all radon and thoron international intercomparisons done at NIRS from 2007 to date and it describes the present status on radon and thoron passive, one-time cycle monitors.« less

  6. THE NORTH AMERICAN MERCURY MODEL INTER-COMPARISON STUDY (NAMMIS)

    EPA Science Inventory

    This paper describes the North American Mercury Model Inter-comparison Study (NAMMIS). The NAMMIS is an effort to apply atmospheric Hg models in a tightly constrained testing environment with a focus on North America. With each model using the same input data sets for initial co...

  7. The Continuous Intercomparison of Radiation Codes (CIRC): Phase I Cases

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Mlawer, Eli; Delamere, Jennifer; Shippert, Timothy; Turner, David D.; Miller, Mark A.; Minnis, Patrick; Clough, Shepard; Barker, Howard; Ellingson, Robert

    2007-01-01

    CIRC aspires to be the successor to ICRCCM (Intercomparison of Radiation Codes in Climate Models). It is envisioned as an evolving and regularly updated reference source for GCM-type radiative transfer (RT) code evaluation with the principle goal to contribute in the improvement of RT parameterizations. CIRC is jointly endorsed by DOE's Atmospheric Radiation Measurement (ARM) program and the GEWEX Radiation Panel (GRP). CIRC's goal is to provide test cases for which GCM RT algorithms should be performing at their best, i.e, well characterized clear-sky and homogeneous, overcast cloudy cases. What distinguishes CIRC from previous intercomparisons is that its pool of cases is based on observed datasets. The bulk of atmospheric and surface input as well as radiative fluxes come from ARM observations as documented in the Broadband Heating Rate Profile (BBHRP) product. BBHRP also provides reference calculations from AER's RRTM RT algorithms that can be used to select the most optimal set of cases and to provide a first-order estimate of our ability to achieve radiative flux closure given the limitations in our knowledge of the atmospheric state.

  8. Pliocene Model Intercomparison (PlioMIP) Phase 2: Scientific Objectives and Experimental Design

    NASA Technical Reports Server (NTRS)

    Haywood, A. M.; Dowsett, H. J.; Dolan, A. M.; Rowley, D.; Abe-Ouchi, A.; Otto-Bliesner, B.; Chandler, M. A.; Hunter, S. J.; Lunt, D. J.; Pound, M.; hide

    2015-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP operates under the umbrella of the Palaeoclimate Modelling Intercomparison Project (PMIP), which examines multiple intervals in Earth history, the consistency of model predictions in simulating these intervals and their ability to reproduce climate signals preserved in geological climate archives. This paper provides a thorough model intercomparison project description, and documents the experimental design in a detailed way. Specifically, this paper describes the experimental design and boundary conditions that will be utilized for the experiments in Phase 2 of PlioMIP.

  9. Solid precipitation measurement intercomparison in Bismarck, North Dakota, from 1988 through 1997

    USGS Publications Warehouse

    Ryberg, Karen R.; Emerson, Douglas G.; Macek-Rowland, Kathleen M.

    2009-01-01

    A solid precipitation measurement intercomparison was recommended by the World Meteorological Organization (WMO) and was initiated after approval by the ninth session of the Commission for Instruments and Methods of Observation. The goal of the intercomparison was to assess national methods of measuring solid precipitation against methods whose accuracy and reliability were known. A field study was started in Bismarck, N. Dak., during the 1988-89 winter as part of the intercomparison. The last official field season of the WMO intercomparison was 1992-93; however, the Bismarck site continued to operate through the winter of 1996-97. Precipitation events at Bismarck were categorized as snow, mixed, or rain on the basis of descriptive notes recorded as part of the solid precipitation intercomparison. The rain events were not further analyzed in this study. Catch ratios (CRs) - the ratio of the precipitation catch at each gage to the true precipitation measurement (the corrected double fence intercomparison reference) - were calculated. Then, regression analysis was used to develop equations that model the snow and mixed precipitation CRs at each gage as functions of wind speed and temperature. Wind speed at the gages, functions of temperature, and upper air conditions (wind speed and air temperature at 700 millibars pressure) were used as possible explanatory variables in the multiple regression analysis done for this study. The CRs were modeled by using multiple regression analysis for the Tretyakov gage, national shielded gage, national unshielded gage, AeroChem gage, national gage with double fence, and national gage with Wyoming windshield. As in earlier studies by the WMO, wind speed and air temperature were found to influence the CR of the Tretyakov gage. However, in this study, the temperature variable represented the average upper air temperature over the duration of the event. The WMO did not use upper air conditions in its analysis. The national shielded and unshielded gages where found to be influenced by functions of wind speed only, as in other studies, but the upper air wind speed was used as an explanatory variable in this study. The AeroChem gage was not used in the WMO intercomparison study for 1987-93. The AeroChem gage had a highly varied CR at Bismarck, and a number of variables related to wind speed and temperature were used in the model for the CR. Despite extensive efforts to find a model for the national gage with double fence, no statistically significant regression model was found at the 0.05 level of statistical significance. The national gage with Wyoming windshield had a CR modeled by temperature and wind speed variables, and the regression relation had the highest coefficient of determination (R2 = 0.572) and adjusted coefficient of multiple determination (R2a = 0.476) of all of the models identified for any gage. Three of the gage CRs evaluated could be compared with those in the WMO intercomparison study for 1987-93. The WMO intercomparison had the advantage of a much larger dataset than this study. However, the data in this study represented a longer time period. Snow precipitation catch is highly varied depending on the equipment used and the weather conditions. Much of the variation is not accounted for in the WMO equations or in the equations developed in this study, particularly for unshielded gages. Extensive attempts at regression analysis were made with the mixed precipitation data, but it was concluded that the sample sizes were not large enough to model the CRs. However, the data could be used to test the WMO intercomparison equations. The mixed precipitation equations for the Tretyakov and national shielded gages are similar to those for snow in that they are more likely to underestimate precipitation when observed amounts were small and overestimate precipitation when observed amounts were relatively large. Mixed precipitation is underestimated by the WMO adjustment and t

  10. Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, A.; Andreas, A.; Ottoson, L.

    2014-05-01

    This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

  11. Intercomparison of Radiation Codes in Climate Models (ICRCCM) Infrared (Clear-Sky) Line-by Line Radiative Fluxes (DB1002)

    DOE Data Explorer

    Arking, A.; Ridgeway, B.; Clough, T.; Iacono, M.; Fomin, B.; Trotsenko, A.; Freidenreich, S.; Schwarzkopf, D.

    1994-01-01

    The intercomparison of Radiation Codes in Climate Models (ICRCCM) study was launched under the auspices of the World Meteorological Organization and with the support of the U.S. Department of Energy to document differences in results obtained with various radiation codes and radiation parameterizations in general circulation models (GCMs). ICRCCM produced benchmark, longwave, line-by-line (LBL) fluxes that may be compared against each other and against models of lower spectral resolution. During ICRCCM, infrared fluxes and cooling rates for several standard model atmospheres with varying concentrations of water vapor, carbon dioxide, and ozone were calculated with LBL methods at resolutions of 0.01 cm-1 or higher. For comparison with other models, values were summed for the IR spectrum and given at intervals of 5 or 10 cm-1. This archive contains fluxes for ICRCCM-prescribed clear-sky cases. Radiative flux and cooling-rate profiles are given for specified atmospheric profiles for temperature, water vapor, and ozone-mixing ratios. The archive contains 328 files, including spectral summaries, formatted data files, and a variety of programs (i.e., C-shell scripts, FORTRAN codes, and IDL programs) to read, reformat, and display data. Collectively, these files require approximately 59 MB of disk space.

  12. INTERCOMPARISON STUDY OF ATMOSPHERIC MERCURY MODELS: 2. MODELING RESULTS VS. LONG-TERM OBSERVATIONS AND COMPARISON OF COUNTRY ATMOSPHERIC BALANCES

    EPA Science Inventory

    Five regional scale models with a horizontal domain covering the European continent and its surrounding seas, two hemispheric and one global scale model participated in the atmospheric Hg modelling intercomparison study. The models were compared between each other and with availa...

  13. Results of the August 1977 Soviet and American meterological rocketsonde intercomparison held at Wallops Island, Virginia

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Duke, J. R.; Ivanovsky, A. I.; Chernyshenko, Y. M.

    1980-01-01

    A coordinated program of rocketsonde investigations along about 60 deg E and 70 deg W between the United States and U.S.S.R. is discussed. The rocketsonde instruments used by the U.S. and U.S.S.R. were compared and the results are presented. The U.S. Super Loki Datasonde and the U.S.S.R. M100B rocketsonde are discussed. Results indicate that the U.S/U.S.S.R. rocketsonde measurement agreement improved since the 1973 intercomparisons. It was learned that the mean of the differences of the temperatures compare to within 6 C at about 60 km and to within 2 C near 50 km. Wind measurements were also found to agree.

  14. An intercomparison of aircraft instrumentation for tropospheric measurements of sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Davis, Douglas D.; Beltz, Nobert; Bandy, Alan R.; Ferek, Ronald J.; Thornton, Donald C.

    1993-01-01

    As part of the NASA Tropospheric Chemistry Program, a series of field intercomparisons have been conducted to evaluate the state-of-the art for measuring key tropospheric species. One of the objectives of the third intercomparison campaign in this series, Chemical Instrumentation Test and Evaluation 3 (CITE 3), was to evaluate instrumentation for making reliable tropospheric aircraft measurements of sulfur dioxide, dimethyl sulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide. This paper reports the results of the intercomparisons of five sulfur dioxide measurement methods ranging from filter techniques, in which samples collected in flight are returned to the laboratory for analyses (chemiluminescent or ion chromatographic), to near real-time, in-flight measurements via gas chromatographic, mass spectrometric, and chemiluminescent techniques. All techniques showed some tendency to track sizeable changes in ambient SO2 such as those associated with altitude changes. For SO2 mixing ratios in the range of 200 pptv to a few ppbv, agreement among the techniques varies from about 30% to several orders of magnitude, depending upon the pair of measurements intercompared. For SO2 mixing ratios less than 200 pptv, measurements from the techniques are uncorrelated. In general, observed differences in the measurement of standards do not account for the flight results. The CITE 3 results do not unambiguously identify one or more of the measurement techniques as providing valid or invalid SO2 measurements, but identify the range of 'potential' uncertainty in SO2 measurements reported by currently available instrumentation and as measured under realistic aircraft environments.

  15. Joint ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study: Description, Preliminary Results, and Invitation to Participate

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Ackerman, A. S.; Allen, G.; Beringer, J.; Comstock, J. M.; Field, P. R.; Gallagher, M.; Hacker, J. M.; Hume, T.; Jakob, C.; Liu, G.; Long, C. N.; Mather, J. H.; May, P. T.; McCoy, R. F.; McFarlane, S. A.; McFarquhar, G. M.; Minnis, P.; Petch, J. C.; Schumacher, C.; Turner, D. D.; Whiteway, J. A.; Williams, C. R.; Williams, P. I.; Xie, S.; Zhang, M.

    2008-12-01

    The 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) is 'the first field program in the tropics that attempted to describe the evolution of tropical convection, including the large-scale heat, moisture, and momentum budgets at 3-hourly time resolution, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment' [May et al., 2008]. A cloud- resolving model (CRM) intercomparison based on TWP-ICE is now being undertaken by the Atmospheric Radiation Measurement (ARM), GEWEX Cloud Systems Study (GCSS), and Stratospheric Processes And their Role in Climate (SPARC) programs. We summarize the 16-day case study and the wealth of data being used to provide initial and boundary conditions, and evaluate some preliminary findings in the context of existing theories of moisture evolution in the tropical tropopause layer (TTL). Overall, simulated cloud fields evolve realistically by many measures. Budgets indicate that simulated convective flux convergence of water vapor is always positive or near zero at TTL elevations, except locally at lower levels during the driest suppressed monsoon conditions, while simulated water vapor deposition to hydrometeors always exceeds sublimation on average at all TTL elevations over 24-hour timescales. The next largest water vapor budget term is generally the nudging required to keep domain averages consistent with observations, which is at least partly attributable to large-scale forcing terms that cannot be derived from measurements. We discuss the primary uncertainties.

  16. Atmospheric Radiation Measurement Program Facilities Newsletter - September 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdridge, D. J., ed

    The Atmospheric Radiation Measurement Program September 1999 Facilities Newsletter discusses the several Intensive Observation Periods (IOPs) that the ARM SGP CART site will host in the near future. Two projects of note are the International Pyrgeometer Intercomparison and the Fall Single Column Model (SCM)/Nocturnal Boundary Layer (NBL) IOP. Both projects will bring many US and international scientists to the SGP CART site to participate in atmospheric research.

  17. Agricultural model intercomparison and improvement project: Overview of model intercomparisons

    USDA-ARS?s Scientific Manuscript database

    Improvement of crop simulation models to better estimate growth and yield is one of the objectives of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The overall goal of AgMIP is to provide an assessment of crop model through rigorous intercomparisons and evaluate future clim...

  18. Estimating near-road pollutant dispersion: a model inter-comparison

    EPA Science Inventory

    A model inter-comparison study to assess the abilities of steady-state Gaussian dispersion models to capture near-road pollutant dispersion has been carried out with four models (AERMOD, run with both the area-source and volume-source options to represent roadways, CALINE, versio...

  19. An Analysis of Simulated Wet Deposition of Mercury from the North American Mercury Model Intercomparison Study

    EPA Science Inventory

    A previous intercomparison of atmospheric mercury models in North America has been extended to compare simulated and observed wet deposition of mercury. Three regional-scale atmospheric mercury models were tested; CMAQ, REMSAD and TEAM. These models were each employed using thr...

  20. METHODS INTERCOMPARISON OF SAMPLERS FOR EPA'S NATIONAL PM 2.5 CHEMICAL SPECIATION NETWORK

    EPA Science Inventory

    The objective of this sampler intercomparison field study is to determine the performance characteristics for the collection of the chemical components of PM2.5 by the chemical speciation monitors developed for the national PM2.5 network relative to each other, to the Federal R...

  1. Composite Study Of Aerosol Long-Range Transport Events From East Asia And North America

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Waliser, D. E.; Guan, B.; Xavier, P.; Petch, J.; Klingaman, N. P.; Woolnough, S.

    2011-12-01

    While the Madden-Julian Oscillation (MJO) exerts pronounced influences on global climate and weather systems, current general circulation models (GCMs) exhibit rather limited capability in representing this prominent tropical variability mode. Meanwhile, the fundamental physics of the MJO are still elusive. Given the central role of the diabatic heating for prevailing MJO theories and demands for reducing the model deficiencies in simulating the MJO, a global model inter-comparison project on diabatic processes and vertical heating structure associated with the MJO has been coordinated through a joint effort by the WCRP-WWRP/THORPEX YOTC MJO Task Force and GEWEX GASS Program. In this presentation, progress of this model inter-comparison project will be reported, with main focus on climate simulations from about 27 atmosphere-only and coupled GCMs. Vertical structures of heating and diabatic processes associated with the MJO based on multi-model simulations will be presented along with their reanalysis and satellite estimate counterparts. Key processes possibly responsible for a realistic simulation of the MJO, including moisture-convection interaction, gross moist stability, ocean coupling, and surface heat flux, will be discussed.

  2. Forward Model Studies of Water Vapor Using Scanning Microwave Radiometers, Global Positioning System, and Radiosondes during the Cloudiness Intercomparison Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattioli, Vinia; Westwater, Ed R.; Gutman, S.

    2005-05-01

    Brightness temperatures computed from five absorption models and radiosonde observations were analyzed by comparing them with measurements from three microwave radiometers at 23.8 and 31.4 GHz. Data were obtained during the Cloudiness Inter-Comparison experiment at the U.S. Department of Energy's Atmospheric Radiation Measurement Program's (ARM) site in North-Central Oklahoma in 2003. The radiometers were calibrated using two procedures, the so-called instantaneous ?tipcal? method and an automatic self-calibration algorithm. Measurements from the radiometers were in agreement, with less than a 0.4-K difference during clear skies, when the instantaneous method was applied. Brightness temperatures from the radiometer and the radiosonde showed anmore » agreement of less than 0.55 K when the most recent absorption models were considered. Precipitable water vapor (PWV) computed from the radiometers were also compared to the PWV derived from a Global Positioning System station that operates at the ARM site. The instruments agree to within 0.1 cm in PWV retrieval.« less

  3. Reproducibility in cyclostratigraphy: initiating an intercomparison project

    NASA Astrophysics Data System (ADS)

    Sinnesael, Matthias; De Vleeschouwer, David; Zeeden, Christian; Claeys, Philippe

    2017-04-01

    The study of astronomical climate forcing and the application of cyclostratigraphy have experienced a spectacular growth over the last decades. In the field of cyclostratigraphy a broad range in methodological approaches exist. However, comparative study between the different approaches is lacking. Different cases demand different approaches, but with the growing importance of the field, questions arise about reproducibility, uncertainties and standardization of results. The radioisotopic dating community, in particular, has done far-reaching efforts to improve reproducibility and intercomparison of radioisotopic dates and their errors. To satisfy this need in cyclostratigraphy, we initiate a comparable framework for the community. The aims are to investigate and quantify reproducibility of, and uncertainties related to cyclostratigraphic studies and to provide a platform to discuss the merits and pitfalls of different methodologies, and their applicabilities. With this poster, we ask the feedback from the community on how to design this comparative framework in a useful, meaningful and productive manner. In parallel, we would like to discuss how reproducibility should be tested and what uncertainties should stand for in cyclostratigraphy. On the other hand, we intend to trigger interest for a cyclostratigraphic intercomparison project. This intercomparison project would imply the analysis of artificial and genuine geological records by individual researchers. All participants would be free to determine their method of choice. However, a handful of criterions will be required for an outcome to be comparable. The different results would be compared (e.g. during a workshop or a special session), and the lessons learned from the comparison could potentially be reported in a review paper. The aim of an intercomparison project is not to rank the different methods according to their merits, but to get insight into which specific methods are most suitable for which specific problems, and obtain more information on different sources of uncertainty. As this intercomparison project should be supported by the broader cyclostratigraphic community, we open the floor for suggestions, ideas and practical remarks.

  4. A new PUB-working group on SLope InterComparison Experiments (SLICE)

    NASA Astrophysics Data System (ADS)

    McGuire, K.; Retter, M.; Freer, J.; Troch, P.; McDonnell, J.

    2006-05-01

    The International Association of Hydrological Sciences (IAHS) decade on Prediction in Ungauged Basins (PUB) has the scientific goal to shift hydrology from calibration reliant models to new and rich understanding- based models. To support this, six PUB science themes have been developed under the PUB Science Steering group. Theme 1 covers basin inter-comparison and classification. The SLope InterComparison Experiment (SLICE) is a newly-formed working group aligned with theme 1. Its 2- year target is to promote the improved understanding of regional hydrological characteristics via hillslope inter- comparison studies and top-down analysis of data from hillslope experiments from around the world. It will further deliver the major building blocks of a catchment classification system. A first workshop of SLICE took place 26-28 September 2005 at the HJ Andrews Experimental Forest, Oregon, USA. 40 participants from seven countries were in attendance. The program consisted of keynote presentations on the state-of-the-art of hillslope hydrology, outlining a hillslope classification system, and through small group discussion, a focus on the following questions: a.) How can we capture flow path heterogeneity at the hillslope scale with residence time distributions? b.) Can networks help characterize hillslope subsurface systems? c.) What patterns are useful to characterize in a hillslope comparison context? d.) How does bedrock permeability condition hillslope response? e.) Can we actually observe pressure waves in the field and/or how likely are they to exist at the hillslope continuum scale? The poster presents an overview of the workshop outcomes and directions of future work.

  5. Middle Atmosphere Program. Handbook for MAP, volume 28

    NASA Technical Reports Server (NTRS)

    Liu, C. H. (Editor); Edwards, Belva (Editor)

    1989-01-01

    Extended abstracts from the fourth workshop on the technical and scientific aspects of MST (mesosphere stratosphere troposphere) radar are presented. Individual sessions addressed the following topics: meteorological applications of MST and ST radars, networks, and campaigns; dynamics of the equatorial middle atmosphere; interpretation of radar returns from clear air; techniques for studying gravity waves and turbulence; intercomparison and calibration of wind and wave measurements at various frequencies; progress in existing and planned MST and ST radars; hardware design for MST and ST radars and boundary layer/lower troposphere profilers; signal processing; and data management.

  6. INTERCOMPARISON OF OPTICAL REMOTE SENSING SYSTEMS FOR ROADSIDE MEASUREMENTS

    EPA Science Inventory

    The presentation describes results of an intercomparison of three optical remote sensing systems for measurements of nitric oxide emitted from passenger cars and light-duty trucks. The intercomparison included a standards comparison to establish comparability of standards, follo...

  7. Inter-comparison of hydro-climatic regimes across northern catchments: snychronicity, resistance and resilience

    Treesearch

    Sean K. Carey; Doerthe Tetzlaff; Jan Seibert; Chris Soulsby; Jim Buttle; Hjalmar Laudon; Jeff McDonnell; Kevin McGuire; Daniel Caissie; Jamie Shanley; Mike Kennedy; Kevin Devito; John W. Pomeroy

    2010-01-01

    The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of...

  8. Field test to intercompare carbon monoxide, nitric oxide and hydroxyl instrumentation at Wallops Island, Virginia

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Beck, Sherwin M.; Bendura, Richard J.

    1987-01-01

    Documentation of the first of three instrument intercomparisons conducted as part of NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation (GTE/CITE-1) is given. This ground-based intercomparison was conducted during July 1983 at NASA Wallops Flight Facility. Instruments intercompared included one laser system and three grab-sample approaches for CO; two chemiluminescent systems and one laser-induced fluorescent (LIF) technique for NO; and two different LIF systems and a radiochemical tracer technique for OH. The major objectives of this intercomparison was to intercompare ambient measurements of CO, NO, and OH at a common site by using techniques of fundamentally different detection principles and to identify any major biases among the techniques prior to intercomparison on an aircraft platform. Included in the report are comprehensive discussions of workshop requirements, philosophies, and operations as well as intercomparison analyses and results. In addition, the large body of nonintercomparison data incorporated into the workshop measurements is summarized. The report is an important source document for those interested in conducting similar large and complex intercomparison tests as well as those interested in using the data base for purposes other than instrument intercomparison.

  9. Accuracy of tretyakov precipitation gauge: Result of wmo intercomparison

    USGS Publications Warehouse

    Yang, Daqing; Goodison, Barry E.; Metcalfe, John R.; Golubev, Valentin S.; Elomaa, Esko; Gunther, Thilo; Bates, Roy; Pangburn, Timothy; Hanson, Clayton L.; Emerson, Douglas G.; Copaciu, Voilete; Milkovic, Janja

    1995-01-01

    The Tretyakov non-recording precipitation gauge has been used historically as the official precipitation measurement instrument in the Russian (formerly the USSR) climatic and hydrological station network and in a number of other European countries. From 1986 to 1993, the accuracy and performance of this gauge were evaluated during the WMO Solid Precipitation Measurement Intercomparison at 11 stations in Canada, the USA, Russia, Germany, Finland, Romania and Croatia. The double fence intercomparison reference (DFIR) was the reference standard used at all the Intercomparison stations in the Intercomparison. The Intercomparison data collected at the different sites are compatible with respect to the catch ratio (measured/DFIR) for the same gauge, when compared using mean wind speed at the height of the gauge orifice during the observation period.The Intercomparison data for the Tretyakov gauge were compiled from measurements made at these WMO intercomparison sites. These data represent a variety of climates, terrains and exposures. The effects of environmental factors, such as wind speed, wind direction, type of precipitation and temperature, on gauge catch ratios were investigated. Wind speed was found to be the most important factor determining the gauge catch and air temperature had a secondary effect when precipitation was classified into snow, mixed and rain. The results of the analysis of gauge catch ratio versus wind speed and temperature on a daily time step are presented for various types of precipitation. Independent checks of the correction equations against the DFIR have been conducted at those Intercomparison stations and a good agreement (difference less than 10%) has been obtained. The use of such adjustment procedures should significantly improve the accuracy and homogeneity of gauge-measured precipitation data over large regions of the former USSR and central Europe.

  10. 1983 international intercomparison of nuclear accident dosimetry systems at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaja, R.E.; Greene, R.T.; Sims, C.S.

    1985-04-01

    An international intercomparison of nuclear accident dosimetry systems was conducted during September 12-16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. This study marked the twentieth in a series of annual accident dosimetry intercomparisons conducted at ORNL. Participants from ten organizations attended this intercomparison and measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results of this study indicate that foil activation techniques are the most popular and accurate method of determining accident-level neutron doses at area monitoringmore » stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants in this study used TLD's to determine gamma doses with very good results on the average. Chemical dosemeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. These results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed.« less

  11. Stratospheric Ozone Intercomparison Campaign (STOIC) 1989: Overview

    NASA Technical Reports Server (NTRS)

    Margitan, J. J.; Barnes, R. A.; Brothers, G. B.; Butler, J.; Burris, J.; Connor, B. J.; Ferrare, R. A.; Kerr, J. B.; Komhyr, W. D.; McCormick, M. P.; hide

    1995-01-01

    The NASA Upper Atmosphere Research Program organized a Stratospheric Ozone Intercomparison Campaign (STOIC) held in July-August 1989 at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL). The primary instruments participating in this campaign were several that had been developed by NASA for the Network for the Detection of Stratospheric Change: the JPL ozone lidar at TMF, the Goddard Space Flight Center trailer-mounted ozone lidar which was moved to TMF for this comparison, and the Millitech/LaRC microwave radiometer. To assess the performance of these new instruments, a validation/intercomparison campaign was undertaken using established techniques: balloon ozonesondes launched by personnel from the Wallops Flight Facility and from NOAA Geophysical Monitoring for Climate Change (GMCC) (now Climate Monitoring and Diagnostics Laboratory), a NOAA GMCC Dobson spectrophotometer, and a Brewer spectrometer from the Atmospheric Environment Service of Canada, both being used for column as well as Umkehr profile retrievals. All of these instruments were located at TMF and measurements were made as close together in time as possible to minimize atmospheric variability as a factor in the comparisons. Daytime rocket measurements of ozone were made by Wallops Flight Facility personnel using ROCOZ-A instruments launched from San Nicholas Island. The entire campaign was conducted as a blind intercomparison, with the investigators not seeing each others data until all data had been submitted to a referee and archived at the end of the 2-week period (July 20 to August 2, 1989). Satellite data were also obtained from the Stratospheric Aerosol and Gas Experiment (SAGE 2) aboard the Earth Radiation Budget Satellite and the Total Ozone Mapping Spectrometer (TOMS) aboard Nimbus 7. An examination of the data has found excellent agreement among the techniques, especially in the 20- to 40-km range. As expected, there was little atmospheric variability during the intercomparison, allowing for detailed statistical comparisons at a high level of precision. This overview paper summarizes the campaign and provides a 'road map' to subsequent papers in this issue by the individual instrument teams which will present more detailed analysis of the data and conclusions.

  12. Operational overview of NASA GTE/CITE 1 airborne instrument intercomparisons - Carbon monoxide, nitric oxide, and hydroxyl instrumentation. [Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation

    NASA Technical Reports Server (NTRS)

    Beck, Sherwin M.; Bendura, Richard J.; Mcdougal, David S.; Hoell, James M., Jr.; Gregory, Gerald L.; Sachse, Glen W.; Hill, Gerald F.; Curfman, Howard J., Jr.; Torres, Arnold L.; Condon, Estelle P.

    1987-01-01

    An overview of the airborne intercomparisons of CO, NO, and OH instrumentation is presented in this first paper of the series on the NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation (GTE/CITE 1). This paper provides the reader with background information about several important characteristics of the project. These include the overall objectives and approach, the measurements taken, the intercomparison protocol, aircraft platform, profiles of each aircraft flight, and the participants. A synopsis of the overall results of the CO, NO, and OH instrument intercomparisons is also included. Companion papers discuss the detailed results of the CO and NO intercomparison tests as well as pertinent scientific findings.

  13. Intercomparison of TCCON and MUSICA Water Vapour Products

    NASA Astrophysics Data System (ADS)

    Weaver, D.; Strong, K.; Deutscher, N. M.; Schneider, M.; Blumenstock, T.; Robinson, J.; Notholt, J.; Sherlock, V.; Griffith, D. W. T.; Barthlott, S.; García, O. E.; Smale, D.; Palm, M.; Jones, N. B.; Hase, F.; Kivi, R.; Ramos, Y. G.; Yoshimura, K.; Sepúlveda, E.; Gómez-Peláez, Á. J.; Gisi, M.; Kohlhepp, R.; Warneke, T.; Dohe, S.; Wiegele, A.; Christner, E.; Lejeune, B.; Demoulin, P.

    2014-12-01

    We present an intercomparison between the water vapour products from the Total Carbon Column Observing Network (TCCON) and the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA), two datasets from ground-based Fourier Transform InfraRed (FTIR) spectrometers with good global representation. Where possible, comparisons to radiosondes are also included. The near-infrared TCCON measurements are optimized to provide precise monitoring of greenhouse gases for carbon cycle studies; however, TCCON's retrievals also produce water vapour products. The mid-infrared MUSICA products result from retrievals optimized to give precise and accurate information about H2O, HDO, and δD. The MUSICA water vapour products have been validated by extensive intercomparisons with H2O and δD in-situ measurements made from ground, radiosonde, and aircraft (Schneider et al. 2012, 2014), as well as by intercomparisons with satellite-based H2O and δD remote sensing measurements (Wiegele et al., 2014). This dataset provides a valuable reference point for other measurements of water vapour. This study is motivated by the limited intercomparisons performed for TCCON water vapour products and limited characterisation of their uncertainties. We compare MUSICA and TCCON products to assess the potential for TCCON measurements to contribute to studies of the water cycle, water vapour's role in climate and use as a tracer for atmospheric dynamics, and to evaluate the performance of climate models. The TCCON and MUSICA products result from measurements taken using the same FTIR instruments, enabling a comparison with constant instrumentation. The retrieval techniques differ, however, in their method and a priori information. We assess the impact of these differences and characterize the comparability of the TCCON and MUSICA datasets.

  14. Wake Sensor Evaluation Program and Results of JFK-1 Wake Vortex Sensor Intercomparisons

    NASA Technical Reports Server (NTRS)

    Barker, Ben C., Jr.; Burnham, David C.; Rudis, Robert P.

    1997-01-01

    The overall approach should be to: (1) Seek simplest, sufficiently robust, integrated ground based sensor systems (wakes and weather) for AVOSS; (2) Expand all sensor performance cross-comparisons and data mergings in on-going field deployments; and (3) Achieve maximal cost effectiveness through hardware/info sharing. An effective team is in place to accomplish the above tasks.

  15. CAUSES: Diagnosis of the Summertime Warm Bias in CMIP5 Climate Models at the ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Zhang, Chengzhu; Xie, Shaocheng; Klein, Stephen A.; Ma, Hsi-yen; Tang, Shuaiqi; Van Weverberg, Kwinten; Morcrette, Cyril J.; Petch, Jon

    2018-03-01

    All the weather and climate models participating in the Clouds Above the United States and Errors at the Surface project show a summertime surface air temperature (T2 m) warm bias in the region of the central United States. To understand the warm bias in long-term climate simulations, we assess the Atmospheric Model Intercomparison Project simulations from the Coupled Model Intercomparison Project Phase 5, with long-term observations mainly from the Atmospheric Radiation Measurement program Southern Great Plains site. Quantities related to the surface energy and water budget, and large-scale circulation are analyzed to identify possible factors and plausible links involved in the warm bias. The systematic warm season bias is characterized by an overestimation of T2 m and underestimation of surface humidity, precipitation, and precipitable water. Accompanying the warm bias is an overestimation of absorbed solar radiation at the surface, which is due to a combination of insufficient cloud reflection and clear-sky shortwave absorption by water vapor and an underestimation in surface albedo. The bias in cloud is shown to contribute most to the radiation bias. The surface layer soil moisture impacts T2 m through its control on evaporative fraction. The error in evaporative fraction is another important contributor to T2 m. Similar sources of error are found in hindcast from other Clouds Above the United States and Errors at the Surface studies. In Atmospheric Model Intercomparison Project simulations, biases in meridional wind velocity associated with the low-level jet and the 500 hPa vertical velocity may also relate to T2 m bias through their control on the surface energy and water budget.

  16. PFLOTRAN-RepoTREND Source Term Comparison Summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Jennifer M.

    Code inter-comparison studies are useful exercises to verify and benchmark independently developed software to ensure proper function, especially when the software is used to model high-consequence systems which cannot be physically tested in a fully representative environment. This summary describes the results of the first portion of the code inter-comparison between PFLOTRAN and RepoTREND, which compares the radionuclide source term used in a typical performance assessment.

  17. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struckmeyer, R.

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  18. Intercomparison of hydrologic processes in global climate models

    NASA Technical Reports Server (NTRS)

    Lau, W. K.-M.; Sud, Y. C.; Kim, J.-H.

    1995-01-01

    In this report, we address the intercomparison of precipitation (P), evaporation (E), and surface hydrologic forcing (P-E) for 23 Atmospheric Model Intercomparison Project (AMIP) general circulation models (GCM's) including relevant observations, over a variety of spatial and temporal scales. The intercomparison includes global and hemispheric means, latitudinal profiles, selected area means for the tropics and extratropics, ocean and land, respectively. In addition, we have computed anomaly pattern correlations among models and observations for different seasons, harmonic analysis for annual and semiannual cycles, and rain-rate frequency distribution. We also compare the joint influence of temperature and precipitation on local climate using the Koeppen climate classification scheme.

  19. Climate and Energy-Water-Land System Interactions Technical Report to the U.S. Department of Energy in Support of the National Climate Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skaggs, Richard; Hibbard, Kathleen A.; Frumhoff, Peter

    2012-03-01

    This report provides a framework to characterize and understand the important elements of climate and energy-water-land (EWL) system interactions. It identifies many of the important issues, discusses our understanding of those issues, and presents a long-term research program research needs to address the priority scientific challenges and gaps in our understanding. Much of the discussion is organized around two discrete case studies with the broad themes of (1) extreme events and (2) regional intercomparisons. These case studies help demonstrate unique ways in which energy-water-land interactions can occur and be influenced by climate.

  20. The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data

    DOE PAGES

    Wei, Yaxing; Liu, Shishi; Huntzinger, Deborah N.; ...

    2014-12-05

    Ecosystems are important and dynamic components of the global carbon cycle, and terrestrial biospheric models (TBMs) are crucial tools in further understanding of how terrestrial carbon is stored and exchanged with the atmosphere across a variety of spatial and temporal scales. Improving TBM skills, and quantifying and reducing their estimation uncertainties, pose significant challenges. The Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal multi-scale and multi-model intercomparison effort set up to tackle these challenges. The MsTMIP protocol prescribes standardized environmental driver data that are shared among model teams to facilitate model model and model observation comparisons. Inmore » this article, we describe the global and North American environmental driver data sets prepared for the MsTMIP activity to both support their use in MsTMIP and make these data, along with the processes used in selecting/processing these data, accessible to a broader audience. Based on project needs and lessons learned from past model intercomparison activities, we compiled climate, atmospheric CO 2 concentrations, nitrogen deposition, land use and land cover change (LULCC), C3 / C4 grasses fractions, major crops, phenology and soil data into a standard format for global (0.5⁰ x 0.5⁰ resolution) and regional (North American: 0.25⁰ x 0.25⁰ resolution) simulations. In order to meet the needs of MsTMIP, improvements were made to several of the original environmental data sets, by improving the quality, and/or changing their spatial and temporal coverage, and resolution. The resulting standardized model driver data sets are being used by over 20 different models participating in MsTMIP. Lastly, the data are archived at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, http://daac.ornl.gov) to provide long-term data management and distribution.« less

  1. NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struckmeyer, R.

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  2. Pliocene Model Intercomparison Project (PlioMIP): Experimental Design and Boundary Conditions (Experiment 2)

    NASA Technical Reports Server (NTRS)

    Haywood, A. M.; Dowsett, H. J.; Robinson, M. M.; Stoll, D. K.; Dolan, A. M.; Lunt, D. J.; Otto-Bliesner, B.; Chandler, M. A.

    2011-01-01

    The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere only climate models. The second (Experiment 2) utilizes fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.

  3. Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 2)

    USGS Publications Warehouse

    Haywood, A.M.; Dowsett, H.J.; Robinson, M.M.; Stoll, D.K.; Dolan, A.M.; Lunt, D.J.; Otto-Bliesner, B.; Chandler, M.A.

    2011-01-01

    The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere-only climate models. The second (Experiment 2) utilises fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.

  4. Manufacture and calibration of optical supersmooth roughness artifacts for intercomparisons

    NASA Astrophysics Data System (ADS)

    Ringel, Gabriele A.; Kratz, Frank; Schmitt, Dirk-Roger; Mangelsdorf, Juergen; Creuzet, Francois; Garratt, John D.

    1995-09-01

    Intercomparison roughness measurements have been carried out on supersmooth artifacts fabricated from BK7, fused silica, and Zerodur. The surface parameters were determined using the optical heterodyne profiler Z5500 (Zygo), a special prototype of the mechanical profiler Nanostep (Rank Taylor Hobson), and an Atomic Force Microscope (Park Scientific Instruments) with an improved acquisition technique. The intercomparison was performed after the range of collected spatial wavelengths for each instrument was adjusted using digital filtering techniques. It is demonstrated for different roughness ranges that the applied superpolishing techniques yield supersmooth artifacts which can be used for more intercomparisons. More than 100 samples were investigated. Criteria were developed to select artifacts from the sample stock.

  5. Introduction The Role of the Agricultural Model Intercomparison and Improvement Project

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Hillel, Daniel

    2015-01-01

    Climate impacts on agriculture are of increasing concern in both the scientific and policy communities because of the need to ensure food security for a growing population. A special challenge is posed by the changes in the frequency and intensity of heat-waves, droughts, and episodic rainstorms already underway in many parts of the world. Changes in production are directly linked to such variations in temperature and precipitation during the growing season, and often to offseason changes in weather affecting soil-water storage and availability to crops. This is not an isolated problem but one of both global and regional importance, because of impacts on the livelihoods of smallholder farmers as well as consequences for the world food trade system. This two-part set the Agricultural Model Intercomparison and Improvement Project (AgMIP): Integrated Crop and Economic Assessments is the first to be entirely devoted to AgMIP (www.agmip.org). AgMIP is a major international research program focused on climate change and agriculture. The goal of the two parts is to advance the field by providing detailed information on new simulation techniques and assessments being conducted by this program. It presents information about new methods of global and regional integrated assessment, results from agricultural regions, and adaptation strategies for maintaining food security under changing climate conditions.

  6. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6

    NASA Astrophysics Data System (ADS)

    Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; Senior, Catherine A.; Bellucci, Alessio; Bao, Qing; Chang, Ping; Corti, Susanna; Fučkar, Neven S.; Guemas, Virginie; von Hardenberg, Jost; Hazeleger, Wilco; Kodama, Chihiro; Koenigk, Torben; Leung, L. Ruby; Lu, Jian; Luo, Jing-Jia; Mao, Jiafu; Mizielinski, Matthew S.; Mizuta, Ryo; Nobre, Paulo; Satoh, Masaki; Scoccimarro, Enrico; Semmler, Tido; Small, Justin; von Storch, Jin-Song

    2016-11-01

    Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, "what are the origins and consequences of systematic model biases?", but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.

  7. Wind Profiling from a New Compact, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar Transceiver during Wind Measurement Intercomparison

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Yu, Jirong; Beyon, Jeffrey Y.; Demoz, B.; Veneable, D.

    2009-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. This lidar system was recently deployed at Howard University facility in Beltsville, Maryland, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other lidars and other sensors will be presented.

  8. United States Transuranium and Uranium Registries. Annual Report, October 1, 1993--September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kathren, R.L.; Harwick, L.A.

    1995-08-01

    This report summarizes the salient activities and progress of the United States Transuranium. and Uranium Registries for the period October 1, 1993 through September 30, 1994, along with details of specific programs areas including the National Human Radiobiology Tissue Repository (NHRTR) and tissue radiochemistry analysis project. Responsibility for tissue radioanalysis was transferred from Los Alamos National Laboratory to Washington State University in February 1994. The University of Washington was selected as the Quality Assurance/Quality Control laboratory and a three way intercomparison with them and LANL has been initiated. The results of the initial alpha spectrometry intercomparison showed excellent agreement amongmore » the laboratories and are documented in full in the Appendices to the report. The NHRTR serves as the initial point of receipt for samples received from participants in the USTUR program. Samples are weighed, divided, and reweighed, and a portion retained by the NHRTR as backup or for use in other studies. Tissue specimens retained in the NHRTR are maintained frozen at -70 C and include not only those from USTUR registrants but also those from the radium dial painter and thorium worker studies formerly conducted by Argonne National Laboratory. In addition, there are fixed tissues and a large collection of histopathology slides from all the studies, plus about 20,000 individual solutions derived from donated tissues. These tissues and tissue related materials are made available to other investigators for legitimate research purposes. Ratios of the concentration of actinides in various tissues have been used to evaluate the biokinetics, and retention half times of plutonium and americium. Retention half times for plutonium in various soft tissues range from 10-20 y except for the testes for which a retention half time of 58 y was observed. For americium, the retention half time in various soft tissues studied was 2.2-3.5 y.« less

  9. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Potter, G. L.; Blanchet, J. P.; Boer, G. J.; Del Genio, A. D.

    1990-01-01

    The present study provides an intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. This intercomparison uses sea surface temperature change as a surrogate for climate change. The interpretation of cloud-climate interactions is given special attention. A roughly threefold variation in one measure of global climate sensitivity is found among the 19 models. The important conclusion is that most of this variation is attributable to differences in the models' depiction of cloud feedback, a result that emphasizes the need for improvements in the treatment of clouds in these models if they are ultimately to be used as reliable climate predictors. It is further emphazied that cloud feedback is the consequence of all interacting physical and dynamical processes in a general circulation model. The result of these processes is to produce changes in temperature, moisture distribution, and clouds which are integrated into the radiative response termed cloud feedback.

  10. Ozone Response to Aircraft Emissions: Sensitivity Studies with Two-dimensional Models

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Jackman, Charles H.; Douglass, Anne R.; Bureske, K.; Weubbles, Donald J.; Kinnison, Douglas E.; Brasseur, G.; Pyle, J.; Jones, Anna

    1992-01-01

    Our first intercomparison/assessment of the effects of a proposed high-speed civil transport (HSCT) fleet on the stratosphere is presented. These model calculations should be considered more as sensitivity studies, primarily designed to serve the following purposes: (1) to allow for intercomparison of model predictions; (2) to focus on the range of fleet operations and engine specifications giving minimal environmental impact; and (3) to provide the basis for future assessment studies. The basic scenarios were chosen to be as realistic as possible, using the information available on anticipated developments in technology. They are not to be interpreted as a commitment or goal for environmental acceptability.

  11. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew; Abe-Ouchi, Ayako; Aschwanden, Andy; Calov, Reinhard; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Golledge, Nicholas R.; Gregory, Jonathan; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Kennedy, Joseph H.; Larour, Eric; Lipscomb, William H.; Le clec'h, Sébastien; Lee, Victoria; Morlighem, Mathieu; Pattyn, Frank; Payne, Antony J.; Rodehacke, Christian; Rückamp, Martin; Saito, Fuyuki; Schlegel, Nicole; Seroussi, Helene; Shepherd, Andrew; Sun, Sainan; van de Wal, Roderik; Ziemen, Florian A.

    2018-04-01

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. The goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within the Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.

  12. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    DOE PAGES

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; ...

    2018-04-19

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. Here, the goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within themore » Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.« less

  13. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. Here, the goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within themore » Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.« less

  14. Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Schreier, F.; Garcia, S. Gimeno; Milz, M.; Kottayil, A.; Höpfner, M.; von Clarmann, T.; Stiller, G.

    2013-05-01

    An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric sounding - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. Results of this intercomparison and a discussion of reasons of the observed differences are presented.

  15. Nuclear accident dosimetry intercomparison studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, C.S.

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shieldedmore » spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.« less

  16. ISMIP6 - initMIP: Greenland ice sheet model initialisation experiments

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Payne, Tony; Larour, Eric; Abe Ouchi, Ayako; Gregory, Jonathan; Lipscomb, William; Seroussi, Helene; Shepherd, Andrew; Edwards, Tamsin

    2016-04-01

    Earlier large-scale Greenland ice sheet sea-level projections e.g. those run during ice2sea and SeaRISE initiatives have shown that ice sheet initialisation can have a large effect on the projections and gives rise to important uncertainties. This intercomparison exercise (initMIP) aims at comparing, evaluating and improving the initialization techniques used in the ice sheet modeling community and to estimate the associated uncertainties. It is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). The experiments are conceived for the large-scale Greenland ice sheet and are designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two schematic forward experiments. The latter experiments serve to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss first results of the intercomparison and highlight important uncertainties with respect to projections of the Greenland ice sheet sea-level contribution.

  17. Study of water masses variability in the Mediterranean Sea using in-situ data / NEMO-Med12 model.

    NASA Astrophysics Data System (ADS)

    Margirier, Félix; Testor, Pierre; Mortier, Laurent; Arsouze, Thomas; Bosse, Anthony; Houpert, Loic; Hayes, Dan

    2016-04-01

    In the past 10 years, numerous observation programs in the Mediterranean deployed autonomous platforms (moorings, argo floats, gliders) and thus considerably increased the number of in-situ observations and the data coverage. In this study, we analyse time series built with profile data on interannual scales. Sorting data in regional boxes, we follow the evolution of different water masses in the basin and generate indexes to characterize their evolution. We then put those indexes in relation with external (atmospheric) forcings and present an intercomparison with the NEMO-Med12 model to estimate both the skill of the model and the relevance of the data-sampling in reproducing the evolution of water masses properties.

  18. An intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, J. M., Jr.; Gregory, G. L.; Mcdougal, D. S.; Carroll, M. A.; Mcfarland, M.; Ridley, B. A.; Davis, D. D.; Bradshaw, J.; Rodgers, M. O.; Torres, A. L.

    1985-01-01

    Results from an intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted at Wallops Island, VA, in July 1983. Instruments intercompared included a laser-induced fluorescence system and two chemiluminescence instruments. The intercomparisons were performed with ambient air at NO mixing ratios ranging from 10 to 60 pptv and NO-enriched ambient air at mixing ratios from 20 to 170 pptv. All instruments sampled from a common manifold. The techniques exhibited a high degree of correlation among themselves and with changes in the NO mixing ratio. Agreement among the three techniques was placed at approximately + or - 30 percent. Within this level of agreement, no artifacts or species interferences were identified.

  19. Water vapour intercomparison effort in the frame of HyMeX-SOP1

    NASA Astrophysics Data System (ADS)

    Summa, Donato; Di Girolamo, Paolo; Stelitano, Dario; Cacciani, Marco; Flamant, Cyrille; Chazette, Patrick; Ducrocq, Véronique; Nuret, Mathieu; Fourié, Nadia; Richard, Evelyne

    2014-05-01

    A water vapour intercomparison effort, involving airborne and ground-based water vapour lidar systems and mesoscale models, was carried out in the framework of the international HyMeX (Hydrological cycle in the Mediterranean Experiment) dedicated to the hydrological cycle and related high-impact events. Within HyMeX, a major field campaign was dedicated to heavy precipitation and flash flood events from 5 September to 6 November 2012. The 2 month field campaign took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy, and Spain. The main objective of this work is to provide accurate error estimates for the lidar systems i.e. the ground-based Raman lidar BASIL and the CNRS DIAL Leandre 2 on board the ATR42, as well as use BASIL data to validate mesoscale model results from the MESO NH and Arome WMED. The effort will benefit from the few dedicated ATR42 flights in the frame of the EUFAR Project "WaLiTemp". In the present work our attention was focused on two specific case studies: 13 September and 2 October in the altitude region 0.5 - 5.5 km. Comparisons between the ground-based Raman lidar BASIL and the airborne CNRS DIAL indicate a mean relative bias between the two sensors of 6.5%, while comparisons between BASIL and CNRS DIAL vs. the radiosondes indicate a bias of 2.6 and -3.5 %, respectively. The bias of BASIL vs. the ATR insitu sensor indicate a bias of -20.4 %. Specific attention will also be dedicated to the WALI/BASIL intercomparison effort which took place in Candillargues on 30 October 2012. Specific results from this intercomparison effort and from the intercomparison between BASIL and Meso-NH/AROME-WMed will be illustrated and discussed at the Conference.

  20. A quality assurance program for clinical PDT

    NASA Astrophysics Data System (ADS)

    Dimofte, Andreea; Finlay, Jarod; Ong, Yi Hong; Zhu, Timothy C.

    2018-02-01

    Successful outcome of Photodynamic therapy (PDT) depends on accurate delivery of prescribed light dose. A quality assurance program is necessary to ensure that light dosimetry is correctly measured. We have instituted a QA program that include examination of long term calibration uncertainty of isotropic detectors for light fluence rate, power meter head intercomparison for laser power, stability of the light-emitting diode (LED) light source integrating sphere as a light fluence standard, laser output and calibration of in-vivo reflective fluorescence and absorption spectrometers. We examined the long term calibration uncertainty of isotropic detector sensitivity, defined as fluence rate per voltage. We calibrate the detector using the known calibrated light fluence rate of the LED light source built into an internally baffled 4" integrating sphere. LED light sources were examined using a 1mm diameter isotropic detector calibrated in a collimated beam. Wavelengths varying from 632nm to 690nm were used. The internal LED method gives an overall calibration accuracy of +/- 4%. Intercomparison among power meters was performed to determine the consistency of laser power and light fluence rate measured among different power meters. Power and fluence readings were measured and compared among detectors. A comparison of power and fluence reading among several power heads shows long term consistency for power and light fluence rate calibration to within 3% regardless of wavelength. The standard LED light source is used to calibrate the transmission difference between different channels for the diffuse reflective absorption and fluorescence contact probe as well as isotropic detectors used in PDT dose dosimeter.

  1. Intercomparison of SOUP, ASP, LPSP, and MDI magnetograms

    NASA Astrophysics Data System (ADS)

    Berger, T.; Lites, B.; Martinez-Pillet, V.; Tarbell, T.; Title, A.

    2001-05-01

    We compare simultaneous magnetograms of a solar active region taken by the Advanced Stokes Polarimeter (ASP) and the Solar Optical Universal Polimeter (SOUP) in 1998. In addition we compare magnetograms taken by the La Palma Stokes Polarimeter (LPSP), the Michelson Doppler Imager (MDI) on SOHO, and the SOUP instrument in 2000. The SOUP instrument on the Swedish Vacuum Solar Telescope (SVST) attains the highest spatial resolution but has the least understood calibration; the ASP on the Dunn Solar Telescope (DST) at Sacramento Peak attains the highest magnetic field precision. The goal of the program is to better quantify the SOUP magnetograms and thereby study magnetic element dynamics in the photosphere with higher precision.

  2. Past and future weather-induced risk in crop production

    NASA Astrophysics Data System (ADS)

    Elliott, J. W.; Glotter, M.; Russo, T. A.; Sahoo, S.; Foster, I.; Benton, T.; Mueller, C.

    2016-12-01

    Drought-induced agricultural loss is one of the most costly impacts of extreme weather and may harm more people than any other consequence of climate change. Improvements in farming practices have dramatically increased crop productivity, but yields today are still tightly linked to climate variation. We report here on a number of recent studies evaluating extreme event risk and impacts under historical and near future conditions, including studies conducted as part of the Agricultural Modeling Intercomparison and Improvement Project (AgMIP), the Inter-Sectoral Impacts Model Intercomparison Project (ISI-MIP) and the UK-US Taskforce on Extreme Weather and Global Food System Resilience.

  3. MMAB Sea Ice Forecast Page

    Science.gov Websites

    verification statistics Grumbine, R. W., Virtual Floe Ice Drift Forecast Model Intercomparison, Weather and Forecasting, 13, 886-890, 1998. MMAB Note: Virtual Floe Ice Drift Forecast Model Intercomparison 1996 pdf ~47

  4. Results of the Greenland Ice Sheet Model Initialisation Experiments ISMIP6 - initMIP-Greenland

    NASA Astrophysics Data System (ADS)

    Goelzer, H.; Nowicki, S.; Edwards, T.; Beckley, M.; Abe-Ouchi, A.; Aschwanden, A.; Calov, R.; Gagliardini, O.; Gillet-chaulet, F.; Golledge, N. R.; Gregory, J. M.; Greve, R.; Humbert, A.; Huybrechts, P.; Larour, E. Y.; Lipscomb, W. H.; Le ´h, S.; Lee, V.; Kennedy, J. H.; Pattyn, F.; Payne, A. J.; Rodehacke, C. B.; Rückamp, M.; Saito, F.; Schlegel, N.; Seroussi, H. L.; Shepherd, A.; Sun, S.; Vandewal, R.; Ziemen, F. A.

    2016-12-01

    Earlier large-scale Greenland ice sheet sea-level projections e.g. those run during ice2sea and SeaRISE initiatives have shown that ice sheet initialisation can have a large effect on the projections and gives rise to important uncertainties. The goal of this intercomparison exercise (initMIP-Greenland) is to compare, evaluate and improve the initialization techniques used in the ice sheet modeling community and to estimate the associated uncertainties. It is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of 1) the initial present-day state of the ice sheet and 2) the response in two schematic forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss final results of the intercomparison and highlight important uncertainties with respect to projections of the Greenland ice sheet sea-level contribution.

  5. Best Practice Guidelines for Pre-Launch Characterization and Calibration of Instruments for Passive Optical Remote Sensing1

    PubMed Central

    Datla, R. U.; Rice, J. P.; Lykke, K. R.; Johnson, B. C.; Butler, J. J.; Xiong, X.

    2011-01-01

    The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented. PMID:26989588

  6. Best Practice Guidelines for Pre-Launch Characterization and Calibration of Instruments for Passive Optical Remote Sensing.

    PubMed

    Datla, R U; Rice, J P; Lykke, K R; Johnson, B C; Butler, J J; Xiong, X

    2011-01-01

    The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented.

  7. Maintaining High Quality Data and Consistency Across a Diverse Flux Network: The Ameriflux QA/QC Technical Team

    NASA Astrophysics Data System (ADS)

    Chan, S.; Billesbach, D. P.; Hanson, C. V.; Biraud, S.

    2014-12-01

    The AmeriFlux quality assurance and quality control (QA/QC) technical team conducts short term (<2 weeks) intercomparisons using a portable eddy covariance system (PECS) to maintain high quality data observations and data consistency across the AmeriFlux network (http://ameriflux.lbl.gov/). Site intercomparisons identify discrepancies between the in situ and portable measurements and calculated fluxes. Findings are jointly discussed by the site staff and the QA/QC team to improve in the situ observations. Despite the relatively short duration of an individual site intercomparison, the accumulated record of all site visits (numbering over 100 since 2002) is a unique dataset. The ability to deploy redundant sensors provides a rare opportunity to identify, quantify, and understand uncertainties in eddy covariance and ancillary measurements. We present a few specific case studies from QA/QC site visits to highlight and share new and relevant findings related to eddy covariance instrumentation and operation.

  8. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6

    DOE PAGES

    Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; ...

    2016-11-22

    Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relativelymore » few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950–2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. Lastly, HighResMIP thereby focuses on one of the CMIP6 broad questions, “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.« less

  9. Satellite Derived Volcanic Ash Product Inter-Comparison in Support to SCOPE-Nowcasting

    NASA Astrophysics Data System (ADS)

    Siddans, Richard; Thomas, Gareth; Pavolonis, Mike; Bojinski, Stephan

    2016-04-01

    In support of aeronautical meteorological services, WMO organized a satellite-based volcanic ash retrieval algorithm inter-comparison activity, to improve the consistency of quantitative volcanic ash products from satellites, under the Sustained, Coordinated Processing of Environmental Satellite Data for Nowcasting (SCOPEe Nowcasting) initiative (http:/ jwww.wmo.int/pagesjprogjsatjscopee nowcasting_en.php). The aims of the intercomparison were as follows: 1. Select cases (Sarychev Peak 2009, Eyjafyallajökull 2010, Grimsvötn 2011, Puyehue-Cordón Caulle 2011, Kirishimayama 2011, Kelut 2014), and quantify the differences between satellite-derived volcanic ash cloud properties derived from different techniques and sensors; 2. Establish a basic validation protocol for satellite-derived volcanic ash cloud properties; 3. Document the strengths and weaknesses of different remote sensing approaches as a function of satellite sensor; 4. Standardize the units and quality flags associated with volcanic cloud geophysical parameters; 5. Provide recommendations to Volcanic Ash Advisory Centers (VAACs) and other users on how to best to utilize quantitative satellite products in operations; 6. Create a "road map" for future volcanic ash related scientific developments and inter-comparison/validation activities that can also be applied to SO2 clouds and emergent volcanic clouds. Volcanic ash satellite remote sensing experts from operational and research organizations were encouraged to participate in the inter-comparison activity, to establish the plans for the inter-comparison and to submit data sets. RAL was contracted by EUMETSAT to perform a systematic inter-comparison of all submitted datasets and results were reported at the WMO International Volcanic Ash Inter-comparison Meeting to held on 29 June - 2 July 2015 in Madison, WI, USA (http:/ /cimss.ssec.wisc.edujmeetings/vol_ash14). 26 different data sets were submitted, from a range of passive imagers and spectrometers and these were inter-compared against each other and against validation data such as CALIPSO lidar, ground-based lidar and aircraft observations. Results of the comparison exercise will be presented together with the conclusions and recommendations arising from the activity.

  10. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison

    PubMed Central

    Rosenzweig, Cynthia; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Müller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay; Neumann, Kathleen; Piontek, Franziska; Pugh, Thomas A. M.; Schmid, Erwin; Stehfest, Elke; Yang, Hong; Jones, James W.

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies. PMID:24344314

  11. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Mueller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  12. Calibration/validation strategy for GOES-R L1b data products

    NASA Astrophysics Data System (ADS)

    Fulbright, Jon P.; Kline, Elizabeth; Pogorzala, David; MacKenzie, Wayne; Williams, Ryan; Mozer, Kathryn; Carter, Dawn; Race, Randall; Sims, Jamese; Seybold, Matthew

    2016-10-01

    The Geostationary Operational Environmental Satellite-R series (GOES-R) will be the next generation of NOAA geostationary environmental satellites. The first satellite in the series is planned for launch in November 2016. The satellite will carry six instruments dedicated to the study of the Earth's weather, lightning mapping, solar observations, and space weather monitoring. Each of the six instruments require specialized calibration plans to achieve their product quality requirements. In this talk we will describe the overall on-orbit calibration program and data product release schedule of the GOES-R program, as well as an overview of the strategies of the individual instrument science teams. The Advanced Baseline Imager (ABI) is the primary Earth-viewing weather imaging instrument on GOES-R. Compared to the present on-orbit GOES imagers, ABI will provide three times the spectral bands, four times the spatial resolution, and operate five times faster. The increased data demands and product requirements necessitate an aggressive and innovative calibration campaign. The Geostationary Lightning Mapper (GLM) will provide continuous rapid lightning detection information covering the Americas and nearby ocean regions. The frequency of lightning activity points to the intensification of storms and may improve tornado warning lead time. The calibration of GLM will involve intercomparisons with ground-based lightning detectors, an airborne field campaign, and a ground-based laser beacon campaign. GOES-R also carries four instruments dedicated to the study of the space environment. The Solar Ultraviolet Imager (SUVI) and the Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS) will study solar activity that may affect power grids, communication, and spaceflight. The Space Environment In-Situ Suite (SEISS) and the Magnetometer (MAG) study the in-situ space weather environment. These instruments follow a calibration and validation (cal/val) program that relies on intercomparisons with other space-based sensors and utilize special spacecraft maneuvers. Given the importance of cal/val to the success of GOES-R, the mission is committed to a long-term effort. This commitment enhances our knowledge of the long-term data quality and builds user confidence. The plan is a collaborative effort amongst the National Oceanic and Atmospheric Administration (NOAA), the National Institute of Standards and Technology (NIST), and the National Aeronautics and Space Administration (NASA). It is being developed based on the experience and lessons-learned from the heritage GOES and Polar-orbiting Operational Environmental Satellite (POES) systems, as well as other programs. The methodologies described in the plan encompass both traditional approaches and the current state-of-the-art in cal/val.

  13. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program.

    PubMed

    Afouxenidis, D; Polymeris, G S; Tsirliganis, N C; Kitis, G

    2012-05-01

    This paper exploits the possibility of using commercial software for thermoluminescence and optically stimulated luminescence curve deconvolution analysis. The widely used software package Microsoft Excel, with the Solver utility has been used to perform deconvolution analysis to both experimental and reference glow curves resulted from the GLOw Curve ANalysis INtercomparison project. The simple interface of this programme combined with the powerful Solver utility, allows the analysis of complex stimulated luminescence curves into their components and the evaluation of the associated luminescence parameters.

  14. Low level measurements of atmospheric DMS, H2S, and SO2 for GTE/CITE-3

    NASA Technical Reports Server (NTRS)

    Saltzman, Eric; Cooper, David

    1991-01-01

    This project involved the measurement of atmospheric dimethylsulfide (DMS) and hydrogen sulfide (H2S) as part of the GTE/CITE-3 instrument intercomparison program. The two instruments were adapted for use on the NASA Electra aircraft and participated in all phases of the mission. This included ground-based measurements of NIST-provided standard gases and a series of airborne missions over the Western Atlantic Ocean. Analytical techniques used are described and the results are summarized.

  15. Semi-automatic version of the potentiometric titration method for characterization of uranium compounds.

    PubMed

    Cristiano, Bárbara F G; Delgado, José Ubiratan; da Silva, José Wanderley S; de Barros, Pedro D; de Araújo, Radier M S; Dias, Fábio C; Lopes, Ricardo T

    2012-09-01

    The potentiometric titration method was used for characterization of uranium compounds to be applied in intercomparison programs. The method is applied with traceability assured using a potassium dichromate primary standard. A semi-automatic version was developed to reduce the analysis time and the operator variation. The standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization and compatible with those obtained by manual techniques. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. International NMR-based Environmental Metabolomics Intercomparison Exercise

    EPA Science Inventory

    Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectivene...

  17. Soundings from SGP, June 2014 Sonde Comparison Study

    DOE Data Explorer

    Jensen, Michael

    2015-03-06

    In early June 2014, a radiosonde intercomparison trial was undertaken at the SGP Central Facility site with the goal of quantifying the relative performance of the RS92-SGP/MW31 and RS41-SG/MW41 radiosondes/systems. The June time period at SGP represents a springtime mid-latitude convective environment where the extensive remote sensing observations at the SGP site were used to further quantify the environment during the intercomparison. Over the course of five days (3 - 8 June) a total of 20 balloon launches were completed with efforts to sample the entire diurnal cycle and a variety of cloud conditions

  18. Dose evaluation in criticality accidents using response of Panasonic TL personal dosemeters (UD-809/UD-802).

    PubMed

    Zeyrek, C T; Gündüz, H

    2012-09-01

    This study gives the results of dosimetry measurements carried out in the Silène reactor at Valduc (France) with neutron and photon personal thermoluminescence dosemeters (TLDs) in mixed neutron and gamma radiation fields, in the frame of the international accident dosimetry intercomparison programme in 2002. The intercomparison consisted of a series of three irradiation scenarios. The scenarios took place at the Valduc site (France) by using the Silène experimental reactor. For neutron and photon dosimetry, Panasonic model UD-809 and UD-802 personal TLDs were used together.

  19. Momentum and Energy Assessments with NASA and Other Model and Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Salstein, David; Nelson, Peter; Hu, Wen-Jie

    2001-01-01

    Support from the NASA Global Modeling and Analysis Program has been used for the following research objectives: 1) the study of aspects of dynamics of torques and angular momentum based on the Goddard GEOS and other analyses; 2) the study of how models participating in the second Atmospheric Model Intercomparison Project (AMIP-2) have success in simulating certain large-scale quantities; 3) the study of the energetics and momentum cycle from certain runs from the Goddard Laboratory for Atmospheres and other models as well; 4) the assessment of changes in diabatic heating and related energetics in the community climate model (CCM3); 5) the analysis of modes of climate of the atmosphere, especially the Arctic and North Atlantic Oscillations. Further information on these endeavors will be provided in published works and the Final Report of the project.

  20. PM 2.5 ORGANIC SPECIATION INTERCOMPARISON RESULTS

    EPA Science Inventory

    This abstract describes a poster on results to a laboratory intercomparison of organic aerosol speciation analysis to be presented at the 2006 International Aerosol Conference sponsored by the American Association for Aerosol Research in St. Paul, Minnesota on September 10-15. T...

  1. Total ozone measurement: Intercomparison of prototype New Zealand filter instrument and Dobson spectrophotometer

    NASA Technical Reports Server (NTRS)

    Basher, R. E.

    1978-01-01

    A five month intercomparison showed that the total ozone amounts of a prototype narrowband interference filter instrument were 7% less than those of a Dobson instrument for an ozone range of 0.300 to 0.500 atm cm and for airmasses less than two. The 7% bias was within the intercomparison calibration uncertainty. An airmass dependence in the Dobson instrument made the bias relationship airmass-dependent but the filter instrument's ozone values were generally constant to 2% up to an airmass of four. Long term drift in the bias was negligible.

  2. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework

    PubMed Central

    Warszawski, Lila; Frieler, Katja; Huber, Veronika; Piontek, Franziska; Serdeczny, Olivia; Schewe, Jacob

    2014-01-01

    The Inter-Sectoral Impact Model Intercomparison Project offers a framework to compare climate impact projections in different sectors and at different scales. Consistent climate and socio-economic input data provide the basis for a cross-sectoral integration of impact projections. The project is designed to enable quantitative synthesis of climate change impacts at different levels of global warming. This report briefly outlines the objectives and framework of the first, fast-tracked phase of Inter-Sectoral Impact Model Intercomparison Project, based on global impact models, and provides an overview of the participating models, input data, and scenario set-up. PMID:24344316

  3. Fabrication and characterization of optical super-smooth surfaces

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Kratz, Frank; Ringel, Gabriele A.; Mangelsdorf, Juergen; Creuzet, Francois; Garratt, John D.

    1995-08-01

    Intercomparison roughness measurements have been carried out at supersmooth artefacts fabricated from BK7, fused silica, and Zerodur. The surface parameters were determined using a special prototype of the mechanical profiler Nanostep (Rank Taylor Hobson), the Optical Heterodyne Profiler Z5500 (Zygo), and an Atomic Force Microscope (Park Scientific) with an improved acquisition technique. The intercomparison was performed after the range of collected spatial wavelength for each instrument was adjusted using digital filtering techniques. It is demonstrated for different roughness ranges that are applied superpolishing techniques yield supersmooth artefacts which can be used for more intercomparisons.

  4. Water vapour inter-comparison effort in the framework of the hydrological cycle in the mediterranean experiment - special observation period (hymex-sop1)

    NASA Astrophysics Data System (ADS)

    Summa, Donato; Di Girolamo, Paolo; Flamant, Cyrille; De Rosa, Benedetto; Cacciani, Marco; Stelitano, Dario

    2018-04-01

    Accurate measurements of the vertical profiles of water vapour are of paramount importance for most key areas of atmospheric sciences. A comprehensive inter-comparison between different remote sensing and in-situ sensors has been carried out in the frame work of the first Special Observing Period of the Hydrological cycle in the Mediterranean Experiment for the purpose of obtaining accurate error estimates for these sensors. The inter-comparison involves a ground-based Raman lidar (BASIL), an airborne DIAL (LEANDRE2), a microwave radiometer, radiosondes and aircraft in-situ sensors.

  5. Evaluation of the annual Canadian biodosimetry network intercomparisons

    PubMed Central

    Wilkins, Ruth C.; Beaton-Green, Lindsay A.; Lachapelle, Sylvie; Kutzner, Barbara C.; Ferrarotto, Catherine; Chauhan, Vinita; Marro, Leonora; Livingston, Gordon K.; Boulay Greene, Hillary; Flegal, Farrah N.

    2015-01-01

    Abstract Purpose: To evaluate the importance of annual intercomparisons for maintaining the capacity and capabilities of a well-established biodosimetry network in conjunction with assessing efficient and effective analysis methods for emergency response. Materials and methods: Annual intercomparisons were conducted between laboratories in the Canadian National Biological Dosimetry Response Plan. Intercomparisons were performed over a six-year period and comprised of the shipment of 10–12 irradiated, blinded blood samples for analysis by each of the participating laboratories. Dose estimates were determined by each laboratory using the dicentric chromosome assay (conventional and QuickScan scoring) and where possible the cytokinesis block micronucleus (CBMN) assay. Dose estimates were returned to the lead laboratory for evaluation and comparison. Results: Individual laboratories performed comparably from year to year with only slight fluctuations in performance. Dose estimates using the dicentric chromosome assay were accurate about 80% of the time and the QuickScan method for scoring the dicentric chromosome assay was proven to reduce the time of analysis without having a significant effect on the dose estimates. Although analysis with the CBMN assay was comparable to QuickScan scoring with respect to speed, the accuracy of the dose estimates was greatly reduced. Conclusions: Annual intercomparisons are necessary to maintain a network of laboratories for emergency response biodosimetry as they evoke confidence in their capabilities. PMID:25670072

  6. Climate Science's Globally Distributed Infrastructure

    NASA Astrophysics Data System (ADS)

    Williams, D. N.

    2016-12-01

    The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.

  7. Atmospheric and Spectroscopic Research in the Far Infrared

    NASA Technical Reports Server (NTRS)

    Park, Kwangjai

    2001-01-01

    The University of Oregon (UO) was a participant in a number of far infrared spectroscopic projects over the past three decades. These include Sub-millimeter Infrared Balloon Experiment (SIBEX), the Balloon Intercomparison Campaign (BIC), and the Infrared Balloon Experiment (IBEX). In addition to these field studies, the UO program contained a detector research component and a laboratory spectroscopy element. Through a productive collaboration with Dr. Carli's group in Italy, with Prof. Ade's group in England and with Dr. Chance of Harvard-Smithsonian, we have made substantial contributions to the development of far infrared spectroscopy as a mature measurement technology for the atmospheric science. This report summarizes the activities during the latest grant period, covering the span from February 22, 1998 to February 21, 2002.

  8. Dosimetry audits and intercomparisons in radiotherapy: A Malaysian profile

    NASA Astrophysics Data System (ADS)

    M. Noor, Noramaliza; Nisbet, A.; Hussein, M.; Chu S, Sarene; Kadni, T.; Abdullah, N.; Bradley, D. A.

    2017-11-01

    Quality audits and intercomparisons are important in ensuring control of processes in any system of endeavour. Present interest is in control of dosimetry in teletherapy, there being a need to assess the extent to which there is consistent radiation dose delivery to the patient. In this study we review significant factors that impact upon radiotherapy dosimetry, focusing upon the example situation of radiotherapy delivery in Malaysia, examining existing literature in support of such efforts. A number of recommendations are made to provide for increased quality assurance and control. In addition to this study, the first level of intercomparison audit i.e. measuring beam output under reference conditions at eight selected Malaysian radiotherapy centres is checked; use being made of 9 μm core diameter Ge-doped silica fibres (Ge-9 μm). The results of Malaysian Secondary Standard Dosimetry Laboratory (SSDL) participation in the IAEA/WHO TLD postal dose audit services during the period between 2011 and 2015 will also been discussed. In conclusion, following review of the development of dosimetry audits and the conduct of one such exercise in Malaysia, it is apparent that regular periodic radiotherapy audits and intercomparison programmes should be strongly supported and implemented worldwide. The programmes to-date demonstrate these to be a good indicator of errors and of consistency between centres. A total of ei+ght beams have been checked in eight Malaysian radiotherapy centres. One out of the eight beams checked produced an unacceptable deviation; this was found to be due to unfamiliarity with the irradiation procedures. Prior to a repeat measurement, the mean ratio of measured to quoted dose was found to be 0.99 with standard deviation of 3%. Subsequent to the repeat measurement, the mean distribution was 1.00, and the standard deviation was 1.3%.

  9. International intercomparison of measuring instruments for radon/thoron gas and radon short-lived daughter products in the NRPI Prague.

    PubMed

    Jílek, K; Hýža, M; Kotík, L; Thomas, J; Tomášek, L

    2014-07-01

    During the 7th European Conference on Protection Against Radon at Home and at Work held in the autumn of 2013 in Prague, the second intercomparison of measuring instruments for radon and its short-lived decay products and the first intercomparison of radon/thoron gas discriminative passive detectors in mix field of radon/thoron were organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI) in Prague. In total, 14 laboratories from 11 different countries took part in the 2013 NRPI intercomparison. They submitted both continuous monitors for the measurement of radon gas and equivalent equilibrium radon concentration in a big NRPI chamber (48 m3) and sets of passive detectors including radon/thoron discriminative for the measurement of radon gas in the big chamber and thoron gas in a small thoron chamber (150 dm3). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Operational overview of the NASA GTE/CITE 3 airborne instrument intercomparisons for sulfur dioxide, hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, and carbon disulfide

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Davis, Douglas D.; Gregory, Gerald L.; Mcneal, Robert J.; Bendura, Richard J.; Drewry, Joseph W.; Barrick, John D.; Kirchhoff, Volker W. J. H.; Motta, Adauto G.; Navarro, Roger L.

    1993-01-01

    This paper reports the overall experimental design and gives a brief overview of results from the third airborne Chemical Instrumentation Test and Evaluation (CITE 3) mission conducted as part of the National Aeronautics and Space Administration's Global Tropospheric Experiment. The primary objective of CITE 3 was to evaluate the capability of instrumentation for airborne measurements of ambient concentrations of SO2, H2S, CS, dimethyl sulfide, and carbonyl sulfide. Ancillary measurements augmented the intercomparison data in order to address the secondary objective of CITE 3 which was to address specific issues related to the budget and photochemistry of tropospheric sulfur species. The CITE 3 mission was conducted on NASA's Wallops Flight Center Electra aircraft and included a ground-based intercomparison of sulfur standards and intercomparison/sulfur science flights conducted from the NASA Wallops Flight Facility, Wallops Island, Virginia, followed by flights from Natal, Brazil. Including the transit flights, CITE 3 included 16 flights encompassing approximately 96 flight hours.

  11. A soil sampling intercomparison exercise for the ALMERA network.

    PubMed

    Belli, Maria; de Zorzi, Paolo; Sansone, Umberto; Shakhashiro, Abduhlghani; Gondin da Fonseca, Adelaide; Trinkl, Alexander; Benesch, Thomas

    2009-11-01

    Soil sampling and analysis for radionuclides after an accidental or routine release is a key factor for the dose calculation to members of the public, and for the establishment of possible countermeasures. The IAEA organized for selected laboratories of the ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) network a Soil Sampling Intercomparison Exercise (IAEA/SIE/01) with the objective of comparing soil sampling procedures used by different laboratories. The ALMERA network is a world-wide network of analytical laboratories located in IAEA member states capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. Ten ALMERA laboratories were selected to participate in the sampling exercise. The soil sampling intercomparison exercise took place in November 2005 in an agricultural area qualified as a "reference site", aimed at assessing the uncertainties associated with soil sampling in agricultural, semi-natural, urban and contaminated environments and suitable for performing sampling intercomparison. In this paper, the laboratories sampling performance were evaluated.

  12. Climate model simulations of the mid-Pliocene: Earth's last great interval of global warmth

    USGS Publications Warehouse

    Dolan, A.M.; Haywood, A.M.; Dowsett, H.J.

    2012-01-01

    Pliocene Model Intercomparison Project Workshop; Reston, Virginia, 2–4 August 2011 The Pliocene Model Intercomparison Project (PlioMIP), supported by the U.S. Geological Survey's (USGS) Pliocene Research, Interpretation and Synoptic Mapping (PRISM) project and Powell Center, is an integral part of a third iteration of the Paleoclimate Modelling Intercomparison Project (PMIP3). PlioMIP's aim is to systematically compare structurally different climate models. This is done in the context of the mid-Pliocene (~3.3–3.0 million years ago), a geological interval when the global annual mean temperature was similar to predictions for the next century.

  13. Status report on the Zagreb Radiocarbon Laboratory - AMS and LSC results of VIRI intercomparison samples

    NASA Astrophysics Data System (ADS)

    Sironić, Andreja; Krajcar Bronić, Ines; Horvatinčić, Nada; Barešić, Jadranka; Obelić, Bogomil; Felja, Igor

    2013-01-01

    A new line for preparation of the graphite samples for 14C dating by Accelerator Mass Spectrometry (AMS) in the Zagreb Radiocarbon Laboratory has been validated by preparing graphite from various materials distributed within the Fifth International Radiocarbon Intercomparison (VIRI) study. 14C activity of prepared graphite was measured at the SUERC AMS facility. The results are statistically evaluated by means of the z-score and u-score values. The mean z-score value of 28 prepared VIRI samples is (0.06 ± 0.23) showing excellent agreement with the consensus VIRI values. Only one sample resulted in the u-score value above the limit of acceptability (defined for the confidence interval of 99%) and this was probably caused by a random contamination of the graphitization rig. After the rig had been moved to the new adapted and isolated room, all u-score values laid within the acceptable limits. Our LSC results of VIRI intercomparison samples are also presented and they are all accepted according to the u-score values.

  14. SimilarityExplorer: A visual inter-comparison tool for multifaceted climate data

    Treesearch

    J. Poco; A. Dasgupta; Y. Wei; W. Hargrove; C. Schwalm; R. Cook; E. Bertini; C. Silva

    2014-01-01

    Inter-comparison and similarity analysis to gauge consensus among multiple simulation models is a critical visualization problem for understanding climate change patterns. Climate models, specifically, Terrestrial Biosphere Models (TBM) represent time and space variable ecosystem processes, for example, simulations of photosynthesis and respiration, using algorithms...

  15. FIELD INTERCOMPARISON OF SULFATE DRY DEPOSITION MONITORING AND MEASUREMENT METHODS: PRELIMINARY RESULTS

    EPA Science Inventory

    The Illinois State Water Survey hosted a three-week field intercomparison of several sulfate dry deposition measurement techniques during September 81. The site was an 80-acre grass field in a rural area 14 km southwest of Champaign, IL. The vegetation consisted of mixed grasses ...

  16. New Sentinel-2 radiometric validation approaches (SEOM program)

    NASA Astrophysics Data System (ADS)

    Bruniquel, Véronique; Lamquin, Nicolas; Ferron, Stéphane; Govaerts, Yves; Woolliams, Emma; Dilo, Arta; Gascon, Ferran

    2016-04-01

    SEOM is an ESA program element whose one of the objectives aims at launching state-of-the-art studies for the scientific exploitation of operational missions. In the frame of this program, ESA awarded ACRI-ST and its partners Rayference and National Physical Laboratory (NPL) early 2016 for a R&D study on the development and intercomparison of algorithms for validating the Sentinel-2 radiometric L1 data products beyond the baseline algorithms used operationally in the frame of the S2 Mission Performance Centre. In this context, several algorithms have been proposed and are currently in development: The first one is based on the exploitation of Deep Convective Cloud (DCC) observations over ocean. This method allows an inter-band radiometry validation from the blue to the NIR (typically from B1 to B8a) from a reference band already validated for example with the well-known Rayleigh method. Due to their physical properties, DCCs appear from the remote sensing point of view to have bright and cold tops and they can be used as invariant targets to monitor the radiometric response degradation of reflective solar bands. The DCC approach is statistical i.e. the method shall be applied on a large number of measurements to derive reliable statistics and decrease the impact of the perturbing contributors. The second radiometric validation method is based on the exploitation of matchups combining both concomitant in-situ measurements and Sentinel-2 observations. The in-situ measurements which are used here correspond to measurements acquired in the frame of the RadCalNet networks. The validation is performed for the Sentinel-2 bands similar to the bands of the instruments equipping the validation site. The measurements from the Cimel CE 318 12-filters BRDF Sun Photometer installed recently in the Gobabeb site near the Namib desert are used for this method. A comprehensive verification of the calibration requires an analysis of MSI radiances over the full dynamic range, including low radiances, as extreme values are more subject to instrument response non-linearity. The third method developed in the frame of this project aims to address this point. It is based on a comparison of Sentinel-2 observations over coastal waters which have low radiometry and corresponding Radiative Transfer (RT) simulations using AERONET-OC measurements. Finally, a last method is developed using RadCalNet measurements and Sentinel-2 observations to validate the radiometry of mid/low resolution sensors such as Sentinel-3/OLCI. The RadCalNet measurements are transferred from the RadCalNet sites to Pseudo Invariant Calibration Sites (PICS) using Sentinel-2, and then these larger sites are used to validate mid- and low-resolution sensors to the RadCalNet reference. For all the developed methods, an uncertainty budget is derived following QA4EO guidelines. A last step of this ESA project is dedicated to an Inter-comparison Workshop open to entities involved in Sentinel-2 radiometric validation activities. Blind inter-comparison tests over a series of images will be proposed and the results will be discussed during the workshop.

  17. Inter-comparison of time series models of lake levels predicted by several modeling strategies

    NASA Astrophysics Data System (ADS)

    Khatibi, R.; Ghorbani, M. A.; Naghipour, L.; Jothiprakash, V.; Fathima, T. A.; Fazelifard, M. H.

    2014-04-01

    Five modeling strategies are employed to analyze water level time series of six lakes with different physical characteristics such as shape, size, altitude and range of variations. The models comprise chaos theory, Auto-Regressive Integrated Moving Average (ARIMA) - treated for seasonality and hence SARIMA, Artificial Neural Networks (ANN), Gene Expression Programming (GEP) and Multiple Linear Regression (MLR). Each is formulated on a different premise with different underlying assumptions. Chaos theory is elaborated in a greater detail as it is customary to identify the existence of chaotic signals by a number of techniques (e.g. average mutual information and false nearest neighbors) and future values are predicted using the Nonlinear Local Prediction (NLP) technique. This paper takes a critical view of past inter-comparison studies seeking a superior performance, against which it is reported that (i) the performances of all five modeling strategies vary from good to poor, hampering the recommendation of a clear-cut predictive model; (ii) the performances of the datasets of two cases are consistently better with all five modeling strategies; (iii) in other cases, their performances are poor but the results can still be fit-for-purpose; (iv) the simultaneous good performances of NLP and SARIMA pull their underlying assumptions to different ends, which cannot be reconciled. A number of arguments are presented including the culture of pluralism, according to which the various modeling strategies facilitate an insight into the data from different vantages.

  18. Marine ARM GPCI Investigation of Clouds Bridge Display Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, R. Michael; Lewis, Ernie

    2016-09-01

    At the beginning of the U.S. Department of Energy (DOE) Marine Atmospheric Radiation Measurement (ARM) Climate Research Facility Global Energy and Water Experiment (GEWEX) Cloud System Study (GCSS) Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds (MAGIC) experiment, we recognized that the crew on the ship’s bridge would like to see a display of the meteorological data that was being collected. While a display on the bridge would be marginally useful to the science, it was decided to make a display for the bridge. A display was programmed in Lab View and a personal computer (PC) was set up in themore » bridge. This remained in operation until the ship went to dry dock for upgrades and service. Part of the upgrade was a new meteorological system for the ship. After this time there was no need for the ARM display and so it was not re-installed for the remainder of the program.« less

  19. A large-scale intercomparison of stratospheric vertical distributions of NO2 and BrO retrieved from the SCIAMACHY limb measurements and ground-based twilight observations

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Hendrick, Francois; Lotz, Wolfhardt; van Roozendael, Michel; Bovensmann, Heinrich; Burrows, John P.

    This study is devoted to the intercomparison of NO2 and BrO vertical profiles obtained from the satellite and ground-based measurements. Although, the ground-based observations are performed only at selected locations, they have a great potential to be used for the validation of satellite measurements since continuous long-term measurement series performed with the same instruments are available. Thus, long-term trends in the observed species can be analyzed and intercompared. Previous intercomparisons of the vertical distributions of NO2 and BrO retrieved from SCIAMACHY limb measurements at the University of Bremen and obtained at IASB-BIRA by applying a profiling technique to ground-based zenith-sky DOAS observations have shown a good agreement between the results of completely different measurement techniques. However, only a relatively short time period of one year was analyzed so far which do not allow investigating seasonal variations and trends. Furthermore, some minor discrepancies are still to be analyzed. In the current study, several years datasets obtained at Observatoire de Haute-Provence (OHP) in France and in Harestua in Norway will be compared to the retrievals of SCIAMACHY limb measurements. Seasonal and annual variations will be analyzed and possible reasons for the remaining discrepancies will be discussed.

  20. Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems

    NASA Astrophysics Data System (ADS)

    Fujiwara, Masatomo; Wright, Jonathon S.; Manney, Gloria L.; Gray, Lesley J.; Anstey, James; Birner, Thomas; Davis, Sean; Gerber, Edwin P.; Harvey, V. Lynn; Hegglin, Michaela I.; Homeyer, Cameron R.; Knox, John A.; Krüger, Kirstin; Lambert, Alyn; Long, Craig S.; Martineau, Patrick; Molod, Andrea; Monge-Sanz, Beatriz M.; Santee, Michelle L.; Tegtmeier, Susann; Chabrillat, Simon; Tan, David G. H.; Jackson, David R.; Polavarapu, Saroja; Compo, Gilbert P.; Dragani, Rossana; Ebisuzaki, Wesley; Harada, Yayoi; Kobayashi, Chiaki; McCarty, Will; Onogi, Kazutoshi; Pawson, Steven; Simmons, Adrian; Wargan, Krzysztof; Whitaker, Jeffrey S.; Zou, Cheng-Zhi

    2017-01-01

    The climate research community uses atmospheric reanalysis data sets to understand a wide range of processes and variability in the atmosphere, yet different reanalyses may give very different results for the same diagnostics. The Stratosphere-troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare reanalysis data sets using a variety of key diagnostics. The objectives of this project are to identify differences among reanalyses and understand their underlying causes, to provide guidance on appropriate usage of various reanalysis products in scientific studies, particularly those of relevance to SPARC, and to contribute to future improvements in the reanalysis products by establishing collaborative links between reanalysis centres and data users. The project focuses predominantly on differences among reanalyses, although studies that include operational analyses and studies comparing reanalyses with observations are also included when appropriate. The emphasis is on diagnostics of the upper troposphere, stratosphere, and lower mesosphere. This paper summarizes the motivation and goals of the S-RIP activity and extensively reviews key technical aspects of the reanalysis data sets that are the focus of this activity. The special issue The SPARC Reanalysis Intercomparison Project (S-RIP) in this journal serves to collect research with relevance to the S-RIP in preparation for the publication of the planned two (interim and full) S-RIP reports.

  1. The Fifth Calibration/Data Product Validation Panel Meeting

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The minutes and associated documents prepared from presentations and meetings at the Fifth Calibration/Data Product Validation Panel meeting in Boulder, Colorado, April 8 - 10, 1992, are presented. Key issues include (1) statistical characterization of data sets: finding statistics that characterize key attributes of the data sets, and defining ways to characterize the comparisons among data sets; (2) selection of specific intercomparison exercises: selecting characteristic spatial and temporal regions for intercomparisons, and impact of validation exercises on the logistics of current and planned field campaigns and model runs; and (3) preparation of data sets for intercomparisons: characterization of assumptions, transportable data formats, labeling data files, content of data sets, and data storage and distribution (EOSDIS interface).

  2. Radiance and Jacobian Intercomparison of Radiative Transfer Models Applied to HIRS and AMSU Channels

    NASA Technical Reports Server (NTRS)

    Garand, L.; Turner, D. S.; Larocque, M.; Bates, J.; Boukabara, S.; Brunel, P.; Chevallier, F.; Deblonde, G.; Engelen, R.; Hollingshead, M.; hide

    2000-01-01

    The goals of this study are the evaluation of current fast radiative transfer models (RTMs) and line-by-line (LBL) models. The intercomparison focuses on the modeling of 11 representative sounding channels routinely used at numerical weather prediction centers: 7 HIRS (High-resolution Infrared Sounder) and 4 AMSU (Advanced Microwave Sounding Unit) channels. Interest in this topic was evidenced by the participation of 24 scientists from 16 institutions. An ensemble of 42 diverse atmospheres was used and results compiled for 19 infrared models and 10 microwave models, including several LBL RTMs. For the first time, not only radiances, but also Jacobians (of temperature, water vapor and ozone) were compared to various LBL models for many channels. In the infrared, LBL models typically agree to within 0.05-0.15 K (standard deviation) in terms of top-of-the-atmosphere brightness temperature (BT). Individual differences up to 0.5 K still exist, systematic in some channels, and linked to the type of atmosphere in others. The best fast models emulate LBL BTs to within 0.25 K, but no model achieves this desirable level of success for all channels. The ozone modeling is particularly challenging, In the microwave, fast models generally do quite well against the LBL model to which they were tuned. However significant differences were noted among LBL models, Extending the intercomparison to the Jacobians proved very useful in detecting subtle and more obvious modeling errors. In addition, total and single gas optical depths were calculated, which provided additional insight on the nature of differences. Recommendations for future intercomparisons are suggested.

  3. Radiance and Jacobian Intercomparison of Radiative Transfer Models Applied to HIRS and AMSU Channels

    NASA Technical Reports Server (NTRS)

    Garand, L.; Turner, D. S.; Larocque, M.; Bates, J.; Boukabara, S.; Brunel, P.; Chevallier, F.; Deblonde, G.; Engelen, R.; Atlas, Robert (Technical Monitor)

    2000-01-01

    The goals of this study are the evaluation of current fast radiative transfer models (RTMs) and line-by-line (LBL) models. The intercomparison focuses on the modeling of 11 representative sounding channels routinely used at numerical weather prediction centers: seven HIRS (High-resolution Infrared Sounder) and four AMSU (Advanced Microwave Sounding Unit) channels. Interest in this topic was evidenced by the participation of 24 scientists from 16 institutions. An ensemble of 42 diverse atmospheres was used and results compiled for 19 infrared models and 10 microwave models, including several LBL RTMs. For the first time, not only radiances, but also Jacobians (of temperature, water vapor, and ozone) were compared to various LBL models for many channels. In the infrared, LBL models typically agree to within 0.05-0.15 K (standard deviation) in terms of top-of-the-atmosphere brightness temperature (BT). Individual differences up to 0.5 K still exist, systematic in some channels, and linked to the type of atmosphere in others. The best fast models emulate LBL BTs to within 0.25 K, but no model achieves this desirable level of success for all channels. The ozone modeling is particularly challenging. In the microwave, fast models generally do quite well against the LBL model to which they were tuned. However significant differences were noted among LBL models. Extending the intercomparison to the Jacobians proved very useful in detecting subtle and more obvious modeling errors. In addition, total and single gas optical depths were calculated, which provided additional insight on the nature of differences. Recommendations for future intercomparisons are suggested.

  4. A Compendium on the NIST Radionuclidic Assays of the Massic Activity of 63Ni and 55Fe Solutions Used for an International Intercomparison of Liquid Scintillation Spectrometry Techniques

    PubMed Central

    Collé, R.; Zimmerman, B. E.

    1997-01-01

    The National Institute of Standards and Technology recently participated in an international measurement intercomparison for 63Ni and 55Fe, which was conducted amongst principal national radionuclidic metrology laboratories. The intercomparison was sponsored by EUROMET, and was primarily intended to evaluate the capabilities of liquid scintillation (LS) spectrometry techniques for standardizing nuclides that decay by low-energy β-emission (like 63Ni) and by low-Z (atomic number) electron capture (like 55Fe). The intercomparison findings exhibit a very good agreement for 63Ni amongst the various participating laboratories, including that for NIST, which suggests that the presently invoked LS methodologies are very capable of providing internationally-compatible standardizations for low-energy β-emitters. The results for 55Fe are in considerably poorer agreement, and demonstrated the existence of several unresolved problems. It has thus become apparent that there is a need for the various international laboratories to conduct rigorous, systematic evaluations of their LS capabilities in assaying radionuclides that decay by low-Z electron capture. PMID:27805141

  5. SECOND LATIN AMERICAN INTERCOMPARISON ON INTERNAL DOSE ASSESSMENT.

    PubMed

    Rojo, A; Puerta, N; Gossio, S; Gómez Parada, I; Cruz Suarez, R; López, E; Medina, C; Lastra Boylan, J; Pinheiro Ramos, M; Mora Ramírez, E; Alves Dos Reis, A; Yánez, H; Rubio, J; Vironneau Janicek, L; Somarriba Vanegas, F; Puerta Ortiz, J; Salas Ramírez, M; López Bejerano, G; da Silva, T; Miri Oliveira, C; Terán, M; Alfaro, M; García, T; Angeles, A; Duré Romero, E; Farias de Lima, F

    2016-09-01

    Internal dosimetry intercomparisons are essential for the verification of applied models and the consistency of results'. To that aim, the First Regional Intercomparison was organised in 2005, and that results led to the Second Regional Intercomparison Exercise in 2013, which was organised in the frame of the RLA 9/066 and coordinated by Autoridad Regulatoria Nuclear of Argentina. Four simulated cases covering intakes of (131)I, (137)Cs and Tritium were proposed. Ninteen centres from thirteen different countries participated in this exercise. This paper analyses the participants' results in this second exercise in order to test their skills and acquired knowledge, particularly in the application of the IDEAS Guidelines. It is important to highlight the increased number of countries that participated in this exercise compared with the first one and, furthermore, the improvement in the overall performance. The impact of the International Atomic Energy Agency (IAEA) Projects since 2003 has led to a significant enhancement of internal dosimetry capabilities that strengthen the radiation protection of workers. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. 1993 Intercomparison of Photometric Units Maintained at NIST (USA) and PTB (Germany)

    PubMed Central

    Ohno, Yoshihiro; Sauter, Georg

    1995-01-01

    A bilateral intercomparison of photometric units between NIST, USA and PTB, Germany has been conducted to update the knowledge of the relationship between the photometric units disseminated in each country. The luminous intensity unit (cd) and the luminous flux unit (lm) maintained at both laboratories are compared by circulating transfer standard lamps. Also, the photometric responsivity sv is compared by circulating a V(λ)-corrected detector with a built-in current-to-voltage converter. The results show that the difference of luminous intensity unit between NIST and PTB, (PTB-NIST)/NIST, is 0.2 % with a relative expanded uncertainty (coverage factor k = 2) of 0.24 %. The difference is reduced significantly from that at the 1985 CCPR intercomparison (0.9 %). The difference in luminous flux unit, (PTB – NIST)/NIST, is found to be 1.5 % with a relative expanded uncertainty (coverage factor k =2) of 0.15 %. The difference remained nearly the same as that at the 1985 intercomparison (1.6 %). These results agree with what is predicted from the history of maintaining the units at each laboratory. PMID:29151737

  7. An architecture for consolidating multidimensional time-series data onto a common coordinate grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shippert, Tim; Gaustad, Krista

    Consolidating measurement data for use by data models or in inter-comparison studies frequently requires transforming the data onto a common grid. Standard methods for interpolating multidimensional data are often not appropriate for data with non-homogenous dimensionality, and are hard to implement in a consistent manner for different datastreams. These challenges are increased when dealing with the automated procedures necessary for use with continuous, operational datastreams. In this paper we introduce a method of applying a series of one-dimensional transformations to merge data onto a common grid, examine the challenges of ensuring consistent application of data consolidation methods, present a frameworkmore » for addressing those challenges, and describe the implementation of such a framework for the Atmospheric Radiation Measurement (ARM) program.« less

  8. Airborne Lidar measurements of aerosols, mixed layer heights, and ozone during the 1980 PEPE/NEROS summer field experiment

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Shipley, S. T.; Butler, C. F.; Ismail, S.

    1985-01-01

    A detailed summary of the NASA Ultraviolet Differential Absorption Lidar (UV DIAL) data archive obtained during the EPA Persistent Elevated Pollution Episode/Northeast Regional Oxidant Study (PEPE/NEROS) Summer Field Experiment Program (July through August 1980) is presented. The UV dial data set consists of remote measurements of mixed layer heights, aerosol backscatter cross sections, and sequential ozone profiles taken during 14 long-range flights onboard the NASA Wallops Flight Center Electra aircraft. These data are presented in graphic and tabular form, and they have been submitted to the PEPE/NEROS data archive on digital magnetic tape. The derivation of mixing heights and ozone profiles from UV Dial signals is discussed, and detailed intercomparisons with measurements obtained by in situ sensors are presented.

  9. Spectroradiometer Intercomparison and Impact on Characterizing Photovoltaic Device Performance: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, A.; Andreas, A.; Ottoson, L.

    2014-11-01

    Indoor and outdoor testing of photovoltaic (PV) device performance requires the use of solar simulators and natural solar radiation, respectively. This performance characterization requires accurate knowledge of spectral irradiance distribution that is incident on the devices. Spectroradiometers are used to measure the spectral distribution of solar simulators and solar radiation. On September 17, 2013, a global spectral irradiance intercomparison using spectroradiometers was organized by the Solar Radiation Research Laboratory (SRRL) at the National Renewable Energy Laboratory (NREL). This paper presents highlights of the results of this first intercomparison, which will help to decrease systematic inter-laboratory differences in the measurements ofmore » the outputs or efficiencies of PV devices and harmonize laboratory experimental procedures.« less

  10. The DeepMIP Contribution to PMIP4: Experimental Design for Model Simulations of the EECO, PETM, and pre-PETM (version 1.0)

    NASA Technical Reports Server (NTRS)

    Lunt, Daniel J.; Huber, Matthew; Anagnostou, Eleni; Baatsen, Michiel L. J.; Caballero, Rodrigo; DeConto, Rob; Dijkstra, Henk A.; Donnadieu, Yannick; Evans, David; Feng, Ran; hide

    2017-01-01

    Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( greater than 800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene (approximately 50 Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4(times) CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP - the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modeling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.

  11. Intercomparison of retrospective radon detectors.

    PubMed Central

    Field, R W; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C

    1999-01-01

    We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. The detector's track density generation rate (tracks per square centimeter per hour) is proportional to the surface alpha-activity. In the absence of other strong sources of alpha-emission in the glass, the implanted surface alpha-activity should be proportional to the accumulated (210)Po, and hence to the cumulative radon gas exposure. The goals of the intercomparison were to a) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, b) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass-implanted polonium activities, and c) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted (210)Po activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type. Preliminary comparisons of the models used to translate track rate densities to average long-term radon concentrations differ between the two studies. Further calibration of the retrospective detectors' models for interpretation of track rate density may allow the pooling of studies that use glass-based retrospective radon detectors to determine historic residential radon exposures. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10545336

  12. Intercomparison of retrospective radon detectors.

    PubMed

    Field, R W; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C

    1999-11-01

    We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. The detector's track density generation rate (tracks per square centimeter per hour) is proportional to the surface alpha-activity. In the absence of other strong sources of alpha-emission in the glass, the implanted surface alpha-activity should be proportional to the accumulated (210)Po, and hence to the cumulative radon gas exposure. The goals of the intercomparison were to a) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, b) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass-implanted polonium activities, and c) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted (210)Po activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type. Preliminary comparisons of the models used to translate track rate densities to average long-term radon concentrations differ between the two studies. Further calibration of the retrospective detectors' models for interpretation of track rate density may allow the pooling of studies that use glass-based retrospective radon detectors to determine historic residential radon exposures.

  13. Inter-calibration and validation of observations from SAPHIR and ATMS instruments

    NASA Astrophysics Data System (ADS)

    Moradi, I.; Ferraro, R. R.

    2015-12-01

    We present the results of evaluating observations from microwave instruments aboard the Suomi National Polar-orbiting Partnership (NPP, ATMS instrument) and Megha-Tropiques (SAPHIR instrument) satellites. The study includes inter-comparison and inter-calibration of observations of similar channels from the two instruments, evaluation of the satellite data using high-quality radiosonde data from Atmospheric Radiation Measurement Program and GPS Radio Occultaion Observations from COSMIC mission, as well as geolocation error correction. The results of this study are valuable for generating climate data records from these instruments as well as for extending current climate data records from similar instruments such as AMSU-B and MHS to the ATMS and SAPHIR instruments. Reference: Moradi et al., Intercalibration and Validation of Observations From ATMS and SAPHIR Microwave Sounders. IEEE Transactions on Geoscience and Remote Sensing. 01/2015; DOI: 10.1109/TGRS.2015.2427165

  14. BRDF Characterization and Calibration Inter-Comparison between Terra MODIS, Aqua MODIS, and S-NPP VIIRS

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Wu, Aisheng

    2016-01-01

    The inter-comparison of reflective solar bands (RSB) between Terra MODIS, Aqua MODIS, and SNPP VIIRS is very important for assessment of each instrument's calibration and to identify calibration improvements. One of the limitations of using their ground observations for the assessment is a lack of the simultaneous nadir overpasses (SNOs) over selected pseudo-invariant targets. In addition, their measurements over a selected Earth view target have significant difference in solar and view angles, and these differences magnify the effects of Bidirectional Reflectance Distribution Function (BRDF). In this work, an inter-comparison technique using a semi-empirical BRDF model is developed for reflectance correction. BRDF characterization requires a broad coverage of solar and view angles in the measurements over selected pseudo-invariant targets. Reflectance measurements over Libya 1, 2, and 4 desert sites from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for the calibration difference between the two instruments. The BRDF coefficients for three desert sites for MODIS bands 1 to 9 are derived and the wavelength dependencies are presented. The analysis and inter-comparison are for MODIS bands 1 to 9 and VIIRS moderate resolution radiometric bands (M bands) M1, M2, M4, M5, M7, M8, M10 and imaging bands (I bands) I1-I3. Results show that the ratios from different sites are in good agreement. The ratios between Terra and Aqua MODIS from year 2003 to 2014 are presented. The inter-comparison between MODIS and VIIRS are analyzed for year 2014.

  15. A Methodological Inter-Comparison of Gridded Meteorological Products

    NASA Astrophysics Data System (ADS)

    Newman, A. J.; Clark, M. P.; Longman, R. J.; Giambelluca, T. W.; Arnold, J.

    2017-12-01

    Here we present a gridded meteorology inter-comparison using the state of Hawaíi as a testbed. This inter-comparison is motivated by two general goals: 1) the broad user community of gridded observation based meteorological fields should be aware of inter-product differences and the reasons they exist, which allows users to make informed choices on product selection to best meet their specific application(s); 2) we want to demonstrate the utility of inter-comparisons to meet the first goal, yet highlight that they are limited to mostly generic statements regarding attribution of differences that limits our understanding of these complex algorithms and obscures future research directions. Hawaíi is a useful testbed because it is a meteorologically complex region with well-known spatial features that are tied to specific physical processes (e.g. the trade wind inversion). From a practical standpoint, there are now several monthly climatological and daily precipitation and temperature datasets available that are being used for impact modeling. General conclusions that have emerged are: 1) differences in input station data significantly influence product differences; 2) prediction of precipitation occurrence is crucial across multiple metrics; 3) derived temperature statistics (e.g. diurnal temperature range) may have large spatial differences across products; and 4) attribution of differences to methodological choices is difficult and may limit the outcomes of these inter-comparisons, particularly from a development viewpoint. Thus, we want to continue to move the community towards frameworks that allow for multiple options throughout the product generation chain and allow for more systematic testing.

  16. Ultrafine particle measurement and related EPA research studies

    EPA Science Inventory

    Webinar slides to present information on measuring ultrafine particles at the request of the 2013 MARAMA Monitoring Committee. The talk covers near-road monitoring, instrument intercomparison, and general overview of UFP monitoring technology.

  17. Assessing the Application of Cloud-Shadow Atmospheric Correction Algorithm on HICO

    DTIC Science & Technology

    2014-05-01

    multiple times and intercompare the results to assess variability in the retrieved reflectance spectra. Retrieved chlorophyll values from this...intercomparison are similar and also agree well with the In situ chlorophyll measurements. 15. SUBJECT TERMS Atmospheric correction, cloud-shadow...reflectance spectra. Re- trieved chlorophyll values from this intercomparison are similar and also agree well with the in situ chlorophyll measurements

  18. Development of phantom and methodology for 3D and 4D dose intercomparisons for advanced lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Caloz, Misael; Kafrouni, Marilyne; Leturgie, Quentin; Corde, Stéphanie; Downes, Simon; Lehmann, Joerg; Thwaites, David

    2015-01-01

    There are few reported intercomparisons or audits of combinations of advanced radiotherapy methods, particularly for 4D treatments. As part of an evaluation of the implementation of advanced radiotherapy technology, a phantom and associated methods, initially developed for in-house commissioning and QA of 4D lung treatments, has been developed further with the aim of using it for end-to-end dose intercomparison of 4D treatment planning and delivery. The respiratory thorax phantom can house moving inserts with variable speed (breathing rate) and motion amplitude. In one set-up mode it contains a small ion chamber for point dose measurements, or alternatively it can hold strips of radiochromic film to measure dose distributions. Initial pilot and feasibility measurements have been carried out in one hospital to thoroughly test the methods and procedures before using it more widely across a range of hospitals and treatment systems. Overall, the results show good agreement between measured and calculated doses and distributions, supporting the use of the phantom and methodology for multi-centre intercomparisons. However, before wider use, refinements of the method and analysis are currently underway particularly for the film measurements.

  19. A Comparison of Aircraft and Ground-Based Measurements at Mauna Loa Observatory, Hawaii, During GTE PEM-West and MLOPEX 2

    NASA Technical Reports Server (NTRS)

    Atlas, E.; Ridley, B.; Walega, J.; Greenberg, J.; Kok, G.; Staffelbach, T.; Schauffler, S.; Lind, J.; Huebler, G.; Norton, R.

    1996-01-01

    During October 19-20, 1991, one flight of the NASA Global Tropospheric Experiment (GTE) Pacific Exploratory Mission (PEM-West A) mission was conducted near Hawaii as an intercomparison with ground-based measurements of the Mauna Loa Observatory Photochemistry Experiment (MLOPEX 2) and the NOAA Climate Modeling and Diagnostics Laboratory (CMDL). Ozone, reactive nitrogen species, peroxides, hydrocarbons, and halogenated hydrocarbons were measured by investigators aboard the DC-8 aircraft and at the ground site. Lidar cross sections of ozone revealed a complex air mass structure near the island of Hawaii which was evidenced by large variation in some trace gas mixing ratios. This variation limited the time and spatial scales for direct measurement intercomparisons. Where differences occurred between measurements in the same air masses, the intercomparison suggested that biases for some trace gases was due to different calibration scales or, in some cases, instrumental or sampling biases. Relatively large uncertainties were associated with those trace gases present in the low parts per trillion by volume range. Trace gas correlations were used to expand the scope of the intercomparison to identify consistent trends between the different data sets.

  20. Intercomparison of Global Precipitation Products: The Third Precipitation Intercomparison Project (PIP-3)

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Kidd, Christopher; Petty, Grant; Morrissey, Mark; Goodman, H. Michael; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A set of global, monthly rainfall products has been intercompared to understand the quality and utility of the estimates. The products include 25 observational (satellite-based), four model and two climatological products. The results of the intercomparison indicate a very large range (factor of two or three) of values when all products are considered. The range of values is reduced considerably when the set of observational products is limited to those considered quasi-standard. The model products do significantly poorer in the tropics, but are competitive with satellite-based fields in mid-latitudes over land. Over ocean, products are compared to frequency of precipitation from ship observations. The evaluation of the observational products point to merged data products (including rain gauge information) as providing the overall best results.

  1. The Software Architecture of Global Climate Models

    NASA Astrophysics Data System (ADS)

    Alexander, K. A.; Easterbrook, S. M.

    2011-12-01

    It has become common to compare and contrast the output of multiple global climate models (GCMs), such as in the Climate Model Intercomparison Project Phase 5 (CMIP5). However, intercomparisons of the software architecture of GCMs are almost nonexistent. In this qualitative study of seven GCMs from Canada, the United States, and Europe, we attempt to fill this gap in research. We describe the various representations of the climate system as computer programs, and account for architectural differences between models. Most GCMs now practice component-based software engineering, where Earth system components (such as the atmosphere or land surface) are present as highly encapsulated sub-models. This architecture facilitates a mix-and-match approach to climate modelling that allows for convenient sharing of model components between institutions, but it also leads to difficulty when choosing where to draw the lines between systems that are not encapsulated in the real world, such as sea ice. We also examine different styles of couplers in GCMs, which manage interaction and data flow between components. Finally, we pay particular attention to the varying levels of complexity in GCMs, both between and within models. Many GCMs have some components that are significantly more complex than others, a phenomenon which can be explained by the respective institution's research goals as well as the origin of the model components. In conclusion, although some features of software architecture have been adopted by every GCM we examined, other features show a wide range of different design choices and strategies. These architectural differences may provide new insights into variability and spread between models.

  2. Intercomparisons of Marine Boundary Layer Cloud Properties from the ARM CAP-MBL Campaign and Two MODIS Cloud Products

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick

    2017-01-01

    From April 2009 to December 2010, the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an inter-comparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT) and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility (AMF) and two Moderate Resolution Spectroradiometer (MODIS) cloud products (GSFC-MODIS and CERES-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for inter-comparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R greater than 0.95 despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 micrometers band (CER(sub 2.1)) is significantly smaller than that based on the 3.7 micrometers band (CER(sub 3.7)). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER(sub 3.7) and CER(sub 2.1) retrievals have a lower correlation (R is approximately 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 micrometers and 3.0 micrometers, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 micrometers.

  3. Intercomparisons of marine boundary layer cloud properties from the ARM CAP-MBL campaign and two MODIS cloud products

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick

    2017-02-01

    From April 2009 to December 2010, the Department of Energy Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an intercomparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT), and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility and two Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products (Goddard Space Flight Center (GSFC)-MODIS and Clouds and Earth's Radiant Energy System-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for intercomparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R > 0.95, despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 µm band (CER2.1) are significantly larger than those based on the 3.7 µm band (CER3.7). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal-spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER3.7 and CER2.1 retrievals have a lower correlation (R 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 µm and 3.0 µm, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 µm.

  4. The Earth System Documentation (ES-DOC) Software Process

    NASA Astrophysics Data System (ADS)

    Greenslade, M. A.; Murphy, S.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.

    2013-12-01

    Earth System Documentation (ES-DOC) is an international project supplying high-quality tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system and currently supporting the following projects: * Coupled Model Inter-comparison Project Phase 5 (CMIP5); * Dynamical Core Model Inter-comparison Project (DCMIP); * National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This talk will demonstrate that ES-DOC implements a relatively mature software development process. Taking a pragmatic Agile process as inspiration, ES-DOC: * Iteratively develops and releases working software; * Captures user requirements via a narrative based approach; * Uses online collaboration tools (e.g. Earth System CoG) to manage progress; * Prototypes applications to validate their feasibility; * Leverages meta-programming techniques where appropriate; * Automates testing whenever sensibly feasible; * Streamlines complex deployments to a single command; * Extensively leverages GitHub and Pivotal Tracker; * Enforces strict separation of the UI from underlying API's; * Conducts code reviews.

  5. Intercomparison of aerosol optical parameters from WALI and R-MAN510 aerosol Raman lidars in the framework of HyMeX campaign

    NASA Astrophysics Data System (ADS)

    Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent

    2013-04-01

    The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.

  6. Inter-comparison of three-dimensional models of volcanic plumes

    USGS Publications Warehouse

    Suzuki, Yujiro; Costa, Antonio; Cerminara, Matteo; Esposti Ongaro, Tomaso; Herzog, Michael; Van Eaton, Alexa; Denby, Leif

    2016-01-01

    We performed an inter-comparison study of three-dimensional models of volcanic plumes. A set of common volcanological input parameters and meteorological conditions were provided for two kinds of eruptions, representing a weak and a strong eruption column. From the different models, we compared the maximum plume height, neutral buoyancy level (where plume density equals that of the atmosphere), and level of maximum radial spreading of the umbrella cloud. We also compared the vertical profiles of eruption column properties, integrated across cross-sections of the plume (integral variables). Although the models use different numerical procedures and treatments of subgrid turbulence and particle dynamics, the inter-comparison shows qualitatively consistent results. In the weak plume case (mass eruption rate 1.5 × 106 kg s− 1), the vertical profiles of plume properties (e.g., vertical velocity, temperature) are similar among models, especially in the buoyant plume region. Variability among the simulated maximum heights is ~ 20%, whereas neutral buoyancy level and level of maximum radial spreading vary by ~ 10%. Time-averaging of the three-dimensional (3D) flow fields indicates an effective entrainment coefficient around 0.1 in the buoyant plume region, with much lower values in the jet region, which is consistent with findings of small-scale laboratory experiments. On the other hand, the strong plume case (mass eruption rate 1.5 × 109 kg s− 1) shows greater variability in the vertical plume profiles predicted by the different models. Our analysis suggests that the unstable flow dynamics in the strong plume enhances differences in the formulation and numerical solution of the models. This is especially evident in the overshooting top of the plume, which extends a significant portion (~ 1/8) of the maximum plume height. Nonetheless, overall variability in the spreading level and neutral buoyancy level is ~ 20%, whereas that of maximum height is ~ 10%. This inter-comparison study has highlighted the different capabilities of 3D volcanic plume models, and identified key features of weak and strong plumes, including the roles of jet stability, entrainment efficiency, and particle non-equilibrium, which deserve future investigation in field, laboratory, and numerical studies.

  7. INTERCOMPARISON OF PERIODIC FINE PARTICLE SULFUR AND SULFATE CONCENTRATION RESULTS

    EPA Science Inventory

    A one-week study was conducted in August 1979 to evaluate the comparative ability of representative aerosol sampling systems to monitor fine particulate sulfur and sulfate concentrations periodically in situ. Participants in the study operated their samplers simultaneously in the...

  8. An architecture for consolidating multidimensional time-series data onto a common coordinate grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shippert, Tim; Gaustad, Krista

    In this paper, consolidating measurement data for use by data models or in inter-comparison studies frequently requires transforming the data onto a common grid. Standard methods for interpolating multidimensional data are often not appropriate for data with non-homogenous dimensionality, and are hard to implement in a consistent manner for different datastreams. In addition, these challenges are increased when dealing with the automated procedures necessary for use with continuous, operational datastreams. In this paper we introduce a method of applying a series of one-dimensional transformations to merge data onto a common grid, examine the challenges of ensuring consistent application of datamore » consolidation methods, present a framework for addressing those challenges, and describe the implementation of such a framework for the Atmospheric Radiation Measurement (ARM) program.« less

  9. In Situ Aerosol Optical Thickness Collected by the SIMBIOS Program (1997-2000): Protocols, and and Data QC and Analysis

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; Barnes, Robert; McClain, Charles

    2001-01-01

    The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project Office activities on in situ aerosol optical thickness (i.e., protocols, and data QC and analysis). This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.

  10. An architecture for consolidating multidimensional time-series data onto a common coordinate grid

    DOE PAGES

    Shippert, Tim; Gaustad, Krista

    2016-12-16

    In this paper, consolidating measurement data for use by data models or in inter-comparison studies frequently requires transforming the data onto a common grid. Standard methods for interpolating multidimensional data are often not appropriate for data with non-homogenous dimensionality, and are hard to implement in a consistent manner for different datastreams. In addition, these challenges are increased when dealing with the automated procedures necessary for use with continuous, operational datastreams. In this paper we introduce a method of applying a series of one-dimensional transformations to merge data onto a common grid, examine the challenges of ensuring consistent application of datamore » consolidation methods, present a framework for addressing those challenges, and describe the implementation of such a framework for the Atmospheric Radiation Measurement (ARM) program.« less

  11. A Bootstrap Algorithm for Mixture Models and Interval Data in Inter-Comparisons

    DTIC Science & Technology

    2001-07-01

    parametric bootstrap. The present algorithm will be applied to a thermometric inter-comparison, where data cannot be assumed to be normally distributed. 2 Data...experimental methods, used in each laboratory) often imply that the statistical assumptions are not satisfied, as for example in several thermometric ...triangular). Indeed, in thermometric experiments these three probabilistic models can represent several common stochastic variabilities for

  12. An evaluation of the Wyoming Gauge System for snowfall measurement

    USGS Publications Warehouse

    Yang, Daqing; Kane, Douglas L.; Hinzman, Larry D.; Goodison, Barry E.; Metcalfe, John R.; Louie, Paul Y.T.; Leavesley, George H.; Emerson, Douglas G.; Hanson, Clayton L.

    2000-01-01

    The Wyoming snow fence (shield) has been widely used with precipitation gauges for snowfall measurement at more than 25 locations in Alaska since the late 1970s. This gauge's measurements have been taken as the reference for correcting wind‐induced gauge undercatch of snowfall in Alaska. Recently, this fence (shield) was tested in the World Meteorological Organization Solid Precipitation Measurement Intercomparison Project at four locations in the United States of America and Canada for six winter seasons. At the Intercomparison sites an octagonal vertical Double Fence with a Russian Tretyakov gauge or a Universal Belfort recording gauge was installed and used as the Intercomparison Reference (DFIR) to provide true snowfall amounts for this Intercomparison experiment. The Intercomparison data collected were compiled at the four sites that represent a variety of climate, terrain, and exposure. On the basis of these data sets the performance of the Wyoming gauge system for snowfall observations was carefully evaluated against the DFIR and snow cover data. The results show that (1) the mean snow catch efficiency of the Wyoming gauge compared with the DFIR is about 80–90%, (2) there exists a close linear relation between the measurements of the two gauge systems and this relation may serve as a transfer function to adjust the Wyoming gauge records to obtain an estimate of the true snowfall amount, (3) catch efficiency of the Wyoming gauge does not change with wind speed and temperature, and (4) Wyoming gauge measurements are generally compatible to the snowpack water equivalent at selected locations in northern Alaska. These results are important to our effort of determining true snowfall amounts in the high latitudes, and they are also useful for regional hydrologic and climatic analyses.

  13. An international marine-atmospheric {sup 222}Rn measurement intercomparison in Bermuda. Part 2: Results for the participating laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colle, R.; Unterweger, M.P.; Hutchinson, J.M.R.

    1996-01-01

    As part of an international measurement intercomparison of instruments used to measure atmospheric {sup 222}Rn, four participating laboratories made nearly simultaneous measurements of {sup 222}Rn activity concentration in commonly sampled, ambient air over approximately a 2 week period, and three of these four laboratories participated in the measurement comparison of 14 introduced samples with known, but undisclosed (blind) {sup 222}Rn activity concentration. The exercise was conducted in Bermuda in October 1991. The {sup 222}Rn activity concentrations in ambient Bermudian air over the course of the intercomparison ranged from a few hundredths of a Bq {center_dot} m{sup {minus}3} to about 2more » Bq {center_dot} m{sup {minus}3}, while the standardized sample additions covered a range from approximately 2.5 Bq {center_dot} m{sup {minus}3} to 35 Bq {center_dot} m{sup {minus}3}. The overall uncertainty in the latter concentrations was in the general range of 10%, approximating a 3 standard deviation uncertainty interval. The results of the intercomparison indicated that two of the laboratories were within very good agreement with the standard additions, and almost within expected statistical variations. These same two laboratories, however, at lower ambient concentrations, exhibited a systematic difference with an averaged offset of roughly 0.3 Bq {center_dot} m{sup {minus}3}. The third laboratory participating in the measurement of standardized sample additions was systematically low by about 65% to 70%, with respect to the standard addition which was also confirmed in their ambient air concentration measurements. The fourth laboratory, participating in only the ambient measurement part of the intercomparison, was also systematically low by at least 40% with respect to the first two laboratories.« less

  14. 1989 Intercomparison of radon progeny measurement methods and equipment in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scofield, P.; George, A.; Tu, Keng.

    1990-03-01

    At the 1989 {sup 222}Rn progeny intercomparison held at the Environmental Measurements Laboratory (EML), July 10--14, 1989, grab sampling and integrating/continuous {sup 222}Rn progeny methods were evaluated. Sixteen facilities participated in this intercomparison. Twelve facilities used {sup 222}Rn progeny grab sampling methods, and nine facilities used integrating/continuous instruments. Eighty-eight percent of the participants reported grab sample {sup 222}Rn progeny concentrations that were within 20% of the EML reference values. Good agreement between participant and EML grab-sample potential alpha energy concentrations (PAECs) was observed; 92% of the participants had PAECs within 20% of the EML values. For the integrating/continuous PAEC valuesmore » determined with integrating/continuous monitors, 89% of the participants were within 20% of the EML reference values. 9 refs., 3 figs., 4 tabs.« less

  15. The First SIMBIOS Radiometric Intercomparison (SIMRIC-1), April-September 2001

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Abel, Peter; McClain, Charles; Barnes, Robert; Fargion, Giulietta; Cooper, John; Davis, Curtiss; Korwan, Daniel; Godin, Mike; Maffione, Robert

    2002-01-01

    This report describes the first SIMBIOS (Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies) Radiometric Intercomparison (SIMRIC-1). The purpose of the SIMRIC-1 is to ensure a common radiometric scale of the calibration facilities that are engaged in calibrating in situ radiometers used for ocean color related research and to document the calibration procedures and protocols. SIMBIOS staff visited the seven participating laboratories for at least two days each. The SeaWiFS Transfer Radiometer SXR-II measured the calibration radiances produced in the laboratories. The measured radiances were compared with the radiances expected by the laboratories. Typically, the measured radiances were higher than the expected radiances by 0 to 2%. This level of agreement is satisfactory. Several issues were identified, where the calibration protocols need to be improved, especially the reflectance calibration of the reference plaques and the distance correction when using the irradiance standards at distances greater than the 50 cm. The responsivity of the SXR-II changed between 0.3% (channel 6) and 1.6% (channel 2) from December 2000 to December 2001. Monitoring the SXR-II with a portable light source showed a linear drift of the calibration, except for channel 1, where a 2% drop occurred in summer.

  16. Large-Scale Features of Pliocene Climate: Results from the Pliocene Model Intercomparison Project

    NASA Technical Reports Server (NTRS)

    Haywood, A. M.; Hill, D.J.; Dolan, A. M.; Otto-Bliesner, B. L.; Bragg, F.; Chan, W.-L.; Chandler, M. A.; Contoux, C.; Dowsett, H. J.; Jost, A.; hide

    2013-01-01

    Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma) have been extensively studied.Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-mode data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), support previous work suggesting that ESS is greater than Climate Sensitivity (CS), and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5.

  17. The Second SIMBIOS Radiometric Intercomparison (SIMRIC-2), March-November 2002. Volume 2

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Abel, Peter; Carder, Kendall; Chapin, Albert; Clark, Dennis; Cooper, John; Davis, Curtis; English, David; Fargion, Giulietta; Feinholz, Michael; hide

    2003-01-01

    The second SIMBIOS (Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies) Radiometric Intercomparison (SIMRIC-2) was carried out in 2002. The purpose of the SIMRIC's was to ensure a common radiometric scale among the calibration facilities that are engaged in calibrating in-situ radiometrics used for ocean color-related research and to document the calibration procedures and protocols. The SeaWIFS Transfer Radiometer (SXR-II) measured the calibration radiances at six wavelengths from 411nm to 777nm in the ten laboratories participating in the SIMRIC-2. The measured radiances were compared with the radiances expected by the laboratories. The agreement was within the combined uncertainties for all but two laboratories. Likely error sources were identified in these laboratories and corrective measures were implemented. NIST calibrations in December 2001 and January 2003 showed changes ranging from -0.6% to +0.7% for the six SXR-II channels. Two independent light sources were used to monitor changes in the SXR-II responsivity between the NIST calibrations. A 2% variation of the responsivity of channel 1 of the SXR-II was detected, and the SXR-II responsivity was corrected using the monitoring data. This report also compared directional reflectance calibrations of a Spectralon plaque by different calibration facilities

  18. Control vocabulary software designed for CMIP6

    NASA Astrophysics Data System (ADS)

    Nadeau, D.; Taylor, K. E.; Williams, D. N.; Ames, S.

    2016-12-01

    The Coupled Model Intercomparison Project Phase 6 (CMIP6) coordinates a number of intercomparison activities and includes many more experiments than its predecessor, CMIP5. In order to organize and facilitate use of the complex collection of expected CMIP6 model output, a standard set of descriptive information has been defined, which must be stored along with the data. This standard information enables automated machine interpretation of the contents of all model output files. The standard metadata is stored in compliance with the Climate and Forecast (CF) standard, which ensures that it can be interpreted and visualized by many standard software packages. Additional attributes (not standardized by CF) are required by CMIP6 to enhance identification of models and experiments, and to provide additional information critical for interpreting the model results. To ensure that CMIP6 data complies with the standards, a python program called "PrePARE" (Pre-Publication Attribute Reviewer for the ESGF) has been developed to check the model output prior to its publication and release for analysis. If, for example, a required attribute is missing or incorrect (e.g., not included in the reference CMIP6 controlled vocabularies), then PrePare will prevent publication. In some circumstances, missing attributes can be created or incorrect attributes can be replaced automatically by PrePARE, and the program will warn users about the changes that have been made. PrePARE provides a final check on model output assuring adherence to a baseline conformity across the output from all CMIP6 models which will facilitate analysis by climate scientists. PrePARE is flexible and can be easily modified for use by similar projects that have a well-defined set of metadata and controlled vocabularies.

  19. NOAA Atmospheric Sciences Modeling Division support to the US Environmental Protection Agency

    NASA Astrophysics Data System (ADS)

    Poole-Kober, Evelyn M.; Viebrock, Herbert J.

    1991-07-01

    During FY-1990, the Atmospheric Sciences Modeling Division provided meteorological research and operational support to the U.S. Environmental Protection Agency. Basic meteorological operational support consisted of applying dispersion models and conducting dispersion studies and model evaluations. The primary research effort was the development and evaluation of air quality simulation models using numerical and physical techniques supported by field studies. Modeling emphasis was on the dispersion of photochemical oxidants and particulate matter on urban and regional scales, dispersion in complex terrain, and the transport, transformation, and deposition of acidic materials. Highlights included expansion of the Regional Acid Deposition Model/Engineering Model family to consist of the Tagged Species Engineering Model, the Non-Depleting Model, and the Sulfate Tracking Model; completion of the Acid-MODES field study; completion of the RADM2.1 evaluation; completion of the atmospheric processes section of the National Acid Precipitation Assessment Program 1990 Integrated Assessment; conduct of the first field study to examine the transport and entrainment processes of convective clouds; development of a Regional Oxidant Model-Urban Airshed Model interface program; conduct of an international sodar intercomparison experiment; incorporation of building wake dispersion in numerical models; conduct of wind-tunnel simulations of stack-tip downwash; and initiation of the publication of SCRAM NEWS.

  20. GLM Proxy Data Generation: Methods for Stroke/Pulse Level Inter-Comparison of Ground-Based Lightning Reference Networks

    NASA Technical Reports Server (NTRS)

    Cummins, Kenneth L.; Carey, Lawrence D.; Schultz, Christopher J.; Bateman, Monte G.; Cecil, Daniel J.; Rudlosky, Scott D.; Petersen, Walter Arthur; Blakeslee, Richard J.; Goodman, Steven J.

    2011-01-01

    In order to produce useful proxy data for the GOES-R Geostationary Lightning Mapper (GLM) in regions not covered by VLF lightning mapping systems, we intend to employ data produced by ground-based (regional or global) VLF/LF lightning detection networks. Before using these data in GLM Risk Reduction tasks, it is necessary to have a quantitative understanding of the performance of these networks, in terms of CG flash/stroke DE, cloud flash/pulse DE, location accuracy, and CLD/CG classification error. This information is being obtained through inter-comparison with LMAs and well-quantified VLF/LF lightning networks. One of our approaches is to compare "bulk" counting statistics on the spatial scale of convective cells, in order to both quantify relative performance and observe variations in cell-based temporal trends provided by each network. In addition, we are using microsecond-level stroke/pulse time correlation to facilitate detailed inter-comparisons at a more-fundamental level. The current development status of our ground-based inter-comparison and evaluation tools will be presented, and performance metrics will be discussed through a comparison of Vaisala s Global Lightning Dataset (GLD360) with the NLDN at locations within and outside the U.S.

  1. GLM Proxy Data Generation: Methods for Stroke/Pulse Level Inter-comparison of Ground-based Lightning Reference Networks

    NASA Astrophysics Data System (ADS)

    Cummins, K. L.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; Cecil, D. J.; Rudlosky, S. D.; Petersen, W. A.; Blakeslee, R. J.; Goodman, S. J.

    2011-12-01

    In order to produce useful proxy data for the GOES-R Geostationary Lightning Mapper (GLM) in regions not covered by VLF lightning mapping systems, we intend to employ data produced by ground-based (regional or global) VLF/LF lightning detection networks. Before using these data in GLM Risk Reduction tasks, it is necessary to have a quantitative understanding of the performance of these networks, in terms of CG flash/stroke DE, cloud flash/pulse DE, location accuracy, and CLD/CG classification error. This information is being obtained through inter-comparison with LMAs and well-quantified VLF/LF lightning networks. One of our approaches is to compare "bulk" counting statistics on the spatial scale of convective cells, in order to both quantify relative performance and observe variations in cell-based temporal trends provided by each network. In addition, we are using microsecond-level stroke/pulse time correlation to facilitate detailed inter-comparisons at a more-fundamental level. The current development status of our ground-based inter-comparison and evaluation tools will be presented, and performance metrics will be discussed through a comparison of Vaisala's Global Lightning Dataset (GLD360) with the NLDN at locations within and outside the U.S.

  2. Evaluation of Intercomparisons of Four Different Types of Model Simulating TWP-ICE

    NASA Technical Reports Server (NTRS)

    Petch, Jon; Hill, Adrian; Davies, Laura; Fridlind, Ann; Jakob, Christian; Lin, Yanluan; Xie, Shaoecheng; Zhu, Ping

    2013-01-01

    Four model intercomparisons were run and evaluated using the TWP-ICE field campaign, each involving different types of atmospheric model. Here we highlight what can be learnt from having single-column model (SCM), cloud-resolving model (CRM), global atmosphere model (GAM) and limited-area model (LAM) intercomparisons all based around the same field campaign. We also make recommendations for anyone planning further large multi-model intercomparisons to ensure they are of maximum value to the model development community. CRMs tended to match observations better than other model types, although there were exceptions such as outgoing long-wave radiation. All SCMs grew large temperature and moisture biases and performed worse than other model types for many diagnostics. The GAMs produced a delayed and significantly reduced peak in domain-average rain rate when compared to the observations. While it was shown that this was in part due to the analysis used to drive these models, the LAMs were also driven by this analysis and did not have the problem to the same extent. Based on differences between the models with parametrized convection (SCMs and GAMs) and those without (CRMs and LAMs), we speculate that that having explicit convection helps to constrain liquid water whereas the ice contents are controlled more by the representation of the microphysics.

  3. The Southern Ocean in the Coupled Model Intercomparison Project phase 5

    PubMed Central

    Meijers, A. J. S.

    2014-01-01

    The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear. PMID:24891395

  4. Neutron therapy in Saudi Arabia: an overview and results of dose searching study in head and neck cancer.

    PubMed

    el-Akkad, S; Schultz, H P; Ahmad, K; Clubb, B; McArthur, P; Dobson, H; DeVol, E

    1992-01-01

    The King Faisal Specialist Hospital and Research Centre is the only center in the Middle East that incorporates a neutron therapy facility. The neutron beam is produced by a cyclotron, which produces a beam by either a (d(15)+Be) or (p(26)+Be) reaction. The beam from the proton reaction is selected for therapy because of its superior physical characteristics. These were verified by an intercomparison conducted by the European Organization for Research on Treatment of Cancer (EORTC) Heavy Particle Therapy Group. Full beam data are presented. The first study in the neutron therapy Program is on the treatment of squamous cancers of the head and neck. This consists of two parts. Part I is a dose searching phase and Part II is a comparison of our current photon treatment versus neutrons using the neutron dose selected by Part I of the study. Results of the dose searching phase (Part I) are presented.

  5. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0

    NASA Astrophysics Data System (ADS)

    Tittensor, Derek P.; Eddy, Tyler D.; Lotze, Heike K.; Galbraith, Eric D.; Cheung, William; Barange, Manuel; Blanchard, Julia L.; Bopp, Laurent; Bryndum-Buchholz, Andrea; Büchner, Matthias; Bulman, Catherine; Carozza, David A.; Christensen, Villy; Coll, Marta; Dunne, John P.; Fernandes, Jose A.; Fulton, Elizabeth A.; Hobday, Alistair J.; Huber, Veronika; Jennings, Simon; Jones, Miranda; Lehodey, Patrick; Link, Jason S.; Mackinson, Steve; Maury, Olivier; Niiranen, Susa; Oliveros-Ramos, Ricardo; Roy, Tilla; Schewe, Jacob; Shin, Yunne-Jai; Silva, Tiago; Stock, Charles A.; Steenbeek, Jeroen; Underwood, Philip J.; Volkholz, Jan; Watson, James R.; Walker, Nicola D.

    2018-04-01

    Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the services they provide. The systematic generation, collation, and comparison of results from Fish-MIP will inform an understanding of the range of plausible changes in marine ecosystems and improve our capacity to define and convey the strengths and weaknesses of model-based advice on future states of marine ecosystems and fisheries. Ultimately, Fish-MIP represents a step towards bringing together the marine ecosystem modelling community to produce consistent ensemble medium- and long-term projections of marine ecosystems.

  6. Subglacial Hydrology Model Intercomparison Project (SHMIP)

    NASA Astrophysics Data System (ADS)

    Werder, Mauro A.; de Fleurian, Basile; Creyts, Timothy T.; Damsgaard, Anders; Delaney, Ian; Dow, Christine F.; Gagliardini, Olivier; Hoffman, Matthew J.; Seguinot, Julien; Sommers, Aleah; Irarrazaval Bustos, Inigo; Downs, Jakob

    2017-04-01

    The SHMIP project is the first intercomparison project of subglacial drainage models (http://shmip.bitbucket.org). Its synthetic test suites and evaluation were designed such that any subglacial hydrology model producing effective pressure can participate. In contrast to ice deformation, the physical processes of subglacial hydrology (which in turn impacts basal sliding of glaciers) are poorly known. A further complication is that different glacial and geological settings can lead to different drainage physics. The aim of the project is therefore to qualitatively compare the outputs of the participating models for a wide range of water forcings and glacier geometries. This will allow to put existing studies, which use different drainage models, into context and will allow new studies to select the most suitable model for the problem at hand. We present the results from the just completed intercomparison exercise. Twelve models participated: eight 2D and four 1D models; nine include both an efficient and inefficient system, the other three one of the systems; all but two models use R-channels as efficient system, and/or a linked-cavity like inefficient system, one exception uses porous layers with different characteristic for each of the systems, the other exception is based on canals. The main variable used for the comparison is effective pressure, as that is a direct proxy for basal sliding of glaciers. The models produce large differences in the effective pressure fields, in particular for higher water input scenarios. This shows that the selection of a subglacial drainage model will likely impact the conclusions of a study significantly.

  7. Czech results at criticality dosimetry intercomparison 2002.

    PubMed

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV.

  8. Airborne hygrometer calibration inter-comparison against a metrological water vapour standard

    NASA Astrophysics Data System (ADS)

    Smorgon, Denis; Boese, Norbert; Ebert, Volker

    2014-05-01

    Water vapour is the most important atmospheric greenhouse gas, which causes a major feedback to warming and other changes in the climate system. Knowledge of the distribution of water vapour and its climate induced changes is especially important in the upper troposphere and lower stratosphere (UT/LS) where vapour plays a critical role in atmospheric radiative balance, cirrus cloud formation, and photochemistry. But, our understanding of water in the UT/LS is limited by significant uncertainties in current UT/LS water measurements. One of the most comprehensive inter-comparison campaigns for airborne hygrometers, termed AQUAVIT (AV1) [1], took place in 2007 at the AIDA chamber at the Karlsruhe Institute of Technology (KIT) in Germany. AV1 was a well-defined, referred, blind inter-comparison of 22 airborne field instruments from 17 international research groups. One major metrological deficit of AV1, however, was, that no traceable reference instrument participated in the inter-comparison experiments and that the calibration procedures of the participating instruments were not monitored or interrogated. Consequently a follow-up inter-comparison was organized in April 2013, which for the first time also provides a traceable link to the international humidity scale. This AQUAVIT2 (AV2) campaign (details see: http://www.imk-aaf.kit.edu/aquavit/index.php/Main_Page) was again located at KIT/AIDA and organised by an international organizing committee including KIT, PTB, FZJ and others. Generally AV2 is divided in two parallel comparisons: 1) AV2-A uses the AIDA chamber for a simultaneous comparison of all instruments (incl. sampling and in-situ instruments) over a broad range of conditions characteristic for the UT/LS; 2) AV2-B, about which this paper is reporting, is a sequential comparison of selected hygrometers and (when possible) their reference calibration infrastructures by means of a chilled mirror hygrometer traced back to the primary National humidity standard of PTB and a validated, two-pressure generator acting as a highly stable and reproducible source of water vapour. The aim of AV2-B was to perform an absolute, metrological comparison of the field instruments/calibration infrastructures to the metrological humidity scale, and to collect essential information about methods and procedures used by the atmospheric community for instrument calibration and validation, in order to investigate e.g. the necessity and possible comparability advantage by a standardized calibration procedure. The work will give an overview over the concept of the AV2-B inter-comparison, the various general measurement and calibration principles, and discuss the outcome and consequences of the comparison effort. The AQUAVIT effort is linked to the EMRP project METEOMET (ENV07) and partially supported by the EMRP and ENV07. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. [1] H. Saathoff, C. Schiller, V. Ebert, D. W. Fahey, R.-S. Gao, O. Möhler, and the aquavit team, The AQUAVIT formal intercomparison of atmospheric water measurement methods, 5th General Assembly of the European Geosciences Union, 13-18 April 2008, Vienna, Austria Keywords: humidity, water vapour, inter-comparison, airborne instruments.

  9. Intercomparison of General Circulation Models for Hot Extrasolar Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Cho, James

    2013-11-01

    In this collaborative work with I. Polichtchouk, C. Watkins, H. Th. Thrastarson, O. M. Umurhan, and M. de la Torre-Juárez, we compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ different numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ``cubed-sphere'' grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: 1) steady-state, 2) nonlinearly evolving baroclinic wave, and 3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should--except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in spectral models (only). However, exact numerical convergence is still not achieved across the spectral models: amplitudes and phases are observably different. When subject to a typical ``hot-Jupiter''-like forcing, all five models show quantitatively different behavior--although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, spectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst. This work has been supported by the Science and Technology Facilities Council, Westfield Small Grant, NASA Postdoctoral Program, and Institute for Theory and Computation, Harvard College Observatory.

  10. NDSC Lidar Intercomparisons and Validation: OPAL and MLO3 Campaigns in 1995

    NASA Technical Reports Server (NTRS)

    McDermid, Stuart; McGee, Thomas J.; Stuart, Daan P. J.

    1996-01-01

    The Network for the Detection of Stratospheric Change (NDSC) has developed and adopted a Validation Policy in order to ensure that the results submitted and stored in its archives are of a known, high quality. As a part of this validation policy, blind instrument intercomparisons are considered an essential element in the certification of NDSC instruments and a specific format for these campaigns has been recommended by the NDSC-Steering Committee.

  11. The April 1992 and November 1992 radon intercomparisons at EML

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.; George, A.C.; Perry, P.M.

    1993-07-01

    The Environmental Measurements Laboratory hosted two intercomparison exercises in Calendar Year 1992. Thirty-two groups, including US federal facilities, US Department of Energy`s Office of Health and Environmental Research contractors, national and state laboratories, and universities and foreign institutions, participated in these exercises. The majority of the participants` results were within {plus_minus}10% of the EML value at radon concentrations of 2075 and 1650 Bq m{sup {minus}3}.

  12. International round-robin inter-comparison of dye-sensitized and crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yuan; Ahn, Seung Kyu; Aoki, Dasiuke; Kokubo, Junichi; Yoon, Kyung Hoon; Saito, Hidenori; Lee, Kyung Sik; Magaino, Shinichi; Takagi, Katsuhiko; Lin, Ling-Chuan; Lee, Kun-Mu; Wu, Chun-Guey; Zhou, Hong; Igari, Sanekazu

    2017-02-01

    An international round-robin inter-comparison of the spectral responsivity (SR) and current-voltage (I-V) characteristics for dye-sensitized solar cells (DSCs) and crystalline silicon solar cells is reported for the first time. The crystalline silicon cells with various spectral responsivities were also calibrated by AIST to validate this round-robin activity. On the basis of the remarkable consistency in Pmax (within ±1.4% among participants) and Isc (within ±1.2% compared to the primary calibration of AIST) of the silicon specimens, the discrepancy in the SR and photovoltaic parameters of five DSCs among three national laboratories can be verified and diagnosed. Recommendations about sample packages, SR and I-V measurement methods as well as the inter-comparison protocol for improving the performance characterization of the mesoscopic DSCs are presented according to the consolidated data and the experience of the participants.

  13. The global gridded crop model intercomparison: Data and modeling protocols for Phase 1 (v1.0)

    DOE PAGES

    Elliott, J.; Müller, C.; Deryng, D.; ...

    2015-02-11

    We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project consist of global simulations of yields, phenologies, and many land-surface fluxes using 12–15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification ofmore » key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.« less

  14. Progress in high-dose radiation dosimetry. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettinger, K.V.; Nam, J.W.; McLaughlin, W.L.

    1981-01-01

    The last decade has witnessed a deluge of new high-dose dosimetry techniques and expended applications of methods developed earlier. Many of the principal systems are calibrated by means of calorimetry, although production of heat is not always the final radiation effect of interest. Requirements for a stable and reliable transfer dose meters have led to further developments of several important high-dose systems: thermoluminescent materials, radiochromic dyes, ceric-cerous solutions analyzed by high-frequency oscillometry. A number of other prospective dosimeters are also treated in this review. In addition, an IAEA program of high-dose intercomparison and standardization for industrial radiation processing is described.

  15. A Practitioners Perspective on Verification

    NASA Astrophysics Data System (ADS)

    Steenburgh, R. A.

    2017-12-01

    NOAAs Space Weather Prediction Center offers a wide range of products and services to meet the needs of an equally wide range of customers. A robust verification program is essential to the informed use of model guidance and other tools by both forecasters and end users alike. In this talk, we present current SWPC practices and results, and examine emerging requirements and potential approaches to satisfy them. We explore the varying verification needs of forecasters and end users, as well as the role of subjective and objective verification. Finally, we describe a vehicle used in the meteorological community to unify approaches to model verification and facilitate intercomparison.

  16. A strawman SLR program plan for the 1990s

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1994-01-01

    A series of programmatic and technical goals for the satellite laser ranging (SLR) network are presented. They are: (1) standardize the performance of the global SLR network; (2) improve the geographic distribution of stations; (3) reduce costs of field operations and data processing; (4) expand the 24 hour temporal coverage to better serve the growing constellation of satellites; (5) improve absolute range accuracy to 2 mm at key stations; (6) improve satellite force, radiative propagation, and station motion models and investigate alternative geodetic analysis techniques; (7) support technical intercomparison and the Terrestrial Reference Frame through global collocations; (8) investigate potential synergisms between GPS and SLR.

  17. Revisiting the PLUMBER Experiments from a Process-Diagnostics Perspective

    NASA Astrophysics Data System (ADS)

    Nearing, G. S.; Ruddell, B. L.; Clark, M. P.; Nijssen, B.; Peters-Lidard, C. D.

    2017-12-01

    The PLUMBER benchmarking experiments [1] showed that some of the most sophisticated land models (CABLE, CH-TESSEL, COLA-SSiB, ISBA-SURFEX, JULES, Mosaic, Noah, ORCHIDEE) were outperformed - in simulations of half-hourly surface energy fluxes - by instantaneous, out-of-sample, and globally-stationary regressions with no state memory. One criticism of PLUMBER is that the benchmarking methodology was not derived formally, so that applying a similar methodology with different performance metrics can result in qualitatively different results. Another common criticism of model intercomparison projects in general is that they offer little insight into process-level deficiencies in the models, and therefore are of marginal value for helping to improve the models. We address both of these issues by proposing a formal benchmarking methodology that also yields a formal and quantitative method for process-level diagnostics. We apply this to the PLUMBER experiments to show that (1) the PLUMBER conclusions were generally correct - the models use only a fraction of the information available to them from met forcing data (<50% by our analysis), and (2) all of the land models investigated by PLUMBER have similar process-level error structures, and therefore together do not represent a meaningful sample of structural or epistemic uncertainty. We conclude by suggesting two ways to improve the experimental design of model intercomparison and/or model benchmarking studies like PLUMBER. First, PLUMBER did not report model parameter values, and it is necessary to know these values to separate parameter uncertainty from structural uncertainty. This is a first order requirement if we want to use intercomparison studies to provide feedback to model development. Second, technical documentation of land models is inadequate. Future model intercomparison projects should begin with a collaborative effort by model developers to document specific differences between model structures. This could be done in a reproducible way using a unified, process-flexible system like SUMMA [2]. [1] Best, M.J. et al. (2015) 'The plumbing of land surface models: benchmarking model performance', J. Hydrometeor. [2] Clark, M.P. et al. (2015) 'A unified approach for process-based hydrologic modeling: 1. Modeling concept', Water Resour. Res.

  18. CERN IRRADIATION FACILITIES.

    PubMed

    Pozzi, Fabio; Garcia Alia, Ruben; Brugger, Markus; Carbonez, Pierre; Danzeca, Salvatore; Gkotse, Blerina; Richard Jaekel, Martin; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-09-28

    CERN provides unique irradiation facilities for applications in dosimetry, metrology, intercomparison of radiation protection devices, benchmark of Monte Carlo codes and radiation damage studies to electronics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Free Radicals and Reactive Intermediates for the SAGE III Ozone Loss and Validation Experiment (SOLVE) Mission

    NASA Technical Reports Server (NTRS)

    Anderson, James G.

    2001-01-01

    This grant provided partial support for participation in the SAGE III Ozone Loss and Validation Experiment. The NASA-sponsored SOLVE mission was conducted Jointly with the European Commission-sponsored Third European Stratospheric Experiment on Ozone (THESEO 2000). Researchers examined processes that control ozone amounts at mid to high latitudes during the arctic winter and acquired correlative data needed to validate the Stratospheric Aerosol and Gas Experiment (SAGE) III satellite measurements that are used to quantitatively assess high-latitude ozone loss. The campaign began in September 1999 with intercomparison flights out of NASA Dryden Flight Research Center in Edwards. CA. and continued through March 2000. with midwinter deployments out of Kiruna. Sweden. SOLVE was co-sponsored by the Upper Atmosphere Research Program (UARP). Atmospheric Effects of Aviation Project (AEAP). Atmospheric Chemistry Modeling and Analysis Program (ACMAP). and Earth Observing System (EOS) of NASA's Earth Science Enterprise (ESE) as part of the validation program for the SAGE III instrument.

  20. Middle Atmosphere Program. Handbook for MAP, volume 22

    NASA Technical Reports Server (NTRS)

    Russell, James M., III (Editor)

    1986-01-01

    A series of plots are presented that describe the state of the stratosphere and to some degree, the mesosphere as revealed by satellite observations. The pertinent instrument features, spatial and temporal coverage, and details of accuracy and precision for the experiments providing the data are described. The main features of zonal mean cross sections and polar stereographic projections are noted and intercomparisons are discussed where a parameter was measured by more than one experiment. It was not the attempt to be exhaustive in this or to present detailed results of scientific investigations. The main purpose was to collect the available data in one place and provide enough information on limitations or cautions about the data so that they could be used in model comparisons and science studies. Without a doubt, when these are used, numerous questions will arise that were not addressed here. In such cases, the reader is encouraged to contact the experimenters for proper clarification.

  1. Responses of East Asian Summer Monsoon to Natural and Anthropogenic Forcings in the 17 Latest CMIP5 Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Fengfei; Zhou, Tianjun; Qian, Yun

    2014-01-31

    In this study, we examined the responses of East Asian Summer Monsoon (EASM) to natural (solar variability and volcanic aerosols) and anthropogenic (greenhouse gasses and aerosols) forcings simulated in the 17 latest Coupled Model Intercomparison Program phase 5 (CMIP5) models with 105 realizations. The observed weakening trend of low-level EASM circulation during 1958-2001 is partly reproduced under all-forcing runs. A comparison of separate forcing experiments reveals that the aerosol-forcing plays a primary role in driving the weakened low-level monsoon circulation. The preferential cooling over continental East Asia caused by aerosol affects the monsoon circulation through reducing the land-sea thermal contrastmore » and results in higher sea level pressure over northern China. In the upper-level, both natural-forcing and aerosol-forcing contribute to the observed southward shift of East Asian subtropical jet through changing the meridional temperature gradient.« less

  2. Neutron cross section standards and instrumentation. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasson, O.A.

    The objective of this interagency program is to provide accurate neutron interaction measurements for the US Department of Energy nuclear programs which include waste disposal, fusion, safeguards, defense, fission, and personnel protection. These measurements are also useful to other energy programs which indirectly use the unique properties of the neutron for diagnostic and analytical purposes. The work includes the measurement of reference cross sections and related neutron data employing unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; the preservation of standard reference deposits and the development of improved neutronmore » detectors and measurement methods. A related and essential element of the program is critical evaluation of neutron interaction data including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology. This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the third year of this three-year interagency agreement. The proposed program and required budget for the following three years are also presented. The program continues the shifts in priority instituted in order to broaden the program base.« less

  3. Methods for Validation and Intercomparison of Remote Sensing and In situ Ice Water Measurements: Case Studies from CRYSTAL-FACE and Model Results

    NASA Technical Reports Server (NTRS)

    Sayres, D.S.; Pittman, J. V.; Smith, J. B.; Weinstock, E. M.; Anderson, J. G.; Heymsfield, G.; Li, L.; Fridlind, A.; Ackerman, A. S.

    2004-01-01

    Remote sensing observations, such as those from AURA, are necessary to understand the role of cirrus in determining the radiative and humidity budgets of the upper troposphere. Using these measurements quantitatively requires comparisons with in situ measurements that have previously been validated. However, a direct comparison of remote and in situ measurements is difficult due to the requirement that the spatial and temporal overlap be sufficient in order to guarantee that both instruments are measuring the same air parcel. A difficult as this might be for gas phase intercomparisons, cloud inhomogeneities significantly exacerbate the problem for cloud ice water content measurements. The CRYSTAL-FACE mission provided an opportunity to assess how well such intercomparisons can be performed and to establish flight plans that will be necessary for validation of future satellite instruments. During CRYSTAL-FACE, remote and in situ instruments were placed on different aircraft (NASA's ER-2 and WB-59, and the two planes flew in tandem so that the in situ payload flew in the field of view of the remote instruments. We show here that, even with this type of careful flight planning, it is not always possible to guarantee that remote and in situ instruments are viewing the same air parcel. We use ice water data derived from the in situ Harvard Total Water (HV-TW) instrument, and the remote Goddard Cloud Radar System (CRS) and show that agreement between HV-TW and CRS is a strong function of the horizontal separation and the time delay between the aircraft transects. We also use a cloud model to simulate possible trajectories through a cloud and evaluate the use of statistical analysis in determining the agreement between the two instruments. This type of analysis should guide flight planning for future intercomparison efforts, whether for aircraft or satellite-borne instrumentation.

  4. Inter-comparison between AIRS and IASI through Retrieved Parameters

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Steve

    2008-01-01

    A State-of-the-art retrieval algorithm dealing with all-weather conditions has been applied to satellite/aircraft instruments retrieving cloud/surface and atmospheric conditions. High quality retrievals have been achieved from IASI data. Surface, cloud, and atmospheric structure and variation are well captured by IASI measurements and/or retrievals. The same retrieval algorithm is also applied to AIRS for retrieval inter-comparison. Both AIRS and IASI have a similar FOV size but AIRS has a higher horizontal resolution. AIRS data can be interpolated to IASI horizontal resolution for inter-comparison at the same geophysical locations, however a temporal variation between AIRS and IASI observations need to be considered. JAIVEx has employed aircraft to obtain the atmospheric variation filling the temporal gap between two satellites. First results show that both AIRS and IASI have a very similar vertical resolving power, atmospheric conditions are well captured by both instruments, and radiances are well calibrated. AIRS data shown in retrievals (e.g., surface emissivity and moisture) have a relatively higher noise level. Since the this type of retrieval is very sensitive to its radiance quality, retrieval products inter-comparison is an effective way to identify/compare their radiance quality, in terms of a combination of spectral resolution and noise level, and to assess instrument performance. Additional validation analyses are needed to provide more-definitive conclusions.

  5. AIRS Obs4MIPs V2 data set

    NASA Astrophysics Data System (ADS)

    Tian, B.

    2017-12-01

    The Coupled Model Intercomparison Project (CMIP) has become a central element of national and international assessments of climate change. The CMIP Phase 6 (CMIP6) model experiments will be the foundation for the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6), scheduled for publication around 2021. To increase the fidelity of the IPCC AR6, the CMIP6 model experiments need rigorous evaluation. The "Observations for Model Intercomparison Projects" (Obs4MIPs) collects, organizes and publishes various well-established satellite data sets for CMIP model evaluation. The Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU), the NASA's temperature and humidity sounding system on the Aqua satellite, has provided over a decade-long high-quality tropospheric temperature and moisture sounding data. Under the current support of the NASA Data for Operation and Assessment (NDOA) program, we are generating and publishing the AIRS Obs4MIPs V2 data set including the monthly mean tropospheric air temperature, specific humidity, and relative humidity profiles from September 2002 to September 2016. This will provide the latest AIRS data in Obs4MIPs and assist the climate modeling community to better use the AIRS data for CMIP (including CMIP3, CMIP5, and CMIP6) model evaluation. In this presentation, we will discuss the AIRS Obs4MIPs V2 data set and their possible use for CMIP6 climate model evaluation.

  6. Intercomparison of global, ultraviolet B and A radiation measurements in the Dead Sea region (Ein Bokek) and Beer Sheva.

    PubMed

    Kushelevsky, A P; Kudish, A I

    1996-07-01

    Thousands of patients suffering from psoriasis have been treated successfully in the Dead Sea area by climatological methods, without medication. This high rate of success, measured in terms of partial to complete plaque clearance and reported to exceed 85% after 3-4 weeks of treatment, has been assumed to be associated with a unique ultraviolet (UV) radiation environment present in the Dead Sea region. In order to broaden our knowledge of the UV radiation environment at the Dead Sea, continuous monitoring of UV (both B and A) and global radiation has recently been initiated at two sites--Ein Bokek (located in the vicinity of the Dead Sea 375 m below mean sea level) and Beer Sheva (315 m above mean sea level)--to facilitate an intercomparison of their respective radiation intensities. The results of the first year of a detailed study of the global, UVB and UVA radiation intensities measured at both sites are summarized and reported in terms of the monthly average daily, average midday (11:00-13:00) and the corresponding maximum values. The radiation data for clear days (based upon the absolute magnitude of the global radiation) were also analyzed to perform an intercomparison between Ein Bokek and Beer Sheva for a winter month and a summer month for which all three types of radiation data were available at both sites.

  7. REGIONAL-SCALE ATMOSPHERIC MERCURY MODELING

    EPA Science Inventory

    This PowerPoint presentation gives a short synopsis of the state of the science of atmospheric mercury modeling, including a description of recent publications of model codes by EPA, a description of a recent mercury model intercomparison study, and a description of a synthesis p...

  8. ACIX: Atmospheric Correction Inter-comparison Exercise

    NASA Astrophysics Data System (ADS)

    Doxani, Georgia; Gascon, Ferran; Vermote, Éric; Roger, Jean-Claude

    2017-04-01

    The free and open data access policy to Sentinel-2 (S-2) and Landsat-8 (L-8) satellite imagery has stimulated the development of atmospheric correction (AC) processors for generating Bottom-of-Atmosphere (BOA) products. Several entities have started to generate (or plan to generate in the short term) BOA reflectance products at global scale for S-2 and L-8 missions. To this end, the European Space Agency (ESA) and NASA are organizing an exercise on AC processors inter-comparison. The results of the exercise are expected to point out the strengths and weaknesses, as well as communalities and discrepancies of various AC processors, in order to suggest and define ways for their further improvement. In particular, 13 atmospheric processors from five different countries participate in ACIX with the aim to inter-compare their performance when applied to L-8 and S-2 data. A protocol describing the inter-comparison process and the test dataset, which is based on the AERONET sites, will be presented. The protocol has been defined according to what was agreed among the participants during the 1st ACIX workshop held in June 2016. It includes the comparison of aerosol optical thickness and water vapour products of the processors with the AERONET measurements. Moreover, concerning the surface reflectances, the protocol describes the inter-comparison among the processors, as well as the comparison with the MODIS surface reflectance and with a reference surface reflectance product. Such a reference product will be obtained using the AERONET characterization of the aerosol (size distribution and refractive indices) and an accurate radiative transfer code. The inter-comparison outcomes will be presented and discussed among the participants in the 2nd ACIX workshop, which will be held on 11-12 April 2017 (ESRIN/ESA). The proposed presentation is an opportunity for the user community to be informed for the first time about the ACIX results and conclusions.

  9. Intercomparison of near real time monitors of PM2.5 nitrate and sulfate at the U.S. Environmental Protection Agency Atlanta Supersite

    NASA Astrophysics Data System (ADS)

    Weber, R.; Orsini, D.; Duan, Y.; Baumann, K.; Kiang, C. S.; Chameides, W.; Lee, Y. N.; Brechtel, F.; Klotz, P.; Jongejan, P.; ten Brink, H.; Slanina, J.; Boring, C. B.; Genfa, Z.; Dasgupta, P.; Hering, S.; Stolzenburg, M.; Dutcher, D. D.; Edgerton, E.; Hartsell, B.; Solomon, P.; Tanner, R.

    2003-04-01

    Five new instruments for semicontinuous measurements of fine particle (PM2.5) nitrate and sulfate were deployed in the Atlanta Supersite Experiment during an intensive study in August 1999. The instruments measured bulk aerosol chemical composition at rates ranging from every 5 min to once per hour. The techniques included a filter sampling system with automated water extraction and online ion chromatographic (IC) analysis, two systems that directly collected particles into water for IC analysis, and two techniques that converted aerosol nitrate or sulfate either catalytically or by flash vaporization to gaseous products that were measured with gas analyzers. During the one-month study, 15-min integrated nitrate concentrations were low, ranging from about 0.1 to 3.5 μg m-3 with a mean value of 0.5 μg m-3. Ten-minute integrated sulfate concentrations varied between 0.3 and 40 μg m-3 with a mean of 14 μg m-3. By the end of the one-month study most instruments were in close agreement, with r-squared values between instrument pairs typically ranging from 0.7 to 0.94. Based on comparison between individual semicontinuous devices and 24-hour integrated filter measurements, most instruments were within 20-30% for nitrate (˜0.1-0.2 μg m-3) and 10-15% for sulfate (1-2 μg m-3). Within 95% confidence intervals, linear regression fits suggest that no biases existed between the semicontinuous techniques and the 24-hour integrated filter measurements of nitrate and sulfate;, however, for nitrate, the semicontinuous intercomparisons showed significantly less variability than intercomparisons amongst the 24-hour integrated filters.

  10. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Progress and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2011-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Recent progress and the current status of AgMIP will be presented, highlighting three areas of activity: preliminary results from crop pilot studies, outcomes from regional workshops, and emerging scientific challenges. AgMIP crop modeling efforts are being led by pilot studies, which have been established for wheat, maize, rice, and sugarcane. These crop-specific initiatives have proven instrumental in testing and contributing to AgMIP protocols, as well as creating preliminary results for aggregation and input to agricultural trade models. Regional workshops are being held to encourage collaborations and set research activities in motion for key agricultural areas. The first of these workshops was hosted by Embrapa and UNICAMP and held in Campinas, Brazil. Outcomes from this meeting have informed crop modeling research activities within South America, AgMIP protocols, and future regional workshops. Several scientific challenges have emerged and are currently being addressed by AgMIP researchers. Areas of particular interest include geospatial weather generation, ensemble methods for climate scenarios and crop models, spatial aggregation of field-scale yields to regional and global production, and characterization of future changes in climate variability.

  11. Pulmonary Function Response to Exposure to Low Concentration Ozone in Young Adults: Inter-comparison among Studies and Meta-Analysis

    EPA Science Inventory

    Rationale: It is well established that moderate ozone exposures induce decrements in spirometry volume and respiratory symptoms in healthy young adults. However, studies for low concentration ozone near the current NAAQS standard (0.070 ppm) are limited to only a few and their co...

  12. NOAA national status and trends program eleventh round intercomparison exercise results for trace metals in marine sediments and biological tissues. National status and trends program for marine environmental quality: Technical memo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willie, S.

    1997-12-01

    A total of thirty-nine participants were included in the exercise, including OAA, USEPA, state, Australian, Canadian, Mexican and Argentinean laboratories. Two samples were sent by NRC to each participant, and contaminated marine sediment from Esquimalt harbor in British Columbia and a freeze-dried oyster tissue. Laboratories were also asked to analyze two certified reference materials (CRMs) MESS-2 and CRM 2976. The elements to be determined were Al, Cr, Fe, Ni, Cu, Zn, As, Se, Ag, Cd, Sn, Hg and Pb for both matrices, plus Be, Si, Mn, Sb and Tl for the sediments. An accepted mean and confidence interval was calculatedmore » for each analyte in the two unknown samples, laboratory biases were identified and an overall rating of superior, good, fair or others were assigned to each laboratory.« less

  13. Raman LIDAR for UHECR experiments: an overview of the L'Aquila (Italy) lidar station experience for the retrieval of quality-assured data

    NASA Astrophysics Data System (ADS)

    Iarlori, Marco; Rizi, Vincenzo; D'Amico, Giuseppe; Freudenthaler, Volker; Wandinger, Ulla; Grillo, Aurelio

    L'Aquila (Italy) lidar station is part of the EARLINET (European Aerosol Research Lidar Network) since its beginning in the 2000. In the EARLINET community great efforts are devoted to the quality-assurance of the aerosol optical properties inserted in the database. To this end, each lidar station performed intercomparisons with reference instruments, a series of internal hardware checks in order to assess the quality of their instruments and exercises to test the algorithms used to retrieve the aerosol optical parameters. In this paper we give an overview of our experience within EARLINET qualityassurance (QA) program, which was adopted for the Raman lidar (RL) operated in the AUGER Observatory. This program could be systematically adopted for the lidar systems needed for the current and upcoming UHECR experiments, like CTA (Cherenkov Telescope Array).

  14. ATHLI16: the ATHens Lidar Intercomparison campaign

    NASA Astrophysics Data System (ADS)

    Amodeo, Aldo; D'Amico, Giuseppe; Giunta, Aldo; Papagiannopoulos, Nikolaos; Papayannis, Alex; Argyrouli, Athina; Mylonaki, Maria; Tsaknakis, Georgios; Kokkalis, Panos; Soupiona, Ourania; Tzanis, Chris

    2018-04-01

    The results of the ATHLI16 (ATHens Lidar Intercomparison) campaign, held in Athens from 26/09 to 07/10 2016 are presented. The campaign was performed within the Lidar Calibration Centre activities (EU H2020 ACTRIS-2 project) to assess the performance of the EOLE lidar system (NTUA, Athens, Greece), operating within EARLINET, by comparing against the EARLINET reference lidar system MUSA (CNR-IMAA, Potenza, Italy). For both lidars only products retrieved by the EARLINET Single Calculus Chain have been compared.

  15. Intercomparison of methods for coincidence summing corrections in gamma-ray spectrometry--part II (volume sources).

    PubMed

    Lépy, M-C; Altzitzoglou, T; Anagnostakis, M J; Capogni, M; Ceccatelli, A; De Felice, P; Djurasevic, M; Dryak, P; Fazio, A; Ferreux, L; Giampaoli, A; Han, J B; Hurtado, S; Kandic, A; Kanisch, G; Karfopoulos, K L; Klemola, S; Kovar, P; Laubenstein, M; Lee, J H; Lee, J M; Lee, K B; Pierre, S; Carvalhal, G; Sima, O; Tao, Chau Van; Thanh, Tran Thien; Vidmar, T; Vukanac, I; Yang, M J

    2012-09-01

    The second part of an intercomparison of the coincidence summing correction methods is presented. This exercise concerned three volume sources, filled with liquid radioactive solution. The same experimental spectra, decay scheme and photon emission intensities were used by all the participants. The results were expressed as coincidence summing corrective factors for several energies of (152)Eu and (134)Cs, and different source-to-detector distances. They are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. VLBI Digital-Backend Intercomparison Test Report

    NASA Technical Reports Server (NTRS)

    Whitney, Alan; Beaudoin, Christopher; Cappallo, Roger; Niell, Arthur; Petrachenko, Bill; Ruszczyk, Chester A.; Titus, Mike

    2013-01-01

    Issues related to digital-backend (DBE) systems can be difficult to evaluate in either local tests or actual VLBI experiments. The 2nd DBE intercomparison workshop at Haystack Observatory on 25-26 October 2012 provided a forum to explicitly address validation and interoperability issues among independent global developers of DBE equipment. This special report discusses the workshop. It identifies DBE systems that were tested at the workshop, describes the test objectives and procedures, and reports and discusses the results of the testing.

  17. The August 1988 and June 1989 radon intercomparisons at EML (Environmental Measurements Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.; George, A.C.; Keller, H.W.

    1990-06-01

    The Environmental Measurements Laboratory hosted the fifteenth and sixteenth radon intercomparison exercises in August 1988 and June 1989. Forty-five groups including US Federal facilities, USDOE Office of Health and Environmental Research contractors, national and state laboratories and foreign institutions participated in these exercises. The results show that the majority of the participants' results were within {plus minus} of the EML value at radon concentrations of 220 and 890 Bq m{sup {minus}3}. 10 refs., 4 figs., 9 tabs.

  18. Preliminary results of an intercomparison of total ozone spectrophotometers

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Gerlach, J. C.; Williams, M. E.; Kerr, J. B.

    1981-01-01

    Preliminary results from an intercomparison of five total ozone spectrophotometers are presented. These are the Dobson spectrophotometer, the USSR M-83 ozonometer, the Canterbury filter photometer, the SenTran Company filter photometer, and the Brewer grating spectrophotometer. The pertinent characteristics of each are described, and conclusions are drawn about the agreement of each instrument's measurements with the Dobson's values over a time period of nearly one year. A discussion of the importance of calibration and long-term stability and reliability is included.

  19. SUMMERTIME AMBIENT FORMALDEHYDE IN FIVE U.S. METROPOLITAN AREAS: NASHVILLE, ATLANTA, HOUSTON, PHILADELPHIA, TAMPA

    EPA Science Inventory

    In this paper, we briefly review the atmospheric chemistry and previous intercomparison measurements for HCHO, with special reference to the diffusion scrubber-Hantzsch reaction based fluorescence instrument used in the field studies reported herein. Then we discuss summertime HC...

  20. Intercomparison of HONO Measurements Made Using Wet-Chemical (NITROMAC) and Spectroscopic (IBBCEAS & LP/FAGE) Techniques

    NASA Astrophysics Data System (ADS)

    Dusanter, S.; Lew, M.; Bottorff, B.; Bechara, J.; Mielke, L. H.; Berke, A.; Raff, J. D.; Stevens, P. S.; Afif, C.

    2013-12-01

    A good understanding of the oxidative capacity of the atmosphere is important to tackle fundamental issues related to climate change and air quality. The hydroxyl radical (OH) is the dominant oxidant in the daytime troposphere and an accurate description of its sources in atmospheric models is of utmost importance. Recent field studies indicate higher-than-expected concentrations of HONO during the daytime, suggesting that the photolysis of HONO may be an important underestimated source of OH. Understanding the tropospheric HONO budget requires confidence in analytical instrumentation capable of selectively measuring HONO. In this presentation, we discuss an intercomparison study of HONO measurements performed during summer 2013 at the edge of a hardwood forest in Southern Indiana. This exercise involved a wet chemical technique (NITROMAC), an Incoherent Broad-Band Cavity Enhanced Absorption Spectroscopy instrument (IBBCEAS), and a Laser-Photofragmentation/Fluorescence Assay by Gas Expansion instrument (LP/FAGE). The agreement observed between the three techniques will be discussed for both ambient measurements and cross calibration experiments.

  1. A Methodological Intercomparison of Topographic and Aerial Photographic Habitat Survey Techniques

    NASA Astrophysics Data System (ADS)

    Bangen, S. G.; Wheaton, J. M.; Bouwes, N.

    2011-12-01

    A severe decline in Columbia River salmonid populations and subsequent Federal listing of subpopulations has mandated both the monitoring of populations and evaluation of the status of available habitat. Numerous field and analytical methods exist to assist in the quantification of the abundance and quality of in-stream habitat for salmonids. These methods range from field 'stick and tape' surveys to spatially explicit topographic and aerial photographic surveys from a mix of ground-based and remotely sensed airborne platforms. Although several previous studies have assessed the quality of specific individual survey methods, the intercomparison of competing techniques across a diverse range of habitat conditions (wadeable headwater channels to non-wadeable mainstem channels) has not yet been elucidated. In this study, we seek to enumerate relative quality (i.e. accuracy, precision, extent) of habitat metrics and inventories derived from an array of ground-based and remotely sensed surveys of varying degrees of sophistication, as well as quantify the effort and cost in conducting the surveys. Over the summer of 2010, seven sample reaches of varying habitat complexity were surveyed in the Lemhi River Basin, Idaho, USA. Complete topographic surveys were attempted at each site using rtkGPS, total station, ground-based LiDaR and traditional airborne LiDaR. Separate high spatial resolution aerial imagery surveys were acquired using a tethered blimp, a drone UAV, and a traditional fixed-wing aircraft. Here we also developed a relatively simplistic methodology for deriving bathymetry from aerial imagery that could be readily employed by instream habitat monitoring programs. The quality of bathymetric maps derived from aerial imagery was compared with rtkGPS topographic data. The results are helpful for understanding the strengths and weaknesses of different approaches in specific conditions, and how a hybrid of data acquisition methods can be used to build a more complete quantification of salmonid habitat conditions in streams.

  2. The ENEA criticality accident dosimetry system: a contribution to the 2002 international intercomparison at the SILENE reactor.

    PubMed

    Gualdrini, G; Bedogni, R; Fantuzzi, E; Mariotti, F

    2004-01-01

    The present paper summarises the activity carried out at the ENEA Radiation Protection Institute for updating the methodologies employed for the evaluation of the neutron and photon dose to the exposed workers in case of a criticality accident, in the framework of the 'International Intercomparison of Criticality Accident Dosimetry Systems' (Silène reactor, IRSN-CEA-Valduc June 2002). The evaluation of the neutron spectra and the neutron dosimetric quantities relies on activation detectors and on unfolding algorithms. Thermoluminescent detectors are employed for the gamma dose measurement. The work is aimed at accurately characterising the measurement system and, at the same time, testing the algorithms. Useful spectral information were included, based on Monte Carlo simulations, to take into account the potential accident scenarios of practical interest. All along this exercise intercomparison a particular attention was devoted to the 'traceability' of all the experimental and computational parameters and therefore, aimed at an easy treatment by the user.

  3. An overview of sensor calibration inter-comparison and applications

    USGS Publications Warehouse

    Xiong, Xiaoxiong; Cao, Changyong; Chander, Gyanesh

    2010-01-01

    Long-term climate data records (CDR) are often constructed using observations made by multiple Earth observing sensors over a broad range of spectra and a large scale in both time and space. These sensors can be of the same or different types operated on the same or different platforms. They can be developed and built with different technologies and are likely operated over different time spans. It has been known that the uncertainty of climate models and data records depends not only on the calibration quality (accuracy and stability) of individual sensors, but also on their calibration consistency across instruments and platforms. Therefore, sensor calibration inter-comparison and validation have become increasingly demanding and will continue to play an important role for a better understanding of the science product quality. This paper provides an overview of different methodologies, which have been successfully applied for sensor calibration inter-comparison. Specific examples using different sensors, including MODIS, AVHRR, and ETM+, are presented to illustrate the implementation of these methodologies.

  4. BIPM project: Intercomparison of water triple-point cells

    NASA Astrophysics Data System (ADS)

    Chattle, M. V.; Butler, J.

    1994-12-01

    The paper presents the results of an intercomparison between 3 triple point of water cells circulated by the Bureau International des Poids et Measures (BIPM), and a cell which is one of those used as a reference cell at the National Physical Laboratory (NPL). All 4 cells were prepared, stored and measured in the manner normally adopted at NPL. The results of the intercomparison show that over the course of about 6 weeks the temperatures of the 3 circulated cells generally agreed within 0.20 mK, with a maximum difference of 0.27(7) mK. Over the same period, the total variations of temperature measured in the 3 individual cells were 0.04 mK, 0.08 mK and 0.18 mK, respectively; the NPL cell varied by 0.10 mK. Gallium point measurements made over a similar period confirmed that these differences were partly due to small drifts in the thermometer resistance or in the measuring system.

  5. FACE-IT. A Science Gateway for Food Security Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montella, Raffaele; Kelly, David; Xiong, Wei

    Progress in sustainability science is hindered by challenges in creating and managing complex data acquisition, processing, simulation, post-processing, and intercomparison pipelines. To address these challenges, we developed the Framework to Advance Climate, Economic, and Impact Investigations with Information Technology (FACE-IT) for crop and climate impact assessments. This integrated data processing and simulation framework enables data ingest from geospatial archives; data regridding, aggregation, and other processing prior to simulation; large-scale climate impact simulations with agricultural and other models, leveraging high-performance and cloud computing; and post-processing to produce aggregated yields and ensemble variables needed for statistics, for model intercomparison, and to connectmore » biophysical models to global and regional economic models. FACE-IT leverages the capabilities of the Globus Galaxies platform to enable the capture of workflows and outputs in well-defined, reusable, and comparable forms. We describe FACE-IT and applications within the Agricultural Model Intercomparison and Improvement Project and the Center for Robust Decision-making on Climate and Energy Policy.« less

  6. Inter-comparison of dynamic models for radionuclide transfer to marine biota in a Fukushima accident scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vives i Batlle, J.; Beresford, N. A.; Beaugelin-Seiller, K.

    We report an inter-comparison of eight models designed to predict the radiological exposure of radionuclides in marine biota. The models were required to simulate dynamically the uptake and turnover of radionuclides by marine organisms. Model predictions of radionuclide uptake and turnover using kinetic calculations based on biological half-life (TB1/2) and/or more complex metabolic modelling approaches were used to predict activity concentrations and, consequently, dose rates of 90Sr, 131I and 137Cs to fish, crustaceans, macroalgae and molluscs under circumstances where the water concentrations are changing with time. For comparison, the ERICA Tool, a model commonly used in environmental assessment, and whichmore » uses equilibrium concentration ratios, was also used. As input to the models we used hydrodynamic forecasts of water and sediment activity concentrations using a simulated scenario reflecting the Fukushima accident releases. Although model variability is important, the intercomparison gives logical results, in that the dynamic models predict consistently a pattern of delayed rise of activity concentration in biota and slow decline instead of the instantaneous equilibrium with the activity concentration in seawater predicted by the ERICA Tool. The differences between ERICA and the dynamic models increase the shorter the TB1/2 becomes; however, there is significant variability between models, underpinned by parameter and methodological differences between them. The need to validate the dynamic models used in this intercomparison has been highlighted, particularly in regards to optimisation of the model biokinetic parameters.« less

  7. The Second Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments (CINDI-2)

    NASA Astrophysics Data System (ADS)

    Van Roozendael, M.; Hendrick, F.; Apituley, A.; Kreher, K.; Friess, U.; Richter, A.; Wagner, T.; Fehr, T.

    2017-12-01

    For the validation of space borne UV-Vis observations of air quality gases, ground based remote-sensing instruments using the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. Over the last decade, MAXDOAS instruments of various designs (including PANDORA systems) have been deployed worldwide forming the basis for a global ground based reference network suitable for the validation of future satellite sensors, such as TROPOMI/Sentinel-5 precursor, GEMS, TEMPO, and Sentinel 4 and 5. To ensure proper traceability of these observations, assess their accuracy and progress towards harmonized data acquisition and delivery, a thorough intercomparison campaign known as the Second Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments (CINDI-2) was held in Cabauw, The Netherlands during the month of September 2016. About 35 MAXDOAS instruments operated by 25 different groups were deployed, together with systems providing key ancillary in-situ measurements of NO2 and aerosol optical properties, as well as vertical profiles of NO2 by lidar and sonde and vertical profiles of aerosol optical properties by Raman lidar. We provide an overview of the main outcome of the campaign, which included a formal semi-blind slant column intercomparison and a number of additional exercises aiming at assessing the potential of the MAXDOAS technique for retrieving vertically-resolved information on NO2, aerosol, HCHO, O3 and a few other more challenging species such as HONO and glyoxal.

  8. The 1996 North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers

    PubMed Central

    Early, Edward; Thompson, Ambler; Johnson, Carol; DeLuisi, John; Disterhoft, Patrick; Wardle, David; Wu, Edmund; Mou, Wanfeng; Ehramjian, James; Tusson, John; Mestechkina, Tanya; Beaubian, Mark; Gibson, James; Hayes, Douglass

    1998-01-01

    Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. To assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks, the third North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers was held June 17–25, 1996 at Table Mountain outside Boulder, Colorado, USA. This Intercomparison was coordinated by the National Institute of Standards and Technology (NIST) and the National Oceanic and Atmospheric Administration (NOAA). Participating agencies were the Environmental Protection Agency; the National Science Foundation; the Smithsonian Environmental Research Center; the Department of Agriculture; and the Atmospheric Environment Service, Canada. The spectral irradiances of participants’ calibrated standard lamps were measured at NIST prior to the Intercomparison. The spectral irradiance scales used by the participants agreed with the NIST scale within the combined uncertainties, and for all lamps the spectral irradiance in the horizontal position was lower than that in the vertical position. Instruments were characterized for wavelength uncertainty, bandwidth, stray-light rejection, and spectral irradiance responsivity, the latter with NIST standard lamps operating in specially designed field calibration units. The spectral irradiance responsivity demonstrated instabilities for some instruments. Synchronized spectral scans of the solar irradiance were performed over several days. Using the spectral irradiance responsivities determined with the NIST standard lamps, the measured solar irradiances had some unexplained systematic differences between instruments. PMID:28009358

  9. Intercomparison of field measurements of nitrous acid (HONO) during the SHARP Campaign

    EPA Science Inventory

    Because of the importance of HONO as a radical reservoir, consistent and accurate measurements of its concentration are needed. As part of the SHARP (Study of Houston Atmospheric Radical Precursors), time series of HONO were obtained by five different measurement techniques on th...

  10. Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling

    EPA Science Inventory

    This study evaluates interior nudging techniques using the Weather Research and Forecasting (WRF) model for regional climate modeling over the conterminous United States (CONUS) using a two-way nested configuration. NCEP–Department of Energy Atmospheric Model Intercomparison Pro...

  11. Climate model biases and statistical downscaling for application in hydrologic model

    USDA-ARS?s Scientific Manuscript database

    Climate change impact studies use global climate model (GCM) simulations to define future temperature and precipitation. The best available bias-corrected GCM output was obtained from Coupled Model Intercomparison Project phase 5 (CMIP5). CMIP5 data (temperature and precipitation) are available in d...

  12. Spatial inter-comparison of Top-down emission inventories in European urban areas

    NASA Astrophysics Data System (ADS)

    Trombetti, Marco; Thunis, Philippe; Bessagnet, Bertrand; Clappier, Alain; Couvidat, Florian; Guevara, Marc; Kuenen, Jeroen; López-Aparicio, Susana

    2018-01-01

    This paper presents an inter-comparison of the main Top-down emission inventories currently used for air quality modelling studies at the European level. The comparison is developed for eleven European cities and compares the distribution of emissions of NOx, SO2, VOC and PPM2.5 from the road transport, residential combustion and industry sectors. The analysis shows that substantial differences in terms of total emissions, sectorial emission shares and spatial distribution exist between the datasets. The possible reasons in terms of downscaling approaches and choice of spatial proxies are analysed and recommendations are provided for each inventory in order to work towards the harmonisation of spatial downscaling and proxy calibration, in particular for policy purposes. The proposed methodology may be useful for the development of consistent and harmonised European-wide inventories with the aim of reducing the uncertainties in air quality modelling activities.

  13. Intercomparison of formaldehyde measurements in the tropical atmosphere

    NASA Astrophysics Data System (ADS)

    Trapp, Dorothea; De Serves, Claes

    An intercomparison of formaldehyde measurements at low concentrations ( < 2.0 ppbv) was performed during the ASTROS '93 field campaign in Venezuela (Atmospheric Studies in the TROpical Savannah, September 1993). Formaldehyde was collected and measured by two different techniques: a porous membrane diffusion scrubber with fluorescent detection of the Hantzsch reaction product, and DNPH-traps (2,4-dinitrophenylhydrazine) followed by high performance liquid chromatography with a UV/VIS absorption detector. The time resolution for the diffusion scrubber instrument was 5 min while the DNPH-tr;ap samples were integrated over 30-60 min. The measured concentrations range from the detection limits (0.045 ppbv for the diffusion scrubber, 0.1 ppbv for the DNPH-traps) up to 2 ppbv. The correlation coefficient between the two techniques is r2 = 0.80 (n = 48) and the slope equals unity (1.02 ± 0.03). Both methods are found to be suitable for field experiments in the low ppbv range of formaldehyde.

  14. Assessing Inter-Sectoral Climate Change Risks: The Role of ISIMIP

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Arnell, Nigel W.; Ebi, Kristie L.; Lotze-Campen, Hermann; Raes, Frank; Rapley, Chris; Smith, Mark Stafford; Cramer, Wolfgang; Frieler, Katja; Reyer, Christopher P. O.; hide

    2017-01-01

    The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socioeconomic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.

  15. Design of the MISMIP+, ISOMIP+, and MISOMIP ice-sheet, ocean, and coupled ice sheet-ocean intercomparison projects

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Cornford, Stephen; Martin, Daniel; Gudmundsson, Hilmar; Holland, David; Holland, Denise

    2015-04-01

    The MISMIP and MISMIP3D marine ice sheet model intercomparison exercises have become popular benchmarks, and several modeling groups have used them to show how their models compare to both analytical results and other models. Similarly, the ISOMIP (Ice Shelf-Ocean Model Intercomparison Project) experiments have acted as a proving ground for ocean models with sub-ice-shelf cavities.As coupled ice sheet-ocean models become available, an updated set of benchmark experiments is needed. To this end, we propose sequel experiments, MISMIP+ and ISOMIP+, with an end goal of coupling the two in a third intercomparison exercise, MISOMIP (the Marine Ice Sheet-Ocean Model Intercomparison Project). Like MISMIP3D, the MISMIP+ experiments take place in an idealized, three-dimensional setting and compare full 3D (Stokes) and reduced, hydrostatic models. Unlike the earlier exercises, the primary focus will be the response of models to sub-shelf melting. The chosen configuration features an ice shelf that experiences substantial lateral shear and buttresses the upstream ice, and so is well suited to melting experiments. Differences between the steady states of each model are minor compared to the response to melt-rate perturbations, reflecting typical real-world applications where parameters are chosen so that the initial states of all models tend to match observations. The three ISOMIP+ experiments have been designed to to make use of the same bedrock topography as MISMIP+ and using ice-shelf geometries from MISMIP+ results produced by the BISICLES ice-sheet model. The first two experiments use static ice-shelf geometries to simulate the evolution of ocean dynamics and resulting melt rates to a quasi-steady state when far-field forcing changes in either from cold to warm or from warm to cold states. The third experiment prescribes 200 years of dynamic ice-shelf geometry (with both retreating and advancing ice) based on a BISICLES simulation along with similar flips between warm and cold states in the far-field ocean forcing. The MISOMIP experiment combines the MISMIP+ experiments with the third ISOMIP+ experiment. Changes in far-field ocean forcing lead to a rapid (over ~1-2 years) increase in sub-ice-shelf melting, which is allowed to drive ice-shelf retreat for ~100 years. Then, the far-field forcing is switched to a cold state, leading to a rapid decrease in melting and a subsequent advance over ~100 years. To illustrate, we present results from BISICLES and POP2x experiments for each of the three intercomparison exercises.

  16. Intercomparison of Operational Ocean Forecasting Systems in the framework of GODAE

    NASA Astrophysics Data System (ADS)

    Hernandez, F.

    2009-04-01

    One of the main benefits of the GODAE 10-year activity is the implementation of ocean forecasting systems in several countries. In 2008, several systems are operated routinely, at global or basin scale. Among them, the BLUElink (Australia), HYCOM (USA), MOVE/MRI.COM (Japan), Mercator (France), FOAM (United Kingdom), TOPAZ (Norway) and C-NOOFS (Canada) systems offered to demonstrate their operational feasibility by performing an intercomparison exercise during a three months period (February to April 2008). The objectives were: a) to show that operational ocean forecasting systems are operated routinely in different countries, and that they can interact; b) to perform in a similar way a scientific validation aimed to assess the quality of the ocean estimates, the performance, and forecasting capabilities of each system; and c) to learn from this intercomparison exercise to increase inter-operability and collaboration in real time. The intercomparison relies on the assessment strategy developed for the EU MERSEA project, where diagnostics over the global ocean have been revisited by the GODAE contributors. This approach, based on metrics, allow for each system: a) to verify if ocean estimates are consistent with the current general knowledge of the dynamics; and b) to evaluate the accuracy of delivered products, compared to space and in-situ observations. Using the same diagnostics also allows one to intercompare the results from each system consistently. Water masses and general circulation description by the different systems are consistent with WOA05 Levitus climatology. The large scale dynamics (tropical, subtropical and subpolar gyres ) are also correctly reproduced. At short scales, benefit of high resolution systems can be evidenced on the turbulent eddy field, in particular when compared to eddy kinetic energy deduced from satellite altimetry of drifter observations. Comparisons to high resolution SST products show some discrepancies on ocean surface representation, either due to model and forcing fields errors, or assimilation scheme efficiency. Comparisons to sea-ice satellite products also evidence discrepancies linked to model, forcing and assimilation strategies of each forecasting system. Key words: Intercomparison, ocean analysis, operational oceanography, system assessment, metrics, validation GODAE Intercomparison Team: L. Bertino (NERSC/Norway), G. Brassington (BMRC/Australia), E. Chassignet (FSU/USA), J. Cummings (NRL/USA), F. Davidson (DFO/Canda), M. Drévillon (CERFACS/France), P. Hacker (IPRC/USA), M. Kamachi (MRI/Japan), J.-M. Lellouche (CERFACS/France), K. A. Lisæter (NERSC/Norway), R. Mahdon (UKMO/UK), M. Martin (UKMO/UK), A. Ratsimandresy (DFO/Canada), and C. Regnier (Mercator Ocean/France)

  17. The Proposal for the NASA Sensor Intercalibration and Merger for Biological and Interdisciplinary Oceanic Studies(SIMBIOS) Program, 1995

    NASA Technical Reports Server (NTRS)

    McClain, Charles; Esaias, Wayne; Feldman, Gene; Gregg, Watson; Hooker, Stanford; Frouin, Robert

    2002-01-01

    As a result of the Earth Observing System (EOS) restructuring exercise during the last half of fiscal year 1994, the EOS Color mission, which was scheduled to be a data-buy with a 1998 launch was dropped from the EOS mission manifest primarily because of the number of international ocean color missions scheduled for launch in the 1998 time frame. In lieu of a new mission, NASA Goddard Space Flight Center (GSFC) was tasked by NASA Headquarters to develop an ocean color satellite calibration and validation plan for multiple sensors. The objective of the activity was to develop a methodology and operational capability to combine data products from the various ocean color missions in a manner that ensures the best possible global coverage and data quality. The program was called the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project coined from the biological term "symbiosis." This document is the original proposal that was developed and submitted in May 1995. SIMBIOS was approved in 1996 and initiated in 1997 with a project office and technical staff at GSFC and a science team to assist in the development of validation data sets, sensor calibration, atmospheric correction, and bio-optical and data merger algorithms. Since its inception, the SIMBIOS program has resulted in a broad-based international collaboration on the calibration and validation of a number of ocean color satellites.

  18. Observational studies of the clearing phase in proto-planetary disk systems

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    1994-01-01

    A summary of the work completed during the first year of a 5 year program to observationally study the clearing phase of proto-planetary disks is presented. Analysis of archival and current IUE data, together with supporting optical observations has resulted in the identification of 6 new proto-planetary disk systems associated with Herbig Ae/Be stars, the evolutionary precursors of the beta Pictoris system. These systems exhibit large amplitude light and optical color variations which enable us to identify additional systems which are viewed through their circumstellar disks including a number of classical T Tauri stars. On-going IUE observations of Herbig Ae/Be and T Tauri stars with this orientation have enabled us to detect bipolar emission plausibly associated with disk winds. Preliminary circumstellar extinction studies were completed for one star, UX Ori. Intercomparison of the available sample of edge-on systems, with stars ranging from 1-6 solar masses, suggests that the signatures of accreting gas, disk winds, and bipolar flows and the prominence of a dust-scattered light contribution to the integrated light of the system decreases with decreasing IR excess.

  19. Intercomparison of 7 Planetary Boundary-Layer/Surface-Layer Physics Schemes over Complex Terrain for Battlefield Situational Awareness

    DTIC Science & Technology

    This study considers the performance of 7 of the Weather Research and Forecast model boundary-layer (BL) parameterization schemes in a complex...schemes performed best. The surface parameters, planetary BL structure, and vertical profiles are important for US Army Research Laboratory

  20. Influence of the choice of gas-phase mechanism on predictions of key gaseous pollutants during the AQMEII phase-2 intercomparison

    EPA Science Inventory

    The formulations of tropospheric gas-phase chemistry (“mechanisms”)used in the regional-scale chemistry-transport models participating in theAir Quality Modelling Evaluation International Initiative (AQMEII) Phase2 are intercompared by the means of box model studies. Simulations ...

  1. Predicting maize phenology: Intercomparison of functions for developmental response to temperature

    USDA-ARS?s Scientific Manuscript database

    Accurate prediction of phenological development in maize is fundamental to determining crop adaptation and yield potential. A number of thermal functions are used in crop models, but their relative precision in predicting maize development has not been quantified. The objectives of this study were t...

  2. GEOS observation systems intercomparison investigation results

    NASA Technical Reports Server (NTRS)

    Berbert, J. H.

    1974-01-01

    The results of an investigation designed to determine the relative accuracy and precision of the different types of geodetic observation systems used by NASA is presented. A collocation technique was used to minimize the effects of uncertainties in the relative station locations and in the earth's gravity field model by installing accurate reference tracking systems close to the systems to be compared, and by precisely determining their relative survey. The Goddard laser and camera systems were shipped to selected sites, where they tracked the GEOS satellite simultaneously with other systems for an intercomparison observation.

  3. Intercomparison of techniques for the non-invasive measurement of bone mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohn, S.H.

    1981-01-01

    A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques.

  4. Intercomparison of photon dose measurements at the 8 MeV electron accelerator

    NASA Astrophysics Data System (ADS)

    Angelescu, T.; Ghiordănescu, N.; Băl ţă ţeanu, N.; Labău, V.; Vasilescu, A.

    1997-02-01

    Measurements of dose with thermoluminescent detectors (TLD) and an ionisation chamber were performed in the range of 5-70 Gy in the electron bremsstrahlung field with a maximum energy of 8 MeV of the Bucharest linear accelerator. Previous calibration was done with a 60Co source. The results of the intercomparison were used in dosimetry of the n - γ field of the ΣΣ irradiation facility, with a photon spectrum similar to the 8 MeV bremsstrahlung field [T. Angelescu et al., Nucl. Instr. and Meth. A 378 (1996) 594].

  5. Visible light nitrogen dioxide spectrophotometer intercomparison: Mount Kobau, British Columbia, July 28 to August 10, 1991

    NASA Technical Reports Server (NTRS)

    Mcelroy, C. T.; Elokhov, A. S.; Elansky, N.; Frank, H.; Johnston, P.; Kerr, J. B.

    1994-01-01

    Under the auspices of the World Meteorological Organization, Environment Canada hosted an international comparison of visible light spectrophotometers at Mt. Kobau, British Columbia in August of 1991. Instruments from four countries were involved. The intercomparison results have indicated that some significant differences exist in the responses of the various instruments, and have provided a basis for the comparison of the historical data sets which currently exist as a result of the independent researches carried out in the past in the former Soviet Union, New Zealand, and Canada.

  6. Sensitivity tests to define the source apportionment performance criteria in the DeltaSA tool

    NASA Astrophysics Data System (ADS)

    Pernigotti, Denise; Belis, Claudio A.

    2017-04-01

    Identification and quantification of the contribution of emission sources to a given area is a key task for the design of abatement strategies. Moreover, European member states are obliged to report this kind of information for zones where the pollution levels exceed the limit values. At present, little is known about the performance and uncertainty of the variety of methodologies used for source apportionment and the comparability between the results of studies using different approaches. The source apportionment Delta (SA Delta) is a tool developed by the EC-JRC to support the particulate matter source apportionment modellers in the identification of sources (for factor analysis studies) and/or in the measure of their performance. The source identification is performed by the tool measuring the proximity of any user chemical profile to preloaded repository data (SPECIATE and SPECIEUROPE). The model performances criteria are based on standard statistical indexes calculated by comparing participants' source contribute estimates and their time series with preloaded references data. Those preloaded data refer to previous European SA intercomparison exercises: the first with real world data (22 participants), the second with synthetic data (25 participants) and the last with real world data which was also extended to Chemical Transport Models (38 receptor models and 4 CTMs). The references used for the model performances are 'true' (predefined by JRC) for the synthetic while they are calculated as ensemble average of the participants' results in real world intercomparisons. The candidates used for each source ensemble reference calculation were selected among participants results based on a number of consistency checks plus the similarity between their chemical profiles to the repository measured data. The estimation of the ensemble reference uncertainty is crucial in order to evaluate the users' performances against it. For this reason a sensitivity analysis on different methods to estimate the ensemble references' uncertainties was performed re-analyzing the synthetic intercomparison dataset, the only one where 'true' reference and ensemble reference contributions were both present. The Delta SA is now available on-line and will be presented, with a critical discussion of the sensitivity analysis on the ensemble reference uncertainty. In particular the grade of among participants mutual agreement on the presence of a certain source should be taken into account. Moreover also the importance of the synthetic intercomparisons in order to catch receptor models common biases will be stressed.

  7. The Pliocene Model Intercomparison Project - Phase 2

    NASA Astrophysics Data System (ADS)

    Haywood, Alan; Dowsett, Harry; Dolan, Aisling; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark; Hunter, Stephen; Lunt, Daniel; Pound, Matthew; Salzmann, Ulrich

    2016-04-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate, and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilised for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilise state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land/ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.

  8. The Radiative Forcing Model Intercomparison Project (RFMIP): Assessment and characterization of forcing to enable feedback studies

    NASA Astrophysics Data System (ADS)

    Pincus, R.; Stevens, B. B.; Forster, P.; Collins, W.; Ramaswamy, V.

    2014-12-01

    The Radiative Forcing Model Intercomparison Project (RFMIP): Assessment and characterization of forcing to enable feedback studies An enormous amount of attention has been paid to the diversity of responses in the CMIP and other multi-model ensembles. This diversity is normally interpreted as a distribution in climate sensitivity driven by some distribution of feedback mechanisms. Identification of these feedbacks relies on precise identification of the forcing to which each model is subject, including distinguishing true error from model diversity. The Radiative Forcing Model Intercomparison Project (RFMIP) aims to disentangle the role of forcing from model sensitivity as determinants of varying climate model response by carefully characterizing the radiative forcing to which such models are subject and by coordinating experiments in which it is specified. RFMIP consists of four activities: 1) An assessment of accuracy in flux and forcing calculations for greenhouse gases under past, present, and future climates, using off-line radiative transfer calculations in specified atmospheres with climate model parameterizations and reference models 2) Characterization and assessment of model-specific historical forcing by anthropogenic aerosols, based on coordinated diagnostic output from climate models and off-line radiative transfer calculations with reference models 3) Characterization of model-specific effective radiative forcing, including contributions of model climatology and rapid adjustments, using coordinated climate model integrations and off-line radiative transfer calculations with a single fast model 4) Assessment of climate model response to precisely-characterized radiative forcing over the historical record, including efforts to infer true historical forcing from patterns of response, by direct specification of non-greenhouse-gas forcing in a series of coordinated climate model integrations This talk discusses the rationale for RFMIP, provides an overview of the four activities, and presents preliminary motivating results.

  9. Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asay-Davis, Xylar S.; Cornford, Stephen L.; Durand, Gaël

    Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS). Here we describe computationalmore » experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the Ice Shelf-Ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for the evaluation of the participating models.« less

  10. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2014-07-01

    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.

  11. Intercomparison and validation of continental water level products derived from satellite radar altimetry

    NASA Astrophysics Data System (ADS)

    Ričko, Martina; Birkett, Charon M.; Carton, James A.; Crétaux, Jean-François

    2012-01-01

    Satellite radar altimeter measurements of lake and reservoir water levels complement in situ observations by providing stage information for ungauged basins and by filling data gaps in existing gauge records. Such additional measurements assist both research and operational programs. However, for a particular lake or reservoir, altimetric products offered to end-users may differ due to choice of employed instrument, processing technique, and applied geophysical corrections. To explore these differences, particularly with their potential impact on climate-based research, an intercomparison of three web-based water-level products (produced by Laboratoire d'Etudes en Géophysique et Océanographie Spatiale, National Aeronautics and Space Administration/United States Department of Agriculture, and European Space Agency/De Montfort University) has been undertaken based on 18 lakes and reservoirs. The products are well correlated with each other (r=0.87 to 0.99) and where in situ data are available are quite well correlated with the gauge measurements (r=0.73 to 0.99). Despite variations in data processing, the poorest root-mean-square differences between any altimeter product and gauge data (˜0.20 to 1.41 m) occur for the narrow reservoirs and smaller lakes. The largest discrepancies between the altimeter products occur for the lakes that freeze (Lake Athabasca and Woods). The current altimeter products provide acceptable accuracy, long-term trends and seasonality for climate applications. We discuss the merits of each product system, but recommend further validations and the provision of ice-detection flags.

  12. The Global Precipitation Climatology Project: First Algorithm Intercomparison Project

    NASA Technical Reports Server (NTRS)

    Arkin, Phillip A.; Xie, Pingping

    1994-01-01

    The Global Precipitation Climatology Project (GPCP) was established by the World Climate Research Program to produce global analyses of the area- and time-averaged precipitation for use in climate research. To achieve the required spatial coverage, the GPCP uses simple rainfall estimates derived from IR and microwave satellite observations. In this paper, we describe the GPCP and its first Algorithm Intercomparison Project (AIP/1), which compared a variety of rainfall estimates derived from Geostationary Meteorological Satellite visible and IR observations and Special Sensor Microwave/Imager (SSM/I) microwave observations with rainfall derived from a combination of radar and raingage data over the Japanese islands and the adjacent ocean regions during the June and mid-July through mid-August periods of 1989. To investigate potential improvements in the use of satellite IR data for the estimation of large-scale rainfall for the GPCP, the relationship between rainfall and the fractional coverage of cold clouds in the AIP/1 dataset is examined. Linear regressions between fractional coverage and rainfall are analyzed for a number of latitude-longitude areas and for a range of averaging times. The results show distinct differences in the character of the relationship for different portions of the area. These results suggest that the simple IR-based estimation technique currently used in the GPCP can be used to estimate rainfall for global tropical and subtropical areas, provided that a method for adjusting the proportional coefficient for varying areas and seasons can be determined.

  13. First results of the CINDI-2 semi-blind MAX-DOAS intercomparison

    NASA Astrophysics Data System (ADS)

    Kreher, Karin; van Roozendael, Michel; Hendrick, Francois; Apituley, Arnoud; Friess, Udo; Lampel, Johannes; Piters, Ankie; Richter, Andreas; Wagner, Thomas; Cindi-2 Participants, All

    2017-04-01

    The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. The goals of this inter-comparison campaign are to support the creation of high-quality ground-based data sets (e.g. to provide reliable long-term time series for trend analysis and satellite data validation), to characterise and better understand the differences between a large number of MAX-DOAS and DOAS instruments and analysis methods, and to contribute to a harmonisation of the measurement settings and retrieval methods. During a time period of 17 days, from 12 to 28 September 2016, a formal semi-blind intercomparison was held following a detailed measurement protocol. The development of this protocol was based on the experience gained during the first CINDI campaign held in 2009 as well as more recent projects and campaigns such as the MADCAT campaign in Mainz, Germany, in 2013. Strong emphasis was put on the careful synchronisation of the measurement sequence and on exact alignment of the elevation angles using horizon scans and lamp measurements. In this presentation, we provide an overview and some highlights of the MAX-DOAS semi-blind intercomparison campaign. We will introduce the participating groups, their instruments and the measurement protocol details, and then summarize the campaign outcomes to date. The CINDI-2 data sets have been investigated using a range of diagnostics including comparisons of daily time series and relative differences between the data sets, regression analysis and correlation plots. The data products so far investigated are NO2 (nitrogen dioxide) in the UV and visible wavelength region, O4 (oxygen dimer) in the same two wavelength intervals, O3 (ozone) in the UV and visible wavelength region, HCHO (formaldehyde) and NO2 in an additional (smaller) wavelength range in the visible. The results based on the regression analysis are presented in summary plots and tables, addressing MAX-DOAS and twilight zenith sky measurements separately. Further information on instrumental details such as the alignment of the viewing direction and elevation and the field of view are also summarized and included in the overall interpretation.

  14. Atmospheric Correction Inter-comparison Exercise (ACIX)

    NASA Astrophysics Data System (ADS)

    Vermote, E.; Doxani, G.; Gascon, F.; Roger, J. C.; Skakun, S.

    2017-12-01

    The free and open data access policy to Landsat-8 (L-8) and Sentinel-2 (S-2) satellite imagery has encouraged the development of atmospheric correction (AC) approaches for generating Bottom-of-Atmosphere (BOA) products. Several entities have started to generate (or plan to generate in the short term) BOA reflectance products at global scale for L-8 and S-2 missions. To this end, the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) have initiated an exercise on the inter-comparison of the available AC processors. The results of the exercise are expected to point out the strengths and weaknesses, as well as communalities and discrepancies of various AC processors, in order to suggest and define ways for their further improvement. In particular, 11 atmospheric processors from five different countries participate in ACIX with the aim to inter-compare their performance when applied to L-8 and S-2 data. All the processors should be operational without requiring parametrization when applied on different areas. A protocol describing in details the inter-comparison metrics and the test dataset based on the AERONET sites has been agreed unanimously during the 1st ACIX workshop in June 2016. In particular, a basic and an advanced run of each of the processor were requested in the frame of ACIX, with the aim to draw robust and reliable conclusions on the processors' performance. The protocol also describes the comparison metrics of the aerosol optical thickness and water vapour products of the processors with the corresponding AERONET measurements. Moreover, concerning the surface reflectances, the inter-comparison among the processors is defined, as well as the comparison with the MODIS surface reflectance and with a reference surface reflectance product. Such a reference product will be obtained using the AERONET characterization of the aerosol (size distribution and refractive indices) and an accurate radiative transfer code. The inter-comparison outcomes were presented and discussed among the ACIX participants in the 2nd ACIX workshop, which was held on 11-12 April 2017 (ESRIN/ESA) and a detailed report was compiled. The proposed presentation is an opportunity for the user community to be informed about the ACIX results and conclusions.

  15. Compatibility of different measurement techniques of global solar radiation and application for long-term observations at Izaña Observatory

    NASA Astrophysics Data System (ADS)

    Delia García, Rosa; Cuevas, Emilio; García, Omaira Elena; Ramos, Ramón; Romero-Campos, Pedro Miguel; de Ory, Fernado; Cachorro, Victoria Eugenia; de Frutos, Angel

    2017-03-01

    A 1-year inter-comparison of classical and modern radiation and sunshine duration (SD) instruments has been performed at Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain) starting on 17 July 2014. We compare daily global solar radiation (GSRH) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer (MFRSR), a bimetallic pyranometer (PYR) and GSRH estimated from sunshine duration performed by a Campbell-Stokes sunshine recorder (CS) and a Kipp & Zonen sunshine duration sensor (CSD). Given that the BSRN GSRH records passed strict quality controls (based on principles of physical limits and comparison with the LibRadtran model), they have been used as reference in the inter-comparison study. We obtain an overall root mean square error (RMSE) of ˜ 0.9 MJm-2 (4 %) for PYR and MFRSR GSRH, 1.9 (7 %) and 1.2 MJm-2 (5 %) for CS and CSD GSRH, respectively. Factors such as temperature, relative humidity (RH) and the solar zenith angle (SZA) have been shown to moderately affect the GSRH observations. As an application of the methodology developed in this work, we have re-evaluated the GSRH data time series obtained at IZO with two PYRs between 1977 and 1991. Their high consistency and temporal stability have been proved by comparing with GSRH estimates obtained from SD observations. These results demonstrate that (1) the continuous-basis inter-comparison of different GSRH techniques offers important diagnostics for identifying inconsistencies between GSRH data records, and (2) the GSRH measurements performed with classical and more simple instruments are consistent with more modern techniques and, thus, valid to recover GSRH data time series and complete worldwide distributed GSRH data. The inter-comparison and quality assessment of these different techniques have allowed us to obtain a complete and consistent long-term global solar radiation series (1977-2015) at Izaña.

  16. The 1997 North American Interagency Intercomparison of Ultraviolet Spectroradiometers Including Narrowband Filter Radiometers

    PubMed Central

    Lantz, Kathleen; Disterhoft, Patrick; Early, Edward; Thompson, Ambler; DeLuisi, John; Berndt, Jerry; Harrison, Lee; Kiedron, Peter; Ehramjian, James; Bernhard, Germar; Cabasug, Lauriana; Robertson, James; Mou, Wanfeng; Taylor, Thomas; Slusser, James; Bigelow, David; Durham, Bill; Janson, George; Hayes, Douglass; Beaubien, Mark; Beaubien, Arthur

    2002-01-01

    The fourth North American Intercomparison of Ultraviolet Monitoring Spectroradiometers was held September 15 to 25, 1997 at Table Mountain outside of Boulder, Colorado, USA. Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. The main purpose of the Intercomparison was to assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks. This Intercomparison was coordinated by NIST and NOAA, and included participants from the ASRC, EPA, NIST, NSF, SERC, USDA, and YES. The UV measuring instruments included scanning spectroradiometers, spectrographs, narrow band multi-filter radiometers, and broadband radiometers. Instruments were characterized for wavelength accuracy, bandwidth, stray-light rejection, and spectral irradiance responsivity. The spectral irradiance responsivity was determined two to three times outdoors to assess temporal stability. Synchronized spectral scans of the solar irradiance were performed over several days. Using the spectral irradiance responsivities determined with the NIST traceable standard lamp, and a simple convolution technique with a Gaussian slit-scattering function to account for the different bandwidths of the instruments, the measured solar irradiance from the spectroradiometers excluding the filter radiometers at 16.5 h UTC had a relative standard deviation of ±4 % for wavelengths greater than 305 nm. The relative standard deviation for the solar irradiance at 16.5 h UTC including the filter radiometer was ±4 % for filter functions above 300 nm. PMID:27446717

  17. GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project

    NASA Astrophysics Data System (ADS)

    Zhou, Tianjun; Turner, Andrew G.; Kinter, James L.; Wang, Bin; Qian, Yun; Chen, Xiaolong; Wu, Bo; Wang, Bin; Liu, Bo; Zou, Liwei; He, Bian

    2016-10-01

    The Global Monsoons Model Inter-comparison Project (GMMIP) has been endorsed by the panel of Coupled Model Inter-comparison Project (CMIP) as one of the participating model inter-comparison projects (MIPs) in the sixth phase of CMIP (CMIP6). The focus of GMMIP is on monsoon climatology, variability, prediction and projection, which is relevant to four of the "Grand Challenges" proposed by the World Climate Research Programme. At present, 21 international modeling groups are committed to joining GMMIP. This overview paper introduces the motivation behind GMMIP and the scientific questions it intends to answer. Three tiers of experiments, of decreasing priority, are designed to examine (a) model skill in simulating the climatology and interannual-to-multidecadal variability of global monsoons forced by the sea surface temperature during historical climate period; (b) the roles of the Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation in driving variations of the global and regional monsoons; and (c) the effects of large orographic terrain on the establishment of the monsoons. The outputs of the CMIP6 Diagnostic, Evaluation and Characterization of Klima experiments (DECK), "historical" simulation and endorsed MIPs will also be used in the diagnostic analysis of GMMIP to give a comprehensive understanding of the roles played by different external forcings, potential improvements in the simulation of monsoon rainfall at high resolution and reproducibility at decadal timescales. The implementation of GMMIP will improve our understanding of the fundamental physics of changes in the global and regional monsoons over the past 140 years and ultimately benefit monsoons prediction and projection in the current century.

  18. Inter-comparison of dynamic models for radionuclide transfer to marine biota in a Fukushima accident scenario.

    PubMed

    Vives I Batlle, J; Beresford, N A; Beaugelin-Seiller, K; Bezhenar, R; Brown, J; Cheng, J-J; Ćujić, M; Dragović, S; Duffa, C; Fiévet, B; Hosseini, A; Jung, K T; Kamboj, S; Keum, D-K; Kryshev, A; LePoire, D; Maderich, V; Min, B-I; Periáñez, R; Sazykina, T; Suh, K-S; Yu, C; Wang, C; Heling, R

    2016-03-01

    We report an inter-comparison of eight models designed to predict the radiological exposure of radionuclides in marine biota. The models were required to simulate dynamically the uptake and turnover of radionuclides by marine organisms. Model predictions of radionuclide uptake and turnover using kinetic calculations based on biological half-life (TB1/2) and/or more complex metabolic modelling approaches were used to predict activity concentrations and, consequently, dose rates of (90)Sr, (131)I and (137)Cs to fish, crustaceans, macroalgae and molluscs under circumstances where the water concentrations are changing with time. For comparison, the ERICA Tool, a model commonly used in environmental assessment, and which uses equilibrium concentration ratios, was also used. As input to the models we used hydrodynamic forecasts of water and sediment activity concentrations using a simulated scenario reflecting the Fukushima accident releases. Although model variability is important, the intercomparison gives logical results, in that the dynamic models predict consistently a pattern of delayed rise of activity concentration in biota and slow decline instead of the instantaneous equilibrium with the activity concentration in seawater predicted by the ERICA Tool. The differences between ERICA and the dynamic models increase the shorter the TB1/2 becomes; however, there is significant variability between models, underpinned by parameter and methodological differences between them. The need to validate the dynamic models used in this intercomparison has been highlighted, particularly in regards to optimisation of the model biokinetic parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. All sonic anemometers need to correct for transducer and structural shadowing in their velocity measurements

    Treesearch

    John M. Frank; William J. Massman; Edward Swiatek; Herb A. Zimmerman; Brent E. Ewers

    2016-01-01

    Sonic anemometry is fundamental to all eddy-covariance studies of surface energy and ecosystem carbon and water balance. Recent studies have shown that some nonorthogonal anemometers underestimate vertical wind. Here it is hypothesized that this is due to a lack of transducer and structural shadowing correction. This is tested with a replicated intercomparison...

  20. An Overview of Measurement Comparisons from the INTEX-B/MILAGRO Airborne Field Campaign

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; Chen, Gao; Crawford, James H.; Flocke, Frank M.; Brown, Clyde C.

    2011-01-01

    As part of the NASA's INTEX-B mission, the NASA DC-8 and NSF C-130 conducted three wing-tip to wing-tip comparison flights. The intercomparison flights sampled a variety of atmospheric conditions (polluted urban, non-polluted, marine boundary layer, clean and polluted free troposphere). These comparisons form a basis to establish data consistency, but also should also be viewed as a continuation of efforts aiming to better understand and reduce measurement differences as identified in earlier field intercomparison exercises. This paper provides a comprehensive overview of 140 intercomparisons of data collected as well as a record of the measurement consistency demonstrated during INTEX-B. It is the primary goal to provide necessary information for the future research to determine if the observations from different INTEX-B platforms/instrument are consistent within the PI reported uncertainties and used in integrated analysis. This paper may also contribute to the formulation strategy for future instrument developments. For interpretation and most effective use of these results, the reader is strongly urged to consult with the instrument principle investigator.

  1. Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6

    PubMed Central

    Nowicki, Sophie M.J.; Payne, Tony; Larour, Eric; Seroussi, Helene; Goelzer, Heiko; Lipscomb, William; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew

    2018-01-01

    Reducing the uncertainty in the past, present and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project – phase 6 (CMIP6) focusing on the Greenland and Antarctic Ice Sheets. In this paper, we describe the framework for ISMIP6 and its relationship to other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice sheet – climate models as well as standalone ice sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change. PMID:29697697

  2. Results of the Greenland ice sheet model initialisation experiments: ISMIP6 - initMIP-Greenland

    NASA Astrophysics Data System (ADS)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew

    2017-04-01

    Ice sheet model initialisation has a large effect on projected future sea-level contributions and gives rise to important uncertainties. The goal of this intercomparison exercise for the continental-scale Greenland ice sheet is therefore to compare, evaluate and improve the initialisation techniques used in the ice sheet modelling community. The initMIP-Greenland project is the first in a series of ice sheet model intercomparison activities within ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6). The experimental set-up has been designed to allow comparison of the initial present-day state of the Greenland ice sheet between participating models and against observations. Furthermore, the initial states are tested with two schematic forward experiments to evaluate the initialisation in terms of model drift (forward run without any forcing) and response to a large perturbation (prescribed surface mass balance anomaly). We present and discuss results that highlight the wide diversity of data sets, boundary conditions and initialisation techniques used in the community to generate initial states of the Greenland ice sheet.

  3. Ice Sheet Model Intercomparison Project (ISMIP6) Contribution to CMIP6

    NASA Technical Reports Server (NTRS)

    Nowicki, Sophie M. J.; Payne, Tony; Larour, Eric; Seroussi, Helene; Goelzer, Heiko; Lipscomb, William; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew

    2016-01-01

    Reducing the uncertainty in the past, present, and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project phase 6 (CMIP6) focusing on the Greenland and Antarctic ice sheets. In this paper, we describe the framework for ISMIP6 and its relationship with other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice-sheetclimate models as well as standalone ice-sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice-sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change.

  4. An International Marine-Atmospheric 222Rn Measurement Intercomparison in Bermuda Part I: NIST Calibration and Methodology for Standardized Sample Additions

    PubMed Central

    Collé, R.; Unterweger, M. P.; Hodge, P. A.; Hutchinson, J. M. R.

    1996-01-01

    As part of an international 222Rn measurement intercomparison conducted at Bermuda in October 1991, NIST provided standardized sample additions of known, but undisclosed (“blind”) 222Rn concentrations that could be related to U.S. national standards. The standardized sample additions were obtained with a calibrated 226Ra source and a specially-designed manifold used to obtain well-known dilution factors from simultaneous flow-rate measurements. The additions were introduced over sampling periods of several hours (typically 4 h) into a common streamline on a sampling tower used by the participating laboratories for their measurements. The standardized 222Rn activity concentrations for the intercomparison ranged from approximately 2.5 Bq · m−3 to 35 Bq · m−3 (of which the lower end of this range approached concentration levels for ambient Bermudian air) and had overall uncertainties, approximating a 3 standard deviation uncertainty interval, of about 6 % to 13 %. This paper describes the calibration and methodology for the standardized sample additions. PMID:27805090

  5. An intercomparison of available soil moisture estimates from thermal-infrared and passive microwave remote sensing and land-surface modeling

    USDA-ARS?s Scientific Manuscript database

    Remotely-sensed soil moisture studies have mainly focused on retrievals using active and passive microwave (MW) sensors whose measurements provided a direct relationship to soil moisture (SM). MW sensors present obvious advantages such as the ability to retrieve through non-precipitating cloud cover...

  6. An intercomparison study of TSM, SEBS, and SEBAL using high-resolution imagery and lysimetric data

    USDA-ARS?s Scientific Manuscript database

    Over the past three decades, numerous remote sensing based ET mapping algorithms were developed. These algorithms provided a robust, economical, and efficient tool for ET estimations at field and regional scales. The Two Source Model (TSM), Surface Energy Balance System (SEBS), and Surface Energy Ba...

  7. Seasonal ozone vertical profiles over North America using the AQMEII group of air quality models: model inter-comparison and stratospheric intrusion

    EPA Science Inventory

    This study utilizes simulations for the North American domain from four modeling groups that participated in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) to evaluate seasonal ozone vertical profiles simulated for the year 2010 against ozo...

  8. Multi-Model Combination techniques for Hydrological Forecasting: Application to Distributed Model Intercomparison Project Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajami, N K; Duan, Q; Gao, X

    2005-04-11

    This paper examines several multi-model combination techniques: the Simple Multi-model Average (SMA), the Multi-Model Super Ensemble (MMSE), Modified Multi-Model Super Ensemble (M3SE) and the Weighted Average Method (WAM). These model combination techniques were evaluated using the results from the Distributed Model Intercomparison Project (DMIP), an international project sponsored by the National Weather Service (NWS) Office of Hydrologic Development (OHD). All of the multi-model combination results were obtained using uncalibrated DMIP model outputs and were compared against the best uncalibrated as well as the best calibrated individual model results. The purpose of this study is to understand how different combination techniquesmore » affect the skill levels of the multi-model predictions. This study revealed that the multi-model predictions obtained from uncalibrated single model predictions are generally better than any single member model predictions, even the best calibrated single model predictions. Furthermore, more sophisticated multi-model combination techniques that incorporated bias correction steps work better than simple multi-model average predictions or multi-model predictions without bias correction.« less

  9. Using operational equipment to read accident dosemeters.

    PubMed

    Devine, R T; Vigil, M M; Martinez, W A

    2004-01-01

    Analysis of accident dosemeters usually involves the use of laboratory-based counting equipment. Gamma spectrometers are used for indium, copper and gold, and alpha-beta detectors for sulphur. This equipment is usually not easily transported due to the shielding required and the weight and delicacy of the counters. For intercomparison studies that require reading the dosemeters on site, a transportable system is required unless the site operating the study can count samples for all the participants. In the case of an actual accident these systems would have a difficulty in counting a large number of accident dosemeters. In an accident, personnel are usually subdivided according to their level of exposure. Those exposed to higher doses are treated immediately. An alternate system should be made available to handle the dosemeters worn by those personnel are likely to receive lower doses. Improvements in portable operational equipment for gamma and beta monitoring allow their use as spectrometers. Such a system was used for the SILENE intercomparison conducted at IRSN Valduc on 12 June and 19, 2002, and the preliminary results compared well with the other participants.

  10. Inter-comparison of boron concentration measurements at INFN-University of Pavia (Italy) and CNEA (Argentina).

    PubMed

    Portu, Agustina; Postuma, Ian; Gadan, Mario Alberto; Saint Martin, Gisela; Olivera, María Silvina; Altieri, Saverio; Protti, Nicoletta; Bortolussi, Silva

    2015-11-01

    An inter-comparison of three boron determination techniques was carried out between laboratories from INFN-University of Pavia (Italy) and CNEA (Argentina): alpha spectrometry (alpha-spect), neutron capture radiography (NCR) and quantitative autoradiography (QTA). Samples of different nature were analysed: liquid standards, liver homogenates and tissue samples from different treatment protocols. The techniques showed a good agreement in a concentration range of interest in BNCT (1-100ppm), thus demonstrating their applicability as precise methods to quantify boron and determine its distribution in tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. International Intercomparison of Regular Transmittance Scales

    NASA Astrophysics Data System (ADS)

    Eckerle, K. L.; Sutter, E.; Freeman, G. H. C.; Andor, G.; Fillinger, L.

    1990-01-01

    An intercomparison of the regular spectral transmittance scales of NIST, Gaithersburg, MD (USA); PTB, Braunschweig (FRG); NPL, Teddington, Middlesex (UK); and OMH, Budapest (H) was accomplished using three sets of neutral glass filters with transmittances ranging from approximately 0.92 to 0.001. The difference between the results from the reference spectrophotometers of the laboratories was generally smaller than the total uncertainty of the interchange. The relative total uncertainty ranges from 0.05% to 0.75% for transmittances from 0.92 to 0.001. The sample-induced error was large - contributing 40% or more of the total except in a few cases.

  12. Soil sampling strategies: evaluation of different approaches.

    PubMed

    de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Mufato, Renzo; Sartori, Giuseppe; Stocchero, Giulia

    2008-11-01

    The National Environmental Protection Agency of Italy (APAT) performed a soil sampling intercomparison, inviting 14 regional agencies to test their own soil sampling strategies. The intercomparison was carried out at a reference site, previously characterised for metal mass fraction distribution. A wide range of sampling strategies, in terms of sampling patterns, type and number of samples collected, were used to assess the mean mass fraction values of some selected elements. The different strategies led in general to acceptable bias values (D) less than 2sigma, calculated according to ISO 13258. Sampling on arable land was relatively easy, with comparable results between different sampling strategies.

  13. Assessing Impacts of Climate Change on Food Security Worldwide

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Antle, John; Elliott, Joshua

    2015-01-01

    The combination of a warming Earth and an increasing population will likely strain the world's food systems in the coming decades. Experts involved with the Agricultural Model Intercomparison and Improvement Project (AgMIP) focus on quantifying the changes through time. AgMIP, a program begun in 2010, involves about 800 climate scientists, economists, nutritionists, information technology specialists, and crop and livestock experts. In mid-September 2015, the Aspen Global Change Institute convened an AgMIP workshop to draft plans and protocols for assessing global- and regional-scale modeling of crops, livestock, economics, and nutrition across major agricultural regions worldwide. The goal of this Coordinated Global and Regional Integrated Assessments (CGRA) project is to characterize climate effects on large- and small-scale farming systems.

  14. Intercomparison of American and Soviet stellar image motion monitors

    NASA Astrophysics Data System (ADS)

    Forbes, Fred F.; Kutyrev, Aleksandr

    1990-07-01

    Astronomical observatory site testing programs in the USA and USSR have used a variety of stellar image motion monitors in the selection of the best sites for the construction of large (6 to 10 meter) telescopes. While there appears to be a reasonable agreement between microthermal and sodar results for the better sites in both countries, there remain unexplained inconsistencies in measured seeing, especially at Mauna Kea, Hawaii and Mount Sanglok. The photoelectric seeing monitor built by Scheglov (1984) of the Moscow Sternberg Institute, and the National Optical Astronomy Observatories site-survey intensified CID seeing monitor have been mounted on the same telescope. Simultaneous image motion data recorded are compared for single images as differential measurements of dual images.

  15. Rapid and accurate assessment of the activity measurements in Brazilian hospitals and clinics.

    PubMed

    de Oliveira, A E; Iwahara, A; da Cruz, P A L; da Silva, C J; de Araújo, E B; Mengatti, J; da Silva, R L; Trindade, O L

    2018-04-01

    Traceability in Nuclear Medicine Service (NMS) measurements was checked by the Institute of Radioprotection and Dosimetry (IRD) through the Institute of Energy and Nuclear Research (IPEN). In 2016, IRD ran an intercomparison program and invited Brazilian NMS authorized to administer 131 I to patients. Sources of 131 I were distributed to 33 NMSs. Three other sources from the same solution were sent to IRD, after measurement at IPEN. These sources were calibrated in the IRD reference system. A correction factor of 1.013 was obtained. Ninety percent of the NMS comparisons results are within ±10% of the National Laboratory of Metrology of Ionizing Radiation (LNMRI) value, the Brazilian legal requirement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sao Paulo Lightning Mapping Array (SP-LMA): Network Assessment and Analyses for Intercomparison Studies and GOES-R Proxy Activities

    NASA Technical Reports Server (NTRS)

    Bailey, J. C.; Blakeslee, R. J.; Carey, L. D.; Goodman, S. J.; Rudlosky, S. D.; Albrecht, R.; Morales, C. A.; Anselmo, E. M.; Neves, J. R.; Buechler, D. E.

    2014-01-01

    A 12 station Lightning Mapping Array (LMA) network was deployed during October 2011 in the vicinity of Sao Paulo, Brazil (SP-LMA) to contribute total lightning measurements to an international field campaign [CHUVA - Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)]. The SP-LMA was operational from November 2011 through March 2012 during the Vale do Paraiba campaign. Sensor spacing was on the order of 15-30 km, with a network diameter on the order of 40-50km. The SP-LMA provides good 3-D lightning mapping out to 150 km from the network center, with 2-D coverage considerably farther. In addition to supporting CHUVA science/mission objectives, the SP-LMA is supporting the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), on NOAA's Geostationary Operational Environmental Satellite-R (GOES-R: scheduled for a 2015 launch). These proxy data will be used to develop and validate operational algorithms so that they will be ready to use on "day1" following the GOES-R launch. As the CHUVA Vale do Paraiba campaign opportunity was formulated, a broad community-based interest developed for a comprehensive Lightning Location System (LLS) intercomparison and assessment study, leading to the participation and/or deployment of eight other ground-based networks and the space-based Lightning Imaging Sensor (LIS). The SP-LMA data is being intercompared with lightning observations from other deployed lightning networks to advance our understanding of the capabilities/contributions of each of these networks toward GLM proxy and validation activities. This paper addresses the network assessment including noise reduction criteria, detection efficiency estimates, and statistical and climatological (both temporal and spatially) analyses for intercomparison studies and GOES-R proxy activities.

  17. Benchmarking carbon-nitrogen interactions in Earth System Models to observations: An inter-comparison of nitrogen limitation in global land surface models with carbon and nitrogen cycles (CLM-CN and O-CN)

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Zaehle, S.; Templer, P. H.; Goodale, C. L.

    2011-12-01

    Predictions of climate change depend on accurately modeling the feedbacks among the carbon cycle, nitrogen cycle, and climate system. Several global land surface models have shown that nitrogen limitation determines how land carbon fluxes respond to rising CO2, nitrogen deposition, and climate change, thereby influencing predictions of climate change. However, the magnitude of the carbon-nitrogen-climate feedbacks varies considerably by model, leading to critical and timely questions of why they differ and how they compare to field observations. To address these questions, we initiated a model inter-comparison of spatial patterns and drivers of nitrogen limitation. The experiment assessed the regional consequences of sustained nitrogen additions in a set of 25-year global nitrogen fertilization simulations. The model experiments were designed to cover effects from small changes in nitrogen inputs associated with plausible increases in nitrogen deposition to large changes associated with field-based nitrogen fertilization experiments. The analyses of model simulations included assessing the geographically varying degree of nitrogen limitation on plant and soil carbon cycling and the mechanisms underlying model differences. Here, we present results from two global land-surface models (CLM-CN and O-CN) with differing approaches to modeling carbon-nitrogen interactions. The predictions from each model were compared to a set of globally distributed observational data that includes nitrogen fertilization experiments, 15N tracer studies, small catchment nitrogen input-output studies, and syntheses across nitrogen deposition gradients. Together these datasets test many aspects of carbon-nitrogen coupling and are able to differentiate between the two models. Overall, this study is the first to explicitly benchmark carbon and nitrogen interactions in Earth System Models using a range of observations and is a foundation for future inter-comparisons.

  18. Intercomparison Project on Parameterizations of Large-Scale Dynamics for Simulations of Tropical Convection

    NASA Astrophysics Data System (ADS)

    Sobel, A. H.; Wang, S.; Bellon, G.; Sessions, S. L.; Woolnough, S.

    2013-12-01

    Parameterizations of large-scale dynamics have been developed in the past decade for studying the interaction between tropical convection and large-scale dynamics, based on our physical understanding of the tropical atmosphere. A principal advantage of these methods is that they offer a pathway to attack the key question of what controls large-scale variations of tropical deep convection. These methods have been used with both single column models (SCMs) and cloud-resolving models (CRMs) to study the interaction of deep convection with several kinds of environmental forcings. While much has been learned from these efforts, different groups' efforts are somewhat hard to compare. Different models, different versions of the large-scale parameterization methods, and experimental designs that differ in other ways are used. It is not obvious which choices are consequential to the scientific conclusions drawn and which are not. The methods have matured to the point that there is value in an intercomparison project. In this context, the Global Atmospheric Systems Study - Weak Temperature Gradient (GASS-WTG) project was proposed at the Pan-GASS meeting in September 2012. The weak temperature gradient approximation is one method to parameterize large-scale dynamics, and is used in the project name for historical reasons and simplicity, but another method, the damped gravity wave (DGW) method, will also be used in the project. The goal of the GASS-WTG project is to develop community understanding of the parameterization methods currently in use. Their strengths, weaknesses, and functionality in models with different physics and numerics will be explored in detail, and their utility to improve our understanding of tropical weather and climate phenomena will be further evaluated. This presentation will introduce the intercomparison project, including background, goals, and overview of the proposed experimental design. Interested groups will be invited to join (it will not be too late), and preliminary results will be presented.

  19. The role of simulation chambers in the development of spectroscopic techniques: campaigns at EUPHORE

    NASA Astrophysics Data System (ADS)

    Ródenas, Milagros; Muñoz, Amalia; Euphore Team

    2016-04-01

    Simulation chambers represent a very useful tool for the study of chemical reactions and their products, but also to characterize instruments. The development of spectroscopic techniques throughout the last decades has benefited from tests and intercomparison exercises carried out in chambers. In fact, instruments can be exposed to various controlled atmospheric scenarios that account for different environmental conditions, eliminating the uncertainties associated to fluctuations of the air mass, which must be taken into account when extrapolating results to the real conditions. Hence, a given instrument can be characterized by assessing its precision, accuracy, detection limits, time response and potential interferences in the presence of other chemical compounds, aerosols, etc. This implies that the instrument can be calibrated and validated, which allows to enhance the features of the instrument. Moreover, chambers are also the scenario of intercomparison trials, permitting multiple instruments to sample from the same well-mixed air mass simultaneously. An overview of different campaigns to characterize and/or intercompare spectroscopic techniques that have taken place in simulation chambers will be given; in particular, those carried out at EUPHORE (two twin domes, 200 m3 each, Spain), where various intercomparison exercises have been deployed under the frame of European projects (e.g. TOXIC, FIONA, PSOA campaigns supported by EUROCHAMP-II). With the common aim of measuring given compounds (e.g. HONO, NO2, OH, glyoxal, m-glyoxal, etc), an important number of spectroscopic instruments and institutions have been involved in chamber experiments, having the chance to intercompare among them and also with other non-spectroscopic systems (e.g. monitors, cromatographs, etc) or model simulations.

  20. Cloud-resolving model intercomparison of an MC3E squall line case: Part I-Convective updrafts: CRM Intercomparison of a Squall Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Jiwen; Han, Bin; Varble, Adam

    A constrained model intercomparison study of a mid-latitude mesoscale squall line is performed using the Weather Research & Forecasting (WRF) model at 1-km horizontal grid spacing with eight cloud microphysics schemes, to understand specific processes that lead to the large spread of simulated cloud and precipitation at cloud-resolving scales, with a focus of this paper on convective cores. Various observational data are employed to evaluate the baseline simulations. All simulations tend to produce a wider convective area than observed, but a much narrower stratiform area, with most bulk schemes overpredicting radar reflectivity. The magnitudes of the virtual potential temperature drop,more » pressure rise, and the peak wind speed associated with the passage of the gust front are significantly smaller compared with the observations, suggesting simulated cool pools are weaker. Simulations also overestimate the vertical velocity and Ze in convective cores as compared with observational retrievals. The modeled updraft velocity and precipitation have a significant spread across the eight schemes even in this strongly dynamically-driven system. The spread of updraft velocity is attributed to the combined effects of the low-level perturbation pressure gradient determined by cold pool intensity and buoyancy that is not necessarily well correlated to differences in latent heating among the simulations. Variability of updraft velocity between schemes is also related to differences in ice-related parameterizations, whereas precipitation variability increases in no-ice simulations because of scheme differences in collision-coalescence parameterizations.« less

  1. Metrics for the Diurnal Cycle of Precipitation: Toward Routine Benchmarks for Climate Models

    DOE PAGES

    Covey, Curt; Gleckler, Peter J.; Doutriaux, Charles; ...

    2016-06-08

    In this paper, metrics are proposed—that is, a few summary statistics that condense large amounts of data from observations or model simulations—encapsulating the diurnal cycle of precipitation. Vector area averaging of Fourier amplitude and phase produces useful information in a reasonably small number of harmonic dial plots, a procedure familiar from atmospheric tide research. The metrics cover most of the globe but down-weight high-latitude wintertime ocean areas where baroclinic waves are most prominent. This enables intercomparison of a large number of climate models with observations and with each other. The diurnal cycle of precipitation has features not encountered in typicalmore » climate model intercomparisons, notably the absence of meaningful “average model” results that can be displayed in a single two-dimensional map. Displaying one map per model guides development of the metrics proposed here by making it clear that land and ocean areas must be averaged separately, but interpreting maps from all models becomes problematic as the size of a multimodel ensemble increases. Global diurnal metrics provide quick comparisons with observations and among models, using the most recent version of the Coupled Model Intercomparison Project (CMIP). This includes, for the first time in CMIP, spatial resolutions comparable to global satellite observations. Finally, consistent with earlier studies of resolution versus parameterization of the diurnal cycle, the longstanding tendency of models to produce rainfall too early in the day persists in the high-resolution simulations, as expected if the error is due to subgrid-scale physics.« less

  2. Metrics for the Diurnal Cycle of Precipitation: Toward Routine Benchmarks for Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covey, Curt; Gleckler, Peter J.; Doutriaux, Charles

    In this paper, metrics are proposed—that is, a few summary statistics that condense large amounts of data from observations or model simulations—encapsulating the diurnal cycle of precipitation. Vector area averaging of Fourier amplitude and phase produces useful information in a reasonably small number of harmonic dial plots, a procedure familiar from atmospheric tide research. The metrics cover most of the globe but down-weight high-latitude wintertime ocean areas where baroclinic waves are most prominent. This enables intercomparison of a large number of climate models with observations and with each other. The diurnal cycle of precipitation has features not encountered in typicalmore » climate model intercomparisons, notably the absence of meaningful “average model” results that can be displayed in a single two-dimensional map. Displaying one map per model guides development of the metrics proposed here by making it clear that land and ocean areas must be averaged separately, but interpreting maps from all models becomes problematic as the size of a multimodel ensemble increases. Global diurnal metrics provide quick comparisons with observations and among models, using the most recent version of the Coupled Model Intercomparison Project (CMIP). This includes, for the first time in CMIP, spatial resolutions comparable to global satellite observations. Finally, consistent with earlier studies of resolution versus parameterization of the diurnal cycle, the longstanding tendency of models to produce rainfall too early in the day persists in the high-resolution simulations, as expected if the error is due to subgrid-scale physics.« less

  3. Host Model Uncertainty in Aerosol Radiative Effects: the AeroCom Prescribed Experiment and Beyond

    NASA Astrophysics Data System (ADS)

    Stier, Philip; Schutgens, Nick; Bian, Huisheng; Boucher, Olivier; Chin, Mian; Ghan, Steven; Huneeus, Nicolas; Kinne, Stefan; Lin, Guangxing; Myhre, Gunnar; Penner, Joyce; Randles, Cynthia; Samset, Bjorn; Schulz, Michael; Yu, Hongbin; Zhou, Cheng; Bellouin, Nicolas; Ma, Xiaoyan; Yu, Fangqun; Takemura, Toshihiko

    2013-04-01

    Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. Multi-model "diversity" in estimates of the aerosol radiative effect is often perceived as a measure of the uncertainty in modelling aerosol itself. However, current aerosol models vary considerably in model components relevant for the calculation of aerosol radiative forcings and feedbacks and the associated "host-model uncertainties" are generally convoluted with the actual uncertainty in aerosol modelling. In the AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in eleven participating models. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention. However, uncertainties in aerosol radiative effects also include short-term and long-term feedback processes that will be systematically explored in future intercomparison studies. Here we will present an overview of the proposals for discussion and results from early scoping studies.

  4. Aerosol chemistry in GLOBE

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Rothermel, Jeffry; Jarzembski, Maurice A.

    1993-01-01

    This task addresses the measurement and understanding of the physical and chemical properties of aerosol in remote regions that are responsible for aerosol backscatter at infrared wavelengths. Because it is representative of other clean areas, the remote Pacific is of extreme interest. Emphasis is on the determination size dependent aerosol properties that are required for modeling backscatter at various wavelengths and upon those features that may be used to help understand the nature, origin, cycling and climatology of these aerosols in the remote troposphere. Empirical relationships will be established between lidar measurements and backscatter derived from the aerosol microphysics as required by the NASA Doppler Lidar Program. This will include the analysis of results from the NASA GLOBE Survey Mission Flight Program. Additional instrument development and deployment will be carried out in order to extend and refine this data base. Identified activities include participation in groundbased and airborne experiments. Progress to date includes participation in, analysis of, and publication of results from Mauna Loa Backscatter Intercomparison Experiment (MABIE) and Global Backscatter Experiment (GLOBE).

  5. Multibiodose radiation emergency triage categorization software.

    PubMed

    Ainsbury, Elizabeth A; Barnard, Stephen; Barrios, Lleonard; Fattibene, Paola; de Gelder, Virginie; Gregoire, Eric; Lindholm, Carita; Lloyd, David; Nergaard, Inger; Rothkamm, Kai; Romm, Horst; Scherthan, Harry; Thierens, Hubert; Vandevoorde, Charlot; Woda, Clemens; Wojcik, Andrzej

    2014-07-01

    In this note, the authors describe the MULTIBIODOSE software, which has been created as part of the MULTIBIODOSE project. The software enables doses estimated by networks of laboratories, using up to five retrospective (biological and physical) assays, to be combined to give a single estimate of triage category for each individual potentially exposed to ionizing radiation in a large scale radiation accident or incident. The MULTIBIODOSE software has been created in Java. The usage of the software is based on the MULTIBIODOSE Guidance: the program creates a link to a single SQLite database for each incident, and the database is administered by the lead laboratory. The software has been tested with Java runtime environment 6 and 7 on a number of different Windows, Mac, and Linux systems, using data from a recent intercomparison exercise. The Java program MULTIBIODOSE_1.0.jar is freely available to download from http://www.multibiodose.eu/software or by contacting the software administrator: MULTIBIODOSE-software@gmx.com.

  6. Aircraft to aircraft intercomparison during SEMAPHORE

    NASA Astrophysics Data System (ADS)

    Lambert, Dominique; Durand, Pierre

    1998-10-01

    During the Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE) experiment, performed in the Azores region in 1993, two French research aircraft were simultaneously used for in situ measurements in the atmospheric boundary layer. We present the results obtained from one intercomparison flight between the two aircraft. The mean parameters generally agree well, although the temperature has to be slightly shifted in order to be in agreement for the two aircraft. A detailed comparison of the turbulence parameters revealed no bias. The agreement is good for variances and is satisfactory for fluxes and skewness. A thorough study of the errors involved in flux computation revealed that the greatest accuracy is obtained for latent heat flux. Errors in sensible heat flux are considerably greater, and the worst results are obtained for momentum flux. The latter parameter, however, is more accurate than expected from previous parameterizations.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Baoqiang; Zhao, Ming; Held, Isaac M.

    The severity of the double Intertropical Convergence Zone (DI) problem in climate models can be measured by a tropical precipitation asymmetry index (PAI), indicating whether tropical precipitation favors the Northern Hemisphere or the Southern Hemisphere. Examination of 19 Coupled Model Intercomparison Project phase 5 models reveals that the PAI is tightly linked to the tropical sea surface temperature (SST) bias. As one of the factors determining the SST bias, the asymmetry of tropical net surface heat flux in Atmospheric Model Intercomparison Project (AMIP) simulations is identified as a skillful predictor of the PAI change from an AMIP to a coupledmore » simulation, with an intermodel correlation of 0.90. Using tropical top-of-atmosphere (TOA) fluxes, the correlations are lower but still strong. However, the extratropical asymmetries of surface and TOA fluxes in AMIP simulations cannot serve as useful predictors of the PAI change. Furthermore, this study suggests that the largest source of the DI bias is from the tropics and from atmospheric models.« less

  8. Airborne Polarimeter Intercomparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Redemann, Jens

    2014-01-01

    The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  9. GCSS/WGNE Pacific Cross-section Intercomparison: Tropical and Subtropical Cloud Transitions

    NASA Astrophysics Data System (ADS)

    Teixeira, J.

    2008-12-01

    In this presentation I will discuss the role of the GEWEX Cloud Systems Study (GCSS) working groups in paving the way for substantial improvements in cloud parameterization in weather and climate models. The GCSS/WGNE Pacific Cross-section Intercomparison (GPCI) is an extension of GCSS and is a different type of model evaluation where climate models are analyzed along a Pacific Ocean transect from California to the equator. This approach aims at complementing the more traditional efforts in GCSS by providing a simple framework for the evaluation of models that encompasses several fundamental cloud regimes such as stratocumulus, shallow cumulus and deep cumulus, as well as the transitions between them. Currently twenty four climate and weather prediction models are participating in GPCI. We will present results of the comparison between models and recent satellite data. In particular, we will explore in detail the potential of the Atmospheric Infrared Sounder (AIRS) and CloudSat data for the evaluation of the representation of clouds and convection in climate models.

  10. Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases

    NASA Astrophysics Data System (ADS)

    Grenier, Christophe; Anbergen, Hauke; Bense, Victor; Chanzy, Quentin; Coon, Ethan; Collier, Nathaniel; Costard, François; Ferry, Michel; Frampton, Andrew; Frederick, Jennifer; Gonçalvès, Julio; Holmén, Johann; Jost, Anne; Kokh, Samuel; Kurylyk, Barret; McKenzie, Jeffrey; Molson, John; Mouche, Emmanuel; Orgogozo, Laurent; Pannetier, Romain; Rivière, Agnès; Roux, Nicolas; Rühaak, Wolfram; Scheidegger, Johanna; Selroos, Jan-Olof; Therrien, René; Vidstrand, Patrik; Voss, Clifford

    2018-04-01

    In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. This issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatial and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.

  11. Inter-Comparison of GOES-8 Imager and Sounder Skin Temperature Retrievals

    NASA Technical Reports Server (NTRS)

    Haines, Stephanie L.; Suggs, Ronnie J.; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Skin temperature (ST) retrievals derived from geostationary satellite observations have both high temporal and spatial resolutions and are therefore useful for applications such as assimilation into mesoscale forecast models, nowcasting, and diagnostic studies. Our retrieval method uses a Physical Split Window technique requiring at least two channels within the longwave infrared window. On current GOES satellites, including GOES-11, there are two Imager channels within the required spectral interval. However, beginning with the GOES-M satellite the 12-um channel will be removed, leaving only one longwave channel. The Sounder instrument will continue to have three channels within the longwave window, and therefore ST retrievals will be derived from Sounder measurements. This research compares retrievals from the two instruments and evaluates the effects of the spatial resolution and sensor calibration differences on the retrievals. Both Imager and Sounder retrievals are compared to ground-truth data to evaluate the overall accuracy of the technique. An analysis of GOES-8 and GOES-11 intercomparisons is also presented.

  12. GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tianjun; Turner, Andrew G.; Kinter, James L.

    The Global Monsoons Model Inter-comparison Project (GMMIP) has been endorsed by the panel of Coupled Model Inter-comparison Project (CMIP) as one of the participating model inter-comparison projects (MIPs) in the sixth phase of CMIP (CMIP6). The focus of GMMIP is on monsoon climatology, variability, prediction and projection, which is relevant to four of the “Grand Challenges” proposed by the World Climate Research Programme. At present, 21 international modeling groups are committed to joining GMMIP. This overview paper introduces the motivation behind GMMIP and the scientific questions it intends to answer. Three tiers of experiments, of decreasing priority, are designed to examinemore » (a) model skill in simulating the climatology and interannual-to-multidecadal variability of global monsoons forced by the sea surface temperature during historical climate period; (b) the roles of the Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation in driving variations of the global and regional monsoons; and (c) the effects of large orographic terrain on the establishment of the monsoons. The outputs of the CMIP6 Diagnostic, Evaluation and Characterization of Klima experiments (DECK), “historical” simulation and endorsed MIPs will also be used in the diagnostic analysis of GMMIP to give a comprehensive understanding of the roles played by different external forcings, potential improvements in the simulation of monsoon rainfall at high resolution and reproducibility at decadal timescales. The implementation of GMMIP will improve our understanding of the fundamental physics of changes in the global and regional monsoons over the past 140 years and ultimately benefit monsoons prediction and projection in the current century.« less

  13. Intercomparison of mid latitude storm diagnostics (IMILAST) - synthesis of project results

    NASA Astrophysics Data System (ADS)

    Neu, Urs

    2017-04-01

    The analysis of the occurrence of mid-latitude storms is of great socio-economical interest due to their vast and destructive impacts. However, a unique definition of cyclones is missing, and therefore the definition of what a cyclone is as well as quantifying its strength contains subjective choices. Existing automatic cyclone identification and tracking algorithms are based on different definitions and use diverse characteristics, e.g. data transformation, metrics used for cyclone identification, cyclone identification procedures or tracking methods. The project IMILAST systematically compares different cyclone detection and tracking methods, with the aim to comprehensively assess the influence of different algorithms on cyclone climatologies, temporal trends of frequency, strength or other characteristics of cyclones and thus quantify systematic uncertainties in mid-latitudinal storm identification and tracking. The three main intercomparison experiments used the ERA-interim reanalysis as a common input data set and focused on differences between the methods with respect to number, track density, life cycle characteristics, and trend patterns on the one hand and potential differences of the long-term climate change signal of cyclonic activity between the methods on the other hand. For the third experiment, the intercomparison period has been extended to a 30 year period from 1979 to 2009 and focuses on more specific aspects, such as parameter sensitivities, the comparison of automated to manual tracking sets, regional analysis (regional trends, Arctic and Antarctic cyclones, cyclones in the Mediterranean) or specific phenomena like splitting and merging of cyclones. In addition, the representation of storms and their characteristics in reanalysis data sets is examined to further enhance the knowledge on uncertainties related to storm occurrence. This poster presents a synthesis of the main results from the intercomparison activities within IMILAST.

  14. Global Intercomparison of 12 Land Surface Heat Flux Estimates

    NASA Technical Reports Server (NTRS)

    Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S. I.; McCabe, M. F.; Wood, E. F.; Rossow, W. B.; Balsamo, G.; Betts, A. K.; Dirmeyer, P. A.; hide

    2011-01-01

    A global intercomparison of 12 monthly mean land surface heat flux products for the period 1993-1995 is presented. The intercomparison includes some of the first emerging global satellite-based products (developed at Paris Observatory, Max Planck Institute for Biogeochemistry, University of California Berkeley, University of Maryland, and Princeton University) and examples of fluxes produced by reanalyses (ERA-Interim, MERRA, NCEP-DOE) and off-line land surface models (GSWP-2, GLDAS CLM/ Mosaic/Noah). An intercomparison of the global latent heat flux (Q(sub le)) annual means shows a spread of approx 20 W/sq m (all-product global average of approx 45 W/sq m). A similar spread is observed for the sensible (Q(sub h)) and net radiative (R(sub n)) fluxes. In general, the products correlate well with each other, helped by the large seasonal variability and common forcing data for some of the products. Expected spatial distributions related to the major climatic regimes and geographical features are reproduced by all products. Nevertheless, large Q(sub le)and Q(sub h) absolute differences are also observed. The fluxes were spatially averaged for 10 vegetation classes. The larger Q(sub le) differences were observed for the rain forest but, when normalized by mean fluxes, the differences were comparable to other classes. In general, the correlations between Q(sub le) and R(sub n) were higher for the satellite-based products compared with the reanalyses and off-line models. The fluxes were also averaged for 10 selected basins. The seasonality was generally well captured by all products, but large differences in the flux partitioning were observed for some products and basins.

  15. IPRT polarized radiative transfer model intercomparison project - Three-dimensional test cases (phase B)

    NASA Astrophysics Data System (ADS)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2018-04-01

    Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http://www.meteo.physik.uni-muenchen.de/ iprt).

  16. Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Cruz Minguillón, María; Yadav, Varun; Slowik, Jay G.; Hüglin, Christoph; Fröhlich, Roman; Petterson, Krag; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    The Xact 625 Ambient Metals Monitor was tested during a 3-week field campaign at the rural, traffic-influenced site Härkingen in Switzerland during the summer of 2015. The field campaign encompassed the Swiss National Day fireworks event, providing increased concentrations and unique chemical signatures compared to non-fireworks (or background) periods. The objective was to evaluate the data quality by intercomparison with other independent measurements and test its applicability for aerosol source quantification. The Xact was configured to measure 24 elements in PM10 with 1 h time resolution. Data quality was evaluated for 10 24 h averages of Xact data by intercomparison with 24 h PM10 filter data analysed with ICP-OES for major elements, ICP-MS for trace elements, and gold amalgamation atomic absorption spectrometry for Hg. Ten elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, Ba, Pb) showed excellent correlation between the compared methods, with r2 values ≥ 0.95. However, the slopes of the regressions between Xact 625 and ICP data varied from 0.97 to 1.8 (average 1.28) and thus indicated generally higher Xact elemental concentrations than ICP for these elements. Possible reasons for these differences are discussed, but further investigations are needed. For the remaining elements no conclusions could be drawn about their quantification for various reasons, mainly detection limit issues. An indirect intercomparison of hourly values was performed for the fireworks peak, which brought good agreement of total masses when the Xact data were corrected with the regressions from the 24 h value intercomparison. The results demonstrate that multi-metal characterization at high-time-resolution capability of Xact is a valuable and practical tool for ambient monitoring.

  17. WCRP Task Team for the Intercomparison of Reanalyses (TIRA): Motivation and Progress

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael

    2017-01-01

    Reanalyses have proven to be an important resource for weather and climate related research, as well as societal applications at large. Several centers have emerged to produce new atmospheric reanalyses in various forms every few years. In addition, land and ocean communities are producing disciplinary uncoupled reanalyses. Current research and development in reanalysis is directed at (1) extending the length of reanalyzed period and (2) use of coupled Earth system models for climate reanalysis. While WCRPs involvement in the reanalyses communities through its Data Advisory Council (WDAC) has been substantial, for example in organizing international conferences on reanalyses, a central team of reanalyses expertise is not in place in the WCRP structure. The differences among reanalyses and their inherent uncertainties are some of the most important questions for both users and developers of reanalyses. Therefore, a collaborative effort to systematically assess and intercompare reanalyses would be a logical progression that fills the needs of the community and contributes to the WCRP mission. The primary charge to the TIRA is to develop a reanalysis intercomparison project plan that will attain the following objectives.1)To foster understanding and estimation of uncertainties in reanalysis data by intercomparison and other means 2)To communicate new developments and best practices among the reanalyses producing centers 3)To enhance the understanding of data and assimilation issues and their impact on uncertainties, leading to improved reanalyses for climate assessment 4)To communicate the strengths and weaknesses of reanalyses, their fitness for purpose, and best practices in the use of reanalysis datasets by the scientific community. This presentation outlines the need for a task team on reanalyses, their intercomparison, the objectives of the team and progress thus far.

  18. Atmospheric and spectroscopic research in the far infrared

    NASA Technical Reports Server (NTRS)

    Park, Kwangjai; Radostitz, James V.

    1992-01-01

    The University of Oregon (UO) has been a major participant in the development of far infrared spectroscopic research of the stratosphere for the purpose of understanding the ozone layer processes. The UO has had a 15-year collaboration with the Italian group of B. Carli, and have participated in the 1978/79 Sub-millimeter Infrared Balloon Experiment (SIBEX), in the Balloon Intercomparison Campaign, (BIC), in the Infrared Balloon Experiment (IBEX), and in the recently concluded Far Infrared Experiment for UARS Correlative Measurements (FIREX). Both IBEX and FIREX programs were conducted in collaboration with NASA Langley, and were designed as validation flights in support of the Upper Atmosphere Research Satellite (UARS) Program. The technique of atmospheric far infrared spectroscopy offers two important advantages. First, many chemically important species can be measured simultaneously and co-spatially in the atmosphere. Second, far infrared atmospheric spectra can be obtained in thermal emission without reference to the sun's position, enabling full diurnal and global coverage. Recent improvements in instrumentation, field measurements, and molecular concentration retrieval techniques are now making the far infrared a mature measurement technology. This work to date has largely focused on balloon-based studies, but the future efforts will focus also on satellite-based experiments. A program of research in the following general areas was proposed: Laboratory Pressure broadening coefficient studies; specialized detector system assembly and testing; and consultation and assistance with instrument and field support. The proposal was approved and a three-year research grant titled 'Atmospheric and Spectroscopic Research in the Far Infrared' was awarded. A summary of technical accomplishments attained during the grant period are presented.

  19. Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations

    Treesearch

    Yunjun Yao; Shunlin Liang; Xianglan Li; Shaomin Liu; Jiquan Chen; Xiaotong Zhang; Kun Jia; Bo Jiang; Xianhong Xie; Simon Munier; Meng Liu; Jian Yu; Anders Lindroth; Andrej Varlagin; Antonio Raschi; Asko Noormets; Casimiro Pio; Georg Wohlfahrt; Ge Sun; Jean-Christophe Domec; Leonardo Montagnani; Magnus Lund; Moors Eddy; Peter D. Blanken; Thomas Grunwald; Sebastian Wolf; Vincenzo Magliulo

    2016-01-01

    The latent heat flux (LE) between the terrestrial biosphere and atmosphere is a major driver of the globalhydrological cycle. In this study, we evaluated LE simulations by 45 general circulation models (GCMs)in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by a comparison...

  20. Assessing long-term hydrologic impact of climate change using ensemble approach and comparison with Global Gridded Model-A case study on Goodwater Creek Experimental Watershed

    USDA-ARS?s Scientific Manuscript database

    Potential impacts of climate change on hydrologic components of Goodwater Creek Experimental Watershed were assessed using climate datasets from the Coupled Model Intercomparison Project Phase 5 and Soil and Water Assessment Tool (SWAT). Historical and future ensembles of downscaled precipitation an...

  1. INTERCOMPARISON OF NEAR REAL-TIME MONITORS OF PM2.5 NITRATE AND SULFATE AT THE U.S. ENVIRONMENTAL PROTECTION AGENCY ATLANTA SUPERSITE

    EPA Science Inventory

    Five new instruments for semi-continuous measurements of fine particle (PM2.5) nitrate and sulfate were deployed at the Atlanta Supersite Experiment during an intensive study in August 1999. The instruments measured bulk aerosol chemical composition at rates ranging from every...

  2. In-Depth Analysis of Simulation Engine Codes for Comparison with DOE s Roof Savings Calculator and Measured Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    New, Joshua Ryan; Levinson, Ronnen; Huang, Yu

    The Roof Savings Calculator (RSC) was developed through collaborations among Oak Ridge National Laboratory (ORNL), White Box Technologies, Lawrence Berkeley National Laboratory (LBNL), and the Environmental Protection Agency in the context of a California Energy Commission Public Interest Energy Research project to make cool-color roofing materials a market reality. The RSC website and a simulation engine validated against demonstration homes were developed to replace the liberal DOE Cool Roof Calculator and the conservative EPA Energy Star Roofing Calculator, which reported different roof savings estimates. A preliminary analysis arrived at a tentative explanation for why RSC results differed from previous LBNLmore » studies and provided guidance for future analysis in the comparison of four simulation programs (doe2attic, DOE-2.1E, EnergyPlus, and MicroPas), including heat exchange between the attic surfaces (principally the roof and ceiling) and the resulting heat flows through the ceiling to the building below. The results were consolidated in an ORNL technical report, ORNL/TM-2013/501. This report is an in-depth inter-comparison of four programs with detailed measured data from an experimental facility operated by ORNL in South Carolina in which different segments of the attic had different roof and attic systems.« less

  3. The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB V1.0) Contribution to CMIP6

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Teichmann, Claas; Arnell, Nigel W.; Carter, Timothy R.; Ebi, Kristie L.; Frieler, Katja; Goodess, Clare M.; Hewitson, Bruce; Horton, Radley; Kovats, R. Sari; hide

    2016-01-01

    This paper describes the motivation for the creation of the Vulnerability, Impacts, Adaptation and Climate Services (VIACS) Advisory Board for the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), its initial activities, and its plans to serve as a bridge between climate change applications experts and climate modelers. The climate change application community comprises researchers and other specialists who use climate information (alongside socioeconomic and other environmental information) to analyze vulnerability, impacts, and adaptation of natural systems and society in relation to past, ongoing, and projected future climate change. Much of this activity is directed toward the co-development of information needed by decisionmakers for managing projected risks. CMIP6 provides a unique opportunity to facilitate a two-way dialog between climate modelers and VIACS experts who are looking to apply CMIP6 results for a wide array of research and climate services objectives. The VIACS Advisory Board convenes leaders of major impact sectors, international programs, and climate services to solicit community feedback that increases the applications relevance of the CMIP6-Endorsed Model Intercomparison Projects (MIPs). As an illustration of its potential, the VIACS community provided CMIP6 leadership with a list of prioritized climate model variables and MIP experiments of the greatest interest to the climate model applications community, indicating the applicability and societal relevance of climate model simulation outputs. The VIACS Advisory Board also recommended an impacts version of Obs4MIPs (observational datasets) and indicated user needs for the gridding and processing of model output.

  4. An inter-comparison of surface energy flux measurement systems used during FIFE, 1987

    NASA Technical Reports Server (NTRS)

    Nie, D.; Kanemasu, E. T.; Fritschen, L. J.; Weaver, H.; Smith, E. A.; Verma, S. B.; Field, R. T.; Kustas, W.; Stewart, J. B.

    1990-01-01

    During the first International Satellite Land Surface Climatology Program Field Experiment (FIFE-87), surface energy fluxes were measured at 22 flux sites by nine groups of scientists using different measuring systems. A rover Bowen ratio station was taken to nearly all the flux stations to serve as a reference for estimating the instrument related differences. The rover system was installed within a few meters from the host instrument of a site. Net radiation, Bowen ratio, and latent heat fluxes were compared between the rover and the host for the stations visited. Linear regression analysis was used to examine the relationship between rover measurements and host measurements. These inter-comparisons are needed to examine the influence of instrumentation on measurement uncertainty. Highly significant effects of instrument type were detected from these comparisons. Instruments of the same type showed average differences of less than 5 percent for net radiation, 10 percent for Bowen ratio, and 6 percent for latent heat flux. The corresponding average differences for different types of instruments can be up to 10, 30, and 20 percent respectively. The Didcot net radiometer gave higher net radiation while the Swissteco type showed lower values, as compared to the corrected REBS model. The 4-way components methed and the Thornswaite type give similar values to the REBS. The SERBS type Bowen ratio systems exhibit slightly lower Bowen ratios and thus higher latent heat fluxes, compared to the AZET systems. Eddy correlation systems showed slightly lower latent heat flux in comparison to the Bowen ratio systems.

  5. Quality assessment concept of the World Data Center for Climate and its application to CMIP5 data

    NASA Astrophysics Data System (ADS)

    Stockhause, M.; Höck, H.; Toussaint, F.; Lautenschlager, M.

    2012-08-01

    The preservation of data in a high state of quality which is suitable for interdisciplinary use is one of the most pressing and challenging current issues in long-term archiving. For high volume data such as climate model data, the data and data replica are no longer stored centrally but distributed over several local data repositories, e.g. the data of the Climate Model Intercomparison Project Phase 5 (CMIP5). The most important part of the data is to be archived, assigned a DOI, and published according to the World Data Center for Climate's (WDCC) application of the DataCite regulations. The integrated part of WDCC's data publication process, the data quality assessment, was adapted to the requirements of a federated data infrastructure. A concept of a distributed and federated quality assessment procedure was developed, in which the workload and responsibility for quality control is shared between the three primary CMIP5 data centers: Program for Climate Model Diagnosis and Intercomparison (PCMDI), British Atmospheric Data Centre (BADC), and WDCC. This distributed quality control concept, its pilot implementation for CMIP5, and first experiences are presented. The distributed quality control approach is capable of identifying data inconsistencies and to make quality results immediately available for data creators, data users and data infrastructure managers. Continuous publication of new data versions and slow data replication prevents the quality control from check completion. This together with ongoing developments of the data and metadata infrastructure requires adaptations in code and concept of the distributed quality control approach.

  6. The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6

    NASA Astrophysics Data System (ADS)

    Ruane, Alex C.; Teichmann, Claas; Arnell, Nigel W.; Carter, Timothy R.; Ebi, Kristie L.; Frieler, Katja; Goodess, Clare M.; Hewitson, Bruce; Horton, Radley; Sari Kovats, R.; Lotze, Heike K.; Mearns, Linda O.; Navarra, Antonio; Ojima, Dennis S.; Riahi, Keywan; Rosenzweig, Cynthia; Themessl, Matthias; Vincent, Katharine

    2016-09-01

    This paper describes the motivation for the creation of the Vulnerability, Impacts, Adaptation and Climate Services (VIACS) Advisory Board for the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), its initial activities, and its plans to serve as a bridge between climate change applications experts and climate modelers. The climate change application community comprises researchers and other specialists who use climate information (alongside socioeconomic and other environmental information) to analyze vulnerability, impacts, and adaptation of natural systems and society in relation to past, ongoing, and projected future climate change. Much of this activity is directed toward the co-development of information needed by decision-makers for managing projected risks. CMIP6 provides a unique opportunity to facilitate a two-way dialog between climate modelers and VIACS experts who are looking to apply CMIP6 results for a wide array of research and climate services objectives. The VIACS Advisory Board convenes leaders of major impact sectors, international programs, and climate services to solicit community feedback that increases the applications relevance of the CMIP6-Endorsed Model Intercomparison Projects (MIPs). As an illustration of its potential, the VIACS community provided CMIP6 leadership with a list of prioritized climate model variables and MIP experiments of the greatest interest to the climate model applications community, indicating the applicability and societal relevance of climate model simulation outputs. The VIACS Advisory Board also recommended an impacts version of Obs4MIPs and indicated user needs for the gridding and processing of model output.

  7. The Latest SORCE Solar Spectral Irradiance Data Release: Inter-Comparison and a First Look at TSIS SIM Measurement.

    NASA Astrophysics Data System (ADS)

    Beland, S.; Sandoval, L.; Vanier, B.; Elliott, J.; Harder, J. W.; Snow, M. A.; Woods, T. N.; Richard, E. C.; Pilewskie, P.

    2017-12-01

    The Spectral Irradiance Monitor (SIM), the SOLar STellar Irradiance Comparison Experiment (SOLSTICE), and the XUV Photometer System (XPS) instruments on board the Solar Radiation and Climate Experiment (SORCE) mission have been taking daily Solar spectral irradiance (SSI) measurements since April 2003. We present the latest data releases from these instruments, describing the improvements in the new datasets and the trends measured during Solar cycles 23 and 24. An inter-comparison of the SSI over the overlapping wavelengths for SIM and SOLSTICE is presented as well as, if the data is available, a comparison with the first light measurements from TSIS-SIM.

  8. NASA Giovanni Portals for NLDAS/GLDAS Online Visualization, Analysis, and Intercomparison

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, William L.; Vollmer, Bruce; Mocko, David M.; Beaudoing, Hiroko Kato; Rodell, Matthew

    2011-01-01

    The North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS) are generating a series of land surface forcing (e.g., precipitation, surface meteorology, and radiation), state (e.g., soil moisture and temperature, and snow), and flux (e.g., evaporation and sensible heat flux) products, simulated by several land surface models. To date, NLDAS and GLDAS have generated more than 30 (1979 - present) and 60 (1948 - present) years of data, respectively. To further facilitate data accessibility and utilization, three new portals in the NASA Giovanni system have been made available for NLDAS and GLDAS online visualization, analysis, and intercomparison.

  9. Ozone profile intercomparison based on simultaneous observations between 20 and 40 km

    NASA Technical Reports Server (NTRS)

    Aimedieu, P.; Krueger, A. J.; Robbins, D. E.; Simon, P. C.

    1983-01-01

    The vertical distribution of stratospheric ozone has been simultaneously measured by means of five different instruments carried on the same balloon payload. The launches were performed from Gap during the intercomparison campaign conducted in June 1981 in southern France. Data obtained between altitudes of 20 and 40 km are compared and discussed. Vertical profiles deduced from Electrochemical Concentration Cell sondes launched from the same location by small balloons and from short Umkehr measurements made at Mt Chiran (France) are also included in this comparison. Systematic differences of the order of 20 percent between ozone profiles deduced from solar u.v. absorption and in situ techniques are found.

  10. Impact of Spatial Scales on the Intercomparison of Climate Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wei; Steptoe, Michael; Chang, Zheng

    2017-01-01

    Scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment, but intercomparison and similarity analysis of different climate scenarios based on multiple simulation runs remain challenging. Although spatial heterogeneity plays a key role in modeling climate and human systems, little research has been performed to understand the impact of spatial variations and scales on similarity analysis of climate scenarios. To address this issue, the authors developed a geovisual analytics framework that lets users perform similarity analysis of climate scenarios from the Global Change Assessment Model (GCAM) using a hierarchicalmore » clustering approach.« less

  11. The Agricultural Model Intercomparison and Improvement Project: Phase I Activities by a Global Community of Science. Chapter 1

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Jones, James W.; Hatfield, Jerry L.; Antle, John M.; Ruane, Alexander C.; Mutter, Carolyn Z.

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) was founded in 2010. Its mission is to improve substantially the characterization of world food security as affected by climate variability and change, and to enhance adaptation capacity in both developing and developed countries. The objectives of AgMIP are to: Incorporate state-of-the-art climate, crop/livestock, and agricultural economic model improvements into coordinated multi-model regional and global assessments of future climate impacts and adaptation and other key aspects of the food system. Utilize multiple models, scenarios, locations, crops/livestock, and participants to explore uncertainty and the impact of data and methodological choices. Collaborate with regional experts in agronomy, animal sciences, economics, and climate to build a strong basis for model applications, addressing key climate related questions and sustainable intensification farming systems. Improve scientific and adaptive capacity in modeling for major agricultural regions in the developing and developed world, with a focus on vulnerable regions. Improve agricultural data and enhance data-sharing based on their intercomparison and evaluation using best scientific practices. Develop modeling frameworks to identify and evaluate promising adaptation technologies and policies and to prioritize strategies.

  12. Constraints and potentials of future irrigation water availability on agricultural production under climate change.

    PubMed

    Elliott, Joshua; Deryng, Delphine; Müller, Christoph; Frieler, Katja; Konzmann, Markus; Gerten, Dieter; Glotter, Michael; Flörke, Martina; Wada, Yoshihide; Best, Neil; Eisner, Stephanie; Fekete, Balázs M; Folberth, Christian; Foster, Ian; Gosling, Simon N; Haddeland, Ingjerd; Khabarov, Nikolay; Ludwig, Fulco; Masaki, Yoshimitsu; Olin, Stefan; Rosenzweig, Cynthia; Ruane, Alex C; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Wisser, Dominik

    2014-03-04

    We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.

  13. Airborne intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Torres, Arnold L.; Davis, Douglas D.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during missions flown in the fall of 1983 and spring of 1984. Instruments intercompared included a laser-induced fluorescence (LIF) system and two chemiluminescence instruments (CL). NO mixing ratios from below 5 pptv (parts per trillion by volume) to greater than 100 pptv were reported, with the majority less than 20 pptv. Good correlation was observed between the measurements reported by the CL and LIF techniques. The general level of agreement observed for the ensemble of measurements obtained during the two missions provides the basis from which one can conclude that equally 'valid' measurements of background levels of NO can be expected from either CL or LIF instruments. At the same time the periods of disagreement that were observed between the CL and LIF instruments as well as between the two CL instruments highlight the difficulty of obtaining reliable measurements with NO mixing ratios in the 5-20 pptv range and emphasize the vigilance that should be maintained in future NO measurements.

  14. Economic impacts of climate change on agriculture: the AgMIP approach

    NASA Astrophysics Data System (ADS)

    Delincé, Jacques; Ciaian, Pavel; Witzke, Heinz-Peter

    2015-01-01

    The current paper investigates the long-term global impacts on crop productivity under different climate scenarios using the AgMIP approach (Agricultural Model Intercomparison and Improvement Project). The paper provides horizontal model intercomparison from 11 economic models as well as a more detailed analysis of the simulated effects from the Common Agricultural Policy Regionalized Impact (CAPRI) model to systematically compare its performance with other AgMIP models and specifically for the Chinese agriculture. CAPRI is a comparative static partial equilibrium model extensively used for medium and long-term economic and environmental policy impact applications. The results indicate that, at the global level, the climate change will cause an agricultural productivity decrease (between -2% and -15% by 2050), a food price increase (between 1.3% and 56%) and an expansion of cultivated area (between 1% and 4%) by 2050. The results for China indicate that the climate change effects tend to be smaller than the global impacts. The CAPRI-simulated effects are, in general, close to the median across all AgMIP models. Model intercomparison analyses reveal consistency in terms of direction of change to climate change but relatively strong heterogeneity in the magnitude of the effects between models.

  15. Long History of IAM Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.

    2015-04-23

    Correspondence to editor: We agree with the editors that the assumptions behind models of all types, including integrated assessment models (IAMs), should be as transparent as possible. The editors were in error, however, when they implied that the IAM community is just “now emulating the efforts of climate researchers by instigating their own model inter-comparison projects (MIPs).” In fact, model comparisons for integrated assessment and climate models followed a remarkably similar trajectory. Early General Circulation Model (GCM) comparison efforts, evolved to the first Atmospheric Model Inter-comparison Project (AMIP), which was initiated in the early 1990s. Atmospheric models evolved to coupledmore » atmosphere-ocean models (AOGCMs) and results from the first Coupled Model Inter-Comparison Project (CMIP1) become available about a decade later. Results of first energy model comparison exercise, conducted under the auspices of the Stanford Energy Modeling Forum, were published in 1977. A summary of the first comparison focused on climate change was published in 1993. As energy models were coupled to simple economic and climate models to form IAMs, the first comparison exercise for IAMs (EMF-14) was initiated in 1994, and IAM comparison exercises have been on-going since this time.« less

  16. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results

    DOE PAGES

    Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; ...

    2015-10-27

    We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more long wave radiation to escape to space. We discuss experiment designs, as well as the rationale formore » those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. In conclusion, this is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.« less

  17. Models and Measurements Intercomparison 2

    NASA Technical Reports Server (NTRS)

    Park, Jae H. (Editor); Ko, Malcolm K. W. (Editor); Jackman, Charles H. (Editor); Plumb, R. Alan (Editor); Kaye, Jack A. (Editor); Sage, Karen H. (Editor)

    1999-01-01

    Models and Measurement Intercomparison II (MM II) summarizes the intercomparison of results from model simulations and observations of stratospheric species. Representatives from twenty-three modeling groups using twenty-nine models participated in these MM II exercises between 1996 and 1999. Twelve of the models were two- dimensional zonal-mean models while seventeen were three-dimensional models. This was an international effort as seven were from outside the United States. Six transport experiments and five chemistry experiments were designed for various models. Models participating in the transport experiments performed simulations of chemically inert tracers providing diagnostics for transport. The chemistry experiments involved simulating the distributions of chemically active trace cases including ozone. The model run conditions for dynamics and chemistry were prescribed in order to minimize the factors that caused differences in the models. The report includes a critical review of the results by the participants and a discussion of the causes of differences between modeled and measured results as well as between results from different models, A sizable effort went into preparation of the database of the observations. This included a new climatology for ozone. The report should help in evaluating the results from various predictive models for assessing humankind perturbations of the stratosphere.

  18. Criticality accident dosimetry systems: an international intercomparison at the SILENE reactor in 2002.

    PubMed

    Médioni, R; Asselineau, B; Verrey, B; Trompier, F; Itié, C; Texier, C; Muller, H; Pelcot, G; Clairand, I; Jacquet, X; Pochat, J L

    2004-01-01

    In criticality accident dosimetry and more generally for high dose measurements, special techniques are used to measure separately the gamma ray and neutron components of the dose. To improve these techniques and to check their dosimetry systems (physical and/or biological), a total of 60 laboratories from 29 countries (America, Europe, Asia) participated in an international intercomparaison, which took place in France from 9 to 21 June 2002, at the SILENE reactor in Valduc and at a pure gamma source in Fontenay-aux-Roses. This intercomparison was jointly organised by the IRSN and the CEA with the help of the NEA/OCDE and was partly supported by the European Communities. This paper describes the aim of this intercomparison, the techniques used by the participants and the two radiation sources and their characteristics. The experimental arrangements of the dosemeters for the irradiations in free air or on phantoms are given. Then the dosimetric quantities measured and reported by the participants are summarised, analysed and compared with the reference values. The present paper concerns only the physical dosimetry and essentially experiments performed on the SILENE facility. The results obtained with the biological dosimetry are published in two other papers of this issue.

  19. Metafitting: Weight optimization for least-squares fitting of PTTI data

    NASA Technical Reports Server (NTRS)

    Douglas, Rob J.; Boulanger, J.-S.

    1995-01-01

    For precise time intercomparisons between a master frequency standard and a slave time scale, we have found it useful to quantitatively compare different fitting strategies by examining the standard uncertainty in time or average frequency. It is particularly useful when designing procedures which use intermittent intercomparisons, with some parameterized fit used to interpolate or extrapolate from the calibrating intercomparisons. We use the term 'metafitting' for the choices that are made before a fitting procedure is operationally adopted. We present methods for calculating the standard uncertainty for general, weighted least-squares fits and a method for optimizing these weights for a general noise model suitable for many PTTI applications. We present the results of the metafitting of procedures for the use of a regular schedule of (hypothetical) high-accuracy frequency calibration of a maser time scale. We have identified a cumulative series of improvements that give a significant reduction of the expected standard uncertainty, compared to the simplest procedure of resetting the maser synthesizer after each calibration. The metafitting improvements presented include the optimum choice of weights for the calibration runs, optimized over a period of a week or 10 days.

  20. The T-REX valley wind intercomparison project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidli, J; Billings, B J; Burton, R

    2008-08-07

    An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the currentmore » state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).« less

  1. Intercomparison of different operational oceanographic forecast products in the CMEMS IBI area

    NASA Astrophysics Data System (ADS)

    Lorente, Pablo; Sotillo, Marcos G.; Dabrowski, Tomasz; Amo-Baladrón, Arancha; Aznar, Roland; De Pascual, Alvaro; Levier, Bruno; Bowyer, Peter; Cossarini, Gianpiero; Salon, Stefano; Tonani, Marina; Alvarez-Fanjul, Enrique

    2017-04-01

    The development of skill assessment software packages and dedicated web applications is a relatively novel theme in operational oceanography. Within the CMEMS IBI-MFC, the quality of IBI (Iberia-Biscay-Ireland) forecast products is assessed by means of NARVAL (North Atlantic Regional VALidation) web-based tool. The validation of IBI against independent in situ and remote-sensing measurements is routinely conducted to evaluate model's veracity and prognostic capabilities. Noticeable efforts are in progress to define meaningful skill scores and statistical metrics to quantitatively assess the quality and reliability of the IBI model solution. Likewise, the IBI-MFC compares the IBI forecast products with other model solutions by setting up specific intercomparison exercises on overlapping areas at diverse timescales. In this context, NARVAL web tool already includes a specific module to evaluate strengths and weaknesses of IBI versus other CMEMS operational ocean forecasting systems (OOFSs). In particular, the IBI physical ocean solution is compared against the CMEMS MED and NWS OOFSs. These CMEMS regional services delivered for the Mediterranean and the North West Shelves include data assimilation schemes in their respective operational chains and generate analogous ocean forecast products to the IBI ones. A number of physical parameters (i.e. sea surface temperature, salinity and current velocities) are evaluated through NARVAL on a daily basis in the overlapping areas existing between these three regional systems. NARVAL is currently being updated in order to extend this intercomparison of ocean model parameters to the biogeochemical solutions provided by the aforementioned OOFSs. More specifically, the simulated chlorophyll concentration is evaluated over several subregions of particular concern by using as benchmark the CMEMS satellite-derived observational products. In addition to this IBI comparison against other regional CMEMS products on overlapping areas, a specific intercomparison between the CMEMS GLOBAL solution and the IBI (regional application dynamically embedded in the former) is conducted in order to check its consistency and ability to outperform the parent model solution. Particular emphasis is placed on the comparison of time-series at specified locations (class-2 metrics). The standardized validation methodology presented here is particularly useful and could encompass the intercomparison of the regional application (IBI) and other nested higher resolution models at coastal/shelf scales to quantify the added value of downscaling in local downstream approaches.

  2. Intercomparison of vertical structure of storms revealed by ground-based (NMQ) and spaceborne radars (CloudSat-CPR and TRMM-PR).

    PubMed

    Fall, Veronica M; Cao, Qing; Hong, Yang

    2013-01-01

    Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.

  3. Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ) and Spaceborne Radars (CloudSat-CPR and TRMM-PR)

    PubMed Central

    Fall, Veronica M.; Hong, Yang

    2013-01-01

    Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts. PMID:24459424

  4. The Cloud Feedback Model Intercomparison Project (CFMIP) Diagnostic Codes Catalogue – metrics, diagnostics and methodologies to evaluate, understand and improve the representation of clouds and cloud feedbacks in climate models

    DOE PAGES

    Tsushima, Yoko; Brient, Florent; Klein, Stephen A.; ...

    2017-11-27

    The CFMIP Diagnostic Codes Catalogue assembles cloud metrics, diagnostics and methodologies, together with programs to diagnose them from general circulation model (GCM) outputs written by various members of the CFMIP community. This aims to facilitate use of the diagnostics by the wider community studying climate and climate change. Here, this paper describes the diagnostics and metrics which are currently in the catalogue, together with examples of their application to model evaluation studies and a summary of some of the insights these diagnostics have provided into the main shortcomings in current GCMs. Analysis of outputs from CFMIP and CMIP6 experiments willmore » also be facilitated by the sharing of diagnostic codes via this catalogue. Any code which implements diagnostics relevant to analysing clouds – including cloud–circulation interactions and the contribution of clouds to estimates of climate sensitivity in models – and which is documented in peer-reviewed studies, can be included in the catalogue. We very much welcome additional contributions to further support community analysis of CMIP6 outputs.« less

  5. CAUSES: Clouds Above the United States and Errors at the Surface

    NASA Astrophysics Data System (ADS)

    Ma, H. Y.; Klein, S. A.; Xie, S.; Morcrette, C. J.; Van Weverberg, K.; Zhang, Y.; Lo, M. H.

    2015-12-01

    The Clouds Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of cloud, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period covers from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)

  6. CAUSES: Clouds Above the United States and Errors at the Surface

    NASA Astrophysics Data System (ADS)

    Ma, H. Y.; Klein, S. A.; Xie, S.; Zhang, Y.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Lo, M. H.

    2014-12-01

    The Clouds Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of cloud, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period covers from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)

  7. The Cloud Feedback Model Intercomparison Project (CFMIP) Diagnostic Codes Catalogue – metrics, diagnostics and methodologies to evaluate, understand and improve the representation of clouds and cloud feedbacks in climate models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsushima, Yoko; Brient, Florent; Klein, Stephen A.

    The CFMIP Diagnostic Codes Catalogue assembles cloud metrics, diagnostics and methodologies, together with programs to diagnose them from general circulation model (GCM) outputs written by various members of the CFMIP community. This aims to facilitate use of the diagnostics by the wider community studying climate and climate change. Here, this paper describes the diagnostics and metrics which are currently in the catalogue, together with examples of their application to model evaluation studies and a summary of some of the insights these diagnostics have provided into the main shortcomings in current GCMs. Analysis of outputs from CFMIP and CMIP6 experiments willmore » also be facilitated by the sharing of diagnostic codes via this catalogue. Any code which implements diagnostics relevant to analysing clouds – including cloud–circulation interactions and the contribution of clouds to estimates of climate sensitivity in models – and which is documented in peer-reviewed studies, can be included in the catalogue. We very much welcome additional contributions to further support community analysis of CMIP6 outputs.« less

  8. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies

    NASA Technical Reports Server (NTRS)

    Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.; hide

    2012-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with rising temperatures. Wheat model simulations with midcentury climate scenarios project a slight decline in absolute yields that is more sensitive to selection of crop model than to global climate model, emissions scenario, or climate scenario downscaling method. A comparison of regional and national-scale economic simulations finds a large sensitivity of projected yield changes to the simulations' resolved scales. Finally, a global economic model intercomparison example demonstrates that improvements in the understanding of agriculture futures arise from integration of the range of uncertainty in crop, climate, and economic modeling results in multi-model assessments.

  9. ACTRIS ACSM intercomparison - Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers

    NASA Astrophysics Data System (ADS)

    Fröhlich, R.; Crenn, V.; Setyan, A.; Belis, C. A.; Canonaco, F.; Favez, O.; Riffault, V.; Slowik, J. G.; Aas, W.; Aijälä, M.; Alastuey, A.; Artiñano, B.; Bonnaire, N.; Bozzetti, C.; Bressi, M.; Carbone, C.; Coz, E.; Croteau, P. L.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Jayne, J. T.; Lunder, C. R.; Minguillón, M. C.; Močnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petralia, E.; Poulain, L.; Priestman, M.; Ripoll, A.; Sarda-Estève, R.; Wiedensohler, A.; Baltensperger, U.; Sciare, J.; Prévôt, A. S. H.

    2015-02-01

    Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSM) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about three weeks in November and December 2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of m/z 44 to the total organics (f44), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). Individual application and optimisation of the ME-2 boundary conditions (profile constraints) are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative SD from the mean between 13.7 and 22.7% of the source's average mass contribution depending on the factors (HOA: 14.3 ± 2.2%, COA: 15.0 ± 3.4%, OOA: 41.5 ± 5.7%, BBOA: 29.3 ± 5.0%). Factors which tend to be subject to minor factor mixing (in this case COA) have higher relative uncertainties than factors which are recognised more readily like the OOA. Averaged over all factors and instruments the relative first SD from the mean of a source extracted with ME-2 was 17.2%.

  10. C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO 2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO 2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This study documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.« less

  11. C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6

    DOE PAGES

    Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; ...

    2016-08-25

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO 2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO 2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This study documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.« less

  12. Real-time analysis of δ13C- and δD-CH4 in ambient air with laser spectroscopy: Method development and intercomparison

    NASA Astrophysics Data System (ADS)

    Harris, E. J.; Eyer, S.; Mohn, J.; Röckmann, T.; Popa, E.; Lowry, D.; Nisbet, E. G.; Fisher, R. E.; Brennwald, M. S.; Fischer, H.; Emmenegger, L.; Tuzson, B.; Zellweger, C.

    2015-12-01

    Methane (CH4) is the second most important anthropogenically emitted greenhouse gas after carbon dioxide (CO2). Its mole fraction has increased from around 722 ppb in pre-industrial times to 1824 ppb in 2013 and the anthropogenic fraction is estimated to be 60 % of the total emissions. A promising approach to improve the understanding of the CH4 budget is the use of isotopologues to distinguish between various CH4 source processes. In the presented study in situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called TRace gas EXtractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, mmole/mole) methane is 0.1‰ and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. [1] Based on replicate measurements of compressed air during a two-week intercomparison campaign, the repeatability of the TREX-QCLAS was determined to be 0.19 ‰ and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to IRMS based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers (Figure). Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX-QCLAS data and bag/flask sampling-IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and δD-CH4, respectively. Thus, the intercomparison also reveals the need for reference air samples with accurately determined isotopic composition of CH4 to further improve the interlaboratory compatibility. [1] References: [1] S. Eyer et al. (2015) submitted to AMTD

  13. An intercomparison of results from ferrous sulphate and photolytic converter techniques for measurements of NO(x) made during the NASA GTE/CITE 1 aircraft program

    NASA Technical Reports Server (NTRS)

    Ridley, B. A.; Carroll, M. A.; Torres, A. L.; Condon, E. P.; Sachse, G. W.; Hill, G. F.; Gregory, G. L.

    1988-01-01

    Two techniques designed for measurements of NO(x (NO + NO2) were intercompared during aircraft flights made in the spring of 1984 in the middle free troposphere over the eastern Pacific Ocean and southwestern U.S. One NO chemiluminescence instrument was equipped with a ferrous sulphate converter, another with a photolytic converter. The ferrous sulphate-equipped instrument was apparently much less specific for NO2. It registered levels about three times larger than the photolytic converter and gave NO2/NO ratios that were much larger than photochemical calculations would indicate as reasonable. Additionally, the results imply that active NO(x) was only 10-20 percent of the total odd nitrogen in the middle free troposphere.

  14. The Multispectral Atmospheric Mapping Sensor (MAMS): Instrument description, calibration and data quality

    NASA Technical Reports Server (NTRS)

    Jedlovec, G. J.; Menzel, W. P.; Atkinson, R.; Wilson, G. S.; Arvesen, J.

    1986-01-01

    A new instrument has been developed to produce high resolution imagery in eight visible and three infared spectral bands from an aircraft platform. An analysis of the data and calibration procedures has shown that useful data can be obtained at up to 50 m resolution with a 2.5 milliradian aperture. Single sample standard errors for the measurements are 0.5, 0.2, and 0.9 K for the 6.5, 11.1, and 12.3 micron spectral bands, respectively. These errors are halved when a 5.0 milliradian aperture is used to obtain 100 m resolution data. Intercomparisons with VAS and AVHRR measurements show good relative calibration. MAMS development is part of a larger program to develop multispectral Earth imaging capabilities from space platforms during the 1990s.

  15. Cloud-resolving model intercomparison of an MC3E squall line case: Part I-Convective updrafts: CRM Intercomparison of a Squall Line

    DOE PAGES

    Fan, Jiwen; Han, Bin; Varble, Adam; ...

    2017-09-06

    An intercomparison study of a midlatitude mesoscale squall line is performed using the Weather Research and Forecasting (WRF) model at 1 km horizontal grid spacing with eight different cloud microphysics schemes to investigate processes that contribute to the large variability in simulated cloud and precipitation properties. All simulations tend to produce a wider area of high radar reflectivity (Z e > 45 dBZ) than observed but a much narrower stratiform area. Furthermore, the magnitude of the virtual potential temperature drop associated with the gust front passage is similar in simulations and observations, while the pressure rise and peak wind speedmore » are smaller than observed, possibly suggesting that simulated cold pools are shallower than observed. Most of the microphysics schemes overestimate vertical velocity and Z e in convective updrafts as compared with observational retrievals. Simulated precipitation rates and updraft velocities have significant variability across the eight schemes, even in this strongly dynamically driven system. Differences in simulated updraft velocity correlate well with differences in simulated buoyancy and low-level vertical perturbation pressure gradient, which appears related to cold pool intensity that is controlled by the evaporation rate. Simulations with stronger updrafts have a more optimal convective state, with stronger cold pools, ambient low-level vertical wind shear, and rear-inflow jets. We found that updraft velocity variability between schemes is mainly controlled by differences in simulated ice-related processes, which impact the overall latent heating rate, whereas surface rainfall variability increases in no-ice simulations mainly because of scheme differences in collision-coalescence parameterizations.« less

  16. Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation. 5; Chapter

    NASA Technical Reports Server (NTRS)

    Valdivia, Roberto O.; Antle, John M.; Rosenzweig, Cynthia; Ruane, Alexander C.; Vervoort, Joost; Ashfaq, Muhammad; Hathie, Ibrahima; Tui, Sabine Homann-Kee; Mulwa, Richard; Nhemachena, Charles; hide

    2015-01-01

    The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment where precise prediction is not possible, and also that these scenarios need to be logically consistent across local, regional, and global scales. For global climate models, representative concentration pathways (RCPs) have been developed that provide a range of time-series of atmospheric greenhouse-gas concentrations into the future. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts have also been developed, with leadership from the Integrated Assessment Modeling Consortium (IAMC).This chapter presents concepts and methods for development of regional representative agricultural pathways (RAOs) and scenarios that can be used for agricultural model intercomparison, improvement, and impact assessment in a manner consistent with the new global pathways and scenarios. The development of agriculture-specific pathways and scenarios is motivated by the need for a protocol-based approach to climate impact, vulnerability, and adaptation assessment. Until now, the various global and regional models used for agricultural-impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation, public availability, and consistency across disciplines. These practices have reduced the credibility of assessments, and also hampered the advancement of the science through model intercomparison, improvement, and synthesis of model results across studies. The recognition of the need for better coordination among the agricultural modeling community, including the development of standard reference scenarios with adequate agriculture-specific detail led to the creation of the Agricultural Model Intercomparison and Improvement Project (AgMIP) in 2010. The development of RAPs is one of the cross-cutting themes in AgMIP's work plan, and has been the subject of ongoing work by AgMIP since its creation.

  17. ISI-MIP: The Inter-Sectoral Impact Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Huber, V.; Dahlemann, S.; Frieler, K.; Piontek, F.; Schewe, J.; Serdeczny, O.; Warszawski, L.

    2013-12-01

    The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) aims to synthesize the state-of-the-art knowledge of climate change impacts at different levels of global warming. The project's experimental design is formulated to distinguish the uncertainty introduced by the impact models themselves, from the inherent uncertainty in the climate projections and the variety of plausible socio-economic futures. The unique cross-sectoral scope of the project provides the opportunity to study cascading effects of impacts in interacting sectors and to identify regional 'hot spots' where multiple sectors experience extreme impacts. Another emphasis lies on the development of novel metrics to describe societal impacts of a warmer climate. We briefly outline the methodological framework, and then present selected results of the first, fast-tracked phase of ISI-MIP. The fast track brought together 35 global impact models internationally, spanning five sectors across human society and the natural world (agriculture, water, natural ecosystems, health and coastal infrastructure), and using the latest generation of global climate simulations (RCP projections from the CMIP5 archive) and socioeconomic drivers provided within the SSP process. We also introduce the second phase of the project, which will enlarge the scope of ISI-MIP by encompassing further impact sectors (e.g., forestry, fisheries, permafrost) and regional modeling approaches. The focus for the next round of simulations will be the validation and improvement of models based on historical observations and the analysis of variability and extreme events. Last but not least, we discuss the longer-term objective of ISI-MIP to initiate a coordinated, ongoing impact assessment process, driven by the entire impact community and in parallel with well-established climate model intercomparisons (CMIP).

  18. The Joint Experiment for Crop Assessment and Monitoring (JECAM): Update on Multisite Inter-comparison Experiments

    NASA Astrophysics Data System (ADS)

    Jarvis, I.; Gilliams, S. J. B.; Defourny, P.

    2016-12-01

    Globally there is significant convergence on agricultural monitoring research questions. The focus of interest usually revolves around crop type, crop area estimation and near real time crop condition and yield forecasting. Notwithstanding this convergence, agricultural systems differ significantly throughout the world, reflecting the diversity of ecosystems they are located in. Consequently, a global system of systems for operational monitoring must be based on multiple approaches. Research is required to compare and assess these approaches to identify which are most appropriate for any given location. To this end the Joint Experiments for Crop Assessment and Monitoring (JECAM) was established in 2009 to as a research platform to allow the global agricultural monitoring community to work towards a set of best practices and recommendations for using earth observation data to map, monitor and report on agricultural productivity globally. The JECAM initiative brings together researchers from a large number of globally distributed, well monitored agricultural test sites that cover a range of crop types, cropping systems and climate regimes. The results of JECAM optical inter-comparison research taking place in the Stimulating Innovation for Global Monitoring of Agriculture (SIGMA) project and the Sentinel-2 for Agriculture project will be discussed. The presentation will also highlight upcoming work on a Synthetic Aperture Radar (SAR) inter-comparison study. The outcome of these projects will result in a set of best practices that cover the range of remote sensing monitoring and reporting needs, including satellite data acquisition, pre-processing techniques, information retrieval and ground data validation. These outcomes provide the R&D foundation for GEOGLAM and will help to inform the development of the GEOGLAM system of systems for global agricultural monitoring.

  19. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design

    NASA Astrophysics Data System (ADS)

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew; Salzmann, Ulrich

    2016-03-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, as well as their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilized for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilize state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land-ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales, and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.

  20. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: Scientific Objectives and Experimental Design

    NASA Technical Reports Server (NTRS)

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew; hide

    2016-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, as well as their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilized for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data-model comparison. Therefore, our strategy for Phase 2 is to utilize state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land-ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales, and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.

  1. Quantification of precipitation measurement discontinuity induced by wind shields on national gauges

    USGS Publications Warehouse

    Yang, Daqing; Goodison, Barry E.; Metcalfe, John R.; Louie, Paul; Leavesley, George H.; Emerson, Douglas G.; Hanson, Clayton L.; Golubev, Valentin S.; Elomaa, Esko; Gunther, Thilo; Pangburn, Timothy; Kang, Ersi; Milkovic, Janja

    1999-01-01

    Various combinations of wind shields and national precipitation gauges commonly used in countries of the northern hemisphere have been studied in this paper, using the combined intercomparison data collected at 14 sites during the World Meteorological Organization's (WMO) Solid Precipitation Measurement Intercomparison Project. The results show that wind shields improve gauge catch of precipitation, particularly for snow. Shielded gauges, on average, measure 20–70% more snow than unshielded gauges. Without a doubt, the use of wind shields on precipitation gauges has introduced a significant discontinuity into precipitation records, particularly in cold and windy regions. This discontinuity is not constant and it varies with wind speed, temperature, and precipitation type. Adjustment for this discontinuity is necessary to obtain homogenous precipitation data for climate change and hydrological studies. The relation of the relative catch ratio (RCR, ratio of measurements of shielded gauge to unshielded gauge) versus wind speed and temperature has been developed for Alter and Tretyakov wind shields. Strong linear relations between measurements of shielded gauge and unshielded gauge have also been found for different precipitation types. The linear relation does not fully take into account the varying effect of wind and temperature on gauge catch. Overadjustment by the linear relation may occur at those sites with lower wind speeds, and underadjustment may occur at those stations with higher wind speeds. The RCR technique is anticipated to be more applicable in a wide range of climate conditions. The RCR technique and the linear relation have been tested at selected WMO intercomparison stations, and reasonable agreement between the adjusted amounts and the shielded gauge measurements was obtained at most of the sites. Test application of the developed methodologies to a regional or national network is therefore recommended to further evaluate their applicability in different climate conditions. Significant increase of precipitation is expected due to the adjustment particularly in high latitudes and other cold regions. This will have a meaningful impact on climate variation and change analyses.

  2. Model Intercomparison of CCN-Limited Arctic Clouds During ASCOS

    NASA Astrophysics Data System (ADS)

    Stevens, Robin; Dearden, Chris; Dimetrelos, Antonios; Eirund, Gesa; Possner, Anna; Raatikainen, Tomi; Loewe, Katharina; Hill, Adrian; Shipway, Ben; Connolly, Paul; Ekman, Annica; Hoose, Corinna; Laaksonen, Ari; de Leeuw, Gerrit; Kolmonen, Pekka; Saponaro, Giulia; Field, Paul; Carlsaw, Ken

    2017-04-01

    Future decreases in Arctic sea ice are expected to increase fluxes of aerosol and precursor gases from the open ocean surface within the Arctic. The resulting increase in cloud condensation nuclei (CCN) concentrations would be expected to result in increased cloud albedo (Struthers et al, 2011), leading to potentially large changes in radiative forcings. However, Browse et al. (2014) have shown that these increases in condensable material could also result in the growth of existing particles to sizes where they are more efficiently removed by wet deposition in drizzling stratocumulus clouds, ultimately decreasing CCN concentrations in the high Arctic. Their study was limited in that it did not simulate alterations of dynamics or cloud properties due to either changes in heat and moisture fluxes following sea­-ice loss or changing aerosol concentrations. Taken together, these results show that significant uncertainties remain in trying to quantify aerosol­-cloud processes in the Arctic system. The current representation of these processes in global climate models is most likely insufficient to realistically simulate long­-term changes. In order to better understand the microphysical processes currently governing Arctic clouds, we perform a model intercomparison of summertime high Arctic (>80N) clouds observed during the 2008 ASCOS campaign. The intercomparison includes results from three large eddy simulation models (UCLALES-SALSA, COSMO-LES, and MIMICA) and three numerical weather prediction models (COSMO-NWP, WRF, and UM-CASIM). The results of these experiments will be used as a basis for sensitivity studies on the impact of sea-ice loss on Arctic clouds through changes in aerosol and precursor emissions as well as changes in latent and sensible heat fluxes. Browse, J., et al., Atmos. Chem. Phys., 14(14), 7543-7557, doi:10.5194/acp-14-7543-2014, 2014. Struthers, H., et al., Atmos. Chem. Phys., 11(7), 3459-3477, doi:10.5194/acp-11-3459-2011, 2011.

  3. The Validation of Cloud Retrieval Algorithms Using Synthetic Datasets

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Fischer, Jurgen; Linstrot, Rasmus; Meirink, Jan Fokke; Poulsen, Caroline; Preusker, Rene; Siddans, Richard; Thomas, Gareth; Arnold, Chris; Grainger, Roy; Lilli, Luca; Rozanov, Vladimir

    2012-11-01

    We have performed the inter-comparison study of cloud property retrievals using algorithms initially developed for AATSR (ORAC, RAL-Oxford University), AVHRR and SEVIRI (CPP, KNMI), SCIAMACHY/GOME (SACURA, University of Bremen), and MERIS (ANNA, Free University of Berlin). The accuracy of retrievals of cloud optical thickness (COT), effective radius (ER) of droplets, and cloud top height (CTH) is discussed.

  4. Comparative Study Of Resonator Optics For Lidar Applications

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.

    1992-01-01

    Report discusses overall transmit/receive performances of laser-radar transceivers. Gaussian case and hard-edged case selected for comparison because of their practical importance. Intercomparison shows that for multi-joule-output pulsed CO2 lasers, Gaussian profiled optics offers little improvement over hard-edged option, while greater hardiness and superior energy extraction capability of latter constitutes strong argument in favor of its application.

  5. Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Barrie, Leonard A.; Toom-Sauntry, Desiree

    2010-12-01

    Oxalate, the anion of oxalic acid, is one of the most abundant measurable organic species in atmospheric aerosols. Traditionally, this bifunctional species has been measured by gas chromatography (GC) after derivatization to butyl ester and by ion chromatography (IC) without derivatization. However, there are few published comparisons of the two techniques. Here, we report the results of an intercomparison study for the measurement of oxalic acid in Arctic aerosols (<2.5 μm, n = 82) collected in 1992 using GC and IC. The concentrations of oxalic acid by GC ranged from 6.5-59.1 ng m -3 (av. 26.0 ng m -3, median 26.2 ng m -3) whereas those by IC ranged from 6.6-52.1 ng m -3 (av. 26.6 ng m -3, median 25.4 ng m -3). They showed a good correlation ( r = 0.84) with a slope of 0.96. Thus, observations of oxalate obtained by GC employing dibutyl esters are almost equal to those by IC. Because the accuracy of oxalic acid by GC method largely depends on the method used, it is important to strictly examine the recovery in each study.

  6. The CAUSES Model Intercomparison Project: Using hindcast approach to study the U.S. summertime surface warm temperature bias

    NASA Astrophysics Data System (ADS)

    Ma, H. Y.; Klein, S. A.; Xie, S.; Zhang, C.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.

    2016-12-01

    The CAUSES (Clouds Above the United States and Errors at the Surface) is a joint GASS/RGCM/ASR model intercomparison project with an observational focus (data from the U.S. DOE ARM SGP site and other observations). The goal of this project is to evaluate the role of clouds, radiation and precipitation processes in contributing to the surface air temperature bias in the region of the central U.S., which is seen in several weather and climate models. In this project, we use a short-term hindcast approach and examine the error growth due to cloud-associated processes while the large-scale state remains close to observations. The study period is from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign that provides very frequent radiosondes (8 per day) and many extensive cloud and precipitation radar observations. Our preliminary analysis indicates that the warm surface air temperature bias in the mean diurnal cycle of the whole study period is very robust across all the participating models over the ARM SGP site. During the spring season (April-May), the daytime warm bias in most models is mostly due to excessive net surface shortwave flux resulting from insufficient deep convective cloud fraction or too optically thin clouds. The nighttime warm bias is likely due to the excessive downwelling longwave flux warming resulting from the persisting deep clouds. During the summer season (June-August), bias contribution from precipitation bias becomes important. The insufficient seasonal accumulated precipitation from the propagating convective systems originated from the Rockies contributes to lower soil moisture. Such condition drives the land surface to a dry state whereby radiative input can only be balanced by sensible heat loss through an increased surface air temperature. More information about the CAUSES project can be found through the following project webpage (http://portal.nersc.gov/project/capt/CAUSES/). (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-688818)

  7. The SPARC Intercomparison of Middle Atmosphere Climatologies

    NASA Technical Reports Server (NTRS)

    Randel, William; Fleming, Eric; Geller, Marvin; Gelman, Mel; Hamilton, Kevin; Karoly, David; Ortland, Dave; Pawson, Steve; Swinbank, Richard; Udelhofen, Petra

    2003-01-01

    Our current confidence in 'observed' climatological winds and temperatures in the middle atmosphere (over altitudes approx. 10-80 km) is assessed by detailed intercomparisons of contemporary and historic data sets. These data sets include global meteorological analyses and assimilations, climatologies derived from research satellite measurements, and historical reference atmosphere circulation statistics. We also include comparisons with historical rocketsonde wind and temperature data, and with more recent lidar temperature measurements. The comparisons focus on a few basic circulation statistics, such as temperature, zonal wind, and eddy flux statistics. Special attention is focused on tropical winds and temperatures, where large differences exist among separate analyses. Assimilated data sets provide the most realistic tropical variability, but substantial differences exist among current schemes.

  8. LIDAR mapping of ozone-episode dynamics in Paris and intercomparison with spot analyzers Supplementary material available at http://link.springer.de/journals/apb

    NASA Astrophysics Data System (ADS)

    Thomasson, A.; Geffroy, S.; Frejafon, E.; Weidauer, D.; Fabian, R.; Godet, Y.; Nominé, M.; Ménard, T.; Rairoux, P.; Moeller, D.; Wolf, J. P.

    Continuous mapping of an ozone episode in Paris in June 1999 has been performed using a differential absorption lidar system. The 2D ozone concentration vertical maps recorded over 33 h at the Champ de Mars are compiled in a video clip that gives access to local photochemical dynamics with unprecedented precision. The lidar data are compared over the whole period with point monitors located at 0-, 50-, and 300-m altitudes on the Eiffel Tower. Very good agreement is found when spatial resolution, acquisition time, and required concentration accuracy are optimized. Sensitivity to these parameters for successful intercomparison in urban areas is discussed.

  9. An intercomparison of longwave measurements by ERBE radiometers on the NOAA-9 and ERBS satellites

    NASA Technical Reports Server (NTRS)

    House, Frederick B.

    1989-01-01

    Two instrument modules of each satellite on which the Earth Radiation Budget Experiment (ERBE) is orbiting observe components of the earth radiation budget with three different scales of earth view. An intercomparison of longwave measurements by these instruments provides relative information concerning radiometric performance at satellite altitude, techniques of estimating upwelling exitances, and an end-to-end evaluation of the data processing system. Results indicate that the ERBE radiometers are mildly sensitive to varying thermal loads from the spacecraft and/or the earth-space environment. Radiometric variations at the satellite and methods of data interpretation contribute about equally to the uncertainty of radiant exitances from the earth.

  10. Intercomparison of analytical methods for arsenic speciation in human urine.

    PubMed

    Crecelius, E; Yager, J

    1997-06-01

    An intercomparison exercise was conducted for the quantification of arsenic species in spiked human urine. The primary objective of the exercise was to determine the variance among laboratories in the analysis of arsenic species such as inorganic As (As+3 and As+5), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Laboratories that participated had previous experience with arsenic speciation analysis. The results of this interlaboratory comparison are encouraging. There is relatively good agreement on the concentrations of these arsenic species in urine at concentrations that are relevant to research on the metabolism of arsenic in humans and other mammals. Both the accuracy and precision are relatively poor for arsenic concentrations of less than about 5 micrograms/l.

  11. An evaluation of 20th century climate for the Southeastern United States as simulated by Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models

    USGS Publications Warehouse

    David E. Rupp,

    2016-05-05

    The 20th century climate for the Southeastern United States and surrounding areas as simulated by global climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) was evaluated. A suite of statistics that characterize various aspects of the regional climate was calculated from both model simulations and observation-based datasets. CMIP5 global climate models were ranked by their ability to reproduce the observed climate. Differences in the performance of the models between regions of the United States (the Southeastern and Northwestern United States) warrant a regional-scale assessment of CMIP5 models.

  12. Constraints and potentials of future irrigation water availability on agricultural production under climate change

    PubMed Central

    Elliott, Joshua; Deryng, Delphine; Müller, Christoph; Frieler, Katja; Konzmann, Markus; Gerten, Dieter; Glotter, Michael; Flörke, Martina; Wada, Yoshihide; Best, Neil; Eisner, Stephanie; Fekete, Balázs M.; Folberth, Christian; Foster, Ian; Gosling, Simon N.; Haddeland, Ingjerd; Khabarov, Nikolay; Ludwig, Fulco; Masaki, Yoshimitsu; Olin, Stefan; Rosenzweig, Cynthia; Ruane, Alex C.; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Wisser, Dominik

    2014-01-01

    We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400–1,400 Pcal (8–24% of present-day total) when CO2 fertilization effects are accounted for or 1,400–2,600 Pcal (24–43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20–60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600–2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required. PMID:24344283

  13. IPRT polarized radiative transfer model intercomparison project - Phase A

    NASA Astrophysics Data System (ADS)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Korkin, Sergey; Ota, Yoshifumi; Labonnote, Laurent C.; Lyapustin, Alexei; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2015-10-01

    The polarization state of electromagnetic radiation scattered by atmospheric particles such as aerosols, cloud droplets, or ice crystals contains much more information about the optical and microphysical properties than the total intensity alone. For this reason an increasing number of polarimetric observations are performed from space, from the ground and from aircraft. Polarized radiative transfer models are required to interpret and analyse these measurements and to develop retrieval algorithms exploiting polarimetric observations. In the last years a large number of new codes have been developed, mostly for specific applications. Benchmark results are available for specific cases, but not for more sophisticated scenarios including polarized surface reflection and multi-layer atmospheres. The International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to fill this gap. This paper presents the results of the first phase A of the IPRT project which includes ten test cases, from simple setups with only one layer and Rayleigh scattering to rather sophisticated setups with a cloud embedded in a standard atmosphere above an ocean surface. All scenarios in the first phase A of the intercomparison project are for a one-dimensional plane-parallel model geometry. The commonly established benchmark results are available at the IPRT website.

  14. The 1994 North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers

    PubMed Central

    Thompson, Ambler; Early, Edward A.; DeLuisi, John; Disterhoft, Patrick; Wardle, David; Kerr, James; Rives, John; Sun, Yongchen; Lucas, Timothy; Mestechkina, Tanya; Neale, Patrick

    1997-01-01

    Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. To assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks, the first North American Intercomparison of Ultraviolet Monitoring Spectroradiometers was held September 19–29, 1994 at Table Mountain outside Boulder, Colorado, USA. This Intercomparison was coordinated by the National Institute of Standards and Technology and the National Oceanic and Atmospheric Administration (NOAA). Participating agencies were the Environmental Protection Agency, National Science Foundation, Smithsonian Environmental Research Center, and Atmospheric Environment Service, Canada. Instruments were characterized for wavelength accuracy, bandwidth, stray-light rejection, and spectral irradiance responsivity, the latter with a NIST standard lamp calibrated to operate in the horizontal position. The spectral irradiance responsivity was determined once indoors and twice outdoors, and demonstrated that, while the responsivities changed upon moving the instruments, they were relatively stable when the instruments remained outdoors. Synchronized spectral scans of the solar irradiance were performed over several days. Using the spectral irradiance responsivities determined with the NIST standard lamp, and a simple convolution technique to account for the different bandwidths of the instruments, the measured solar irradiances agreed within 5 %. PMID:27805148

  15. LLNL Results from CALIBAN-PROSPERO Nuclear Accident Dosimetry Experiments in September 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobaugh, M. L.; Hickman, D. P.; Wong, C. W.

    2015-05-21

    Lawrence Livermore National Laboratory (LLNL) uses thin neutron activation foils, sulfur, and threshold energy shielding to determine neutron component doses and the total dose from neutrons in the event of a nuclear criticality accident. The dosimeter also uses a DOELAP accredited Panasonic UD-810 (Panasonic Industrial Devices Sales Company of America, 2 Riverfront Plaza, Newark, NJ 07102, U.S.A.) thermoluminescent dosimetery system (TLD) for determining the gamma component of the total dose. LLNL has participated in three international intercomparisons of nuclear accident dosimeters. In October 2009, LLNL participated in an exercise at the French Commissariat à l’énergie atomique et aux énergies alternativesmore » (Alternative Energies and Atomic Energy Commission- CEA) Research Center at Valduc utilizing the SILENE reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison at CEA Valduc, this time with exposures at the CALIBAN reactor (Hickman et al. 2011). This paper discusses LLNL’s results of a third intercomparison hosted by the French Institut de Radioprotection et de Sûreté Nucléaire (Institute for Radiation Protection and Nuclear Safety- IRSN) with exposures at two CEA Valduc reactors (CALIBAN and PROSPERO) in September 2014. Comparison results between the three participating facilities is presented elsewhere (Chevallier 2015; Duluc 2015).« less

  16. An intercomparison of instrumentation for tropospheric measurements of dimethyl sulfide: Aircraft results for concentrations at the parts-per-trillion level

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Warren, Linda S.; Davis, Douglas D.; Andreae, Meinrat O.; Bandy, Alan R.; Ferek, Ronald J.; Johnson, James E.; Saltzman, Eric S.; Cooper, David J.

    1993-01-01

    This paper reports results from NASA's Chemical Instrumentation and Test Evaluation (CITE 3) during which airborne measurements of dimethyl sulfide (DMS) from six instruments were intercompared. Represented by the six instruments are three fundamentally different detection principles (flame photometric, mass spectrometric, and electron capture after fluorination); three collection/preconcentration methods (cryogenic, gold wool absorption, and polymer absorbent); and three types of oxidant scrubbers (solid phase alkaline, aqueous reactor, and cotton). The measurements were made over the Atlantic Ocean in August/September 1989 during flights from NASA's Wallops Flight Center, Virginia, and Natal, Brazil. The majority of the intercomparisons are at DMS mixing ratios less than 50 pptv. Results show that instrument agreement is of the order of a few pptv for mixing ratios less than 50 pptv and to within about 15% above 50 pptv. Statistically significant (95% confidence) measurement biases were noted among some of the techniques. However, in all cases, any bias is small and within the accuracy of the measurements and prepared DMS standards. Thus, we conclude that the techniques intercompared during CITE 3 provide equally valid measurements of DMS in the range of a few pptv to 100 pptv (upper range of the intercomparisons).

  17. Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases

    DOE PAGES

    Grenier, Christophe; Anbergen, Hauke; Bense, Victor; ...

    2018-02-26

    In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. Here in this paper, this issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatialmore » and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.« less

  18. Predicting the severity of spurious “double ITCZ” problem in CMIP5 coupled models from AMIP simulations [Tropical versus extratropical origins of the spurious 'double ITCZ' in coupled climate models

    DOE PAGES

    Xiang, Baoqiang; Zhao, Ming; Held, Isaac M.; ...

    2017-02-13

    The severity of the double Intertropical Convergence Zone (DI) problem in climate models can be measured by a tropical precipitation asymmetry index (PAI), indicating whether tropical precipitation favors the Northern Hemisphere or the Southern Hemisphere. Examination of 19 Coupled Model Intercomparison Project phase 5 models reveals that the PAI is tightly linked to the tropical sea surface temperature (SST) bias. As one of the factors determining the SST bias, the asymmetry of tropical net surface heat flux in Atmospheric Model Intercomparison Project (AMIP) simulations is identified as a skillful predictor of the PAI change from an AMIP to a coupledmore » simulation, with an intermodel correlation of 0.90. Using tropical top-of-atmosphere (TOA) fluxes, the correlations are lower but still strong. However, the extratropical asymmetries of surface and TOA fluxes in AMIP simulations cannot serve as useful predictors of the PAI change. Furthermore, this study suggests that the largest source of the DI bias is from the tropics and from atmospheric models.« less

  19. Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grenier, Christophe; Anbergen, Hauke; Bense, Victor

    In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. Here in this paper, this issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatialmore » and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.« less

  20. The Dynamical Core Model Intercomparison Project (DCMIP-2016): Results of the Supercell Test Case

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.; Reed, K. A.; Jablonowski, C.; Ullrich, P. A.; Kent, J.; Lauritzen, P. H.; Nair, R. D.

    2016-12-01

    The 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) assesses the modeling techniques for global climate and weather models and was recently held at the National Center for Atmospheric Research (NCAR) in conjunction with a two-week summer school. Over 12 different international modeling groups participated in DCMIP-2016 and focused on the evaluation of the newest non-hydrostatic dynamical core designs for future high-resolution weather and climate models. The paper highlights the results of the third DCMIP-2016 test case, which is an idealized supercell storm on a reduced-radius Earth. The supercell storm test permits the study of a non-hydrostatic moist flow field with strong vertical velocities and associated precipitation. This test assesses the behavior of global modeling systems at extremely high spatial resolution and is used in the development of next-generation numerical weather prediction capabilities. In this regime the effective grid spacing is very similar to the horizontal scale of convective plumes, emphasizing resolved non-hydrostatic dynamics. The supercell test case sheds light on the physics-dynamics interplay and highlights the impact of diffusion on model solutions.

  1. Description of Transport Codes for Space Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.

    2011-01-01

    This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.

  2. Real-time analysis of δ13C- and δD-CH4 in ambient air with laser spectroscopy: method development and first intercomparison results

    NASA Astrophysics Data System (ADS)

    Eyer, S.; Tuzson, B.; Popa, M. E.; van der Veen, C.; Röckmann, T.; Rothe, M.; Brand, W. A.; Fisher, R.; Lowry, D.; Nisbet, E. G.; Brennwald, M. S.; Harris, E.; Zellweger, C.; Emmenegger, L.; Fischer, H.; Mohn, J.

    2015-08-01

    In situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called TRace gas EXtractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, μmole/mole) methane is 0.1 and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. Based on replicate measurements of compressed air during a two-week intercomparison campaign, the repeatability of the TREX-QCLAS was determined to be 0.19 and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to isotope-ratio mass-spectrometry (IRMS) based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX-QCLAS data and bag/flask sampling-IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and δD-CH4, respectively. Thus, the intercomparison also reveals the need for reference air samples with accurately determined isotopic composition of CH4 to further improve the interlaboratory compatibility.

  3. Intercomparison of Suspended Sediment Concentration Derived from Models, Measurements and Hyperspectral Imagery in a System of Shallow, Relatively Pristine Coastal Bays: A Preliminary Study

    DTIC Science & Technology

    2013-09-30

    residence time (hours) Figure 4. Left side: residence time calculated for the VCR using particle tracking and a hydrodynamic model (FVCOM). Blue ...Coast Reserve (VCR’07) Multi-Sensor Campaign. Marine Geodesy 33, 53-75. Lawson, S.E., P.L. Wiberg, K.J. McGlathery, and D.C. Fugate , 2007. Wind

  4. Inhalation Toxicology Research Institute Annual Report, 1992-1993

    DTIC Science & Technology

    1993-11-01

    for Mineral and Energy Technology ( CANMET ). The ITRI team participated in all phases of the intercomparison studies. The methods, procedures, and...differential cloning, and differential hybridization techniques. However, with recent advances in polymerase chain reaction (PCR) technology , an...viii I. AEROSOL TECHNOLOGY AND CHARACTERIZATION OF AIRBORNE MATERIALS Measurement of Thoron and Thoron/Radon Mixtures Y. S. Cheng and H. C. Yeh Use of a

  5. Intercomparison of 30+ years of AVHRR and Landsat-5 TM Surface Reflectance using Multiple Pseudo-Invariant Calibration Sites

    NASA Astrophysics Data System (ADS)

    Santamaría-Artigas, A. E.; Franch, B.; Vermote, E.; Roger, J. C.; Justice, C. O.

    2017-12-01

    The 30+ years daily surface reflectance long term data record (LTDR) from the Advanced Very High Resolution Radiometer (AVHRR) is a valuable source of information for long-term studies of the Earth surface. This LTDR was generated by combining observations from multiple AVHRR sensors aboard different NOAA satellites starting from the early 1980s, and due to the lack of on-board calibration its quality should be evaluated. Previous studies have used observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) over pseudo-invariant calibration sites (PICS) as a calibrated reference to assess the performance of AVHRR products. However, this limits the evaluation to the period after MODIS launch. In this work, the AVHRR surface reflectance LTDR was evaluated against Landsat-5 Thematic Mapper (TM) data using observations from 4 well known pseudo-invariant calibration sites (i.e. Sonoran, Saharan, Sudan1, and Libya4) over an extended time period (1984-2011). For the intercomparison, AVHRR and TM observations of each site were extracted and averaged over a 20 km x 20 km area and aggregated to monthly mean values. In order to account for the spectral differences between sensors, Hyperion hyperspectral data from the Sonoran and Libya4 sites were convolved with sensor-specific relative spectral responses, and used to compute spectral band adjustment factors (SBAFs). Results of the intercomparison are reported in terms of the root mean square difference (RMSD) and determination coefficient (r2). In general, there is good agreement between the surface reflectance products from both sensors. The overall RMSD and r2 for all the sites and AVHRR/TM combinations were 0.03 and 0.85 for the red band, and 0.04 and 0.81 for the near-infrared band. These results show the strong performance of the AVHRR surface reflectance LTDR through all of the considered period. Thus, remarking its usefulness and value for long term Earth studies. Figure 1 shows the red (filled markers) and near-infrared (empty markers) surface reflectance from AVHRR and TM for the complete evaluation period over the Saharan (diamond), Libya4 (square), Sudan1 (triangle), and Sonoran (circle) PICS.

  6. Conjunctive management of surface and groundwater resources under projected future climate change scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Amir; Tsai, Frank T. -C.; Kao, Shih-Chieh

    Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimizedmore » conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.« less

  7. Conjunctive management of surface and groundwater resources under projected future climate change scenarios

    DOE PAGES

    Mani, Amir; Tsai, Frank T. -C.; Kao, Shih-Chieh; ...

    2016-06-16

    Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimizedmore » conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.« less

  8. Phytoplankton off the West Coast of Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Just off the coast of West Africa, persistent northeasterly trade winds often churn up deep ocean water. When the nutrients in these deep waters reach the ocean's surface, they often give rise to large blooms of phytoplankton. This image of the Mauritanian coast shows swirls of phytoplankton fed by the upwelling of nutrient-rich water. The scene was acquired by the Medium Resolution Imaging Spectrometer (MERIS) aboard the European Space Agency's ENVISAT. MERIS will monitor changes in phytoplankton across Earth's oceans and seas, both for the purpose of managing fisheries and conducting global change research. NASA scientists will use data from this European instrument in the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) program. The mission of SIMBIOS is to construct a consistent long-term dataset of ocean color (phytoplankton abundance) measurements made by multiple satellite instruments, including the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For more information about MERIS and ENVISAT, visit the ENVISAT home page. Image copyright European Space Agency

  9. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    NASA Astrophysics Data System (ADS)

    Szabó, J.; Pálfalvi, J. K.

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  10. Comparison of satellite derived dynamical quantities in the stratosphere of the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Miles, Thomas (Editor); Oneill, Alan (Editor)

    1989-01-01

    The proceedings are summarized from a pre-MASH planning workshop on the intercomparison of Southern Hemisphere observations, analyses and derived dynamical quantities held in Williamsburg, Virginia during April 1986. The aims of this workshop were primarily twofold: (1) comparison of Southern Hemisphere dynamical quantities derived from various satellite data archives (e.g., from limb scanners and nadir sounders); and (2) assessing the impact of different base-level height information on such derived quantities. These tasks are viewed as especially important in the Southern Hemisphere because of the paucity of conventional measurements. A further strong impetus for the MASH program comes from the recent discovery of the springtime ozone hold over Antarctica. Insight gained from validation studies such as the one reported here will contribute to an improved understanding of the role of meteorology in the development and evolution of the hold, in its interannual variability, and in its interhemispheric differences. The dynamical quantities examined in this workshop included geopotential height, zonal wind, potential vorticity, eddy heat and momentum fluxes, and Eliassen-Palm fluxes. The time periods and data sources constituting the MASH comparisons are summarized.

  11. An assessment of two automated snow water equivalent instruments during the WMO Solid Precipitation Intercomparison Experiment

    NASA Astrophysics Data System (ADS)

    Smith, Craig D.; Kontu, Anna; Laffin, Richard; Pomeroy, John W.

    2017-01-01

    During the World Meteorological Organization (WMO) Solid Precipitation Intercomparison Experiment (SPICE), automated measurements of snow water equivalent (SWE) were made at the Sodankylä (Finland), Weissfluhjoch (Switzerland) and Caribou Creek (Canada) SPICE sites during the northern hemispheric winters of 2013/14 and 2014/15. Supplementary intercomparison measurements were made at Fortress Mountain (Kananaskis, Canada) during the 2013/14 winter. The objectives of this analysis are to compare automated SWE measurements with a reference, comment on their performance and, where possible, to make recommendations on how to best use the instruments and interpret their measurements. Sodankylä, Caribou Creek and Fortress Mountain hosted a Campbell Scientific CS725 passive gamma radiation SWE sensor. Sodankylä and Weissfluhjoch hosted a Sommer Messtechnik SSG1000 snow scale. The CS725 operating principle is based on measuring the attenuation of soil emitted gamma radiation by the snowpack and relating the attenuation to SWE. The SSG1000 measures the mass of the overlying snowpack directly by using a weighing platform and load cell. Manual SWE measurements were obtained at the intercomparison sites on a bi-weekly basis over the accumulation-ablation periods using bulk density samplers. These manual measurements are considered to be the reference for the intercomparison. Results from Sodankylä and Caribou Creek showed that the CS725 generally overestimates SWE as compared to manual measurements by roughly 30-35 % with correlations (r2) as high as 0.99 for Sodankylä and 0.90 for Caribou Creek. The RMSE varied from 30 to 43 mm water equivalent (mm w.e.) and from 18 to 25 mm w.e. at Sodankylä and Caribou Creek, which had respective SWE maximums of approximately 200 and 120 mm w.e. The correlation at Fortress Mountain was 0.94 (RMSE of 48 mm w.e. with a maximum SWE of approximately 650 mm w.e.) with no systematic overestimation. The SSG1000 snow scale, having a different measurement principle, agreed quite closely with the manual measurements at Sodankylä and Weissfluhjoch throughout the periods when data were available (r2 as high as 0.99 and RMSE from 8 to 24 mm w.e. at Sodankylä and from 56 to 59 mm w.e. at Weissfluhjoch, where maximum SWE was approximately 850 mm w.e.). When the SSG1000 was compared to the CS725 at Sodankylä, the agreement was linear until the start of ablation when the positive bias in the CS725 increases substantially relative to the SSG1000. Since both Caribou Creek and Sodankylä have sandy soil, water from the snowpack readily infiltrates into the soil during melt, even if the soil is frozen. However, the CS725 does not differentiate this water from the unmelted snow. This issue can be identified, at least during the late spring ablation period, with soil moisture and temperature observations like those measured at Caribou Creek. With a less permeable soil and surface runoff, the increase in the instrument bias during ablation is not as significant, as shown by the Fortress Mountain intercomparison.

  12. The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations

    USGS Publications Warehouse

    Anderson, J.L.; Balaji, V.; Broccoli, A.J.; Cooke, W.F.; Delworth, T.L.; Dixon, K.W.; Donner, L.J.; Dunne, K.A.; Freidenreich, S.M.; Garner, S.T.; Gudgel, R.G.; Gordon, C.T.; Held, I.M.; Hemler, R.S.; Horowitz, L.W.; Klein, S.A.; Knutson, T.R.; Kushner, P.J.; Langenhost, A.R.; Lau, N.-C.; Liang, Z.; Malyshev, S.L.; Milly, P.C.D.; Nath, M.J.; Ploshay, J.J.; Ramaswamy, V.; Schwarzkopf, M.D.; Shevliakova, E.; Sirutis, J.J.; Soden, B.J.; Stern, W.F.; Thompson, L.A.; Wilson, R.J.; Wittenberg, A.T.; Wyman, B.L.

    2004-01-01

    The configuration and performance of a new global atmosphere and land model for climate research developed at the Geophysical Fluid Dynamics Laboratory (GFDL) are presented. The atmosphere model, known as AM2, includes a new gridpoint dynamical core, a prognostic cloud scheme, and a multispecies aerosol climatology, as well as components from previous models used at GFDL. The land model, known as LM2, includes soil sensible and latent heat storage, groundwater storage, and stomatal resistance. The performance of the coupled model AM2-LM2 is evaluated with a series of prescribed sea surface temperature (SST) simulations. Particular focus is given to the model's climatology and the characteristics of interannual variability related to El Nin??o-Southern Oscillation (ENSO). One AM2-LM2 integration was perfor med according to the prescriptions of the second Atmospheric Model Intercomparison Project (AMIP II) and data were submitted to the Program for Climate Model Diagnosis and Intercomparison (PCMDI). Particular strengths of AM2-LM2, as judged by comparison to other models participating in AMIP II, include its circulation and distributions of precipitation. Prominent problems of AM2-LM2 include a cold bias to surface and tropospheric temperatures, weak tropical cyclone activity, and weak tropical intraseasonal activity associated with the Madden-Julian oscillation. An ensemble of 10 AM2-LM 2 integrations with observed SSTs for the second half of the twentieth century permits a statistically reliable assessment of the model's response to ENSO. In general, AM2-LM2 produces a realistic simulation of the anomalies in tropical precipitation and extratropical circulation that are associated with ENSO. ?? 2004 American Meteorological Society.

  13. 3-D Inhomogeous Radiative Transfer Model using a Planar-stratified Forward RT Model and Horizontal Perturbation Series

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Gasiewski, A. J.

    2017-12-01

    A horizontally inhomogeneous unified microwave radiative transfer (HI-UMRT) model based upon a nonspherical hydrometeor scattering model is being developed at the University of Colorado at Boulder to facilitate forward radiative simulations for 3-dimensionally inhomogeneous clouds in severe weather. The HI-UMRT 3-D analytical solution is based on incorporating a planar-stratified 1-D UMRT algorithm within a horizontally inhomogeneous iterative perturbation scheme. Single-scattering parameters are computed using the Discrete Dipole Scattering (DDSCAT v7.3) program for hundreds of carefully selected nonspherical complex frozen hydrometeors from the NASA/GSFC DDSCAT database. The required analytic factorization symmetry of transition matrix in a normalized RT equation was analytically proved and validated numerically using the DDSCAT-based full Stokes matrix of randomly oriented hydrometeors. The HI-UMRT model thus inherits the properties of unconditional numerical stability, efficiency, and accuracy from the UMRT algorithm and provides a practical 3-D two-Stokes parameter radiance solution with Jacobian to be used within microwave retrievals and data assimilation schemes. In addition, a fast forward radar reflectivity operator with Jacobian based on DDSCAT backscatter efficiency computed for large hydrometeors is incorporated into the HI-UMRT model to provide applicability to active radar sensors. The HI-UMRT will be validated strategically at two levels: 1) intercomparison of brightness temperature (Tb) results with those of several 1-D and 3-D RT models, including UMRT, CRTM and Monte Carlo models, 2) intercomparison of Tb with observed data from combined passive and active spaceborne sensors (e.g. GPM GMI and DPR). The precise expression for determining the required number of 3-D iterations to achieve an error bound on the perturbation solution will be developed to facilitate the numerical verification of the HI-UMRT code complexity and computation performance.

  14. The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security

    NASA Technical Reports Server (NTRS)

    Ruane, Alex; Rosenzweig, Cynthia; Elliott, Joshua; Antle, John

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIPs community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPsSSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate changes impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIPs 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment Report.

  15. Pinatubo Emulation in Multiple Models (POEMs): co-ordinated experiments in the ISA-MIP model intercomparison activity component of the SPARC Stratospheric Sulphur and it's Role in Climate initiative (SSiRC)

    NASA Astrophysics Data System (ADS)

    Lee, Lindsay; Mann, Graham; Carslaw, Ken; Toohey, Matthew; Aquila, Valentina

    2016-04-01

    The World Climate Research Program's SPARC initiative has a new international activity "Stratospheric Sulphur and its Role in Climate" (SSiRC) to better understand changes in stratospheric aerosol and precursor gaseous sulphur species. One component of SSiRC involves an intercomparison "ISA-MIP" of composition-climate models that simulate the stratospheric aerosol layer interactively. Within PoEMS each modelling group will run a "perturbed physics ensemble" (PPE) of interactive stratospheric aerosol (ISA) simulations of the Pinatubo eruption, varying several uncertain parameters associated with the eruption's SO2 emissions and model processes. A powerful new technique to quantify and attribute sources of uncertainty in complex global models is described by Lee et al. (2011, ACP). The analysis uses Gaussian emulation to derive a probability density function (pdf) of predicted quantities, essentially interpolating the PPE results in multi-dimensional parameter space. Once trained on the ensemble, a Monte Carlo simulation with the fast Gaussian emulator enabling a full variance-based sensitivity analysis. The approach has already been used effectively by Carslaw et al., (2013, Nature) to quantify the uncertainty in the cloud albedo effect forcing from a 3D global aerosol-microphysics model allowing to compare the sensitivy of different predicted quantities to uncertainties in natural and anthropogenic emissions types, and structural parameters in the models. Within ISA-MIP, each group will carry out a PPE of runs, with the subsequent analysis with the emulator assessing the uncertainty in the volcanic forcings predicted by each model. In this poster presentation we will give an outline of the "PoEMS" analysis, describing the uncertain parameters to be varied and the relevance to further understanding differences identified in previous international stratospheric aerosol assessments.

  16. The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security

    NASA Astrophysics Data System (ADS)

    Ruane, A. C.; Rosenzweig, C.; Antle, J. M.; Elliott, J. W.

    2015-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIP's community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPs/SSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate change's impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIP's 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment Report.

  17. Uncertainty quantification of US Southwest climate from IPCC projections.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boslough, Mark Bruce Elrick

    2011-01-01

    The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) made extensive use of coordinated simulations by 18 international modeling groups using a variety of coupled general circulation models (GCMs) with different numerics, algorithms, resolutions, physics models, and parameterizations. These simulations span the 20th century and provide forecasts for various carbon emissions scenarios in the 21st century. All the output from this panoply of models is made available to researchers on an archive maintained by the Program for Climate Model Diagnosis and Intercomparison (PCMDI) at LLNL. I have downloaded this data and completed the first steps toward a statisticalmore » analysis of these ensembles for the US Southwest. This constitutes the final report for a late start LDRD project. Complete analysis will be the subject of a forthcoming report.« less

  18. Crustal dynamics project observations: 1982 results and plans for 1983

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1983-01-01

    The 1982 Crustal Dynamics Project observations by fixed and mobile SLR and VLBI systems are reviewed. Plate motion measurements between North America and Europe were conducted by both techniques and SLR measurements were also made between North America, the Pacific, Australia and South American plates. Regional deformation measurements by VLBI and SLR systems were restricted to the western United States in 1982, including a number of important intercomparison baseline measured by both techniques. In 1983 the observing program grows significantly, with new SLR systems in Mexico, Easter Island, the Pacific and Italy. New VLBI systems will include a dedicated VLBI site at Weltzell, in Germany. Two highly mobile SLR and two highly mobile VLBI systems will greatly increase the regional deformation measurements in California and through the Basin and Range, where more than 25 sites will be occupied in 1983.

  19. High LET, passive space radiation dosimetry and spectrometry

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.; Keegan, R. P.; Frigo, L. A.; Sanner, D.; Rowe, V.

    1995-01-01

    The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation.

  20. Test Bed Doppler Wind Lidar and Intercomparison Facility At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Petros, Mulugeta; Barnes, Bruce W.; Beyon, Jeffrey; Amzajerdian, Farzin; Yu, Ji-Rong; Singh, Upendra N.

    2004-01-01

    State of the art 2-micron lasers and other lidar components under development by NASA are being demonstrated and validated in a mobile test bed Doppler wind lidar. A lidar intercomparison facility has been developed to ensure parallel alignment of up to 4 Doppler lidar systems while measuring wind. Investigations of the new components; their operation in a complete system; systematic and random errors; the hybrid (joint coherent and direct detection) approach to global wind measurement; and atmospheric wind behavior are planned. Future uses of the VALIDAR (VALIDation LIDAR) mobile lidar may include comparison with the data from an airborne Doppler wind lidar in preparation for validation by the airborne system of an earth orbiting Doppler wind lidar sensor.

  1. Intercomparison of analytical methods for arsenic speciation in human urine.

    PubMed Central

    Crecelius, E; Yager, J

    1997-01-01

    An intercomparison exercise was conducted for the quantification of arsenic species in spiked human urine. The primary objective of the exercise was to determine the variance among laboratories in the analysis of arsenic species such as inorganic As (As+3 and As+5), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Laboratories that participated had previous experience with arsenic speciation analysis. The results of this interlaboratory comparison are encouraging. There is relatively good agreement on the concentrations of these arsenic species in urine at concentrations that are relevant to research on the metabolism of arsenic in humans and other mammals. Both the accuracy and precision are relatively poor for arsenic concentrations of less than about 5 micrograms/l. PMID:9288500

  2. Intercomparison of microphysical datasets collected from CAIPEEX observations and WRF simulation

    NASA Astrophysics Data System (ADS)

    Pattnaik, S.; Goswami, B.; Kulkarni, J.

    2009-12-01

    In the first phase of ongoing Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) program of Indian Institute of Tropical Meteorology (IITM), intensive cloud microphysical datasets are collected over India during the May through September, 2009. This study is designed to evaluate the forecast skills of existing cloud microphysical parameterization schemes (i.e. single moment/double moments) within the WRF-ARW model (Version 3.1.1) during different intensive observation periods (IOP) over the targeted regions spreading all across India. Basic meteorological and cloud microphysical parameters obtained from the model simulations are validated against the observed data set collected during CAIPEEX program. For this study, we have considered three IOP phases (i.e. May 23-27, June 11-15, July 3-7) carried out over northern, central and western India respectively. This study emphasizes the thrust to understand the mechanism of evolution, intensification and distribution of simulated precipitation forecast upto day four (i.e. 96 hour forecast). Efforts have also been made to carryout few important microphysics sensitivity experiments within the explicit schemes to investigate their respective impact on the formation and distribution of vital cloud parameters (e.g. cloud liquid water, frozen hydrometeors) and model rainfall forecast over the IOP regions. The characteristic features of liquid and frozen hydrometers in the pre-monsoon and monsoon regimes are examined from model forecast as well as from CAIPEEX observation data set for different IOPs. The model is integrated in a triply nested fashion with an innermost nest explicitly resolved at a horizontal resolution of 4km.In this presentation preliminary results from aforementioned research initiatives will be introduced.

  3. Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 2: Applications

    NASA Astrophysics Data System (ADS)

    Meinshausen, M.; Wigley, T. M. L.; Raper, S. C. B.

    2011-02-01

    Intercomparisons of coupled atmosphere-ocean general circulation models (AOGCMs) and carbon cycle models are important for galvanizing our current scientific knowledge to project future climate. Interpreting such intercomparisons faces major challenges, not least because different models have been forced with different sets of forcing agents. Here, we show how an emulation approach with MAGICC6 can address such problems. In a companion paper (Meinshausen et al., 2011a), we show how the lower complexity carbon cycle-climate model MAGICC6 can be calibrated to emulate, with considerable accuracy, globally aggregated characteristics of these more complex models. Building on that, we examine here the Coupled Model Intercomparison Project's Phase 3 results (CMIP3). If forcing agents missed by individual AOGCMs in CMIP3 are considered, this reduces ensemble average temperature change from pre-industrial times to 2100 under SRES A1B by 0.4 °C. Differences in the results from the 1980 to 1999 base period (as reported in IPCC AR4) to 2100 are negligible, however, although there are some differences in the trajectories over the 21st century. In a second part of this study, we consider the new RCP scenarios that are to be investigated under the forthcoming CMIP5 intercomparison for the IPCC Fifth Assessment Report. For the highest scenario, RCP8.5, relative to pre-industrial levels, we project a median warming of around 4.6 °C by 2100 and more than 7 °C by 2300. For the lowest RCP scenario, RCP3-PD, the corresponding warming is around 1.5 °C by 2100, decreasing to around 1.1 °C by 2300 based on our AOGCM and carbon cycle model emulations. Implied cumulative CO2 emissions over the 21st century for RCP8.5 and RCP3-PD are 1881 GtC (1697 to 2034 GtC, 80% uncertainty range) and 381 GtC (334 to 488 GtC), when prescribing CO2 concentrations and accounting for uncertainty in the carbon cycle. Lastly, we assess the reasons why a previous MAGICC version (4.2) used in IPCC AR4 gave roughly 10% larger warmings over the 21st century compared to the CMIP3 average. We find that forcing differences and the use of slightly too high climate sensitivities inferred from idealized high-forcing runs were the major reasons for this difference.

  4. An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites.

    PubMed

    Cesari, Daniela; Amato, F; Pandolfi, M; Alastuey, A; Querol, X; Contini, D

    2016-08-01

    Source apportionment of aerosol is an important approach to investigate aerosol formation and transformation processes as well as to assess appropriate mitigation strategies and to investigate causes of non-compliance with air quality standards (Directive 2008/50/CE). Receptor models (RMs) based on chemical composition of aerosol measured at specific sites are a useful, and widely used, tool to perform source apportionment. However, an analysis of available studies in the scientific literature reveals heterogeneities in the approaches used, in terms of "working variables" such as the number of samples in the dataset and the number of chemical species used as well as in the modeling tools used. In this work, an inter-comparison of PM10 source apportionment results obtained at three European measurement sites is presented, using two receptor models: principal component analysis coupled with multi-linear regression analysis (PCA-MLRA) and positive matrix factorization (PMF). The inter-comparison focuses on source identification, quantification of source contribution to PM10, robustness of the results, and how these are influenced by the number of chemical species available in the datasets. Results show very similar component/factor profiles identified by PCA and PMF, with some discrepancies in the number of factors. The PMF model appears to be more suitable to separate secondary sulfate and secondary nitrate with respect to PCA at least in the datasets analyzed. Further, some difficulties have been observed with PCA in separating industrial and heavy oil combustion contributions. Commonly at all sites, the crustal contributions found with PCA were larger than those found with PMF, and the secondary inorganic aerosol contributions found by PCA were lower than those found by PMF. Site-dependent differences were also observed for traffic and marine contributions. The inter-comparison of source apportionment performed on complete datasets (using the full range of available chemical species) and incomplete datasets (with reduced number of chemical species) allowed to investigate the sensitivity of source apportionment (SA) results to the working variables used in the RMs. Results show that, at both sites, the profiles and the contributions of the different sources calculated with PMF are comparable within the estimated uncertainties indicating a good stability and robustness of PMF results. In contrast, PCA outputs are more sensitive to the chemical species present in the datasets. In PCA, the crustal contributions are higher in the incomplete datasets and the traffic contributions are significantly lower for incomplete datasets.

  5. ACTRIS ACSM intercomparison - Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers

    NASA Astrophysics Data System (ADS)

    Fröhlich, R.; Crenn, V.; Setyan, A.; Belis, C. A.; Canonaco, F.; Favez, O.; Riffault, V.; Slowik, J. G.; Aas, W.; Aijälä, M.; Alastuey, A.; Artiñano, B.; Bonnaire, N.; Bozzetti, C.; Bressi, M.; Carbone, C.; Coz, E.; Croteau, P. L.; Cubison, M. J.; Esser-Gietl, J. K.; Green, D. C.; Gros, V.; Heikkinen, L.; Herrmann, H.; Jayne, J. T.; Lunder, C. R.; Minguillón, M. C.; Močnik, G.; O'Dowd, C. D.; Ovadnevaite, J.; Petralia, E.; Poulain, L.; Priestman, M.; Ripoll, A.; Sarda-Estève, R.; Wiedensohler, A.; Baltensperger, U.; Sciare, J.; Prévôt, A. S. H.

    2015-06-01

    Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs) performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM) from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM), and one high-resolution ToF aerosol mass spectrometer (AMS) were operated in parallel for about 3 weeks in November and December~2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF) utilising the multilinear engine 2 (ME-2). Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f44), which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA), cooking-related organic aerosol (COA), biomass burning-related organic aerosol (BBOA) and secondary oxygenated organic aerosol (OOA). ME-2 boundary conditions (profile constraints) were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles). A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD) from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on the factors (HOA: 14.3 ± 2.2 %, COA: 15.0 ± 3.4 %, OOA: 41.5 ± 5.7 %, BBOA: 29.3 ± 5.0 %). Factors which tend to be subject to minor factor mixing (in this case COA) have higher relative uncertainties than factors which are recognised more readily like the OOA. Averaged over all factors and instruments the relative first SD from the mean of a source extracted with ME-2 was 17.2 %.

  6. Validation and Intercomparison Studies Within GODAE

    DTIC Science & Technology

    2009-09-01

    unlimited. 13. SUPPLEMENTARY NOTES 20091228154 14. ABSTRACT During the Global Ocean Data Assimilation Experiment (GODAE), seven international... global -ocean and basin-scale forecasting systems of different countries in routine interaction and continuous operation, (2) to assess the quality and... Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 7o30 4 Division, Code ^VtcV Vs-Jc \\ -Vi<-’/c ••>’ 3^v’.-:5, w. 3Uo|eri 1

  7. SIMBIOS Normalized Water-Leaving Radiance Calibration and Validation: Sensor Response, Atmospheric Corrections, Stray Light and Sun Glint. Chapter 14

    NASA Technical Reports Server (NTRS)

    Mueller, James L.

    2001-01-01

    This Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) contract supports acquisition of match up radiometric and bio-optical data for validation of Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and other ocean color satellites, and evaluation of uncertainty budgets and protocols for in situ measurements of normalized water leaving radiances.

  8. The centrality of meta-programming in the ES-DOC eco-system

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark

    2017-04-01

    The Earth System Documentation (ES-DOC) project is an international effort aiming to deliver a robust earth system model inter-comparison project documentation infrastructure. Such infrastructure both simplifies & standardizes the process of documenting (in detail) projects, experiments, models, forcings & simulations. In support of CMIP6, ES-DOC has upgraded its eco-system of tools, web-services & web-sites. The upgrade consolidates the existing infrastructure (built for CMIP5) and extends it with the introduction of new capabilities. The strategic focus of the upgrade is improvements in the documentation experience and broadening the range of scientific use-cases that the archived documentation may help deliver. Whether it is highlighting dataset errors, exploring experimental protocols, comparing forcings across ensemble runs, understanding MIP objectives, reviewing citations, exploring component properties of configured models, visualising inter-model relationships, scientists involved in CMIP6 will find the ES-DOC infrastructure helpful. This presentation underlines the centrality of meta-programming within the ES-DOC eco-system. We will demonstrate how agility is greatly enhanced by taking a meta-programming approach to representing data models and controlled vocabularies. Such an approach nicely decouples representations from encodings. Meta-models will be presented along with the associated tooling chain that forward engineers artefacts as diverse as: class hierarchies, IPython notebooks, mindmaps, configuration files, OWL & SKOS documents, spreadsheets …etc.

  9. Multicentre validation of IMRT pre-treatment verification: comparison of in-house and external audit.

    PubMed

    Jornet, Núria; Carrasco, Pablo; Beltrán, Mercè; Calvo, Juan Francisco; Escudé, Lluís; Hernández, Victor; Quera, Jaume; Sáez, Jordi

    2014-09-01

    We performed a multicentre intercomparison of IMRT optimisation and dose planning and IMRT pre-treatment verification methods and results. The aims were to check consistency between dose plans and to validate whether in-house pre-treatment verification results agreed with those of an external audit. Participating centres used two mock cases (prostate and head and neck) for the intercomparison and audit. Compliance to dosimetric goals and total number of MU per plan were collected. A simple quality index to compare the different plans was proposed. We compared gamma index pass rates using the centre's equipment and methodology to those of an external audit. While for the prostate case, all centres fulfilled the dosimetric goals and plan quality was homogeneous, that was not the case for the head and neck case. The number of MU did not correlate with the plan quality index. Pre-treatment verifications results of the external audit did not agree with those of the in-house measurements for two centres: being within tolerance for in-house measurements and unacceptable for the audit or the other way round. Although all plans fulfilled dosimetric constraints, plan quality is highly dependent on the planner expertise. External audits are an excellent tool to detect errors in IMRT implementation and cannot be replaced by intercomparison using results obtained by centres. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notz, Dirk; Jahn, Alexandra; Holland, Marika

    A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standardmore » for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. Furthermore, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.« less

  11. The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations

    DOE PAGES

    Notz, Dirk; Jahn, Alexandra; Holland, Marika; ...

    2016-09-23

    A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standardmore » for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. Furthermore, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.« less

  12. Ice nucleating particles measured during the laboratory and field intercomparisons FIN-2 and FIN-3 by the diffusion chamber FRIDGE

    NASA Astrophysics Data System (ADS)

    Weber, Daniel; Schrod, Jann; Curtius, Joachim; Haunold, Werner; Thomson, Erik; Bingemer, Heinz

    2016-04-01

    The measurement of atmospheric ice nucleating particles (INP) is still challenging. In the absence of easily applicable INP standards the intercomparison of different methods during collaborative laboratory and field workshops is a valuable tool that can shine light on the performance of individual methods for the measurement of INP [1]. FIN-2 was conducted in March 2015 at the AIDA facility in Karlsruhe as an intercomparison of mobile instruments for measuring INP [2]. FIN-3 was a field campaign at the Desert Research Institutes Storm Peak Laboratory in Colorado in September 2015 [3]. The FRankfurt Ice nucleation Deposition freezinG Experiment (FRIDGE) participated in both experiments. FRIDGE measures ice nucleating particles by electrostatic precipitation of aerosol particles onto Si-wafers in a collection unit, followed by activation, growth, and optical detection of ice crystals on the substrate in an isostatic diffusion chamber [4,5]. We will present and discuss results of our measurements of deposition/condensation INP and of immersion INP with FRIDGE during FIN-2 and FIN-3. Acknowledgements: The valuable contributions of the FIN organizers and their institutions, and of the FIN Workshop Science team are gratefully acknowledged. Our work was supported by Deutsche Forschungsgemeinschaft (DFG) under the Research Unit FOR 1525 (INUIT) and the EU FP7-ENV- 2013 BACCHUS project under Grant Agreement 603445.

  13. The 1995 North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers

    PubMed Central

    Early, Edward; Thompson, Ambler; Johnson, Carol; DeLuisi, John; Disterhoft, Patrick; Wardle, David; Wu, Edmund; Mou, Wanfeng; Sun, Yongchen; Lucas, Timothy; Mestechkina, Tanya; Harrison, Lee; Berndt, Jerry; Hayes, Douglas S.

    1998-01-01

    Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. To assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks, the second North American Intercomparison of Ultraviolet Monitoring Spectroradiometers was held June 12 to 23, 1995 at Table Mountain outside Boulder, Colorado, USA. This Intercomparison was coordinated by the National Institute of Standards and Technology (NIST) and the National Oceanic and Atmospheric Administration (NOAA). Participating agencies were the Environmental Protection Agency; the National Science Foundation; the Smithsonian Environmental Research Center; the Department of Agriculture; and the Atmospheric Environment Service, Canada. Instruments were characterized for wavelength uncertainty, bandwidth, stray-light rejection, and spectral irradiance responsivity, the latter with a NIST standard lamp operating in a specially designed field calibration unit. The spectral irradiance responsivity, determined once indoors and twice outdoors, demonstrated that while the responsivities changed upon moving the instruments, they were relatively stable when the instruments remained outdoors. Synchronized spectral scans of the solar irradiance were performed over several days. Using the spectral irradiance responsivities determined with the NIST standard lamp and three different convolution functions to account for the different bandwidths of the instruments, the measured solar irradiances generally agreed to within 3 %. PMID:28009371

  14. The Model Intercomparison Project on the Climatic Response to Volcanic Forcing (VolMIP): Experimental Design and Forcing Input Data for CMIP6

    NASA Technical Reports Server (NTRS)

    Zanchettin, Davide; Khodri, Myriam; Timmreck, Claudia; Toohey, Matthew; Schmidt, Anja; Gerber, Edwin P.; Hegerl, Gabriele; Robock, Alan; Pausata, Francesco; Ball, William T.; hide

    2016-01-01

    The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.

  15. The Joint Experiment for Crop Assessment and Monitoring (JECAM): Synthetic Aperture Radar (SAR) Inter-Comparison Experiment

    NASA Astrophysics Data System (ADS)

    Dingle Robertson, L.; Hosseini, M.; Davidson, A. M.; McNairn, H.

    2017-12-01

    The Joint Experiment for Crop Assessment and Monitoring (JECAM) is the research and development branch of GEOGLAM (Group on Earth Observations Global Agricultural Monitoring), a G20 initiative to improve the global monitoring of agriculture through the use of Earth Observation (EO) data and remote sensing. JECAM partners represent a diverse network of researchers collaborating towards a set of best practices and recommendations for global agricultural analysis using EO data, with well monitored test sites covering a wide range of agriculture types, cropping systems and climate regimes. Synthetic Aperture Radar (SAR) for crop inventory and condition monitoring offers many advantages particularly the ability to collect data under cloudy conditions. The JECAM SAR Inter-Comparison Experiment is a multi-year, multi-partner project that aims to compare global methods for (1) operational SAR & optical; multi-frequency SAR; and compact polarimetry methods for crop monitoring and inventory, and (2) the retrieval of Leaf Area Index (LAI) and biomass estimations using models such as the Water Cloud Model (WCM) employing single frequency SAR; multi-frequency SAR; and compact polarimetry. The results from these activities will be discussed along with an examination of the requirements of a global experiment including best-date determination for SAR data acquisition, pre-processing techniques, in situ data sharing, model development and statistical inter-comparison of the results.

  16. Bilateral Comparison of Mercury and Gallium Fixed-Point Cells Using Standard Platinum Resistance Thermometer

    NASA Astrophysics Data System (ADS)

    Bojkovski, J.; Veliki, T.; Zvizdić, D.; Drnovšek, J.

    2011-08-01

    The objective of project EURAMET 1127 (Bilateral comparison of triple point of mercury and melting point of gallium) in the field of thermometry is to compare realization of a triple point of mercury (-38.8344 °C) and melting point of gallium (29.7646 °C) between the Slovenian national laboratory MIRS/UL-FE/LMK and the Croatian national laboratory HMI/FSB-LPM using a long-stem 25 Ω standard platinum resistance thermometer (SPRT). MIRS/UL/FE-LMK participated in a number of intercomparisons on the level of EURAMET. On the other hand, the HMI/LPM-FSB laboratory recently acquired new fixed-point cells which had to be evaluated in the process of intercomparisons. A quartz-sheathed SPRT has been selected and calibrated at HMI/LPM-FSB at the triple point of mercury, the melting point of gallium, and the water triple point. A second set of measurements was made at MIRS/UL/FE-LMK. After its return, the SPRT was again recalibrated at HMI/LPM-FSB. In the comparison, the W value of the SPRT has been used. Results of the bilateral intercomparison confirmed that the new gallium cell of the HMI/LPM-FSB has a value that is within uncertainty limits of both laboratories that participated in the exercise, while the mercury cell experienced problems. After further research, a small leakage in the mercury fixed-point cell has been found.

  17. International Intercomparison of Specific Absorption Rates in a Flat Absorbing Phantom in the Near-Field of Dipole Antennas

    PubMed Central

    Davis, Christopher C.; Beard, Brian B.; Tillman, Ahlia; Rzasa, John; Merideth, Eric; Balzano, Quirino

    2018-01-01

    This paper reports the results of an international intercomparison of the specific absorption rates (SARs) measured in a flat-bottomed container (flat phantom), filled with human head tissue simulant fluid, placed in the near-field of custom-built dipole antennas operating at 900 and 1800 MHz, respectively. These tests of the reliability of experimental SAR measurements have been conducted as part of a verification of the ways in which wireless phones are tested and certified for compliance with safety standards. The measurements are made using small electric-field probes scanned in the simulant fluid in the phantom to record the spatial SAR distribution. The intercomparison involved a standard flat phantom, antennas, power meters, and RF components being circulated among 15 different governmental and industrial laboratories. At the conclusion of each laboratory’s measurements, the following results were communicated to the coordinators: Spatial SAR scans at 900 and 1800 MHz and 1 and 10 g maximum spatial SAR averages for cubic volumes at 900 and 1800 MHz. The overall results, given as meanstandard deviation, are the following: at 900 MHz, 1 g average 7.850.76; 10 g average 5.160.45; at 1800 MHz, 1 g average 18.44 ± 1.65; 10 g average 10.14 ± 0.85, all measured in units of watt per kilogram, per watt of radiated power. PMID:29520117

  18. The Earth System Grid Federation (ESGF): Climate Science Infrastructure for Large-scale Data Management and Dissemination

    NASA Astrophysics Data System (ADS)

    Williams, D. N.

    2015-12-01

    Progress in understanding and predicting climate change requires advanced tools to securely store, manage, access, process, analyze, and visualize enormous and distributed data sets. Only then can climate researchers understand the effects of climate change across all scales and use this information to inform policy decisions. With the advent of major international climate modeling intercomparisons, a need emerged within the climate-change research community to develop efficient, community-based tools to obtain relevant meteorological and other observational data, develop custom computational models, and export analysis tools for climate-change simulations. While many nascent efforts to fill these gaps appeared, they were not integrated and therefore did not benefit from collaborative development. Sharing huge data sets was difficult, and the lack of data standards prevented the merger of output data from different modeling groups. Thus began one of the largest-ever collaborative data efforts in climate science, resulting in the Earth System Grid Federation (ESGF), which is now used to disseminate model, observational, and reanalysis data for research assessed by the Intergovernmental Panel on Climate Change (IPCC). Today, ESGF is an open-source petabyte-level data storage and dissemination operational code-base that manages secure resources essential for climate change study. It is designed to remain robust even as data volumes grow exponentially. The internationally distributed, peer-to-peer ESGF "data cloud" archive represents the culmination of an effort that began in the late 1990s. ESGF portals are gateways to scientific data collections hosted at sites around the globe that allow the user to register and potentially access the entire ESGF network of data and services. The growing international interest in ESGF development efforts has attracted many others who want to make their data more widely available and easy to use. For example, the World Climate Research Program, which provides governance for CMIP, has now endorsed the ESGF software foundation to be used for ~70 other model intercomparison projects (MIPs), such as obs4MIPs, TAMIP, CFMIP, and GeoMIP. At present, more than 40 projects disseminate their data via ESGF.

  19. Steve Rummel | NREL

    Science.gov Websites

    Module Intercomparison," Proc. Solar Energies Technologies Review Meeting Nov. 7-10, 2005, NREL tech . Rummel, D.R. Myers, T.L. Stoffel, and D. Waddington, "A Comparison of Photovoltaic Calibration

  20. Future Directions in Simulating Solar Geoengineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Benjamin S.; Robock, Alan; Boucher, Olivier

    2014-08-05

    Solar geoengineering is a proposed set of technologies to temporarily alleviate some of the consequences of anthropogenic greenhouse gas emissions. The Geoengineering Model Intercomparison Project (GeoMIP) created a framework of geoengineering simulations in climate models that have been performed by modeling centers throughout the world (B. Kravitz et al., The Geoengineering Model Intercomparison Project (GeoMIP), Atmospheric Science Letters, 12(2), 162-167, doi:10.1002/asl.316, 2011). These experiments use state-of-the-art climate models to simulate solar geoengineering via uniform solar reduction, creation of stratospheric sulfate aerosol layers, or injecting sea spray into the marine boundary layer. GeoMIP has been quite successful in its mission ofmore » revealing robust features and key uncertainties of the modeled effects of solar geoengineering.« less

  1. The Impact of Abrupt Suspension of Solar Radiation Management (Termination Effect) in Experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Andrew; Haywood, J.; Alterskjaer, Kari

    2013-09-11

    We have examined changes in climate which result from the sudden termination of geoengineering after 50 years of offsetting a 1% per annum increase in CO2 concentra- tions as simulated by 11 different climate models in experiment G2 of the Geoengineering Model Intercomparison Project. The models agree on a rapid rate of global-mean warming following termination, accompanied by increases in global-mean precipitation rate and in plant net primary productivity, and decreases in sea-ice cover. While there is a considerable degree of consensus for the geographical distribution of warming, there is much less of an agreement regarding the patterns of changemore » in the other quantities.« less

  2. The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2

    NASA Astrophysics Data System (ADS)

    Swales, Dustin J.; Pincus, Robert; Bodas-Salcedo, Alejandro

    2018-01-01

    The Cloud Feedback Model Intercomparison Project Observational Simulator Package (COSP) gathers together a collection of observation proxies or satellite simulators that translate model-simulated cloud properties to synthetic observations as would be obtained by a range of satellite observing systems. This paper introduces COSP2, an evolution focusing on more explicit and consistent separation between host model, coupling infrastructure, and individual observing proxies. Revisions also enhance flexibility by allowing for model-specific representation of sub-grid-scale cloudiness, provide greater clarity by clearly separating tasks, support greater use of shared code and data including shared inputs across simulators, and follow more uniform software standards to simplify implementation across a wide range of platforms. The complete package including a testing suite is freely available.

  3. SUMCOR: Cascade summing correction for volumetric sources applying MCNP6.

    PubMed

    Dias, M S; Semmler, R; Moreira, D S; de Menezes, M O; Barros, L F; Ribeiro, R V; Koskinas, M F

    2018-04-01

    The main features of code SUMCOR developed for cascade summing correction for volumetric sources are described. MCNP6 is used to track histories starting from individual points inside the volumetric source, for each set of cascade transitions from the radionuclide. Total and FEP efficiencies are calculated for all gamma-rays and X-rays involved in the cascade. Cascade summing correction is based on the matrix formalism developed by Semkow et al. (1990). Results are presented applying the experimental data sent to the participants of two intercomparisons organized by the ICRM-GSWG and coordinated by Dr. Marie-Cristine Lépy from the Laboratoire National Henri Becquerel (LNE-LNHB), CEA, in 2008 and 2010, respectively and compared to the other participants in the intercomparisons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use

    USGS Publications Warehouse

    Breuer, L.; Huisman, J.A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.

    2009-01-01

    This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. In this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model performance are considered and that all models are suitable to participate in further multi-model ensemble set-ups and land use change scenario investigations. ?? 2008 Elsevier Ltd. All rights reserved.

  5. Intercomparison of SO2 camera systems for imaging volcanic gas plumes

    USGS Publications Warehouse

    Kern, Christoph; Lübcke, Peter; Bobrowski, Nicole; Campion, Robin; Mori, Toshiya; Smekens, Jean-Francois; Stebel, Kerstin; Tamburello, Giancarlo; Burton, Mike; Platt, Ulrich; Prata, Fred

    2015-01-01

    SO2 camera systems are increasingly being used to image volcanic gas plumes. The ability to derive SO2 emission rates directly from the acquired imagery at high time resolution allows volcanic process studies that incorporate other high time-resolution datasets. Though the general principles behind the SO2 camera have remained the same for a number of years, recent advances in CCD technology and an improved understanding of the physics behind the measurements have driven a continuous evolution of the camera systems. Here we present an intercomparison of seven different SO2 cameras. In the first part of the experiment, the various technical designs are compared and the advantages and drawbacks of individual design options are considered. Though the ideal design was found to be dependent on the specific application, a number of general recommendations are made. Next, a time series of images recorded by all instruments at Stromboli Volcano (Italy) is compared. All instruments were easily able to capture SO2 clouds emitted from the summit vents. Quantitative comparison of the SO2 load in an individual cloud yielded an intra-instrument precision of about 12%. From the imagery, emission rates were then derived according to each group's standard retrieval process. A daily average SO2 emission rate of 61 ± 10 t/d was calculated. Due to differences in spatial integration methods and plume velocity determination, the time-dependent progression of SO2 emissions varied significantly among the individual systems. However, integration over distinct degassing events yielded comparable SO2 masses. Based on the intercomparison data, we find an approximate 1-sigma precision of 20% for the emission rates derived from the various SO2 cameras. Though it may still be improved in the future, this is currently within the typical accuracy of the measurement and is considered sufficient for most applications.

  6. Global inter-comparison of microwave and infrared LST from multiple sensors (AMSR-E, MODIS, SEVIRI, GOES, and MTSAT-2)

    NASA Astrophysics Data System (ADS)

    Ermida, Sofia L.; Jiménez, Carlos; Prigent, Catherine; Trigo, Isabel F.; DaCamara, Carlos C.

    2017-04-01

    Land Surface Temperature (LST) is an important diagnostic parameter of land surface conditions. Satellite LST products generally rely on measurements in the thermal infrared (IR) atmospheric window, which only allows clear sky estimates. Microwave (MW) observations can alternatively be used to derive an all-weather LST. Here we present an inter-comparison between LST derived from the Advanced Microwave Scanning Radiometer - Earth observation system (AMSR-E), the MODerate resolution Imaging Spectroradiometer (MODIS) on-board Aqua, the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board Meteosat Second Generation (MSG) satellites, the Geostationary Operational Environmental Satellite (GOES) and the Japanese Meteorological Imager (JAMI) on-board the Multifunction Transport SATellite (MTSAT-2). The higher discrepancies between MW and IR products are observed over snow covered areas. MW emissivity is highly variable for snow-covered ground and not always properly accounted for by the climatological emissivity used in the retrieval. There is a conspicuous bias between MODIS and AMSR-E over desert areas, which is most likely related to the underestimation of LST by MODIS as previously reported in other studies. Inter-comparison between all IR and MW retrievals shows that the STD of the differences between MW and IR LST is generally higher than between IR retrievals. However, the biases between MW and IR LST are, in some cases, of the same order as the ones observed among infrared products. In particular, GOES presents a daytime bias with respect to AMSR-E of 0.45 K whereas the bias with respect to MODIS is 0.60 K. Given that AMSR-E can provide LST under cloudy conditions, the use of microwaves, considering simultaneous overpasses with IR, represents an increase of more than 250% of the number of available LST estimates over equatorial regions. With the MW products of a comparable quality to the IR ones, the MW LST is a very powerful complement of the IR estimates.

  7. Intercomparison of SO2 camera systems for imaging volcanic gas plumes

    NASA Astrophysics Data System (ADS)

    Kern, Christoph; Lübcke, Peter; Bobrowski, Nicole; Campion, Robin; Mori, Toshiya; Smekens, Jean-François; Stebel, Kerstin; Tamburello, Giancarlo; Burton, Mike; Platt, Ulrich; Prata, Fred

    2015-07-01

    SO2 camera systems are increasingly being used to image volcanic gas plumes. The ability to derive SO2 emission rates directly from the acquired imagery at high time resolution allows volcanic process studies that incorporate other high time-resolution datasets. Though the general principles behind the SO2 camera have remained the same for a number of years, recent advances in CCD technology and an improved understanding of the physics behind the measurements have driven a continuous evolution of the camera systems. Here we present an intercomparison of seven different SO2 cameras. In the first part of the experiment, the various technical designs are compared and the advantages and drawbacks of individual design options are considered. Though the ideal design was found to be dependent on the specific application, a number of general recommendations are made. Next, a time series of images recorded by all instruments at Stromboli Volcano (Italy) is compared. All instruments were easily able to capture SO2 clouds emitted from the summit vents. Quantitative comparison of the SO2 load in an individual cloud yielded an intra-instrument precision of about 12%. From the imagery, emission rates were then derived according to each group's standard retrieval process. A daily average SO2 emission rate of 61 ± 10 t/d was calculated. Due to differences in spatial integration methods and plume velocity determination, the time-dependent progression of SO2 emissions varied significantly among the individual systems. However, integration over distinct degassing events yielded comparable SO2 masses. Based on the intercomparison data, we find an approximate 1-sigma precision of 20% for the emission rates derived from the various SO2 cameras. Though it may still be improved in the future, this is currently within the typical accuracy of the measurement and is considered sufficient for most applications.

  8. Inter-Comparison of CHARM Data and WSR-88D Storm Integrated Rainfall

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Meyer, Paul J.; Guillory, Anthony R.; Stellman, Keith; Limaye, Ashutosh; Arnold, James E. (Technical Monitor)

    2002-01-01

    A localized precipitation network has been established over a 4000 sq km region of northern Alabama in support of local weather and climate research at the Global Hydrology and Climate Center (GHCC) in Huntsville. This Cooperative Huntsville-Area Rainfall Measurement (CHARM) network is comprised of over 80 volunteers who manually take daily rainfall measurements from 85 sites. The network also incorporates 20 automated gauges that report data at 1-5 minute intervals on a 24 h a day basis. The average spacing of the gauges in the network is about 6 kin, however coverage in some regions benefit from gauges every 1-2 km. The 24 h rainfall totals from the CHARM network have been used to validate Stage III rainfall estimates of daily and storm totals derived from the WSR-88D radars that cover northern Alabama. The Stage III rainfall product is produced by the Lower Mississippi River Forecast Center (LMRFC) in support of their daily forecast operations. The intercomparisons between the local rain gauge and the radar estimates have been useful to understand the accuracy and utility of the Stage III data. Recently, the Stage III and CHARM rainfall measurements have been combined to produce an hourly rainfall dataset at each CHARM observation site. The procedure matches each CHARM site with a time sequence of Stage III radar estimates of precipitation. Hourly stage III rainfall estimates were used to partition the rain gauge values to the time interval over which they occurred. The new hourly rain gauge dataset is validated at selected points where 1-5 minute rainfall measurements have been made. This procedure greatly enhances the utility of the CHARM data for local weather and hydrologic modeling studies. The conference paper will present highlights of the Stage III intercomparison and some examples of the combined radar / rain gauge product demonstrating its accuracy and utility in deriving an hourly rainfall product from the 24 h CHARM totals.

  9. Evaluation of DFIR and Bush Gauge Snowfall Measurements at Boreal Forest Sites in Saskatchewan/Canada and Valdai/Russia

    NASA Astrophysics Data System (ADS)

    Yang, D.; Smith, C.

    2013-12-01

    Snowfall is important to cold region climate and hydrology including Canada. Large uncertainties and biases exist in gauge-measured precipitation datasets and products. These uncertainties affect important decision-making, water resources assessments, climate change analyses, and calibrations of remote sensing algorithms and land surface models. Efforts have been made at both the national and international levels to quantity the errors/biases in precipitation measurements, such as the WMO Solid Precipitation Intercomparison Experiment (WMO-SPICE). Both the DFIR (double fence intercomparison reference) and the bush shielded gauge have been used in the past as a reference measurement for solid precipitation and they both have been selected as the references for the current SPICE project. Previous analyses of the DFIR vs. the bush (manual Tretyakov) gauge data collected at the Valdai station in Russia suggest DFIR undercatch of snowfall by up to 10% for high wind conditions. A regression relationship between the 2 systems was derived and used for the last WMO gauge intercomparison. Given the importance of the DFIR as the reference for the WMO SPICE project, it is necessary to re-examine and update the DFIR and bush gauge relationship. As part of Canada's contribution to the WMO SPICE project, a test site has been set up by EC/ASTD/WSDT in the southern Canadian Boreal forest to compare the DFIR and bush gauges. This site, called the Caribou Creek, has been installed within a modified young Jack Pine forest stand - north of Prince Albert in Saskatchewan. This study compiles and analyzes recent DFIR and bush gauge data from both the Valdai and Caribou Creek sites. This presentation summarizes the results of data analyses, and evaluates the performance of both references for snowfall observations in the northern regions. The methods and results of this research will directly support the WMO SPICE project and contribute to cold region hydrology and climate change research.

  10. Web-based Reanalysis Intercomparison Tools (WRIT): Comparing Reanalyses and Observational data.

    NASA Astrophysics Data System (ADS)

    Compo, G. P.; Smith, C. A.; Hooper, D. K.

    2014-12-01

    While atmospheric reanalysis datasets are widely used in climate science, many technical issues hinder comparing them to each other and to observations. The reanalysis fields are stored in diverse file architectures, data formats, and resolutions, with metadata, such as variable name and units, that also differ. Individual users have to download the fields, convert them to a common format, store them locally, change variable names, re-grid if needed, and convert units. Comparing reanalyses with observational datasets is difficult for similar reasons. Even if a dataset can be read via Open-source Project for a Network Data Access Protocol (OPeNDAP) or a similar protocol, most of this work is still needed. All of these tasks take time, effort, and money. To overcome some of the obstacles in reanalysis intercomparison, our group at the Cooperative Institute for Research in the Environmental Sciences (CIRES) at the University of Colorado and affiliated colleagues at National Oceanic and Atmospheric Administration's (NOAA's) Earth System Research Laboratory Physical Sciences Division (ESRL/PSD) have created a set of Web-based Reanalysis Intercomparison Tools (WRIT) at http://www.esrl.noaa.gov/psd/data/writ/. WRIT allows users to easily plot and compare reanalysis and observational datasets, and to test hypotheses. Currently, there are tools to plot monthly mean maps and vertical cross-sections, timeseries, and trajectories for standard pressure level and surface variables. Users can refine dates, statistics, and plotting options. Reanalysis datasets currently available include the NCEP/NCAR R1, NCEP/DOE R2, MERRA, ERA-Interim, NCEP CFSR and the 20CR. Observational datasets include those containing precipitation (e.g. GPCP), temperature (e.g. GHCNCAMS), winds (e.g. WASWinds), precipitable water (e.g. NASA NVAP), SLP (HadSLP2), and SST (NOAA ERSST). WRIT also facilitates the mission of the Reanalyses.org website as a convenient toolkit for studying the reanalysis datasets.

  11. Stratospheric water vapor and ozone evaluation in reanalyses as part of the SPARC Reanalysis Intercomparison Project (S-RIP)

    NASA Astrophysics Data System (ADS)

    Davis, S. M.; Hegglin, M. I.; Fujiwara, M.; Manney, G. L.; Dragani, R.; Nash, E.; Tegtmeier, S.; Kobayashi, C.; Harada, Y.; Long, C. S.; Wargan, K.; Rosenlof, K. H.

    2017-12-01

    Reanalyses are widely used to understand atmospheric processes and past variability, and are often used to stand in as "observations" for comparisons with climate model output. Because of the central role of water vapor (WV) and ozone (O3) in climate change, it is important to understand how accurately and consistently these species are represented in existing global reanalyses. Here we present the results of WV and O3 intercomparisons that have been performed as part of the SPARC (Stratosphere-troposphere Processes and their Role in Climate) Reanalysis Intercomparison Project (S-RIP). The comparisons cover a range of timescales and evaluate both inter-reanalysis and observation-reanalysis differences. The assimilation of total column ozone (TCO) observations in newer reanalyses results in realistic representations of TCO in reanalyses except when data coverage is lacking, such as during polar night. The vertical distribution of ozone is also relatively well represented in the stratosphere in reanalyses, particularly given the relatively weak constraints on ozone vertical structure provided by most assimilated observations and the simplistic representations of ozone photochemical processes in most of the reanalysis forecast models. For times when vertically resolved observations are not assimilated, biases in the vertical distribution of ozone are found in the upper troposphere and lower stratosphere in all reanalyses. In contrast to O3, reanalysis stratospheric WV fields are not directly constrained by assimilated data. Observations of atmospheric humidity are typically used only in the troposphere, below a specified vertical level at or near the tropopause. The fidelity of reanalysis stratospheric WV products is therefore dependent on the reanalyses' representation of processes that influence stratospheric WV, such as tropical tropopause layer temperatures and methane oxidation. The lack of assimilated observations and known deficiencies in the representation of stratospheric transport in reanalyses result in much poorer agreement amongst observational and reanalysis estimates of stratospheric WV. Hence, stratospheric WV products from the current generation of reanalyses should generally not be used in scientific studies.

  12. The Agriculture Model Intercomparison and Improvement Project (AgMIP) (Invited)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2010-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and world agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Historical period results will spur model improvement and interaction among major modeling groups, while future period results will lead directly to tests of adaptation and mitigation strategies across a range of scales. AgMIP will consist of a multi-scale impact assessment utilizing the latest methods for climate and agricultural scenario generation. Scenarios and modeling protocols will be distributed on the web, and multi-model results will be collated and analyzed to ensure the widest possible coverage of agricultural crops and regions. AgMIP will place regional changes in agricultural production in a global context that reflects new trading opportunities, imbalances, and shortages in world markets resulting from climate change and other driving forces for food supply. Such projections are essential inputs from the Vulnerability, Impacts, and Adaptation (VIA) research community to the Intergovernmental Panel on Climate Change Fifth Assessment (AR5), now underway, and the UN Framework Convention on Climate Change. They will set the context for local-scale vulnerability and adaptation studies, supply test scenarios for national-scale development of trade policy instruments, provide critical information on changing supply and demand for water resources, and elucidate interactive effects of climate change and land use change. AgMIP will not only provide crucially-needed new global estimates of how climate change will affect food supply and hunger in the agricultural regions of the world, but it will also build the capabilities of developing countries to estimate how climate change will affect their supply and demand for food.

  13. Innovative methodology for intercomparison of radionuclide calibrators using short half-life in situ prepared radioactive sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, P. A.; Santos, J. A. M., E-mail: joao.santos@ipoporto.min-saude.pt; Serviço de Física Médica do Instituto Português de Oncologia do Porto Francisco Gentil, EPE, Porto

    2014-07-15

    Purpose: An original radionuclide calibrator method for activity determination is presented. The method could be used for intercomparison surveys for short half-life radioactive sources used in Nuclear Medicine, such as{sup 99m}Tc or most positron emission tomography radiopharmaceuticals. Methods: By evaluation of the resulting net optical density (netOD) using a standardized scanning method of irradiated Gafchromic XRQA2 film, a comparison of the netOD measurement with a previously determined calibration curve can be made and the difference between the tested radionuclide calibrator and a radionuclide calibrator used as reference device can be calculated. To estimate the total expected measurement uncertainties, a carefulmore » analysis of the methodology, for the case of{sup 99m}Tc, was performed: reproducibility determination, scanning conditions, and possible fadeout effects. Since every factor of the activity measurement procedure can influence the final result, the method also evaluates correct syringe positioning inside the radionuclide calibrator. Results: As an alternative to using a calibrated source sent to the surveyed site, which requires a relatively long half-life of the nuclide, or sending a portable calibrated radionuclide calibrator, the proposed method uses a source preparedin situ. An indirect activity determination is achieved by the irradiation of a radiochromic film using {sup 99m}Tc under strictly controlled conditions, and cumulated activity calculation from the initial activity and total irradiation time. The irradiated Gafchromic film and the irradiator, without the source, can then be sent to a National Metrology Institute for evaluation of the results. Conclusions: The methodology described in this paper showed to have a good potential for accurate (3%) radionuclide calibrators intercomparison studies for{sup 99m}Tc between Nuclear Medicine centers without source transfer and can easily be adapted to other short half-life radionuclides.« less

  14. Summary findings of the fourth international radiocarbon intercomparison (FIRI)(1998-2001)

    NASA Astrophysics Data System (ADS)

    Boaretto, Elisabetta; Bryant, Charlotte; Carmi, Israel; Cook, Gordon; Gulliksen, Steinar; Harkness, Doug; Heinemeier, Jan; McClure, John; McGee, Edward; Naysmith, Philip; Possnert, Goran; Scott, Marian; van der Plicht, Hans; van Strydonck, Mark

    2002-10-01

    Interlaboratory comparisons have been widely used in applied radiocarbon science. These are an important part of ongoing quality assurance (QA) programmes, which are vital to the appropriate interpretation of the evidence provided by the 14C record in Quaternary applications (including climate change and environmental reconstruction). International comparisons of laboratory performance are an essential component of the quality assurance process in radiocarbon dating. If the user community is to have confidence in radiocarbon results, it needs to be assured that laboratories world wide are producing measurements that are reliable and in accordance with good practice. The findings from the most recent (completed in 2001) and extensive (more than 90 participating laboratories) radiocarbon intercomparison (FIRI) are reported here. This study was designed (i) to assess comparability, or otherwise, of the results from different laboratories and (ii) to quantify the extent and possible causes of any interlaboratory variation. The results demonstrate that there are no significant differences amongst the main measurement techniques (gas proportional counting, liquid scintillation counting and accelerator mass spectrometry (AMS)) but there is evidence of small laboratory offsets relative to known age samples for some laboratories. There is also evidence in some cases of underestimation of measurement precision. Approximately 10% of all results were classified as extreme (outliers) and these results were generated by 14% of the laboratories. Overall, the evidence supports the fact that radiocarbon laboratories are generally accurate and precise but that, notwithstanding internal QA procedures, some problems still occur, which can best be detected by participation in independent intercomparisons such as FIRI, where the results allow individual laboratories to assess their performance and to take remedial measures where necessary. The results from FIRI are significant in that they show a broad measure of agreement between measurements made in different laboratories on a wide range of materials and they also demonstrate no statistically significant difference between measurements made by radiometric or AMS techniques.

  15. Two-Dimensional Intercomparison of Stratospheric Models

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H. (Editor); Seals, Robert K., Jr. (Editor); Prather, Michael J. (Editor)

    1989-01-01

    A detailed record is provided for the examination of fundamental differences in photochemistry and transport among atmospheric models. The results of 16 different modeling groups are presented for several model experiments.

  16. RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA).

    PubMed

    Oestreicher, Ursula; Samaga, Daniel; Ainsbury, Elizabeth; Antunes, Ana Catarina; Baeyens, Ans; Barrios, Leonardo; Beinke, Christina; Beukes, Philip; Blakely, William F; Cucu, Alexandra; De Amicis, Andrea; Depuydt, Julie; De Sanctis, Stefania; Di Giorgio, Marina; Dobos, Katalin; Dominguez, Inmaculada; Duy, Pham Ngoc; Espinoza, Marco E; Flegal, Farrah N; Figel, Markus; Garcia, Omar; Monteiro Gil, Octávia; Gregoire, Eric; Guerrero-Carbajal, C; Güçlü, İnci; Hadjidekova, Valeria; Hande, Prakash; Kulka, Ulrike; Lemon, Jennifer; Lindholm, Carita; Lista, Florigio; Lumniczky, Katalin; Martinez-Lopez, Wilner; Maznyk, Nataliya; Meschini, Roberta; M'kacher, Radia; Montoro, Alegria; Moquet, Jayne; Moreno, Mercedes; Noditi, Mihaela; Pajic, Jelena; Radl, Analía; Ricoul, Michelle; Romm, Horst; Roy, Laurence; Sabatier, Laure; Sebastià, Natividad; Slabbert, Jacobus; Sommer, Sylwester; Stuck Oliveira, Monica; Subramanian, Uma; Suto, Yumiko; Que, Tran; Testa, Antonella; Terzoudi, Georgia; Vral, Anne; Wilkins, Ruth; Yanti, LusiYanti; Zafiropoulos, Demetre; Wojcik, Andrzej

    2017-01-01

    Two quality controlled inter-laboratory exercises were organized within the EU project 'Realizing the European Network of Biodosimetry (RENEB)' to further optimize the dicentric chromosome assay (DCA) and to identify needs for training and harmonization activities within the RENEB network. The general study design included blood shipment, sample processing, analysis of chromosome aberrations and radiation dose assessment. After manual scoring of dicentric chromosomes in different cell numbers dose estimations and corresponding 95% confidence intervals were submitted by the participants. The shipment of blood samples to the partners in the European Community (EU) were performed successfully. Outside the EU unacceptable delays occurred. The results of the dose estimation demonstrate a very successful classification of the blood samples in medically relevant groups. In comparison to the 1st exercise the 2nd intercomparison showed an improvement in the accuracy of dose estimations especially for the high dose point. In case of a large-scale radiological incident, the pooling of ressources by networks can enhance the rapid classification of individuals in medically relevant treatment groups based on the DCA. The performance of the RENEB network as a whole has clearly benefited from harmonization processes and specific training activities for the network partners.

  17. Microdosimetric intercomparison of BNCT beams at BNL and MIT.

    PubMed

    Burmeister, Jay; Riley, Kent; Coderre, Jeffrey A; Harling, Otto K; Ma, Ruimei; Wielopolski, Lucian; Kota, Chandrasekhar; Maughan, Richard L

    2003-08-01

    Microdosimetric measurements have been performed at the clinical beam intensities in two epithermal neutron beams, the Brookhaven Medical Research Reactor and the M67 beam at the Massachusetts Institute of Technology Research Reactor, which have been used to treat patients with Boron Neutron Capture Therapy (BNCT). These measurements offer an independent assessment of the dosimetry used at these two facilities, as well as provide information about the radiation quality not obtainable from conventional macrodosimetric techniques. Moreover, they provide a direct measurement of the absorbed dose resulting from the BNC reaction. BNC absorbed doses measured within this study are approximately 15% lower than those estimated using foil activation at both MIT and BNL. Finally, an intercomparison of the characteristics and radiation quality of these two clinical beams is presented. The techniques described here allow an accurate quantitative comparison of the physical absorbed dose as well as a measure of the biological effectiveness of the absorbed dose delivered by different epithermal beams. No statistically significant differences were observed in the predicted RBEs of these two beams. The methodology presented here can help to facilitate the effective sharing of clinical results in an effort to demonstrate the clinical utility of BNCT.

  18. Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Alterskjær, K.; Karam, D. Bou; Boucher, O.; Jones, A.; Kristjánsson, J. E.; Niemeier, U.; Schulz, M.; Aaheim, A.; Benduhn, F.; Lawrence, M.; Timmreck, C.

    2012-06-01

    In this study we compare the response of four state-of-the-art Earth system models to climate engineering under scenario G1 of two model intercomparison projects: GeoMIP (Geoengineering Model Intercomparison Project) and IMPLICC (EU project "Implications and risks of engineering solar radiation to limit climate change"). In G1, the radiative forcing from an instantaneous quadrupling of the CO2 concentration, starting from the preindustrial level, is balanced by a reduction of the solar constant. Model responses to the two counteracting forcings in G1 are compared to the preindustrial climate in terms of global means and regional patterns and their robustness. While the global mean surface air temperature in G1 remains almost unchanged compared to the control simulation, the meridional temperature gradient is reduced in all models. Another robust response is the global reduction of precipitation with strong effects in particular over North and South America and northern Eurasia. In comparison to the climate response to a quadrupling of CO2 alone, the temperature responses are small in experiment G1. Precipitation responses are, however, in many regions of comparable magnitude but globally of opposite sign.

  19. Diagnostic Studies With GLA Fields

    NASA Technical Reports Server (NTRS)

    Salstein, David A.

    1997-01-01

    Assessments of the NASA Goddard Earth Observing System-1 Data Assimilation System (GEOS-1 DAS) regarding heating rates, energetics and angular momentum quantities were made. These diagnostics can be viewed as measures of climate variability. Comparisons with the NOAA/NCEP reanalysis system of momentum and energetics diagnostics are included. Water vapor and angular momentum are diagnosed in many models, including those of NASA, as part of the Atmospheric Model Intercomparison Project. Relevant preprints are included herein.

  20. Intercomparison of Targeted Observation Guidance for Tropical Cyclones in the Northwestern Pacific

    DTIC Science & Technology

    2009-08-01

    sensitivity of NCVAR is usually located near the midlatitude jet or extratropical storm , where high winds may be collocated with large DLM wind variance or the...the six guidance products and to interpret the dynamical systems affecting the TC motion in the northwestern Pacific. Among the three storms studied...Atmospheric Administration (NOAA) Winter Storms Corresponding author address: Dr. Chun-Chieh Wu, Dept. of Atmospheric Sciences, National Taiwan University, No

  1. Intercomparison of CO 2 measurements

    NASA Astrophysics Data System (ADS)

    Poisson, A.; Culkin, F.; Ridout, P.

    1990-10-01

    Seawater samples, of four different salinities, were analysed for total alkalinity, total CO 2, pH and pCO 2 by up to 12 laboratories. The results showthat although most laboratories are capable of high precision in these determinations, there is an unacceptably high disagreement between their analyses of the same samples. For global programmes involving studies of the CO 2 system in seawater, it is strongly recommended that standard reference materials be made widely available.

  2. Systematic Differences between Satellite-Based Presipitation Climatologies over the Tropical Oceans

    NASA Technical Reports Server (NTRS)

    Robertson, Frankin R.; Fitzjarrald, Dan; McCaul, Eugene W.

    1999-01-01

    Since the beginning of the World Climate Research Program's Global Precipitation Climatology Project (GPCP) satellite remote sensing of precipitation has made dramatic improvements, particularly for tropical regions. Data from microwave and infrared sensors now form the most critical input to precipitation data sets and can be calibrated with surface gauges to so that the strengths of each data source can be maximized in some statistically optimal sense. It is clear however that there still remain significant uncertainties with satellite precipitation retrievals which limit their usefulness for many purposes. Systematic differences i'A tropical precipitation estimates have been brought to light in comparison activities such as the GPCP Algorithm Intercomparison Project and more recent Wetnet Precipitation Intercomparison Project 3. These uncertainties are assuming more importance because of the demands for validation associated with global climate modeling and data assimilation methodologies. The objective of the present study is to determine the physical basis for systematic differences in spatial structure of tropical precipitation as portrayed by several different satellite-based data sets. The study is limited to oceanic regions only and deals primarily with aspects of spatial variability. We are specifically interested in why MSU channel 1 and GPI precipitation differences are so striking over the Eastern Pacific ITCZ and why they both differ from other microwave emission-based precipitation estimates from SSM/I and a scattering-based deep convective ice index from MSU channel 2. Our results to date have shown that MSU channel I precipitation estimates are biased high over the Eastern Pacific ITCZ because of two factors: (1) the hypersensitivity of this frequency to cloud water in contrast to falling rain drops, and (2) unaccounted for scattering effects by precipitation-size ice which depresses the signal of the liquid water emission. Likewise, cold cloud top climatologies such as the GPI show an excess (a deficit) in estimated rainfall over the E. Pacific ITCZ (Warm Pool region). We show that these algorithms need to account for regionally varying heights (or temperatures) at which tropical convection detrains to form cirrus shields. A second objective we pursue is to identify variations in the macroscale cloud physical and thermodynamic properties of precipitation regimes" and relate these differences to tropical dynamical mechanisms of tropical heat and moisture balance. Finally, we interpret the algorithm differences and their associations with tropical dynamics in terms of WCRP GPCP goals for constructing precipitation climatologies.

  3. Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.

    2015-01-01

    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.

  4. Future sea ice conditions and weather forecasts in the Arctic: Implications for Arctic shipping.

    PubMed

    Gascard, Jean-Claude; Riemann-Campe, Kathrin; Gerdes, Rüdiger; Schyberg, Harald; Randriamampianina, Roger; Karcher, Michael; Zhang, Jinlun; Rafizadeh, Mehrad

    2017-12-01

    The ability to forecast sea ice (both extent and thickness) and weather conditions are the major factors when it comes to safe marine transportation in the Arctic Ocean. This paper presents findings focusing on sea ice and weather prediction in the Arctic Ocean for navigation purposes, in particular along the Northeast Passage. Based on comparison with the observed sea ice concentrations for validation, the best performing Earth system models from the Intergovernmental Panel on Climate Change (IPCC) program (CMIP5-Coupled Model Intercomparison Project phase 5) were selected to provide ranges of potential future sea ice conditions. Our results showed that, despite a general tendency toward less sea ice cover in summer, internal variability will still be large and shipping along the Northeast Passage might still be hampered by sea ice blocking narrow passages. This will make sea ice forecasts on shorter time and space scales and Arctic weather prediction even more important.

  5. Multi-model trends in East African rainfall associated with increased CO2

    NASA Astrophysics Data System (ADS)

    McHugh, Maurice J.

    2005-01-01

    Nineteen coupled ocean-atmosphere general circulation models participating in the Coupled Model Intercomparison Program (CMIP) were used to analyze future rainfall conditions over East Africa under enhanced CO2 conditions. 80 year control runs of these models indicated that four models produced mean annual rainfall distributions closely resembling climatological means and all four models had normalized root mean square errors well within the bounds of observed variability. East African (10°N-20°S, 25°-50°E) rainfall data from transient 80 year experiments which featured CO2 increases of 1% per year were compared with 80 year control simulations. Results indicate enhanced annual and seasonal rainfall rates, and increased extreme wet period frequency. These results indicate that East Africa may face a future in which mosquito-borne diseases such as malaria and Rift Valley fever proliferate resulting from increased CO2.

  6. A Global Repository for Planet-Sized Experiments and Observations

    NASA Technical Reports Server (NTRS)

    Williams, Dean; Balaji, V.; Cinquini, Luca; Denvil, Sebastien; Duffy, Daniel; Evans, Ben; Ferraro, Robert D.; Hansen, Rose; Lautenschlager, Michael; Trenham, Claire

    2016-01-01

    Working across U.S. federal agencies, international agencies, and multiple worldwide data centers, and spanning seven international network organizations, the Earth System Grid Federation (ESGF) allows users to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a system of geographically distributed peer nodes that are independently administered yet united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP) output used by the Intergovernmental Panel on Climate Change assessment reports. Data served by ESGF not only include model output (i.e., CMIP simulation runs) but also include observational data from satellites and instruments, reanalyses, and generated images. Metadata summarize basic information about the data for fast and easy data discovery.

  7. Updates from the AmeriFlux Management Project Tech Team

    NASA Astrophysics Data System (ADS)

    Biraud, S.; Chan, S.; Dengel, S.; Polonik, P.; Hanson, C. V.; Billesbach, D. P.; Torn, M. S.

    2017-12-01

    The goal of AmeriFlux is to develop a network of long-term flux sites for quantifying and understanding the role of the terrestrial biosphere in global climate and environmental change. The AmeriFlux Management Program (AMP) Tech Team at LBNL strengthens the AmeriFlux Network by (1) standardizing operational practices, (2) developing calibration and maintenance routines, and (3) setting clear data quality goals. In this poster we will present results and recent progress in three areas: IRGA intercomparison experiment in cooperation with UC Davis, and main manufacturers of sensors used in the AmeriFlux network (LI-COR, Picarro, and Campbell Scientific). Gill sonic anemometers characterization in collaboration with John Frank and Bill Massman (US Forest Service) following the discovery of a significant firmware problem in commonly used Gill Sonic anemometer, Unmanned aerial systems (UAS), and sensors systematically used at AmeriFlux sites to improve site characterization.

  8. Inter-comparison of source apportionment of PM10 using PMF and CMB in three sites nearby an industrial area in central Italy

    NASA Astrophysics Data System (ADS)

    Cesari, Daniela; Donateo, Antonio; Conte, Marianna; Contini, Daniele

    2016-12-01

    Receptor models (RMs), based on chemical composition of particulate matter (PM), such as Chemical Mass Balance (CMB) and Positive Matrix Factorization (PMF), represent useful tools for determining the impact of PM sources to air quality. This information is useful, especially in areas influenced by anthropogenic activities, to plan mitigation strategies for environmental management. Recent inter-comparison of source apportionment (SA) results showed that one of the difficulties in the comparison of estimated source contributions is the compatibility of the sources, i.e. the chemical profiles of factor/sources used in receptor models. This suggests that SA based on integration of several RMs could give more stable and reliable solutions with respect to a single model. The aim of this work was to perform inter-comparison of PMF (using PMF3.0 and PMF5.0 codes) and CMB outputs, focusing on both source chemical profiles and estimates of source contributions. The dataset included 347 daily PM10 samples collected in three sites in central Italy located near industrial emissions. Samples were chemically analysed for the concentrations of 21 chemical species (NH4+, Ca2 +, Mg2 +, Na+, K+, Mg2 +, SO42 -, NO3-, Cl-, Si, Al, Ti, V, Mn, Fe, Ni, Cu, Zn, Br, EC, and OC) used as input of RMs. The approach identified 9 factor/sources: marine, traffic, resuspended dust, biomass burning, secondary sulphate, secondary nitrate, crustal, coal combustion power plant and harbour-industrial. Results showed that the application of constraints in PMF5.0 improved interpretability of profiles and comparability of estimated source contributions with stoichiometric calculations. The inter-comparison of PMF and CMB gave significant differences for secondary nitrate, biomass burning, and harbour-industrial sources, due to non-compatibility of these source profiles that have local specificities. When these site-dependent specificities were taken into account, optimising the input source profiles of CMB, a significant improvement in the comparison of the estimated source contributions with PMF was obtained.

  9. Biogeochemical Protocols and Diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)

    NASA Technical Reports Server (NTRS)

    Orr, James C.; Najjar, Raymond G.; Aumont, Olivier; Bopp, Laurent; Bullister, John L.; Danabasoglu, Gokhan; Doney, Scott C.; Dunne, John P.; Dutay, Jean-Claude; Graven, Heather; hide

    2017-01-01

    The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948-2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF [subscript] 6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.

  10. Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)

    NASA Astrophysics Data System (ADS)

    Orr, James C.; Najjar, Raymond G.; Aumont, Olivier; Bopp, Laurent; Bullister, John L.; Danabasoglu, Gokhan; Doney, Scott C.; Dunne, John P.; Dutay, Jean-Claude; Graven, Heather; Griffies, Stephen M.; John, Jasmin G.; Joos, Fortunat; Levin, Ingeborg; Lindsay, Keith; Matear, Richard J.; McKinley, Galen A.; Mouchet, Anne; Oschlies, Andreas; Romanou, Anastasia; Schlitzer, Reiner; Tagliabue, Alessandro; Tanhua, Toste; Yool, Andrew

    2017-06-01

    The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948-2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.

  11. GEO-LEO reflectance band inter-comparison with BRDF and atmospheric scattering corrections

    NASA Astrophysics Data System (ADS)

    Chang, Tiejun; Xiong, Xiaoxiong Jack; Keller, Graziela; Wu, Xiangqian

    2017-09-01

    The inter-comparison of the reflective solar bands between the instruments onboard a geostationary orbit satellite and onboard a low Earth orbit satellite is very helpful to assess their calibration consistency. GOES-R was launched on November 19, 2016 and Himawari 8 was launched October 7, 2014. Unlike the previous GOES instruments, the Advanced Baseline Imager on GOES-16 (GOES-R became GOES-16 after November 29 when it reached orbit) and the Advanced Himawari Imager (AHI) on Himawari 8 have onboard calibrators for the reflective solar bands. The assessment of calibration is important for their product quality enhancement. MODIS and VIIRS, with their stringent calibration requirements and excellent on-orbit calibration performance, provide good references. The simultaneous nadir overpass (SNO) and ray-matching are widely used inter-comparison methods for reflective solar bands. In this work, the inter-comparisons are performed over a pseudo-invariant target. The use of stable and uniform calibration sites provides comparison with appropriate reflectance level, accurate adjustment for band spectral coverage difference, reduction of impact from pixel mismatching, and consistency of BRDF and atmospheric correction. The site in this work is a desert site in Australia (latitude -29.0 South; longitude 139.8 East). Due to the difference in solar and view angles, two corrections are applied to have comparable measurements. The first is the atmospheric scattering correction. The satellite sensor measurements are top of atmosphere reflectance. The scattering, especially Rayleigh scattering, should be removed allowing the ground reflectance to be derived. Secondly, the angle differences magnify the BRDF effect. The ground reflectance should be corrected to have comparable measurements. The atmospheric correction is performed using a vector version of the Second Simulation of a Satellite Signal in the Solar Spectrum modeling and BRDF correction is performed using a semi-empirical model. AHI band 1 (0.47μm) shows good matching with VIIRS band M3 with difference of 0.15%. AHI band 5 (1.69μm) shows largest difference in comparison with VIIRS M10.

  12. Intercomparison of two comparative reactivity method instruments inf the Mediterranean basin during summer 2013

    NASA Astrophysics Data System (ADS)

    Zannoni, N.; Dusanter, S.; Gros, V.; Sarda Esteve, R.; Michoud, V.; Sinha, V.; Locoge, N.; Bonsang, B.

    2015-09-01

    The hydroxyl radical (OH) plays a key role in the atmosphere, as it initiates most of the oxidation processes of volatile organic compounds (VOCs), and can ultimately lead to the formation of ozone and secondary organic aerosols (SOAs). There are still uncertainties associated with the OH budget assessed using current models of atmospheric chemistry and direct measurements of OH sources and sinks have proved to be valuable tools to improve our understanding of the OH chemistry. The total first order loss rate of OH, or total OH reactivity, can be directly measured using three different methods, such as the following: total OH loss rate measurement, laser-induced pump and probe technique and comparative reactivity method. Observations of total OH reactivity are usually coupled to individual measurements of reactive compounds in the gas phase, which are used to calculate the OH reactivity. Studies using the three methods have highlighted that a significant fraction of OH reactivity is often not explained by individually measured reactive compounds and could be associated to unmeasured or unknown chemical species. Therefore accurate and reproducible measurements of OH reactivity are required. The comparative reactivity method (CRM) has demonstrated to be an advantageous technique with an extensive range of applications, and for this reason it has been adopted by several research groups since its development. However, this method also requires careful corrections to derive ambient OH reactivity. Herein we present an intercomparison exercise of two CRM instruments, CRM-LSCE (Laboratoire des Sciences du Climat et de l'Environnement) and CRM-MD (Mines Douai), conducted during July 2013 at the Mediterranean site of Ersa, Cape Corsica, France. The intercomparison exercise included tests to assess the corrections needed by the two instruments to process the raw data sets as well as OH reactivity observations. The observation was divided in three parts: 2 days of plant emissions (8-9 July), 2 days of ambient measurements (10-11 July) and 2 days (12-13 July) of plant emissions. We discuss in detail the experimental approach adopted and how the data sets were processed for both instruments. Corrections required for the two instruments lead to higher values of reactivity in ambient air; overall 20 % increase for CRM-MD and 49 % for CRM-LSCE compared to the raw data. We show that ambient OH reactivity measured by the two instruments agrees very well (correlation described by a linear least squares fit with a slope of 1 and R2 of 0.75). This study highlights that ambient measurements of OH reactivity with differently configured CRM instruments yield consistent results in a low NOx (NO + NO2), terpene rich environment, despite differential corrections relevant to each instrument. Conducting more intercomparison exercises, involving more CRM instruments operated under different ambient and instrumental settings will help in assessing the variability induced due to instrument-specific corrections further.

  13. Determining the Relationship between the Total and Window Channel Nighttime Radiances for the CERES Instrument

    NASA Technical Reports Server (NTRS)

    Kratz, David P.; Priestley, Kory J.; Green, Richard N.

    1999-01-01

    Observing Earth s radiant energy budget from space is critical to improving our understanding of Earth s climate system. The Earth Radiation Budget Experiment (ERBE) was the first initiative to provide simultaneous observations of Earth s radiant energy with identical instruments flying aboard separate satellites. The design of the ERBE instrument was based upon three complementary broadband radiometers which measured the shortwave (< 5 mm), longwave (> 5 mm), and total regions of the spectrum. Since any two of the ERBE radiometers could be used to simulate the third, a three channel intercomparison, based on redundancy, was available to uncover any changes in the relative sensitivities of the individual radiometers. Such a three channel intercomparison thus provided confidence in the application of the ERBE measurements over the lifetime of the instrument while mitigating the concern over instrument degradation.

  14. Intercomparisons of high-resolution solar blind Raman lidar atmospheric profiles of water vapor with radiosondes and kytoon

    NASA Technical Reports Server (NTRS)

    Petri, K.; Salik, A.; Cooney, J.

    1986-01-01

    A report is given of measurements of atmospheric profiles of water vapor in the boundary layer by use of solar blind Raman lidar. These measurement episodes, occuring twice a day over a two week period, were accompanied by a dense net of supporting measurements. The support included two radiosonde launches per measurement episodes as well as a kytoon support measurement of water vapor using a wet bulb-dry bulb instrument. The kytoon strategy included ten minute stops at strategic altitudes. Additional kytoon measurements included ozone profiles and nephelometric extinction profiles in the visible. Typically, six or seven 1000 shot lidar profile averages were collected during a measurement episode. Overall performance comparisons are provided and intercomparisons between auxiliary measurement devices are presented. Data on the accuracy of the lidar water vapor profiles are presented.

  15. Measurement of Air Pollution from Satellites (MAPS) 1994 Correlative Atmospheric Carbon Monoxide Mixing Ratios (DB-1020)

    DOE Data Explorer

    Novelli, Paul [NOAA Climate Monitoring and Diagnostics Lab (CMDL), Boulder, Colorado; Masarie, Ken [Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado

    1998-01-01

    This database offers select carbon monoxide (CO) mixing ratios from eleven field and aircraft measurement programs around the world. Carbon monoxide mixing ratios in the middle troposphere have been examined for short periods of time by using the Measurement of Air Pollution from Satellites (MAPS) instrument. MAPS measures CO from a space platform, using gas filter correlation radiometry. During the 1981 and 1984 MAPS flights, measurement validation was attempted by comparing space-based measurements of CO to those made in the middle troposphere from aircraft. Before the 1994 MAPS flights aboard the space shuttle Endeavour, a correlative measurement team was assembled to provide the National Aeronautics and Space Administration (NASA) with results of their CO field measurement programs during the April and October shuttle missions. To maximize the usefulness of these correlative data, team members agreed to participate in an intercomparison of CO measurements. The correlative data presented in this database provide an internally consistent, ground-based picture of CO in the lower atmosphere during Spring and Fall 1994. The data show the regional importance of two CO sources: fossil-fuel burning in urbanized areas and biomass burning in regions in the Southern Hemisphere.

  16. Description of ARCAL XXXIV Project: Repair and Calibration of Electrometers and Ionization Chambers Used in Radiotherapy

    NASA Astrophysics Data System (ADS)

    Cruz-Estrada, P.; Ramírez-Jiménez, F. J.; Villaverde-Lozano, A.

    2003-09-01

    The technological tools for the diagnosis of diseases and treatment of cancer are based mostly on the use of ionizing radiations. This situation worries to the International Atomic Energy Agency (IAEA), which has implemented programs of technical cooperation for the protection of the human health. One of these programs is running in Latin America under the ARCAL project (Regional Agreement of Cooperation for the Promotion of the Nuclear Science and Technology in Latin America and the Caribbean). One objective of the ARCAL XXXIV project is the establishment of three Regional Centres for the repair, maintenance and electrical calibration of clinical dosimeters, in Mexico we have one of these centres. Some other objectives of the project are: the generation of calibration procedures, the release of training courses in the region, the establishment of an inter-comparison network for the region in the control of standards of calibration with electrometers and the design of low current sources that simulates the ionization chamber and can serve as field standards for each of the participant countries. A description of the results of the project is presented in this work.

  17. Cloud Microphysical Properties in Mesoscale Convective Systems: An Intercomparison of Three Tropical Locations

    NASA Astrophysics Data System (ADS)

    Fontaine, Emmanuel; Leroy, Delphine; Schwarzenboeck, Alfons; Coutris, Pierre; Delanoë, Julien; Protat, Alain; Dezitter, Fabien; Grandin, Alice; Strapp, John W.; Lilie, Lyle E.

    2017-04-01

    Mesoscale Convective Systems are complex cloud systems which are primarily the result of specific synoptic conditions associated with mesoscale instabilities leading to the development of cumulonimbus type clouds (Houze, 2004). These systems can last several hours and can affect human societies in various ways. In general, weather and climate models use simplistic schemes to describe ice hydrometeors' properties. However, MCS are complex cloud systems where the dynamic, radiative and precipitation processes depend on spatiotemporal location in the MCS (Houze, 2004). As a consequence, hydrometeor growth processes in MCS vary in space and time, thereby impacting shape and concentration of ice crystals and finally CWC. As a consequence, differences in the representation of ice properties in models (Li et al., 2007, 2005) lead to significant disagreements in the quantification of ice cloud effects on climate evolution (Intergovernmental Panel on Climate Change Fourth Assessment Report). An accurate estimation of the spatiotemporal CWC distribution is therefore a key parameter for evaluating and improving numerical weather prediction (Stephens et al., 2002). The main purpose of this study is to show ice microphysical properties of MCS observed in three different locations in the tropical atmosphere: West-African continent, Indian Ocean, and Northern Australia. An intercomparison study is performed in order to quantify how similar or different are the ice hydrometeors' properties in these three regions related to radar reflectivity factors and temperatures observed in respective MCS.

  18. Quantitative trace analysis of polyfluorinated alkyl substances (PFAS) in ambient air samples from Mace Head (Ireland): A method intercomparison

    NASA Astrophysics Data System (ADS)

    Jahnke, Annika; Barber, Jonathan L.; Jones, Kevin C.; Temme, Christian

    A method intercomparison study of analytical methods for the determination of neutral, volatile polyfluorinated alkyl substances (PFAS) was carried out in March, 2006. Environmental air samples were collected in triplicate at the European background site Mace Head on the west coast of Ireland, a site dominated by 'clean' westerly winds coming across the Atlantic. Extraction and analysis were performed at two laboratories active in PFAS research using their in-house methods. Airborne polyfluorinated telomer alcohols (FTOHs), fluorooctane sulfonamides and sulfonamidoethanols (FOSAs/FOSEs) as well as additional polyfluorinated compounds were investigated. Different native and isotope-labelled internal standards (IS) were applied at various steps in the analytical procedure to evaluate the different quantification strategies. Field blanks revealed no major blank problems. European background concentrations observed at Mace Head were found to be in a similar range to Arctic data reported in the literature. Due to trace-levels at the remote site, only FTOH data sets were complete and could therefore be compared between the laboratories. Additionally, FOSEs could partly be included. Data comparison revealed that despite the challenges inherent in analysis of airborne PFAS and the low concentrations, all methods applied in this study obtained similar results. However, application of isotope-labelled IS early in the analytical procedure leads to more precise results and is therefore recommended.

  19. Quantifying the importance of model-to-model variability in integrated assessments of 21st century climate

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Calvin, K. V.

    2016-12-01

    The C4MIP and CMIP5 model intercomparison projects (MIPs) highlighted uncertainties in climate projections, driven to a large extent by interactions between the terrestrial carbon cycle and climate feedbacks. In addition, the importance of feedbacks between human (energy and economic) systems and natural (carbon and climate) systems is poorly understood, and not considered in the previous MIP protocols. The experiments conducted under the previous Integrated Earth System Model (iESM) project, which coupled a earth system model with an integrated assessment model (GCAM), found that the inclusion of climate feedbacks on the terrestrial system in an RCP4.5 scenario increased ecosystem productivity, resulting in declines in cropland extent and increases in bioenergy production and forest cover. As a follow-up to these studies and to further understand climate-carbon cycle interactions and feedbacks, we examined the robustness of these results by running a suite of GCAM-only experiments using changes in ecosystem productivity derived from both the CMIP5 archive and the Agricultural Model Intercomparison Project. In our results, the effects of climate on yield in an RCP8.5 scenario tended to be more positive than those of AgMIP, but more negative than those of the other CMIP models. We discuss these results and the implications of model-to-model variability for integrated coupling studies of the future earth system.

  20. Evaluation and intercomparison of five major dry deposition ...

    EPA Pesticide Factsheets

    Dry deposition of various pollutants needs to be quantified in air quality monitoring networks as well as in chemical transport models. The inferential method is the most commonly used approach in which the dry deposition velocity (Vd) is empirically parameterized as a function of meteorological and biological conditions and pollutant species’ chemical properties. Earlier model intercomparison studies suggested that existing dry deposition algorithms produce quite different Vd values, e.g., up to a factor of 2 for monthly to annual average values for ozone, and sulfur and nitrogen species (Flechard et al., 2011; Schwede et al., 2011; Wu et al., 2011). To further evaluate model discrepancies using available flux data, this study compared the five dry deposition algorithms commonly used in North America and evaluated the models using five-year Vd(O3) and Vd(SO2) data generated from concentration gradient measurements above a temperate mixed forest in Canada. The five algorithms include: (1) the one used in the Canadian Air and Precipitation Monitoring Network (CAPMoN) and several Canadian air quality models based on Zhang et al. (2003), (2) the one used in the US Clean Air Status and Trends Network (CASTNET) based on Meyers et al. (1998), (3) the one used in the Community Multiscale Air Quality (CMAQ) model described in Pleim and Ran (2011), (4) the Noah land surface model coupled with a photosynthesis-based Gas Exchange Model (Noah-GEM) described in Wu et a

  1. Validation of Surface Bio-Optical Properties in the Gulf of Maine as a Means for Improving Satellite Primary Production Estimates. Chapter 4

    NASA Technical Reports Server (NTRS)

    Balch, William M.

    2001-01-01

    One of the greatest challenges in providing sea-truth data for various ocean color sensors is climatology. This is particularly true in the Gulf of Maine since it is cloudy and foggy more than it is clear; the climatology shows on average, about one in four to five days has clear skies with clear days slightly more frequent in the late summer and early fall. Our strategy has been to use a ship of opportunity where one has choice of the sampling days. This provides much better flexibility to sample during clear periods with good satellite coverage. Our Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) contract has been to use the M/S Scotia Prince ferry as a ship of opportunity, running between Portland, Maine and Yarmouth, NS. Measurements include continuous, surface, along-track fluorescence, two independent measures of backscattering, total light scattering, absorption, beam attenuation, above-water remote sensing reflectance, calcite-dependent light scattering, temperature, and salinity. Expendable bathythermography (XBT) drops allow acquisition of vertical temperature information, useful for defining isopycnal slope, which affects primary production. These data are comparable to a previous program from early 1982, where a ship of opportunity program (SOOP) was run on the truck ferry, M/V Marine Evangeline, which ran along the same transect. These surface data were combined with satellite-derived sea surface temperature fields to examine the Maine coastal current. Unfortunately, this program stopped in 1982. The ongoing SIMBIOS results will dovetail nicely with the previous work (which also had Coastal Zone Color Scanner (CZCS) coverage) for looking at any long-term changes in the Gulf of Maine hydrography, bio-optics, and biogeochemistry.

  2. 2015 ESGF Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D. N.

    2015-06-22

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration whose purpose is to develop the software infrastructure needed to facilitate and empower the study of climate change on a global scale. ESGF’s architecture employs a system of geographically distributed peer nodes that are independently administered yet united by common federation protocols and application programming interfaces. The cornerstones of its interoperability are the peer-to-peer messaging, which is continuously exchanged among all nodes in the federation; a shared architecture for search and discovery; and a security infrastructure based on industry standards. ESGF integrates popular application engines available from the open-sourcemore » community with custom components (for data publishing, searching, user interface, security, and messaging) that were developed collaboratively by the team. The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP)—output used by the Intergovernmental Panel on Climate Change assessment reports. ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs of the global climate science community.« less

  3. Influences of volcano eruptions on Asian Summer Monsoon over the last 110 years.

    PubMed

    Ning, Liang; Liu, Jian; Sun, Weiyi

    2017-02-16

    Asian summer monsoon (ASM) precipitation is the primary water resource for agriculture in many Asian countries that have experienced rapid economic growth in recent decades, thus implying the necessity for further investigations on both the internal variability of the ASM and the influence of external factors on the ASM. Using long-term high-resolution (0.5° × 0.5°) observed precipitation data, contrary to previous studies on inter-annual timescale, we showed that over the last 110 years, volcanic eruptions have influenced ASM variations on an inter-decadal timescale via teleconnections with the Atlantic Multi-decadal Oscillation (AMO). This relationship was also confirmed by Coupled Model Intercomparison Program Phase 5 (CMIP5) model simulations. During the active volcanic eruption periods (1901-1935 and 1963-1993), significantly lower ASM precipitation was observed compared with that during the inactive volcanic eruption period (1936-1962). We found that during active volcanic eruption periods, which correspond to a negative AMO state, there is an anomalously weakened Walker circulation over the tropical Pacific that transports less moisture to the ASM region and subsequently reduces ASM precipitation. This new finding may help improve decadal predictions of future changes in the ASM.

  4. Influences of volcano eruptions on Asian Summer Monsoon over the last 110 years

    NASA Astrophysics Data System (ADS)

    Ning, Liang; Liu, Jian; Sun, Weiyi

    2017-02-01

    Asian summer monsoon (ASM) precipitation is the primary water resource for agriculture in many Asian countries that have experienced rapid economic growth in recent decades, thus implying the necessity for further investigations on both the internal variability of the ASM and the influence of external factors on the ASM. Using long-term high-resolution (0.5° × 0.5°) observed precipitation data, contrary to previous studies on inter-annual timescale, we showed that over the last 110 years, volcanic eruptions have influenced ASM variations on an inter-decadal timescale via teleconnections with the Atlantic Multi-decadal Oscillation (AMO). This relationship was also confirmed by Coupled Model Intercomparison Program Phase 5 (CMIP5) model simulations. During the active volcanic eruption periods (1901-1935 and 1963-1993), significantly lower ASM precipitation was observed compared with that during the inactive volcanic eruption period (1936-1962). We found that during active volcanic eruption periods, which correspond to a negative AMO state, there is an anomalously weakened Walker circulation over the tropical Pacific that transports less moisture to the ASM region and subsequently reduces ASM precipitation. This new finding may help improve decadal predictions of future changes in the ASM.

  5. Assessing doses to terrestrial wildlife at a radioactive waste disposal site: inter-comparison of modelling approaches.

    PubMed

    Johansen, M P; Barnett, C L; Beresford, N A; Brown, J E; Černe, M; Howard, B J; Kamboj, S; Keum, D-K; Smodiš, B; Twining, J R; Vandenhove, H; Vives i Batlle, J; Wood, M D; Yu, C

    2012-06-15

    Radiological doses to terrestrial wildlife were examined in this model inter-comparison study that emphasised factors causing variability in dose estimation. The study participants used varying modelling approaches and information sources to estimate dose rates and tissue concentrations for a range of biota types exposed to soil contamination at a shallow radionuclide waste burial site in Australia. Results indicated that the dominant factor causing variation in dose rate estimates (up to three orders of magnitude on mean total dose rates) was the soil-to-organism transfer of radionuclides that included variation in transfer parameter values as well as transfer calculation methods. Additional variation was associated with other modelling factors including: how participants conceptualised and modelled the exposure configurations (two orders of magnitude); which progeny to include with the parent radionuclide (typically less than one order of magnitude); and dose calculation parameters, including radiation weighting factors and dose conversion coefficients (typically less than one order of magnitude). Probabilistic approaches to model parameterisation were used to encompass and describe variable model parameters and outcomes. The study confirms the need for continued evaluation of the underlying mechanisms governing soil-to-organism transfer of radionuclides to improve estimation of dose rates to terrestrial wildlife. The exposure pathways and configurations available in most current codes are limited when considering instances where organisms access subsurface contamination through rooting, burrowing, or using different localised waste areas as part of their habitual routines. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  6. The impact and importance of intercalibration and intercomparisons for greenhouse gas observational networks

    NASA Astrophysics Data System (ADS)

    Stavert, Ann; O'Doherty, Simon; Rigby, Matthew; Palmer, Paul; Stanley, Kieran; Young, Dickon; Lunt, Mark; Grant, Aoife; Pitt, Joseph; Bauguitte, Stephane; Helfter, Carole; Mullinger, Neil; Robinson, Andrew; Harris, Neil; Riddick, Stuart; Sonderfeld, Hannah; Boesch, Hartmut; Foster, Grant

    2016-04-01

    Motivated by the UK 2008 Climate Change Act, which requires the UK to decrease its greenhouse gas (GHG) emissions by 80% of 1990 levels by 2050, the Greenhouse gAs Uk and Global Emissons (GAUGE) project aims to better quantify UK CO2, CH4 and N2O emissions. As part of this project a UK-focused GHG observational network has been established, drawing together new and existing GHG data streams from regional to global scales. These included high-density regional studies, tall-tower sites, moving platforms (ferry and aircraft) and satellite observations. Under the project these observations will be combined with modelling approaches to better quantify and characterise UK GHG emissions and place them within a global context. This presentation will describe the efforts made to ensure that common calibration scales were used within the GAUGE project and an assessment of the intercomparability of the stationary sites and moving platforms (including 6 near surface regional focused sites, 6 tall tower sites, ferry and aircraft measurements). This assessment was undertaken using both a cylinder intercomparison program (ICP) and a comparison between co-located flask and in situ measurements. The majority of the sites agreed within the WMO comparability guidelines, however, small relative biases in CO2 and CH4 were identified at some sites. These biases generally increased with concentration, with differences up to 0.3ppm in CO2 and 3ppb CH4 observed between tall tower sites and mobile platforms, while larger biases were found at some of the regional study sites. In order to investigate the impact of biases of these types an experiment using pseudo emissions and observations was conducted. To achieve this, sets of emissions estimates for key GHG sources (e.g. for CH4 the sum of anthropogenic, biomass burning, wetlands, rice and oceans and other natural sources) were used to estimate the GHG concentrations at the GAUGE observation sites and mobile platforms via the Met office NAME model. These pseudo observations were then adjusted using a range of biases and simulated calibration offsets. Regional UK emissions were then determined based on inversions performed using the Met office NAME model and hierarchical Bayesian inversion method. Using these emissions estimates we quantified the impact of systematic site biases on derived fluxes, assessing the relevance of the WMO comparability guidelines for our UK study and highlighting the importance of rigorous inter-calibration and comparability of data streams for regional emissions estimation.

  7. Intercomparison of Primary Manometers in the Range 30 kPa to 110 kPa: Pressure Balance at the LNE and Mercury Manometer at the VNIIFTRI

    NASA Astrophysics Data System (ADS)

    Astrov, D. N.; Guillemot, J.; Legras, J. C.; Zakharov, A. A.

    1994-01-01

    An intercomparison between the primary pressure balance of the LNE and a mercury manometer developed at the All-Russian Research Institute for Physical, Technical and Radio-Technical Measurements (VNIIFTRI) for purposes of temperature measurement was undertaken in 1990. A short description of the two standards is given. The transfer standard was a pressure balance equipped with a piston-cylinder assembly that has the same characteristics as the standard of the Laboratoire National d'Essais (LNE). The results obtained from 30 kPa to 110 kPa showed a systematic relative difference of 12 parts in 106 between the two standards. This difference is significant, as the combined relative uncertainty at 1 σ level is estimated to be 4,2 parts in 106. These results are analysed in this paper.

  8. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Susanne

    2015-02-09

    We participated in a FASTER SCM intercomparison for which we ran our SCM for 3 years at the SGP to analyze statistics of the precipitation field (Song et al., 2013). An important feature of these simulations was the use of relaxation forcing to observed T, q, which decouples the model convection from the forcing and allows precipitation errors to emerge. Because the GISS cumulus parameterization includes a trigger that prevents convection until sufficient lifting is present, and because convection at the SGP is usually triggered by mesoscale motions that are not represented in the forcing when relaxation is applied, themore » duration of SCM precipitation is shorter than observed (Del Genio and Wolf, 2012) and thus its mean precipitation less than observed. However, its diurnal cycle phase is correct, and it is the only operational cumulus parameterization in the intercomparison that does not produce excessive warm season precipitation under weak large-scale forcing conditions.« less

  9. DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models

    NASA Astrophysics Data System (ADS)

    Ullrich, Paul A.; Jablonowski, Christiane; Kent, James; Lauritzen, Peter H.; Nair, Ramachandran; Reed, Kevin A.; Zarzycki, Colin M.; Hall, David M.; Dazlich, Don; Heikes, Ross; Konor, Celal; Randall, David; Dubos, Thomas; Meurdesoif, Yann; Chen, Xi; Harris, Lucas; Kühnlein, Christian; Lee, Vivian; Qaddouri, Abdessamad; Girard, Claude; Giorgetta, Marco; Reinert, Daniel; Klemp, Joseph; Park, Sang-Hun; Skamarock, William; Miura, Hiroaki; Ohno, Tomoki; Yoshida, Ryuji; Walko, Robert; Reinecke, Alex; Viner, Kevin

    2017-12-01

    Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier-Stokes equations. These systems have existed in one form or another for over half of a century, with the earliest discretizations having now evolved into a complex ecosystem of algorithms and computational strategies. In essence, no two dynamical cores are alike, and their individual successes suggest that no perfect model exists. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 non-hydrostatic dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school. This review includes a choice of model grid, variable placement, vertical coordinate, prognostic equations, temporal discretization, and the diffusion, stabilization, filters, and fixers employed by each system.

  10. Error analysis of integrated water vapor measured by CIMEL photometer

    NASA Astrophysics Data System (ADS)

    Berezin, I. A.; Timofeyev, Yu. M.; Virolainen, Ya. A.; Frantsuzova, I. S.; Volkova, K. A.; Poberovsky, A. V.; Holben, B. N.; Smirnov, A.; Slutsker, I.

    2017-01-01

    Water vapor plays a key role in weather and climate forming, which leads to the need for continuous monitoring of its content in different parts of the Earth. Intercomparison and validation of different methods for integrated water vapor (IWV) measurements are essential for determining the real accuracies of these methods. CIMEL photometers measure IWV at hundreds of ground-based stations of the AERONET network. We analyze simultaneous IWV measurements performed by a CIMEL photometer, an RPG-HATPRO MW radiometer, and a FTIR Bruker 125-HR spectrometer at the Peterhof station of St. Petersburg State University. We show that the CIMEL photometer calibrated by the manufacturer significantly underestimates the IWV obtained by other devices. We may conclude from this intercomparison that it is necessary to perform an additional calibration of the CIMEL photometer, as well as a possible correction of the interpretation technique for CIMEL measurements at the Peterhof site.

  11. A preliminary intercomparison between numerical upper wind forecasts and research aircraft measurements of jet streams

    NASA Technical Reports Server (NTRS)

    Shapiro, M. A.

    1982-01-01

    During the past several years, research on the structure of extra-tropical jet streams has been carried out with direct measurements with instrumented research aircraft from the National Center for Atmospheric Research (NCAR). These measurements have been used to describe the wind, temperature, turbulence and chemical characteristics of jet streams. A fundamental question is one of assessing the potential value of existing operational numerical forecast models for forecasting the meteorological conditions along commercial aviation flight routes so as to execute Minimum Flight Time tracks and thus obtain the maximum efficiency in aviation fuel consumption. As an initial attempt at resolving this question, the 12 hour forecast output from two models was expressed in terms of a common output format to ease their intercomparison. The chosen models were: (1) the Fine-Mesh Spectral hemispheric and (2) the Limited Area Fine Mesh (LFM) model.

  12. Using Ecosystem Experiments to Improve Vegetation Models

    DOE PAGES

    Medlyn, Belinda; Zaehle, S; DeKauwe, Martin G.; ...

    2015-05-21

    Ecosystem responses to rising CO2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model–Data Synthesis project aimed to use the information gathered in two forest FACE experiments to assess and improve land ecosystem models. A new 'assumption-centred' model intercomparison approach was used, in which participating models were evaluated against experimental data based on the ways in which they represent key ecological processes. Identifying and evaluating the main assumptions caused differences among models, and the assumption-centered approach produced amore » clear roadmap for reducing model uncertainty. We explain this approach and summarize the resulting research agenda. We encourage the application of this approach in other model intercomparison projects to fundamentally improve predictive understanding of the Earth system.« less

  13. Description and evaluation of the Acoustic Profiling of Ocean Currents (APOC) system used on R. V. Oceanus cruise 96 on 11-22 May 1981

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Rintoul, S. R., Jr.; Barbour, R. L.

    1982-01-01

    The underway current profiling system which consists of a microprocessor controlled data logger that collects and formats data from a four beam Ametek-Straza 300 kHz acoustic Doppler current profiler, heading from the ship's gyrocompass, and navigation information from a Loran-C receiver and a satellite navigation unit is discussed. Data are recorded on magnetic tape and real time is calculated. Time averaging is required to remove effects of ship motion. An intercomparison is made with a moored vector measuring current meter (VMCM). The mean difference in hourly averaged APOC and VMCM currents over the four hour intercomparison is a few mm s minus including: two Gulf Stream crossings, a warm core ring survey, and shallow water in a frontal zone to the east of Nantucket Shoals.

  14. Inter-comparison of automatic rain gauges

    NASA Technical Reports Server (NTRS)

    Nystuen, Jeffrey A.

    1994-01-01

    The Ocean Acoustics Division (OAD) of the Atlantic Oceanographic and Meteorological Laboratory (AOML), in cooperation with NOAA/NESDIS and NASA, has deployed six rain gauges for calibration and intercomparison purposes. These instruments include: (1) a weighing rain gauge, (2) a RM Young Model 50202 capacitance rain gauge, (3) a ScTI ORG-705 (long path) optical rain gauge, (4) a ScTI ORG-105 (mini-ORG) optical rain gauge, (5) a Belfort Model 382 tipping bucket rain gauge, and (6) a Distromet RD-69 disdrometer. The system has been running continuously since July 1993. During this time period, roughly 150 events with maximum rainfall rate over 10 mm/hr and 25 events with maximum rainfall rates over 100 mm/hr have been recorded. All rain gauge types have performed well, with intercorrelations 0.9 or higher. However, limitations for each type of rain gauge have been observed.

  15. Trilateral Intercomparison of Photometric Units Maintained at NIST (USA), NPL (UK), and PTB (Germany)

    PubMed Central

    Ohno, Yoshi; Goodman, Teresa; Sauter, Georg

    1999-01-01

    A trilateral intercomparison of photometric units between NIST (USA), NPL (UK), and PTB (Germany) has been conducted to update the knowledge of the relationship between the photometric units disseminated in the three countries. The luminous intensity unit (cd), the luminous responsivity scale (A/lx), and the luminous flux unit (lm) maintained at each laboratory were compared by circulating transfer standard lamps and photometers. The results showed that the relative luminous intensity values, with respect to the average, measured by NIST, NPL, and PTB were 1.0014, 1.0021, and 0.9966; the relative inverse values of the luminous responsivity (corresponding to illuminance) were 1.0023, 1.0011, and 0.9965; the relative luminous flux values were 0.9994, 1.0034, and 0.9972, respectively. The results agreed within the stated uncertainties of the units maintained at the three laboratories.

  16. Utilization of UARS Data in Validation of Photochemical and Dynamical Mechanism in Stratospheric Models

    NASA Technical Reports Server (NTRS)

    Rodriquez, Jose M.; Hu, Wenjie; Ko, Malcolm K. W.

    1995-01-01

    UARS data sets provide global coverage for the distributions of trace gases, which gives us an excellent chance to utilize the data set for model-data intercomparison studies. In the past three months, we have been working on the comparisons of the UARS data between 1992 (a half year after the Pinatubo eruption) and 1993 (one and a half year after the eruption) in an attempt to see how the Pinatubo volcanic eruption may have impacted stratospheric chemistry.

  17. Results of the Sea Ice Model Intercomparison Project: Evaluation of sea ice rheology schemes for use in climate simulations

    NASA Astrophysics Data System (ADS)

    Kreyscher, Martin; Harder, Markus; Lemke, Peter; Flato, Gregory M.

    2000-05-01

    A hierarchy of sea ice rheologies is evaluated on the basis of a comprehensive set of observational data. The investigations are part of the Sea Ice Model Intercomparison Project (SIMIP). Four different sea ice rheology schemes are compared: a viscous-plastic rheology, a cavitating-fluid model, a compressible Newtonian fluid, and a simple free drift approach with velocity correction. The same grid, land boundaries, and forcing fields are applied to all models. As verification data, there are (1) ice thickness data from upward looking sonars (ULS), (2) ice concentration data from the passive microwave radiometers SMMR and SSM/I, (3) daily buoy drift data obtained by the International Arctic Buoy Program (IABP), and (4) satellite-derived ice drift fields based on the 85 GHz channel of SSM/I. All models are optimized individually with respect to mean drift speed and daily drift speed statistics. The impact of ice strength on the ice cover is best revealed by the spatial pattern of ice thickness, ice drift on different timescales, daily drift speed statistics, and the drift velocities in Fram Strait. Overall, the viscous-plastic rheology yields the most realistic simulation. In contrast, the results of the very simple free-drift model with velocity correction clearly show large errors in simulated ice drift as well as in ice thicknesses and ice export through Fram Strait compared to observation. The compressible Newtonian fluid cannot prevent excessive ice thickness buildup in the central Arctic and overestimates the internal forces in Fram Strait. Because of the lack of shear strength, the cavitating-fluid model shows marked differences to the statistics of observed ice drift and the observed spatial pattern of ice thickness. Comparison of required computer resources demonstrates that the additional cost for the viscous-plastic sea ice rheology is minor compared with the atmospheric and oceanic model components in global climate simulations.

  18. Effect of green tea catechin, a local drug delivery system as an adjunct to scaling and root planing in chronic periodontitis patients: A clinicomicrobiological study

    PubMed Central

    Kudva, Praveen; Tabasum, Syeda Tawkhira; Shekhawat, Nirmal Kanwar

    2011-01-01

    Background: Evaluate the adjunctive use of locally delivered green tea catechin with scaling and root planing, as compared to scaling and root planing alone in the management of chronic periodontitis. Materials and Methods: Fourteen patients with two sites in the contralateral quadrants with probing pocket depth of 5–8mm were selected. Each of the sites was assessed for the plaque index, gingival index, and probing pocket depth at baseline and 21 days and for microbiological analysis at baseline, 1 week and 21 days. Test sites received scaling and root planing along with green tea catechin strips and control sites received scaling and root planning alone. Results: The result showed intercomparison of the plaque index and gingival index for test and control groups at 21 days was not significant with P>0.05, whereas the probing depth at 21 days was significant with P<0.001. Intercomparison between microbial results demonstrated a considerable reduction of occurrence of Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Fusobacterium species and Capnocytophaga in test. Conclusion: Green tea catechin local delivery along with scaling and root planing is more effective than scaling and root planing alone. PMID:21772720

  19. Intermodel spread of the double-ITCZ bias in coupled GCMs tied to land surface temperature in AMIP GCMs

    NASA Astrophysics Data System (ADS)

    Zhou, Wenyu; Xie, Shang-Ping

    2017-08-01

    Global climate models (GCMs) have long suffered from biases of excessive tropical precipitation in the Southern Hemisphere (SH). The severity of the double-Intertropical Convergence Zone (ITCZ) bias, defined here as the interhemispheric difference in zonal mean tropical precipitation, varies strongly among models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble. Models with a more severe double-ITCZ bias feature warmer tropical sea surface temperature (SST) in the SH, coupled with weaker southeast trades. While previous studies focus on coupled ocean-atmosphere interactions, here we show that the intermodel spread in the severity of the double-ITCZ bias is closely related to land surface temperature biases, which can be further traced back to those in the Atmosphere Model Intercomparison Project (AMIP) simulations. By perturbing land temperature in models, we demonstrate that cooler land can indeed lead to a more severe double-ITCZ bias by inducing the above coupled SST-trade wind pattern in the tropics. The response to land temperature can be consistently explained from both the dynamic and energetic perspectives. Although this intermodel spread from the land temperature variation does not account for the ensemble model mean double-ITCZ bias, identifying the land temperature effect provides insights into simulating a realistic ITCZ for the right reasons.

  20. An intercomparison of the thermal offset for different pyranometers

    NASA Astrophysics Data System (ADS)

    Sanchez, G.; Cancillo, M. L.; Serrano, A.

    2016-07-01

    An unprecedented intensive intercomparison campaign focused on the experimental measurement of the thermal offset of pyranometers has been conducted at Badajoz (Spain) with the participation of three main manufacturers. The purpose of this study is to compare the thermal offset of six commercially available pyranometers, being some of them widely used and others recently commercialized. In this campaign, the capping methodology has been used to experimentally measure the daytime thermal offset of the pyranometers. Thus, a short but intense campaign has been conducted in two selected summer days under clear-sky conditions, covering a large range of solar zenith angle, irradiance, and temperature. Along the campaign, a total of 305 capping events have been performed, 61 for each pyranometer. The daytime thermal offset obtained for different pyranometers ranges between 0 and -16.8 W/m2 depending on the environmental conditions, being sometimes notably higher than values estimated indoors by manufacturers. The thermal offset absolute value of all instruments shows a diurnal cycle, increasing from sunrise to central hours of the day and decreasing from midafternoon to sunset. The analysis demonstrates that thermal offset is notably higher and more variable during daytime than during nighttime, requiring specific daytime measurements. Main results emphasize the key role played by wind speed in modulating the thermal offset.

  1. Changes in deviation of absorbed dose to water among users by chamber calibration shift.

    PubMed

    Katayose, Tetsurou; Saitoh, Hidetoshi; Igari, Mitsunobu; Chang, Weishan; Hashimoto, Shimpei; Morioka, Mie

    2017-07-01

    The JSMP01 dosimetry protocol had adopted the provisional 60 Co calibration coefficient [Formula: see text], namely, the product of exposure calibration coefficient N C and conversion coefficient k D,X . After that, the absorbed dose to water D w  standard was established, and the JSMP12 protocol adopted the [Formula: see text] calibration. In this study, the influence of the calibration shift on the measurement of D w among users was analyzed. The intercomparison of the D w using an ionization chamber was annually performed by visiting related hospitals. Intercomparison results before and after the calibration shift were analyzed, the deviation of D w among users was re-evaluated, and the cause of deviation was estimated. As a result, the stability of LINAC, calibration of the thermometer and barometer, and collection method of ion recombination were confirmed. The statistical significance of standard deviation of D w was not observed, but that of difference of D w among users was observed between N C and [Formula: see text] calibration. Uncertainty due to chamber-to-chamber variation was reduced by the calibration shift, consequently reducing the uncertainty among users regarding D w . The result also pointed out uncertainty might be reduced by accurate and detailed instructions on the setup of an ionization chamber.

  2. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols

    NASA Astrophysics Data System (ADS)

    Lin, Renping; Zhu, Jiang; Zheng, Fei

    2016-12-01

    The East Asian summer monsoon (EASM) experienced decadal transitions over the past few decades, and the associated "wetter-South-drier-North" shifts in rainfall patterns in China significantly affected the social and economic development in China. Two viewpoints stand out to explain these decadal shifts, regarding the shifts either a result of internal variability of climate system or that of external forcings (e.g. greenhouse gases (GHGs) and anthropogenic aerosols). However, most climate models, for example, the Atmospheric Model Intercomparison Project (AMIP)-type simulations and the Coupled Model Intercomparison Project (CMIP)-type simulations, fail to simulate the variation patterns, leaving the mechanisms responsible for these shifts still open to dispute. In this study, we conducted a successful simulation of these decadal transitions in a coupled model where we applied ocean data assimilation in the model free of explicit aerosols and GHGs forcing. The associated decadal shifts of the three-dimensional spatial structure in the 1990s, including the eastward retreat, the northward shift of the western Pacific subtropical high (WPSH), and the south-cool-north-warm pattern of the upper-level tropospheric temperature, were all well captured. Our simulation supports the argument that the variations of the oceanic fields are the dominant factor responsible for the EASM decadal transitions.

  3. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols

    PubMed Central

    Lin, Renping; Zhu, Jiang; Zheng, Fei

    2016-01-01

    The East Asian summer monsoon (EASM) experienced decadal transitions over the past few decades, and the associated "wetter-South-drier-North" shifts in rainfall patterns in China significantly affected the social and economic development in China. Two viewpoints stand out to explain these decadal shifts, regarding the shifts either a result of internal variability of climate system or that of external forcings (e.g. greenhouse gases (GHGs) and anthropogenic aerosols). However, most climate models, for example, the Atmospheric Model Intercomparison Project (AMIP)-type simulations and the Coupled Model Intercomparison Project (CMIP)-type simulations, fail to simulate the variation patterns, leaving the mechanisms responsible for these shifts still open to dispute. In this study, we conducted a successful simulation of these decadal transitions in a coupled model where we applied ocean data assimilation in the model free of explicit aerosols and GHGs forcing. The associated decadal shifts of the three-dimensional spatial structure in the 1990s, including the eastward retreat, the northward shift of the western Pacific subtropical high (WPSH), and the south-cool-north-warm pattern of the upper-level tropospheric temperature, were all well captured. Our simulation supports the argument that the variations of the oceanic fields are the dominant factor responsible for the EASM decadal transitions. PMID:27934933

  4. Aerosol Backscatter Profiles at 10.59 and 9.25 Micrometers near Mauna Loa, Hawaii, 1988

    NASA Astrophysics Data System (ADS)

    Post, Madison J.

    1989-12-01

    The NOAA Doppler lidar trailer was transported from Boulder, Colorado, to the 3.231km level of Hawaii's Mauna Loa volcano (lat. 19.55°N, long. 155.56°W) in No-vember 1988 to participate in the NASA-sponsored Mauna Loa Backscatter Intercomparison Experiment (MABIE) for 1988. Our purpose was multifold. Among the aerosol studies our goals were to gather a statistically meaningful set of vertical backscatter pro-files at two wavelengths in the clean Pacific environment, to compare data from several microphysical sensors located at the GMCC observatory 3 km away, to assess the representativeness of the ground-based GMCC samplers with respect to the air mass over-head, and to understand the depth of the upslope and downslope flows that have historically affected the GMCC samplers. We were highly successful on all counts, having gathered 243 vertical profiles at 10.59 gm, 49 profiles at 9.25 vim, 278 GMCC intercom-parisons, and 404 wind profiles and cross sections. Our data-gathering period extended over 24 days through December 11. We calibrated the system on seven different days, usually at both wavelengths, to insure accuracy in our results. We also acquired data close in time to nearby SAGE 11. sampling, and twice took data simultaneously with GMCC's ruby lidar.

  5. An intercomparison for NIRS and NYU passive thoron gas detectors at NYU.

    PubMed

    Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Chittaporn, Passaporn; Harley, Naomi H

    2012-04-01

    An intercomparison on thoron ((220)Rn) measurement was carried out between National Institute of Radiological Sciences, Japan (NIRS), and New York University School of Medicine, USA (NYU). The measurements of (220)Rn concentration at NIRS and NYU were performed by using the scintillation cell method and the two-filter method, respectively, as the standard measurement method. Three types of alpha track detectors based on passive radon ((222)Rn)-(220)Rn discriminative measurement technique were used: Raduet and Radopot detectors were used at NIRS, and four-leaf detectors were used at NYU. In this study, the authors evaluated (220)Rn concentration variation in terms of run for exposure, measurement method, and exposure chamber. The detectors were exposed to (220)Rn gas with approximately 15 kBq m(-3) during the period from 0.75 to 3 d. As a result, the variation of each measurement method among these exposure runs was comparable to or less than that for the two-filter method. Agreement between the standard measurement methods of NIRS and NYU was observed to be about 10%, as is the case with the passive detectors. The Raduet detector showed a large variation in the detection response between the NIRS and NYU chambers, which could be related to different traceability.

  6. CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO 2 quadrupling and a CMIP3 composite forcing change: Large eddy simulation of cloud feedbacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning

    We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less

  7. CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO 2 quadrupling and a CMIP3 composite forcing change: Large eddy simulation of cloud feedbacks

    DOE PAGES

    Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning; ...

    2016-10-27

    We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less

  8. Community Intercomparison Suite (CIS) v1.4.0: a tool for intercomparing models and observations

    NASA Astrophysics Data System (ADS)

    Watson-Parris, Duncan; Schutgens, Nick; Cook, Nicholas; Kipling, Zak; Kershaw, Philip; Gryspeerdt, Edward; Lawrence, Bryan; Stier, Philip

    2016-09-01

    The Community Intercomparison Suite (CIS) is an easy-to-use command-line tool which has been developed to allow the straightforward intercomparison of remote sensing, in situ and model data. While there are a number of tools available for working with climate model data, the large diversity of sources (and formats) of remote sensing and in situ measurements necessitated a novel software solution. Developed by a professional software company, CIS supports a large number of gridded and ungridded data sources "out-of-the-box", including climate model output in NetCDF or the UK Met Office pp file format, CloudSat, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization), MODIS (MODerate resolution Imaging Spectroradiometer), Cloud and Aerosol CCI (Climate Change Initiative) level 2 satellite data and a number of in situ aircraft and ground station data sets. The open-source architecture also supports user-defined plugins to allow many other sources to be easily added. Many of the key operations required when comparing heterogenous data sets are provided by CIS, including subsetting, aggregating, collocating and plotting the data. Output data are written to CF-compliant NetCDF files to ensure interoperability with other tools and systems. The latest documentation, including a user manual and installation instructions, can be found on our website (http://cistools.net). Here, we describe the need which this tool fulfils, followed by descriptions of its main functionality (as at version 1.4.0) and plugin architecture which make it unique in the field.

  9. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air

    NASA Astrophysics Data System (ADS)

    Hak, C.; Pundt, I.; Trick, S.; Kern, C.; Platt, U.; Dommen, J.; Ordóñez, C.; Prévôt, A. S. H.; Junkermann, W.; Astorga-Lloréns, C.; Larsen, B. R.; Mellqvist, J.; Strandberg, A.; Yu, Y.; Galle, B.; Kleffmann, J.; Lörzer, J. C.; Braathen, G. O.; Volkamer, R.

    2005-11-01

    Results from an intercomparison of several currently used in-situ techniques for the measurement of atmospheric formaldehyde (CH2O) are presented. The measurements were carried out at Bresso, an urban site in the periphery of Milan (Italy) as part of the FORMAT-I field campaign. Eight instruments were employed by six independent research groups using four different techniques: Differential Optical Absorption Spectroscopy (DOAS), Fourier Transform Infra Red (FTIR) interferometry, the fluorimetric Hantzsch reaction technique (five instruments) and a chromatographic technique employing C18-DNPH-cartridges (2,4-dinitrophenylhydrazine). White type multi-reflection systems were employed for the optical techniques in order to avoid spatial CH2O gradients and ensure the sampling of nearly the same air mass by all instruments. Between 23 and 31 July 2002, up to 13 ppbv of CH2O were observed. The concentrations lay well above the detection limits of all instruments. The formaldehyde concentrations determined with DOAS, FTIR and the Hantzsch instruments were found to agree within ±11%, with the exception of one Hantzsch instrument, which gave systematically higher values. The two hour integrated samples by DNPH yielded up to 25% lower concentrations than the data of the continuously measuring instruments averaged over the same time period. The consistency between the DOAS and the Hantzsch method was better than during previous intercomparisons in ambient air with slopes of the regression line not significantly differing from one. The differences between the individual Hantzsch instruments could be attributed in part to the calibration standards used. Possible systematic errors of the methods are discussed.

  10. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air

    NASA Astrophysics Data System (ADS)

    Hak, C.; Pundt, I.; Kern, C.; Platt, U.; Dommen, J.; Ordóñez, C.; Prévôt, A. S. H.; Junkermann, W.; Astorga-Lloréns, C.; Larsen, B. R.; Mellqvist, J.; Strandberg, A.; Yu, Y.; Galle, B.; Kleffmann, J.; Lörzer, J. C.; Braathen, G. O.; Volkamer, R.

    2005-05-01

    Results from an intercomparison of several currently used in-situ techniques for the measurement of atmospheric formaldehyde (CH2O) are presented. The measurements were carried out at Bresso, an urban site in the periphery of Milan (Italy) as part of the FORMAT-I field campaign. Eight instruments were employed by six independent research groups using four different techniques: Differential Optical Absorption Spectroscopy (DOAS), Fourier Transform Infra Red (FTIR) interferometry, the fluorimetric Hantzsch reaction technique (five instruments) and a chromatographic technique employing C18-DNPH-cartridges (2,4-dinitrophenylhydrazine). White type multi-reflection systems were employed for the optical techniques in order to avoid spatial CH2O gradients and ensure the sampling of nearly the same air mass by all instruments. Between 23 and 31 July 2002, up to 13 ppbv of CH2O were observed. The concentrations lay well above the detection limits of all instruments. The formaldehyde concentrations determined with DOAS, FTIR and the Hantzsch instruments were found to agree within ±11%, with the exception of one Hantzsch instrument, which gave systematically higher values. The two hour integrated samples by DNPH yielded up to 25% lower concentrations than the data of the continuously measuring instruments averaged over the same time period. The consistency between the DOAS and the Hantzsch method was better than during previous intercomparisons in ambient air with slopes of the regression line not significantly differing from one. The differences between the individual Hantzsch instruments could be attributed in part to the calibration standards used. Possible systematic errors of the methods are discussed.

  11. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6

    NASA Astrophysics Data System (ADS)

    Keller, David P.; Lenton, Andrew; Scott, Vivian; Vaughan, Naomi E.; Bauer, Nico; Ji, Duoying; Jones, Chris D.; Kravitz, Ben; Muri, Helene; Zickfeld, Kirsten

    2018-03-01

    The recent IPCC reports state that continued anthropogenic greenhouse gas emissions are changing the climate, threatening severe, pervasive and irreversible impacts. Slow progress in emissions reduction to mitigate climate change is resulting in increased attention to what is called geoengineering, climate engineering, or climate intervention - deliberate interventions to counter climate change that seek to either modify the Earth's radiation budget or remove greenhouse gases such as CO2 from the atmosphere. When focused on CO2, the latter of these categories is called carbon dioxide removal (CDR). Future emission scenarios that stay well below 2 °C, and all emission scenarios that do not exceed 1.5 °C warming by the year 2100, require some form of CDR. At present, there is little consensus on the climate impacts and atmospheric CO2 reduction efficacy of the different types of proposed CDR. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDRMIP) was initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDRMIP experiments, which are formally part of the 6th Coupled Model Intercomparison Project (CMIP6). These experiments are designed to address questions concerning CDR-induced climate reversibility, the response of the Earth system to direct atmospheric CO2 removal (direct air capture and storage), and the CDR potential and impacts of afforestation and reforestation, as well as ocean alkalinization.>

  12. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, David P.; Lenton, Andrew; Scott, Vivian

    The recent IPCC reports state that continued anthropogenic greenhouse gas emissions are changing the climate, threatening severe, pervasive and irreversible impacts. Slow progress in emissions reduction to mitigate climate change is resulting in increased attention to what is called geoengineering, climate engineering, or climate intervention – deliberate interventions to counter climate change that seek to either modify the Earth's radiation budget or remove greenhouse gases such as CO 2 from the atmosphere. When focused on CO 2, the latter of these categories is called carbon dioxide removal (CDR). Future emission scenarios that stay well below 2 °C, and all emissionmore » scenarios that do not exceed 1.5 °C warming by the year 2100, require some form of CDR. At present, there is little consensus on the climate impacts and atmospheric CO 2 reduction efficacy of the different types of proposed CDR. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDRMIP) was initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDRMIP experiments, which are formally part of the 6th Coupled Model Intercomparison Project (CMIP6). These experiments are designed to address questions concerning CDR-induced climate reversibility, the response of the Earth system to direct atmospheric CO 2 removal (direct air capture and storage), and the CDR potential and impacts of afforestation and reforestation, as well as ocean alkalinization.>« less

  13. Long-term changes in lower tropospheric baseline ozone concentrations: Comparing chemistry-climate models and observations at northern midlatitudes

    NASA Astrophysics Data System (ADS)

    Parrish, D. D.; Lamarque, J.-F.; Naik, V.; Horowitz, L.; Shindell, D. T.; Staehelin, J.; Derwent, R.; Cooper, O. R.; Tanimoto, H.; Volz-Thomas, A.; Gilge, S.; Scheel, H.-E.; Steinbacher, M.; Fröhlich, M.

    2014-05-01

    Two recent papers have quantified long-term ozone (O3) changes observed at northern midlatitude sites that are believed to represent baseline (here understood as representative of continental to hemispheric scales) conditions. Three chemistry-climate models (NCAR CAM-chem, GFDL-CM3, and GISS-E2-R) have calculated retrospective tropospheric O3 concentrations as part of the Atmospheric Chemistry and Climate Model Intercomparison Project and Coupled Model Intercomparison Project Phase 5 model intercomparisons. We present an approach for quantitative comparisons of model results with measurements for seasonally averaged O3 concentrations. There is considerable qualitative agreement between the measurements and the models, but there are also substantial and consistent quantitative disagreements. Most notably, models (1) overestimate absolute O3 mixing ratios, on average by 5 to 17 ppbv in the year 2000, (2) capture only 50% of O3 changes observed over the past five to six decades, and little of observed seasonal differences, and (3) capture 25 to 45% of the rate of change of the long-term changes. These disagreements are significant enough to indicate that only limited confidence can be placed on estimates of present-day radiative forcing of tropospheric O3 derived from modeled historic concentration changes and on predicted future O3 concentrations. Evidently our understanding of tropospheric O3, or the incorporation of chemistry and transport processes into current chemical climate models, is incomplete. Modeled O3 trends approximately parallel estimated trends in anthropogenic emissions of NOx, an important O3 precursor, while measured O3 changes increase more rapidly than these emission estimates.

  14. Proceedings of the First National Workshop on the Global Weather Experiment: Current Achievements and Future Directions, volume 2, part 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics covered include: data systems and quality; analysis and assimilation techniques; impacts on forecasts; tropical forecasts; analysis intercomparisons; improvements in predictability; and heat sources and sinks.

  15. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: Scientific objectives and experimental design

    USGS Publications Warehouse

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew; Salzmann, Ulrich

    2016-01-01

    Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.

  16. C4MIP - The Coupled Climate-Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6

    NASA Astrophysics Data System (ADS)

    Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; Bopp, Laurent; Brovkin, Victor; Dunne, John; Graven, Heather; Hoffman, Forrest; Ilyina, Tatiana; John, Jasmin G.; Jung, Martin; Kawamiya, Michio; Koven, Charlie; Pongratz, Julia; Raddatz, Thomas; Randerson, James T.; Zaehle, Sönke

    2016-08-01

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks are potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate-carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate-carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to anthropogenic activity over the 21st century and beyond. This paper documents in detail these simulations, explains their rationale and planned analysis, and describes how to set up and run the simulations. Particular attention is paid to boundary conditions, input data, and requested output diagnostics. It is important that modelling groups participating in C4MIP adhere as closely as possible to this experimental design.

  17. Online Assessment of Satellite-Derived Global Precipitation Products

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, D.; Teng, W.; Kempler, S.

    2012-01-01

    Precipitation is difficult to measure and predict. Each year droughts and floods cause severe property damages and human casualties around the world. Accurate measurement and forecast are important for mitigation and preparedness efforts. Significant progress has been made over the past decade in satellite precipitation product development. In particular, products' spatial and temporal resolutions as well as timely availability have been improved by blended techniques. Their resulting products are widely used in various research and applications. However biases and uncertainties are common among precipitation products and an obstacle exists in quickly gaining knowledge of product quality, biases and behavior at a local or regional scale, namely user defined areas or points of interest. Current online inter-comparison and validation services have not addressed this issue adequately. To address this issue, we have developed a prototype to inter-compare satellite derived daily products in the TRMM Online Visualization and Analysis System (TOVAS). Despite its limited functionality and datasets, users can use this tool to generate customized plots within the United States for 2005. In addition, users can download customized data for further analysis, e.g. comparing their gauge data. To meet increasing demands, we plan to increase the temporal coverage and expanded the spatial coverage from the United States to the globe. More products have been added as well. In this poster, we present two new tools: Inter-comparison of 3B42RT and 3B42 Inter-comparison of V6 and V7 TRMM L-3 monthly products The future plans include integrating IPWG (International Precipitation Working Group) Validation Algorithms/statistics, allowing users to generate customized plots and data. In addition, we will expand the current daily products to monthly and their climatology products. Whenever the TRMM science team changes their product version number, users would like to know the differences by inter-comparing both versions of TRMM products in their areas of interest. Making this service available to users will help them to better understand associated changes. We plan to implement this inter-comparison in TRMM standard monthly products with the IPWG algorithms. The plans outlined above will complement and accelerate the existing and ongoing validation activities in the community as well as enhance data services for TRMM and the future Global Precipitation Mission (GPM).

  18. Intercomparison of ground-based NO y measurement techniques

    NASA Astrophysics Data System (ADS)

    Williams, E. J.; Baumann, K.; Roberts, J. M.; Bertman, S. B.; Norton, R. B.; Fehsenfeld, F. C.; Springston, S. R.; Nunnermacker, L. J.; Newman, L.; Olszyna, K.; Meagher, J.; Hartsell, B.; Edgerton, E.; Pearson, J. R.; Rodgers, M. O.

    1998-09-01

    An informal intercomparison of NOy measurement techniques was conducted from June 13 to July 22, 1994, at a site in Hendersonville, Tennessee, near Nashville. The intercomparison involved five research institutions: Brookhaven National Laboratory, Environmental Science and Engineering, Georgia Institute of Technology, NOAA/Aeronomy Laboratory, and Tennessee Valley Authority. The NOy measurement techniques relied on the reduction of NOy species to NO followed by detection of NO using O3-chemiluminescence. The NOy methods used either the Au-catalyzed conversion of NOy to NO in the presence of CO or H2 or the reduction of NOy to NO on a heated molybdenum oxide surface. Other measurements included O3, NOx, PAN and other organic peroxycarboxylic nitric anhydrides, HNO3 and particulate nitrate, and meteorological parameters. The intercomparison consisted of six weeks of ambient air sampling with instruments and inlet systems normally used by the groups for field measurements. In addition, periodic challenges to the instruments (spike tests) were conducted with known levels of NO, NO2, NPN, HNO3 and NH3. The NOy levels were typically large and highly variable, ranging from 2 ppbv to about 100 ppbv, and for much of the time was composed mostly of NOx from nearby sources. The spike tests results and ambient air results were consistent only when NOx was a substantial fraction of NOy. Inconsistency with ambient air data and the other spike test results is largely attributed to imprecision in the spike results due to the high and variable NOy background. For the ambient air data, a high degree of correlation was found with the different data sets. Of the seven NOy instrument/converters deployed at the site, two (one Au and one Mo) showed evidence of some loss of conversion efficiency. This occurred when the more oxidized NOy species (e.g., HNO3) were in relatively high abundance, as shown by analysis of one period of intense photochemical activity. For five of the instruments, no significant differences were found in the effectiveness of NOy conversion at these levels of NOy with either Au or Mo converters. Within the estimated uncertainty limits there was agreement between the sum of the separately measured NOy species and the NOy measured by the five of the seven techniques. These results indicate that NOy can be measured reliably in urban and suburban environments with existing instrumentation.

  19. How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Gautam, Mahesh R.; Zhu, Jianting; Yu, Zhongbo

    2013-02-01

    SummaryMulti-scale temporal variability of precipitation has an established relationship with floods and droughts. In this paper, we present the diagnostics on the ability of 16 General Circulation Models (GCMs) from Bias Corrected and Downscaled (BCSD) World Climate Research Program's (WCRP's) Coupled Model Inter-comparison Project Phase 3 (CMIP3) projections and 10 Regional Climate Models (RCMs) that participated in the North American Regional Climate Change Assessment Program (NARCCAP) to represent multi-scale temporal variability determined from the observed station data. Four regions (Los Angeles, Las Vegas, Tucson, and Cimarron) in the Southwest United States are selected as they represent four different precipitation regions classified by clustering method. We investigate how storm properties and seasonal, inter-annual, and decadal precipitation variabilities differed between GCMs/RCMs and observed records in these regions. We find that current GCMs/RCMs tend to simulate longer storm duration and lower storm intensity compared to those from observed records. Most GCMs/RCMs fail to produce the high-intensity summer storms caused by local convective heat transport associated with the summer monsoon. Both inter-annual and decadal bands are present in the GCM/RCM-simulated precipitation time series; however, these do not line up to the patterns of large-scale ocean oscillations such as El Nino/La Nina Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Our results show that the studied GCMs/RCMs can capture long-term monthly mean as the examined data is bias-corrected and downscaled, but fail to simulate the multi-scale precipitation variability including flood generating extreme events, which suggests their inadequacy for studies on floods and droughts that are strongly associated with multi-scale temporal precipitation variability.

  20. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    DOE PAGES

    O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; ...

    2016-09-28

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. Here, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide rangemore » of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. Furthermore, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2°C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. In order to serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.« less

  1. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.

    2016-01-01

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate amore » wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.« less

  2. The Community Intercomparison Suite (CIS)

    NASA Astrophysics Data System (ADS)

    Watson-Parris, Duncan; Schutgens, Nick; Cook, Nick; Kipling, Zak; Kershaw, Phil; Gryspeerdt, Ed; Lawrence, Bryan; Stier, Philip

    2017-04-01

    Earth observations (both remote and in-situ) create vast amounts of data providing invaluable constraints for the climate science community. Efficient exploitation of these complex and highly heterogeneous datasets has been limited however by the lack of suitable software tools, particularly for comparison of gridded and ungridded data, thus reducing scientific productivity. CIS (http://cistools.net) is an open-source, command line tool and Python library which allows the straight-forward quantitative analysis, intercomparison and visualisation of remote sensing, in-situ and model data. The CIS can read gridded and ungridded remote sensing, in-situ and model data - and many other data sources 'out-of-the-box', such as ESA Aerosol and Cloud CCI product, MODIS, Cloud CCI, Cloudsat, AERONET. Perhaps most importantly however CIS also employs a modular plugin architecture to allow for the reading of limitless different data types. Users are able to write their own plugins for reading the data sources which they are familiar with, and share them within the community, allowing all to benefit from their expertise. To enable the intercomparison of this data the CIS provides a number of operations including: the aggregation of ungridded and gridded datasets to coarser representations using a number of different built in averaging kernels; the subsetting of data to reduce its extent or dimensionality; the co-location of two distinct datasets onto a single set of co-ordinates; the visualisation of the input or output data through a number of different plots and graphs; the evaluation of arbitrary mathematical expressions against any number of datasets; and a number of other supporting functions such as a statistical comparison of two co-located datasets. These operations can be performed efficiently on local machines or large computing clusters - and is already available on the JASMIN computing facility. A case-study using the GASSP collection of in-situ aerosol observations will demonstrate the power of using CIS to perform model evaluations. The use of an open-source, community developed tool in this way opens up a huge amount of data which would previously have been inaccessible to many users, while also providing replicable, repeatable analysis which scientists and policy-makers alike can trust and understand.

  3. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; Eyring, Veronika; Friedlingstein, Pierre; Hurtt, George; Knutti, Reto; Kriegler, Elmar; Lamarque, Jean-Francois; Lowe, Jason; Meehl, Gerald A.; Moss, Richard; Riahi, Keywan; Sanderson, Benjamin M.

    2016-09-01

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017-2018 time frame, and output from the climate model projections made available and analyses performed over the 2018-2020 period.

  4. WE-D-17A-05: Measurement of Stray Radiation Within An Active Scanning Proton Therapy Facility: EURADOS WG9 Intercomparison Exercise of Active Dosimetry Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farah, J; Trompier, F; Stolarczyk, L

    2014-06-15

    Purpose: Intercomparison of active dosemeters in the measurement of stray radiation at the Trento active-scanning proton therapy facility. Methods: EURADOS WG9 carried out a large intercomparison exercise to test different dosemeters while measuring secondary neutrons within a 230 MeV scanned proton therapy facility. Detectors included two Bonner Sphere Spectrometers (BSS), three tissue equivalent proportional counters (TEPCHawk) and six rem-counters (Wendi II, Berthold, RadEye, a regular and an extended-range Anderson and Braun NM2B counters). Measurements of neutron ambient dose equivalents, H*(10), were done at several positions inside (8 positions) and outside (3 positions) the treatment room while irradiating a water tankmore » phantom with a 10 × 10 × 10 cc field. Results: A generally good agreement on H*(10) values was observed for the tested detectors. At distance of 2.25 m and angles 45°, 90° and 180° with respect to the beam axis, BSS and proportional counters agreed within 30%. Higher differences (up to 60%) were observed at the closest and farthest distances, i.e. at positions where detectors sensitivity, energy, fluence and angular response are highly dependent on neutron spectra (flux and energy). The highest neutron H*(10) value, ∼60 microSv/Gy, was measured at 1.15 m along the beam axis. H*(10) decreased significantly with the distance from the isocenter dropping to 1.1 microSv/Gy at 4.25 m and 90° from beam axis, ∼2 nanoSv/Gy at the entrance of the maze, 0.2 nanoSv/Gy at the door outside the room and below detection limit in the gantry control room and at an adjacent room. These values remain considerately lower than those of passively scattered proton beams. BSS and Hawk unfolded spectra provide valuable inputs when studying the response of each detector. Conclusion: TEPCs and BSS enable accurate measurements of stray neutrons while other rem-meters also give satisfactory results but require further improvements to reduce uncertainties.« less

  5. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreiss, J.; Maenhaut, W.; Alves, C.; Bossi, R.; Bjerke, A.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Gülcin, A.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2014-07-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC), four used High-Performance Liquid Chromatography (HPLC) or Ultra-Performance Liquid Chromatography (UPLC), and six resorted to Gas Chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e., for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from -84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan, and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood vs. hardwood burning, the variability only ranged from 3.5 to 24%. To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- on filter samples, a constituent that has been analyzed by numerous laboratories for several decades, typically by ion chromatography, and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wild fires and/or agricultural fires.

  6. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreis, J.; Maenhaut, W.; Abbaszade, G.; Alves, C.; Bjerke, A.; Bonnier, N.; Bossi, R.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2015-01-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning (BB) aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wildfire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for BB particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied high-performance anion-exchange chromatography (HPAEC), four used high-performance liquid chromatography (HPLC) or ultra-performance liquid chromatography (UPLC) and six resorted to gas chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 20%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e. for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from -84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood versus hardwood burning, the variability only ranged from 3.5 to 24 . To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- (sulfate) on filter samples, a constituent that has been analysed by numerous laboratories for several decades, typically by ion chromatography and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wildfires and/or agricultural fires.

  7. Scandinavia studies of recent crustal movements and the space geodetic baseline network

    NASA Technical Reports Server (NTRS)

    Anderson, A. J.

    1980-01-01

    A brief review of crustal movements within the Fenno-Scandia shield is given. Results from postglacial studies, projects for measuring active fault regions, and dynamic ocean loading experiments are presented. The 1979 Scandinavian Doppler Campaign Network is discussed. This network includes Doppler translocation baseline determination of future very long baseline interferometry baselines to be measured in Scandinavia. Intercomparison of earlier Doppler translocation measurements with a high precision terrestrial geodetic baseline in Scandinavia has yielded internal agreement of 6 cm over 887 km. This is a precision of better than 1 part in to the 7th power.

  8. Consistency of climate change projections from multiple global and regional model intercomparison projects

    NASA Astrophysics Data System (ADS)

    Fernández, J.; Frías, M. D.; Cabos, W. D.; Cofiño, A. S.; Domínguez, M.; Fita, L.; Gaertner, M. A.; García-Díez, M.; Gutiérrez, J. M.; Jiménez-Guerrero, P.; Liguori, G.; Montávez, J. P.; Romera, R.; Sánchez, E.

    2018-03-01

    We present an unprecedented ensemble of 196 future climate projections arising from different global and regional model intercomparison projects (MIPs): CMIP3, CMIP5, ENSEMBLES, ESCENA, EURO- and Med-CORDEX. This multi-MIP ensemble includes all regional climate model (RCM) projections publicly available to date, along with their driving global climate models (GCMs). We illustrate consistent and conflicting messages using continental Spain and the Balearic Islands as target region. The study considers near future (2021-2050) changes and their dependence on several uncertainty sources sampled in the multi-MIP ensemble: GCM, future scenario, internal variability, RCM, and spatial resolution. This initial work focuses on mean seasonal precipitation and temperature changes. The results show that the potential GCM-RCM combinations have been explored very unevenly, with favoured GCMs and large ensembles of a few RCMs that do not respond to any ensemble design. Therefore, the grand-ensemble is weighted towards a few models. The selection of a balanced, credible sub-ensemble is challenged in this study by illustrating several conflicting responses between the RCM and its driving GCM and among different RCMs. Sub-ensembles from different initiatives are dominated by different uncertainty sources, being the driving GCM the main contributor to uncertainty in the grand-ensemble. For this analysis of the near future changes, the emission scenario does not lead to a strong uncertainty. Despite the extra computational effort, for mean seasonal changes, the increase in resolution does not lead to important changes.

  9. A Comparison of HALOE V19 with SAGE II V6.00 Ozone Observations using Trajectory Mapping

    NASA Technical Reports Server (NTRS)

    Morris, Gary A.; Gleason, James F.; Russell, James R., III; Schoeberl, Mark R.; McCormick, M. Patrick; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    We apply trajectory mapping to an eight-year intercomparison of ozone observations from HALOE (V19) and SAGE II (V6.00) for the months March, May, June, September, October, and December from the period December 1991 - October 1999. Our results, which represent the most extensive such intercomparison of these two data sets to date, suggest a root-mean -square difference between the two data sets of greater than 15% below 22 km and of 4 - 12% throughout most of the rest of the stratosphere. In addition, we find a bias with HALOE ozone low relative to SAGE II by 5 - 20% below 22 km between 40degS and 40degN. Biases throughout most of the rest of the stratosphere are nearly nonexistent. Finally, our analysis suggests almost no drift in the bias between the data sets is observed over the period of study. In the course of our study, we also determine that the employment of the Wang-Cunnold criteria is still recommended with the V6.00 SAGE II ozone data. Results with the new versions of the data sets show significant improvement over previous versions, particularly in the elimination of mid-stratospheric biases and the elimination of the previously observed drifts in the biases between the data sets in the lower stratosphere. Since HALOE V19 and V18 ozone are very similar, these changes can likely be attributed to improvements in the SAGE II retrieval.

  10. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0)contribution to CMIP6

    DOE PAGES

    Gillett, Nathan P.; Shiogama, Hideo; Funke, Bernd; ...

    2016-10-18

    Detection and attribution (D&A) simulations were important components of CMIP5 and underpinned the climate change detection and attribution assessments of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The primary goals of the Detection and Attribution Model Intercomparison Project (DAMIP) are to facilitate improved estimation of the contributions of anthropogenic and natural forcing changes to observed global warming as well as to observed global and regional changes in other climate variables; to contribute to the estimation of how historical emissions have altered and are altering contemporary climate risk; and to facilitate improved observationally constrained projections of futuremore » climate change. D&A studies typically require unforced control simulations and historical simulations including all major anthropogenic and natural forcings. Such simulations will be carried out as part of the DECK and the CMIP6 historical simulation. In addition D&A studies require simulations covering the historical period driven by individual forcings or subsets of forcings only: such simulations are proposed here. Key novel features of the experimental design presented here include firstly new historical simulations with aerosols-only, stratospheric-ozone-only, CO2-only, solar-only, and volcanic-only forcing, facilitating an improved estimation of the climate response to individual forcing, secondly future single forcing experiments, allowing observationally constrained projections of future climate change, and thirdly an experimental design which allows models with and without coupled atmospheric chemistry to be compared on an equal footing.« less

  11. Intercomparison of OH and OH reactivity measurements in a high isoprene and low NO environment during the Southern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Sanchez, Dianne; Jeong, Daun; Seco, Roger; Wrangham, Ian; Park, Jeong-Hoo; Brune, William H.; Koss, Abigail; Gilman, Jessica; de Gouw, Joost; Misztal, Pawel; Goldstein, Allen; Baumann, Karsten; Wennberg, Paul O.; Keutsch, Frank N.; Guenther, Alex; Kim, Saewung

    2018-02-01

    We intercompare OH and OH reactivity datasets from two different techniques, chemical ionization mass spectrometry (CIMS) and laser-induced fluorescence (LIF) in a high isoprene and low NO environment in a southeastern US forest during the Southern Oxidant and Aerosol Study (SOAS). An LIF instrument measured OH and OH reactivity at the top of a tower, a CIMS instrument measured OH at the top of the tower, and a CIMS based comparative reactivity method (CRM-CIMS) instrument deployed at the base of the tower measured OH reactivity. Averaged diel variations of OH and OH reactivity from these datasets agree within analytical uncertainty and correlations of LIF versus CIMS for OH and OH reactivity have slopes of 0.65 and 0.97, respectively. However, there are systematic differences between the measurement datasets. The CRM-CIMS measurements of OH reactivity were ∼16% lower than those by the LIF technique in the late afternoon. We speculate that it is caused by losses in the sampling line down to the CRM-CIMS instrument. On the other hand, we could not come up with a reasonable explanation for the difference in the LIF and CIMS OH datasets for early morning and late afternoon when OH is below 1 × 106 molecules cm-3. Nonetheless, results of this intercomparison exercise strengthen previous publications from the field site on OH concentrations and atmospheric reactivity.

  12. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6

    NASA Astrophysics Data System (ADS)

    Gillett, Nathan P.; Shiogama, Hideo; Funke, Bernd; Hegerl, Gabriele; Knutti, Reto; Matthes, Katja; Santer, Benjamin D.; Stone, Daithi; Tebaldi, Claudia

    2016-10-01

    Detection and attribution (D&A) simulations were important components of CMIP5 and underpinned the climate change detection and attribution assessments of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The primary goals of the Detection and Attribution Model Intercomparison Project (DAMIP) are to facilitate improved estimation of the contributions of anthropogenic and natural forcing changes to observed global warming as well as to observed global and regional changes in other climate variables; to contribute to the estimation of how historical emissions have altered and are altering contemporary climate risk; and to facilitate improved observationally constrained projections of future climate change. D&A studies typically require unforced control simulations and historical simulations including all major anthropogenic and natural forcings. Such simulations will be carried out as part of the DECK and the CMIP6 historical simulation. In addition D&A studies require simulations covering the historical period driven by individual forcings or subsets of forcings only: such simulations are proposed here. Key novel features of the experimental design presented here include firstly new historical simulations with aerosols-only, stratospheric-ozone-only, CO2-only, solar-only, and volcanic-only forcing, facilitating an improved estimation of the climate response to individual forcing, secondly future single forcing experiments, allowing observationally constrained projections of future climate change, and thirdly an experimental design which allows models with and without coupled atmospheric chemistry to be compared on an equal footing.

  13. TLD postal dose intercomparison for megavoltage units in Poland.

    PubMed

    Izewska, J; Gajewski, R; Gwiazdowska, B; Kania, M; Rostkowska, J

    1995-08-01

    The aim of the TLD pilot study was to investigate and to reduce the uncertainties involved in the measurements of absorbed dose and to improve the consistency in dose determination in the regional radiotherapy centres in Poland. The intercomparison was organized by the SSDL. It covered absorbed dose measurements under reference conditions for Co-60, high energy X-rays and electron beams. LiF powder type MT-N was used for the irradiations and read with the Harshaw TLD reader model 2000B/2000C. The TLD system was set up and an analysis of the factors influencing the accuracy of absorbed dose measurements with TL-detectors was performed to evaluate and minimize the measurement uncertainty. A fading not exceeding 2% in 12 weeks was found. The relative energy correction factor did not exceed 3% for X-rays in the range 4-15 MV, and 4% for electron beams between 6 and 20 MeV. A total of 34 beams was checked. Deviation of +/- 3.5% stated and evaluated dose was considered acceptable for photons and +/- 5% for electron beams. The results for Co-60, high energy X-rays and electron beams showed that there were two, three and no centres, respectively, beyond acceptance levels. The sources of errors for all deviations out of this range were thoroughly investigated, discussed and corrected, however two deviations remained unexplained. The pilot study resulted in an improvement of the accuracy and consistency of dosimetry in Poland.

  14. Planetary boundary layer height from CALIOP compared to radiosonde over China

    NASA Astrophysics Data System (ADS)

    Zhang, Wanchun; Guo, Jianping; Miao, Yucong; Liu, Huan; Zhang, Yong; Li, Zhengqiang; Zhai, Panmao

    2016-08-01

    Accurate estimation of planetary boundary layer height (PBLH) is key to air quality prediction, weather forecast, and assessment of regional climate change. The PBLH retrieval from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is expected to complement ground-based measurements due to the broad spatial coverage of satellites. In this study, CALIOP PBLHs are derived from combination of Haar wavelet and maximum variance techniques, and are further validated against PBLHs estimated from ground-based lidar at Beijing and Jinhua. Correlation coefficients between PBLHs from ground- and satellite-based lidars are 0.59 at Beijing and 0.65 at Jinhua. Also, the PBLH climatology from CALIOP and radiosonde are compiled over China during the period from 2011 to 2014. Maximum CALIOP-derived PBLH can be seen in summer as compared to lower values in other seasons. Three matchup scenarios are proposed according to the position of each radiosonde site relative to its closest CALIPSO ground tracks. For each scenario, intercomparisons were performed between CALIOP- and radiosonde-derived PBLHs, and scenario 2 is found to be better than other scenarios using difference as the criteria. In early summer afternoon over 70 % of the total radiosonde sites have PBLH values ranging from 1.6 to 2.0 km. Overall, CALIOP-derived PBLHs are well consistent with radiosonde-derived PBLHs. To our knowledge, this study is the first intercomparison of PBLH on a large scale using the radiosonde network of China, shedding important light on the data quality of initial CALIOP-derived PBLH results.

  15. Intercomparison of terrestrial carbon fluxes and carbon use efficiency simulated by CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Kim, Dongmin; Lee, Myong-In; Jeong, Su-Jong; Im, Jungho; Cha, Dong Hyun; Lee, Sanggyun

    2017-12-01

    This study compares historical simulations of the terrestrial carbon cycle produced by 10 Earth System Models (ESMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Using MODIS satellite estimates, this study validates the simulation of gross primary production (GPP), net primary production (NPP), and carbon use efficiency (CUE), which depend on plant function types (PFTs). The models show noticeable deficiencies compared to the MODIS data in the simulation of the spatial patterns of GPP and NPP and large differences among the simulations, although the multi-model ensemble (MME) mean provides a realistic global mean value and spatial distributions. The larger model spreads in GPP and NPP compared to those of surface temperature and precipitation suggest that the differences among simulations in terms of the terrestrial carbon cycle are largely due to uncertainties in the parameterization of terrestrial carbon fluxes by vegetation. The models also exhibit large spatial differences in their simulated CUE values and at locations where the dominant PFT changes, primarily due to differences in the parameterizations. While the MME-simulated CUE values show a strong dependence on surface temperatures, the observed CUE values from MODIS show greater complexity, as well as non-linear sensitivity. This leads to the overall underestimation of CUE using most of the PFTs incorporated into current ESMs. The results of this comparison suggest that more careful and extensive validation is needed to improve the terrestrial carbon cycle in terms of ecosystem-level processes.

  16. Trace gas detection from fermentation processes in apples; an intercomparison study between proton-transfer-reaction mass spectrometry and laser photoacoustics

    NASA Astrophysics Data System (ADS)

    Boamfa, E. I.; Steeghs, M. M. L.; Cristescu, S. M.; Harren, F. J. M.

    2004-12-01

    A custom-built proton-transfer-reaction mass spectrometry (PTR-MS) instrument was used to monitor the emission of various compounds (aldehydes, alcohols, acids, acetates and C-6 compounds) related to fermentation, aroma and flavour, released by four apple cultivars (Elstar, Jonaglod, Granny Smith and Pink Lady) under short anaerobic (24 h) and post-anaerobic conditions. The novel feature of our instrument is the new design of the collisional dissociation chamber, which separates the high pressure in the drift tube (2 mbar) from the high vacuum pressure in the detection region (10-6 mbar). The geometry of this chamber was changed and a second turbo pump was added to reduce the influence of collisional loss of ions, background signals and cluster ions, which facilitates the interpretation of the mass spectra and increases the signal intensity at the mass of the original protonated compound. With this system, detection limits of similar magnitude to the ones reported in literature are reached. An intercomparison study between PTR-MS and a CO laser-based photoacoustic trace gas detector is presented. The alcoholic fermentation products (acetaldehyde and ethanol) from young rice plants were simultaneously monitored by both methods. A very good agreement was observed for acetaldehyde production. The photoacoustic detector showed about two times lower ethanol concentration as compared to PTR-MS, caused by memory effects due to sticking of compounds to the walls of the nylon tube used to transport the trace gases to the detector.

  17. Sao Paulo Lightning Mapping Array (SP-LMA): Network Assessment and Analyses for Intercomparison Studies and GOES-R Proxy Activities

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Bailey, J. C.; Carey, L. D.; Goodman, S. J.; Rudlosky, S. D.; Albrecht, R.; Morales, C. A.; Anselmo, E. M.; Neves, J. R.

    2013-01-01

    A 12 station Lightning Mapping Array (LMA) network was deployed during October 2011in the vicinity of São Paulo, Brazil (SP-LMA) to contribute total lightning measurements to an international field campaign [CHUVA - Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)]. The SP-LMA was operational from November 2011 through March 2012. Sensor spacing was on the order of 15-30 km, with a network diameter on the order of 40-50km. The SP-LMA provides good 3-D lightning mapping out to150 km from the network center, with 2-D coverage considerably farther. In addition to supporting CHUVA science/mission objectives, the SP-LMA is supporting the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), on NOAA's Geostationary Operational Environmental Satellite-R (GOES-R: scheduled for a 2015 launch). These proxy data will be used to develop and validate operational algorithms so that they will be ready to use on "day1" following the GOES-R launch. The SP-LMA data also will be intercompared with lightning observations from other deployed lightning networks to advance our understanding of the capabilities/contributions of each of these networks toward GLM proxy and validation activities. This paper addresses the network assessment and analyses for intercomparison studies and GOES-R proxy activities

  18. DSCOVR_EPIC_L2_SO2_01

    Atmospheric Science Data Center

    2018-06-18

    ... UV and infrared sensors, offering ample opportunities for data intercomparisons and for demonstrating advanced retrievals of volcanic ash ... developed for TOMS and OMI to enable SO2 and Ash Index (AI) products from EPIC UV observations to demonstrate improved estimates of ...

  19. Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations

    DOE PAGES

    Terai, C. R.; Klein, S. A.; Zelinka, M. D.

    2016-08-26

    The increase in cloud optical depth with warming at middle and high latitudes is a robust cloud feedback response found across all climate models. This study builds on results that suggest the optical depth response to temperature is timescale invariant for low-level clouds. The timescale invariance allows one to use satellite observations to constrain the models' optical depth feedbacks. Three passive-sensor satellite retrievals are compared against simulations from eight models from the Atmosphere Model Intercomparison Project (AMIP) of the 5th Coupled Model Intercomparison Project (CMIP5). This study confirms that the low-cloud optical depth response is timescale invariant in the AMIPmore » simulations, generally at latitudes higher than 40°. Compared to satellite estimates, most models overestimate the increase in optical depth with warming at the monthly and interannual timescales. Many models also do not capture the increase in optical depth with estimated inversion strength that is found in all three satellite observations and in previous studies. The discrepancy between models and satellites exists in both hemispheres and in most months of the year. A simple replacement of the models' optical depth sensitivities with the satellites' sensitivities reduces the negative shortwave cloud feedback by at least 50% in the 40°–70°S latitude band and by at least 65% in the 40°–70°N latitude band. Furthermore, based on this analysis of satellite observations, we conclude that the low-cloud optical depth feedback at middle and high latitudes is likely too negative in climate models.« less

  20. Extreme Rainfall from Hurricane Harvey (2017): Intercomparisons of WRF Simulations and Polarimetric Radar Fields

    NASA Astrophysics Data System (ADS)

    Yang, L.; Smith, J. A.; Liu, M.; Baeck, M. L.; Chaney, M. M.; Su, Y.

    2017-12-01

    Hurricane Harvey made landfall on 25 August 2017 and produced more than a meter of rain during a four-day period over eastern Texas, making it the wettest tropical cyclone on record in the United States. Extreme rainfall from Harvey was predominantly related to the dynamics and structure of outer rain bands. In this study, we provide details of the extreme rainfall produced by Hurricane Harvey. The principal research questions that motivate this study are: (1) what are the key microphysical properties of extreme rainfall from landfalling tropical cyclones and (2) what are the capabilities and deficiencies of existing bulk microphysics parameterizations from the physical models in capturing them. Our analyses are centered on intercomparisons of high-resolution simulations using the Weather Research and Forecasting (WRF) model and polarimetric radar fields from KHGX (Houston, Texas) WSR-88D. The WRF simulations accurately capture the track and intensity of Hurricane Harvey. Multi-rainband structure and its key evolution features are also well represented in the simulations. Two microphysics parameterizations (WSM6 and WDM6) are tested in this study. Radar reflectivity and differential reflectivity fields simulated by the WRF model are compared with polarimetric radar observations. An important feature for the extreme rainfall from Hurricane Harvey is the sharp boundary of spatial rainfall accumulation along the coast (with torrential rainfall distributed over Houston and its surrounding inland areas). We will examine the role of land-sea contrasts in dictating storm structure and evolution from both WRF simulations and polarimetric radar fields. Implications for improving hurricane rainfall forecasts and estimates will be provided.

  1. Intercomparison of general circulation models for hot extrasolar planets

    NASA Astrophysics Data System (ADS)

    Polichtchouk, I.; Cho, J. Y.-K.; Watkins, C.; Thrastarson, H. Th.; Umurhan, O. M.; de la Torre Juárez, M.

    2014-02-01

    We compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ different numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ‘cubed-sphere’ grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: (1) steady-state, (2) nonlinearly evolving baroclinic wave, and (3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should-except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in pseudospectral models (only). However, exact numerical convergence is still not achieved across the pseudospectral models: amplitudes and phases are observably different. When subject to a typical ‘hot-Jupiter’-like forcing, all five models show quantitatively different behavior-although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, pseudospectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst.

  2. Intercomparison Between Microwave Radiometer and Radiosonding Data

    NASA Astrophysics Data System (ADS)

    Toanca, Florica; Stefan, Sabina

    2014-05-01

    The aim of this study is to compare relative humidity and temperature vertical profiles measured by ground based Microwave Radiometer (MWR) RPG HATPRO installed at the Romanian Atmospheric Observatory (Magurele, 44.35 N, 26.03 E) and by radio-sounding (RS) (Baneasa, 44.30 N, 26.04 E) provided by National Meteorological Administration. MWR uses passive microwave detection in the 22.335 to 31.4 GHz and 51to 58 GHz bands to obtain the vertical profiles of temperature and relative humidity up to 10km with a temporal resolution of several minutes. The reliability of atmospheric temperature and relative humidity profiles retrieved continuously by the MWR for the winter and summer of year 2013 was studied. The study was conducted, comparing the temperature and humidity profiles from the MWR with the ones from the radio soundings at 0:00 a.m. Two datasets of the humidity show a fairly good agreement for the interval between ground and 1.5 km in the January month for winter and up to 2 km in the July month for summer. Above 2 km, for the both seasons, the humidity profiles present in most of the selected cases the same trend evolution. The temperature vertical profiles agreed in 95% of the cases during summer and 85% during winter. It is very important for intercomparison that for both seasons almost all temperature vertical profiles highlight temperature inversions. Two cases have been analyzed in order to find possible explanations for the discrepancies between vertical profiles, focusing on advantages and disadvantages of MWR measurements.

  3. Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terai, C. R.; Klein, S. A.; Zelinka, M. D.

    The increase in cloud optical depth with warming at middle and high latitudes is a robust cloud feedback response found across all climate models. This study builds on results that suggest the optical depth response to temperature is timescale invariant for low-level clouds. The timescale invariance allows one to use satellite observations to constrain the models' optical depth feedbacks. Three passive-sensor satellite retrievals are compared against simulations from eight models from the Atmosphere Model Intercomparison Project (AMIP) of the 5th Coupled Model Intercomparison Project (CMIP5). This study confirms that the low-cloud optical depth response is timescale invariant in the AMIPmore » simulations, generally at latitudes higher than 40°. Compared to satellite estimates, most models overestimate the increase in optical depth with warming at the monthly and interannual timescales. Many models also do not capture the increase in optical depth with estimated inversion strength that is found in all three satellite observations and in previous studies. The discrepancy between models and satellites exists in both hemispheres and in most months of the year. A simple replacement of the models' optical depth sensitivities with the satellites' sensitivities reduces the negative shortwave cloud feedback by at least 50% in the 40°–70°S latitude band and by at least 65% in the 40°–70°N latitude band. Furthermore, based on this analysis of satellite observations, we conclude that the low-cloud optical depth feedback at middle and high latitudes is likely too negative in climate models.« less

  4. Regional and global climate for the mid-Pliocene using CCSM4 with PlioMIP2 boundary conditions

    NASA Astrophysics Data System (ADS)

    Chandan, D.; Peltier, W. R.

    2016-12-01

    The mid-Pliocene ( 3 Mya) hothouse continues to intrigue the climate community regarding the nature of the feedback mechanisms that could have amplified the warming that is expected from a modest concentration of atmospheric carbon-dioxide ( 300-400 ppmv). The Pliocene Model Intercomparison Project (PlioMIP) was created to help understand the mid-Pliocene climate through intercomparison between different climate models. The results from the first phase of this program revealed substantial variations between participating models and the pervasive inability of the models to capture the SST anomalies over equatorial upwelling regions and at high-latitude sites in the North Atlantic. The second phase, PlioMIP2 (Haywood et al., 2016), which has only recently begun, considerably revises the boundary conditions that are to be used with coupled-climate models, especially in high-latitude regions. The set of PlioMIP2 experiments which have been proposed will facilitate the attribution of the total warming to that arising from changes in (i) atmospheric CO2, (ii) orography and (iii) sea-ice extent, using the factor analysis methodology of Lunt et al., 2012. We have performed several very long, high-quality climate simulations from the PlioMIP2 set using the fully-coupled CCSM4/CESM1 model. We present our analysis of the mid-Pliocene climate based upon the results of these simulations and draw special attention to the extent of polar-amplification, the temperature pattern in the equatorial pacific and the existence and character of ENSO. In order to assess the regional and global impact of the new boundary conditions, our results are compared to the CCSM4 climate obtained using boundary conditions from the first phase of PlioMIP (Rosenbloom et al., 2013), to the PRISM3 (Dowsett et al., 2010) estimates for mid-Pliocene SST (relevant for the time-interval of study in PlioMIP), and to our own compilation of SST estimates for the time interval which is the focus in PlioMIP2. Dowsett et al., 2010, Stratigraphy (7) 123-129Haywood et al., 2016, CP (12) 663-675Lunt et al., 2012, EPSL (321-322) 128-138Rosenbloom et al., 2013, GMD (6) 549-561

  5. Seasonal changes in the tropospheric carbon monoxide profile over the remote Southern Hemisphere evaluated using multi-model simulations and aircraft observations

    NASA Astrophysics Data System (ADS)

    Fisher, J. A.; Wilson, S. R.; Zeng, G.; Williams, J. E.; Emmons, L. K.; Langenfelds, R. L.; Krummel, P. B.; Steele, L. P.

    2015-03-01

    The combination of low anthropogenic emissions and large biogenic sources that characterizes the Southern Hemisphere (SH) leads to significant differences in atmospheric composition relative to the better studied Northern Hemisphere. This unique balance of sources poses significant challenges for global models. Carbon monoxide (CO) in particular is difficult to simulate in the SH due to the increased importance of secondary chemical production associated with the much more limited primary emissions. Here, we use aircraft observations from the 1991-2000 Cape Grim Overflight Program (CGOP) and the 2009-2011 HIAPER (High-performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO), together with model output from the SH Model Intercomparison Project, to elucidate the drivers of CO vertical structure in the remote SH. Observed CO vertical profiles from Cape Grim are remarkably consistent with those observed over the southern mid-latitudes Pacific 10-20 years later, despite major differences in time periods, flight locations, and sampling strategies between the two data sets. These similarities suggest the processes driving observed vertical gradients are coherent across much of the remote SH and have not changed significantly over the past 2 decades. Model ability to simulate CO profiles reflects the interplay between biogenic emission sources, the chemical mechanisms that drive CO production from these sources, and the transport that redistributes this CO throughout the SH. The four chemistry-climate and chemical transport models included in the intercomparison show large variability in their abilities to reproduce the observed CO profiles. In particular, two of the four models significantly underestimate vertical gradients in austral summer and autumn, which we find are driven by long-range transport of CO produced from oxidation of biogenic compounds. Comparisons between the models show that more complex chemical mechanisms do not necessarily provide more accurate simulation of CO vertical gradients due to the convolved impacts of emissions, chemistry, and transport. Our results imply a large sensitivity of the remote SH troposphere to biogenic emissions and chemistry, both of which remain key uncertainties in global modeling. We suggest that the CO vertical gradient can be used as a metric for future model evaluation as it provides a sensitive test of the processes that define the chemical state of the background atmosphere.

  6. Intercomparison and validation of MODIS and GLASS leaf area index (LAI) products over mountain areas: A case study in southwestern China

    NASA Astrophysics Data System (ADS)

    Jin, Huaan; Li, Ainong; Bian, Jinhu; Nan, Xi; Zhao, Wei; Zhang, Zhengjian; Yin, Gaofei

    2017-03-01

    The validation study of leaf area index (LAI) products over rugged surfaces not only gives additional insights into data quality of LAI products, but deepens understanding of uncertainties regarding land surface process models depended on LAI data over complex terrain. This study evaluated the performance of MODIS and GLASS LAI products using the intercomparison and direct validation methods over southwestern China. The spatio-temporal consistencies, such as the spatial distributions of LAI products and their statistical relationship as a function of topographic indices, time, and vegetation types, respectively, were investigated through intercomparison between MODIS and GLASS products during the period 2011-2013. The accuracies and change ranges of these two products were evaluated against available LAI reference maps over 10 sampling regions which standed for typical vegetation types and topographic gradients in southwestern China. The results show that GLASS LAI exhibits higher percentage of good quality data (i.e. successful retrievals) and smoother temporal profiles than MODIS LAI. The percentage of successful retrievals for MODIS and GLASS is vulnerable to topographic indices, especially to relief amplitude. Besides, the two products do not capture seasonal dynamics of crop, especially in spring over heterogeneously hilly regions. The yearly mean LAI differences between MODIS and GLASS are within ±0.5 for 64.70% of the total retrieval pixels over southwestern China. The spatial distribution of mean differences and temporal profiles of these two products are inclined to be dominated by vegetation types other than topographic indices. The spatial and temporal consistency of these two products is good over most area of grasses/cereal crops; however, it is poor for evergreen broadleaf forest. MODIS presents more reliable change range of LAI than GLASS through comparison with fine resolution reference maps over most of sampling regions. The accuracies of direct validation are obtained for GLASS LAI (r = 0.35, RMSE = 1.72, mean bias = -0.71) and MODIS LAI (r = 0.49, RMSE = 1.75, mean bias = -0.67). GLASS performs similarly to MODIS, but may be marginally inferior to MODIS based on our direct validation results. The validation experience demonstrates the necessity and importance of topographic consideration for LAI estimation over mountain areas. Considerable attention will be paid to the improvements of surface reflectance, retrieval algorithm and land cover types so as to enhance the quality of LAI products in topographically complex terrain.

  7. An intercomparison of airborne nitrogen dioxide instruments

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Hoell, J. M., Jr.; Carroll, M. A.; Ridley, B. A.; Davis, D. D.; Bradshaw, J.; Rodgers, M. O.; Sandholm, S. T.; Schiff, H. I.; Torres, A. L.

    1990-01-01

    Results on NO2 instruments are reported from the NASA Global Tropospheric Experiment Chemical Instrumentation Test and Evaluation 2 (CITE 2) program in summer 1986. The instruments tested were (1) a two-photon LIF system using a laser for NO2-NO photolysis, (2) a chemiluminescence (CL) detector using FeSO4 for NO2-NO conversion, (3) a CL detector using an arc lamp for NO2-NO photolysis, and (4) a tunable-laser-diode multipath-absorption system. The procedures for the CITE 2 ground-based and flight tests are described in detail, and the results are presented in extensive graphs. Instrument (2) was eliminated because the FeSO4 converted atmospheric PAN to NO, resulting in spuriously high NO2 values. The remaining instruments gave readings in 30-40-percent agreement at NO2 mixing ratios of 100-200 parts per trillion by volume (pptv). At ratios below 50 pptv, the correlation among the measurements was very poor, with a tendency for system (4) to give higher values than (1) or (3).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.; Peña, M., E-mail: mlpena@sgc.gov.co

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes withmore » medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.« less

  9. Indian programme on middle atmosphere - Some results

    NASA Astrophysics Data System (ADS)

    Mitra, A. P.

    An account of the very extensive program on the middle atmosphere carried out in India since 1982 is presented. Three rocket ranges (Thumba, SHAR and Balasore), a high altitude balloon facility at Hyderabad, a lidar at Thumba, a laser heterodyning system at Delhi, a meteor radar in Thumba, a network of UVB and multiwavelength radiometers, and a host of conventional ground based facilities scattered over the entire subcontinent were used. These facilities covered a range of latitudes from 8 deg N to 34 deg N and largely around the same longitude zone of 75 deg E. The nature of the Indian effort is the emphasis on campaign mode operations, knitting special rocket and balloon efforts with more conventional ground based activities around specific themes. Major campaigns carried out included: (1) Indo-Soviet Ozone Intercomparison campaigns in 1983 and 1987, (2) Aerosol campaign (3), Ionization and conductivity campaigns, (4) Equatorial Wave Campaign, (5) Antarctic Ozone Hole campaign in Dakshin Gangotri. A few of the more important findings are outlined.

  10. International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using GODIVA-IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickman, David; Hudson, Becka

    The Nuclear Criticality Safety Program operated under the direction of Dr. Jerry McKamy completed the first NNSA Nuclear Accident Dosimetry exercise on May 27, 2016. Participants in the exercise were from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), Savanah River Site (SRS), Pacific Northwest National Laboratory (PNNL), US Navy, the Atomic Weapons Establishment (United Kingdom) under the auspices of JOWOG 30, and the Institute for Radiological Protection and Nuclear Safety (France) by special invitation and NCSP memorandum of understanding. This exercise was the culmination of a series of Integral Experiment Requests (IER) thatmore » included the establishment of the Nuclear Criticality Experimental Research Center, (NCERC) the startup of the Godiva Reactor (IER-194), the establishment of a the Nuclear Accident Dosimetry Laboratory (NAD LAB) in Mercury, NV, and the determination of reference dosimetry values for the mixed neutron and photon radiation field of Godiva within NCERC.« less

  11. EML indoor radon workshop, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, A.C.; Lowder, W.; Fisenne, I.

    1983-07-01

    A workshop on indoor radon, held at the Environmental Measurements Laboratory (EML) on November 30 and December 1, 1982, covered recent developments in radon daughter research and development. Thirty papers were presented dealing with standardization and quality assurance measurement methods, surveys, measurements strategy, physical mechanisms of radon and radon daughter transport and development of guidance standards for indoor exposures. The workshop concluded with a planning session that identified the following needs: (1) national and international intercomparisons of techniques for measuring radon and radon daughter concentrations, working level and radon exhalation flux density; (2) development and refinement of practical measurement techniquesmore » for thoron and its daughter products; (3) quantitative definition of the sources of indoor radon and the mechanisms of transport into structures; (4) better knowledge of the physical properties of radon daughters; (5) more complete and accurate data on the population exposure to radon, which can only be met by broadly based surveys; and (6) more international cooperation and information exchange among countries with major research programs.« less

  12. Stopping cross section of vanadium for H+ and He+ ions in a large energy interval deduced from backscattering spectra

    NASA Astrophysics Data System (ADS)

    Moro, M. V.; Bruckner, B.; Grande, P. L.; Tabacniks, M. H.; Bauer, P.; Primetzhofer, D.

    2018-06-01

    We have experimentally determined electronic stopping cross sections of vanadium for 50-2750 keV protons and for 250-6000 keV He ions by relative measurements in backscattering geometry. To check the consistency of the employed procedure we investigate how to define adequate reference stopping cross section data and chose different reference materials. To proof consistency of different reference data sets, an intercomparison is performed to test the reliability of the evaluation procedure for a wide range of energies. This process yielded consistent results. The resulting stopping cross section data for V are compared to values from the IAEA database, to the most commonly employed semi-empirical program SRIM, and to calculations according to CasP. For helium, our results show a significant deviation of up to 10% with respect to literature and to SRIM, but are in very good agreement with the CasP predictions, in particular when charge-exchange processes are included in the model.

  13. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  14. Intercomparison study of atmospheric methane and carbon dioxide concentrations measured at the Ebre River Delta Station

    NASA Astrophysics Data System (ADS)

    Occhipinti, Paola; Morguí, Josep Anton; Àgueda, Alba; Batet, Oscar; Borràs, Sílvia; Cañas, Lídia; Curcoll, Roger; Grossi, Claudia; Nofuentes, Manel; Vazquez, Eusebi; Rodó, Xavier

    2015-04-01

    In the framework of the ClimaDat project, IC3 has established a network of eight monitoring stations across the Iberian Peninsula and the Canarian Archipelago with the aim of studying climate processes. The monitoring station at the Ebre River Delta (DEC3) is located in the Ebre River Delta Natural Park (40° 44' N; 0° 47' E) and it is characterized by the typical North-Western Mediterranean climate. Since 2013, atmospheric greenhouse gases (GHG) and 222Rn tracer gas together with the meteorological parameters are continuously measured from a 10 m a.g.l. height tower. Atmospheric GHG (CO2, CH4, CO and N2O) concentrations are determined using a Picarro analyzer G2301 (CO2 and CH4) and a modified gas chromatograph (GC) Agilent 6890N (CO2, CH4, CO and N2O). Open data access is available from the www.climadat.es website. Data collected at the DEC3 station are also submitted to the InGOS platform since this station is part of the InGOS European infrastructure project. Researchers from the Laboratory of the Atmosphere and the Oceans (LAO) at IC3 have performed an intercomparison study at the DEC3 site between three different Picarro analyzers (two Picarro G2301 and one Picarro G2301M), a Los Gatos Research (LGR) analyzer and the GC system already installed at the station. The aim of this study is to compare and assess the measuring agreement between the four optical gas analyzers and the GC. In the first part of the experiment, all instruments have been calibrated using NOAA gases as primary standards analyzing five Praxair provided targets to evaluate the precision of the measuring instruments. Max Plank Institute (MPI) gases have been used as secondary standards for the GC whereas Praxair provided tanks are used as secondary standards for the Picarro and the LGR analyzers. In the second part of the experiment, atmospheric GHG were measured from natural atmospheric air taken from a 10 m a.g.l. inlet. Daily cycles of GHG measurements were carried out using different instruments simultaneously over a period of 24 hours, coupling the GC with a combination of two optical analyzers per time. Precision results together with the evaluation of the advantages and drawbacks of the use of these different GHG measuring instruments will be discussed. The intercomparison study here presented will be implemented by carrying it out at each of the eight ClimaDat monitoring stations in Spain, representing a quality control system for the analysis of GHG in the ClimaDat network.

  15. Validation and Inter-Comparison of Limb Sounding Profiles from MRO/MCS and MGS/TES

    NASA Astrophysics Data System (ADS)

    Shirley, J. H.; McConnochie, T. M.; Kass, D. M.; Kleinböhl, A.; Schofield, J. T.; Heavens, N. G.; McCleese, D. J.; Benson, J.; Hinson, D. P.; Bandfield, J. L.

    2014-07-01

    Nighttime atmospheric temperatures in northern middle latitudes during Mars' aphelion season obtained by MGS/TES and MRO/MCS are compared with MGS radio science results. Profile mean Δ Ts of <= 2 K demonstrate consistency of retrieved temperatures.

  16. Using a Coupled Lake Model with WRF for Dynamical Downscaling

    EPA Science Inventory

    The Weather Research and Forecasting (WRF) model is used to downscale a coarse reanalysis (National Centers for Environmental Prediction–Department of Energy Atmospheric Model Intercomparison Project reanalysis, hereafter R2) as a proxy for a global climate model (GCM) to examine...

  17. INTERCOMPARISON OF ALTERNATIVE VEGETATION DATABASES FOR REGIONAL AIR QUALITY MODELING

    EPA Science Inventory

    Vegetation cover data are used to characterize several regional air quality modeling processes, including the calculation of heat, moisture, and momentum fluxes with the Mesoscale Meteorological Model (MM5) and the estimate of biogenic volatile organic compound and nitric oxide...

  18. Validation of Carbon Flux and Related Products for SIMBIOS: The CARIACO Continental Margin Time Series and the Orinoco River Plume. Chapter 15

    NASA Technical Reports Server (NTRS)

    Muller-Karger, Frank; Hu, Chuanmin; Akl, John P.; Varela, Ramon

    2001-01-01

    Between 1997 and 2000, this Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) investigation collected bio-optical measurements in the Southeastern Caribbean Sea and the tropical western Atlantic to help understand the color of coastal and continental shelf waters. Specifically, bio-optical data were collected to complement an oceanographic time series maintained within the Cariaco Basin, a site affected by seasonal coastal upwelling. Bio-optical data were also collected within the plume of the Orinoco River during seasonal extremes in discharge. This program focused on providing data to the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and SIMBIOS Projects for validating SeaWiFS products. The data are unique in that they provide a substantial number of observations on repeated seasonal cycles for the SeaWIFS Bio-Optical Archive and Storage System (SeaBASS) bio-optical database. An important aspect of this SIMBIOS investigation was a focus on proper interpretation of ocean color remote sensing data from coastal and continental shelf environments. With this goal in mind, ocean color satellite data from a variety and locations and from different satellite sensors were examined to understand spatial and temporal variability in pigment concentrations, and also to conduct an in-depth study of current atmospheric correction and bio-optical algorithms.

  19. Potential Impact of Climate Change on Streamflow of Major Ethiopian Rivers

    NASA Astrophysics Data System (ADS)

    Gizaw, M. S.; Zhang, S.; Biftu, G. F.; Gan, T. Y.; Tan, X.; Moges, S. A.; Koivusalo, H.

    2017-12-01

    In this study, HSPF (Hydrologic Simulation Program-FORTRAN) was used to analyze the potential impact of climate change on the streamflow of four major river basins in Ethiopia: Awash, Baro, Genale and Tekeze. The calibrated and validated HSPF model was forced with daily climate data of 10 CMIP5 (Coupled Model Intercomparison Project phase 5) Global Climate Models (GCMs) for the 1971-2000 control period and the RCP4.5 and RCP8.5 climate projections of 2041-2070 (2050s) and 2071-2100 (2080s). The ensemble median of these 10 GCMs projects the temperature in the four study areas to increase by about 2.3 ˚C (3.3 ˚C) in 2050s (2080s) whereas the mean annual precipitation is projected to increase by about 6% (9%) in 2050s (2080s). This results in about 3% (6%) increase in the projected annual streamflow in Awash, Baro and Tekeze rivers whereas the annual streamflow of Genale river is projected to increase by about 18% (33%) in the 2050s (2080s). However, such projected increase in the mean annual streamflow due to increasing precipitation over Ethiopia contradicts the decreasing trends in mean annual precipitation observed in recent decades. Regional climate models of high resolutions could provide more realistic climate projections for Ethiopia's complex topography, thus reducing the uncertainties in future streamflow projections.

  20. Looking beyond general metrics for model comparison - lessons from an international model intercomparison study

    NASA Astrophysics Data System (ADS)

    de Boer-Euser, Tanja; Bouaziz, Laurène; De Niel, Jan; Brauer, Claudia; Dewals, Benjamin; Drogue, Gilles; Fenicia, Fabrizio; Grelier, Benjamin; Nossent, Jiri; Pereira, Fernando; Savenije, Hubert; Thirel, Guillaume; Willems, Patrick

    2017-01-01

    International collaboration between research institutes and universities is a promising way to reach consensus on hydrological model development. Although model comparison studies are very valuable for international cooperation, they do often not lead to very clear new insights regarding the relevance of the modelled processes. We hypothesise that this is partly caused by model complexity and the comparison methods used, which focus too much on a good overall performance instead of focusing on a variety of specific events. In this study, we use an approach that focuses on the evaluation of specific events and characteristics. Eight international research groups calibrated their hourly model on the Ourthe catchment in Belgium and carried out a validation in time for the Ourthe catchment and a validation in space for nested and neighbouring catchments. The same protocol was followed for each model and an ensemble of best-performing parameter sets was selected. Although the models showed similar performances based on general metrics (i.e. the Nash-Sutcliffe efficiency), clear differences could be observed for specific events. We analysed the hydrographs of these specific events and conducted three types of statistical analyses on the entire time series: cumulative discharges, empirical extreme value distribution of the peak flows and flow duration curves for low flows. The results illustrate the relevance of including a very quick flow reservoir preceding the root zone storage to model peaks during low flows and including a slow reservoir in parallel with the fast reservoir to model the recession for the studied catchments. This intercomparison enhanced the understanding of the hydrological functioning of the catchment, in particular for low flows, and enabled to identify present knowledge gaps for other parts of the hydrograph. Above all, it helped to evaluate each model against a set of alternative models.

Top