NASA Astrophysics Data System (ADS)
Philipp, S. L.; Reyer, D.; Meier, S.
2009-04-01
Geothermal reservoirs are rock units from which the internal heat can be extracted using water as a transport means in an economically efficient manner. In geothermal reservoirs in limestone (and similar in other rocks with low matrix permeability), fluid flow is largely, and may be almost entirely, controlled by the permeability of the fracture network. No flow, however, takes place along a particular fracture network unless the fractures are interconnected. For fluid flow to occur from one site to another there must be at least one interconnected cluster of fractures that links these sites (the percolation threshold must be reached). In order to generate permeability in man-made reservoirs, interconnected fracture systems are formed either by creating hydraulic fractures or by massive hydraulic stimulation of the existing fracture system in the host rock. For effective stimulation, the geometry of the fracture system and the mechanical properties of the host rock (particularly rock stiffnesses and strengths) must be known. Here we present results of a study of fracture systems in rocks that could be used to host man-made geothermal reservoirs: the Muschelkalk (Middle Triassic) limestones in Germany. Studies of fracture systems in exposed palaeogeothermal fields can also help understand the permeability development in stimulated reservoirs. We therefore present data on the infrastructures of extinct fracture-controlled geothermal fields in fault zones in the Blue Lias (Lower Jurassic), Great Britain. In fault zones there are normally two main mechanical and hydrogeological units. The fault core, along which fault slip mostly occurs, consists mainly of breccia and other cataclastic rocks. The fault damage zone comprises numerous fractures of various sizes. During fault slip, the fault core may transport water (if its orientation is favourable to the hydraulic gradient in the area). In the damage zone, however, fluid transport through fracture networks depends particularly on the current local stress field. One reason for this is that fractures are sensitive to changes in the stress field and deform much more easily than circular pores. If the maximum horizontal compression is oriented perpendicular to the fault strike, its fractures (mainly in the damage zone) tend to be closed and lead less water than if the maximum horizontal compression is oriented parallel to the fault strike, in which case its fractures tend to open up and be favourable to fluid transport. In areas of potential geothermal reservoirs, fault zones must be studied, keeping in mind that the permeability structure of a fault zone depends partly on the mechanical units of the fault zone and partly on the local stress field. To explore stress fields affecting fracture propagation we have run numerical models using the finite-element and the boundary-element methods. We focus on the influence of changes in mechanical properties (particularly Young's modulus) between host rock layers in geothrmal reservoirs in limestone. The numerical models show that stresses commonly concentrate in stiff layers. Also, at the contacts between soft marl and stiffer limestone layers, the stress trajectories (directions of the principal stresses) may become rotated. Depending on the external loading conditions, certain layers may become stress barriers to fracture propagation. In a reservoir where most hydrofractures become stratabound (confined to individual layers), interconnected fracture systems are less likely to develop than in one with non-stratabound hydrofractures. Reservoirs with stratabound fractures may not reach the percolation threshold needed for significant permeability. We also used the field data to investigate the fracture-related permeability of fluid reservoirs in limestone with numerical models. We simulated different scenarios, in which potential fluid pathways were added successively (vertical extension fractures, inclined shear fractures and open layer contacts). Short and straight fluid pathways parallel to the flow direction lead to the highest permeabilities. The better the connectivity of the fracture system, the higher is the resulting permeability. Only in well-interconnected, continuous systems of fluid pathways there is a correlation between the apertures of the fractures and the permeability. Our results suggest that fluid transport along faults, and the propagation and aperture variation of hydrofractures, are important parameters in the permeability development of geothermal reservoirs. These studies provide a basis for models of fracture networks and fluid transport in future man-made reservoirs. We conclude that the likely permeability of a man-made geothermal reservoir can be inferred from field data, natural analogues, laboratory measurements, and numerical models.
Further Development and Application of GEOFRAC-FLOW to a Geothermal Reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einstein, Herbert; Vecchiarelli, Alessandra
2014-05-01
GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristics of GEOFRAC are its use of statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E(A). This information can be obtained from boreholes or scanlines on the surface, on the one hand, and from window sampling of fracture traces on the other hand. In the context of this project, “Recovery Act - Decision Aids for Geothermal Systems”, GEOFRAC was further developed into GEOFRAC-FLOW as has been reportedmore » in the reports, “Decision Aids for Geothermal Systems - Fracture Pattern Modelling” and “Decision Aids for Geothermal Systems - Fracture Flow Modeling”. GEOFRAC-FLOW allows one to determine preferred, interconnected fracture paths and the flow through them.« less
Stress redistribution and damage in interconnects caused by electromigration
NASA Astrophysics Data System (ADS)
Chiras, Stefanie Ruth
Electromigration has long been recognized as a phenomenon that induces mass redistribution in metals which, when constrained, can lead to the creation of stress. Since the development of the integrated circuit, electromigration. in interconnects, (the metal lines which carry current between devices in integrated circuits), has become a reliability concern. The primary failure mechanism in the interconnects is usually voiding, which causes electrical resistance increases in the circuit. In some cases, however, another failure mode occurs, fracture of the surrounding dielectric driven by electromigration induced compressive stresses within the interconnect. It is this failure mechanism that is the focus of this thesis. To study dielectric fracture, both residual processing stresses and the development of electromigration induced stress in isolated, constrained interconnects was measured. The high-resolution measurements were made using two types of piezospectroscopy, complemented by finite element analysis (FEA). Both procedures directly measured stress in the underlying or neighboring substrate and used FEA to determine interconnect stresses. These interconnect stresses were related to the effected circuit failure mode through post-test scanning electron microscopy and resistance measurements taken during electromigration testing. The results provide qualitative evidence of electromigration driven passivation fracture, and quantitative analysis of the theoretical model of the failure, the "immortal" interconnect concept.
NASA Astrophysics Data System (ADS)
Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.
2014-06-01
This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.
Roles of interfacial reaction on mechanical properties of solder interfaces
NASA Astrophysics Data System (ADS)
Liu, Pilin
This study investigated roles of interfacial reaction in fracture and fatigue of solder interconnects. The interfacial reaction phases in the as-reflowed and after aging were examined by cross-sectional transmission electron microscopy (TEM) while interfacial mechanical properties were determined from a flexural peel fracture mechanics technique. Because of their widespread uses in microelectronic packaging, SnPb solder interfaces, and Bi-containing Pb-free solder interfaces were chosen as the subjects of this study. In the interfacial reaction study, we observed a complicated micro structural evolution during solid-state aging of electroless-Ni(P)/SnPb solder interconnects. In as-reflowed condition, the interfacial reaction produced Ni3Sn 4 and P-rich layers. Following overaging, the interfacial microstructure degenerated into a complex multilayer structure consisting of multiple layers of Ni-Sn compounds and transformed Ni-P phases. In SnPb solder interfacial system, fatigue study showed that the overaging of the high P electroless Ni-P/SnPb interconnects resulted in a sharp reduction in the fatigue resistance of the interface in the high crack growth rate regime. Fracture mechanism analysis indicated that the sharp drop in fatigue resistance was triggered by the brittle fracture of the Ni3Sn2 intermetallic phase developed at the overaged interface. The fatigue behavior was strongly dependent on P concentration in electroless Ni. Kirkendall voids were found in the interfacial region after aging, but they did not cause premature fracture of the solder interfaces. In Bi-containing solder interfacial system, we found that Bi segregated to the Cu-intermetallic interface during aging in SnBi/Cu interconnect. This caused serious embrittlement of Sn-Bi/Cu interface. Further aging induced numerous voids along the Cu3Sn/Cu interface. These interfacial voids were different from Kirkendall voids. Their formation was explained on basis of vacancy condensation at the interface as the Bi segregants reduced the number of effective Cu vacancy sink sites and enhanced void nucleation at the interface. The Bi segregation was avoided by replacing the Cu metallization with Ni. It was found that Bi developed a concentration gradient in the Ni 3Sn4 during interfacial reaction, with the Bi concentration falling off to zero as the Ni/IMC interface was approached. Therefore, the inhibition of Bi segregation by Ni was due to the inability of Bi to reach Ni/IMC interface.
NASA Astrophysics Data System (ADS)
Jin, G.
2016-12-01
Shales are important petroleum source rocks and reservoir seals. Recent developments in hydraulic fracturing technology have facilitated high gas production rates from shale and have had a strong impact on the U.S. gas supply and markets. Modeling of effective permeability for fractured shale reservoirs has been challenging because the presence of a fracture network significantly alters the reservoir hydrologic properties. Due to the frequent occurrence of fracture networks, it is of vital importance to characterize fracture networks and to investigate how these networks can be used to optimize the hydraulic fracturing. We have conducted basic research on 3-D fracture permeability characterization and compartmentization analyses for fractured shale formations, which takes the advantages of the discrete fracture networks (DFN). The DFN modeling is a stochastic modeling approach using the probabilistic density functions of fractures. Three common scenarios of DFN models have been studied for fracture permeability mapping using our previously proposed techniques. In DFN models with moderately to highly concentrated fractures, there exists a representative element volume (REV) for fracture permeability characterization, which indicates that the fractured reservoirs can be treated as anisotropic homogeneous media. Hydraulic fracturing will be most effective if the orientation of the hydraulic fracture is perpendicular to the mean direction of the fractures. A DFN model with randomized fracture orientations, on the other hand, lacks an REV for fracture characterization. Therefore, a fracture permeability tensor has to be computed from each element. Modeling of fracture interconnectivity indicates that there exists no preferred direction for hydraulic fracturing to be most effective oweing to the interconnected pathways of the fracture network. 3-D fracture permeability mapping has been applied to the Devonian Chattanooga Shale in Alabama and the results suggest that an REV exist for fluid flow and transport modeling at element sizes larger than 200 m. Fracture pathway analysis indicates that hydraulic fracturing can be equally effective for hydrocarbon fluid/gas exploration as long as its orientation is not aligned with that of the regional system fractures.
Stretchable interconnections for flexible electronic systems.
Jianhui, Lin; Bing, Yan; Xiaoming, Wu; Tianling, Ren; Litian, Liu
2009-01-01
Sensors, actuators and integrated circuits (IC) can be encapsulated together on an elastic substrate, which makes a flexible electronic system. In this system, electrical interconnections that can sustain large and reversible stretching are in great need. This paper is devoted to the fabrication of highly stretchable metal interconnections. Transfer printing technology is utilized, which mainly involves the transfer of 100-nm-thick gold ribbons from silicon wafers to pre-stretched elastic substrates. After the elastic substrates relax from the pre-strain, the gold ribbons buckle and form wavy geometries. These wavy geometries change in shapes to accommodate the applied strain and can be reversely stretched without cracks or fractures occurring, which will greatly raise the stretchability of the gold ribbons. As an application example, some of these wavy ribbons can accommodate high levels of stretching (up to 100%) and bending (with curvature radius down to 1.20 mm). Moreover, the efficiency and reliability of the transfer, especially for slender ribbons, have been increased due to the improvement of the technology. All the characteristics above will permit making stretchable gold conductors as interconnections for flexible electronic systems such as implantable medical systems and smart clothes.
Pearson, Krystal
2012-01-01
The Upper Cretaceous Austin Chalk forms a low-permeability, onshore Gulf of Mexico reservoir that produces oil and gas from major fractures oriented parallel to the underlying Lower Cretaceous shelf edge. Horizontal drilling links these fracture systems to create an interconnected network that drains the reservoir. Field and well locations along the production trend are controlled by fracture networks. Highly fractured chalk is present along both regional and local fault zones. Fractures are also genetically linked to movement of the underlying Jurassic Louann Salt with tensile fractures forming downdip of salt-related structures creating the most effective reservoirs. Undiscovered accumulations should also be associated with structure-controlled fracture systems because much of the Austin that overlies the Lower Cretaceous shelf edge remains unexplored. The Upper Cretaceous Eagle Ford Shale is the primary source rock for Austin Chalk hydrocarbons. This transgressive marine shale varies in thickness and lithology across the study area and contains both oil- and gas-prone kerogen. The Eagle Ford began generating oil and gas in the early Miocene, and vertical migration through fractures was sufficient to charge the Austin reservoirs.
NASA Astrophysics Data System (ADS)
Massiot, Cécile; Nicol, Andrew; Townend, John; McNamara, David D.; Garcia-Sellés, David; Conway, Chris E.; Archibald, Garth
2017-07-01
Permeability hosted in andesitic lava flows is dominantly controlled by fracture systems, with geometries that are often poorly constrained. This paper explores the fracture system geometry of an andesitic lava flow formed during its emplacement and cooling over gentle paleo-topography, on the active Ruapehu volcano, New Zealand. The fracture system comprises column-forming and platy fractures within the blocky interior of the lava flow, bounded by autobreccias partially observed at the base and top of the outcrop. We use a terrestrial laser scanner (TLS) dataset to extract column-forming fractures directly from the point-cloud shape over an outcrop area of ∼3090 m2. Fracture processing is validated using manual scanlines and high-resolution panoramic photographs. Column-forming fractures are either steeply or gently dipping with no preferred strike orientation. Geometric analysis of fractures derived from the TLS, in combination with virtual scanlines and trace maps, reveals that: (1) steeply dipping column-forming fracture lengths follow a scale-dependent exponential or log-normal distribution rather than a scale-independent power-law; (2) fracture intensities (combining density and size) vary throughout the blocky zone but have similar mean values up and along the lava flow; and (3) the areal fracture intensity is higher in the autobreccia than in the blocky zone. The inter-connected fracture network has a connected porosity of ∼0.5 % that promote fluid flow vertically and laterally within the blocky zone, and is partially connected to the autobreccias. Autobreccias may act either as lateral permeability connections or barriers in reservoirs, depending on burial and alteration history. A discrete fracture network model generated from these geometrical parameters yields a highly connected fracture network, consistent with outcrop observations.
NASA Astrophysics Data System (ADS)
Tatomir, Alexandru Bogdan A. C.; Flemisch, Bernd; Class, Holger; Helmig, Rainer; Sauter, Martin
2017-04-01
Geological storage of CO2 represents one viable solution to reduce greenhouse gas emission in the atmosphere. Potential leakage of CO2 storage can occur through networks of interconnected fractures. The geometrical complexity of these networks is often very high involving fractures occurring at various scales and having hierarchical structures. Such multiphase flow systems are usually hard to solve with a discrete fracture modelling (DFM) approach. Therefore, continuum fracture models assuming average properties are usually preferred. The multiple interacting continua (MINC) model is an extension of the classic double porosity model (Warren and Root, 1963) which accounts for the non-linear behaviour of the matrix-fracture interactions. For CO2 storage applications the transient representation of the inter-porosity two phase flow plays an important role. This study tests the accuracy and computational efficiency of the MINC method complemented with the multiple sub-region (MSR) upscaling procedure versus the DFM. The two phase flow MINC simulator is implemented in the free-open source numerical toolbox DuMux (www.dumux.org). The MSR (Gong et al., 2009) determines the inter-porosity terms by solving simplified local single-phase flow problems. The DFM is considered as the reference solution. The numerical examples consider a quasi-1D reservoir with a quadratic fracture system , a five-spot radial symmetric reservoir, and a completely random generated fracture system. Keywords: MINC, upscaling, two-phase flow, fractured porous media, discrete fracture model, continuum fracture model
Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K
2011-11-01
A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density.
NASA Astrophysics Data System (ADS)
Holt, R. M.; Kuszmaul, J. S.; Cao, S.; Powers, D. W.
2013-12-01
Triassic mudrocks of the Dockum Group (Cooper Canyon Formation) host four, below-grade landfills at the Waste Control Specialists (WSC) site in Andrews County, Texas, including: a hazardous waste landfill and three radioactive waste landfills. At the study site, the Dockum consists of mudrocks with sparse siltstone/sandstone interbeds that developed in a semi-arid environment from an ephemeral meandering fluvial system. Sedimentary studies reveal that the mudrocks are ancient floodplain vertisols (soils with swelling clays) and siltstone/sandstone interbeds are fluvial channel deposits that were frequently subaerially exposed. Rock discontinuities, including fractures and syndepositional slickensided surfaces, were mapped during the excavation of the WCS radioactive waste landfills along vertical faces prepared by the construction contractor. Face locations were selected to insure a sampled area with nearly complete vertical coverage for each landfill. Individual discontinuities were mapped and their strike, dip, length, roughness, curvature, staining, and evidence of displacement were described. In the three radioactive waste disposal landfills, over 1750 discontinuities across 35 excavated faces were mapped and described, where each face was nominally 8 to 10 ft tall and 50 to 100 ft long. Genetic units related to paleosol development were identified. On average, the orientation of the discontinuities was horizontal, and no other significant trends were observed. Mapping within the landfill excavations shows that most discontinuities within Dockum rocks are horizontal, concave upward, slickensided surfaces that developed in the depositional environment, as repeated wetting and drying cycles led to shrinking and swelling of floodplain vertisols. Fractures that showed staining (a possible indicator of past or present hydraulic activity) are rare, vertical to near-vertical, and occur mainly in, and adjacent to, mechanically stiff siltstone and sandstone interbeds. No interconnected fracture networks were observed during mapping. A series of pressurized air tests conducted in three pairs of vertical and three pairs of inclined boreholes were tested at depths, ranging from 40 to 215 feet below ground surface, also showed no evidence of fracture interconnection. Genetic units generally consist of fining upward sequences that show increasing pedogenic alteration upward. Arcuate, slickensided discontinuities are more abundant near the top of genetic units, while stained fractures are more common in the more mechanically competent materials near the base of genetic units. A statistical analysis of fractures and discontinuities revealed limited differences between most genetic units. A series of discrete fracture network models were developed to evaluate the uncertainty in our fracture observations. Slickensided discontinuities showing no evidence of staining or past fluid movement were excluded from the analysis. Monte Carlo simulations show no continuous fracture interconnections across the landfill depth intervals.
Code of Federal Regulations, 2011 CFR
2011-01-01
... which there is recurrent movement, which is usually indicated by small, periodic displacements or... of fluids, expressed as the ratio of the volume of interconnected pores and openings to the volume of... displacement of the side relative to one another parallel to the fracture or zone of fractures. Faulting means...
Code of Federal Regulations, 2012 CFR
2012-01-01
... which there is recurrent movement, which is usually indicated by small, periodic displacements or... of fluids, expressed as the ratio of the volume of interconnected pores and openings to the volume of... displacement of the side relative to one another parallel to the fracture or zone of fractures. Faulting means...
Code of Federal Regulations, 2013 CFR
2013-01-01
... which there is recurrent movement, which is usually indicated by small, periodic displacements or... of fluids, expressed as the ratio of the volume of interconnected pores and openings to the volume of... displacement of the side relative to one another parallel to the fracture or zone of fractures. Faulting means...
Code of Federal Regulations, 2014 CFR
2014-01-01
... which there is recurrent movement, which is usually indicated by small, periodic displacements or... of fluids, expressed as the ratio of the volume of interconnected pores and openings to the volume of... displacement of the side relative to one another parallel to the fracture or zone of fractures. Faulting means...
Altabet, Y Elia; Fenley, Andreia L; Stillinger, Frank H; Debenedetti, Pablo G
2018-03-21
Particles with cohesive interactions display a tensile instability in the energy landscape at the Sastry density ρ S . The signature of this tensile limit is a minimum in the landscape equation of state, the pressure-density relationship of inherent structures sampled along a liquid isotherm. Our previous work [Y. E. Altabet, F. H. Stillinger, and P. G. Debenedetti, J. Chem. Phys. 145, 211905 (2016)] revisited the phenomenology of Sastry behavior and found that the evolution of the landscape equation of state with system size for particles with interactions typical of molecular liquids indicates the presence of an athermal first-order phase transition between homogeneous and fractured inherent structures, the latter containing several large voids. Here, we study how this tensile limit manifests itself for different interparticle cohesive strengths and identify two distinct regimes. Particles with sufficiently strong cohesion display an athermal first-order phase transition, consistent with our prior characterization. Weak cohesion also displays a tensile instability. However, the landscape equation of state for this regime is independent of system size, suggesting the absence of a first-order phase transition. An analysis of the voids suggests that yielding in the energy landscape of weakly cohesive systems is associated with the emergence of a highly interconnected network of small voids. While strongly cohesive systems transition from exclusively homogeneous to exclusively fractured configurations at ρ S in the thermodynamic limit, this interconnected network develops gradually, starting at ρ S , even at infinite system size.
NASA Astrophysics Data System (ADS)
Altabet, Y. Elia; Fenley, Andreia L.; Stillinger, Frank H.; Debenedetti, Pablo G.
2018-03-01
Particles with cohesive interactions display a tensile instability in the energy landscape at the Sastry density ρS. The signature of this tensile limit is a minimum in the landscape equation of state, the pressure-density relationship of inherent structures sampled along a liquid isotherm. Our previous work [Y. E. Altabet, F. H. Stillinger, and P. G. Debenedetti, J. Chem. Phys. 145, 211905 (2016)] revisited the phenomenology of Sastry behavior and found that the evolution of the landscape equation of state with system size for particles with interactions typical of molecular liquids indicates the presence of an athermal first-order phase transition between homogeneous and fractured inherent structures, the latter containing several large voids. Here, we study how this tensile limit manifests itself for different interparticle cohesive strengths and identify two distinct regimes. Particles with sufficiently strong cohesion display an athermal first-order phase transition, consistent with our prior characterization. Weak cohesion also displays a tensile instability. However, the landscape equation of state for this regime is independent of system size, suggesting the absence of a first-order phase transition. An analysis of the voids suggests that yielding in the energy landscape of weakly cohesive systems is associated with the emergence of a highly interconnected network of small voids. While strongly cohesive systems transition from exclusively homogeneous to exclusively fractured configurations at ρS in the thermodynamic limit, this interconnected network develops gradually, starting at ρS, even at infinite system size.
Design solutions for the solar cell interconnect fatigue fracture problem
NASA Technical Reports Server (NTRS)
Mon, G. R.; Ross, R. G., Jr.
1982-01-01
Mechanical fatigue of solar cell interconnects is a major failure mechanism in photovoltaic arrays. A comprehensive approach to the reliability design of interconnects, together with extensive design data for the fatigue properties of copper interconnects, has been published. This paper extends the previous work, developing failure prediction (fatigue) data for additional interconnect material choices, including aluminum and a variety of copper-Invar and copper-steel claddings. An improved global fatigue function is used to model the probability-of-failure statistics of each material as a function of level and number of cycles of applied strain. Life-cycle economic analyses are used to evaluate the relative merits of each material choce. The copper-Invar clad composites demonstrate superior performance over pure copper. Aluminum results are disappointing.
Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models
NASA Astrophysics Data System (ADS)
Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.
2013-12-01
Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.
Shear rheological characterization of gel healing response and construction of rheo-PIV system
NASA Astrophysics Data System (ADS)
Bawiskar, Abhishek D.
Thermo-reversible gels are solvent-filled 3D networks of polymer chains interconnected by physical (transient) crosslinks. On applying a high shear stress, the crosslinks are broken and these gels show a typical stress-strain behavior due to cohesive fracture of the gel. When heated above a critical temperature and cooled back to room temperature, all the crosslinks are re-formed. Interestingly, partial to full recovery of broken crosslinks is also observed by simply letting the gel stand at room temperature. In this study, the fracture and healing behavior of a model acrylic triblock copolymer gel has been characterized by shear rheometry. A mathematical model has also been proposed to better understand the mechanics at the molecular level and predict the healing time of a system. A rheo-PIV system was built as part of the project, to observe and confirm the bulk healing process in situ. Spontaneous self-healing behavior has immense potential in controlled drug delivery systems, coatings, food and various other applications.
Niobrara Discrete Fracture Network: From Outcrop Surveys to Subsurface Reservoir Models
NASA Astrophysics Data System (ADS)
Grechishnikova, Alena
Heterogeneity of an unconventional reservoir is one of the main factors affecting production. Well performance depends on the size and efficiency of the interconnected fracture "plumbing system", as influenced by multistage hydraulic fracturing. A complex, interconnected natural fracture network can significantly increase the size of stimulated reservoir volume, provide additional surface area contact and enhance permeability. In 2013 the Reservoir Characterization Project (RCP) at the Colorado School of Mines began Phase XV to study Niobrara shale reservoir management. Anadarko Petroleum Corporation and RCP jointly acquired time-lapse multicomponent seismic data in Wattenberg Field, Denver Basin. Anadarko also provided RCP with a regional 3D seismic survey and a rich well dataset. The purpose of this study is to characterize the natural fracture patterns occurring in the unconventional Niobrara reservoir and to determine the drivers that influenced fracture trends and distributions. The findings are integrated into a reservoir model though DFN (Discrete Fracture Network) for further prediction of reservoir performance using reservoir simulations. Aiming to better understand the complexity of the natural fracture system I began my fracture analysis work at an active mine site that provides a Niobrara exposure. Access to a "fresh" outcrop surface created a perfect natural laboratory. Ground-based LIDAR and photogrammetry facilitated construction of a geological model and a DFN model for the mine site. The work was carried into subsurface where the information gained served to improve reservoir characterization at a sub-seismic scale and can be used in well planning. I then embarked on a challenging yet essential task of outcrop-to-subsurface data calibration and application to RCP's Wattenberg Field study site. In this research the surface data was proven to be valid for comparative use in the subsurface. The subsurface fracture information was derived from image logs run within the horizontal wellbores and augmented with microseismic data. Limitations of these datasets included the potential to induce biased interpretations; but the data collected during the outcrop study aided in removing the bias. All four fracture sets observed at the quarry were also interpreted in the subsurface; however there was a limitation on statistical validity for one of the four sets due to a low frequency of observed occurrence potentially caused by wellbore orientation. Microseismic data was used for identification of one of the reactivated natural fracture sets. An interesting phenomenon observed in the microseismic data trends was the low frequency of event occurrence within dense populations of open natural fracture swarms suggesting that zones of higher natural fracture intensities are capable of absorbing and transmitting energy resulting in lower levels of microseismicity. Thus currently open natural fractures could be challenging to detect using microseismic. Through this study I identified a significant variability in fracture intensity at a localized scale due to lithological composition and structural features. The complex faulting styles observed at the outcrop were utilized as an analog and verified by horizontal well log data and seismic volume interpretations creating a high resolution structural model for the subsurface. A lithofacies model was developed based on the well log, core, and seismic inversion analysis. These models combined served to accurately distribute fracture intensity information within the geological model for further use in DFN. As a product of this study, a workflow was developed to aid in fracture network model creation allowing for more intelligent decisions to be made during well planning and completion optimization aiming to improve recovery. A high resolution integrated discrete fracture network model serves to advance dynamic reservoir characterization in the subsurface at a sub-seismic scale resulting in improved reservoir characterization.
Williams, John H.; Paillet, Frederick L.
2002-01-01
Flow zones in a fractured shale in and near a plume of volatile organic compounds at the Watervliet Arsenal in Albany County, N. Y. were characterized through the integrated analysis of geophysical logs and single- and cross-hole flow tests. Information on the fracture-flow network at the site was needed to design an effective groundwater monitoring system, estimate offsite contaminant migration, and evaluate potential containment and remedial actions.Four newly drilled coreholes and four older monitoring wells were logged and tested to define the distribution and orientation of fractures that intersected a combined total of 500 feet of open hole. Analysis of borehole-wall image logs obtained with acoustic and optical televiewers indicated 79 subhorizontal to steeply dipping fractures with a wide range of dip directions. Analysis of fluid resistivity, temperature, and heat-pulse and electromagnetic flowmeter logs obtained under ambient and short-term stressed conditions identified 14 flow zones, which consist of one to several fractures and whose estimated transmissivity values range from 0.1 to more than 250 feet squared per day.Cross-hole flow tests, which were used to characterize the hydraulic connection between fracture-flow zones intersected by the boreholes, entailed (1) injection into or extraction from boreholes that penetrated a single fracture-flow zone or whose zones were isolated by an inflatable packer, and (2) measurement of the transient response of water levels and flow in surrounding boreholes. Results indicate a wellconnected fracture network with an estimated transmissivity of 80 to 250 feet squared per day that extends for at least 200 feet across the site. This interconnected fracture-flow network greatly affects the hydrology of the site and has important implications for contaminant monitoring and remedial actions.
Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.; ...
2015-11-04
Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm 3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energymore » absorption capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in K IC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.« less
Silicone substrate with in situ strain relief for stretchable thin-film transistors
NASA Astrophysics Data System (ADS)
Graz, Ingrid M.; Cotton, Darryl P. J.; Robinson, Adam; Lacour, Stéphanie P.
2011-03-01
We have manufactured stretchable thin-film transistors and interconnects directly onto an engineered silicone matrix with localized and graded mechanical compliance. The fabrication only involves planar and standard processing. Brittle active device materials are patterned on non deformable elastomer regions (strain <1% at all times) while interconnects run smoothly from "stiff" to "soft" elastomer. Pentacene thin-film transistors sustain applied strain up to 13% without electrical degradation and mechanical fracture. This integrated approach opens promising options for the manufacture of physically adaptable and transformable circuitry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hun Bok; Kabilan, Senthil; Carson, James P.
2014-08-07
Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite,more » whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.« less
Stumm, F.; Chu, A.; Joesten, P.K.; Lane, J.W.
2007-01-01
Advanced borehole-geophysical methods were used to assess the geohydrology of fractured crystalline bedrock in 31 of 64 boreholes on the southern part of Manhattan Island, NY in preparation of the construction of a new water tunnel. The study area is located in a highly urbanized part of New York City. The boreholes penetrated gneiss, schist, and other crystalline bedrock that has an overall southwest-to northwest-dipping foliation. Most of the fractures intersected are nearly horizontal or have moderate- to high-angle northwest or eastward dip azimuths. Heat-pulse flowmeter logs obtained under nonpumping (ambient) and pumping conditions, together with other geophysical logs, delineated transmissive fracture zones in each borehole. Water-level and flowmeter data suggest the fractured-rock ground-water-flow system is interconnected. The 60 MHz directional borehole-radar logs delineated the location and orientation of several radar reflectors that did not intersect the projection of the borehole. A total of 53 faults intersected by the boreholes have mean orientation populations of N12??W, 66??W and N11??W, 70??E. A total of 77 transmissive fractures delineated using the heat-pulse flowmeter have mean orientations of N11??E, 14??SE (majority) and N23??E, 57??NW (minority). The transmissivity of the bedrock boreholes ranged from 0.7 to 870 feet squared (ft2) per day (0.07 to 81 metres squared (m2) per day). ?? 2007 Nanjing Institute of Geophysical Prospecting.
Pollution par les nitrates des eaux souterraines du bassin d'Essaouira (Maroc)
NASA Astrophysics Data System (ADS)
Laftouhi, Nour-Eddine; Vanclooster, Marnik; Jalal, Mohammed; Witam, Omar; Aboufirassi, Mohamed; Bahir, Mohamed; Persoons, Étienne
2003-03-01
The Essaouira Basin (Morocco) contains a multi-layered aquifer situated in fractured and karstic materials from the Middle and Upper Cretaceous (the Cenomanian, Turonian and Senonian). Water percolates through the limestone and dolomite formations of the Turonian stage either through the marls and calcareous marls of the Cenomanian or through the calcareous marly materials of the Senonian. The aquifer system may be interconnected since the marl layer separating the Turonian, Cenomanian and Senonian aquifers is thin or intensively fractured. In that case, the water is transported through a network of fractures and stratification joints. This paper describes the extent of the nitrate pollution in the area and its origin. Most of the wells and drillholes located in the Kourimat perimeter are contaminated by nitrates with some concentrations over 400 mg l-1. Nitrate contamination is also observed in the surface water of the Qsob River, which constitutes the natural outlet of the multi-layered complex aquifer system. In this area, agriculture is more developed than in the rest of the Essaouira Basin. Diffuse pollution of the karstic groundwater body by agricultural fertiliser residues may therefore partially explain the observed nitrate pollution. However, point pollution around the wells, springs and drillholes from human wastewater, livestock faeces and the mineralisation of organic debris close to the Muslim cemeteries cannot be excluded.
Modelling karst aquifer evolution in fractured, porous rocks
NASA Astrophysics Data System (ADS)
Kaufmann, Georg
2016-12-01
The removal of material in soluble rocks by physical and chemical dissolution is an important process enhancing the secondary porosity of soluble rocks. Depending on the history of the soluble rock, dissolution can occur either along fractures and bedding partings of the rock in the case of a telogenetic origin, or within the interconnected pore space in the case of eogenetic origin. In soluble rocks characterised by both fractures and pore space, dissolution in both flow compartments is possible. We investigate the dissolution of calcite both along fractures and within the pore space of a limestone rock by numerical modelling. The limestone rock is treated as fractured, porous aquifer, in which the hydraulic conductivity increases with time both for the fractures and the pore spaces. We show that enlargement of pore space by dissolution will accelerate the development of a classical fracture-dominated telogenetic karst aquifer, breakthrough occurs faster. In the case of a pore-controlled aquifer as in eogenetic rocks, enlargement of pores results in a front of enlarged pore spaces migrating into the karst aquifer, with more homogeneous enlargement around this dissolution front, and later breakthrough.
Fracture distribution and porosity in a fault-bound hydrothermal system (Grimsel Pass, Swiss Alps)
NASA Astrophysics Data System (ADS)
Egli, Daniel; Küng, Sulamith; Baumann, Rahel; Berger, Alfons; Baron, Ludovic; Herwegh, Marco
2017-04-01
The spatial distribution, orientation and continuity of brittle and ductile structures strongly control fluid pathways in a rock mass by joining existing pores and creating new pore space (fractures, joints) but can also act as seals to fluid flow (e.g. ductile shear zones, clay-rich fault gouges). In long-lived hydrothermal systems, permeability and the related fluid flow paths are therefore dynamic in space and time. Understanding the evolution and behaviour of naturally porous and permeable rock masses is critical for the successful exploration and sustainable exploitation of hydrothermal systems and can advance methods for planning and implementation of enhanced geothermal systems. This study focuses on an active fault-bound hydrothermal system in the crystalline basement of the Aar Massif (hydrothermal field Grimsel Pass, Swiss Alps) that has been exhumed from few kilometres depth and which documents at least 3 Ma of hydrothermal activity. The explored rock unit of the Aar massif is part of the External Crystalline Massifs that hosts a multitude of thermal springs on its southern border in the Swiss Rhône valley and furthermore represents the exhumed equivalent of potentially exploitable geothermal reservoirs in the deep crystalline subsurface of the northern Alpine foreland basin. This study combines structural data collected from a 125 m long drillhole across the hydrothermal zone, the corresponding drill core and surface mapping. Different methods are applied to estimate the porosity and the structural evolution with regard to porosity, permeability and fracture distribution. Analyses are carried out from the micrometre to decametre scale with main focus on the flow path evolution with time. This includes a large variety of porosity-types including fracture-porosity with up to cm-sized aperture down to grain-scale porosity. Main rock types are granitoid host rocks, mylonites, paleo-breccia and recent breccias. The porosity of the host rock as well as the cemented paleo-hydrothermal breccia is typically very low with values <1%. The high volume of mineralized fractures in the paleo-breccia indicates high porosity in former times, which is today closed by newly developed cements. The preservation of such paleo-breccias allow the investigation of contrasts between the fossil porosity/permeability and the present day active flow path, which is defined by fracture porosity that generally follows the regional deformation pattern and forms a wide network of interconnected fractures of variable orientation.
Lips, Katrin Susanne; Kauschke, Vivien; Hartmann, Sonja; Thormann, Ulrich; Ray, Seemun; Kampschulte, Marian; Langheinrich, Alexander; Schumacher, Matthias; Gelinsky, Michael; Heinemann, Sascha; Hanke, Thomas; Kautz, Armin R; Schnabelrauch, Matthias; Schnettler, Reinhard; Heiss, Christian; Alt, Volker; Kilian, Olaf
2013-01-01
Insertion of bone substitution materials accelerates healing of osteoporotic fractures. Biodegradable materials are preferred for application in osteoporotic patients to avoid a second surgery for implant replacement. Degraded implant fragments are often absorbed by macrophages that are removed from the fracture side via passage through veins or lymphatic vessels. We investigated if lymphatic vessels occur in osteoporotic bone defects and whether they are regulated by the use of different materials. To address this issue osteoporosis was induced in rats using the classical method of bilateral ovariectomy and additional calcium and vitamin deficient diet. In addition, wedge-shaped defects of 3, 4, or 5 mm were generated in the distal metaphyseal area of femur via osteotomy. The 4 mm defects were subsequently used for implantation studies where bone substitution materials of calcium phosphate cement, composites of collagen and silica, and iron foams with interconnecting pores were inserted. Different materials were partly additionally functionalized by strontium or bisphosphonate whose positive effects in osteoporosis treatment are well known. The lymphatic vessels were identified by immunohistochemistry using an antibody against podoplanin. Podoplanin immunopositive lymphatic vessels were detected in the granulation tissue filling the fracture gap, surrounding the implant and growing into the iron foam through its interconnected pores. Significant more lymphatic capillaries were counted at the implant interface of composite, strontium and bisphosphonate functionalized iron foam. A significant increase was also observed in the number of lymphatics situated in the pores of strontium coated iron foam. In conclusion, our results indicate the occurrence of lymphatic vessels in osteoporotic bone. Our results show that lymphatic vessels are localized at the implant interface and in the fracture gap where they might be involved in the removal of lymphocytes, macrophages, debris and the implants degradation products. Therefore the lymphatic vessels are involved in implant integration and fracture healing.
Lips, Katrin Susanne; Kauschke, Vivien; Hartmann, Sonja; Thormann, Ulrich; Ray, Seemun; Kampschulte, Marian; Langheinrich, Alexander; Schumacher, Matthias; Gelinsky, Michael; Heinemann, Sascha; Hanke, Thomas; Kautz, Armin R.; Schnabelrauch, Matthias; Schnettler, Reinhard; Heiss, Christian; Alt, Volker; Kilian, Olaf
2013-01-01
Insertion of bone substitution materials accelerates healing of osteoporotic fractures. Biodegradable materials are preferred for application in osteoporotic patients to avoid a second surgery for implant replacement. Degraded implant fragments are often absorbed by macrophages that are removed from the fracture side via passage through veins or lymphatic vessels. We investigated if lymphatic vessels occur in osteoporotic bone defects and whether they are regulated by the use of different materials. To address this issue osteoporosis was induced in rats using the classical method of bilateral ovariectomy and additional calcium and vitamin deficient diet. In addition, wedge-shaped defects of 3, 4, or 5 mm were generated in the distal metaphyseal area of femur via osteotomy. The 4 mm defects were subsequently used for implantation studies where bone substitution materials of calcium phosphate cement, composites of collagen and silica, and iron foams with interconnecting pores were inserted. Different materials were partly additionally functionalized by strontium or bisphosphonate whose positive effects in osteoporosis treatment are well known. The lymphatic vessels were identified by immunohistochemistry using an antibody against podoplanin. Podoplanin immunopositive lymphatic vessels were detected in the granulation tissue filling the fracture gap, surrounding the implant and growing into the iron foam through its interconnected pores. Significant more lymphatic capillaries were counted at the implant interface of composite, strontium and bisphosphonate functionalized iron foam. A significant increase was also observed in the number of lymphatics situated in the pores of strontium coated iron foam. In conclusion, our results indicate the occurrence of lymphatic vessels in osteoporotic bone. Our results show that lymphatic vessels are localized at the implant interface and in the fracture gap where they might be involved in the removal of lymphocytes, macrophages, debris and the implants degradation products. Therefore the lymphatic vessels are involved in implant integration and fracture healing. PMID:24130867
Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.
2009-01-01
Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l
Permeability evolution due to dissolution of natural shale fractures reactivated by fracking
NASA Astrophysics Data System (ADS)
Kwiatkowski, Kamil; Kwiatkowski, Tomasz; Szymczak, Piotr
2015-04-01
Investigation of cores drilled from gas-bearing shale formations reveals a relatively large number of calcite-cemented fractures. During fracking, some of these fractures will be reactivated [1-2] and may become important flow paths in the resulting fracture system. In this communication, we investigate numerically the effect of low-pH reactive fluid on such fractures. The low-pH fluids can either be pumped during the initial fracking stage (as suggested e.g. by Grieser et al., [3]) or injected later, as part of enhanced gas recovery (EGR) processes. In particular, it has been suggested that CO2 injection can be considered as a method of EGR [4], which is attractive as it can potentially be combined with simultaneous CO2 sequestration. However, when mixed with brine, CO2 becomes acidic and thus can be a dissolving agent for the carbonate cement in the fractures. The dissolution of the cement leads to the enhancement of permeability and interconnectivity of the fracture network and, as a result, increases the overall capacity of the reservoir. Importantly, we show that the dissolution of such fractures proceeds in a highly non-homogeneous manner - a positive feedback between fluid transport and mineral dissolution leads to the spontaneous formation of pronounced flow channels, frequently referred to as "wormholes". The wormholes carry the chemically active fluid deeper inside the system, which dramatically speeds up the overall permeability increase. If the low-pH fluids are used during fracking, then the non-uniform dissolution becomes important for retaining the fracture permeability, even in the absence of the proppant. Whereas a uniformly etched fracture will close tightly under the overburden once the fluid pressure is removed, the nonuniform etching will tend to maintain the permeability since the less dissolved regions will act as supports to keep more dissolved regions open. [1] Gale, J. F., Reed, R. M., Holder, J. (2007). Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG bulletin, 91(4), 603-622. [2] Walton, I., & McLennan, J. (2013, May). The Role of Natural Fractures in Shale Gas Production. In ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. International Society for Rock Mechanics. [3] Grieser, W. et al. "Surface Reactive Fluid's Effect on Shale." Proceedings of the Production and Operations Symposium, 31 March-3 April 2007, Oklahoma City (SPE-106815-MS) [4] Khosrokhavar, R., Griffiths, S., & Wolf, K. H. (2014). Shale Gas Formations and Their Potential for Carbon Storage: Opportunities and Outlook. Environmental Processes, 1(4), 595-611.
NASA Astrophysics Data System (ADS)
Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.
2017-12-01
Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist, for instance, when trying to invert transport parameters from tracer mean residence time. This field test illustrates that when dealing with fracture networks, there is a need for analytic methods of complexity that lie between simple radial solutions and discrete fracture network models.
Water resources of the Batavia Kill basin at Windham, Greene County, New York
Heisig, Paul M.
1999-01-01
The water resources of a 27.6-square-mile section of the Batavia Kill Basin near the village of Windham, N.Y., which has undergone substantial development, were evaluated. The evaluation entailed (1) estimation of the magnitude and distribution of several hydrologic components, including recharge, (2) measurement of discharge and chemical quality of the Batavia Kill and selected tributaries, (3) analysis of ground-water flow and chemistry, and (4) a conceptualization of the ground-water flow system.The region consists of deeply dissected, relatively flat-lying, clastic sedimentary sequences variably overlain by as much as 120 feet of glacial deposits. The types of bedrock fractures and their distribution in the Batavia Kill valley are consistent with valley stress-relief characteristics. Till predominates in the uplands, and stratified drift typically dominates within the valley of the Batavia Kill and the lower section of its largest tributary valley (Mitchell Hollow).Fractured bedrock is the most commonly used water source within the study area. The areas of highest yielding bedrock generally are with valleys, where the shallow fractures are saturated. Stratified-drift aquifers are also limited to the largest valleys; the greatest saturated thicknesses are in the Batavia Kill valley at Windham. A conceptual model of ground-water flow within the study areas suggests that the zones of most active flow are shallow fractured bedrock in upland areas and the shallow stratified drift in the largest valleys.The hydrogeologic system has been altered by development; major effects include (1) chemical alteration of natural ground-water and surface-water quality by point- and nonpoint-source contaminants, (2) hydraulic interconnection of other-wise isolated bedrock fractures by wellbores, and (3) drawdowns in wells within the Batavia Kill valley by pumping from the bedrock aquifer. Water resource development of the most promising unconsolidated aquifer beneath Windham may be precluded by the potential for contamination by leachate from an abandoned landfill, road-salt stockpiles, and domestic septic systems in the area.
Taylor, Charles J.
1994-01-01
Dye-tracer tests were done during 1985-92 to investigate the hydraulic connection between fractures in Pennsylvanian coal-bearing strata at a ridge-and-valley-wall site near Fishtrap Lake, Pike County, Ky. Fluorescent dye was injected into a core hole penetrating near-surface and mining-induced fractures near the crest of the ridge. The rate and direction of migration of dye in the subsurface were determined by measuring the relative concentration of dye in water samples collected from piezometers completed in conductive fracture zones and fractured coal beds at various stratigraphic horizons within the ridge. Dye-concentration data and water-level measurements for each piezometer were plotted as curves on dye-recovery hydrographs. The dye-recovery hydrographs were used to evaluate trends in the fluctuation of dye concentrations and hydraulic heads in order to identify geologic and hydrologic factors affecting the subsurface transport of dye. The principal factors affecting the transport of dye in the subsurface hydrologic system were determined to be (1) the distribution, interconnection, and hydraulic properties of fractures; (2) hydraulic-head conditions in the near-fracture zone at the time of dye injection; and (3) subsequent short- and long-term fluctuations in recharge to the hydrologic system. In most of the dye-tracer tests, dye-recovery hydrographs are characterized by complex, multipeaked dye-concentration curves that are indicative of a splitting of dye flow as ground water moved through fractures. Intermittent dye pulses (distinct upward spikes in dye concentration) mark the arrivals of dye-labeled water to piezometers by way of discrete fracture-controlled flow paths that vary in length, complexity, and hydraulic conductivity. Dye injections made during relatively high- or increasinghead conditions resulted in rapid transport of dye (within several days or weeks) from near-surf ace fractures to piezometers. Injections made during relatively low- or decreasing-head conditions resulted in dye being trapped in hydraulically dead zones in water-depleted fractures. Residual dye was remobilized from storage and transported (over periods ranging from several months to about 2 years) by increased recharge to the hydrologic system. Subsequent fluctuations in hydraulic gradients, resulting from increases or decreases in recharge to the hydrologic system, acted to speed or slow the transport of dye along the fracture-controlled flow paths. The dye-tracer tests also demonstrated that mining-related disturbances significantly altered the natural fracture-controlled flow paths of the hydrologic system over time. An abandoned underground mine and subsidence-related surface cracks extend to within 250 ft of the principal dye-injection core hole. Results from two of the dye-tracer tests at the site indicate that the annular seal in the core hole was breached by subsurface propagation of the mining-induced fractures. This propagation of fractures resulted in hydraulic short-circuiting between the dye-injection zone in the core hole and two lower piezometer zones, and a partial disruption of the hydraulic connection between the injection core hole and downgradient piezometers on the ridge crest and valley wall. In addition, injected dye was detected in piezometers monitoring a flooded part of the abandoned underground mine. Dye was apparently transported into the mine through a hydraulic connection between the injection core hole and subsidence-related fractures.
NASA Astrophysics Data System (ADS)
Choens, R. C., II; Chester, F. M.; Bauer, S. J.; Flint, G. M.
2014-12-01
Fluid-pressure assisted fracturing can produce mesh and other large, interconnected and complex networks consisting of both extension and shear fractures in various metamorphic, magmatic and tectonic systems. Presently, rock failure criteria for tensile and low-mean compressive stress conditions is poorly defined, although there is accumulating evidence that the transition from extension to shear fracture with increasing mean stress is continuous. We report on the results of experiments designed to document failure criteria, fracture mode, and localization phenomena for several rock types (sandstone, limestone, chalk and marble). Experiments were conducted in triaxial extension using a necked (dogbone) geometry to achieve mixed tension and compression stress states with local component-strain measurements in the failure region. The failure envelope for all rock types is similar, but are poorly described using Griffith or modified Griffith (Coulomb or other) failure criteria. Notably, the mode of fracture changes systematically from pure extension to shear with increase in compressive mean stress and display a continuous change in fracture orientation with respect to principal stress axes. Differential stress and inelastic strain show a systematic increase with increasing mean stress, whereas the axial stress decreases before increasing with increasing mean stress. The stress and strain data are used to analyze elastic and plastic strains leading to failure and compare the experimental results to predictions for localization using constitutive models incorporating on bifurcation theory. Although models are able to describe the stability behavior and onset of localization qualitatively, the models are unable to predict fracture type or orientation. Constitutive models using single or multiple yield surfaces are unable to predict the experimental results, reflecting the difficulty in capturing the changing micromechanisms from extension to shear failure. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deopartment of Energy's National Security Administration under contract DE-AC04-94AL85000. SAND2014-16578A
Development of technologies for welding interconnects to fifty-micron thick silicon solar cells
NASA Technical Reports Server (NTRS)
Patterson, R. E.
1982-01-01
A program was conducted to develop technologies for welding interconnects to 50 microns thick, 2 by 2 cm solar cells. The cells were characterized with respect to electrical performance, cell thickness, silver contact thickness, contact waviness, bowing, and fracture strength. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Thermal shock tests (100 cycles from 100 C to -180 C) were performed on 16 cell coupons for each cell type without any weld joint failures or electrical degradation. Three 48 cell modules (one for each cell type) were assembled with 50 microns thick cells, frosted fused silica covers, silver clad Invar interconnectors, and Kapton substrates.
Welding interconnects to 50-micron silicon solar cells
NASA Technical Reports Server (NTRS)
Patterson, R. E.; Mesch, H. G.
1983-01-01
A program was conducted to develop technologies for welding interconnects to 50-micron thick, 2 by 2 cm solar cells obtained from three suppliers. The cells were characterized with respect to electrical performance, cell thickness, silver contact thickness, contact waviness, bowing, and fracture strength. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Thermal shock tests (100 cycles from 100 deg to -180 deg C) were performed on 16-cell coupons for each cell type without any weld joint failures or electrical degradation. Three 48-cell modules (one for each cell type) were assembled with 50-micron thick cells, frosted fused silica covers, silver clad Invar interconnectors, and Kapton substrates.
NASA Astrophysics Data System (ADS)
Adams, Ryan Frye
The ACME Superfund site is one of many Superfund sites in Northern Illinois. This 20 acre (8.1 ha) site was contaminated by various volatile organic compounds (VOC's) and heavy metals during the 1960-1980s. To more fully understand the potential extent of the karst system and its interaction with contaminants, both surface and borehole geophysics including seismic refraction tomography, frequency domain electromagnetics, electrical resistivity, ground penetrating radar, as well as natural gamma and electromagnetic well logs, were undertaken over an approximately 3,000 square meter grid in a field immediately south of the ACME site. Seismic refraction tomography provided information on lithology and fluctuations in the bedrock surface in the depth range 6 to 8 m. Refraction, combined with electromagnetic conductivity, also allowed mapping of potential soil pipes and/or filled sinkholes in the overlying soils. These could channel surface waters into the karst conduit system. Frequency domain electromagnetics proved to be the most successful tool for the identifying possible karst conduits below the bedrock surface. Zones of reduced conductivity suggest a series of interconnected solutionally enlarged fractures in an orthogonal pattern at a depth of approximately 8 m immediately south of the ACME site.
Variational Integrators for Interconnected Lagrange-Dirac Systems
NASA Astrophysics Data System (ADS)
Parks, Helen; Leok, Melvin
2017-10-01
Interconnected systems are an important class of mathematical models, as they allow for the construction of complex, hierarchical, multiphysics, and multiscale models by the interconnection of simpler subsystems. Lagrange-Dirac mechanical systems provide a broad category of mathematical models that are closed under interconnection, and in this paper, we develop a framework for the interconnection of discrete Lagrange-Dirac mechanical systems, with a view toward constructing geometric structure-preserving discretizations of interconnected systems. This work builds on previous work on the interconnection of continuous Lagrange-Dirac systems (Jacobs and Yoshimura in J Geom Mech 6(1):67-98, 2014) and discrete Dirac variational integrators (Leok and Ohsawa in Found Comput Math 11(5), 529-562, 2011). We test our results by simulating some of the continuous examples given in Jacobs and Yoshimura (2014).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Xu, Wei; Stephens, Elizabeth
Metallic cell interconnects (IC) made of ferritic stainless steels, i.e., iron-based alloys, have been increasingly favored in the recent development of planar solid oxide fuel cells (SOFCs) because of their advantages in excellent imperviousness, low electrical resistance, ease in fabrication, and cost effectiveness. Typical SOFC operating conditions inevitably lead to the formation of oxide scales on the surface of ferritic stainless steel, which could cause delamination, buckling, and spallation resulting from the mismatch of the coefficient of thermal expansion and eventually reduce the lifetime of the interconnect components. Various protective coating techniques have been applied to alleviate these drawbacks. Inmore » the present work, a fracture-mechanics-based quantitative modeling framework has been established to predict the mechanical reliability and lifetime of the spinel-coated, surface-modified specimens under an isothermal cooling cycle. Analytical solutions have been formulated to evaluate the scale/substrate interfacial strength and determine the critical oxide thickness in terms of a variety of design factors, such as coating thickness, material properties, and uncertainties. In conclusion, the findings then are correlated with the experimentally measured oxide scale growth kinetics to quantify the predicted lifetime of the metallic interconnects.« less
Interconnected porous hydroxyapatite ceramics for bone tissue engineering
Yoshikawa, Hideki; Tamai, Noriyuki; Murase, Tsuyoshi; Myoui, Akira
2008-01-01
Several porous calcium hydroxyapatite (HA) ceramics have been used clinically as bone substitutes, but most of them possessed few interpore connections, resulting in pathological fracture probably due to poor bone formation within the substitute. We recently developed a fully interconnected porous HA ceramic (IP-CHA) by adopting the ‘foam-gel’ technique. The IP-CHA had a three-dimensional structure with spherical pores of uniform size (average 150 μm, porosity 75%), which were interconnected by window-like holes (average diameter 40 μm), and also demonstrated adequate compression strength (10–12 MPa). In animal experiments, the IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of mesenchymal cells, osteotropic agents such as bone morphogenetic protein or vasculature into the pores. Clinically, we have applied the IP-CHA to treat various bony defects in orthopaedic surgery, and radiographic examinations demonstrated that grafted IP-CHA gained radiopacity more quickly than the synthetic HA in clinical use previously. We review the accumulated data on bone tissue engineering using the novel scaffold and on clinical application in the orthopaedic field. PMID:19106069
Xu, Zhijie; Xu, Wei; Stephens, Elizabeth; ...
2017-07-03
Metallic cell interconnects (IC) made of ferritic stainless steels, i.e., iron-based alloys, have been increasingly favored in the recent development of planar solid oxide fuel cells (SOFCs) because of their advantages in excellent imperviousness, low electrical resistance, ease in fabrication, and cost effectiveness. Typical SOFC operating conditions inevitably lead to the formation of oxide scales on the surface of ferritic stainless steel, which could cause delamination, buckling, and spallation resulting from the mismatch of the coefficient of thermal expansion and eventually reduce the lifetime of the interconnect components. Various protective coating techniques have been applied to alleviate these drawbacks. Inmore » the present work, a fracture-mechanics-based quantitative modeling framework has been established to predict the mechanical reliability and lifetime of the spinel-coated, surface-modified specimens under an isothermal cooling cycle. Analytical solutions have been formulated to evaluate the scale/substrate interfacial strength and determine the critical oxide thickness in terms of a variety of design factors, such as coating thickness, material properties, and uncertainties. In conclusion, the findings then are correlated with the experimentally measured oxide scale growth kinetics to quantify the predicted lifetime of the metallic interconnects.« less
Thermal Testing and Quality Assurance of BGA LCC & QFN Electronic Packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuper, Cameron Mathias
The purpose of this project is to experimentally validate the thermal fatigue life of solder interconnects for a variety of surface mount electronic packages. Over the years, there has been a significant amount of research and analysis in the fracture of solder joints on printed circuit boards. Solder is important in the mechanical and electronic functionality of the component. It is important throughout the life of the product that the solder remains crack and fracture free. The specific type of solder used in this experiment is a 63Sn37Pb eutectic alloy. Each package was surrounded conformal coating or underfill material.
NASA Astrophysics Data System (ADS)
Ozkaya, Sait I.
2018-03-01
Fracture corridors are interconnected large fractures in a narrow sub vertical tabular array, which usually traverse entire reservoir vertically and extended for several hundreds of meters laterally. Fracture corridors with their huge conductivities constitute an important element of many fractured reservoirs. Unlike small diffuse fractures, actual fracture corridors must be mapped deterministically for simulation or field development purposes. Fracture corridors can be identified and quantified definitely with borehole image logs and well testing. However, there are rarely sufficient image logs or well tests, and it is necessary to utilize various fracture corridor indicators with varying degrees of reliability. Integration of data from many different sources, in turn, requires a platform with powerful editing and layering capability. Available commercial reservoir characterization software packages, with layering and editing capabilities, can be cost intensive. CAD packages are far more affordable and may easily acquire the versatility and power of commercial software packages with addition of a small software toolbox. The objective of this communication is to present FRACOR, a software toolbox which enables deterministic 2D fracture corridor mapping and modeling on AutoCAD platform. The FRACOR toolbox is written in AutoLISPand contains several independent routines to import and integrate available fracture corridor data from an oil field, and export results as text files. The resulting fracture corridor maps consists mainly of fracture corridors with different confidence levels from combination of static and dynamic data and exclusion zones where no fracture corridor can exist. The exported text file of fracture corridors from FRACOR can be imported into an upscaling programs to generate fracture grid for dual porosity simulation or used for field development and well planning.
Magnetotelluric study of the Pahute Mesa and Oasis Valley regions, Nye County, Nevada
Schenkel, Clifford J.; Hildenbrand, Thomas G.; Dixon, Gary L.
1999-01-01
Magnetotelluric data delineate distinct layers and lateral variations above the pre-Tertiary basement. On Pahute Mesa, three resistivity layers associated with the volcanic rocks are defined: a moderately resistive surface layer, an underlying conductive layer, and a deep resistive layer. Considerable geologic information can be derived from the conductive layer which extents from near the water table down to a depth of approximately 2 km. The increase in conductivity is probably related to zeolite zonation observed in the volcanic rock on Pahute Mesa, which is relatively impermeable to groundwater flow unless fractured. Inferred faults within this conductive layer are modeled on several profiles crossing the Thirsty Canyon fault zone. This fault zone extends from Pahute Mesa into Oasis Valley basin. Near Colson Pond where the basement is shallow, the Thirsty Canyon fault zone is several (~2.5) kilometers wide. Due to the indicated vertical offsets associated with the Thirsty Canyon fault zone, the fault zone may act as a barrier to transverse (E-W) groundwater flow by juxtaposing rocks of different permeabilities. We propose that the Thirsty Canyon fault zone diverts water southward from Pahute Mesa to Oasis Valley. The electrically conductive nature of this fault zone indicates the presence of abundant alteration minerals or a dense network of open and interconnected fractures filled with electrically conductive groundwater. The formation of alteration minerals require the presence of water suggesting that an extensive interconnected fracture system exists or existed at one time. Thus, the fractures within the fault zone may be either a barrier or a conduit for groundwater flow, depending on the degree of alteration and the volume of open pore space. In Oasis Valley basin, a conductive surface layer, composed of alluvium and possibly altered volcanic rocks, extends to a depth of 300 to 500 m. The underlying volcanic layer, composed mostly of tuffs, fills the basin with about 3-3.5 km of relief on basement. A fault zone, related to the southern margin of the basin, appears to extend up to a depth of about 500 m. The path of groundwater encountering this fault zone is uncertain but may be either to the southwest towards Beatty or to the south towards Crater Flat.
Dielectric cracking produced by electromigration in microelectronic interconnects
NASA Astrophysics Data System (ADS)
Chiras, S.; Clarke, D. R.
2000-12-01
The development of stress during electromigration along Al lines, constrained within a dielectric in a coplanar test configuration, is measured. It is shown that, above a certain threshold current density, cracking of the dielectric is induced in the vicinity of the anode. Cracking of the dielectric leads to loss of mechanical constraint on the aluminum conductor which, in turn, leads to increases in electrical resistance with continued current flow. The electromigration-induced stresses are determined from the measured frequency shifts induced in a novel ruby strain sensor embedded immediately beneath the interconnect line on a sapphire substrate. The transparency of the sapphire substrate also facilitated the observation of a hitherto unreported form of dielectric cracking, namely cracking from the interconnect along internal interfaces. The observations of dielectric cracking are in agreement with a recent fracture mechanics model. Analysis of the stress data, together with the results of finite element calculations of the strain energy release rate for crack extension, gives a quantitative estimate of the effective valence Z*(=1.3±0.2) for aluminum.
Feng, Pei; Wei, Pingpin; Shuai, Cijun; Peng, Shuping
2014-01-01
A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP) scaffolds via selective laser sintering (SLS). We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO). Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam(1/2), and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF), indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.
NASA Astrophysics Data System (ADS)
Fischer, P.; Jardani, A.; Wang, X.; Jourde, H.; Lecoq, N.
2017-12-01
The distributed modeling of flow paths within karstic and fractured fields remains a complex task because of the high dependence of the hydraulic responses to the relative locations between observational boreholes and interconnected fractures and karstic conduits that control the main flow of the hydrosystem. The inverse problem in a distributed model is one alternative approach to interpret the hydraulic test data by mapping the karstic networks and fractured areas. In this work, we developed a Bayesian inversion approach, the Cellular Automata-based Deterministic Inversion (CADI) algorithm to infer the spatial distribution of hydraulic properties in a structurally constrained model. This method distributes hydraulic properties along linear structures (i.e., flow conduits) and iteratively modifies the structural geometry of this conduit network to progressively match the observed hydraulic data to the modeled ones. As a result, this method produces a conductivity model that is composed of a discrete conduit network embedded in the background matrix, capable of producing the same flow behavior as the investigated hydrologic system. The method is applied to invert a set of multiborehole hydraulic tests collected from a hydraulic tomography experiment conducted at the Terrieu field site in the Lez aquifer, Southern France. The emergent model shows a high consistency to field observation of hydraulic connections between boreholes. Furthermore, it provides a geologically realistic pattern of flow conduits. This method is therefore of considerable value toward an enhanced distributed modeling of the fractured and karstified aquifers.
Pashin, Jack; Carroll, R.E.; Hatch, Joseph R.; Goldhaber, Martin B.
1999-01-01
Natural fractures provide most of the interconnected macroporosity in coal. Therefore, understanding the characteristics of these fractures and the associated mechanisms of formation is essential for effective coalbed methane exploration and field management. Natural fractures in coal can be divided into two general types: cleat and shear structures. Cleat has been studied for more than a century, yet the mechanisms of cleat formation remain poorly understood (see reviews by Close, 1993; Laubach et al.,1998). An important aspect of cleating is that systematic fracturing of coal is takes place in concert with devolatization and concomitant shrinkage of the coal matrix during thermal maturation (Ammosov and Eremin, 1960). Coal, furthermore, is a mechanically weak rock type that is subject to bedding-plane shear between more competent beds like shale, sandstone, and limestone. Yet, the significance of shear structures in coal has only begun to attract scientific interest (Hathaway and Gayer, 1996; Pashin, 1998).
NASA Astrophysics Data System (ADS)
Bursey, G.; Seok, E.; Gale, J. E.
2017-12-01
Flow to underground mines and open pits takes place through an interconnected network of regular joints/fractures and intermediate to large scale structural features such as faults and fracture zones. Large scale features can serve either as high permeability pathways or as barriers to flow, depending on the internal characteristics of the structure. Predicting long term water quality in barrier-well systems and long-term mine water inflows over a mine life, as a mine expands, requires the use of a 3D numerical flow and transport code. The code is used to integrate the physical geometry of the fractured-rock mass with porosity, permeability, hydraulic heads, storativity and recharge data and construct a model of the flow system. Once that model has been calibrated using hydraulic head and permeability/inflow data, aqueous geochemical and isotopic data provide useful tools for validating flow-system properties, when one is able to recognize and account for the non-ideal or imperfect aspects of the sampling methods used in different mining environments. If groundwater samples are collected from discrete depths within open boreholes, water in those boreholes have the opportunity to move up or down in response to the forces that drive groundwater flow, whether they be hydraulic gradients, gas pressures, or density differences associated with variations in salinity. The use of Br/Cl ratios, for example, can be used to determine if there is active flow into, or out of, the boreholes through open discontinuities in the rock mass (i.e., short-circuiting). Natural groundwater quality can also be affected to varying degrees by mixing with drilling fluids. The combined use of inorganic chemistry and stable isotopes can be used effectively to identify dilution signals and map the dilution patterns through a range of fresh, brackish and saline water types. The stable isotopes of oxygen and hydrogen are nearly ideal natural tracers of water, but situations occur when deep groundwater samples can plot to the left of the meteoric water line as a result of isotopic exchange between meteoric water and silicate rock in near-surface environments at low temperatures. These and other examples are considered in the practical application of aqueous geochemistry in helping to map flow systems in fractured-rock systems.
ERIC Educational Resources Information Center
McManamon, Peter M.
Several aspects of system interconnections are treated in this report. The interconnection of existing and future cable television (CATV) systems for two-way transfer of audio/video and digital data signals is surveyed. The concept of interconnection is explored relative to existing and proposed CATV systems and broadband teleservice networks,…
Ishikawa, Kunio; Arifta, Tya Indah; Hayashi, Koichiro; Tsuru, Kanji
2018-03-26
Carbonate apatite (CO 3 Ap) blocks have attracted considerable attention as an artificial bone substitute material because CO 3 Ap is a component of and shares properties with bone, including high osteoconductivity and replacement by bone similar to autografts. In this study, we fabricated an interconnected porous CO 3 Ap block using α-tricalcium phosphate (TCP) spheres and evaluated the tissue response to this material in a rabbit tibial bone defect model. Interconnected porous α-TCP, the precursor of interconnected porous CO 3 Ap, could not be fabricated directly by sintering α-TCP spheres. It was therefore made via a setting reaction with α-TCP spheres, yielding interconnected porous calcium-deficient hydroxyapatite that was subjected to heat treatment. Immersing the interconnected porous α-TCP in Na-CO 3 -PO 4 solution produced CO 3 Ap, which retained the interconnected porous structure after the dissolution-precipitation reaction. The diametral tensile strength and porosity of the porous CO 3 Ap were 1.8 ± 0.4 MPa and 55% ± 3.2%, respectively. Both porous and dense (control) CO 3 Ap showed excellent tissue response and good osteoconductivity. At 4 weeks after surgery, approximately 15% ± 4.9% of the tibial bone defect was filled with new bone when reconstruction was performed using porous CO 3 Ap; this amount was five times greater than that obtained with dense CO 3 Ap. At 12 weeks after surgery, for porous CO 3 Ap, approximately 47% of the defect was filled with new bone as compared to 16% for dense CO 3 Ap. Thus, the interconnected porous CO 3 Ap block is a promising artificial bone substitute material for the treatment of bone defects caused by large fractures or bone tumor resection. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.
Wireless Interconnects for Intra-chip & Inter-chip Transmission
NASA Astrophysics Data System (ADS)
Narde, Rounak Singh
With the emergence of Internet of Things and information revolution, the demand of high performance computing systems is increasing. The copper interconnects inside the computing chips have evolved into a sophisticated network of interconnects known as Network on Chip (NoC) comprising of routers, switches, repeaters, just like computer networks. When network on chip is implemented on a large scale like in Multicore Multichip (MCMC) systems for High Performance Computing (HPC) systems, length of interconnects increases and so are the problems like power dissipation, interconnect delays, clock synchronization and electrical noise. In this thesis, wireless interconnects are chosen as the substitute for wired copper interconnects. Wireless interconnects offer easy integration with CMOS fabrication and chip packaging. Using wireless interconnects working at unlicensed mm-wave band (57-64GHz), high data rate of Gbps can be achieved. This thesis presents study of transmission between zigzag antennas as wireless interconnects for Multichip multicores (MCMC) systems and 3D IC. For MCMC systems, a four-chips 16-cores model is analyzed with only four wireless interconnects in three configurations with different antenna orientations and locations. Return loss and transmission coefficients are simulated in ANSYS HFSS. Moreover, wireless interconnects are designed, fabricated and tested on a 6'' silicon wafer with resistivity of 55O-cm using a basic standard CMOS process. Wireless interconnect are designed to work at 30GHz using ANSYS HFSS. The fabricated antennas are resonating around 20GHz with a return loss of less than -10dB. The transmission coefficients between antenna pair within a 20mm x 20mm silicon die is found to be varying between -45dB to -55dB. Furthermore, wireless interconnect approach is extended for 3D IC. Wireless interconnects are implemented as zigzag antenna. This thesis extends the work of analyzing the wireless interconnects in 3D IC with different configurations of antenna orientations and coolants. The return loss and transmission coefficients are simulated using ANSYS HFSS.
Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic.
Shareef, M Y; Messer, P F; van Noort, R
1993-01-01
In this study the preparation of a machinable hydroxyapatite from mixtures of a fine, submicrometer powder and either a coarse powder composed of porous aggregates up to 50 microns or a medium powder composed of dense particles of 3 microns median size is described. These were characterized using X-ray diffraction, transmission and scanning electron microscopy and infra-red spectroscopy. Test-pieces were formed by powder pressing and slip casting mixtures of various combinations of the fine, medium and coarse powders. The fired test-pieces were subjected to measurements of firing shrinkage, porosity, bulk density, tensile strength and fracture toughness. The microstructure and composition were examined using scanning electron microscopy and X-ray diffraction. For both processing methods, a uniform interconnected microporous structure was produced of a high-purity hydroxyapatite. The maximum tensile strength and fracture toughness that could be attained while retaining machinability were 37 MPa and 0.8 MPa m1/2 respectively.
Optical Interconnections for VLSI Computational Systems Using Computer-Generated Holography.
NASA Astrophysics Data System (ADS)
Feldman, Michael Robert
Optical interconnects for VLSI computational systems using computer generated holograms are evaluated in theory and experiment. It is shown that by replacing particular electronic connections with free-space optical communication paths, connection of devices on a single chip or wafer and between chips or modules can be improved. Optical and electrical interconnects are compared in terms of power dissipation, communication bandwidth, and connection density. Conditions are determined for which optical interconnects are advantageous. Based on this analysis, it is shown that by applying computer generated holographic optical interconnects to wafer scale fine grain parallel processing systems, dramatic increases in system performance can be expected. Some new interconnection networks, designed to take full advantage of optical interconnect technology, have been developed. Experimental Computer Generated Holograms (CGH's) have been designed, fabricated and subsequently tested in prototype optical interconnected computational systems. Several new CGH encoding methods have been developed to provide efficient high performance CGH's. One CGH was used to decrease the access time of a 1 kilobit CMOS RAM chip. Another was produced to implement the inter-processor communication paths in a shared memory SIMD parallel processor array.
Review of Interconnection Practices and Costs in the Western States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, Lori A; Flores-Espino, Francisco; Volpi, Christina M
The objective of this report is to evaluate the nature of barriers to interconnecting distributed PV, assess costs of interconnection, and compare interconnection practices across various states in the Western Interconnection. The report addresses practices for interconnecting both residential and commercial-scale PV systems to the distribution system. This study is part of a larger, joint project between the Western Interstate Energy Board (WIEB) and the National Renewable Energy Laboratory (NREL), funded by the U.S. Department of Energy, to examine barriers to distributed PV in the 11 states wholly within the Western Interconnection.
Kay, Robert T.; Yeskis, Douglas J.; Prinos, Scott T.; Morrow, William S.; Vendl, Mark
1999-01-01
A study was conducted by the U.S. Geological Survey and the U.S. Environmental Protection Agency of the geohydrology of the dolomite bedrock at a waste-disposal site near Byron, Illinois. The study was designed to identify and characterize the flow pathways through the bedrock aquifer beneath the site. The geologic units of concern at the site are the Glenwood Formation of the Ancell Group, and the Platteville and Galena Groups. These deposits compose the Galena-Platteville aquifer and the underlying Harmony Hill Shale semiconfining unit. The Galena-Platteville aquifer is an unconfined aquifer. Geophysical logging, water levels, and aquifer-test data indicate the presence of interconnected, hydraulically active fractures in the middle of the Galena-Platteville aquifer (the upper flow pathway), and a second set of hydraulically active fractures (the lower flow pathway). The lower flow pathway may be present through much of the site. Few hydraulically active fractures are present in the upper part of the aquifer near the center of the site, but appear to be more numerous in the upper part of the aquifer in the western and northeastern parts of the site. Water-level data obtained during the tracer test indicate that pumping effects were present near the pumped wells. Pumping effects may have been present at several wells located along directions of identified fracture orientation from the pumped well. The upper part of the aquifer did not appear to be hydraulically well connected to the flow pathways supplying water to the pumped well. Large background changes in water levels obscured the effects of pumping and prevented calculation of aquifer properties. The velocity of the bromide tracer through the lower flow pathway under the hydraulic gradient resulting from the pumping was about 152 feet per day. Solution of the Darcy velocity equation results in a calculated effective porosity for this interval of 3.5 percent, indicating hydraulic interconnection between the fractures and the aquifer matrix. Ground-water velocity through the lower flow pathway was calculated to be 15.4 feet per day under hydrostatic conditions.
NASA Astrophysics Data System (ADS)
Assari, Amin; Mohammadi, Zargham
2017-09-01
Karst systems show high spatial variability of hydraulic parameters over small distances and this makes their modeling a difficult task with several uncertainties. Interconnections of fractures have a major role on the transport of groundwater, but many of the stochastic methods in use do not have the capability to reproduce these complex structures. A methodology is presented for the quantification of tortuosity using the single normal equation simulation (SNESIM) algorithm and a groundwater flow model. A training image was produced based on the statistical parameters of fractures and then used in the simulation process. The SNESIM algorithm was used to generate 75 realizations of the four classes of fractures in a karst aquifer in Iran. The results from six dye tracing tests were used to assign hydraulic conductivity values to each class of fractures. In the next step, the MODFLOW-CFP and MODPATH codes were consecutively implemented to compute the groundwater flow paths. The 9,000 flow paths obtained from the MODPATH code were further analyzed to calculate the tortuosity factor. Finally, the hydraulic conductivity values calculated from the dye tracing experiments were refined using the actual flow paths of groundwater. The key outcomes of this research are: (1) a methodology for the quantification of tortuosity; (2) hydraulic conductivities, that are incorrectly estimated (biased low) with empirical equations that assume Darcian (laminar) flow with parallel rather than tortuous streamlines; and (3) an understanding of the scale-dependence and non-normal distributions of tortuosity.
49 CFR 236.504 - Operation interconnected with automatic block-signal system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Operation interconnected with automatic block... Operation interconnected with automatic block-signal system. (a) A continuous inductive automatic train stop or train control system shall operate in connection with an automatic block signal system and shall...
47 CFR 90.477 - Interconnected systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... part and medical emergency systems in the 450-470 MHz band, interconnection will be permitted only... operating on frequencies in the bands below 800 MHz are not subject to the interconnection provisions of...
Next generation space interconnect research and development in space communications
NASA Astrophysics Data System (ADS)
Collier, Charles Patrick
2017-11-01
Interconnect or "bus" is one of the critical technologies in design of spacecraft avionics systems that dictates its architecture and complexity. MIL-STD-1553B has long been used as the avionics backbone technology. As avionics systems become more and more capable and complex, however, limitations of MIL-STD-1553B such as insufficient 1 Mbps bandwidth and separability have forced current avionics architects and designers to use combination of different interconnect technologies in order to meet various requirements: CompactPCI is used for backplane interconnect; LVDS or RS422 is used for low and high-speed direct point-to-point interconnect; and some proprietary interconnect standards are designed for custom interfaces. This results in a very complicated system that consumes significant spacecraft mass and power and requires extensive resources in design, integration and testing of spacecraft systems.
Sense and nonsense of logic-level optical interconnect: reflections on an experiment
NASA Astrophysics Data System (ADS)
Van Campenhout, Jan M.; Brunfaut, Marnik; Meeus, Wim; Dambre, Joni; De Wilde, Michiel
2001-12-01
Centimeter-range high-density optical interconnect between chips is coming into reach with current optical interconnect technology. Many theoretical studies have identified several good reasons why to use such types of interconnect as a replacement of various layers of the traditional electronic interconnect hierarchy. However, the true feasibility and usefulness of optical interconnects can only be established by actually building and evaluating them in a real system setting. This contribution reports on our experience in using short-range high-density optical inter-chip interconnects. It is based on the design and construction of a fully functional optoelectronic demonstrator system. We discuss the rationale for building the demonstrator in the first place, the implications of using many low-level optical interconnections in electronic systems, and the degree to which our expectations have been fulfilled by the demonstrator. The detailed description of the architecture, design and implementation of the demonstrator is not presented here, but can be found elsewhere in this issue.
Code of Federal Regulations, 2011 CFR
2011-10-01
... interconnecting private and public systems of communications. 90.483 Section 90.483 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES... private and public systems of communications. Interconnection may be accomplished by commercial mobile...
Code of Federal Regulations, 2014 CFR
2014-10-01
... interconnecting private and public systems of communications. 90.483 Section 90.483 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES... private and public systems of communications. Interconnection may be accomplished by commercial mobile...
Code of Federal Regulations, 2013 CFR
2013-10-01
... interconnecting private and public systems of communications. 90.483 Section 90.483 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES... private and public systems of communications. Interconnection may be accomplished by commercial mobile...
Code of Federal Regulations, 2012 CFR
2012-10-01
... interconnecting private and public systems of communications. 90.483 Section 90.483 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES... private and public systems of communications. Interconnection may be accomplished by commercial mobile...
Maze solving automatons for self-healing of open interconnects: Modular add-on for circuit boards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, Aswathi; Raghunandan, Karthik; Yaswant, Vaddi
We present the circuit board integration of a self-healing mechanism to repair open faults. The electric field driven mechanism physically restores fractured interconnects in electronic circuits and has the ability to solve mazes. The repair is performed by conductive particles dispersed in an insulating fluid. We demonstrate the integration of the healing module onto printed circuit boards and the ability of maze solving. We model and perform experiments on the influence of the geometry of conductive particles as well as the terminal impedances of the route on the healing efficiency. The typical heal rate is 10 μm/s with healed route havingmore » mean resistance of 8 kΩ across a 200 micron gap and depending on the materials and concentrations used.« less
Bending cyclic load test for crystalline silicon photovoltaic modules
NASA Astrophysics Data System (ADS)
Suzuki, Soh; Doi, Takuya; Masuda, Atsushi; Tanahashi, Tadanori
2018-02-01
The failures induced by thermomechanical fatigue within crystalline silicon photovoltaic modules are a common issue that can occur in any climate. In order to understand these failures, we confirmed the effects of compressive or tensile stresses (which were cyclically loaded on photovoltaic cells and cell interconnect ribbons) at subzero, moderate, and high temperatures. We found that cell cracks were induced predominantly at low temperatures, irrespective of the compression or tension applied to the cells, although the orientation of cell cracks was dependent on the stress applied. The fracture of cell interconnect ribbons was caused by cyclical compressive stress at moderate and high temperatures, and this failure was promoted by the elevation of temperature. On the basis of these results, the causes of these failures are comprehensively discussed in relation to the viscoelasticity of the encapsulant.
Fuel cell system with interconnect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goettler, Richard; Liu, Zhien
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
Fuel cell system with interconnect
Goettler, Richard; Liu, Zhien
2015-08-11
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
Fuel cell system with interconnect
Goettler, Richard; Liu, Zhien
2015-03-10
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
Fuel cell system with interconnect
Liu, Zhien; Goettler, Richard
2015-09-29
The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.
14 CFR 121.1111 - Electrical wiring interconnection systems (EWIS) maintenance program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Electrical wiring interconnection systems... Airworthiness and Safety Improvements § 121.1111 Electrical wiring interconnection systems (EWIS) maintenance program. (a) Except as provided in paragraph (f) of this section, this section applies to transport...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, H. P.; Basso, T. S.; Kroposki, B.
The Department of Energy (DOE) Distributed Power Program (DPP) is conducting work to complete, validate in the field, and support the development of a national interconnection standard for distributed energy resources (DER), and to address the institutional and regulatory barriers slowing the commercial adoption of DER systems. This work includes support for the IEEE standards, including P1547 Standard for Interconnecting Distributed Resources with Electric Power Systems, P1589 Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems, and the P1608 Application Guide. Work is also in progress on system integration research and development (R&D) on themore » interface and control of DER with local energy systems. Additional efforts are supporting high-reliability power for industry, evaluating innovative concepts for DER applications, and exploring plug-and-play interface and control technologies for intelligent autonomous interconnection systems. This paper summarizes (1) the current status of the IEEE interconnection standards and application guides in support of DER, and (2) the R&D in progress at the National Renewable Energy Laboratory (NREL) for interconnection and system integration and application of distributed energy resources.« less
Retroactivity in the Context of Modularly Structured Biomolecular Systems
Pantoja-Hernández, Libertad; Martínez-García, Juan Carlos
2015-01-01
Synthetic biology has intensively promoted the technical implementation of modular strategies in the fabrication of biological devices. Modules are considered as networks of reactions. The behavior displayed by biomolecular systems results from the information processes carried out by the interconnection of the involved modules. However, in natural systems, module wiring is not a free-of-charge process; as a consequence of interconnection, a reactive phenomenon called retroactivity emerges. This phenomenon is characterized by signals that propagate from downstream modules (the modules that receive the incoming signals upon interconnection) to upstream ones (the modules that send the signals upon interconnection). Such retroactivity signals, depending of their strength, may change and sometimes even disrupt the behavior of modular biomolecular systems. Thus, analysis of retroactivity effects in natural biological and biosynthetic systems is crucial to achieve a deeper understanding of how this interconnection between functionally characterized modules takes place and how it impacts the overall behavior of the involved cell. By discussing the modules interconnection in natural and synthetic biomolecular systems, we propose that such systems should be considered as quasi-modular. PMID:26137457
NASA Astrophysics Data System (ADS)
Normani, S. D.; Sykes, J. F.; Jensen, M. R.
2009-04-01
A high resolution sub-regional scale (84 km2) density-dependent, fracture zone network groundwater flow model with hydromechanical coupling and pseudo-permafrost, was developed from a larger 5734 km2 regional scale groundwater flow model of a Canadian Shield setting in fractured crystalline rock. The objective of the work is to illustrate aspects of regional and sub-regional groundwater flow that are relevant to the long-term performance of a hypothetical nuclear fuel repository. The discrete fracture dual continuum numerical model FRAC3DVS-OPG was used for all simulations. A discrete fracture zone network model delineated from surface features was superimposed onto an 789887 element flow domain mesh. Orthogonal fracture faces (between adjacent finite element grid blocks) were used to best represent the irregular discrete fracture zone network. The crystalline rock between these structural discontinuities was assigned properties characteristic of those reported for the Canadian Shield at the Underground Research Laboratory at Pinawa, Manitoba. Interconnectivity of permeable fracture features is an important pathway for the possibly relatively rapid migration of average water particles and subsequent reduction in residence times. The multiple 121000 year North American continental scale paleoclimate simulations are provided by W.R. Peltier using the University of Toronto Glacial Systems Model (UofT GSM). Values of ice sheet normal stress, and proglacial lake depth from the UofT GSM are applied to the sub-regional model as surface boundary conditions, using a freshwater head equivalent to the normal stress imposed by the ice sheet at its base. Permafrost depth is applied as a permeability reduction to both three-dimensional grid blocks and fractures that lie within the time varying permafrost zone. Two different paleoclimate simulations are applied to the sub-regional model to investigate the effect on the depth of glacial meltwater migration into the subsurface. In addition, different conceptualizations of fracture permeability with depth, and various hydromechanical loading efficiencies are used to investigate glacial meltwater penetration. The importance of density dependent flow, due to pore waters deep in the Canadian Shield with densities of up to 1200 kg/m3 and total dissolved solids concentrations in excess of 300 g/L, is also illustrated. Performance measures used in the assessment include depth of glacial meltwater penetration using a tracer, and mean life expectancy. Consistent with the findings from isotope and geochemical assessments, the analyses support the conclusion that for the discrete fracture zone and matrix properties simulated in this study, glacial meltwaters would not likely impact a deep geologic repository in a crystalline rock setting.
Ibraheem; Hasan, Naimul; Hussein, Arkan Ahmed
2014-01-01
This Paper presents the design of decentralized automatic generation controller for an interconnected power system using PID, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The designed controllers are tested on identical two-area interconnected power systems consisting of thermal power plants. The area interconnections between two areas are considered as (i) AC tie-line only (ii) Asynchronous tie-line. The dynamic response analysis is carried out for 1% load perturbation. The performance of the intelligent controllers based on GA and PSO has been compared with the conventional PID controller. The investigations of the system dynamic responses reveal that PSO has the better dynamic response result as compared with PID and GA controller for both type of area interconnection.
47 CFR 64.1401 - Expanded interconnection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point or...
47 CFR 64.1401 - Expanded interconnection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point or...
Therapies for Musculoskeletal Disease: Can we Treat Two Birds with One Stone?
Girgis, Christian M.; Mokbel, Nancy; DiGirolamo, Douglas J.
2014-01-01
Musculoskeletal diseases are highly prevalent with staggering annual health care costs across the globe. The combined wasting of muscle (sarcopenia) and bone (osteoporosis)— both in normal aging and pathologic states—can lead to vastly compounded risk for fracture in patients. Until now, our therapeutic approach to the prevention of such fractures has focused solely on bone, but our increasing understanding of the interconnected biology of muscle and bone has begun to shift our treatment paradigm for musculoskeletal disease. Targeting pathways that centrally regulate both bone and muscle (eg, GH/IGF-1, sex steroids, etc.) and newly emerging pathways that might facilitate communication between these 2 tissues (eg, activin/myostatin) might allow a greater therapeutic benefit and/or previously unanticipated means by which to treat these frail patients and prevent fracture. In this review, we will discuss a number of therapies currently under development that aim to treat musculoskeletal disease in precisely such a holistic fashion. PMID:24633910
NASA Astrophysics Data System (ADS)
Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon; Um, Evan Schankee
2017-06-01
Secure disposal or storage of nuclear waste within stable geologic environments hinges on the effectiveness of artificial and natural radiation barriers. Fractures in the bedrock are viewed as the most likely passage for the transport of radioactive waste away from a disposal site. We utilize ground penetrating radar (GPR) to map fractures in the tunnel walls of an underground research tunnel at the Korea Atomic Energy Research Institute (KAERI). GPR experiments within the KAERI Underground Research Tunnel (KURT) were carried out by using 200 MHz, 500 MHz, and 1000 MHz antennas. By using the high-frequency antennas, we were able to identify small-scale fractures, which were previously unidentified during the tunnel excavation process. Then, through 3-D visualization of the grid survey data, we reconstructed the spatial distribution and interconnectivity of the multi-scale fractures within the wall. We found that a multi-frequency GPR approach provided more details of the complex fracture network, including deep structures. Furthermore, temporal changes in reflection polarity between the GPR surveys enabled us to infer the hydraulic characteristics of the discrete fracture network developed behind the surveyed wall. We hypothesized that the fractures exhibiting polarity change may be due to a combination of air-filled and mineralogical boundaries. Simulated GPR scans for the considered case were consistent with the observed GPR data. If our assumption is correct, the groundwater flow into these near-surface fractures may form the water-filled fractures along the existing air-filled ones and hence cause the changes in reflection polarity over the given time interval (i.e., 7 days). Our results show that the GPR survey is an efficient tool to determine fractures at various scales. Time-lapse GPR data may be essential to characterize the hydraulic behavior of discrete fracture networks in underground disposal facilities.
Dynamic characterisation of the specific surface area for fracture networks
NASA Astrophysics Data System (ADS)
Cvetkovic, V.
2017-12-01
One important application of chemical transport is geological disposal of high-level nuclear waste for which crystalline rock is a prime candidate for instance in Scandinavia. Interconnected heterogeneous fractures of sparsely fractured rock such as granite, act as conduits for transport of dissolved tracers. Fluid flow is known to be highly channelized in such rocks. Channels imply narrow flow paths, adjacent to essentially stagnant water in the fracture and/or the rock matrix. Tracers are transported along channelised flow paths and retained by minerals and/or stagnant water, depending on their sorption properties; this mechanism is critical for rocks to act as a barrier and ultimately provide safety for a geological repository. The sorbing tracers are retained by diffusion and sorption on mineral surfaces, whereas non-sorbing tracers can be retained only by diffusion into stagnant water of fractures. The retention and transport properties of a sparsely fractured rock will primarily depend on the specific surface area (SSA) of the fracture network which is determined by the heterogeneous structure and flow. The main challenge when characterising SSA on the field-scale is its dependence on the flow dynamics. We first define SSA as a physical quantity and clarify its importance for chemical transport. A methodology for dynamic characterisation of SSA in fracture networks is proposed that relies on three sets of data: i) Flow rate data as obtained by a flow logging procedure; ii) transmissivity data as obtained by pumping tests; iii) fracture network data as obtained from outcrop and geophysical observations. The proposed methodology utilises these data directly as well as indirectly through flow and particle tracking simulations in three-dimensional discrete fracture networks. The methodology is exemplified using specific data from the Swedish site Laxemar. The potential impact of uncertainties is of particular significance and is illustrated for radionuclide attenuation. Effects of internal fracture heterogeneity vs fracture network heterogeneity, and of rock deformation, on the statistical properties of SSA are briefly discussed.
NASA Astrophysics Data System (ADS)
Konrad-Schmolke, Matthias; Klitscher, Nicolai; Halama, Ralf; Wirth, Richard; Morales, Luiz
2017-04-01
At the slab-mantle interface in subdution zones fluids released from the downgoing plate infiltrate into a mechanical mixture of rocks with different chemical compositions, different hydration states and different rheological behaviour resulting in a highly reactive mélange within a steep temperature gradient. Fluid pathways, reaction mechanisms and reaction rates of such fluxes, however, are poorly known, although these parameters are thought to be crucial for several seismic phenomena, such as those commonly referred to as slow earthquakes (e.g., episodic tremor and slip (ETS)). We discovered syn-metamorphic fluid-pathways in the form of interconnected metamorphic porosity in eclogite and blueschist facies mélange rocks from the Franciscan Complex near Jenner, CA. The sampled rocks occur as rigid mafic blocks of different sizes (cm to decametre) in a weak chlorite-serpentine matrix interpreted to be an exhumed slab-mantle interface. Some of these mafic blocks record reactive fluid infiltration that transforms dry eclogite into hydrous blueschist with a sharp reaction front clearly preserved and visible from outcrop- down to µm-scale. We can show that a number of interconnected fluid pathways, such as interconnected metamorphic porosity between reacting omphacite and newly formed sodic amphibole enabled fluid infiltration and interface coupled solution-reprecipitation reactions at blueschist facies conditions. We investigated the different types of fluid pathways with TEM and visualized their interconnectivity with 3D focused ion beam (FIB) sections. The eclogitic parts of the samples preserve porous primary omphacite as a product of amphibole and epidote breakdown during subduction. This primary porosity in omphacite I results from a negative volume change in the solids during amphibole and epidote dehydration. The resulting pores appear as (fluid filled) elongated inclusions the orientations of which are controlled by the omphacite lattice. During decompression of the rocks these inclusions became interconnected by brittle fractures that allowed a first fluid influx and the precipitation of new omphacite (II) within the fracture network and along the rims of the primary omphacite. The (second) metamorphic/metasomatic porosity occurs along the reaction surfaces between omphacite and sodic amphibole as well as within omphacite grains where new omphacite (III) is formed. This interconnected pore network associated with the re-hydration reaction is up to 1µm but mostly between 50 and 200nm wide. Reacting omphacite is preferentially consumed in 00-1 direction and has a rugged, often needle-like surface. In contrast, product surfaces (omphacite III and sodic amphibole) are relatively smooth indicating dissolution of older omphacite (I and II) and re-precipitation of omphacite III as well as the formation of sodic amphibole. Within some of the pores amorphous silica-rich material containing smaller amounts of Al, Ca, Fe and Mg, can be found as worm-like precipitates and as coatings on top of the needle-like omphacite surface. Phase relations, textures as well as overprinting relations clearly show that the porosity is syn-metamorphic under blueschist-facies conditions. Although difficult to constrain in the samples porosity is likely between 1-5 volume%.
14 CFR 29.674 - Interconnected controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Interconnected controls. 29.674 Section 29...
14 CFR 27.674 - Interconnected controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Interconnected controls. 27.674 Section 27...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-19
... Reliability Operating Limits; System Restoration Reliability Standards AGENCY: Federal Energy Regulatory... data necessary to analyze and monitor Interconnection Reliability Operating Limits (IROL) within its... Interconnection Reliability Operating Limits, Order No. 748, 134 FERC ] 61,213 (2011). \\2\\ The term ``Wide-Area...
14 CFR 29.674 - Interconnected controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Interconnected controls. 29.674 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate...
14 CFR 27.674 - Interconnected controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Interconnected controls. 27.674 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate...
14 CFR 29.674 - Interconnected controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Interconnected controls. 29.674 Section 29...
14 CFR 27.674 - Interconnected controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Interconnected controls. 27.674 Section 27...
Electrode and interconnect for miniature fuel cells using direct methanol feed
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor)
2004-01-01
An improved system for interconnects in a fuel cell. In one embodiment, the membranes are located in parallel with one another, and current flow between them is facilitated by interconnects. In another embodiment, all of the current flow is through the interconnects which are located on the membranes. The interconnects are located between two electrodes.
Physical properties of two core samples from Well 34-9RD2 at the Coso geothermal field, California
Morrow, C.A.; Lockner, D.A.
2006-01-01
The Coso geothermal field, located along the Eastern California Shear Zone, is composed of fractured granitic rocks above a shallow heat source. Temperatures exceed 640 ?F (~338 ?C) at a depth of less than 10000 feet (3 km). Permeability varies throughout the geothermal field due to the competing processes of alteration and mineral precipitation, acting to reduce the interconnectivity of faults and fractures, and the generation of new fractures through faulting and brecciation. Currently, several hot regions display very low permeability, not conducive to the efficient extraction of heat. Because high rates of seismicity in the field indicate that the area is highly stressed, enhanced permeability can be stimulated by increasing the fluid pressure at depth to induce faulting along the existing network of fractures. Such an Enhanced Geothermal System (EGS), planned for well 46A-19RD, would greatly facilitate the extraction of geothermal fluids from depth by increasing the extent and depth of the fracture network. In order to prepare for and interpret data from such a stimulation experiment, the physical properties and failure behavior of the target rocks must be fully understood. Various diorites and granodiorites are the predominant rock types in the target area of the well, which will be pressurized from 10000 feet measured depth (MD) (3048m MD) to the bottom of the well at 13,000 feet MD (3962 m MD). Because there are no core rocks currently available from well 46A-19RD, we report here on the results of compressive strength, frictional sliding behavior, and elastic measurements of a granodiorite and diorite from another well, 34-9RD2, at the Coso site. Rocks cored from well 34-9RD2 are the deepest samples to date available for testing, and are representative of rocks from the field in general.
High-Penetration Photovoltaic Planning Methodologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian
The main objective of this report is to provide an overview of select U.S. utility methodologies for performing high-penetration photovoltaic (HPPV) system planning and impact studies. This report covers the Federal Energy Regulatory Commission's orders related to photovoltaic (PV) power system interconnection, particularly the interconnection processes for the Large Generation Interconnection Procedures and Small Generation Interconnection Procedures. In addition, it includes U.S. state interconnection standards and procedures. The procedures used by these regulatory bodies consider the impacts of HPPV power plants on the networks. Technical interconnection requirements for HPPV voltage regulation include aspects of power monitoring, grounding, synchronization, connection tomore » the overall distribution system, back-feeds, disconnecting means, abnormal operating conditions, and power quality. This report provides a summary of mitigation strategies to minimize the impact of HPPV. Recommendations and revisions to the standards may take place as the penetration level of renewables on the grid increases and new technologies develop in future years.« less
Toward Interpreting Failure in Sintered-Silver Interconnection Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A; Waters, Shirley B
2016-01-01
The mechanical strength and subsequent reliability of a sintered-silver interconnection system is a function of numerous independent parameters. That system is still undergoing process development. Most of those parameters (e.g., choice of plating) are arguably and unfortunately taken for granted and are independent of the silver s cohesive strength. To explore such effects, shear strength testing and failure analyses were completed on a simple, mock sintered-silver interconnection system consisting of bonding two DBC ceramic substrates. Silver and gold platings were part of the test matrix, as was pre-drying strategies, and the consideration of stencil-printing vs. screen-printing. Shear strength of sintered-silvermore » interconnect systems was found to be was insensitive to the choice of plating, drying practice, and printing method provided careful and consistent processing of the sintered-silver are practiced. But if the service stress in sintered silver interconnect systems is anticipated to exceed ~ 60 MPa, then the system will likely fail.« less
Comprehensive evaluation of global energy interconnection development index
NASA Astrophysics Data System (ADS)
Liu, Lin; Zhang, Yi
2018-04-01
Under the background of building global energy interconnection and realizing green and low-carbon development, this article constructed the global energy interconnection development index system which based on the current situation of global energy interconnection development. Through using the entropy method for the weight analysis of global energy interconnection development index, and then using gray correlation method to analyze the selected countries, this article got the global energy interconnection development index ranking and level classification.
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Seibold, R. W.; Basiulis, D. I.
1982-01-01
The feasibility of applying the in situ fiberization process to the fabrication of strain isolation pads (SIP) for the Space Shuttle and to the fabrication of graphite-epoxy composites was evaluated. The ISF process involves the formation of interconnected polymer fiber networks by agitation of dilute polymer solutions under controlled conditions. High temperature polymers suitable for SIP use were fiberized and a successful fiberization of polychloro trifluoroethylene, a relatively high melting polymer, was achieved. Attempts to fiberize polymers with greater thermal stability were unsuccessful, apparently due to characteristics caused by the presence of aromaticity in the backbone of such materials. Graphite-epoxy composites were fabricated by interconnecting two dimensional arrays of graphite fiber with polypropylene IS fibers with subsequent epoxy resin impregnation. Mechanical property tests were performed on laminated panels of this material to evaluate intralaminar and interlaminar shear strength, and thus fracture toughness. Test results were generally unpromising.
14 CFR 23.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...
14 CFR 23.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...
14 CFR 23.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...
14 CFR 23.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...
14 CFR 23.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an overflow...
NASA Astrophysics Data System (ADS)
Li, Li-Wei; Yang, Guang-Hong
2017-07-01
The problem of decentralised output feedback control is addressed for Markovian jump interconnected systems with unknown interconnections and general transition rates (TRs) allowed to be unknown or known with uncertainties. A class of decentralised dynamic output feedback controllers are constructed, and a cyclic-small-gain condition is exploited to dispose the unknown interconnections so that the resultant closed-loop system is stochastically stable and satisfies an H∞ performance. With slack matrices to cope with the nonlinearities incurred by unknown and uncertain TRs in control synthesis, a novel controller design condition is developed in linear matrix inequality formalism. Compared with the existing works, the proposed approach leads to less conservatism. Finally, two examples are used to illustrate the effectiveness of the new results.
Photovoltaic utility/customer interface study
NASA Astrophysics Data System (ADS)
Eichler, C. H.; Hayes, T. P.; Matthews, M. M.; Wilraker, V. F.
1980-12-01
The technical, economic, and legal and regulatory issues of interconnecting small, privately-owned, on-site photovoltaic generating systems to an electric utility are addressed. Baseline residential, commercial and industrial class photovoltaic systems were developed. Technical issues of concern affecting this interconnection were identified and included fault protection, undervoltage protection, lamp flicker, revenue metering, loss of synchromism, electrical safety, prevention of backfeeding a de-energized utility feeder, effects of on-site generation on utility relaying schemes, effects of power conditioner harmonic distortion on the electric utility, system isolation, electromagnetic interference and site power factor as seen by the utility. Typical interconnection wiring diagrams were developed for interconnecting each class of baseline photovoltaic generating system.
NASA Astrophysics Data System (ADS)
Aggarwal, Ankur
With the semiconductor industry racing toward a historic transition, nano chips with less than 45 nm features demand I/Os in excess of 20,000 that support computing speed in terabits per second, with multi-core processors aggregately providing highest bandwidth at lowest power. On the other hand, emerging mixed signal systems are driving the need for 3D packaging with embedded active components and ultra-short interconnections. Decreasing I/O pitch together with low cost, high electrical performance and high reliability are the key technological challenges identified by the 2005 International Technology Roadmap for Semiconductors (ITRS). Being able to provide several fold increase in the chip-to-package vertical interconnect density is essential for garnering the true benefits of nanotechnology that will utilize nano-scale devices. Electrical interconnections are multi-functional materials that must also be able to withstand complex, sustained and cyclic thermo-mechanical loads. In addition, the materials must be environmentally-friendly, corrosion resistant, thermally stable over a long time, and resistant to electro-migration. A major challenge is also to develop economic processes that can be integrated into back end of the wafer foundry, i.e. with wafer level packaging. Device-to-system board interconnections are typically accomplished today with either wire bonding or solders. Both of these are incremental and run into either electrical or mechanical barriers as they are extended to higher density of interconnections. Downscaling traditional solder bump interconnect will not satisfy the thermo-mechanical reliability requirements at very fine pitches of the order of 30 microns and less. Alternate interconnection approaches such as compliant interconnects typically require lengthy connections and are therefore limited in terms of electrical properties, although expected to meet the mechanical requirements. A novel chip-package interconnection technology is developed to address the IC packaging requirements beyond the ITRS projections and to introduce innovative design and fabrication concepts that will further advance the performance of the chip, the package, and the system board. The nano-structured interconnect technology simultaneously packages all the ICs intact in wafer form with quantum jump in the number of interconnections with the lowest electrical parasitics. The intrinsic properties of nano materials also enable several orders of magnitude higher interconnect densities with the best mechanical properties for the highest reliability and yet provide higher current and heat transfer densities. Nano-structured interconnects provides the ability to assemble the packaged parts on the system board without the use of underfill materials and to enable advanced analog/digital testing, reliability testing, and burn-in at wafer level. This thesis investigates the electrical and mechanical performance of nanostructured interconnections through modeling and test vehicle fabrication. The analytical models evaluate the performance improvements over solder and compliant interconnections. Test vehicles with nano-interconnections were fabricated using low cost electro-deposition techniques and assembled with various bonding interfaces. Interconnections were fabricated at 200 micron pitch to compare with the existing solder joints and at 50 micron pitch to demonstrate fabrication processes at fine pitches. Experimental and modeling results show that the proposed nano-interconnections could enhance the reliability and potentially meet all the system performance requirements for the emerging micro/nano-systems.
The Interconnection Guidelines provide general guidance on the steps involved with connecting biogas recovery systems to the utility electrical power grid. Interconnection best practices including time and cost estimates are discussed.
NASA Astrophysics Data System (ADS)
Jin, G.
2015-12-01
Subsurface storage of carbon dioxide in geological formations is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. Successful geologic storage for sequestrated carbon dioxides must prove to be safe by means of risk assessments including post-injection analysis of injected CO2 plumes. Because fractured reservoirs exhibit a higher degree of heterogeneity, it is imperative to conduct such simulation studies in order to reliably predict the geometric evolution of plumes and risk assessment of post CO2injection. The research has addressed the pressure footprint of CO2 plumes through the development of new techniques which combine discrete fracture network and stochastic continuum modeling of multiphase flow in fractured geologic formations. A subsequent permeability tensor map in 3-D, derived from our preciously developed method, can accurately describe the heterogeneity of fracture reservoirs. A comprehensive workflow integrating the fracture permeability characterization and multiphase flow modeling has been developed to simulate the CO2plume migration and risk assessments. A simulated fractured reservoir model based on high-priority geological carbon sinks in central Alabama has been employed for preliminary study. Discrete fracture networks were generated with an NE-oriented regional fracture set and orthogonal NW-fractures. Fracture permeability characterization revealed high permeability heterogeneity with an order of magnitude of up to three. A multiphase flow model composed of supercritical CO2 and saline water was then applied to predict CO2 plume volume, geometry, pressure footprint, and containment during and post injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes, which are aligned with systematic fractures. The diffusive spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant upward lateral spreading of CO2 resulting in accumulation of CO2 directly under the seal unit because of its buoyancy and strata-bound vertical fractures. Risk assessment shows that lateral movement of CO2 along interconnected fractures requires widespread seals with high integrity to confine the injected CO2.
Design of a highly parallel board-level-interconnection with 320 Gbps capacity
NASA Astrophysics Data System (ADS)
Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.; Bauer, H.
2012-01-01
A parallel board-level interconnection design is presented consisting of 32 channels, each operating at 10 Gbps. The hardware uses available optoelectronic components (VCSEL, TIA, pin-diodes) and a combination of planarintegrated free-space optics, fiber-bundles and available MEMS-components, like the DMD™ from Texas Instruments. As a specific feature, we present a new modular inter-board interconnect, realized by 3D fiber-matrix connectors. The performance of the interconnect is evaluated with regard to optical properties and power consumption. Finally, we discuss the application of the interconnect for strongly distributed system architectures, as, for example, in high performance embedded computing systems and data centers.
NASA Technical Reports Server (NTRS)
Daines, Martha J.; Richter, Frank M.
1988-01-01
An experimental method for directly determining the degree of interconnectivity of melt in a partially molten system is discussed using an olivine-basalt system as an example. Samarium 151 is allowed time to diffuse through mixtures of olivine and basalt powder which have texturally equilibrated at 1350 C and 13 to 15 kbars. The final distribution of samarium is determined through examination of developed radiographs of the samples. Results suggest an interconnected melt network is established at melt fractions at least as low as 1 wt pct and all melt is completely interconnected at melt fractions at least as low as 2 wt pct for the system examined.
Brahana, J.V.; Macy, J.A.; Mulderink, Dolores; Zemo, Dawn
1986-01-01
The Cumberland Plateau aquifer system consists of Pennsylvanian sandstones, conglomerates, shales, and coals which underlie the Cumberland Plateau in Tennessee. Major water-bearing zones occur within the sandstones and conglomerates in interconnected fractures. The water-bearing formations are separated by shale and siltstone that retard the vertical circulation of ground water, The Pennington Formation serves as the base of this aquifer system and is an effective confining unit, The Cumberland Plateau aquifer system is an important water source for the Cumberland Plateau, wells and springs from the aquifer system supply most of the rural domestic and public drinking-water supplies, water from wells drilled into the Cumberland Plateau aquifer system is generally of good to excellent quality. Of the 32 water-quality analyses on file from this aquifer. only 2 had dissolved-solids concentrations greater than 500 milligrams per liter, and about three-fourths had less than 200 milligrams per liter dissolved solids, However, no samples from depths greater than 300 feet below land surface have been recorded. Ground water from locations where the sandstones are buried deeply, such as the Wartburg basin, may contain dissolved-solids concentrations greater than 1,000 milligrams per liter.
Groundwater studies in arid areas in Egypt using LANDSAT satellite images
NASA Technical Reports Server (NTRS)
Elshazly, E. M.; Abdelhady, M. A.; Elshazly, M. M.
1977-01-01
Various features are interpreted which have strong bearing on groundwater in the arid environment. These include the nature of geological and lithologic units, structural lineaments, present and old drainage systems, distribution and form of water pools, geomorphologic units, weathering surfaces and other weathering phenomena, desert soils, sand dunes and dune sand accumulations, growths of natural vegetation and agriculture, and salt crusts and other expressions of salinization. There are many impressive examples which illustrate the significance of satellite image interpretation on the regional conditions of groundwater which could be traced and interconnected over several tens or even several hundreds of kilometers. This is especially true in the northern Western Desert of Egypt where ground water issuing from deep strata comes to the surface along ENE-WSW and ESE-WNW fault lines and fracture systems. Another striking example is illustrated by the occurrence of fresh to brackish groundwater on the Mediterranean Sea Coastal Zone of the Western Desert where the groundwater is found in the form of lenses floating on the saline sea water.
Interconnection economics of small power systems -- A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloethe, W.G.; Thakar, H.C.; Kim, L.C.
1996-11-01
The advantages of interconnecting large electric power systems has been almost universally accepted in those parts of North America that are not geographically isolated. However, interconnecting power systems can result in significant economic advantages, even in those parts of the world where power systems are small and widely separated. This paper examines two small, isolated power systems on the island of Borneo in Southeast Asia. The Malaysian State of Srawak lies on the north coast of Borneo. With an area of 123,156 square km (47,555 square mi.) and population of 1.7 million, it is the largest, but most sparsely populated,more » state in the Federation of Malaysia. Its neighbor to the south is the Indonesian Province of West Kalimantan. A study examining the feasibility of interconnecting these two power systems was undertaken in 1994 as a part of the Association of Southeast Asian Nations (ASEAN) initiative to interconnect the power systems in the region. The ASEAN region is characterized by rapidly growing economies and rapid load growth.« less
Can serpentinization induce fracturing? Fluid pathway development and the volume increase enigma
NASA Astrophysics Data System (ADS)
Plümper, Oliver; Jamtveit, Bjørn; Røyne, Anja
2013-04-01
Serpentinization of ultramafic rocks has first-order effects on global element cycles, the rheology of the oceanic lithosphere, plays a key role in plate tectonics by lubricating subduction zones and has been linked to the origin of life due to the creation of abiogenic hydrocarbons. In addition, the capability of ultramafic rocks to safely store enormous amounts of carbon dioxide through mineral reactions may provide a unique solution to fight global warming. However, all the aforementioned processes are reliant on the creation and maintenance of fluid pathways to alter an originally impermeable rock. Although the forces that move tectonic plates can produce these fluid pathways by mechanical fracturing, there is ample evidence that serpentinization reactions can 'eat' their way through a rock. This process is facilitated by solid volume changes during mineral reactions that cause expansion, fracturing the rock to generate fluid pathways. Natural observations of serpentinization/carbonation in ultramafic rocks indicate that the associated positive solid volume change alone exerts enough stress on the surrounding rock to build up a fracture network and that the influence of external tectonic forces is not necessary. Through various feedbacks these systems can either become self-sustaining, when an interconnected fracture network is formed, or self-limiting due to fluid pathway obstruction. However, extensively serpentinized outcrops suggest that although crystal growth in newly opened spaces would reduce permeability, serpentinization is not always self-limiting as porosity generation can occur concomitantly, maintaining or even increasing permeability. This is consistent with theory and demonstrates that fluids transported through fracture networks can alter vast amounts of originally impermeable rock. Nevertheless, whether serpentinization can actually generate these fracture networks is still a matter of debate and only a few scientific investigations have focused on this topic so far. Here, we investigate the feasibility of reaction-induced fracturing and pore space evolution during serpentinization by combining microstructural investigations using scanning/transmission electron microscopy and synchrotron micro-tomography of natural samples with theoretical considerations on the forces exerted during solid volume increasing reactions. We particularly focus on the interface-scale mechanism of reaction-induced fracturing (Plümper et al. 2012) and the establishment of microstructural markers (e.g., inert exsolutions in olivine) to identify volume changes and estimate crystallization pressures (Kelemen and Hirth 2012). Our investigations suggest that reaction-induced fracturing during serpentinization is possible and during certain physico-chemical circumstances a positive feedback to alter vast amounts of originally impermeable rock is established. Plümper O., Røyne A., Magraso A., Jamtveit B. (2012) The interface-scale mechanism of reaction-induced fracturing during serpentinization. Geology. 40, 1103-1106. Kelemen, P. B. & Hirth, G. (2012) Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation. Earth and Planetary Science Letters 345, 81-89.
Li, Yongming; Tong, Shaocheng
2017-06-28
In this paper, an adaptive neural networks (NNs)-based decentralized control scheme with the prescribed performance is proposed for uncertain switched nonstrict-feedback interconnected nonlinear systems. It is assumed that nonlinear interconnected terms and nonlinear functions of the concerned systems are unknown, and also the switching signals are unknown and arbitrary. A linear state estimator is constructed to solve the problem of unmeasured states. The NNs are employed to approximate unknown interconnected terms and nonlinear functions. A new output feedback decentralized control scheme is developed by using the adaptive backstepping design technique. The control design problem of nonlinear interconnected switched systems with unknown switching signals can be solved by the proposed scheme, and only a tuning parameter is needed for each subsystem. The proposed scheme can ensure that all variables of the control systems are semi-globally uniformly ultimately bounded and the tracking errors converge to a small residual set with the prescribed performance bound. The effectiveness of the proposed control approach is verified by some simulation results.
Photovoltaic sub-cell interconnects
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne
2017-05-09
Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.
Ballistic Fracturing of Carbon Nanotubes.
Ozden, Sehmus; Machado, Leonardo D; Tiwary, ChandraSekhar; Autreto, Pedro A S; Vajtai, Robert; Barrera, Enrique V; Galvao, Douglas S; Ajayan, Pulickel M
2016-09-21
Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome.
Interconnecting heterogeneous database management systems
NASA Technical Reports Server (NTRS)
Gligor, V. D.; Luckenbaugh, G. L.
1984-01-01
It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.
Brahana, J.V.; Macy, Jo Ann; Mulderink, Dolores; Zemo, Dawn
1986-01-01
The Cumberland Plateau aquifer system consists of Pennsylvanian sandstones, conglomerates, shales, and coals which underlie the Cumberland Plateau in Tennessee. Major water-bearing zones occur within the sandstones and conglomerates in interconnected fractures. The water-bearing formations are separated by shale and siltstone that retard the vertical circulation of ground water. The Pennington Formation serves as the base of this aquifer system and is an effective confining unit. The Cumberland Plateau aquifer system is an important water source for the Cumberland Plateau. Wells and springs from the aquifer system supply most of the rural domestic and public drinking-water supplies. Water from wells drilled into the Cumberland Plateau aquifer system is generally of good to excellent quality. Of the 32 water-quality analyses on file from this aquifer, only 2 had dissolved-solids concentrations greater than 500 milligrams per liter, and about three-fourths had less than 200 milligrams per liter dissolved solids. However, no samples from depths greater than 300 feet below land surface have been recorded. Ground water from locations where the sandstones are buried deeply, such as the Wartburg basin, may contain dissolved-solids concentrations greater than 1,000 milligrams per liter.
Reconfigurable optical interconnections via dynamic computer-generated holograms
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor); Zhou, Shaomin (Inventor)
1994-01-01
A system is proposed for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for largescale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.
National Offshore Wind Energy Grid Interconnection Study Full Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, John P.; Liu, Shu; Ibanez, Eduardo
2014-07-30
The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.
Feasibility of optically interconnected parallel processors using wavelength division multiplexing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deri, R.J.; De Groot, A.J.; Haigh, R.E.
1996-03-01
New national security demands require enhanced computing systems for nearly ab initio simulations of extremely complex systems and analyzing unprecedented quantities of remote sensing data. This computational performance is being sought using parallel processing systems, in which many less powerful processors are ganged together to achieve high aggregate performance. Such systems require increased capability to communicate information between individual processor and memory elements. As it is likely that the limited performance of today`s electronic interconnects will prevent the system from achieving its ultimate performance, there is great interest in using fiber optic technology to improve interconnect communication. However, little informationmore » is available to quantify the requirements on fiber optical hardware technology for this application. Furthermore, we have sought to explore interconnect architectures that use the complete communication richness of the optical domain rather than using optics as a simple replacement for electronic interconnects. These considerations have led us to study the performance of a moderate size parallel processor with optical interconnects using multiple optical wavelengths. We quantify the bandwidth, latency, and concurrency requirements which allow a bus-type interconnect to achieve scalable computing performance using up to 256 nodes, each operating at GFLOP performance. Our key conclusion is that scalable performance, to {approx}150 GFLOPS, is achievable for several scientific codes using an optical bus with a small number of WDM channels (8 to 32), only one WDM channel received per node, and achievable optoelectronic bandwidth and latency requirements. 21 refs. , 10 figs.« less
Fuzzy Edge Connectivity of Graphical Fuzzy State Space Model in Multi-connected System
NASA Astrophysics Data System (ADS)
Harish, Noor Ainy; Ismail, Razidah; Ahmad, Tahir
2010-11-01
Structured networks of interacting components illustrate complex structure in a direct or intuitive way. Graph theory provides a mathematical modeling for studying interconnection among elements in natural and man-made systems. On the other hand, directed graph is useful to define and interpret the interconnection structure underlying the dynamics of the interacting subsystem. Fuzzy theory provides important tools in dealing various aspects of complexity, imprecision and fuzziness of the network structure of a multi-connected system. Initial development for systems of Fuzzy State Space Model (FSSM) and a fuzzy algorithm approach were introduced with the purpose of solving the inverse problems in multivariable system. In this paper, fuzzy algorithm is adapted in order to determine the fuzzy edge connectivity between subsystems, in particular interconnected system of Graphical Representation of FSSM. This new approach will simplify the schematic diagram of interconnection of subsystems in a multi-connected system.
Microstructures and rheology of a calcite-shale thrust fault
NASA Astrophysics Data System (ADS)
Wells, Rachel K.; Newman, Julie; Wojtal, Steven
2014-08-01
A thin (˜2 cm) layer of extensively sheared fault rock decorates the ˜15 km displacement Copper Creek thrust at an exposure near Knoxville, TN (USA). In these ultrafine-grained (<0.3 μm) fault rocks, interpenetrating calcite grains form an interconnected network around shale clasts. One cm below the fault rock layer, sedimentary laminations in non-penetratively deformed footwall shale are cut by calcite veins, small faults, and stylolites. A 350 μm thick calcite vein separates the fault rocks and footwall shale. The vein is composed of layers of (1) coarse calcite grains (>5 μm) that exhibit a lattice preferred orientation (LPO) with pores at twin-twin and twin-grain boundary intersections, and (2) ultrafine-grained (0.3 μm) calcite that exhibits interpenetrating grain boundaries, four-grain junctions and lacks a LPO. Coarse calcite layers crosscut ultrafine-grained layers indicating intermittent vein formation during shearing. Calcite in the fault rock layer is derived from vein calcite and grain-size reduction of calcite took place by plasticity-induced fracture. The ultrafine-grained calcite deformed primarily by diffusion-accommodated grain boundary sliding and formed an interconnected network around shale clasts within the shear zone. The interconnected network of ultrafine-grained calcite indicates that calcite, not shale, was the weak phase in this fault zone.
Can amorphization take place in nanoscale interconnects?
Kumar, S; Joshi, K L; van Duin, A C T; Haque, M A
2012-03-09
The trend of miniaturization has highlighted the problems of heat dissipation and electromigration in nanoelectronic device interconnects, but not amorphization. While amorphization is known to be a high pressure and/or temperature phenomenon, we argue that defect density is the key factor, while temperature and pressure are only the means. For nanoscale interconnects carrying modest current density, large vacancy concentrations may be generated without the necessity of high temperature or pressure due to the large fraction of grain boundaries and triple points. To investigate this hypothesis, we performed in situ transmission electron microscope (TEM) experiments on 200 nm thick (80 nm average grain size) aluminum specimens. Electron diffraction patterns indicate partial amorphization at modest current density of about 10(5) A cm(-2), which is too low to trigger electromigration. Since amorphization results in drastic decrease in mechanical ductility as well as electrical and thermal conductivity, further increase in current density to about 7 × 10(5) A cm(-2) resulted in brittle fracture failure. Our molecular dynamics (MD) simulations predict the formation of amorphous regions in response to large mechanical stresses (due to nanoscale grain size) and excess vacancies at the cathode side of the thin films. The findings of this study suggest that amorphization can precede electromigration and thereby play a vital role in the reliability of micro/nanoelectronic devices.
Grain-size considerations for optoelectronic multistage interconnection networks.
Krishnamoorthy, A V; Marchand, P J; Kiamilev, F E; Esener, S C
1992-09-10
This paper investigates, at the system level, the performance-cost trade-off between optical and electronic interconnects in an optoelectronic interconnection network. The specific system considered is a packet-switched, free-space optoelectronic shuffle-exchange multistage interconnection network (MIN). System bandwidth is used as the performance measure, while system area, system power, and system volume constitute the cost measures. A detailed design and analysis of a two-dimensional (2-D) optoelectronic shuffle-exchange routing network with variable grain size K is presented. The architecture permits the conventional 2 x 2 switches or grains to be generalized to larger K x K grain sizes by replacing optical interconnects with electronic wires without affecting the functionality of the system. Thus the system consists of log(k) N optoelectronic stages interconnected with free-space K-shuffles. When K = N, the MIN consists of a single electronic stage with optical input-output. The system design use an effi ient 2-D VLSI layout and a single diffractive optical element between stages to provide the 2-D K-shuffle interconnection. Results indicate that there is an optimum range of grain sizes that provides the best performance per cost. For the specific VLSI/GaAs multiple quantum well technology and system architecture considered, grain sizes larger than 256 x 256 result in a reduced performance, while grain sizes smaller than 16 x 16 have a high cost. For a network with 4096 channels, the useful range of grain sizes corresponds to approximately 250-400 electronic transistors per optical input-output channel. The effect of varying certain technology parameters such as the number of hologram phase levels, the modulator driving voltage, the minimum detectable power, and VLSI minimum feature size on the optimum grain-size system is studied. For instance, results show that using four phase levels for the interconnection hologram is a good compromise for the cost functions mentioned above. As VLSI minimum feature sizes decrease, the optimum grain size increases, whereas, if optical interconnect performance in terms of the detector power or modulator driving voltage requirements improves, the optimum grain size may be reduced. Finally, several architectural modifications to the system, such as K x K contention-free switches and sorting networks, are investigated and optimized for grain size. Results indicate that system bandwidth can be increased, but at the price of reduced performance/cost. The optoelectronic MIN architectures considered thus provide a broad range of performance/cost alternatives and offer a superior performance over purely electronic MIN's.
U.S. Laws and Regulations for Renewable Energy Grid Interconnections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernyakhovskiy, Ilya; Tian, Tian; McLaren, Joyce
Rapidly declining costs of wind and solar energy technologies, increasing concerns about the environmental and climate change impacts of fossil fuels, and sustained investment in renewable energy projects all point to a not-so-distant future in which renewable energy plays a pivotal role in the electric power system of the 21st century. In light of public pressures and market factors that hasten the transition towards a low-carbon system, power system planners and regulators are preparing to integrate higher levels of variable renewable generation into the grid. Updating the regulations that govern generator interconnections and operations is crucial to ensure system reliabilitymore » while creating an enabling environment for renewable energy development. This report presents a chronological review of energy laws and regulations concerning grid interconnection procedures in the United States, highlighting the consequences of policies for renewable energy interconnections. Where appropriate, this report places interconnection policies and their impacts on renewable energy within the broader context of power market reform.« less
49 CFR 236.514 - Interconnection of cab signal system with roadway signal system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.514 Interconnection of cab signal system with roadway signal system. The automatic cab signal system shall be...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., or reliability on the borrower's electric power system or other electric power systems interconnected to the borrower's electric power system. The Agency encourages borrowers to consider model policy... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.61 RUS policy...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., or reliability on the borrower's electric power system or other electric power systems interconnected to the borrower's electric power system. The Agency encourages borrowers to consider model policy... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.61 RUS policy...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, B.; Shirazi, M.; Coddington, M.
2013-01-01
This paper, presented at the IEEE Green Technologies Conference 2013, describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1 (TM). The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to testmore » the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, B.; Shirazi, M.; Coddington, M.
2013-01-01
This paper describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through themore » use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.« less
NASA Astrophysics Data System (ADS)
Farough, Aida
Serpentinization is a complex set of hydration reactions, where olivine and pyroxene are replaced by serpentine, magnetite, brucite, talc and carbonate minerals. Serpentinization reactions alter chemical, mechanical, magnetic, seismic, and hydraulic properties of the crust. To understand the complicated nature of serpentinization and the linkages between physical and chemical changes during the reactions, I performed flow-through laboratory experiments on cylindrically cored samples of ultramafic rocks. Each core had a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at an effective pressure of 30 MPa, and temperature of 260"aC, simulating a depth of 2 km under hydrostatic conditions. Fracture permeability decreased by one to two orders of magnitude during the 200 to 340 hour experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferromagnesian minerals. The rate of transformation of olivine to serpentine in a tensile fracture is calculated using the data on evolution of fracture permeability assuming the fracture permeability could be represented by parallel plates. Assuming the dissolution and precipitation reactions occur simultaneously; the rate of transformation at the beginning of the experiments was 10-8-10-9 (mol/m2s) and decreased monotonically by about an order of magnitude towards the end of the experiment. Results show that dissolution and precipitation is the main mechanism contributing to the reduction in fracture aperture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems may be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses may be required to maintain fluid circulation. Another set of flow through experiments were performed on intact samples of ultramafic rocks at room temperature and effective pressures of 10, 20 and 30 MPa to estimate the pressure dependency of intact permeability. Porosity and density measurements were also performed with the purpose of characterizing these properties of ultramafic rocks. The pressure dependency of the coefficient of matrix permeability of the ultramafic rock samples fell in the range of 0.05-0.14 MPa -1. Using porosity and permeability measurements, the ratio of interconnected porosity to total porosity was estimated to be small and the permeability of the samples was dominantly controlled by microcracks. Using the density and porosity measurements, the degree of alteration of samples was estimated. Samples with high density and pressure dependent permeability had a smaller degree of alteration than those with lower density and pressure dependency.
Ssip-a processor interconnection simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navaux, P.; Weber, R.; Prezzi, J.
1982-01-01
Recent growing interest in multiple processor architectures has given rise to the study of procesor-memory interconnections for the determination of better architectures. This paper concerns the development of the SSIP-sistema simulador de interconexao de processadores (processor interconnection simulating system) which allows the evaluation of different interconnection structures comparing its performance in order to provide parameters which would help the designer to define an architcture. A wide spectrum of systems may be evaluated, and their behaviour observed due to the features incorporated into the simulator program. The system modelling and the simulator program implementation are described. Some results that can bemore » obtained are shown, along with the discussion of their usefulness. 12 references.« less
Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)
1996-01-01
A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.
Li, Xiao-Jian; Yang, Guang-Hong
2018-01-01
This paper is concerned with the adaptive decentralized fault-tolerant tracking control problem for a class of uncertain interconnected nonlinear systems with unknown strong interconnections. An algebraic graph theory result is introduced to address the considered interconnections. In addition, to achieve the desirable tracking performance, a neural-network-based robust adaptive decentralized fault-tolerant control (FTC) scheme is given to compensate the actuator faults and system uncertainties. Furthermore, via the Lyapunov analysis method, it is proven that all the signals of the resulting closed-loop system are semiglobally bounded, and the tracking errors of each subsystem exponentially converge to a compact set, whose radius is adjustable by choosing different controller design parameters. Finally, the effectiveness and advantages of the proposed FTC approach are illustrated with two simulated examples.
10 CFR 205.373 - Application procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...
10 CFR 205.373 - Application procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...
10 CFR 205.373 - Application procedures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...
10 CFR 205.373 - Application procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, M.H.
1994-12-01
This presentation is a proposal made in the context of the evolving plans for power system interconnection in the Mashreq Arab countries of the Middle East, including studies completed for the Gulf States Interconnection along the Arabian Gulf from Kuwait to Oman. It also introduces the possibility of eventual interconnection of these systems with a major HVDC interconnection between the Inga hydropower source in Zaire and Egypt via an energy exchange center located at El Arish on Sinai. As realization of the Inga hydropower development will require many years to accomplish and as current plans for interconnection in the Mashreqmore » Arab countries are proceeding, it is thought that introduction of the possibility for eventual inter-regional interconnection between Africa and the Middle East should be considered within a time-frame that would encompass a dual-purpose aim beginning with the establishment of a solar equipment manufacturing facility to accentuate solar energy conversion for desalination and hydrogen production within the region. If this facility were located in convenient proximity to major nodes of the interconnected systems of the region, then it ultimately would be both a solar equipment manufacturing and energy exchange (SEMEX) center.« less
Kirk, Andrew G; Plant, David V; Szymanski, Ted H; Vranesic, Zvonko G; Tooley, Frank A P; Rolston, David R; Ayliffe, Michael H; Lacroix, Frederic K; Robertson, Brian; Bernier, Eric; Brosseau, Daniel F
2003-05-10
Design and implementation of a free-space optical backplane for multiprocessor applications is presented. The system is designed to interconnect four multiprocessor nodes that communicate by using multiplexed 32-bit packets. Each multiprocessor node is electrically connected to an optoelectronic VLSI chip which implements the hyperplane interconnection architecture. The chips each contain 256 optical transmitters (implemented as dual-rail multiple quantum-well modulators) and 256 optical receivers. A rigid free-space microoptical interconnection system that interconnects the transceiver chips in a 512-channel unidirectional ring is implemented. Full design, implementation, and operational details are provided.
NASA Astrophysics Data System (ADS)
Kirk, Andrew G.; Plant, David V.; Szymanski, Ted H.; Vranesic, Zvonko G.; Tooley, Frank A. P.; Rolston, David R.; Ayliffe, Michael H.; Lacroix, Frederic K.; Robertson, Brian; Bernier, Eric; Brosseau, Daniel F.
2003-05-01
Design and implementation of a free-space optical backplane for multiprocessor applications is presented. The system is designed to interconnect four multiprocessor nodes that communicate by using multiplexed 32-bit packets. Each multiprocessor node is electrically connected to an optoelectronic VLSI chip which implements the hyperplane interconnection architecture. The chips each contain 256 optical transmitters (implemented as dual-rail multiple quantum-well modulators) and 256 optical receivers. A rigid free-space microoptical interconnection system that interconnects the transceiver chips in a 512-channel unidirectional ring is implemented. Full design, implementation, and operational details are provided.
Optical interconnection networks for high-performance computing systems
NASA Astrophysics Data System (ADS)
Biberman, Aleksandr; Bergman, Keren
2012-04-01
Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.
Cross-borehole flowmeter tests for transient heads in heterogeneous aquifers.
Le Borgne, Tanguy; Paillet, Frederick; Bour, Olivier; Caudal, Jean-Pierre
2006-01-01
Cross-borehole flowmeter tests have been proposed as an efficient method to investigate preferential flowpaths in heterogeneous aquifers, which is a major task in the characterization of fractured aquifers. Cross-borehole flowmeter tests are based on the idea that changing the pumping conditions in a given aquifer will modify the hydraulic head distribution in large-scale flowpaths, producing measurable changes in the vertical flow profiles in observation boreholes. However, inversion of flow measurements to derive flowpath geometry and connectivity and to characterize their hydraulic properties is still a subject of research. In this study, we propose a framework for cross-borehole flowmeter test interpretation that is based on a two-scale conceptual model: discrete fractures at the borehole scale and zones of interconnected fractures at the aquifer scale. We propose that the two problems may be solved independently. The first inverse problem consists of estimating the hydraulic head variations that drive the transient borehole flow observed in the cross-borehole flowmeter experiments. The second inverse problem is related to estimating the geometry and hydraulic properties of large-scale flowpaths in the region between pumping and observation wells that are compatible with the head variations deduced from the first problem. To solve the borehole-scale problem, we treat the transient flow data as a series of quasi-steady flow conditions and solve for the hydraulic head changes in individual fractures required to produce these data. The consistency of the method is verified using field experiments performed in a fractured-rock aquifer.
49 CFR 236.514 - Interconnection of cab signal system with roadway signal system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Interconnection of cab signal system with roadway signal system. 236.514 Section 236.514 Transportation Other Regulations Relating to Transportation... GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES...
Determining the Utility Value of Water-Supply Interconnections.
ERIC Educational Resources Information Center
Hardman, James L.; Cheremisinoff, Paul N.
1979-01-01
This article is the third in a series which discusses a mathematical methodology for evaluating interconnections of water supply systems. The model can be used to analyze the carrying capacity of proposed links or predict the impact of abandoning interconnections. (AS)
Romeo, Alessia; Lacour, Stphanie P
2015-08-01
Electronic skins aim at providing distributed sensing and computation in a large-area and elastic membrane. Control and addressing of high-density soft sensors will be achieved when thin film transistor matrices are also integrated in the soft carrier substrate. Here, we report on the design, manufacturing and characterization of metal oxide thin film transistors on these stretchable substrates. The TFTs are integrated onto an engineered silicone substrate with embedded strain relief to protect the devices from catastrophic cracking. The TFT stack is composed of an amorphous In-Ga-Zn-O active layer, a hybrid AlxOy/Parylene dielectric film, gold electrodes and interconnects. All layers are prepared and patterned with planar, low temperature and dry processing. We demonstrate the interconnected IGZO TFTs sustain applied tensile strain up to 20% without electrical degradation and mechanical fracture. Active devices are critical for distributed sensing. The compatibility of IGZO TFTs with soft and biocompatible substrates is an encouraging step towards wearable electronic skins.
Method for in situ gasification of a subterranean coal bed
Shuck, Lowell Z.
1977-05-31
The method of the present invention relates to providing controlled directional bores in subterranean earth formations, especially coal beds for facilitating in situ gasification operations. Boreholes penetrating the coal beds are interconnected by laser-drilled bores disposed in various arrays at selected angles to the major permeability direction in the coal bed. These laser-drilled bores are enlarged by fracturing prior to the gasification of the coal bed to facilitate the establishing of combustion zones of selected configurations in the coal bed for maximizing the efficiency of the gasification operation.
Method of extracting heat from dry geothermal reservoirs
Potter, R.M.; Robinson, E.S.; Smith, M.C.
1974-01-22
Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)
Applications of SPICE for modeling miniaturized biomedical sensor systems
NASA Technical Reports Server (NTRS)
Mundt, C. W.; Nagle, H. T.
2000-01-01
This paper proposes a model for a miniaturized signal conditioning system for biopotential and ion-selective electrode arrays. The system consists of three main components: sensors, interconnections, and signal conditioning chip. The model for this system is based on SPICE. Transmission-line based equivalent circuits are used to represent the sensors, lumped resistance-capacitance circuits describe the interconnections, and a model for the signal conditioning chip is extracted from its layout. A system for measurements of biopotentials and ionic activities can be miniaturized and optimized for cardiovascular applications based on the development of an integrated SPICE system model of its electrochemical, interconnection, and electronic components.
Load Frequency Control of AC Microgrid Interconnected Thermal Power System
NASA Astrophysics Data System (ADS)
Lal, Deepak Kumar; Barisal, Ajit Kumar
2017-08-01
In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.
NASA Astrophysics Data System (ADS)
Collier, Charles Patrick
2017-04-01
The Next Generation Space Interconnect Standard (NGSIS) effort is a Government-Industry collaboration effort to define a set of standards for interconnects between space system components with the goal of cost effectively removing bandwidth as a constraint for future space systems. The NGSIS team has selected the ANSI/VITA 65 OpenVPXTM standard family for the physical baseline. The RapidIO protocol has been selected as the basis for the digital data transport. The NGSIS standards are developed to provide sufficient flexibility to enable users to implement a variety of system configurations, while meeting goals for interoperability and robustness for space. The NGSIS approach and effort represents a radical departure from past approaches to achieve a Modular Open System Architecture (MOSA) for space systems and serves as an exemplar for the civil, commercial, and military Space communities as well as a broader high reliability terrestrial market.
14 CFR 27.674 - Interconnected controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Interconnected controls. 27.674 Section 27.674 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate...
14 CFR 29.674 - Interconnected controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Interconnected controls. 29.674 Section 29.674 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate...
14 CFR 27.674 - Interconnected controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Interconnected controls. 27.674 Section 27.674 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate...
14 CFR 29.674 - Interconnected controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Interconnected controls. 29.674 Section 29.674 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate...
NASA Astrophysics Data System (ADS)
Latrach, Chedia; Kchaou, Mourad; Guéguen, Hervé
2017-05-01
In this study, a decentralised output learning control strategy for a class of nonlinear interconnected systems is studied. Based on Takagi-Sugeno fuzzy (TS) model to approximate the considered interconnected nonlinear systems, a decentralised observer-based control scheme is designed to override the external disturbances such that the ? performance is achieved. The appealing attributes of this approach include: (1) the closed-loop system exhibits a robustness against nonlinear interconnections and external disturbance, (2) by one-step procedure, the gain matrices of observer and controller are obtained on a single step. In simulation results, the controller design is evaluated on the steering stability of a car where the nonlinear model describes the side slip, roll and yaw motions of the automotive vehicle equipped with four-wheel-steering and active suspension.
Cable Television Interconnection.
ERIC Educational Resources Information Center
Cable Television Information Center, Washington, DC.
State and local governments have not been involved in the complexities of cable television interconnection issues in the past despite opportunities. Without their intervention, the result may well be a lack of concern for local public services. However, the entertainment and communications industries will interconnect cable systems without the…
47 CFR 90.476 - Interconnection of fixed stations and certain mobile stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... mobile stations. 90.476 Section 90.476 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.476 Interconnection of fixed stations and certain mobile stations. (a) Fixed stations and...
ERIC Educational Resources Information Center
Alaska Public Broadcasting Commission, Juneau.
The Satellite Interconnection Project was created for the purpose of investigating the interest and need for improved interconnection, faster and of greater capacity than the capability of present systems, especially among Alaska state-supported users of video and audio transmissions. The intent was to explore the cost-benefit and the potential…
Brittle-viscous deformation of vein quartz under fluid-rich lower greenschist facies conditions
NASA Astrophysics Data System (ADS)
Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.
2015-06-01
We studied by Electron BackScatter Diffraction (EBSD) and optical microscopy a coarse-grained (ca. 0.5-6 mm) quartz vein embedded in a phyllonitic matrix to gain insights into the recrystallization mechanisms and the processes of strain localization in quartz deformed under lower greenschist facies conditions, broadly coincident with the brittle-viscous transition. The vein deformed during faulting along a phyllonitic thrust of Caledonian age within the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The phyllonite hosting the vein formed at the expense of a metabasaltic protolith through feldspar breakdown to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the quartz vein acted as a relatively rigid body. Viscous deformation in the vein was initially accommodated by quartz basal slip. Under the prevailing deformation conditions, however, dislocation glide- and possibly creep-accommodated deformation of quartz was inefficient, and this resulted in localized strain hardening. In response to the (1) hardening, (2) progressive and cyclic increase of the fluid pressure, and (3) increasing competence contrast between the vein and the weakly foliated host phyllonite, vein quartz crystals began to deform by brittle processes along specific, suitably oriented lattice planes, creating microgouges along microfractures. Nucleated new grains rapidly sealed these fractures as fluids penetrated the actively deforming system. The grains grew initially by solution precipitation and later by grain boundary migration. We suggest that the different initial orientation of the vein crystals led to strain accommodation by different mechanisms in the individual crystals, generating remarkably different microstructures. Crystals suitably oriented for basal slip, for example, accommodated strain mainly viscously and experienced only minor fracturing. Instead, crystals misoriented for basal slip hardened and deformed predominantly by domainal fracturing. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms may vary through time in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.
Fracture network topology and characterization of structural permeability
NASA Astrophysics Data System (ADS)
Hansberry, Rowan; King, Rosalind; Holford, Simon
2017-04-01
There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with other permeability indicators such as drilling fluid losses, and pore pressure measurements. Initial work with these techniques has led to new developments in our ability to image subsurface faults and fractures at a variety of scales from independent datasets. We establish a strong relationship between features identified using seismic attribute analysis and interpreted natural fractures. However, care must be taken to use these methods in a case-by-case basis, as controls on fracture distribution and orientation can vary significantly with both regional and local influences. These results outline and effective method by which structural permeability can be assessed with existing petroleum datasets. However, unlike the broad stress field, mapping fracture orientation and characteristics within the Australian Continent is complicated as the distribution, geometry, areal extent and connectivity of fracture networks can vary significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schauder, C.
This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems thatmore » interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.« less
In-memory interconnect protocol configuration registers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Kevin Y.; Roberts, David A.
Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mappingmore » decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.« less
Interconnecting PV on New York City's Secondary Network Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, K; Coddington, M; Burman, K
2009-11-01
The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in themore » five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1PV Deployment Analysis for New York City we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2. A Briefing for Policy Makers on Connecting PV to a Network Grid presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3. Technical Review of Concerns and Solutions to PV Interconnection in New York City summarizes common concerns of utility engineers and network experts about interconnecting PV systems to secondary networks. This section also contains detailed descriptions of nine solutions, including advantages and disadvantages, potential impacts, and road maps for deployment. Section 4. Utility Application Process Reviewlooks at utility interconnection application processes across the country and identifies administrative best practices for efficient PV interconnection.« less
14 CFR 29.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...
14 CFR 29.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...
14 CFR 29.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...
14 CFR 29.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...
14 CFR 29.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...
NASA Astrophysics Data System (ADS)
Schrage, J.; Soenmez, Y.; Happel, T.; Gubler, U.; Lukowicz, P.; Mrozynski, G.
2006-02-01
From long haul, metro access and intersystem links the trend goes to applying optical interconnection technology at increasingly shorter distances. Intrasystem interconnects such as data busses between microprocessors and memory blocks are still based on copper interconnects today. This causes a bottleneck in computer systems since the achievable bandwidth of electrical interconnects is limited through the underlying physical properties. Approaches to solve this problem by embedding optical multimode polymer waveguides into the board (electro-optical circuit board technology, EOCB) have been reported earlier. The principle feasibility of optical interconnection technology in chip-to-chip applications has been validated in a number of projects. For reasons of cost considerations waveguides with large cross sections are used in order to relax alignment requirements and to allow automatic placement and assembly without any active alignment of components necessary. On the other hand the bandwidth of these highly multimodal waveguides is restricted due to mode dispersion. The advance of WDM technology towards intrasystem applications will provide sufficiently high bandwidth which is required for future high-performance computer systems: Assuming that, for example, 8 wavelength-channels with 12Gbps (SDR1) each are given, then optical on-board interconnects with data rates a magnitude higher than the data rates of electrical interconnects for distances typically found at today's computer boards and backplanes can be realized. The data rate will be twice as much, if DDR2 technology is considered towards the optical signals as well. In this paper we discuss an approach for a hybrid integrated optoelectronic WDM package which might enable the application of WDM technology to EOCB.
Passivity-based control of linear time-invariant systems modelled by bond graph
NASA Astrophysics Data System (ADS)
Galindo, R.; Ngwompo, R. F.
2018-02-01
Closed-loop control systems are designed for linear time-invariant (LTI) controllable and observable systems modelled by bond graph (BG). Cascade and feedback interconnections of BG models are realised through active bonds with no loading effect. The use of active bonds may lead to non-conservation of energy and the overall system is modelled by proposed pseudo-junction structures. These structures are build by adding parasitic elements to the BG models and the overall system may become singularly perturbed. The structures for these interconnections can be seen as consisting of inner structures that satisfy energy conservation properties and outer structures including multiport-coupled dissipative fields. These fields highlight energy properties like passivity that are useful for control design. In both interconnections, junction structures and dissipative fields for the controllers are proposed, and passivity is guaranteed for the closed-loop systems assuring robust stability. The cascade interconnection is applied to the structural representation of closed-loop transfer functions, when a stabilising controller is applied to a given nominal plant. Applications are given when the plant and the controller are described by state-space realisations. The feedback interconnection is used getting necessary and sufficient stability conditions based on the closed-loop characteristic polynomial, solving a pole-placement problem and achieving zero-stationary state error.
Fuel cell system with interconnect
Liu, Zhien; Goettler, Richard
2016-12-20
The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.
NASA Astrophysics Data System (ADS)
Tekin, Tolga; Töpper, Michael; Reichl, Herbert
2009-05-01
Technological frontiers between semiconductor technology, packaging, and system design are disappearing. Scaling down geometries [1] alone does not provide improvement of performance, less power, smaller size, and lower cost. It will require "More than Moore" [2] through the tighter integration of system level components at the package level. System-in-Package (SiP) will deliver the efficient use of three dimensions (3D) through innovation in packaging and interconnect technology. A key bottleneck to the implementation of high-performance microelectronic systems, including SiP, is the lack of lowlatency, high-bandwidth, and high density off-chip interconnects. Some of the challenges in achieving high-bandwidth chip-to-chip communication using electrical interconnects include the high losses in the substrate dielectric, reflections and impedance discontinuities, and susceptibility to crosstalk [3]. Obviously, the incentive for the use of photonics to overcome the challenges and leverage low-latency and highbandwidth communication will enable the vision of optical computing within next generation architectures. Supercomputers of today offer sustained performance of more than petaflops, which can be increased by utilizing optical interconnects. Next generation computing architectures are needed with ultra low power consumption; ultra high performance with novel interconnection technologies. In this paper we will discuss a CMOS compatible underlying technology to enable next generation optical computing architectures. By introducing a new optical layer within the 3D SiP, the development of converged microsystems, deployment for next generation optical computing architecture will be leveraged.
Best Practices for Teaming and Collaboration in the Interconnected Systems Framework
ERIC Educational Resources Information Center
Splett, Joni W.; Perales, Kelly; Halliday-Boykins, Colleen A.; Gilchrest, Callie E.; Gibson, Nicole; Weist, Mark D.
2017-01-01
The Interconnected Systems Framework (ISF) blends school mental health practices, systems, and resources into all levels of a multitiered system of supports (e.g., positive behavior interventions and supports). The ISF aims to improve mental health and school performance for all students by emphasizing effective school-wide promotion and…
47 CFR 90.477 - Interconnected systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Applicants for new land stations to be interconnected with the public switched telephone network must... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases a..., 896-901 MHz, and 935-940 MHz, interconnection with the public switched telephone network is authorized...
47 CFR 90.477 - Interconnected systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Applicants for new land stations to be interconnected with the public switched telephone network must... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases a..., 896-901 MHz, and 935-940 MHz, interconnection with the public switched telephone network is authorized...
47 CFR 90.477 - Interconnected systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Applicants for new land stations to be interconnected with the public switched telephone network must... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases a..., 896-901 MHz, and 935-940 MHz, interconnection with the public switched telephone network is authorized...
47 CFR 90.477 - Interconnected systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Applicants for new land stations to be interconnected with the public switched telephone network must... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases a..., 896-901 MHz, and 935-940 MHz, interconnection with the public switched telephone network is authorized...
LTCC interconnects in microsystems
NASA Astrophysics Data System (ADS)
Rusu, Cristina; Persson, Katrin; Ottosson, Britta; Billger, Dag
2006-06-01
Different microelectromechanical system (MEMS) packaging strategies towards high packaging density of MEMS devices and lower expenditure exist both in the market and in research. For example, electrical interconnections and low stress wafer level packaging are essential for improving device performance. Hybrid integration of low temperature co-fired ceramics (LTCC) with Si can be a way for an easier packaging system with integrated electrical interconnection, and as well towards lower costs. Our research on LTCC-Si integration is reported in this paper.
Perforation patterned electrical interconnects
Frey, Jonathan
2014-01-28
This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.
Design of a multi-channel free space optical interconnection component
NASA Astrophysics Data System (ADS)
Jia, Da-Gong; Zhang, Pei-Song; Jing, Wen-Cai; Tan, Jun; Zhang, Hong-Xia; Zhang, Yi-Mo
2008-11-01
A multi-channel free space optical interconnection component, fiber optic rotary joint, was designed using a Dove prism. When the Dove prism is rotated an angle of α around the longitudinal axis, the image rotates an angle of 2 α. The optical interconnection component consists of the signal transmission system, Dove prim and driving mechanism. The planetary gears are used to achieve the speed ratio of 2:1 between the total optical interconnection component and the Dove prism. The C-lenses are employed to couple different optical signals in the signal transmission system. The coupling loss between the receiving fiber of stationary part and the transmitting fiber of rotary part is measured.
Optical interconnection using polyimide waveguide for multichip module
NASA Astrophysics Data System (ADS)
Koyanagi, Mitsumasa
1996-01-01
We have developed a parallel processor system with 152 RISC processor chips specific for Monte-Carlo analysis. This system has the ring-bus architecture. The performance of several Gflops is expected in this system according to the computer simulation. However, it was revealed that the data transfer speed of the bus has to be increased more dramatically in order to further increase the performance. Then, we propose to introduce the optical interconnection into the parallel processor system to increase the data transfer speed of the buses. The double ringbus architecture is employed in this new parallel processor system with optical interconnection. The free-space optical interconnection arid the optical waveguide are used for the optical ring-bus. Thin polyimide film was used to form the optical waveguide. A relatively low propagation loss was achieved in the polyimide optical waveguide. In addition, it was confirmed that the propagation direction of signal light can be easily changed by using a micro-mirror.
Optical interconnection using polyimide waveguide for multichip module
NASA Astrophysics Data System (ADS)
Koyanagi, Mitsumasa
1996-01-01
We have developed a parallel processor system with 152 RISC processor chips specific for Monte-Carlo analysis. This system has the ring-bus architecture. The performance of several Gflops is expected in this system according to the computer simulation. However, it was revealed that the data transfer speed of the bus has to be increased more dramatically in order to further increase the performance. Then, we propose to introduce the optical interconnection into the parallel processor system to increase the data transfer speed of the buses. The double ring-bus architecture is employed in this new parallel processor system with optical interconnection. The free-space optical interconnection and the optical waveguide are used for the optical ring-bus. Thin polyimide film was used to form the optical waveguide. A relatively low propagation loss was achieved in the polyimide optical waveguide. In addition, it was confirmed that the propagation direction of signal light can be easily changed by using a micro-mirror.
Hansen, Bruce P.; Stone, Janet Radway; Lane, John W.
1999-01-01
Surface and borehole geophysical methods were used to determine fracture orientation in crystalline bedrock at the Eastern Surplus Superfund Site in Meddybemps, Maine. Fracture-orientation information is needed to address concerns about the fate of contaminants in ground water at the site. Azimuthal square-array resistivity surveys were conducted at 3 locations at the site, borehole-acoustic televiewer and borehole-video logs were collected in 10 wells, and single-hole directional radar surveys were conducted in 9 wells. Borehole-video logs were used to supplement the results of other geophysical techniques and are not described in this report. Analysis of azimuthal square-array resistivity data indicated that high-angle fracturing generally strikes northeast-southwest at the three locations. Borehole-acoustic televiewer logs detected one prominent low-angle and two prominent high-angle fracture sets. The low-angle fractures strike generally north-northeast and dip about 20 degrees west-northwest. One high-angle fracture set strikes north-northeast and dips east-southeast; the other high-angle set strikes east-northeast and dips south-southeast. Single-hole directional radar surveys identified two prominent fracture sets: a low-angle set striking north-northeast, dipping west-northwest; and a high-angle fracture set striking north-northeast, dipping east-southeast. Two additional high-angle fracture sets are defined weakly, one striking east-west, dipping north; and a second striking east-west, dipping south. Integrated results from all of the geophysical surveys indicate the presence of three primary fracture sets. A low-angle set strikes north-northeast and dips west-northwest. Two high-angle sets strike north-northeast and east-northeast and dip east-southeast and south-southeast. Statistical correction of the fracture data for orientation bias indicates that high-angle fractures are more numerous than observed in the data but are still less numerous than the low-angle fractures. The orientation and distribution of water-yielding fractures sets were determined by correlating the fracture data from this study with previously collected borehole-flowmeter data. The water-yielding fractures are generally within the three prominent fracture sets observed for the total fracture population. The low-angle water-yielding fractures primarily strike north-northeast to west-northwest and dip west-northwest to south-southwest. Most of the high-angle water-yielding fractures strike either north-northeast or east-west and dip east-southeast or south. The spacing between water-yielding fractures varies but the probable average spacing is estimated to be 30 feet for low-angle fractures; 27 feet for the east-southeast dipping, high-angle fractures; and 43 feet for the south-southeast dipping, high-angle fractures. The median estimated apparent transmissivity of individual water-yielding fractures or fracture zones was 0.3 feet squared per day and ranged from 0.01 to 382 feet squared per day. Ninety-five percent of the water-yielding fractures or fracture zones had an estimated apparent transmissivity of 19.5 feet squared per day or less. The orientation, spacing, and hydraulic properties of water-yielding fractures identified during this study can be used to help estimate recharge, flow, and discharge of ground water contaminants. High-angle fractures provide vertical pathways for ground water to enter the bedrock, interconnections between low-angle fractures, and, subsequently, pathways for water flow within the bedrock along fracture planes. Low-angle fractures may allow horizontal ground-water flow in all directions. The orientation of fracturing and the hydraulic properties of each fracture set strongly affect changes in ground-water flow under stress (pumping) conditions.
Okandan, Murat [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Benavides, Gilbert L [Los Ranchos, NM; Hetherington, Dale L [Albuquerque, NM
2006-02-28
An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.
Interconnection requirements in avionic systems
NASA Astrophysics Data System (ADS)
Vergnolle, Claude; Houssay, Bruno
1991-04-01
The future aircraft generation will have thousand smart electromagnetic sensors distributed allover. Each sensor is connected with fibers links to the main-frame computer in charge of the real time signal''s correlation. Such a computer must be compactly built and massively parallel: it needs the use of 3 D optical free-space interconnect between neighbouring boards and reconfigurable interconnects via holographic backplane. The optical interconnect facilities will be also used to build fault-tolerant computer through large redundancy.
2005-02-03
Aging Aircraft 2005 The 8th Joint NASA /FAA/DOD Conference on Aging Aircraft Decision Algorithms for Electrical Wiring Interconnect Systems (EWIS...SUBTITLE Aging Aircraft 2005, The 8th Joint NASA /FAA/DOD Conference on Aging Aircraft, Decision algorithms for Electrical Wiring Interconnect...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NASA Langley Research Center, 8W. Taylor St., M/S 190 Hampton, VA 23681 and NAVAIR
Getting the gas out - developing gas networks in magmatic systems
NASA Astrophysics Data System (ADS)
Cashman, Katharine; Rust, Alison; Oppenheimer, Julie; Belien, Isolde
2015-04-01
Volcanic eruption style, and explosive potential, are strongly controlled by the pre-eruptive history of the magmatic volatiles: specifically, the more efficient the gas loss prior to eruption, the lower the likelihood of primary (magmatic) explosive activity. Commonly considered gas loss mechanisms include separated flow, where individual bubbles (or bubble clouds) travel at a rate that is faster than the host magma, and permeable flow, where gas escapes through permeable (connected) pathways developed within a (relatively) static matrix. Importantly, gas loss via separated flow is episodic, while gas loss via permeable flow is likely to be continuous. Analogue experiments and numerical models on three phase (solid-liquid-gas) systems also suggest a third mechanism of gas loss that involves the opening and closing of 'pseudo fractures'. Pseudo fractures form at a critical crystallinity that is close to the maximum particle packing. Fractures form by local rearrangement of solid particles and liquid to form a through-going gas fracture; gas escape is episodic, and modulated by the available gas volume and the rate of return flow of interstitial liquid back into the fracture. In all of the gas escape scenarios described above, a fundamental control on gas behaviour is the melt viscosity, which affects the rate of individual bubble rise, the rate of bubble expansion, the rate of film thinning (required for bubble coalescence), and the rate of melt flow into gas-generated fractures. From the perspective of magma degassing, rates of gas expansion and film thinning are key to the formation of an interconnected (permeable) gas pathway. Experiments with both analogue and natural materials show that bubble coalescence is relatively slow, and, in particle-poor melts, does not necessarily create permeable gas networks. As a result, degassing efficiency is modulated by the time scales required either (1) to produce large individual bubbles or bubble clouds (in low viscosity melts) or (2) to develop sufficient porosity for full connectivity of a bubble network (in high viscosity melts). In contrast, our experiments suggest that the presence of solid particles may greatly enhance gas escape. On the one hand, the addition of solid particles increases the bulk viscosity of the mixture, which reduces the migration rate of large single bubbles. On the other hand, the strength of networks created by touching crystals inhibits bulk magma deformation and forces smaller bubbles to deform to occupy the spaces between particles, thereby increasing both the bubble shape anisotropy and, correspondingly, the probability of bubble coalescence. Gas pathways created in this way take advantage of inhomogeneities in the spatial distribution of crystals and allow large-scale gas release at relatively low vesicularities. This mechanism of gas escape is likely to be important not only in mafic arc volcanoes, where shallow conduits are likely to be highly crystalline, but also for degassing of crystal-mush-dominated magmatic systems.
Chip-scale integrated optical interconnects: a key enabler for future high-performance computing
NASA Astrophysics Data System (ADS)
Haney, Michael; Nair, Rohit; Gu, Tian
2012-01-01
High Performance Computing (HPC) systems are putting ever-increasing demands on the throughput efficiency of their interconnection fabrics. In this paper, the limits of conventional metal trace-based inter-chip interconnect fabrics are examined in the context of state-of-the-art HPC systems, which currently operate near the 1 GFLOPS/W level. The analysis suggests that conventional metal trace interconnects will limit performance to approximately 6 GFLOPS/W in larger HPC systems that require many computer chips to be interconnected in parallel processing architectures. As the HPC communications bottlenecks push closer to the processing chips, integrated Optical Interconnect (OI) technology may provide the ultra-high bandwidths needed at the inter- and intra-chip levels. With inter-chip photonic link energies projected to be less than 1 pJ/bit, integrated OI is projected to enable HPC architecture scaling to the 50 GFLOPS/W level and beyond - providing a path to Peta-FLOPS-level HPC within a single rack, and potentially even Exa-FLOPSlevel HPC for large systems. A new hybrid integrated chip-scale OI approach is described and evaluated. The concept integrates a high-density polymer waveguide fabric directly on top of a multiple quantum well (MQW) modulator array that is area-bonded to the Silicon computing chip. Grayscale lithography is used to fabricate 5 μm x 5 μm polymer waveguides and associated novel small-footprint total internal reflection-based vertical input/output couplers directly onto a layer containing an array of GaAs MQW devices configured to be either absorption modulators or photodetectors. An external continuous wave optical "power supply" is coupled into the waveguide links. Contrast ratios were measured using a test rider chip in place of a Silicon processing chip. The results suggest that sub-pJ/b chip-scale communication is achievable with this concept. When integrated into high-density integrated optical interconnect fabrics, it could provide a seamless interconnect fabric spanning the intra-
Board-to-board optical interconnection using novel optical plug and slot
NASA Astrophysics Data System (ADS)
Cho, In K.; Yoon, Keun Byoung; Ahn, Seong H.; Kim, Jin Tae; Lee, Woo Jin; Shin, Kyoung Up; Heo, Young Un; Park, Hyo Hoon
2004-10-01
A novel optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by optical plug and slot. We report an 8Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of ETRI's optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB. 3) Optical slot and plug for high-density(channel pitch : 500um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data on transmitter/ receiver system boards and for backplane interconnections. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The optical PCB is characteristic of low coupling loss, easy insertion/extraction of the boards and, especially, reliable optical coupling unaffected from external environment after board insertion.
NASA Astrophysics Data System (ADS)
Brereton, Beverly Ann
The interconnection of neighboring electricity networks provides opportunities for the realization of synergies between electricity systems. Examples of the synergies to be realized are the rationalized management of the electricity networks whose fuel source domination differs, and the exploitation of non-coincident system peak demands. These factors allow technology diversity in the satisfaction of electricity demand, the coordination of planning and maintenance schedules between the networks by exploiting the cost differences in the pool of generation assets and the load configuration differences in the neighboring locations. The interconnection decision studied in this dissertation focused on the electricity networks of Argentina and Chile whose electricity systems operate in isolation at the current time. The cooperative game-theoretic framework was applied in the analysis of the decision facing the two countries and the net surplus to be derived from interconnection was evaluated. Measurement of the net gains from interconnection used in this study were reflected in changes in generating costs under the assumption that demand is fixed under all scenarios. With the demand for electricity assumed perfectly inelastic, passive or aggressive bidding strategies were considered under the scenarios for the generators in the two countries. The interconnection decision was modeled using a linear power flow model which utilizes linear programming techniques to reflect dispatch procedures based on generation bids. Results of the study indicate that the current interconnection project between Argentina and Chile will not result in positive net surplus under a variety of scenarios. Only under significantly reduced interconnection cost will the venture prove attractive. Possible sharing mechanisms were also explored in the research and a symmetric distribution of the net surplus to be derived under the reduced interconnection cost scenario was recommended to preserve equity in the allocation of the interconnection gains.
Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels
Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.
2016-10-04
Disclosed here is a device comprising a porous carbon aerogel or composite thereof as an energy storage material, catalyst support, sensor or adsorbent, wherein the porous carbon aerogel comprises a network of interconnected struts comprising carbon nanotube bundles covalently crosslinked by graphitic carbon nanoparticles, wherein the carbon nanotubes account for 5 to 95 wt. % of the aerogel and the graphitic carbon nanoparticles account for 5 to 95 wt. % of the aerogel, and wherein the aerogel has an electrical conductivity of at least 10 S/m and is capable of withstanding strains of more than 10% before fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodford, D.
This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands.
NASA Technical Reports Server (NTRS)
Kah, L. C.; Stack, K; Siebach, K.; Grotzinger, J.; Summer, D.; Farien, A.; Oehler, D.; Schieber, J.; Leville, R.; Edgar, L;
2014-01-01
Multiple diagenetic features have been observed in clay-bearing mudstone exposed within Yellowknife Bay, Gale Crater, Mars. These features occurred during at least two separate episodes: an early generation of spheroidal concretions that co-occur with a dense networks of mineralized fractures, and a later generation of mineralized veins. Concretions consist of mm-sized spheroids (0.4 to 8.0 mm, mean diameter of 1.2 mm) that are distinctly more resistant than the encompassing mudstone. Dissected spheroids suggest an origin via compaction and incipient lithification of the substrate at the perimeter of syndepositional void space. Concretions are generally patchy in their distribution within clay--bearing mudstone, but in places can be the dominant fabric element. Locally dense networks of mineralized fractures occur in regions of low concretion abundance. These consist of short (< 50 cm), curvilinear to planar mineralized voids that occur across a range of orientations from vertical to subhorizontal. Fractures are filled by multi-phase cement consisting of two isopachous, erosionally resistant outer bands, and a central less resistant fill. Physical relationships suggests that original fractures may have formed as both interconnected voids and as discrete cross--cutting features. Co--occurrence of early diagenetic concretions and fracture networks suggests a common origin via gas release within a subaqueous, shallow substrate. We suggest that gas release within weakly cohesive subsurface sediments resulted in substrate dewatering and an increase in the cohesive strength of the substrate. Local differences in substrate strength and rate of gas production would have result in formation of either discrete voids or fracture networks. A second generation of mineralized veins is characterized by a regionally low spatial density, predominantly vertical or horizontal orientations, and a single phase of Ca--sulfate mineral fill. These veins cross-cut the early diagenetic elements and intersect a greater thickness of stratigraphy within Yellowknife Bay, suggesting a later--diagenetic origin via hydraulic fracturing.
Porosity, petrophysics and permeability of the Whitby Mudstone (UK)
NASA Astrophysics Data System (ADS)
Houben, M.; Barnhoorn, A.; Hardebol, N.; Ifada, M.; Boersma, Q.; Douma, L.; Peach, C. J.; Bertotti, G.; Drury, M. R.
2016-12-01
Typically pore diameters in shales range from the µm down to the nm scale and the effective permeability of shale reservoirs is a function of the interconnectivity between the pore space and the natural fracture network present. The length and spacing of mechanical induced and natural fractures is one of the factors controlling gas produtivity from unconventional reservoirs. Permeability of the Whitby Mudstone measured on 1 inch cores was linked to microstructure and combined with natural fracture spacing present in outcrops along the Yorkshire coast (UK) to get insight into possible fluid pathways from reservoir to well. We used a combination of different techniques to characterize the porosity (gas adsorption, Scanning Electron Microscopy), mineralogy (X-Ray Fluorescence, X-Ray Diffraction, Scanning Electron Microscopy) and permeability (pressure step decay) of the Whitby Mudstone. In addition, we mapped the natural fracture network as present in outcrops along the Yorkshire coast (UK) at the 10-2-101m scale. Mineralogically we are dealing with a rock that is high in clay content and has an average organic matter content of about 10%. Results show a low porosity (max. 7%) as well as low permeability for the Whitby Mudstone. The permeability, measured parallel to bedding, depends on the confining pressure and is 86 nanodarcy at 10 MPa effective confining pressure and decreases to 16 nanodarcy at 40 MPa effective confining pressure. At the scale of observation the average distance to nearest natural fracture is in the order of 0.13 meter and 90 percent of all matrix elements are spaced within 0.4 meter to the nearest fracture. By assuming darcy flow, a permeability of 100 nanodarcy and 10% of overpressure we calculated that for the Whitby mudstone most of the gas resides in the matrix for less than 60 days until it reaches the fracture network.
Lightwave technology in microwave systems
NASA Astrophysics Data System (ADS)
Popa, A. E.; Gee, C. M.; Yen, H. W.
1986-01-01
Many advanced microwave system concepts such as active aperture phased array antennas use distributed topologies in which lightwave circuits are being proposed to interconnect both the analog and digital modules of the system. Lightwave components designed to implement these interconnects are reviewed and their performance analyzed. The impact of trends in component development are discussed.
Ren, Hangli; Zong, Guangdeng; Hou, Linlin; Yang, Yi
2017-03-01
This paper is concerned with the problem of finite-time control for a class of interconnected impulsive switched systems with neutral delay in which the time-varying delay appears in both the state and the state derivative. The concepts of finite-time boundedness and finite-time stability are respectively extended to interconnected impulsive switched systems with neutral delay for the first time. By applying the average dwell time method, sufficient conditions are first derived to cope with the problem of finite-time boundedness and finite-time stability for interconnected impulsive switched systems with neutral delay. In addition, the purpose of finite-time resilient decentralized control is to construct a resilient decentralized state-feedback controller such that the closed-loop system is finite-time bounded and finite-time stable. All the conditions are formulated in terms of linear matrix inequalities to ensure finite-time boundedness and finite-time stability of the given system. Finally, an example is presented to illustrate the effectiveness of the proposed approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sheynin, Yuriy; Shutenko, Felix; Suvorova, Elena; Yablokov, Evgenej
2008-04-01
High rate interconnections are important subsystems in modern data processing and control systems of many classes. They are especially important in prospective embedded and on-board systems that used to be multicomponent systems with parallel or distributed architecture, [1]. Modular architecture systems of previous generations were based on parallel busses that were widely used and standardised: VME, PCI, CompactPCI, etc. Busses evolution went in improvement of bus protocol efficiency (burst transactions, split transactions, etc.) and increasing operation frequencies. However, due to multi-drop bus nature and multi-wire skew problems the parallel bussing speedup became more and more limited. For embedded and on-board systems additional reason for this trend was in weight, size and power constraints of an interconnection and its components. Parallel interfaces have become technologically more challenging as their respective clock frequencies have increased to keep pace with the bandwidth requirements of their attached storage devices. Since each interface uses a data clock to gate and validate the parallel data (which is normally 8 bits or 16 bits wide), the clock frequency need only be equivalent to the byte rate or word rate being transmitted. In other words, for a given transmission frequency, the wider the data bus, the slower the clock. As the clock frequency increases, more high frequency energy is available in each of the data lines, and a portion of this energy is dissipated in radiation. Each data line not only transmits this energy but also receives some from its neighbours. This form of mutual interference is commonly called "cross-talk," and the signal distortion it produces can become another major contributor to loss of data integrity unless compensated by appropriate cable designs. Other transmission problems such as frequency-dependent attenuation and signal reflections, while also applicable to serial interfaces, are more troublesome in parallel interfaces due to the number of additional cable conductors involved. In order to compensate for these drawbacks, higher quality cables, shorter cable runs and fewer devices on the bus have been the norm. Finally, the physical bulk of the parallel cables makes them more difficult to route inside an enclosure, hinders cooling airflow and is incompatible with the trend toward smaller form-factor devices. Parallel busses worked in systems during the past 20 years, but the accumulated problems dictate the need for change and the technology is available to spur the transition. The general trend in high-rate interconnections turned from parallel bussing to scalable interconnections with a network architecture and high-rate point-to-point links. Analysis showed that data links with serial information transfer could achieve higher throughput and efficiency and it was confirmed in various research and practical design. Serial interfaces offer an improvement over older parallel interfaces: better performance, better scalability, and also better reliability as the parallel interfaces are at their limits of speed with reliable data transfers and others. The trend was implemented in major standards' families evolution: e.g. from PCI/PCI-X parallel bussing to PCIExpress interconnection architecture with serial lines, from CompactPCI parallel bus to ATCA (Advanced Telecommunications Architecture) specification with serial links and network topologies of an interconnection, etc. In the article we consider a general set of characteristics and features of serial interconnections, give a brief overview of serial interconnections specifications. In more details we present the SpaceWire interconnection technology. Have been developed for space on-board systems applications the SpaceWire has important features and characteristics that make it a prospective interconnection for wide range of embedded systems.
Advanced optical network architecture for integrated digital avionics
NASA Astrophysics Data System (ADS)
Morgan, D. Reed
1996-12-01
For the first time in the history of avionics, the network designer now has a choice in selecting the media that interconnects the sources and sinks of digital data on aircraft. Electrical designs are already giving way to photonics in application areas where the data rate times distance product is large or where special design requirements such as low weight or EMI considerations are critical. Future digital avionic architectures will increasingly favor the use of photonic interconnects as network data rates of one gigabit/second and higher are needed to support real-time operation of high-speed integrated digital processing. As the cost of optical network building blocks is reduced and as temperature-rugged laser sources are matured, metal interconnects will be forced to retreat to applications spanning shorter and shorter distances. Although the trend is already underway, the widespread use of digital optics will first occur at the system level, where gigabit/second, real-time interconnects between sensors, processors, mass memories and displays separated by a least of few meters will be required. The application of photonic interconnects for inter-printed wiring board signalling across the backplane will eventually find application for gigabit/second applications since signal degradation over copper traces occurs before one gigabit/second and 0.5 meters are reached. For the foreseeable future however, metal interconnects will continue to be used to interconnect devices on printed wiring boards since 5 gigabit/second signals can be sent over metal up to around 15 centimeters. Current-day applications of optical interconnects at the system level are described and a projection of how advanced optical interconnect technology will be driven by the use of high speed integrated digital processing on future aircraft is presented. The recommended advanced network for application in the 2010 time frame is a fiber-based system with a signalling speed of around 2-3 gigabits per second. This switch-based unified network will interconnect sensors, displays, mass memory and controls and displays to computer modules within the processing complex. The characteristics of required building blocks needed for the future are described. These building blocks include the fiber, an optical switch, a laser-based transceiver, blind-mate connectors and an optical backplane.
X-Ray Microdiffraction as a Probe to Reveal Flux Divergences in Interconnects
NASA Astrophysics Data System (ADS)
Spolenak, R.; Tamura, N.; Patel, J. R.
2006-02-01
Most reliability issues in interconnect systems occur at a local scale and many of them include the local build-up of stresses. Typical failure mechanisms are electromigration and stress voiding in interconnect lines and fatigue in surface acoustic wave devices. Thus a local probe is required for the investigation of these phenomena. In this paper the application of the Laue microdiffraction technique to investigate flux divergences in interconnect systems will be described. The deviatoric strain tensor of single grains can be correlated with the local microstructure, orientation and defect density. Especially the latter led to recent results about the correlation of stress build-up and orientation in Cu lines and electromigration-induced grain rotation in Cu and Al lines.
NASA Astrophysics Data System (ADS)
Kurihara, Shin'ichi
The Linked Systems Project (LSP) is the first network project based on the Open Systems Interconnection (OSI) in the world. The purpose of the project is to interconnect between three major bibliographic utilities and LC, and to perform as one system on the whole. The first application developed for the LSP is the sharing of name authority data based on the Name Authority Cooperative (NACO) Project. In 1985, LC began to send name authority records to RLG/RLIN. Since 1987, RLG/RLIN and OCLC send name authority records to LC. Bibliographic records will be sent mutually between three major bibliographic utilities and LC near future.
The Open System Interconnection as a building block in a health sciences information network.
Boss, R W
1985-01-01
The interconnection of integrated health sciences library systems with other health sciences computer systems to achieve information networks will require either custom linkages among specific devices or the adoption of standards that all systems support. The most appropriate standards appear to be those being developed under the Open System Interconnection (OSI) reference model, which specifies a set of rules and functions that computers must follow to exchange information. The protocols have been modularized into seven different layers. The lowest three layers are generally available as off-the-shelf interfacing products. The higher layers require special development for particular applications. This paper describes the OSI, its application in health sciences networks, and specific tasks that remain to be undertaken. PMID:4052672
ERIC Educational Resources Information Center
Denenberg, Ray
1985-01-01
Discusses the need for standards allowing computer-to-computer communication and gives examples of technical issues. The seven-layer framework of the Open Systems Interconnection (OSI) Reference Model is explained and illustrated. Sidebars feature public data networks and Recommendation X.25, OSI standards, OSI layer functions, and a glossary.…
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology” and any equipment or interconnected system or subsystem of equipment that is used in the creation... embedded information technology that is used as an integral part of the product, but the principal function... an impairment. (f) Information technology means any equipment, or interconnected system or subsystem...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology” and any equipment or interconnected system or subsystem of equipment that is used in the creation... embedded information technology that is used as an integral part of the product, but the principal function... an impairment. (f) Information technology means any equipment, or interconnected system or subsystem...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology” and any equipment or interconnected system or subsystem of equipment that is used in the creation... embedded information technology that is used as an integral part of the product, but the principal function... an impairment. (f) Information technology means any equipment, or interconnected system or subsystem...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology” and any equipment or interconnected system or subsystem of equipment that is used in the creation... embedded information technology that is used as an integral part of the product, but the principal function... an impairment. (f) Information technology means any equipment, or interconnected system or subsystem...
A proposed holistic approach to on-chip, off-chip, test, and package interconnections
NASA Astrophysics Data System (ADS)
Bartelink, Dirk J.
1998-11-01
The term interconnection has traditionally implied a `robust' connection from a transistor or a group of transistors in an IC to the outside world, usually a PC board. Optimum system utilization is done from outside the IC. As an alternative, this paper addresses `unimpeded' transistor-to-transistor interconnection aimed at reaching the high circuit densities and computational capabilities of neighboring IC's. In this view, interconnections are not made to some human-centric place outside the IC world requiring robustness—except for system input and output connections. This unimpeded interconnect style is currently available only through intra-chip signal traces in `system-on-a-chip' implementations, as exemplified by embedded DRAMs. Because the traditional off-chip penalty in performance and wiring density is so large, a merging of complex process technologies is the only option today. It is suggested that, for system integration to move forward, the traditional robustness requirement inherited from conventional packaging interconnect and IC manufacturing test must be discarded. Traditional system assembly from vendor parts requires robustness under shipping, inspection and assembly. The trend toward systems on a chip signifies willingness by semiconductor companies to design and fabricate whole systems in house, so that `in-house' chip-to-chip assembly is not beyond reach. In this scenario, bare chips never leave the controlled environment of the IC fabricator while the two major contributors to off-chip signal penalty, ESD protection and the need to source a 50-ohm test head, are avoided. With in-house assembly, ESD protection can be eliminated with the precautions already familiar in plasma etching. Test interconnection impacts the fundamentals of IC manufacturing, particularly with clock speeds approaching 1GHz, and cannot be an afterthought. It should be an integral part of the chip-to-chip interconnection bandwidth optimization, because—as we must recognize—test is also performed using IC's. A system interconnection is proposed using multiple chips fabricated with conventional silicon processes, including MEMS technology. The system resembles an MCM that can be joined without committing to final assembly to perform at-speed testing. 50-Ohm test probes never load the circuit; only intended neighboring chips are ever connected. A `back-plane' chip provides the connection layers for both inter- and intra-chip signals and also serves as the probe card, in analogy with membrane probes now used for single-chip testing. Intra-chip connections, which require complicated connections during test that exactly match the product, are then properly made and all waveforms and loading conditions under test will be identical to those of the product. The major benefit is that all front-end chip technologies can be merged—logic, memory, RF, even passives. ESD protection is required only on external system connections. Manufacturing test information will accurately characterize process faults and thus avoid the Known-Good-Die problem that has slowed the arrival of conventional MCM's.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.60 General. Each... maintaining a written standard policy relating to the Interconnection of Distributed Resources (IDR) having an...
Decentralized adaptive control of interconnected nonlinear systems with unknown control directions.
Huang, Jiangshuai; Wang, Qing-Guo
2018-03-01
In this paper, we propose a decentralized adaptive control scheme for a class of interconnected strict-feedback nonlinear systems without a priori knowledge of subsystems' control directions. To address this problem, a novel Nussbaum-type function is proposed and a key theorem is drawn which involves quantifying the interconnections of multiple Nussbaum-type functions of the subsystems with different control directions in a single inequality. Global stability of the closed-loop system and asymptotic stabilization of subsystems' output are proved and a simulation example is given to illustrate the effectiveness of the proposed control scheme. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Failure analysis of electrolyte-supported solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob
2014-07-01
For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.
Geothermal Exploration of Newberry Volcano, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waibel, Albert F.; Frone, Zachary S.; Blackwell, David D.
Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three yearsmore » have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.« less
Computationally Efficient Modeling and Simulation of Large Scale Systems
NASA Technical Reports Server (NTRS)
Jain, Jitesh (Inventor); Koh, Cheng-Kok (Inventor); Balakrishnan, Vankataramanan (Inventor); Cauley, Stephen F (Inventor); Li, Hong (Inventor)
2014-01-01
A system for simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof, including a processor, and a memory, the processor configured to perform obtaining a matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure, the element values for each matrix including inductance L and inverse capacitance P, obtaining an adjacency matrix A associated with the interconnect structure, storing the matrices X, Y, and A in the memory, and performing numerical integration to solve first and second equations.
NASA Technical Reports Server (NTRS)
1981-01-01
The use of an International Standards Organization (ISO) Open Systems Interconnection (OSI) Reference Model and its relevance to interconnecting an Applications Data Service (ADS) pilot program for data sharing is discussed. A top level mapping between the conjectured ADS requirements and identified layers within the OSI Reference Model was performed. It was concluded that the OSI model represents an orderly architecture for the ADS networking planning and that the protocols being developed by the National Bureau of Standards offer the best available implementation approach.
Optical interconnect for large-scale systems
NASA Astrophysics Data System (ADS)
Dress, William
2013-02-01
This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-01-06
The study, conducted by Sargent & Lundy, was funded by the U.S. Trade and Development Agency on behalf of the Sarawak Electricity Supply Corporation. The purpose of the project is to determine the feasibility of an interconnection of the electric power systems of Sarawak and West Kalimantan as is being done elsewhere in the region. The report presents technical and economic evaluations and assesses the realibility of the system after the interconnection. The study is divided into three volumes. This is Volume 3 and it contains the Appendices.
Accounting for health-care outcomes: implications for intensive care unit practice and performance.
Sorensen, Roslyn; Iedema, Rick
2010-08-01
The aim of this study was to understand the environment of health care, and how clinicians and managers respond in terms of performance accountability. A qualitative method was used in a tertiary metropolitan teaching intensive care unit (ICU) in Sydney, Australia, including interviews with 15 clinical managers and focus groups with 29 nurses of differing experience. The study found that a managerial focus on abstract goals, such as budgets detracted from managing the core business of clinical work. Fractures were evident within clinical units, between clinical units and between clinical and managerial domains. These fractures reinforced the status quo where seemingly unconnected patient care activities were undertaken by loosely connected individual clinicians with personalized concepts of accountability. Managers must conceptualize health services as an interconnected entity within which self-directed teams negotiate and agree objectives, collect and review performance data and define collective practice. Organically developing regimens of care within and across specialist clinical units, such as in ICUs, directly impact upon health service performance and accountability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodford, D.
This report provides an independent review including an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands
78 FR 39717 - Iroquois Gas Transmission System, LP; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
... associated with these new and modified facilities to Constitution Pipeline Company, LLC (Constitution), a... to establish a new receipt interconnection with Constitution and create an incremental 650,000... Constitution to interconnections with Iroquois' mainline system as well as Tennessee Gas Pipeline Company, LLC...
3-D integrated heterogeneous intra-chip free-space optical interconnect.
Ciftcioglu, Berkehan; Berman, Rebecca; Wang, Shang; Hu, Jianyun; Savidis, Ioannis; Jain, Manish; Moore, Duncan; Huang, Michael; Friedman, Eby G; Wicks, Gary; Wu, Hui
2012-02-13
This paper presents the first chip-scale demonstration of an intra-chip free-space optical interconnect (FSOI) we recently proposed. This interconnect system provides point-to-point free-space optical links between any two communication nodes, and hence constructs an all-to-all intra-chip communication fabric, which can be extended for inter-chip communications as well. Unlike electrical and other waveguide-based optical interconnects, FSOI exhibits low latency, high energy efficiency, and large bandwidth density, and hence can significantly improve the performance of future many-core chips. In this paper, we evaluate the performance of the proposed FSOI interconnect, and compare it to a waveguide-based optical interconnect with wavelength division multiplexing (WDM). It shows that the FSOI system can achieve significantly lower loss and higher energy efficiency than the WDM system, even with optimistic assumptions for the latter. A 1×1-cm2 chip prototype is fabricated on a germanium substrate with integrated photodetectors. Commercial 850-nm GaAs vertical-cavity-surface-emitting-lasers (VCSELs) and fabricated fused silica microlenses are 3-D integrated on top of the substrate. At 1.4-cm distance, the measured optical transmission loss is 5 dB, the crosstalk is less than -20 dB, and the electrical-to-electrical bandwidth is 3.3 GHz. The latter is mainly limited by the 5-GHz VCSEL.
A new decentralised controller design method for a class of strongly interconnected systems
NASA Astrophysics Data System (ADS)
Duan, Zhisheng; Jiang, Zhong-Ping; Huang, Lin
2017-02-01
In this paper, two interconnected structures are first discussed, under which some closed-loop subsystems must be unstable to make the whole interconnected system stable, which can be viewed as a kind of strongly interconnected systems. Then, comparisons with small gain theorem are discussed and large gain interconnected characteristics are shown. A new approach for the design of decentralised controllers is presented by determining the Lyapunov function structure previously, which allows the existence of unstable subsystems. By fully utilising the orthogonal space information of input matrix, some new understandings are presented for the construction of Lyapunov matrix. This new method can deal with decentralised state feedback, static output feedback and dynamic output feedback controllers in a unified framework. Furthermore, in order to reduce the design conservativeness and deal with robustness, a new robust decentralised controller design method is given by combining with the parameter-dependent Lyapunov function method. Some basic rules are provided for the choice of initial variables in Lyapunov matrix or new introduced slack matrices. As byproducts, some linear matrix inequality based sufficient conditions are established for centralised static output feedback stabilisation. Effects of unstable subsystems in nonlinear Lur'e systems are further discussed. The corresponding decentralised controller design method is presented for absolute stability. The examples illustrate that the new method is significantly effective.
NASA Astrophysics Data System (ADS)
Hahne, Barbara; Thomas, Rüdiger
2014-05-01
In Germany, successful deep geothermal projects are mainly situated in Southern Germany in the Molassebecken, furthermore in the Upper Rhine Graben and, to a minor extend, in the North German Basin. Mostly they are hydrothermal projects with the aim of heat production. In a few cases, they are also constructed for the generation of electricity. In the North German Basin temperature gradients are moderate. Therefore, deep drilling of several thousand meters is necessary to reach temperatures high enough for electricity production. However, the porosity of the sedimentary rocks is not sufficient for hydrothermal projects, so that natural fracture zones have to be used or the rocks must be hydraulically stimulated. In order to make deep geothermal projects in Lower Saxony (Northern Germany) economically more attractive, the interdisciplinary research program "Geothermal Energy and High-Performance Drilling" (gebo) was initiated in 2009. It comprises four focus areas: Geosystem, Drilling Technology, Materials and Technical System and aims at improving exploration of the geothermal reservoir, reducing costs of drilling and optimizing exploitation. Here we want to give an overview of results of the focus area "Geosystem" which investigates geological, geophysical, geochemical and modeling aspects of the geothermal reservoir. Geological and rock mechanical investigations in quarrys and core samples give a comprehensive overview on rock properties and fracture zone characteristics in sandstones and carbonates. We also show that it is possible to transfer results of rock property measurements from quarry samples to core samples or to in situ conditions by use of empirical relations. Geophysical prospecting methods were tested near the surface in a North German Graben system. We aim at transferring the results to the prospection of deep situated fracture zones. The comparison of P- and S-wave measurements shows that we can get hints on a possible fluid content of the fracture zone. The assumed elastic rock properties can be evaluated by FD modeling. Geoelectric and electromagnetic investigations of the fracture zone were carried out to investigate their potential to give hints on minerals, brines or hydrothermal fluids within the fracture zone. Measurements of the Spectral Induced Polarization show that anisotropy of phase angles may not be neglected, because otherwise data may be misinterpreted and structural models become unnecessarily complicated. A crucial aspect for the performance of a Geothermal plant is the mineral contents of the formation water. Scalings and corrosion can severely disturb the operation and the properties of the reservoir. Therefore, North German formation waters were analysed and categorized and a thermodynamic database was developed. It allows hydrogeochemical modeling of geothermally used waters and of hydrogeochemically and technically induced processes under North German conditions. Hydromechanical modeling showed that differences of elastic rock properties between neighboring layers does not strongly influence propagation paths of fractures, whereas they significantly influence fracture aperture. On the other hand, differences of mechanical rock properties significantly influence propagation paths of fractures. Existing fractures are also affected by the induced fracture - after stimulation, they propagate further in the direction of maximum shear stress. Furthermore, rock deformation during the production phase depends strongly on the contrast of hydraulic conductivity between highly permeable fracture core and low permeable rock matrix. The projects within gebo-Geosystem are well interconnected. Both the focus area "Geosystem" as well as the whole collaborative research program "gebo" offer different approaches that lead to an improvement of geothermal exploration and exploitation as well as a better understanding of the processes within geothermal reservoirs. Acknowledgement: The gebo project is funded by the "Niedersächsisches Ministerium für Wissenschaft und Kultur" and the industry partner Baker Hughes, Celle, Germany.
Analysis of the influencing factors of global energy interconnection development
NASA Astrophysics Data System (ADS)
Zhang, Yi; He, Yongxiu; Ge, Sifan; Liu, Lin
2018-04-01
Under the background of building global energy interconnection and achieving green and low-carbon development, this paper grasps a new round of energy restructuring and the trend of energy technology change, based on the present situation of global and China's global energy interconnection development, established the index system of the impact of global energy interconnection development factors. A subjective and objective weight analysis of the factors affecting the development of the global energy interconnection was conducted separately by network level analysis and entropy method, and the weights are summed up by the method of additive integration, which gives the comprehensive weight of the influencing factors and the ranking of their influence.
Tippabhotla, Sasi Kumar; Radchenko, Ihor; Song, W. J. R.; ...
2017-04-12
Fracture of silicon crystalline solar cells has recently been observed in increasing percentages especially in solar photovoltaic (PV) modules involving thinner silicon solar cells (<200 μm). Many failures due to fracture have been reported from the field because of environmental loading (snow, wind, etc.) as well as mishandling of the solar PV modules (during installation, maintenance, etc.). However, a significantly higher number of failures have also been reported during module encapsulation (lamination) indicating high residual stress in the modules and thus more prone to cell cracking. Here in this paper we report through the use of synchrotron X-ray submicron diffractionmore » coupled with physics-based finite element modeling, the complete residual stress evolution in mono-crystalline silicon solar cells during PV module integration process. For the first time, we unravel the reason for the high stress and cracking of silicon cells near soldered inter-connects. Our experiments revealed a significant increase of residual stress in the silicon cell near the solder joint after lamination. Moreover, our finite element simulations show that this increase of stress during lamination is a result of highly localized bending of the cell near the soldered inter-connects. Further, the synchrotron X-ray submicron diffraction has proven to be a very effective way to quantitatively probe mechanical stress in encapsulated silicon solar cells. Thus, this technique has ultimately enabled these findings leading to the enlightening of the role of soldering and encapsulation processes on the cell residual stress. This model can be further used to suggest methodologies that could lead to lower stress in encapsulated silicon solar cells, which are the subjects of our continued investigations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tippabhotla, Sasi Kumar; Radchenko, Ihor; Song, W. J. R.
Fracture of silicon crystalline solar cells has recently been observed in increasing percentages especially in solar photovoltaic (PV) modules involving thinner silicon solar cells (<200 μm). Many failures due to fracture have been reported from the field because of environmental loading (snow, wind, etc.) as well as mishandling of the solar PV modules (during installation, maintenance, etc.). However, a significantly higher number of failures have also been reported during module encapsulation (lamination) indicating high residual stress in the modules and thus more prone to cell cracking. Here in this paper we report through the use of synchrotron X-ray submicron diffractionmore » coupled with physics-based finite element modeling, the complete residual stress evolution in mono-crystalline silicon solar cells during PV module integration process. For the first time, we unravel the reason for the high stress and cracking of silicon cells near soldered inter-connects. Our experiments revealed a significant increase of residual stress in the silicon cell near the solder joint after lamination. Moreover, our finite element simulations show that this increase of stress during lamination is a result of highly localized bending of the cell near the soldered inter-connects. Further, the synchrotron X-ray submicron diffraction has proven to be a very effective way to quantitatively probe mechanical stress in encapsulated silicon solar cells. Thus, this technique has ultimately enabled these findings leading to the enlightening of the role of soldering and encapsulation processes on the cell residual stress. This model can be further used to suggest methodologies that could lead to lower stress in encapsulated silicon solar cells, which are the subjects of our continued investigations.« less
Transequatorial loops interconnecting McMath regions 12472 and 12474
NASA Technical Reports Server (NTRS)
Svestka, Z.; Krieger, A. S.; Chase, R. C.; Howard, R.
1977-01-01
The paper reviews the life history of one transequatorial loop in a system observed in soft X-rays for at least 1.5 days and which interconnected a newly born active region with an old region. The birth of the selected loop is discussed along with properties of the interconnected active regions, sharpening and brightening of the loop, decay of the loop system, and physical relations between the interconnected regions. It is concluded that: (1) the loop was most probably born via reconnection of magnetic-field lines extending from the two active regions toward the equator, which occurred later than 33 hr after the younger region was born; (2) the fully developed interconnection was composed of several loops, all of which appeared to be rooted in a spotless magnetic hill of preceding northern polarity but were spread over two separate spotty regions of southern polarity in the magnetically complex new region; (3) the loop electron temperature increased from 2.1 million to 3.1 million K in one to three hours when the loop system brightened; and (4) the loops became twisted during the brightening, possibly due to their rise in the corona while remaining rooted in moving magnetic features in the younger region.
Hydrogeology of the Islamic Republic of Mauritania
Friedel, Michael J.; Finn, Carol
2008-01-01
Hydrogeologic maps were constructed for the Islamic Republic of Mauritania. The ground-water flow system in the country can best be described as two interconnected regional systems: the porous Continental Terminal coastal system and the interior, fractured sedimentary Taoudeni Basin system. In these systems, ground-water flow occurs in fill deposits and carbonate, clastic, metasedimentary, and metavolcanic rocks. Based on an evaluation of the potentiometric surface, there are three areas of ground-water recharge in the Taoudeni Basin system. One region occurs in the northwest at the edge of the Shield, one occurs to the south overlying the Tillites, and one is centered at the city of Tidjikdja. In contrast to the flow system in the Taoudeni Basin, the potentiometric surfaces reveal two areas of discharge in the Continental Terminal system but no localized recharge areas; the recharge is more likely to be areal. In addition to these recharge and discharge areas, ground water flows across the country's borders. Specifically, ground water from the Atlantic Ocean flows into Mauritania, transporting dissolved sodium from the west as a salt water intrusion, whereas fresh ground water discharges from the east into Mali. To the north, there is a relatively low gradient with inflow of fresh water to Mauritania, whereas ground-water flow discharges to the Senegal River to the south. A geographical information system (GIS) was used to digitize, manage, store, and analyze geologic data used to develop the hydrogeologic map. The data acquired for map development included existing digital GIS files, published maps, tabulated data in reports and public-access files, and the SIPPE2 Access database. Once in digital formats, regional geologic and hydrologic features were converted to a common coordinate system and combined into one map. The 42 regional geologic map units were then reclassified into 13 hydrogeologic units, each having considerable lateral extent and distinct hydrologic properties. Because the hydrologic properties of these units are also influenced by depth and degree of fracturing, the hydraulic conductivity values of these hydrogeologic units can range over many orders of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishida, T.; Hagihara, R.; Yugo, M.
1994-12-31
The authors have successfully developed and industrialized a new frequency-shift anti-islanding protection method using a twin-peak band-pass filter (BPF) for grid-interconnected photovoltaic (PV) systems. In this method, the power conditioner has a twin-peak BPF in a current feed back loop in place of the normal BPF. The new method works perfectly for various kinds of loads such as resistance, inductive and capacitive loads connected to the PV system. Furthermore, because there are no mis-detections, the system enables the most effective generation of electric energy from solar cells. A power conditioner equipped with this protection was officially certified as suitable formore » grid-interconnection.« less
Natural fracture systems on planetary surfaces: Genetic classification and pattern randomness
NASA Technical Reports Server (NTRS)
Rossbacher, Lisa A.
1987-01-01
One method for classifying natural fracture systems is by fracture genesis. This approach involves the physics of the formation process, and it has been used most frequently in attempts to predict subsurface fractures and petroleum reservoir productivity. This classification system can also be applied to larger fracture systems on any planetary surface. One problem in applying this classification system to planetary surfaces is that it was developed for ralatively small-scale fractures that would influence porosity, particularly as observed in a core sample. Planetary studies also require consideration of large-scale fractures. Nevertheless, this system offers some valuable perspectives on fracture systems of any size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian
The main objectives of this report are to evaluate China's photovoltaic (PV) interconnection standards and the U.S. counterparts and to propose recommendations for future revisions to these standards. This report references the 2013 report Comparative Study of Standards for Grid-Connected PV System in China, the U.S. and European Countries, which compares U.S., European, and China's PV grid interconnection standards; reviews various metrics for the characterization of distribution network with PV; and suggests modifications to China's PV interconnection standards and requirements. The recommendations are accompanied by assessments of four high-penetration PV grid interconnection cases in the United States to illustrate solutionsmore » implemented to resolve issues encountered at different sites. PV penetration in China and in the United States has significantly increased during the past several years, presenting comparable challenges depending on the conditions of the grid at the point of interconnection; solutions are generally unique to each interconnected PV installation or PV plant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.
Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm 3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energymore » absorption capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in K IC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.« less
Mangano, Francesco; Mangano, Carlo; Piattelli, Adriano; Iezzi, Giovanna
2017-01-01
Direct metal laser sintering (DMLS) is an additive manufacturing technique that allows the fabrication of dental implants layer by layer through the laser fusion of titanium microparticles. The surface of DMLS implants is characterized by a high open porosity with interconnected pores of different sizes; therefore, it has the potential to enhance and accelerate bone healing. To date, however, there are no histologic/histomorphometric studies in the literature evaluating the interface between bone and DMLS implants in the long-term. To evaluate the interface between bone and DMLS implants retrieved after 5 years of functional loading. Two fractured DMLS implants were retrieved from the human jaws, using a 5 mm trephine bur. Both the implants were clinically stable and functioned regularly before fracture. The specimens were processed for histologic/histomorphometric evaluation; the bone-to-implant contact (BIC%) was calculated. Compact, mature lamellar bone was found over most of the DMLS implants in close contact with the implant surface; the histomorphometric evaluation showed a mean BIC% of 66.1% (±4.5%). The present histologic/histomorphometric study showed that DMLS implants were well integrated in bone, after 5 years of loading, with the peri-implant bone undergoing continuous remodeling at the interface.
Piattelli, Adriano
2017-01-01
Background Direct metal laser sintering (DMLS) is an additive manufacturing technique that allows the fabrication of dental implants layer by layer through the laser fusion of titanium microparticles. The surface of DMLS implants is characterized by a high open porosity with interconnected pores of different sizes; therefore, it has the potential to enhance and accelerate bone healing. To date, however, there are no histologic/histomorphometric studies in the literature evaluating the interface between bone and DMLS implants in the long-term. Purpose To evaluate the interface between bone and DMLS implants retrieved after 5 years of functional loading. Methods Two fractured DMLS implants were retrieved from the human jaws, using a 5 mm trephine bur. Both the implants were clinically stable and functioned regularly before fracture. The specimens were processed for histologic/histomorphometric evaluation; the bone-to-implant contact (BIC%) was calculated. Results Compact, mature lamellar bone was found over most of the DMLS implants in close contact with the implant surface; the histomorphometric evaluation showed a mean BIC% of 66.1% (±4.5%). Conclusions The present histologic/histomorphometric study showed that DMLS implants were well integrated in bone, after 5 years of loading, with the peri-implant bone undergoing continuous remodeling at the interface. PMID:28929117
Influence of High Mn-Cu-Mo on Microstructure and Fatigue characteristics of Austempered Ductile Iron
NASA Astrophysics Data System (ADS)
Banavasi Shashidhar, M.; Ravishankar, K. S.; Naik Padmayya, S.
2018-03-01
The impacts of high Mn content on microstructure and fatigue characteristics of ADI at 300, 350 and 400 °C for 120 min have been examined. Optical microscopy images reveals bainite morphology only at 300°C. Higher Mn contents hinders bainite transformation in the locales of Mn and Mo segregation, where in stage II reaction initiates near the graphite nodules before stage I reaction ends away from the nodules which creates more unreacted austenite volume after cooling forming martensite around the periphery creating austenite-martensite zone at 350 °C and tremendously articulated at 400°C. Feathery ferrite laths, stable retained austenite and uniform density hardness in the matrix, promotes higher toughness and fatigue properties (250 MPa @ 106 cycles) at 300 °C. Presence of stage II carbides in the eutectic cell and austenite-martensite zone in the intercellular regions, due to their embrittlement in the matrix, makes easy crack path for initiation and propagation deteriorating properties at 350°C and above. SEM images of fatigue fractured surface revealed that at 300°C, showed a regular crack interconnecting graphite nodule, fatigue striation and quazi-cleavage fracture mode, and at 350 & 400°C reveals the carbide, austenite-martensite and porosity/defect final fracture region.
NASA Astrophysics Data System (ADS)
Lin, Kevin L.; Jain, Kanti
2009-02-01
Stretchable interconnects are essential to large-area flexible circuits and large-area sensor array systems, and they play an important role towards the realization of the realm of systems which include wearable electronics, sensor arrays for structural health monitoring, and sensor skins for tactile feedback. These interconnects must be reliable and robust for viability, and must be flexible, stretchable, and conformable to non-planar surfaces. This research describes the design, modeling, fabrication, and testing of stretchable interconnects on polymer substrates using metal patterns both as functional interconnect layers and as in-situ masks for excimer laser photoablation. Excimer laser photoablation is often used for patterning of polymers and thin-film metals. The fluences for photoablation of polymers are generally much lower than the threshold fluence for removal or damage of high-thermallyconductive metals; thus, metal thin films can be used as in-situ masks for polymers if the proper fluence is used. Selfaligned single-layer and multi-layer interconnects of various designs (rectilinear and 'meandering') have been fabricated, and certain 'meandering' interconnect designs can be stretched up to 50% uniaxially while maintaining good electrical conductivity and structural integrity. These results are compared with Finite Element Analysis (FEA) models and are observed to be in good accordance with them. This fabrication approach eliminates masks and microfabrication processing steps as compared to traditional fabrication approaches; furthermore, this technology is scalable for large-area sensor arrays and electronic circuits, adaptable for a variety of materials and interconnects designs, and compatible with MEMS-based capacitive sensor technology.
An Adaptive Method for Reducing Clock Skew in an Accumulative Z-Axis Interconnect System
NASA Technical Reports Server (NTRS)
Bolotin, Gary; Boyce, Lee
1997-01-01
This paper will present several methods for adjusting clock skew variations that occur in a n accumulative z-axis interconnect system. In such a system, delay between modules in a function of their distance from one another. Clock distribution in a high-speed system, where clock skew must be kept to a minimum, becomes more challenging when module order is variable before design.
A MIMO-Inspired Rapidly Switchable Photonic Interconnect Architecture (Postprint)
2009-07-01
capabilities of future systems. Highspeed optical processing has been looked to as a means for eliminating this interconnect bottleneck. Presented...here are the results of a study for a novel optical (integrated photonic) processor which would allow for a high-speed, secure means for arbitrarily...regarded as a Multiple Input Multiple Output (MIMO) architecture. 15. SUBJECT TERMS Free-space optical interconnects, Optical Phased Arrays, High-Speed
Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures
NASA Astrophysics Data System (ADS)
Vijayakumaran, Vineeth
Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol outperformed the wired counterparts and several other wireless architectures proposed in literature in terms of bandwidth and packet energy dissipation. Significant gains were observed in packet energy dissipation and bandwidth even with scaling the system to higher number of cores. Non-uniform traffic simulations showed that the proposed CDMA-WiNoC was consistent in bandwidth across all traffic patterns. It is also shown that the CDMA based MAC scheme does not introduce additional reliability concerns in data transfer over the on-chip wireless interconnects.
Asymptotically suboptimal control of weakly interconnected dynamical systems
NASA Astrophysics Data System (ADS)
Dmitruk, N. M.; Kalinin, A. I.
2016-10-01
Optimal control problems for a group of systems with weak dynamical interconnections between its constituent subsystems are considered. A method for decentralized control is proposed which distributes the control actions between several controllers calculating in real time control inputs only for theirs subsystems based on the solution of the local optimal control problem. The local problem is solved by asymptotic methods that employ the representation of the weak interconnection by a small parameter. Combination of decentralized control and asymptotic methods allows to significantly reduce the dimension of the problems that have to be solved in the course of the control process.
NASA Astrophysics Data System (ADS)
Keller, P. E.; Gmitro, A. F.
1993-07-01
A prototype neutral network system of multifaceted, planar interconnection holograms and opto-electronic neurons is analyzed. This analysis shows that a hologram fabricated with electron-beam lithography has the capacity to connect 6700 neuron outputs to 6700 neuron inputs, and that, the encoded synaptic weights have a precision of approximately 5 bits. Higher interconnection densities can be achieved by accepting a lower synaptic weight accuracy. For systems employing laser diodes at the outputs of the neurons, processing rates in the range of 45 to 720 trillion connections per second can potentially be achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-01-06
The study, conducted by Sargent & Lundy, was funded by the U.S. Trade and Development Agency on behalf of the Sarawak Electricity Supply Corporation. The purpose of the project is to determine the feasibility of an interconnection of the electric power systems of Sarawak and West Kalimantan as is being done elsewhere in the region. The report presents technical and economic evaluations and assesses the realibility of the system after the interconnection. The study is divided into three volumes. The report combines the Executive Summary (Volume 1) and the Main Report (Volume 2).
Crystal-rich lava dome extrusion during vesiculation: an experimental study
NASA Astrophysics Data System (ADS)
Pistone, M.; Whittington, A. G.; Andrews, B. J.; Cottrell, E.
2016-12-01
Lava dome-forming eruptions represent a common eruptive style and a major hazard on numerous active volcanoes worldwide. The influence of volatiles on the rheological mechanics of lava dome extrusion remains unclear. Here we present new experimental results on the rheology of synthesized, crystal-rich (50 to 80 vol% quartz crystals), hydrous (4.2 wt% H2O in the glass) dacites, which vesiculate from 5 to 27 vol% gas bubbles at high temperatures (483 to 797 °C) during deformation conducted in a parallel plate viscometer (constant stress at 0.64 MPa, and variable strain-rates ranging from 8.32•10-8 to 3.58•10-5 s-1). The experiments replicated lava dome deformation in volcanic conduits during vesiculation of the residual melt, instigated in the experiments by increasing temperature. During gas exsolution we find that the rheological lubrication of the system during deformation is strongly dictated by the imposed initial crystallinity. At low crystal content (< 60 vol%) strain localization within shear bands, composed of melt and gas bubbles that likely interconnect, controls the overall sample rheology. At high crystallinity (60 to 70 vol%) gas pressurization (i.e. pore pressure increase) within crystal clusters and embryonic formation of microscopic fractures drive the system to a brittle behavior. At higher crystallinity (80 vol%) gas pressurization triggers brittle fragmentation through macroscopic fractures, which sustain outgassing and determines the viscous death of the system. The contrasting behaviors at different crystallinities have direct impact on the style of volcanic eruptions. Outgassing induced by deformation and bubble coalescence reduces the system pressurization and the potential for an explosive eruption. Conversely, high crystallinity lava domes experience limited loss of exsolved gas during deformation, permitting the achievement of large overpressures prior to fragmentation, favoring likely explosive eruptions. These findings provide a dataset that might be used to constrain the physical properties of natural lava domes at active volcanoes and show how crystallinity and corresponding gas pressurization control dome growth rate and consequent eruption style.
14 CFR 25.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...
14 CFR 25.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...
14 CFR 25.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...
14 CFR 25.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...
14 CFR 25.957 - Flow between interconnected tanks.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...
Code of Federal Regulations, 2010 CFR
2010-10-01
... must be installed at the base station to prevent activation of the transmitter when signals of co... located within a 120 kilometer (75 mile) radius of the interconnected base station transmitter. A... more than one system, automatic monitoring equipment must be installed at the base station to prevent...
Overcoming Barriers to Rural Children's Mental Health: An Interconnected Systems Public Health Model
ERIC Educational Resources Information Center
Huber, Brenda J.; Austen, Julie M.; Tobin, Renée M.; Meyers, Adena B.; Shelvin, Kristal H.; Wells, Michael
2016-01-01
A large, Midwestern county implemented a four-tiered public health model of children's mental health with an interconnected systems approach involving education, health care, juvenile justice and community mental health sectors. The community sought to promote protective factors in the lives of all youth, while improving the capacity,…
A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greacen, Chris; Engel, Richard; Quetchenbach, Thomas
A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW is intended to help meet the widespread need for guidance, standards, and procedures for interconnecting mini-grids with the central electric grid as rural electrification advances in developing countries, bringing these once separate power systems together. The guidebook aims to help owners and operators of renewable energy mini-grids understand the technical options available, safety and reliability issues, and engineering and administrative costs of different choices for grid interconnection. The guidebook is intentionally brief but includes a number of appendices that point the reader to additionalmore » resources for indepth information. Not included in the scope of the guidebook are policy concerns about “who pays for what,” how tariffs should be set, or other financial issues that are also paramount when “the little grid connects to the big grid.”« less
Yang, Xiong; He, Haibo
2018-05-26
In this paper, we develop a novel optimal control strategy for a class of uncertain nonlinear systems with unmatched interconnections. To begin with, we present a stabilizing feedback controller for the interconnected nonlinear systems by modifying an array of optimal control laws of auxiliary subsystems. We also prove that this feedback controller ensures a specified cost function to achieve optimality. Then, under the framework of adaptive critic designs, we use critic networks to solve the Hamilton-Jacobi-Bellman equations associated with auxiliary subsystem optimal control laws. The critic network weights are tuned through the gradient descent method combined with an additional stabilizing term. By using the newly established weight tuning rules, we no longer need the initial admissible control condition. In addition, we demonstrate that all signals in the closed-loop auxiliary subsystems are stable in the sense of uniform ultimate boundedness by using classic Lyapunov techniques. Finally, we provide an interconnected nonlinear plant to validate the present control scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, B.; Shirazi, M.; Coddington, M.
2013-02-01
This poster describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1TM. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through themore » use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.« less
Caulfield, John; Chelliah, Merlyn; Comte, Jean-Christophe; Cassidy, Rachel; Flynn, Raymond
2014-12-01
Identifying groundwater contributions to baseflow forms an essential part of surface water body characterisation. The Gortinlieve catchment (5 km(2)) comprises a headwater stream network of the Carrigans River, itself a tributary of the River Foyle, NW Ireland. The bedrock comprises poorly productive metasediments that are characterised by fracture porosity. We present the findings of a multi-disciplinary study that integrates new hydrochemical and mineralogical investigations with existing hydraulic, geophysical and structural data to identify the scales of groundwater flow and the nature of groundwater/bedrock interaction (chemical denudation). At the catchment scale, the development of deep weathering profiles is controlled by NE-SW regional scale fracture zones associated with mountain building during the Grampian orogeny. In-situ chemical denudation of mineral phases is controlled by micro- to meso-scale fractures related to Alpine compression during Palaeocene to Oligocene times. The alteration of primary muscovite, chlorite (clinochlore) and albite along the surfaces of these small-scale fractures has resulted in the precipitation of illite, montmorillonite and illite-montmorillonite clay admixtures. The interconnected but discontinuous nature of these small-scale structures highlights the role of larger scale faults and fissures in the supply and transportation of weathering solutions to/from the sites of mineral weathering. The dissolution of primarily mineral phases releases the major ions Mg, Ca and HCO3 that are shown to subsequently form the chemical makeup of groundwaters. Borehole groundwater and stream baseflow hydrochemical data are used to constrain the depths of groundwater flow pathways influencing the chemistry of surface waters throughout the stream profile. The results show that it is predominantly the lower part of the catchment, which receives inputs from catchment/regional scale groundwater flow, that is found to contribute to the maintenance of annual baseflow levels. This study identifies the importance of deep groundwater in maintaining annual baseflow levels in poorly productive bedrock systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Experimental Constraints on Fluid-Rock Reactions during Incipient Serpentinization of Harzburgite
NASA Astrophysics Data System (ADS)
Klein, F.; Grozeva, N. G.; Seewald, J.; McCollom, T. M.; Humphris, S. E.; Moskowitz, B. M.; Berquo, T. S.; Kahl, W. A.
2014-12-01
The exposure of mantle peridotite to water at crustal levels leads to a cascade of interconnected dissolution-precipitation and reduction-oxidation reactions - a process referred to as serpentinization. These reactions have major implications for microbial life through the provision of hydrogen (H2). To simulate incipient serpentinization and the release of H2 under well-constrained conditions, we reacted uncrushed harzburgite with chemically modified seawater at 300°C and 35 MPa for ca. 1.5 years (13441 hours), monitored changes in fluid chemistry over time, and examined the secondary mineralogy at the termination of the experiment. Approximately 4 mol % of the protolith underwent alteration forming serpentine, accessory magnetite, chlorite, and traces of calcite and heazlewoodite. Alteration textures bear remarkable similarities to those found in partially serpentinized abyssal peridotites. Neither brucite nor talc precipitated during the experiment. Given that the starting material contained ~3.8 times more olivine than orthopyroxene on a molar basis, mass balance requires that dissolution of orthopyroxene was significantly faster than dissolution of olivine. However, the H2 release rate was not uniform, slowing from ~2 nmol H2(aq) gperidotite-1 s-1 at the beginning of the experiment to ~0.2 nmol H2(aq) gperidotite-1 s-1 at its termination. Serpentinization consumed water but did not release significant amounts of dissolved species (other than H2) suggesting that incipient hydration reactions involved a volume increase of ~40%. The reduced access of water to olivine surfaces due to filling of fractures and coating of primary minerals with alteration products led to decreased rates of serpentinization and H2 release. While this concept might seem at odds with completely serpentinized seafloor peridotites, reaction-driven fracturing offers an intriguing solution to the seemingly self-limiting nature of serpentinization. Indeed, the reacted sample revealed a number of textural features diagnostic of incipient reaction-driven fracturing. Reaction-driven and tectonic fracturing must have far reaching impacts on the release rate of H2 in peridotite-hosted hydrothermal systems and therefore represent key mechanisms in regulating the supply of reduced gases to microbial ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, J.; Bertschinger, V.; Aley, T.
1993-04-01
Areas underlain by karst aquifers are characterized by soluble rock with sinkholes, caves, and a complex underground drainage network. Groundwater issues such as flow direction, well pumping impacts, spring recharge areas, and potential contamination transport routes are greatly complicated by the unique structure of karst aquifers. Standard aquifer analysis techniques cannot be applied unless the structure of the karst aquifer is understood. Water soluble fluorescent dyes are a powerful tool for mapping the irregular subsurface connections and flow paths in karst aquifers. Mapping the subsurface connections allows reasonable estimates of the hydrologic behavior of the aquifer. Two different fluorescent dyesmore » were injected at two points in a limestone karst aquifer system beneath the University of California, Santa Cruz campus. Flow paths in the marble were thought to be closely tied to easily recognized geomorphic alignments of sinkholes associated with fault and fracture zones. The dye tests revealed unexpected and highly complex interconnections. These complex flow paths only partially corresponded to previous surface mapping and aerial photo analysis of fracture systems. Several interfingering but hydrologically unconnected flow paths evidently exist within the cavernous aquifer. For example, dye did not appear at some discharge springs close to the dye injection points, but did appear at more distant springs. This study shows how a dye tracing study in a small, well-defined limestone body can shed light on a variety of environmental and hydrological issues, including potential well pumping impact areas, wellhead protection and recharge areas, parking lot runoff injection to aquifers, and drainage routes from hazardous materials storage areas.« less
Fleming, Brandon J.; Hammond, Patrick A.; Stranko, Scott A.; Duigon, Mark T.; Kasraei, Saeid
2012-01-01
The fractured rock region of Maryland, which includes land areas north and west of the Interstate 95 corridor, is the source of water supply for approximately 4.4 million Marylanders, or approximately 76 percent of the State's population. Whereas hundreds of thousands of residents rely on wells (both domestic and community), millions rely on surface-water sources. In this region, land use, geology, topography, water withdrawals, impoundments, and other factors affect water-flow characteristics. The unconfined groundwater systems are closely interconnected with rivers and streams, and are affected by seasonal and climatic variations. During droughts, groundwater levels drop, thereby decreasing well yields, and in some cases, wells have gone dry. Low ground-water levels contribute to reduced streamflows, which in turn, can lead to reduced habitat for aquatic life. Increased demand, over-allocation, population growth, and climate change can affect the future sustainability of water supplies in the region of Maryland underlain by fractured rock. In response to recommendations of the 2008 Advisory Committee on the Management and Protection of the State's Water Resources report, the Maryland Department of the Environment's Water Supply Program, the Maryland Geological Survey, the Maryland Department of Natural Resources, Monitoring and Non-Tidal Assessment (MANTA) Division, and the U.S. Geological Survey have developed a science plan for a comprehensive assessment that will provide new scientific information, new data analysis, and new tools for the State to better manage water resources in the fractured rock region of Maryland. The science plan lays out five goals for the comprehensive assessment: (1) develop tools for the improved management and investigation of groundwater and surface-water resources; (2) characterize factors affecting reliable yields of individual groundwater and surface-water supplies; (3) investigate impacts on nearby water withdrawal users caused by groundwater and surface-water withdrawals; (4) assess the role of streamflow and water withdrawals on the ecological integrity of streams; and (5) improve understanding of the distribution of water-quality conditions in fractured rock aquifers. To accomplish these goals, accurate data collection, review, and analysis are needed, including the study of "Research Watersheds" that can provide detailed information about the potential effects that climate change and water withdrawals may have on groundwater, streamflow, and aquatic life. The assessment planning started in 2009 and is being conducted with close interagency coordination. A Fractured Rock Aquifer Information System is currently (2012) undergoing initial development. Other major tasks that will be performed include the development of work plans for each science goal, the estimation of daily streamflow at ungaged streams, and the design and implementation of Research Watersheds. Finally, scenarios will be modeled to evaluate current water allocation permitting methodologies, investigate effects on nearby water withdrawal users caused by groundwater and surface-water withdrawals, and assess the potential impacts of climate change on water resources. Desktop and Web-based tools will be developed in order to meet the diverse research needs of the assessment. These tools, including the Fractured Rock Aquifer Information System will be continuously improved during the assessment to store relevant groundwater and surface-water data in spatially referenced databases, estimate streamflows, locate higher-yielding wells, estimate the impacts of withdrawals on nearby users, and assess the cumulative impacts of withdrawals on the aquatic resource. Tools will be developed to serve the needs of many audiences, including water resource managers, water suppliers, planners, policymakers, and other scientific investigators.
Critical pressure and multiphase flow in Blake Ridge gas hydrates
Flemings, P.B.; Liu, Xiuying; Winters, W.J.
2003-01-01
We use core porosity, consolidation experiments, pressure core sampler data, and capillary pressure measurements to predict water pressures that are 70% of the lithostatic stress, and gas pressures that equal the lithostatic stress beneath the methane hydrate layer at Ocean Drilling Program Site 997, Blake Ridge, offshore North Carolina. A 29-m-thick interconnected free-gas column is trapped beneath the low-permeability hydrate layer. We propose that lithostatic gas pressure is dilating fractures and gas is migrating through the methane hydrate layer. Overpressured gas and water within methane hydrate reservoirs limit the amount of free gas trapped and may rapidly export methane to the seafloor.
Solar Cell Modules with Parallel Oriented Interconnections
NASA Technical Reports Server (NTRS)
1979-01-01
Twenty-four solar modules, half of which were 48 cells in an all-series electrical configuration and half of a six parallel cells by eight series cells were provided. Upon delivery of environmentally tested modules, low power outputs were discovered. These low power modules were determined to have cracked cells which were thought to cause the low output power. The cracks tended to be linear or circular which were caused by different stressing mechanisms. These stressing mechanisms were fully explored. Efforts were undertaken to determine the causes of cell fracture. This resulted in module design and process modifications. The design and process changes were subsequently implemented in production.
Survey of critical failure events in on-chip interconnect by fault tree analysis
NASA Astrophysics Data System (ADS)
Yokogawa, Shinji; Kunii, Kyousuke
2018-07-01
In this paper, a framework based on reliability physics is proposed for adopting fault tree analysis (FTA) to the on-chip interconnect system of a semiconductor. By integrating expert knowledge and experience regarding the possibilities of failure on basic events, critical issues of on-chip interconnect reliability will be evaluated by FTA. In particular, FTA is used to identify the minimal cut sets with high risk priority. Critical events affecting the on-chip interconnect reliability are identified and discussed from the viewpoint of long-term reliability assessment. The moisture impact is evaluated as an external event.
Government Open Systems Interconnection Profile (GOSIP) transition strategy
NASA Astrophysics Data System (ADS)
Laxen, Mark R.
1993-09-01
This thesis analyzes the Government Open Systems Interconnection Profile (GOSIP) and the requirements of the Federal Information Processing Standard (FIPS) Publication 146-1. It begins by examining the International Organization for Standardization (ISO) Open Systems Interconnection (OSI) architecture and protocol suites and the distinctions between GOSIP version one and two. Additionally, it explores some of the GOSIP protocol details and discusses the process by which standards organizations have developed their recommendations. Implementation considerations from both government and vendor perspectives illustrate the barriers and requirements faced by information systems managers, as well as basic transition strategies. The result of this thesis is to show a transition strategy through an extended and coordinated period of coexistence due to extensive legacy systems and GOSIP product unavailability. Recommendations for GOSIP protocol standards to include capabilities outside the OSI model are also presented.
NASA Technical Reports Server (NTRS)
Brady, Charles D.
1987-01-01
Open Systems Interconnection (OSI) standards are being developed by the ISO and the Consultative Committee on International Telephone and Telegraph with the support of industry. These standards are being developed to allow the interconnecting of computer systems and the interworking of applications such that the applications can be independent of any equipment manufacturer. Significant progress has been made, and the establishment of government OSI standards is being considered. There is considerable interest within NASA in the potential benefits of OSI and in communications standards in general. The OSI standards are being considered for possible application in the Space Station onboard data management system. The OSI standards have reached a high level of maturity, and it is now imperative that NASA plan for future migration to OSI where appropriate.
A reference model for space data system interconnection services
NASA Astrophysics Data System (ADS)
Pietras, John; Theis, Gerhard
1993-03-01
The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).
A reference model for space data system interconnection services
NASA Technical Reports Server (NTRS)
Pietras, John; Theis, Gerhard
1993-01-01
The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).
Enhancing Ecoefficiency in Shrimp Farming through Interconnected Ponds
Barraza-Guardado, Ramón Héctor; Arreola-Lizárraga, José Alfredo; Juárez-García, Manuel; Juvera-Hoyos, Antonio; Casillas-Hernández, Ramón
2015-01-01
The future development of shrimp farming needs to improve its ecoefficiency. The purpose of this study was to evaluate water quality, flows, and nitrogen balance and production parameters on a farm with interconnected pond design to improve the efficiency of the semi-intensive culture of Litopenaeus vannamei ponds. The study was conducted in 21 commercial culture ponds during 180 days at densities of 30–35 ind m−2 and daily water exchange <2%. Our study provides evidence that by interconnecting ponds nutrient recycling is favored by promoting the growth of primary producers of the pond as chlorophyll a. Based on the mass balance and flow of nutrients this culture system reduces the flow of solid, particulate organic matter, and nitrogen compounds to the environment and significantly increases the efficiency of water (5 to 6.5 m3 kg−1 cycle−1), when compared with traditional culture systems. With this culture system it is possible to recover up to 34% of the total nitrogen entering the system, with production in excess of 4,000 kg ha−1 shrimp. We believe that the production system with interconnected ponds is a technically feasible model to improve ecoefficiency production of shrimp farming. PMID:26525070
Optical interconnection and packaging technologies for advanced avionics systems
NASA Astrophysics Data System (ADS)
Schroeder, J. E.; Christian, N. L.; Cotti, B.
1992-09-01
An optical backplane developed to demonstrate the advantages of high-performance optical interconnections and supporting technologies and designed to be compatible with standard avionics racks is described. The hardware demonstrates the three basic components of optical interconnects: optical sources, an optical signal distribution network, and optical receivers. Results from characterization and environmental tests, including a demonstration of the reliable transmission of serial data at a 1 Gb/s, are reported.
NASA Astrophysics Data System (ADS)
Smith, Ryan Scott
As the gate density increases in microelectronic devices, the interconnect delay or RC response also increases and has become the limiting delay to faster devices. In order to decrease the RC time delay, a new metallization scheme has been chosen by the semiconductor industry. Copper has replaced aluminum as the metal lines and new low-k dielectric materials are being developed to replace silicon dioxide. A promising low-k material is porous organosilicate glass or p-OSG. The p-OSG film is a hybrid material where the silicon dioxide backbone is terminated with methyl or hydrogen, reducing the dielectric constant and creating mechanically weak films that are prone to fracture. A few methods of improving the mechanical properties of p-OSG films have been attempted-- exposing the film to hydrogen plasma, electron beam curing, and ultra-violet light curing. Hydrogen plasma and electron-beam curing suffer from a lack of specificity and can cause charging damage to the gates. Therefore, ultra-violet light curing (UV curing) is preferable. The effect of UV curing on an ultra-low-k, k~2.5, p-OSG film is studied in this dissertation. Changes in the molecular structure were measured with Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. The evolution of the molecular structure with UV curing was correlated with material and fracture properties. The material properties were film shrinkage, densification, and an increase in dielectric constant. From the changes in molecular structure and material properties, a set of condensation reactions with UV light are predicted. The connectivity of the film increases with the condensation reactions and, therefore, the fracture toughness should also increase. The effect of UV curing on the critical and sub-critical fracture toughness was also studied. The critical fracture toughness was measured at four different mode-mixes-- zero, 15°, 32°, and 42°. It was found that the critical fracture toughness increases with UV exposure for all mode mixes. The sub-critical fracture toughness was measured in Mode I and found to be insensitive to UV cure. A simple reaction rate model is used to explain the difference in critical and sub-critical fracture toughness.
Roll and pitch independently tuned interconnected suspension: modelling and dynamic analysis
NASA Astrophysics Data System (ADS)
Xu, Guangzhong; Zhang, Nong; Roser, Holger M.
2015-12-01
In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.
Experiment 2033. Injection Test of Upper EE-3 Fracture Zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigsby, Charles O.
1983-09-12
This experiment is designed to investigate the apparent lithologic boundary between the low-opening-pressure fracture system (upper EE-3 fracture and Phase I system) and the high-opening-pressure fracture system (lower fracture in EE-3 and in EE-2). The experiment will test for resistence to breakthrough into the lower EE-2 fracture system at relatively low pressure and will define the veting behavior of the low pressure system.
Novel classification system of rib fractures observed in infants.
Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Pinto, Deborrah C; Greeley, Christopher; Donaruma-Kwoh, Marcella; Bista, Bibek
2013-03-01
Rib fractures are considered highly suspicious for nonaccidental injury in the pediatric clinical literature; however, a rib fracture classification system has not been developed. As an aid and impetus for rib fracture research, we developed a concise schema for classifying rib fracture types and fracture location that is applicable to infants. The system defined four fracture types (sternal end, buckle, transverse, and oblique) and four regions of the rib (posterior, posterolateral, anterolateral, and anterior). It was applied to all rib fractures observed during 85 consecutive infant autopsies. Rib fractures were found in 24 (28%) of the cases. A total of 158 rib fractures were identified. The proposed schema was adequate to classify 153 (97%) of the observed fractures. The results indicate that the classification system is sufficiently robust to classify rib fractures typically observed in infants and should be used by researchers investigating infant rib fractures. © 2013 American Academy of Forensic Sciences.
Design of experimental system for supercritical CO2 fracturing under confining pressure conditions
NASA Astrophysics Data System (ADS)
Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.
2018-03-01
Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.
Transfer Rates of Magma From Planetary Mantles to the Surface.
NASA Astrophysics Data System (ADS)
Wilson, L.; Head, J. W.; Parfitt, E. A.
2008-12-01
We discuss the speed at which magma can be transferred to a planetary surface from the deep interior. Current literature describes a combination of slow percolation of melt in the mantle where convection-driven pressure-release melting is occurring, concentration of melt by source region deformation, initiation and growth of magma-filled brittle fractures (dikes) providing wider pathways for melt movement, additional growth and interconnection of dikes with decreasing depth, rise of magma to storage zones (reservoirs) located at levels of neutral buoyancy at the base of or within the crust, and transfer from the storage zones in dikes to feed eruptions or intrusions. We do not take issue with these mechanisms but think that their relative importance in various circumstances is poorly appreciated. On Earth, preservation of diamonds in kimberlites implies very rapid (hours) transfer of melts from depths of 100-300 km, and there is strong geochemical evidence that magmas at mid-ocean ridges reach shallow depths faster than is possible by percolation alone. On the Moon, the petrology of pyroclasts involved in dark-mantle-forming eruptions implies rapid (again probably hours) magma transfer from depths of up to 400 km. The ureilite meteorites, samples of the mantle of a disrupted asteroid 200 km in diameter, have compositions only consistent with the rapid (months) extraction of mafic melt from the mantle. All of these examples imply that brittle fractures (dikes) can sometimes be initiated at depths where mantle rheology would normally be expected to be plastic rather than elastic, and that melt can be fed into these dikes extremely efficiently. Further evidence for this is provided by the giant radial dike swarms observed on Earth, Mars and Venus. The dikes observed (on Earth) and inferred from the presence of radiating graben systems (Mars) and radiating fracture and graben systems (Venus) are so voluminous that they can only be understood if they are fed from extremely large magma reservoirs, probably located at the base of the crust, that are supplied from the mantle (i.e. buffered) while the dikes are being emplaced, again implying extremely efficient melt extraction from mantle source regions.
78 FR 28839 - Notice of Commission Staff Attendance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... activities of PJM Interconnection, L.L.C., ISO New England, Inc., and New York Independent System Operator... Interconnection, L.L.C. Docket No. ER13-102, New York Independent System Operator, Inc. Docket No. ER13-193, ISO New England Inc. Docket No. ER13-195, Indicated PJM Transmission Owners Docket No. ER13-196, ISO New...
NASA Technical Reports Server (NTRS)
Randolph, Lynwood P.
1994-01-01
The Open Systems Interconnection Transmission Control Protocol/Internet Protocol (OSI TCP/IP) and the Government Open Systems Interconnection Profile (GOSIP) are compared and described in terms of Federal internetworking. The organization and functions of the Federal Internetworking Requirements Panel (FIRP) are discussed and the panel's conclusions and recommendations with respect to the standards and implementation of the National Information Infrastructure (NII) are presented.
Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber
NASA Technical Reports Server (NTRS)
Routh, D. E.; Sharma, G. C. (Inventor)
1982-01-01
The processing of wafer devices to form multilevel interconnects for microelectronic circuits is described. The method is directed to performing the sequential steps of etching the via, removing the photo resist pattern, back sputtering the entire wafer surface and depositing the next layer of interconnect material under common vacuum conditions without exposure to atmospheric conditions. Apparatus for performing the method includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a DC magnetron sputtering system. A gas inlet is provided in the chamber for the introduction of various gases to the vacuum chamber and the creation of various gas plasma during the sputtering steps.
A multi-scale experimental and simulation approach for fractured subsurface systems
NASA Astrophysics Data System (ADS)
Viswanathan, H. S.; Carey, J. W.; Frash, L.; Karra, S.; Hyman, J.; Kang, Q.; Rougier, E.; Srinivasan, G.
2017-12-01
Fractured systems play an important role in numerous subsurface applications including hydraulic fracturing, carbon sequestration, geothermal energy and underground nuclear test detection. Fractures that range in scale from microns to meters and their structure control the behavior of these systems which provide over 85% of our energy and 50% of US drinking water. Determining the key mechanisms in subsurface fractured systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and use microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. In addition we have developed high fidelity fracture propagation and discrete fracture network flow models to simulate these fractured systems. We also have developed reduced order models of these fracture simulators in order to conduct uncertainty quantification for these systems. We demonstrate an integrated experimental/modeling approach that allows for a comprehensive characterization of fractured systems and develop models that can be used to optimize the reservoir operating conditions over a range of subsurface conditions.
NASA Astrophysics Data System (ADS)
Sun, X.; Liu, W. N.; Stephens, E.; Khaleel, M. A.
The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in solid oxide fuel cell (SOFC) operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between the oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.
Cantilever testing of sintered-silver interconnects
Wereszczak, Andrew A.; Chen, Branndon R.; Jadaan, Osama M.; ...
2017-10-19
Cantilever testing is an underutilized test method from which results and interpretations promote greater understanding of the tensile and shear failure responses of interconnects, metallizations, or bonded joints. The use and analysis of this method were pursued through the mechanical testing of sintered-silver interconnects that joined Ni/Au-plated copper pillars or Ti/Ni/Ag-plated silicon pillars to Ag-plated direct bonded copper substrates. Sintered-silver was chosen as the interconnect test medium because of its high electrical and thermal conductivities and high-temperature capability—attractive characteristics for a candidate interconnect in power electronic components and other devices. Deep beam theory was used to improve upon the estimationsmore » of the tensile and shear stresses calculated from classical beam theory. The failure stresses of the sintered-silver interconnects were observed to be dependent on test-condition and test-material-system. In conclusion, the experimental simplicity of cantilever testing, and the ability to analytically calculate tensile and shear stresses at failure, result in it being an attractive mechanical test method to evaluate the failure response of interconnects.« less
Cantilever testing of sintered-silver interconnects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A.; Chen, Branndon R.; Jadaan, Osama M.
Cantilever testing is an underutilized test method from which results and interpretations promote greater understanding of the tensile and shear failure responses of interconnects, metallizations, or bonded joints. The use and analysis of this method were pursued through the mechanical testing of sintered-silver interconnects that joined Ni/Au-plated copper pillars or Ti/Ni/Ag-plated silicon pillars to Ag-plated direct bonded copper substrates. Sintered-silver was chosen as the interconnect test medium because of its high electrical and thermal conductivities and high-temperature capability—attractive characteristics for a candidate interconnect in power electronic components and other devices. Deep beam theory was used to improve upon the estimationsmore » of the tensile and shear stresses calculated from classical beam theory. The failure stresses of the sintered-silver interconnects were observed to be dependent on test-condition and test-material-system. In conclusion, the experimental simplicity of cantilever testing, and the ability to analytically calculate tensile and shear stresses at failure, result in it being an attractive mechanical test method to evaluate the failure response of interconnects.« less
NASA Technical Reports Server (NTRS)
Fatoohi, Rod; Saini, Subbash; Ciotti, Robert
2006-01-01
We study the performance of inter-process communication on four high-speed multiprocessor systems using a set of communication benchmarks. The goal is to identify certain limiting factors and bottlenecks with the interconnect of these systems as well as to compare these interconnects. We measured network bandwidth using different number of communicating processors and communication patterns, such as point-to-point communication, collective communication, and dense communication patterns. The four platforms are: a 512-processor SGI Altix 3700 BX2 shared-memory machine with 3.2 GB/s links; a 64-processor (single-streaming) Cray XI shared-memory machine with 32 1.6 GB/s links; a 128-processor Cray Opteron cluster using a Myrinet network; and a 1280-node Dell PowerEdge cluster with an InfiniBand network. Our, results show the impact of the network bandwidth and topology on the overall performance of each interconnect.
Inmarsat aeronautical mobile satellite system: Internetworking issues
NASA Technical Reports Server (NTRS)
Sengupta, Jay R.
1990-01-01
The Inmarsat Aeronautical Mobile Satellite System (AMSS) provides air-ground and air-air communications services to aero-mobile users on a global basis. Communicating parties may be connected either directly, or more commonly, via interconnecting networks to the Inmarsat AMSS, in order to construct end-to-end communications circuits. The aircraft earth station (AES) and the aeronautical ground earth station (GES) are the points of interconnection of the Inmarsat AMSS to users, as well as to interconnecting networks. This paper reviews the internetworking aspects of the Inmarsat AMSS, by introducing the Inmarsat AMSS network architecture and services concepts and then discussing the internetwork address/numbering and routing techniques.
NASA Technical Reports Server (NTRS)
Patre, Parag; Joshi, Suresh M.
2011-01-01
Decentralized adaptive control is considered for systems consisting of multiple interconnected subsystems. It is assumed that each subsystem s parameters are uncertain and the interconnection parameters are not known. In addition, mismatch can exist between each subsystem and its reference model. A strictly decentralized adaptive control scheme is developed, wherein each subsystem has access only to its own state but has the knowledge of all reference model states. The mismatch is estimated online for each subsystem and the mismatch estimates are used to adaptively modify the corresponding reference models. The adaptive control scheme is extended to the case with actuator failures in addition to mismatch.
NASA Astrophysics Data System (ADS)
de La Vaissière, Rémi; Armand, Gilles; Talandier, Jean
2015-02-01
The Excavation Damaged Zone (EDZ) surrounding a drift, and in particular its evolution, is being studied for the performance assessment of a radioactive waste underground repository. A specific experiment (called CDZ) was designed and implemented in the Meuse/Haute-Marne Underground Research Laboratory (URL) in France to investigate the EDZ. This experiment is dedicated to study the evolution of the EDZ hydrogeological properties (conductivity and specific storage) of the Callovo-Oxfordian claystone under mechanical compression and artificial hydration. Firstly, a loading cycle applied on a drift wall was performed to simulate the compression effect from bentonite swelling in a repository drift (bentonite is a clay material to be used to seal drifts and shafts for repository closure purpose). Gas tests (permeability tests with nitrogen and tracer tests with helium) were conducted during the first phase of the experiment. The results showed that the fracture network within the EDZ was initially interconnected and opened for gas flow (particularly along the drift) and then progressively closed with the increasing mechanical stress applied on the drift wall. Moreover, the evolution of the EDZ after unloading indicated a self-sealing process. Secondly, the remaining fracture network was resaturated to demonstrate the ability to self-seal of the COx claystone without mechanical loading by conducting from 11 to 15 repetitive hydraulic tests with monitoring of the hydraulic parameters. During this hydration process, the EDZ effective transmissivity dropped due to the swelling of the clay materials near the fracture network. The hydraulic conductivity evolution was relatively fast during the first few days. Low conductivities ranging at 10-10 m/s were observed after four months. Conversely, the specific storage showed an erratic evolution during the first phase of hydration (up to 60 days). Some uncertainty remains on this parameter due to volumetric strain during the sealing of the fractures. The hydration was stopped after one year and cross-hole hydraulic tests were performed to determine more accurately the specific storage as well as the hydraulic conductivity at a meter-scale. All hydraulic conductivity values measured at the injection interval and at the observation intervals were all below 10-10 m/s. Moreover, the preferential inter-connectivity along the drift disappeared. Specific storage values at the observation and injection intervals were similar. Furthermore they were in agreement with the value obtained at the injection interval within the second hydration phase (60 days after starting hydration). The graphical abstract synthesizes the evolution of the hydraulic/gas conductivity for 8 intervals since the beginning of the CDZ experiment. The conductivity limit of 10-10 m/s corresponds to the lower bound hydraulic definition of the EDZ and it is demonstrated that EDZ can be sealed. This is a significant result in the demonstration of the long-term safety of a repository.
Tran, Tri; Ha, Q P
2018-01-01
A perturbed cooperative-state feedback (PSF) strategy is presented for the control of interconnected systems in this paper. The subsystems of an interconnected system can exchange data via the communication network that has multiple connection topologies. The PSF strategy can resolve both issues, the sensor data losses and the communication network breaks, thanks to the two components of the control including a cooperative-state feedback and a perturbation variable, e.g., u i =K ij x j +w i . The PSF is implemented in a decentralized model predictive control scheme with a stability constraint and a non-monotonic storage function (ΔV(x(k))≥0), derived from the dissipative systems theory. Numerical simulation for the automatic generation control problem in power systems is studied to illustrate the effectiveness of the presented PSF strategy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Rodriguez, Edward K; Kwon, John Y; Herder, Lindsay M; Appleton, Paul T
2013-11-01
Our aim was to assess whether the Lauge-Hansen (LH) and the Muller AO classification systems for ankle fractures radiographically correlate with in vivo injuries based on observed mechanism of injury. Videos of potential study candidates were reviewed on YouTube.com. Individuals were recruited for participation if the video could be classified by injury mechanism with a high likelihood of sustaining an ankle fracture. Corresponding injury radiographs were obtained. Injury mechanism was classified using the LH system as supination/external rotation (SER), supination/adduction (SAD), pronation/external rotation (PER), or pronation/abduction (PAB). Corresponding radiographs were classified by the LH system and the AO system. Thirty injury videos with their corresponding radiographs were collected. Of the video clips reviewed, 16 had SAD mechanisms and 14 had PER mechanisms. There were 26 ankle fractures, 3 nonfractures, and 1 subtalar dislocation. Twelve fractures with SAD mechanisms had corresponding SAD fracture patterns. Five PER mechanisms had PER fracture patterns. Eight PER mechanisms had SER fracture patterns and 1 had SAD fracture pattern. When the AO classification was used, all 12 SAD type injuries had a 44A type fracture, whereas the 14 PER injuries resulted in nine 44B fractures, two 44C fractures, and three 43A fractures. When injury video clips of ankle fractures were matched to their corresponding radiographs, the LH system was 65% (17/26) consistent in predicting fracture patterns from the deforming injury mechanism. When the AO classification system was used, consistency was 81% (21/26). The AO classification, despite its development as a purely radiographic system, correlated with in vivo injuries, as based on observed mechanism of injury, more closely than did the LH system. Level IV, case series.
Development of automatic through-insulation welding for microelectric interconnections
NASA Technical Reports Server (NTRS)
Arnett, J. C.
1972-01-01
The capability to automatically route, remove insulation from, and weld small-diameter solid conductor wire is presented. This would facilitate the economical small-quantity production of complex miniature electronic assemblies. An engineering model of equipment having this capability was developed and evaluated. Whereas early work in the use of welded magnet wire interconnections was concentrated on opposed electrode systems, and generally used heat to melt the wire insulation, the present method is based on a concentric electrode system and a wire feed system which splits the insulation by application of pressure prior to welding. The work deals with the design, fabrication, and evaluation testing of an improved version of this concentric electrode system. Two different approaches to feeding the wire to the concentric electrodes were investigated. It was concluded that the process is feasible for the interconnection of complex miniature electronic assemblies.
Operating health analysis of electric power systems
NASA Astrophysics Data System (ADS)
Fotuhi-Firuzabad, Mahmud
The required level of operating reserve to be maintained by an electric power system can be determined using both deterministic and probabilistic techniques. Despite the obvious disadvantages of deterministic approaches there is still considerable reluctance to apply probabilistic techniques due to the difficulty of interpreting a single numerical risk index and the lack of sufficient information provided by a single index. A practical way to overcome difficulties is to embed deterministic considerations in the probabilistic indices in order to monitor the system well-being. The system well-being can be designated as healthy, marginal and at risk. The concept of system well-being is examined and extended in this thesis to cover the overall area of operating reserve assessment. Operating reserve evaluation involves the two distinctly different aspects of unit commitment and the dispatch of the committed units. Unit commitment health analysis involves the determination of which unit should be committed to satisfy the operating criteria. The concepts developed for unit commitment health, margin and risk are extended in this thesis to evaluate the response well-being of a generating system. A procedure is presented to determine the optimum dispatch of the committed units to satisfy the response criteria. The impact on the response wellbeing being of variations in the margin time, required regulating margin and load forecast uncertainty are illustrated. The effects on the response well-being of rapid start units, interruptible loads and postponable outages are also illustrated. System well-being is, in general, greatly improved by interconnection with other power systems. The well-being concepts are extended to evaluate the spinning reserve requirements in interconnected systems. The interconnected system unit commitment problem is decomposed into two subproblems in which unit scheduling is performed in each isolated system followed by interconnected system evaluation. A procedure is illustrated to determine the well-being indices of the overall interconnected system. Under normal operating conditions, the system may also be able to carry a limited amount of interruptible load on top of its firm load without violating the operating criterion. An energy based approach is presented to determine the optimum interruptible load carrying capability in both the isolated and interconnected systems. Composite system spinning reserve assessment and composite system well-being are also examined in this research work. The impacts on the composite well-being of operating reserve considerations such as stand-by units, interruptible loads and the physical locations of these resources are illustrated. It is expected that the well-being framework and the concepts developed in this research work will prove extremely useful in the new competitive utility environment.
Electric network interconnection of Mashreq Arab Countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Amin, I.M.; Al-Shehri, A.M.; Opoku, G.
1994-12-01
Power system interconnection is a well established practice for a variety of technical and economical reasons. Several interconnected networks exist worldwide for a number of factors. Some of these networks cross international boundaries. This presentation discusses the future developments of the power systems of Mashreq Arab Countries (MAC). MAC consists of Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates (UAE), and Yemen. Mac power systems are operated by government or semigovernment bodies. Many of these countries have national or regional electric grids but are generally isolated from each other. With the exception of Saudi Arabiamore » power systems, which employ 60 Hz, all other MAC utilities use 50 Hz frequency. Each country is served by one utility, except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi Consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The energy resources in MAC are varied. Countries such as Egypt, Iraq, and Syria have significant hydro resources.The gulf countries and Iraq have abundant fossil fuel, The variation in energy resources as well as the characteristics of the electric load make it essential to look into interconnections beyond the national boundaries. Most of the existing or planned interconnections involve few power systems. A study involving 12 countries and over 20 utilities with different characteristics represents a very large scale undertaking.« less
Demonstration of fully enabled data center subsystem with embedded optical interconnect
NASA Astrophysics Data System (ADS)
Pitwon, Richard; Worrall, Alex; Stevens, Paul; Miller, Allen; Wang, Kai; Schmidtke, Katharine
2014-03-01
The evolution of data storage communication protocols and corresponding in-system bandwidth densities is set to impose prohibitive cost and performance constraints on future data storage system designs, fuelling proposals for hybrid electronic and optical architectures in data centers. The migration of optical interconnect into the system enclosure itself can substantially mitigate the communications bottlenecks resulting from both the increase in data rate and internal interconnect link lengths. In order to assess the viability of embedding optical links within prevailing data storage architectures, we present the design and assembly of a fully operational data storage array platform, in which all internal high speed links have been implemented optically. This required the deployment of mid-board optical transceivers, an electro-optical midplane and proprietary pluggable optical connectors for storage devices. We present the design of a high density optical layout to accommodate the midplane interconnect requirements of a data storage enclosure with support for 24 Small Form Factor (SFF) solid state or rotating disk drives and the design of a proprietary optical connector and interface cards, enabling standard drives to be plugged into an electro-optical midplane. Crucially, we have also modified the platform to accommodate longer optical interconnect lengths up to 50 meters in order to investigate future datacenter architectures based on disaggregation of modular subsystems. The optically enabled data storage system has been fully validated for both 6 Gb/s and 12 Gb/s SAS data traffic conveyed along internal optical links.
California | Midmarket Solar Policies in the United States | Solar Research
interconnection fee ($75-$150), pay all "non-bypassable" charges for all electricity consumed from the distribution grid, non-export facilities connecting to an IOU's transmission grid and all net-metered systems Interconnection All non-exporting systems or net metering facility Fast track Exporting facility â¤3MW on a 12 kV
Adaptive Distributed Intelligent Control Architecture for Future Propulsion Systems (Preprint)
2007-04-01
weight will be reduced by replacing heavy harness assemblies and FADECs , with distributed processing elements interconnected. This paper reviews...Digital Electronic Controls ( FADECs ), with distributed processing elements interconnected through a serial bus. Efficient data flow throughout the...because intelligence is embedded in components while overall control is maintained in the FADEC . The need for Distributed Control Systems in
Bandwidth Management in Resource Constrained Networks
2012-03-01
Postgraduate School OSI Open Systems Interconnection QoS Quality of Service TCP Transmission Control Protocol/Internet Protocol TCP/IP Transmission...filtering. B. NORMAL TCP/IP COMMUNICATIONS The Internet is a “complex network WAN that connects LANs and clients around the globe” (Dean, 2009...of the Open Systems Interconnection ( OSI ) model allowing them to route traffic based on MAC address (Kurose & Ross, 2009). While switching
Embedded optical interconnect technology in data storage systems
NASA Astrophysics Data System (ADS)
Pitwon, Richard C. A.; Hopkins, Ken; Milward, Dave; Muggeridge, Malcolm
2010-05-01
As both data storage interconnect speeds increase and form factors in hard disk drive technologies continue to shrink, the density of printed channels on the storage array midplane goes up. The dominant interconnect protocol on storage array midplanes is expected to increase to 12 Gb/s by 2012 thereby exacerbating the performance bottleneck in future digital data storage systems. The design challenges inherent to modern data storage systems are discussed and an embedded optical infrastructure proposed to mitigate this bottleneck. The proposed solution is based on the deployment of an electro-optical printed circuit board and active interconnect technology. The connection architecture adopted would allow for electronic line cards with active optical edge connectors to be plugged into and unplugged from a passive electro-optical midplane with embedded polymeric waveguides. A demonstration platform has been developed to assess the viability of embedded electro-optical midplane technology in dense data storage systems and successfully demonstrated at 10.3 Gb/s. Active connectors incorporate optical transceiver interfaces operating at 850 nm and are connected in an in-plane coupling configuration to the embedded waveguides in the midplane. In addition a novel method of passively aligning and assembling passive optical devices to embedded polymer waveguide arrays has also been demonstrated.
NASA Astrophysics Data System (ADS)
Zheng, Xuezhe; Marchand, Philippe J.; Huang, Dawei; Kibar, Osman; Ozkan, Nur S. E.; Esener, Sadik C.
1999-09-01
We present a proof of concept and a feasibility demonstration of a practical packaging approach in which free-space optical interconnects (FSOI s) can be integrated simply on electronic multichip modules (MCM s) for intra-MCM board interconnects. Our system-level packaging architecture is based on a modified folded 4 f imaging system that has been implemented with only off-the-shelf optics, conventional electronic packaging, and passive-assembly techniques to yield a potentially low-cost and manufacturable packaging solution. The prototypical system as built supports 48 independent FSOI channels with 8 separate laser and detector chips, for which each chip consists of a one-dimensional array of 12 devices. All the chips are assembled on a single substrate that consists of a printed circuit board or a ceramic MCM. Optical link channel efficiencies of greater than 90% and interchannel cross talk of less than 20 dB at low frequency have been measured. The system is compact at only 10 in. 3 (25.4 cm 3 ) and is scalable, as it can easily accommodate additional chips as well as two-dimensional optoelectronic device arrays for increased interconnection density.
Polymer-based platform for microfluidic systems
Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA
2009-10-13
A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.
NASA Astrophysics Data System (ADS)
Bobkov, S. G.; Serdin, O. V.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Suchkov, S. I.; Topchiev, N. P.
The problem of electronic component unification at the different levels (circuits, interfaces, hardware and software) used in space industry is considered. The task of computer systems for space purposes developing is discussed by example of scientific data acquisition system for space project GAMMA-400. The basic characteristics of high reliable and fault tolerant chips developed by SRISA RAS for space applicable computational systems are given. To reduce power consumption and enhance data reliability, embedded system interconnect made hierarchical: upper level is Serial RapidIO 1x or 4x with rate transfer 1.25 Gbaud; next level - SpaceWire with rate transfer up to 400 Mbaud and lower level - MIL-STD-1553B and RS232/RS485. The Ethernet 10/100 is technology interface and provided connection with the previously released modules too. Systems interconnection allows creating different redundancy systems. Designers can develop heterogeneous systems that employ the peer-to-peer networking performance of Serial RapidIO using multiprocessor clusters interconnected by SpaceWire.
A highly stretchable, transparent, and conductive polymer.
Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F; Murmann, Boris; Bao, Zhenan
2017-03-01
Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain-among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire- or carbon nanotube-based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.
Liu, Yong; Zhu, Lin; Zhan, Lingwei; ...
2015-06-23
Because of zero greenhouse gas emission and decreased manufacture cost, solar photovoltaic (PV) generation is expected to account for a significant portion of future power grid generation portfolio. Because it is indirectly connected to the power grid via power electronic devices, solar PV generation system is fully decoupled from the power grid, which will influence the interconnected power grid dynamic characteristics as a result. In this study, the impact of solar PV penetration on large interconnected power system frequency response and inter-area oscillation is evaluated, taking the United States Eastern Interconnection (EI) as an example. Furthermore, based on the constructedmore » solar PV electrical control model with additional active power control loops, the potential contributions of solar PV generation to power system frequency regulation and oscillation damping are examined. The advantages of solar PV frequency support over that of wind generator are also discussed. Finally, simulation results demonstrate that solar PV generations can effectively work as ‘actuators’ in alleviating the negative impacts they bring about.« less
Epidemics in interconnected small-world networks.
Liu, Meng; Li, Daqing; Qin, Pengju; Liu, Chaoran; Wang, Huijuan; Wang, Feilong
2015-01-01
Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS) model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.
Free-Space Optical Interconnect Employing VCSEL Diodes
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Savich, Gregory R.; Torres, Heidi
2009-01-01
Sensor signal processing is widely used on aircraft and spacecraft. The scheme employs multiple input/output nodes for data acquisition and CPU (central processing unit) nodes for data processing. To connect 110 nodes and CPU nodes, scalable interconnections such as backplanes are desired because the number of nodes depends on requirements of each mission. An optical backplane consisting of vertical-cavity surface-emitting lasers (VCSELs), VCSEL drivers, photodetectors, and transimpedance amplifiers is the preferred approach since it can handle several hundred megabits per second data throughput.The next generation of satellite-borne systems will require transceivers and processors that can handle several Gb/s of data. Optical interconnects have been praised for both their speed and functionality with hopes that light can relieve the electrical bottleneck predicted for the near future. Optoelectronic interconnects provide a factor of ten improvement over electrical interconnects.
Deri, Robert J.; DeGroot, Anthony J.; Haigh, Ronald E.
2002-01-01
As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.
Reliability of spring interconnects for high channel-count polyimide electrode arrays
NASA Astrophysics Data System (ADS)
Khan, Sharif; Ordonez, Juan Sebastian; Stieglitz, Thomas
2018-05-01
Active neural implants with a high channel-count need robust and reliable operational assembly for the targeted environment in order to be classified as viable fully implantable systems. The discrete functionality of the electrode array and the implant electronics is vital for intact assembly. A critical interface exists at the interconnection sites between the electrode array and the implant electronics, especially in hybrid assemblies (e.g. retinal implants) where electrodes and electronics are not on the same substrate. Since the interconnects in such assemblies cannot be hermetically sealed, reliable protection against the physiological environment is essential for delivering high insulation resistance and low defusibility of salt ions, which are limited in complexity by current assembly techniques. This work reports on a combination of spring-type interconnects on a polyimide array with silicone rubber gasket insulation for chronically active implantable systems. The spring design of the interconnects on the backend of the electrode array compensates for the uniform thickness of the sandwiched gasket during bonding in assembly and relieves the propagation of extrinsic stresses to the bulk polyimide substrate. The contact resistance of the microflex-bonded spring interconnects with the underlying metallized ceramic test vehicles and insulation through the gasket between adjacent contacts was investigated against the MIL883 standard. The contact and insulation resistances remained stable in the exhausting environmental conditions.
NASA Astrophysics Data System (ADS)
Mastouri, Raja; Guerin, Antoine; Marchant, Robin; Derron, Marc-Henri; Boulares, Achref; Lazzez, Marzouk; Marillier, François; Jaboyedoff, Michel; Bouaziz, Samir
2015-04-01
It is usually not possible to study in situ fractures and faults of oil reservoirs. Then outcropping reservoir analogues are used instead. For this purpose, Terrestrial Laser Scanning (TLS) has been increasingly used for some years in the petroleum sector. The formations El Garia and Reineche make the Eocene oil reservoir of Eastern Tunisia. The fracturing of these formations has been analyzed on the surface by TLS on a reservoir analogue outcrop and in the depth by 3D seismic data. TLS datasets provide clear information on fracture geometry distribution (spacing and persistence), connectivity and joint orientation. These results were then compared to structures observed in depth with seismic data. The reservoir analogues are the Ousselat cliff (formation El Garia) and the Damous quarry (formation Reineche). Those two sites are made of marine limestone rich in large foraminifers, gastropods and nummulites. Fieldwork, TLS acquisitions and high-resolution GigaPan panoramas were put together to create digital outcrop models. A total of 9 scans at 3 different survey positions were carried out. Firstly, the data processing (cleaning, alignment and georeferencing of the raw point clouds) was carried out using the Polyworks software. Secondly, we draped Gigapixel pictures on the triangular mesh generated with 3DReshaper to produce relief shading. This process produces a photorealistic model that gives a 3D representation of the outcrop. Finally, Coltop3D was used to identify the different sets of discontinuities and to measure their orientations. Furthermore, we used some 3D seismic attribute data to interpret approximately 60 fractures and faults at the top of the Eocene reservoir. The Coltop3D analysis of the Ousselat cliff shows 5 sets of joints and fractures, with different dips and dip directions. They all strike in directions NW-SE, NNE-SSW, NE-SW and ENE-WSW. Using the photorealistic model, we measured approximately 120 fracture spacings ranging from 1.75m to 10m. For Reineche formation outcrop, the structural analog indicates 8 sets of joints and fractures. In Total, we measured 150 fracture spacings. The most part of fracture spacings range from 0.05m to 1m. The results show that many joints of the quarry rocks are interconnected with other small-scale fractures. The comparison between the stereonets obtained by Coltop3D and the seismic attributes indicated that fractures striking NW-SE to NNW-SSE and NE-SW to NNE-SSW are represented in all surveys position. The majority of the faults and fractures observed in TLS data and 3D seismic data can be explained by a combination of extension and shear. Moreover, in this study, we found that there is no correlation between fractures density or fracture distribution and lithology. Finally, the density and the geometry of the fractures have been also interpreted at the outcrop level and in depth, this comparison allows to better characterize the relationship between permeability, secondary porosity and fracture density of the Eocene reservoir.
7 CFR 1730.63 - IDR policy criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... policies must be consistent with prudent electric utility practice. (2) IDR policies must incorporate the Institute of Electrical and Electronic Engineers (IEEE): IEEE 1547TM—Standard for Interconnecting... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.63 IDR...
7 CFR 1730.63 - IDR policy criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... policies must be consistent with prudent electric utility practice. (2) IDR policies must incorporate the Institute of Electrical and Electronic Engineers (IEEE): IEEE 1547TM—Standard for Interconnecting... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.63 IDR...
7 CFR 1730.63 - IDR policy criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... policies must be consistent with prudent electric utility practice. (2) IDR policies must incorporate the Institute of Electrical and Electronic Engineers (IEEE): IEEE 1547TM—Standard for Interconnecting... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.63 IDR...
7 CFR 1730.63 - IDR policy criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
... policies must be consistent with prudent electric utility practice. (2) IDR policies must incorporate the Institute of Electrical and Electronic Engineers (IEEE): IEEE 1547TM—Standard for Interconnecting... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.63 IDR...
NASA Astrophysics Data System (ADS)
Finn, C.; Bedrosian, P.; Holbrook, W. S.; Auken, E.; Lowenstern, J. B.; Hurwitz, S.; Sims, K. W. W.; Carr, B.; Dickey, K.
2017-12-01
Although Yellowstone's iconic hydrothermal systems and lava flows are well mapped at the surface, their groundwater flow systems and thickness are almost completely unknown. In order to track the geophysical signatures of geysers, hot springs, mud pots, steam vents, hydrothermal explosion craters and lava flows at depths to hundreds of meters, we collected helicopter electromagnetic and magnetic (HEM) data. The data cover significant portions of the caldera including a majority of the known thermal areas. HEM data constrain electrical resistivity which is sensitive to groundwater salinity and temperature, phase distribution (liquid-vapor), and clay formed during chemical alteration of rocks. The magnetic data are sensitive to variations in the magnetization of lava flows, faults and hydrothermal alteration. The combination of electromagnetic and magnetic data is ideal for mapping zones of cold fresh water, hot saline water, steam, clay, and altered and unaltered rock. Preliminary inversion of the HEM data indicates very low resistivity directly beneath the northern part of Yellowstone Lake, intersecting with the lake bottom in close correspondence with mapped vents, fractures and hydrothermal explosion craters and are also associated with magnetic lows. Coincident resistivity and magnetic lows unassociated with mapped alteration occur, for example, along the southeast edge of the Mallard Lake dome and along the northeastern edge of Sour Creek Dome, suggesting the presence of buried alteration. Low resistivities unassociated with magnetic lows may relate to hot and/or saline groundwater or thin (<50 m) layers of early lake sediments to which the magnetic data are insensitive. Resistivity and magnetic lows follow interpreted caldera boundaries in places, yet deviate in others. In the Norris-Mammoth Corridor, NNE-SSW trending linear resistivity and magnetic lows align with mapped faults. This pattern of coincident resistivity and magnetic lows may reflect fractures along which water is flowing. In addition, low resistivities underlie highly resistive and magnetic rhyolite flows, indicating the old lake sediments at the base of flows and in several cases, suggest interconnection between the different thermal areas.
Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorie M. Dilley
Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trappedmore » in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the chemical signature of fluid inclusions between open and closed fractures as well as differences in the chemical signature of open fractures between geothermal systems. Our hypothesis is that open fracture systems can be identified by their FIS chemical signature; that there are differences based on the mineral assemblages and geology of the system; and that there are chemical precursors in the wall rock above open, large fractures. Specific goals for this project are: (1) To build on the preliminary results which indicate that there are differences in the FIS signatures between open and closed fractures by identifying which chemical species indicate open fractures in both active geothermal systems and in hot, dry rock; (2) To evaluate the FIS signatures based on the geology of the fields; (3) To evaluate the FIS signatures based on the mineral assemblages in the fracture; and (4) To determine if there are specific chemical signatures in the wall rock above open, large fractures. This method promises to lower the cost of geothermal energy production in several ways. Knowledge of productive fractures in the boreholes will allow engineers to optimize well production. This information can aid in well testing decisions, well completion strategies, and in resource calculations. It will assist in determining the areas for future fracture enhancement. This will develop into one of the techniques in the 'tool bag' for creating and managing Enhanced Geothermal Systems.« less
Agent-Based Simulation for Interconnection-Scale Renewable Integration and Demand Response Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Behboodi, Sahand; Crawford, Curran
This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council (WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methodsmore » presented.« less
Chen, Guanyu; Yu, Yu; Zhang, Xinliang
2016-08-01
We propose and fabricate an on-chip mode division multiplexed (MDM) photonic interconnection system. Such a monolithically photonic integrated circuit (PIC) is composed of a grating coupler, two micro-ring modulators, mode multiplexer/demultiplexer, and two germanium photodetectors. The signals' generation, multiplexing, transmission, demultiplexing, and detection are successfully demonstrated on the same chip. Twenty Gb/s MDM signals are successfully processed with clear and open eye diagrams, validating the feasibility of the proposed circuit. The measured power penalties show a good performance of the MDM link. The proposed on-chip MDM system can be potentially used for large-capacity optical interconnection in future high-performance computers and big data centers.
McFadden, Michael J; Iqbal, Muzammil; Dillon, Thomas; Nair, Rohit; Gu, Tian; Prather, Dennis W; Haney, Michael W
2006-09-01
The use of optical interconnects for communication between points on a microchip is motivated by system-level interconnect modeling showing the saturation of metal wire capacity at the global layer. Free-space optical solutions are analyzed for intrachip communication at the global layer. A multiscale solution comprising microlenses, etched compound slope microprisms, and a curved mirror is shown to outperform a single-scale alternative. Microprisms are designed and fabricated and inserted into an optical setup apparatus to experimentally validate the concept. The multiscale free-space system is shown to have the potential to provide the bandwidth density and configuration flexibility required for global communication in future generations of microchips.
Agent-Based Simulation for Interconnection-Scale Renewable Integration and Demand Response Studies
Chassin, David P.; Behboodi, Sahand; Crawford, Curran; ...
2015-12-23
This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council (WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methodsmore » presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Patrick
2014-01-31
The research goal of this CAREER proposal is to develop energy-efficient, VLSI interconnect circuits and systems that will facilitate future massively-parallel, high-performance computing. Extreme-scale computing will exhibit massive parallelism on multiple vertical levels, from thou sands of computational units on a single processor to thousands of processors in a single data center. Unfortunately, the energy required to communicate between these units at every level (on chip, off-chip, off-rack) will be the critical limitation to energy efficiency. Therefore, the PI's career goal is to become a leading researcher in the design of energy-efficient VLSI interconnect for future computing systems.
Monolithic Interconnected Modules (MIMs) for Thermophotovoltaic Energy Conversion
NASA Technical Reports Server (NTRS)
Wilt, David; Wehrer, Rebecca; Palmisiano, Marc; Wanlass, Mark; Murray, Christopher
2003-01-01
Monolithic Interconnected Modules (MIM) are under development for thermophotovoltaic (TPV) energy conversion applications. MIM devices are typified by series-interconnected photovoltaic cells on a common, semi-insulating substrate and generally include rear-surface infrared (IR) reflectors. The MIM architecture is being implemented in InGaAsSb materials without semi-insulating substrates through the development of alternative isolation methodologies. Motivations for developing the MIM structure include: reduced resistive losses, higher output power density than for systems utilizing front surface spectral control, improved thermal coupling and ultimately higher system efficiency. Numerous design and material changes have been investigated since the introduction of the MIM concept in 1994. These developments as well as the current design strategies are addressed.
Interconnection, Integration, and Interactive Impact Analysis of Microgrids and Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Ning; Wang, Jianhui; Singh, Ravindra
2017-01-01
Distribution management systems (DMSs) are increasingly used by distribution system operators (DSOs) to manage the distribution grid and to monitor the status of both power imported from the transmission grid and power generated locally by a distributed energy resource (DER), to ensure that power flows and voltages along the feeders are maintained within designed limits and that appropriate measures are taken to guarantee service continuity and energy security. When microgrids are deployed and interconnected to the distribution grids, they will have an impact on the operation of the distribution grid. The challenge is to design this interconnection in such amore » way that it enhances the reliability and security of the distribution grid and the loads embedded in the microgrid, while providing economic benefits to all stakeholders, including the microgrid owner and operator and the distribution system operator.« less
Transmission Planning Analysis Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-06-23
Developed to solve specific problem: Assist transmission planning for regional transfers in interconnected power systems. This work was originated in a study for the U.S. Department of State, to recommend transmission reinforcements for the Central American regional system that interconnects 6 countries. Transmission planning analysis is currently performed by engineers with domainspecific and systemspecific knowledge without a unique methodology. The software codes of this disclosure assists engineers by defining systematic analysis procedures to help identify weak points and make decisions on transmission planning of regional interconnected power systems. Transmission Planning Analysis Tool groups PSS/E results of multiple AC contingency analysismore » and voltage stability analysis and QV analysis of many scenarios of study and arrange them in a systematic way to aid power system planning engineers or transmission operators in effective decision]making process or in the off]line study environment.« less
An active locking mechanism for assembling 3D micro structures
NASA Astrophysics Data System (ADS)
Zhang, Ping; Mayyas, Mohammad; Lee, Woo Ho; Popa, Dan; Shiakolas, Panos; Stephanou, Harry; Chiao, J. C.
2007-01-01
Microassembly is an enabling technology to build 3D microsystems consisting of microparts made of different materials and processes. Multiple microparts can be connected together to construct complicated in-plane and out-of-plane microsystems by using compliant mechanical structures such as micro hinges and snap fasteners. This paper presents design, fabrication, and assembly of an active locking mechanism that provides mechanical and electrical interconnections between mating microparts. The active locking mechanism is composed of thermally actuated Chevron beams and sockets. Assembly by means of an active locking mechanism offers more flexibility in designing microgrippers as it reduces or minimizes mating force, which is one of the main reasons causing fractures in a microgripper during microassembly operation. Microgrippers, microparts, and active locking mechanisms were fabricated on a silicon substrate using the deep reactive ion etching (DRIE) processes with 100-um thick silicon on insulator (SOI) wafers. A precision robotic assembly platform with a dual microscope vision system was used to automate the manipulation and assembly processes of microparts. The assembly sequence includes (1) tether breaking and picking up of a micropart by using an electrothermally actuated microgripper, (2) opening of a socket area for zero-force insertion, (3) a series of translation and rotation of a mating micropart to align it onto the socket, (4) insertion of a micropart into the socket, and (5) deactivation and releasing of locking fingers. As a result, the micropart was held vertically to the substrate and locked by the compliance of Chevron beams. Microparts were successfully assembled using the active locking mechanism and the measured normal angle was 89.2°. This active locking mechanism provides mechanical and electrical interconnections, and it can potentially be used to implement a reconfigurable microrobot that requires complex assembly of multiple links and joints.
Comparison of microrings and microdisks for high-speed optical modulation in silicon photonics
NASA Astrophysics Data System (ADS)
Ying, Zhoufeng; Wang, Zheng; Zhao, Zheng; Dhar, Shounak; Pan, David Z.; Soref, Richard; Chen, Ray T.
2018-03-01
The past several decades have witnessed the gradual transition from electrical to optical interconnects, ranging from long-haul telecommunication to chip-to-chip interconnects. As one type of key component in integrated optical interconnect and high-performance computing, optical modulators have been well developed these past few years, including ultrahigh-speed microring and microdisk modulators. In this paper, a comparison between microring and microdisk modulators is well analyzed in terms of dimensions, static and dynamic power consumption, and fabrication tolerance. The results show that microdisks have advantages over microrings in these aspects, which gives instructions to the chip design of high-density integrated systems for optical interconnects and optical computing.
Induction soldering of photovoltaic system components
Kumaria, Shashwat; de Leon, Briccio
2015-11-17
A method comprises positioning a pair of photovoltaic wafers in a side-by-side arrangement. An interconnect is placed on the pair of wafers such that the interconnect overlaps both wafers of the pair, solder material being provided between the interconnect and the respective wafers. A solder head is then located adjacent the interconnect, and the coil is energized to effect inductive heating of the solder material. The solder head comprises an induction coil shaped to define an eye, and a magnetic field concentrator located at least partially in the eye of the coil. The magnetic field concentrator defines a passage extending axially through the eye of the coil, and may be of a material with a high magnetic permeability.
Electro-Optic Computing Architectures: Volume II. Components and System Design and Analysis
1998-02-01
The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit
Monolithic microwave integrated circuits: Interconnections and packaging considerations
NASA Astrophysics Data System (ADS)
Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.
Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.
Monolithic microwave integrated circuits: Interconnections and packaging considerations
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.
1984-01-01
Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.
Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arafat, Yeasir; Dutta, Indranath; Panat, Rahul, E-mail: Rahul.panat@wsu.edu
Metal interconnects in flexible and wearable devices are heterogeneous metal-polymer systems that are expected to sustain large deformation without failure. The principal strategy to make strain tolerant interconnect lines on flexible substrates has comprised of creating serpentine structures of metal films with either in-plane or out-of-plane waves, using porous substrates, or using highly ductile materials such as gold. The wavy and helical serpentine patterns preclude high-density packing of interconnect lines on devices, while ductile materials such as Au are cost prohibitive for real world applications. Ductile copper films can be stretched if bonded to the substrate, but show high levelmore » of cracking beyond few tens of % strain. In this paper, we demonstrate a material system consisting of Indium metal film over an elastomer (PDMS) with a discontinuous Cr layer such that the metal interconnect can be stretched to extremely high linear strain (up to 100%) without any visible cracks. Such linear strain in metal interconnects exceeds that reported in literature and is obtained without the use of any geometrical manipulations or porous substrates. Systematic experimentation is carried out to explain the mechanisms that allow the Indium film to sustain the high strain level without failure. The islands forming the discontinuous Cr layer are shown to move apart from each other during stretching without delamination, providing strong adhesion to the Indium film while accommodating the large strain in the system. The Indium film is shown to form surface wrinkles upon release from the large strain, confirming its strong adhesion to PDMS. A model is proposed based upon the observations that can explain the high level of stretch-ability of the Indium metal film over the PDMS substrate.« less
Preferential pathways in complex fracture systems and their influence on large scale transport
NASA Astrophysics Data System (ADS)
Willmann, M.; Mañé, R.; Tyukhova, A.
2017-12-01
Many subsurface applications in complex fracture systems require large-scale predictions. Precise predictions are difficult because of the existence of preferential pathways at different scales. The intrinsic complexity of fracture systems increases within fractured sedimentary formations, because also the coupling of fractures and matrix has to be taken into account. This interplay of fracture system and the sedimentary matrix is strongly controlled by the actual fracture aperture of an individual fracture. And an effective aperture cannot be easily be determined because of the preferential pathways along the fracture plane. We investigate the influence of these preferential pathways on large scale solute transport and upscale the aperture. By explicitly modeling flow and particle tracking in individual fractures, we develop a new effective transport aperture, which is weighted by the aperture along the preferential paths, a Lagrangian aperture. We show that this new aperture is consistently larger than existing definitions of effective flow and transport apertures. Finally, we apply our results to a fractured sedimentary formation in Northern Switzerland.
Sepulveda, A. Alejandro; Katz, Brian G.; Mahon, Gary L.
2006-01-01
The Upper Floridan aquifer is a highly permeable unit of carbonate rock extending beneath most of Florida and parts of southern Alabama, Georgia, and South Carolina. The high permeability is due in a large part to the widening of fractures that developed over time and the formation of conduits within the aquifer through dissolution of the limestone. This process has also produced numerous karst features such as springs, sinking streams, and sinkholes in northern Florida. These dissolution features, whether expressed at the surface or not, greatly influence the direction of ground-water flow in the Ichetucknee springshed adjacent to the Ichetucknee River. Ground water generally flows southwestward in the springshed and discharges to the Ichetucknee or Santa Fe Rivers, or to the springs along those rivers. This map depicts the September 9-10, 2003, potentiometric surface of the Upper Floridan aquifer based on 94 water-level measurements made by the Suwannee River Water Management District. Ground-water levels in this watershed fluctuate in response to precipitation and due to the high degree of interconnection between the surface-water system and the aquifer.
Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.
Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan
2012-01-01
Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.
OSI Upper Layers Support for Applications.
ERIC Educational Resources Information Center
Davison, Wayne
1990-01-01
Discusses how various Open Systems Interconnection (OSI) application layer protocols can be used together, along with the Presentation and Session protocols, to support the interconnection requirements of applications. Application layer protocol standards that are currently available or under development are reviewed, and the File, Transfer,…
75 FR 72909 - Revision to Electric Reliability Organization Definition of Bulk Electric System
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-26
...) Comments 135 (b) Commission Determination 139 6. Impact on Generation Owners and Operators 142 (a) Comments... Organization, the electrical generation resources, transmission lines, interconnections with neighboring... above that interconnect with registered generation facilities are excluded from NPCC's list of bulk...
Where Might We Be Headed? Signposts from Other States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, Emerson
2017-04-07
Presentation on the state of distributed energy resources interconnection in Wisconsin from the Wisconsin Distributed Resources Collaborative (WIDRC) Interconnection Forum for Distributed Generation. It addresses concerns over application submission and processing, lack of visibility into the distribution system, and uncertainty in upgrade costs.
Leslie, William D; Lix, Lisa M
2011-03-01
The World Health Organization (WHO) Fracture Risk Assessment Tool (FRAX) computes 10-year probability of major osteoporotic fracture from multiple risk factors, including femoral neck (FN) T-scores. Lumbar spine (LS) measurements are not currently part of the FRAX formulation but are used widely in clinical practice, and this creates confusion when there is spine-hip discordance. Our objective was to develop a hybrid 10-year absolute fracture risk assessment system in which nonvertebral (NV) fracture risk was assessed from the FN and clinical vertebral (V) fracture risk was assessed from the LS. We identified 37,032 women age 45 years and older undergoing baseline FN and LS dual-energy X-ray absorptiometry (DXA; 1990-2005) from a population database that contains all clinical DXA results for the Province of Manitoba, Canada. Results were linked to longitudinal health service records for physician billings and hospitalizations to identify nontrauma vertebral and nonvertebral fracture codes after bone mineral density (BMD) testing. The population was randomly divided into equal-sized derivation and validation cohorts. Using the derivation cohort, three fracture risk prediction systems were created from Cox proportional hazards models (adjusted for age and multiple FRAX risk factors): FN to predict combined all fractures, FN to predict nonvertebral fractures, and LS to predict vertebral (without nonvertebral) fractures. The hybrid system was the sum of nonvertebral risk from the FN model and vertebral risk from the LS model. The FN and hybrid systems were both strongly predictive of overall fracture risk (p < .001). In the validation cohort, ROC analysis showed marginally better performance of the hybrid system versus the FN system for overall fracture prediction (p = .24) and significantly better performance for vertebral fracture prediction (p < .001). In a discordance subgroup with FN and LS T-score differences greater than 1 SD, there was a significant improvement in overall fracture prediction with the hybrid method (p = .025). Risk reclassification under the hybrid system showed better alignment with observed fracture risk, with 6.4% of the women reclassified to a different risk category. In conclusion, a hybrid 10-year absolute fracture risk assessment system based on combining FN and LS information is feasible. The improvement in fracture risk prediction is small but supports clinical interest in a system that integrates LS in fracture risk assessment. Copyright © 2011 American Society for Bone and Mineral Research.
Repair of long-bone fractures in cats and small dogs with the Unilock mandible locking plate system.
Voss, K; Kull, M; Hässig, M; Montavon, P
2009-01-01
To retrospectively evaluate stabilisation of long-bone fractures in cats and small dogs using the Unilock system. Medical histories and radiographs of consecutive patients with long-bone fractures stabilised with the Unilock system were reviewed. Cases with follow-up radiographs taken at least four weeks postoperatively were included. Signalment of the patient, fracture localisation and type, primary fracture repair or revision surgery, single or double plating, and complications for each patient were noted. Additionally, implant size, number of screws, number of cortices engaged with screws, and number of empty holes across the fracture were evaluated in fractures where a single plate had been applied. Eighteen humeral, 18 radial, 20 femoral, and 10 tibial fractures were treated. The Unilock system was used for primary repair in 44 fractures and for revision surgery in 22 fractures. Two plates were applied in 17 fractures, and a single plate was applied in 49 fractures. Follow-up radiographs were taken four to 109 weeks postoperatively. Complications were seen in 12 animals and 13 fractures (19.7%). Fixation failure occurred in seven fractures (10.6%). Cases with a single plate that suffered fixation failure had thinner screws in relation to bone diameter than cases with double plates, and more screws in a main fragment than those without fixation failure. The Unilock system is a suitable implant for fracture fixation of long bones in cats and small dogs.
Lu, Zhong; Dzurisin, Daniel
2010-01-01
A hydrovolcanic eruption near Cone D on the floor of Okmok caldera, Alaska, began on 12 July 2008 and continued until late August 2008. The eruption was preceded by inflation of a magma reservoir located beneath the center of the caldera and ∼3 km below sea level (bsl), which began immediately after Okmok's previous eruption in 1997. In this paper we use data from several radar satellites and advanced interferometric synthetic aperture radar (InSAR) techniques to produce a suite of 2008 coeruption deformation maps. Most of the surface deformation that occurred during the eruption is explained by deflation of a Mogi-type source located beneath the center of the caldera and 2–3 km bsl, i.e., essentially the same source that inflated prior to the eruption. During the eruption the reservoir deflated at a rate that decreased exponentially with time with a 1/e time constant of ∼13 days. We envision a sponge-like network of interconnected fractures and melt bodies that in aggregate constitute a complex magma storage zone beneath Okmok caldera. The rate at which the reservoir deflates during an eruption may be controlled by the diminishing pressure difference between the reservoir and surface. A similar mechanism might explain the tendency for reservoir inflation to slow as an eruption approaches until the pressure difference between a deep magma production zone and the reservoir is great enough to drive an intrusion or eruption along the caldera ring-fracture system.
On decentralized control of large-scale systems
NASA Technical Reports Server (NTRS)
Siljak, D. D.
1978-01-01
A scheme is presented for decentralized control of large-scale linear systems which are composed of a number of interconnected subsystems. By ignoring the interconnections, local feedback controls are chosen to optimize each decoupled subsystem. Conditions are provided to establish compatibility of the individual local controllers and achieve stability of the overall system. Besides computational simplifications, the scheme is attractive because of its structural features and the fact that it produces a robust decentralized regulator for large dynamic systems, which can tolerate a wide range of nonlinearities and perturbations among the subsystems.
NASA Astrophysics Data System (ADS)
Kapur, Pawan
The miniaturization paradigm for silicon integrated circuits has resulted in a tremendous cost and performance advantage. Aggressive shrinking of devices provides faster transistors and a greater functionality for circuit design. However, scaling induced smaller wire cross-sections coupled with longer lengths owing to larger chip areas, result in a steady deterioration of interconnects. This degradation in interconnect trends threatens to slow down the rapid growth along Moore's law. This work predicts that the situation is worse than anticipated. It shows that in the light of technology and reliability constraints, scaling induced increase in electron surface scattering, fractional cross section area occupied by the highly resistive barrier, and realistic interconnect operation temperature will lead to a significant rise in effective resistivity of modern copper based interconnects. We start by discussing various technology factors affecting copper resistivity. We, next, develop simulation tools to model these effects. Using these tools, we quantify the increase in realistic copper resistivity as a function of future technology nodes, under various technology assumptions. Subsequently, we evaluate the impact of these technology effects on delay and power dissipation of global signaling interconnects. Modern long on-chip wires use repeaters, which dramatically improves their delay and bandwidth. We quantify the repeated wire delays and power dissipation using realistic resistance trends at future nodes. With the motivation of reducing power, we formalize a methodology, which trades power with delay very efficiently for repeated wires. Using this method, we find that although the repeater power comes down, the total power dissipation due to wires is still found to be very large at future nodes. Finally, we explore optical interconnects as a possible substitute, for specific interconnect applications. We model an optical receiver and waveguides. Using this we assess future optical system performance. Finally, we compare the delay and power of future metal interconnects with that of optical interconnects for global signaling application. We also compare the power dissipation of the two approaches for an upper level clock distribution application. We find that for long on-chip communication links, optical interconnects have lower latencies than future metal interconnects at comparable levels of power dissipation.
NASA Astrophysics Data System (ADS)
Riggs, William R.
1994-05-01
SHARP is a Navy wide logistics technology development effort aimed at reducing the acquisition costs, support costs, and risks of military electronic weapon systems while increasing the performance capability, reliability, maintainability, and readiness of these systems. Lower life cycle costs for electronic hardware are achieved through technology transition, standardization, and reliability enhancement to improve system affordability and availability as well as enhancing fleet modernization. Advanced technology is transferred into the fleet through hardware specifications for weapon system building blocks of standard electronic modules, standard power systems, and standard electronic systems. The product lines are all defined with respect to their size, weight, I/O, environmental performance, and operational performance. This method of defining the standard is very conducive to inserting new technologies into systems using the standard hardware. This is the approach taken thus far in inserting photonic technologies into SHARP hardware. All of the efforts have been related to module packaging; i.e. interconnects, component packaging, and module developments. Fiber optic interconnects are discussed in this paper.
Power System Study for Renewable Energy Interconnection in Malaysia
NASA Astrophysics Data System (ADS)
Askar, O. F.; Ramachandaramurthy, V. K.
2013-06-01
The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan; Zhang, Yingchen
The electrical frequency of an interconnected power system must be maintained close its nominal level at all times. Excessive under- and overfrequency excursions can lead to load shedding, instability, machine damage, and even blackouts. There is a rising concern in the electric power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia with a response that is different from thatmore » of conventional generation. It is not yet entirely understood how such a response will affect the system at different wind power penetration levels. The modeling work presented in this paper evaluates the impact of wind generation's provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of instantaneous wind power penetrations (up to 80%). The ability of wind power plants to provide PFR - and a combination of synthetic inertial response and PFR - significantly improved the frequency response performance of the system.« less
System architecture for an advanced Canadian communications satellite demonstration mission
NASA Astrophysics Data System (ADS)
Takats, P.; Irani, S.
1992-03-01
An advanced communications satellite system that provides single hop interconnectivity and interworking for both a personal communications network and an advanced private business network in the Ka and Ku bands respectively, is presented. An overall network perspective is discussed that studies the interface of such an advanced satellite communication system to the terrestrial network in the context of the Open Systems Interconnection model. It is shown that this proposed satellite system can dynamically establish links and efficiently allocate the satellite resource amongst the user terminal population for a mix of data and voice traffic.
Overview and First Results of an In-situ Stimulation Experiment in Switzerland
NASA Astrophysics Data System (ADS)
Amann, F.; Gischig, V.; Doetsch, J.; Jalali, M.; Valley, B.; Evans, K. F.; Krietsch, H.; Dutler, N.; Villiger, L.
2017-12-01
A decameter-scale in-situ stimulation and circulation (ISC) experiment is currently being conducted at the Grimsel Test Site in Switzerland with the objective of improving our understanding of key seismo-hydro-mechanical coupled processes associated with high pressure fluid injections in a moderately fractured crystalline rock mass. The ISC experiment activities aim to support the development of EGS technology by 1) advancing the understanding of fundamental processes that occur within the rock mass in response to relatively large-volume fluid injections at high pressures, 2) improving the ability to estimate and model induced seismic hazard and risks, 3) assessing the potential of different injection protocols to keep seismic event magnitudes below an acceptable threshold, 4) developing novel monitoring and imaging techniques for pressure, temperature, stress, strain and displacement as well as geophysical methods such as ground penetration radar, passive and active seismic and 5) generating a high-quality benchmark datasets that facilitates the development and validation of numerical modelling tools. The ISC experiment includes six fault slip and five hydraulic fracturing experiments at an intermediate scale (i.e. 20*20*20m) at 480m depth, which allows high resolution monitoring of the evolution of pore pressure in the stimulated fault zone and the surrounding rock matrix, fault dislocations including shear and dilation, and micro-seismicity in an exceptionally well characterized structural setting. In February 2017 we performed the fault-slip experiments on interconnected faults. Subsequently an intense phase of post-stimulation hydraulic characterization was performed. In Mai 2017 we performed hydraulic fracturing tests within test intervals that were free of natural fractures. In this contribution we give an overview and show first results of the above mentioned stimulation tests.
Formation and evolution of radial fracture systems on Venus
NASA Technical Reports Server (NTRS)
Parfitt, E. A.; Head, James W.
1993-01-01
A survey of approximately 90 percent of the surface of Venus using Magellan data has been carried out to locate all radial fracture systems and to assess their association with other features such as volcanic edifices and coronae. Squyres et al. and Stofan et al. have discussed the association of radial fracture features in relation to coronae features, our approach was to assess the associations of all of the fracture systems. These fracture systems have two broad types of form - some fracture systems are associated with updomed topography, radiate from a point and have relatively uniform fracture lengths while others have a wider range of fracture lengths and radiate from the outer edge of a central caldera. Squyres et al. and Stofan et al. have interpreted both types of feature as reflecting tectonic fracturing resulting from uplift of the surface as a mantle plume impinges upon the crust. While it is true that a number of features are related to uplift and that such uplift will induce stresses consistent with radial fracturing, we explore the possibility that these fractures are not exclusively of tectonic origin. Purely tectonic fracturing will tend to generate a few main fractures/faults along which most of the stresses due to uplift will be accommodated leading to the triple-junction form common for terrestrial updoming. Though this type of feature is observed on Venus (e.g., feature located at 34S86), the majority of radial fracture systems display much more intensive fracturing than this through a full 360 degrees; this is difficult to explain by purely tectonic processes. The association of many of the fractures with radial lava flows leads us to interpret these fractures as reflecting dike emplacement: the form of the fractures being consistent with primarily vertical propagation from the head of a mantle plume. In the case of the second type of fracture system (those radiating from a central caldera), an even stronger case can be made that the fractures are not of tectonic origin. These features are not as commonly associated with updoming of the surface and where they are, the fractures extend out well beyond the edge of the topographic rise - an observation which is not consistent with the fractures being of tectonic uplift origin. Furthermore the fractures have a distribution of lengths (many short, fewer long) which is characteristic of dike swarms, and show direct associations with calderas and lava flows consistent with a volcanic origin. In addition, the longest fractures have a radial pattern only close to the center of the system but bend with distance to align themselves with the regional stress field - this behavior is very difficult to explain on purely tectonic grounds but is a pattern commonly seen for terrestrial dikes. For these reasons, we argue that many, if not the majority, of radial fracture systems found on Venus are the surface reflection of dike swarms, those associated with positive topography reflecting vertical emplacement and those radiating from calderas reflecting lateral propagation.
Numerical simulation of CTE mismatch and thermal-structural stresses in the design of interconnects
NASA Astrophysics Data System (ADS)
Peter, Geoffrey John M.
With the ever-increasing chip complexity, interconnects have to be designed to meet the new challenges. Advances in optical lithography have made chip feature sizes available today at 70 nm dimensions. With advances in Extreme Ultraviolet Lithography, X-ray Lithography, and Ion Projection Lithography it is expected that the line width will further decrease to 20 nm or less. With the decrease in feature size, the number of active devices on the chip increases. With higher levels of circuit integration, the challenge is to dissipate the increased heat flux from the chip surface area. Thermal management considerations include coefficient of thermal expansion (CTE) matching to prevent failure between the chip and the board. This in turn calls for improved system performance and reliability of the electronic structural systems. Experience has shown that in most electronic systems, failures are mostly due to CTE mismatch between the chip, board, and the solder joint (solder interconnect). The resulting high thermal-structural stress and strain due to CTE mismatch produces cracks in the solder joints with eventual failure of the electronic component. In order to reduce the thermal stress between the chip, board, and the solder joint, this dissertation examines the effect of inserting wire bundle (wire interconnect) between the chip and the board. The flexibility of the wires or fibers would reduce the stress at the rigid joints. Numerical simulations of two, and three-dimensional models of the solder and wire interconnects are examined. The numerical simulation is linear in nature and is based on linear isotropic material properties. The effect of different wire material properties is examined. The effect of varying the wire diameter is studied by changing the wire diameter. A major cause of electronic equipment failure is due to fatigue failure caused by thermal cycling, and vibrations. A two-dimensional modal and harmonic analysis was simulated for the wire interconnect and the solder interconnect. The numerical model simulated using ANSYS program was validated with the numerical/experimental results of other published researchers. In addition the results were cross-checked by IDEAS program. A prototype non-working wire interconnect is proposed to emphasize practical application. The numerical analysis, in this dissertation is based on a U.S. Patent granted to G. Peter(42).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coddington, M.; Fox, K.; Stanfield, S.
Federal and state regulators are faced with the challenge of keeping interconnection procedures updated against a backdrop of evolving technology, new codes and standards, and considerably transformed market conditions. This report is intended to educate policymakers and stakeholders on beneficial reforms that will keep interconnection processes efficient and cost-effective while maintaining a safe and reliable power system.
14 CFR 25.701 - Flap and slat interconnection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25... equivalent means. (b) If a wing flap or slat interconnection or equivalent means is used, it must be designed... be designed for the loads imposed when the wing flaps or slats on one side are carrying the most...
14 CFR 25.701 - Flap and slat interconnection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25... equivalent means. (b) If a wing flap or slat interconnection or equivalent means is used, it must be designed... be designed for the loads imposed when the wing flaps or slats on one side are carrying the most...
14 CFR 25.701 - Flap and slat interconnection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25... equivalent means. (b) If a wing flap or slat interconnection or equivalent means is used, it must be designed... be designed for the loads imposed when the wing flaps or slats on one side are carrying the most...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, Adam
2007-05-22
MpiGraph consists of an MPI application called mpiGraph written in C to measure message bandwidth and an associated crunch_mpiGraph script written in Perl to process the application output into an HTMO report. The mpiGraph application is designed to inspect the health and scalability of a high-performance interconnect while under heavy load. This is useful to detect hardware and software problems in a system, such as slow nodes, links, switches, or contention in switch routing. It is also useful to characterize how interconnect performance changes with different settings or how one interconnect type compares to another.
Chang, S; Wong, K W; Zhang, W; Zhang, Y
1999-08-10
An algorithm for optimizing a bipolar interconnection weight matrix with the Hopfield network is proposed. The effectiveness of this algorithm is demonstrated by computer simulation and optical implementation. In the optical implementation of the neural network the interconnection weights are biased to yield a nonnegative weight matrix. Moreover, a threshold subchannel is added so that the system can realize, in real time, the bipolar weighted summation in a single channel. Preliminary experimental results obtained from the applications in associative memories and multitarget classification with rotation invariance are shown.
NASA Astrophysics Data System (ADS)
Chang, Shengjiang; Wong, Kwok-Wo; Zhang, Wenwei; Zhang, Yanxin
1999-08-01
An algorithm for optimizing a bipolar interconnection weight matrix with the Hopfield network is proposed. The effectiveness of this algorithm is demonstrated by computer simulation and optical implementation. In the optical implementation of the neural network the interconnection weights are biased to yield a nonnegative weight matrix. Moreover, a threshold subchannel is added so that the system can realize, in real time, the bipolar weighted summation in a single channel. Preliminary experimental results obtained from the applications in associative memories and multitarget classification with rotation invariance are shown.
Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S.
2014-12-01
Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.
Enabling Lead Free Interconnects in DoD Weapon Systems
2017-09-28
FINAL PRESENTATION Enabling Lead-Free Interconnects in DoD Weapon Systems ESTCP Project WP-201573-T2 SEPTEMBER 2017 Dr. Stephan Meschter BAE...Meschter 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) BAE...the results of the SERDP lead- free projects to various stake-holders and to enable standardization. The work products and transferred data must not be
Tomkins, James L [Albuquerque, NM; Camp, William J [Albuquerque, NM
2009-03-17
A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure also permits easy physical scalability of the computing apparatus. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.
Comparison of two reconfigurable N×N interconnects for a recurrent neural network
NASA Astrophysics Data System (ADS)
Berger, Christoph; Collings, Neil; Pourzand, Ali R.; Volkel, Reinnard
1996-11-01
Two different methods of pattern replication (conventional and interlaced fan-out) have been investigated and experimentally tested in a reconfigurable 5X5 optical interconnect. Similar alignment problems due to imaging errors (field curvature) were observed in both systems. We conclude that of the two methods the interlaced fan-out is better suited to avoid these imaging errors, to reduce system size and to implement an optical feedback loop.
Optical interconnect technologies for high-bandwidth ICT systems
NASA Astrophysics Data System (ADS)
Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki
2016-03-01
The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.
NASA Astrophysics Data System (ADS)
Roslan, M. F.; Shaffiar, N. M.; Khairusshima, M. K. N.; Sharifah, I. S. S.
2018-01-01
Over the years, the technology of electronic industry has growth tremendously. Open ended research on how to make a better concept of electronic circuit is ongoing especially on the stretchable electronic devices. There are many designs to achieve stretchability in electronic circuits. The problem occurs when deformation applied to the stretchable electronic circuit, it cannot maintain its functionality. Fracture may happen on the conductor. In this research, the study on deformation of stretchable electronic interconnects substrate using Polydimethlysiloxanes is carried out. The purpose of this research are to study the axial deformation occur, to determine the optimum shape of the conductor designs (horseshoe, rectangular and u-shape design) for the stretchable electronic interconnect and to compare the mechanical properties of Polydimethlysiloxanes (PDMS) with Polyurethane (PU) using Finite Element Analysis (FEA). The simulation was done on the FE model of the stretchable circuit with dimension of 2.4 X 2.4 X 0.5 mm. The stretching of the FE model was simulated with the range of elongation at 10, 20 and 30 percent from its original length in order to find the strain value for all three of the conductor designs. The best conductor design is used to simulate with different types of substrate (PDMS and PU). From the simulation result, Horseshoe design record the lowest strain value for each elongation, followed by rectangular and U-shape design. Thus, Horseshoe is considered as the optimum design for the conductor compared to the other two designs. From the result also, it shows that PDMS substrate will offer more maximum allowable stretchability compared to PU substrates. Thus PDMS is considered as a better substrate compare to PU. PDMS is a good material to replace PU since it can perform under tension much better mechanically.
Solder/Substrate Interfacial Reactions in the Sn-Cu-Ni Interconnection System
NASA Astrophysics Data System (ADS)
Yu, H.; Vuorinen, V.; Kivilahti, J. K.
2007-02-01
In order to obtain a better understanding of the effects of interconnection microstructures on the reliability of soldered assemblies, one of the most important ternary systems used in electronics, the Sn-Cu-Ni system, has been assessed thermodynamically. Based on the data obtained, some recent experimental observations related to the formation of interfacial intermetallic compounds in solder interconnections have been studied analytically. First, the effect of Cu content on the formation of the interfacial intermetallic compounds between the SnAgCu solder alloys and Ni substrate was investigated. The critical Cu content for (Cu,Ni)6Sn5 formation was evaluated as a function of temperature. Second, we analyzed how the Ni dissolved in the Cu6Sn5 compound affects the driving forces for the diffusion of components and hence the growth kinetics of (Cu,Ni)6Sn5 and (Cu,Ni)3Sn reaction layers. With the thermodynamic description, other experimental observations related to the Sn-Cu-Ni system can be rationalized as well. The system can be used also as a subsystem for industrially important higher order solder systems.
Kay, Robert T.; Mills, Patrick C.; Jackson, P. Ryan
2016-08-23
Invasive species such as Asian carps have the potential to travel in the egg, larval, or fry stages from the Des Plaines River (DPR) to the Chicago Sanitary and Ship Canal (CSSC) by way of the network of secondary-permeability features in the dolomite aquifer between these water bodies. Such movement would circumvent the electric fish barrier on the canal and allow Asian carps to travel unimpeded into Lake Michigan. This potential pathway for the spread of Asian carps and other invasive species was evaluated by the U.S. Geological Survey.The bed of the DPR appears to be in at least partial contact with the exposed bedrock in most of the area from about 1 mile west of Kingery Highway to Romeo Road (the study area). Areas of exposed bedrock are the most likely places for Asian carps to enter the groundwater system from the DPR. Water levels in the DPR typically are about 7–16 feet higher than those in the CSSC in most of the study area. This difference in water level provides the driving force for the potential spread of Asian carps from the DPR to the CSSC by way of groundwater.Groundwater flow (and potentially invasive-species movement) is through an interconnected network of permeable vertical and horizontal fractures within the Silurian dolomite bedrock. At least some of the fractures are associated with paleo-karst features. Several investigative techniques identified horizontal permeable fractures at about 546–552 feet above the North American Vertical Datum of 1988 within about 55 feet of the CSSC in the focus area between Lemont Road and Interstate 355. The elevation of the bottom of the CSSC in this area is about 551 feet, indicating that a direct conduit for flow of groundwater to the CSSC may be present. Wells further away from the CSSC in this area do not intercept fractures, so the fracture network may not be continuous between the DPR and the CSSC. These data are consistent with field observations of the secondary-permeability network along the CSSC walls, which indicate that the secondary-permeability features are completely filled with Pennsylvanian sediments within a few feet of the canal wall.Water-level data indicate the potential for flow from the DPR into the Silurian aquifer in the focus area, then from the aquifer to the CSSC. Water-level data also indicate that the fractures within the aquifer in the focus area are hydraulically well connected to the CSSC but not to the DPR, indicating that flow from the DPR to the groundwater system may not be substantial or rapid.Water-quality data in the CSSC and the DPR show similar values and trends and are affected by diel and longer term variations in climate and precipitation. However, the values and trends in water quality in the groundwater system tended to be substantially different from those in the DPR and the CSSC, indicating that the DPR and the CSSC do not appreciably recharge the groundwater system. Water-quality and flow data do indicate that groundwater discharges to the CSSC in part of the focus area. The absence of substantial hydraulic interaction between the groundwater and the DPR is supported by the absence of detectable concentrations of the dye tracer added to the DPR in groundwater in the focus area, which indicates that water from the DPR requires more than 2 weeks to move into the monitored parts of the groundwater system under approximately typical hydraulic conditions. The totality of the data indicates that there is minimal potential for the inter-basin spread of Asian carps by way of the groundwater pathway between Romeo Road and Stickney, Illinois.
Critical tipping point distinguishing two types of transitions in modular network structures
NASA Astrophysics Data System (ADS)
Shai, Saray; Kenett, Dror Y.; Kenett, Yoed N.; Faust, Miriam; Dobson, Simon; Havlin, Shlomo
2015-12-01
Modularity is a key organizing principle in real-world large-scale complex networks. The relatively sparse interactions between modules are critical to the functionality of the system and are often the first to fail. We model such failures as site percolation targeting interconnected nodes, those connecting between modules. We find, using percolation theory and simulations, that they lead to a "tipping point" between two distinct regimes. In one regime, removal of interconnected nodes fragments the modules internally and causes the system to collapse. In contrast, in the other regime, while only attacking a small fraction of nodes, the modules remain but become disconnected, breaking the entire system. We show that networks with broader degree distribution might be highly vulnerable to such attacks since only few nodes are needed to interconnect the modules, consequently putting the entire system at high risk. Our model has the potential to shed light on many real-world phenomena, and we briefly consider its implications on recent advances in the understanding of several neurocognitive processes and diseases.
Researchers used the TOUGH+ geomechanics computational software and simulation system to examine the likelihood of hydraulic fracture propagation (the spread of fractures) traveling long distances to connect with drinking water aquifers.
Rock fracture processes in chemically reactive environments
NASA Astrophysics Data System (ADS)
Eichhubl, P.
2015-12-01
Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the hostrock can independently affect fracture opening displacement and thus fracture aperture profiles and aperture distribution.
FROMS3D: New Software for 3-D Visualization of Fracture Network System in Fractured Rock Masses
NASA Astrophysics Data System (ADS)
Noh, Y. H.; Um, J. G.; Choi, Y.
2014-12-01
A new software (FROMS3D) is presented to visualize fracture network system in 3-D. The software consists of several modules that play roles in management of borehole and field fracture data, fracture network modelling, visualization of fracture geometry in 3-D and calculation and visualization of intersections and equivalent pipes between fractures. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. The results have suggested that the developed software is effective in visualizing 3-D fracture network system, and can provide useful information to tackle the engineering geological problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.
Asymptotic Stability of Interconnected Passive Non-Linear Systems
NASA Technical Reports Server (NTRS)
Isidori, A.; Joshi, S. M.; Kelkar, A. G.
1999-01-01
This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.
Harnroongroj, Thossart; Harnroongroj, Thos; Suntharapa, Thongchai; Arunakul, Marut
2016-10-01
The aim of this study was to develop a new calcaneal fracture classification system which will consider sustentacular fragment configuration and relation of posterior calcaneal facet to calcaneal body. The new classification system used sustentacular fragment configuration and relation of posterior calcaneal facet fracture with fracture components of calcaneal body as key aspects of main types and subtypes. Between 2000 and 2014, 126 intraarticular calcaneal fractures were classified according to the new classification system by using computed tomography images. The new classification system was studied in term of reliability, correlation to choices of treatment, implant fixation and quality of fracture reduction. Types of sustentacular fragment comprised type A, B and C. Type A sustentacular fragment included sustentacular tali containing middle calcaneal facet. In Type B and C fractures sustentacular fragment included medial aspect and entire posterior calcaneal facet as a single unit, respectively. The fractures with type A, B and C sustentacular fragments were classified as main type A, B and C intra-articular calcaneal fractures. The main type A and B comprised 4 subtypes. Subtypes A1, A3, B1, and B3 associated with avulsion and bending fragments of calcaneal body. Subtype A2, B2, and B4 associated with burst calcaneal body. Subtype B4 was not found in the study. Main type C had no subtype and associated with burst calcaneal body. The data showed good reliability. The study showed that our new intra-articular calcaneal fracture classification system correlates to choices of treatment, implant fixation and quality of fracture reduction. Level IV, Study of Diagnostic Test. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
Unraveling Cajal's view of the olfactory system
Figueres-Oñate, María; Gutiérrez, Yolanda; López-Mascaraque, Laura
2014-01-01
The olfactory system has a highly regular organization of interconnected synaptic circuits from the periphery. It is therefore an excellent model for understanding general principles about how the brain processes information. Cajal revealed the basic cell types and their interconnections at the end of the XIX century. Since his original descriptions, the observation and analysis of the olfactory system and its components represents a major topic in neuroscience studies, providing important insights into the neural mechanisms. In this review, we will highlight the importance of Cajal contributions and his legacy to the actual knowledge of the olfactory system. PMID:25071462
Performance of WCN diffusion barrier for Cu multilevel interconnects
NASA Astrophysics Data System (ADS)
Lee, Seung Yeon; Ju, Byeong-Kwon; Kim, Yong Tae
2018-04-01
The electrical and thermal properties of a WCN diffusion barrier have been studied for Cu multilevel interconnects. The WCN has been prepared using an atomic layer deposition system with WF6-CH4-NH3-H2 gases and has a very low resistivity of 100 µΩ cm and 96.9% step coverage on the high-aspect-ratio vias. The thermally stable WCN maintains an amorphous state at 800 °C and Cu/WCN contact resistance remains within a 10% deviation from the initial value after 700 °C. The mean time to failure suggests that the Cu/WCN interconnects have a longer lifetime than Cu/TaN and Cu/WN interconnects because WCN prevents Cu migration owing to the stress evolution from tensile to compressive.
Mohanasubha, R.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.
2015-01-01
We unearth the interconnection between various analytical methods which are widely used in the current literature to identify integrable nonlinear dynamical systems described by third-order nonlinear ODEs. We establish an important interconnection between the extended Prelle–Singer procedure and λ-symmetries approach applicable to third-order ODEs to bring out the various linkages associated with these different techniques. By establishing this interconnection we demonstrate that given any one of the quantities as a starting point in the family consisting of Jacobi last multipliers, Darboux polynomials, Lie point symmetries, adjoint-symmetries, λ-symmetries, integrating factors and null forms one can derive the rest of the quantities in this family in a straightforward and unambiguous manner. We also illustrate our findings with three specific examples. PMID:27547076
Mohanasubha, R; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M
2015-04-08
We unearth the interconnection between various analytical methods which are widely used in the current literature to identify integrable nonlinear dynamical systems described by third-order nonlinear ODEs. We establish an important interconnection between the extended Prelle-Singer procedure and λ-symmetries approach applicable to third-order ODEs to bring out the various linkages associated with these different techniques. By establishing this interconnection we demonstrate that given any one of the quantities as a starting point in the family consisting of Jacobi last multipliers, Darboux polynomials, Lie point symmetries, adjoint-symmetries, λ-symmetries, integrating factors and null forms one can derive the rest of the quantities in this family in a straightforward and unambiguous manner. We also illustrate our findings with three specific examples.
Reciprocity in spatial evolutionary public goods game on double-layered network
NASA Astrophysics Data System (ADS)
Kim, Jinho; Yook, Soon-Hyung; Kim, Yup
2016-08-01
Spatial evolutionary games have mainly been studied on a single, isolated network. However, in real world systems, many interaction topologies are not isolated but many different types of networks are inter-connected to each other. In this study, we investigate the spatial evolutionary public goods game (SEPGG) on double-layered random networks (DRN). Based on the mean-field type arguments and numerical simulations, we find that SEPGG on DRN shows very rich interesting phenomena, especially, depending on the size of each layer, intra-connectivity, and inter-connected couplings, the network reciprocity of SEPGG on DRN can be drastically enhanced through the inter-connected coupling. Furthermore, SEPGG on DRN can provide a more general framework which includes the evolutionary dynamics on multiplex networks and inter-connected networks at the same time.
Reciprocity in spatial evolutionary public goods game on double-layered network
Kim, Jinho; Yook, Soon-Hyung; Kim, Yup
2016-01-01
Spatial evolutionary games have mainly been studied on a single, isolated network. However, in real world systems, many interaction topologies are not isolated but many different types of networks are inter-connected to each other. In this study, we investigate the spatial evolutionary public goods game (SEPGG) on double-layered random networks (DRN). Based on the mean-field type arguments and numerical simulations, we find that SEPGG on DRN shows very rich interesting phenomena, especially, depending on the size of each layer, intra-connectivity, and inter-connected couplings, the network reciprocity of SEPGG on DRN can be drastically enhanced through the inter-connected coupling. Furthermore, SEPGG on DRN can provide a more general framework which includes the evolutionary dynamics on multiplex networks and inter-connected networks at the same time. PMID:27503801
Exploration of operator method digital optical computers for application to NASA
NASA Technical Reports Server (NTRS)
1990-01-01
Digital optical computer design has been focused primarily towards parallel (single point-to-point interconnection) implementation. This architecture is compared to currently developing VHSIC systems. Using demonstrated multichannel acousto-optic devices, a figure of merit can be formulated. The focus is on a figure of merit termed Gate Interconnect Bandwidth Product (GIBP). Conventional parallel optical digital computer architecture demonstrates only marginal competitiveness at best when compared to projected semiconductor implements. Global, analog global, quasi-digital, and full digital interconnects are briefly examined as alternative to parallel digital computer architecture. Digital optical computing is becoming a very tough competitor to semiconductor technology since it can support a very high degree of three dimensional interconnect density and high degrees of Fan-In without capacitive loading effects at very low power consumption levels.
Nagi, Sana Ehsen; Khan, Farhan Raza; Rahman, Munawar
2016-03-01
This experimental study was done on extracted human teeth to compare the fracture and deformation of the two rotary endodontic files system namely K-3 and Protapers. It was conducted at the dental clinics of the Aga Khan University Hospital, Karachi, A log of file deformation or fracture during root canal preparation was kept. The location of fracture was noted along with the identity of the canal in which fracture took place. The fracture in the two rotary systems was compared. SPSS 20 was used for data analysis. Of the 172(80.4%) teeth possessing more than 15 degrees of curvature, fracture occurred in 7(4.1%) cases and deformation in 10(5.8%). Of the 42(19.6%) teeth possessing less than 15 degrees of curvature, fracture occurred in none of them while deformation was seen in 1(2.4%). There was no difference in K-3 and Protaper files with respect to file deformation and fracture. Most of the fractures occurred in mesiobuccal canals of maxillary molars, n=3(21.4%). The likelihood of file fracture increased 5.65-fold when the same file was used more than 3 times. Irrespective of the rotary system, apical third of the root canal space was the most common site for file fracture.
NASA Astrophysics Data System (ADS)
Mezon, Cécile; Mourzenko, Valeri; François Thovert, Jean; Antoine, Raphael; Fontaine, Fabrice; Finizola, Anthony; Adler, Pierre Michel
2016-04-01
In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured isotropically fractured porous media. Fractures are inserted as 2D convex polygons, which are randomly located. The fluid is assumed to satisfy 2D and 3D Darcy's law in the fractures and in the porous medium, respectively; exchanges take place between these two structures. First, checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4pi². 2D convection was verified up to Ra=800. Second, all fractured simulations were made for Rayleigh numbers (Ra) < 150, cubic boxes and closed-top conditions. The influence of parameters such as fracture aperture (or fracture transmissivity) and fracture density on the heat released by the whole system is studied. Then, the effective permeability of each fractured system is calculated. This last calculation enables the comparison between all fractured models and models of homogeneous medium with the same macroscopic properties. First, the heat increase released by the system as a function of fracture transmissivity and fracture density is determined. Second, results show that the effective approach is valid for low Ra (< 70), and that the mismatch between the full calculations and the effective medium approach for Ra higher than 70 depends on the fracture density in a crucial way. Third, the study also reveals that equivalent properties could be deduced from these computations in order to estimate the heat released by a fractured system from an homogeneous approach.
Flat conductor cable design, manufacture, and installation
NASA Technical Reports Server (NTRS)
Angele, W.; Hankins, J. D.
1973-01-01
Pertinent information for hardware selection, design, manufacture, and quality control necessary for flat conductor cable interconnecting harness application is presented. Comparisons are made between round wire cable and flat conductor cable. The flat conductor cable interconnecting harness systems show major cost, weight, and space savings, plus increased system performance and reliability. The design application section includes electrical characteristics, harness design and development, and a full treatise on EMC considerations. Manufacturing and quality control sections pertain primarily to the developed conductor-contact connector system and special flat conductor cable to round wire cable transitions.
A highly stretchable, transparent, and conductive polymer
Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; ...
2017-03-10
Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm undermore » 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. As a result, the combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.« less
A highly stretchable, transparent, and conductive polymer
Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I.; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F.; Murmann, Boris; Bao, Zhenan
2017-01-01
Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain—among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire– or carbon nanotube–based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects. PMID:28345040
NASA Astrophysics Data System (ADS)
Prakash, S.; Sinha, S. K.
2015-09-01
In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.
Two-dimensional optoelectronic interconnect-processor and its operational bit error rate
NASA Astrophysics Data System (ADS)
Liu, J. Jiang; Gollsneider, Brian; Chang, Wayne H.; Carhart, Gary W.; Vorontsov, Mikhail A.; Simonis, George J.; Shoop, Barry L.
2004-10-01
Two-dimensional (2-D) multi-channel 8x8 optical interconnect and processor system were designed and developed using complementary metal-oxide-semiconductor (CMOS) driven 850-nm vertical-cavity surface-emitting laser (VCSEL) arrays and the photodetector (PD) arrays with corresponding wavelengths. We performed operation and bit-error-rate (BER) analysis on this free-space integrated 8x8 VCSEL optical interconnects driven by silicon-on-sapphire (SOS) circuits. Pseudo-random bit stream (PRBS) data sequence was used in operation of the interconnects. Eye diagrams were measured from individual channels and analyzed using a digital oscilloscope at data rates from 155 Mb/s to 1.5 Gb/s. Using a statistical model of Gaussian distribution for the random noise in the transmission, we developed a method to compute the BER instantaneously with the digital eye-diagrams. Direct measurements on this interconnects were also taken on a standard BER tester for verification. We found that the results of two methods were in the same order and within 50% accuracy. The integrated interconnects were investigated in an optoelectronic processing architecture of digital halftoning image processor. Error diffusion networks implemented by the inherently parallel nature of photonics promise to provide high quality digital halftoned images.
Tandem Solar Cells from Accessible Low Band-Gap Polymers Using an Efficient Interconnecting Layer.
Bag, Santanu; Patel, Romesh J; Bunha, Ajaykumar; Grand, Caroline; Berrigan, J Daniel; Dalton, Matthew J; Leever, Benjamin J; Reynolds, John R; Durstock, Michael F
2016-01-13
Tandem solar cell architectures are designed to improve device photoresponse by enabling the capture of wider range of solar spectrum as compared to single-junction device. However, the practical realization of this concept in bulk-heterojunction polymer systems requires the judicious design of a transparent interconnecting layer compatible with both polymers. Moreover, the polymers selected should be readily synthesized at large scale (>1 kg) and high performance. In this work, we demonstrate a novel tandem polymer solar cell that combines low band gap poly isoindigo [P(T3-iI)-2], which is easily synthesized in kilogram quantities, with a novel Cr/MoO3 interconnecting layer. Cr/MoO3 is shown to be greater than 80% transparent above 375 nm and an efficient interconnecting layer for P(T3-iI)-2 and PCDTBT, leading to 6% power conversion efficiencies under AM 1.5G illumination. These results serve to extend the range of interconnecting layer materials for tandem cell fabrication by establishing, for the first time, that a thin, evaporated layer of Cr/MoO3 can work as an effective interconnecting layer in a tandem polymer solar cells made with scalable photoactive materials.
Thermo-electric analysis of the interconnection of the LHC main superconducting bus bars
NASA Astrophysics Data System (ADS)
Granieri, P. P.; Breschi, M.; Casali, M.; Bottura, L.; Siemko, A.
2013-01-01
Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A deep insight of the underlying mechanisms is required to ensure the protection of the accelerator against undesired effects of resistive transitions. This is especially important in case of defective interconnections which can jeopardize the operation of the whole LHC. In this paper we present a numerical model of the interconnections between the main dipole and quadrupole magnets, validated against experimental tests of an interconnection sample with a purposely built-in defect. We consider defective interconnections featuring a lack of bonding among the superconducting cables and the copper stabilizer components, such as those that could be present in the machine. We evaluate the critical defect length limiting the maximum allowable current for powering the magnets. We determine the dependence of the critical defect length on different parameters as the heat transfer towards the cooling helium bath, the quality of manufacturing, the operating conditions and the protection system parameters, and discuss the relevant mechanisms.
A Conceptual Framework Based on Activity Theory for Mobile CSCL
ERIC Educational Resources Information Center
Zurita, Gustavo; Nussbaum, Miguel
2007-01-01
There is a need for collaborative group activities that promote student social interaction in the classroom. Handheld computers interconnected by a wireless network allow people who work on a common task to interact face to face while maintaining the mediation afforded by a technology-based system. Wirelessly interconnected handhelds open up new…
Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures.
Dagnino, Giulio; Georgilas, Ioannis; Morad, Samir; Gibbons, Peter; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja
2017-11-01
Complex joint fractures often require an open surgical procedure, which is associated with extensive soft tissue damages and longer hospitalization and rehabilitation time. Percutaneous techniques can potentially mitigate these risks but their application to joint fractures is limited by the current sub-optimal 2D intra-operative imaging (fluoroscopy) and by the high forces involved in the fragment manipulation (due to the presence of soft tissue, e.g., muscles) which might result in fracture malreduction. Integration of robotic assistance and 3D image guidance can potentially overcome these issues. The authors propose an image-guided surgical robotic system for the percutaneous treatment of knee joint fractures, i.e., the robot-assisted fracture surgery (RAFS) system. It allows simultaneous manipulation of two bone fragments, safer robot-bone fixation system, and a traction performing robotic manipulator. This system has led to a novel clinical workflow and has been tested both in laboratory and in clinically relevant cadaveric trials. The RAFS system was tested on 9 cadaver specimens and was able to reduce 7 out of 9 distal femur fractures (T- and Y-shape 33-C1) with acceptable accuracy (≈1 mm, ≈5°), demonstrating its applicability to fix knee joint fractures. This study paved the way to develop novel technologies for percutaneous treatment of complex fractures including hip, ankle, and shoulder, thus representing a step toward minimally-invasive fracture surgeries.
Open Fractures of the Hand: Review of Pathogenesis and Introduction of a New Classification System.
Tulipan, Jacob E; Ilyas, Asif M
2018-02-01
Open fractures of the hand are a common and varied group of injuries. Although at increased risk for infection, open fractures of the hand are more resistant to infection than other open fractures. Numerous unique factors in the hand may play a role in the altered risk of postinjury infection. Current systems for the classification of open fractures fail to address the unique qualities of the hand. This article proposes a novel classification system for open fractures of the hand, taking into account the factors unique to the hand that affect its risk for developing infection after an open fracture. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Jacobs, Shane Earl
This dissertation presents the concept of a Morphing Upper Torso, an innovative pressure suit design that incorporates robotic elements to enable a resizable, highly mobile and easy to don/doff spacesuit. The torso is modeled as a system of interconnected, pressure-constrained, reduced-DOF, wire-actuated parallel manipulators, that enable the dimensions of the suit to be reconfigured to match the wearer. The kinematics, dynamics and control of wire-actuated manipulators are derived and simulated, along with the Jacobian transforms, which relate the total twist vector of the system to the vector of actuator velocities. Tools are developed that allow calculation of the workspace for both single and interconnected reduced-DOF robots of this type, using knowledge of the link lengths. The forward kinematics and statics equations are combined and solved to produce the pose of the platforms along with the link tensions. These tools allow analysis of the full Morphing Upper Torso design, in which the back hatch of a rear-entry torso is interconnected with the waist ring, helmet ring and two scye bearings. Half-scale and full-scale experimental models are used along with analytical models to examine the feasibility of this novel space suit concept. The analytical and experimental results demonstrate that the torso could be expanded to facilitate donning and doffng, and then contracted to match different wearer's body dimensions. Using the system of interconnected parallel manipulators, suit components can be accurately repositioned to different desired configurations. The demonstrated feasibility of the Morphing Upper Torso concept makes it an exciting candidate for inclusion in a future planetary suit architecture.
Pressure activated interconnection of micro transfer printed components
NASA Astrophysics Data System (ADS)
Prevatte, Carl; Guven, Ibrahim; Ghosal, Kanchan; Gomez, David; Moore, Tanya; Bonafede, Salvatore; Raymond, Brook; Trindade, António Jose; Fecioru, Alin; Kneeburg, David; Meitl, Matthew A.; Bower, Christopher A.
2016-05-01
Micro transfer printing and other forms of micro assembly deterministically produce heterogeneously integrated systems of miniaturized components on non-native substrates. Most micro assembled systems include electrical interconnections to the miniaturized components, typically accomplished by metal wires formed on the non-native substrate after the assembly operation. An alternative scheme establishing interconnections during the assembly operation is a cost-effective manufacturing method for producing heterogeneous microsystems, and facilitates the repair of integrated microsystems, such as displays, by ex post facto addition of components to correct defects after system-level tests. This letter describes pressure-concentrating conductor structures formed on silicon (1 0 0) wafers to establish connections to preexisting conductive traces on glass and plastic substrates during micro transfer printing with an elastomer stamp. The pressure concentrators penetrate a polymer layer to form the connection, and reflow of the polymer layer bonds the components securely to the target substrate. The experimental yield of series-connected test systems with >1000 electrical connections demonstrates the suitability of the process for manufacturing, and robustness of the test systems against exposure to thermal shock, damp heat, and mechanical flexure shows reliability of the resulting bonds.
McDonald, Alexander J; Mott, David D
2017-03-01
The amygdalar nuclear complex and hippocampal/parahippocampal region are key components of the limbic system that play a critical role in emotional learning and memory. This Review discusses what is currently known about the neuroanatomy and neurotransmitters involved in amygdalo-hippocampal interconnections, their functional roles in learning and memory, and their involvement in mnemonic dysfunctions associated with neuropsychiatric and neurological diseases. Tract tracing studies have shown that the interconnections between discrete amygdalar nuclei and distinct layers of individual hippocampal/parahippocampal regions are robust and complex. Although it is well established that glutamatergic pyramidal cells in the amygdala and hippocampal region are the major players mediating interconnections between these regions, recent studies suggest that long-range GABAergic projection neurons are also involved. Whereas neuroanatomical studies indicate that the amygdala only has direct interconnections with the ventral hippocampal region, electrophysiological studies and behavioral studies investigating fear conditioning and extinction, as well as amygdalar modulation of hippocampal-dependent mnemonic functions, suggest that the amygdala interacts with dorsal hippocampal regions via relays in the parahippocampal cortices. Possible pathways for these indirect interconnections, based on evidence from previous tract tracing studies, are discussed in this Review. Finally, memory disorders associated with dysfunction or damage to the amygdala, hippocampal region, and/or their interconnections are discussed in relation to Alzheimer's disease, posttraumatic stress disorder (PTSD), and temporal lobe epilepsy. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Navigation system for robot-assisted intra-articular lower-limb fracture surgery.
Dagnino, Giulio; Georgilas, Ioannis; Köhler, Paul; Morad, Samir; Atkins, Roger; Dogramadzi, Sanja
2016-10-01
In the surgical treatment for lower-leg intra-articular fractures, the fragments have to be positioned and aligned to reconstruct the fractured bone as precisely as possible, to allow the joint to function correctly again. Standard procedures use 2D radiographs to estimate the desired reduction position of bone fragments. However, optimal correction in a 3D space requires 3D imaging. This paper introduces a new navigation system that uses pre-operative planning based on 3D CT data and intra-operative 3D guidance to virtually reduce lower-limb intra-articular fractures. Physical reduction in the fractures is then performed by our robotic system based on the virtual reduction. 3D models of bone fragments are segmented from CT scan. Fragments are pre-operatively visualized on the screen and virtually manipulated by the surgeon through a dedicated GUI to achieve the virtual reduction in the fracture. Intra-operatively, the actual position of the bone fragments is provided by an optical tracker enabling real-time 3D guidance. The motion commands for the robot connected to the bone fragment are generated, and the fracture physically reduced based on the surgeon's virtual reduction. To test the system, four femur models were fractured to obtain four different distal femur fracture types. Each one of them was subsequently reduced 20 times by a surgeon using our system. The navigation system allowed an orthopaedic surgeon to virtually reduce the fracture with a maximum residual positioning error of [Formula: see text] (translational) and [Formula: see text] (rotational). Correspondent physical reductions resulted in an accuracy of 1.03 ± 0.2 mm and [Formula: see text], when the robot reduced the fracture. Experimental outcome demonstrates the accuracy and effectiveness of the proposed navigation system, presenting a fracture reduction accuracy of about 1 mm and [Formula: see text], and meeting the clinical requirements for distal femur fracture reduction procedures.
Rodríguez-Martínez, Jesús; Richards, Ronald T.
2000-01-01
The development potential of ground-water resources in the karst limestone of northwestern Puerto Rico, in an area extending from the Río Camuy to Aguadilla, is uncertain as a result of limited knowledge of the location of areas where a high density of cavities (interconnected fractures, conduits, and other dissolution features) might suggest the occurrence of high water yields. The presence in northwestern Puerto Rico of numerous coastal submarine springs, cavernous porosity in some of the wells, and rivers with entrenched and underground paths, indicate that it is probable that water-bearing, subterranean interconnected cavities occur in the area between the Río Camuy and Aguadilla. The number of exploratory wells needed to determine the location of these conduits or zones of enhanced secondary porosity could be substantially reduced if more information were available about the location of these subterranean features, greatly reducing the drilling costs associated with a trial-and-error exploratory process. A 3-year study was conducted by the U.S. Geological Survey, in cooperation with the Puerto Rico Aqueduct and Sewer Authority, to detect the presence of cavities that might suggest the occurrence of conduit-controlled groundwater flow. Aerial photographs, geologic and topographic maps, and field reconnaissance were used to identify such linear terrain features as ridges, entrenched canyons, and fracture traces. Natural potential and gravity geophysical methods were also used. The following sites were selected for the aerial photograph interpretation and geophysical testing: Caimital Bajo uplands and former Ramey Air Force Base in Aguadilla; Quebrada de los Cedros between Aguadilla and Isabela; the University of Puerto Rico Agricultural Experiment Station, Otilio dairy farm, and Pozo Brujo in Isabela; the Monte Encantado area in Moca and Isabela; and the Rio Camuy cave system in Hatillo and Camuy. In general, the degree of success varied with site and the geophysical method used. At some sites such as Pozo Brujo, the University of Puerto Rico Agricultural Experiment Station, and Monte Encantado area, natural potential anomalies strongly suggest the existence of conduits with flowing water. At most sites, however, the results obtained did not clearly reveal the presence of subsurface cavities that might be associated with the occurrence of conduit-controlled ground-water flow. Sites such as the University of Puerto Rico Agricultural Experiment Station, Pozo Brujo, and Quebrada de los Cedros warrant a more detailed analysis, including a test well drilling phase to confirm the presence of suspected high-yield water-bearing zones.
222Rn transport in a fractured crystalline rock aquifer: Results from numerical simulations
Folger, P.F.; Poeter, E.; Wanty, R.B.; Day, W.; Frishman, D.
1997-01-01
Dissolved 222Rn concentrations in ground water from a small wellfield underlain by fractured Middle Proterozoic Pikes Peak Granite southwest of Denver, Colorado range from 124 to 840 kBq m-3 (3360-22700 pCi L-1). Numerical simulations of flow and transport between two wells show that differences in equivalent hydraulic aperture of transmissive fractures, assuming a simplified two-fracture system and the parallel-plate model, can account for the different 222Rn concentrations in each well under steady-state conditions. Transient flow and transport simulations show that 222Rn concentrations along the fracture profile are influenced by 222Rn concentrations in the adjoining fracture and depend on boundary conditions, proximity of the pumping well to the fracture intersection, transmissivity of the conductive fractures, and pumping rate. Non-homogeneous distribution (point sources) of 222Rn parent radionuclides, uranium and 226Ra, can strongly perturb the dissolved 222Rn concentrations in a fracture system. Without detailed information on the geometry and hydraulic properties of the connected fracture system, it may be impossible to distinguish the influence of factors controlling 222Rn distribution or to determine location of 222Rn point sources in the field in areas where ground water exhibits moderate 222Rn concentrations. Flow and transport simulations of a hypothetical multifracture system consisting of ten connected fractures, each 10 m in length with fracture apertures ranging from 0.1 to 1.0 mm, show that 222Rn concentrations at the pumping well can vary significantly over time. Assuming parallel-plate flow, transmissivities of the hypothetical system vary over four orders of magnitude because transmissivity varies with the cube of fracture aperture. The extreme hydraulic heterogeneity of the simple hypothetical system leads to widely ranging 222Rn values, even assuming homogeneous distribution of uranium and 226Ra along fracture walls. Consequently, it is concluded that 222Rn concentrations vary, not only with the geometric and stress factors noted above, but also according to local fracture aperture distribution, local groundwater residence time, and flux of 222Rn from parent radionuclides along fracture walls.
High-Performance Computing for the Electromagnetic Modeling and Simulation of Interconnects
NASA Technical Reports Server (NTRS)
Schutt-Aine, Jose E.
1996-01-01
The electromagnetic modeling of packages and interconnects plays a very important role in the design of high-speed digital circuits, and is most efficiently performed by using computer-aided design algorithms. In recent years, packaging has become a critical area in the design of high-speed communication systems and fast computers, and the importance of the software support for their development has increased accordingly. Throughout this project, our efforts have focused on the development of modeling and simulation techniques and algorithms that permit the fast computation of the electrical parameters of interconnects and the efficient simulation of their electrical performance.
A “fullerene-carbon nanotube” structure with tunable mechanical properties
NASA Astrophysics Data System (ADS)
Ji, W. M.; Zhang, L. W.; Liew, K. M.
2018-03-01
Carbon-based nanostructures have drawn tremendous research interest and become promising building blocks for the new generation of smart sensors and devices. Utilizing a bottom-up strategy, the chemical interconnecting sp 3 covalent bond between carbon building blocks is an efficient way to enhance its Young's modulus and ductility. The formation of sp 3 covalent bond, however, inevitably degrades its ultimate tensile strength caused by stress concentration at the junction. By performing a molecular dynamics simulation of tensile deformation for a fullerene-carbon nanotube (FCNT) structure, we propose a tunable strategy in which fullerenes with various angle energy absorption capacities are utilized as building blocks to tune their ductile behavior, while still maintaining a good ultimate tensile strength of the carbon building blocks. A higher ultimate tensile strength is revealed with the reduction of stress concentration at the junction. A brittle-to-ductile transition during the tensile deformation is detected through the structural modification. The development of ductile behavior is attributed to the improvement of energy propagation ability during the fracture initiation, in which the released energy from bonds fracture is mitigated properly, leading to the further development of mechanical properties.
MBus: An Ultra-Low Power Interconnect Bus for Next Generation Nanopower Systems
Pannuto, Pat; Lee, Yoonmyung; Kuo, Ye-Sheng; Foo, ZhiYoong; Kempke, Benjamin; Kim, Gyouho; Dreslinski, Ronald G.; Blaauw, David; Dutta, Prabal
2015-01-01
As we show in this paper, I/O has become the limiting factor in scaling down size and power toward the goal of invisible computing. Achieving this goal will require composing optimized and specialized—yet reusable—components with an interconnect that permits tiny, ultra-low power systems. In contrast to today’s interconnects which are limited by power-hungry pull-ups or high-overhead chip-select lines, our approach provides a superset of common bus features but at lower power, with fixed area and pin count, using fully synthesizable logic, and with surprisingly low protocol overhead. We present MBus, a new 4-pin, 22.6 pJ/bit/chip chip-to-chip interconnect made of two “shoot-through” rings. MBus facilitates ultra-low power system operation by implementing automatic power-gating of each chip in the system, easing the integration of active, inactive, and activating circuits on a single die. In addition, we introduce a new bus primitive: power oblivious communication, which guarantees message reception regardless of the recipient’s power state when a message is sent. This disentangles power management from communication, greatly simplifying the creation of viable, modular, and heterogeneous systems that operate on the order of nanowatts. To evaluate the viability, power, performance, overhead, and scalability of our design, we build both hardware and software implementations of MBus and show its seamless operation across two FPGAs and twelve custom chips from three different semiconductor processes. A three-chip, 2.2 mm3 MBus system draws 8 nW of total system standby power and uses only 22.6 pJ/bit/chip for communication. This is the lowest power for any system bus with MBus’s feature set. PMID:26855555
MBus: An Ultra-Low Power Interconnect Bus for Next Generation Nanopower Systems.
Pannuto, Pat; Lee, Yoonmyung; Kuo, Ye-Sheng; Foo, ZhiYoong; Kempke, Benjamin; Kim, Gyouho; Dreslinski, Ronald G; Blaauw, David; Dutta, Prabal
2015-06-01
As we show in this paper, I/O has become the limiting factor in scaling down size and power toward the goal of invisible computing. Achieving this goal will require composing optimized and specialized-yet reusable-components with an interconnect that permits tiny, ultra-low power systems. In contrast to today's interconnects which are limited by power-hungry pull-ups or high-overhead chip-select lines, our approach provides a superset of common bus features but at lower power, with fixed area and pin count, using fully synthesizable logic, and with surprisingly low protocol overhead. We present MBus , a new 4-pin, 22.6 pJ/bit/chip chip-to-chip interconnect made of two "shoot-through" rings. MBus facilitates ultra-low power system operation by implementing automatic power-gating of each chip in the system, easing the integration of active, inactive, and activating circuits on a single die. In addition, we introduce a new bus primitive: power oblivious communication, which guarantees message reception regardless of the recipient's power state when a message is sent. This disentangles power management from communication, greatly simplifying the creation of viable, modular, and heterogeneous systems that operate on the order of nanowatts. To evaluate the viability, power, performance, overhead, and scalability of our design, we build both hardware and software implementations of MBus and show its seamless operation across two FPGAs and twelve custom chips from three different semiconductor processes. A three-chip, 2.2 mm 3 MBus system draws 8 nW of total system standby power and uses only 22.6 pJ/bit/chip for communication. This is the lowest power for any system bus with MBus's feature set.
Dagnino, Giulio; Georgilas, Ioannis; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja
2016-03-01
Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model. The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09 mm (translations) and of [Formula: see text] (rotations), maximum observed errors in the order of 0.12 mm (translations) and of [Formula: see text] (rotations), and a reduction repeatability of 0.02 mm and [Formula: see text]. The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality.
Li, Yongming; Tong, Shaocheng
The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.
Natural fracture systems studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, J.C.; Warpinski, N.R.
The objectives of this program are (1) to develop a basinal-analysis methodology for natural fracture exploration and exploitation, and (2) to determine the important characteristics of natural fracture systems for use in completion, stimulation, and production operations. Natural-fracture basinal analysis begins with studies of fractures in outcrop, core and logs in order to determine the type of fracturing and the relationship of the fractures to the lithologic environment. Of particular interest are the regional fracture systems that are pervasive in western US tight sand basins. A Methodology for applying this analysis is being developed, with the goal of providing amore » structure for rationally characterizing natural fracture systems basin-wide. Such basin-wide characterizations can then be expanded and supplemented locally, at sites where production may be favorable. Initial application of this analysis is to the Piceance basin where there is a wealth of data from the Multiwell Experiment (MWX), DOE cooperative wells, and other basin studies conducted by Sandia, CER Corporation, and the USGS (Lorenz and Finley, 1989, Lorenz et aI., 1989, and Spencer and Keighin, 1984). Such a basinal approach has been capable of explaining the fracture characteristics found throughout the southern part of the Piceance basin and along the Grand Hogback.« less
Controllability of multi-agent systems with time-delay in state and switching topology
NASA Astrophysics Data System (ADS)
Ji, Zhijian; Wang, Zidong; Lin, Hai; Wang, Zhen
2010-02-01
In this article, the controllability issue is addressed for an interconnected system of multiple agents. The network associated with the system is of the leader-follower structure with some agents taking leader role and others being followers interconnected via the neighbour-based rule. Sufficient conditions are derived for the controllability of multi-agent systems with time-delay in state, as well as a graph-based uncontrollability topology structure is revealed. Both single and double integrator dynamics are considered. For switching topology, two algebraic necessary and sufficient conditions are derived for the controllability of multi-agent systems. Several examples are also presented to illustrate how to control the system to shape into the desired configurations.
Asymptotic stability and instability of large-scale systems. [using vector Liapunov functions
NASA Technical Reports Server (NTRS)
Grujic, L. T.; Siljak, D. D.
1973-01-01
The purpose of this paper is to develop new methods for constructing vector Lyapunov functions and broaden the application of Lyapunov's theory to stability analysis of large-scale dynamic systems. The application, so far limited by the assumption that the large-scale systems are composed of exponentially stable subsystems, is extended via the general concept of comparison functions to systems which can be decomposed into asymptotically stable subsystems. Asymptotic stability of the composite system is tested by a simple algebraic criterion. By redefining interconnection functions among the subsystems according to interconnection matrices, the same mathematical machinery can be used to determine connective asymptotic stability of large-scale systems under arbitrary structural perturbations.
a Fractal Network Model for Fractured Porous Media
NASA Astrophysics Data System (ADS)
Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung
2016-04-01
The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.
Koksal, Ismet; Alagoz, Fatih; Celik, Haydar; Yildirim, Ali Erdem; Akin, Tezcan; Guvenc, Yahya; Karatay, Mete; Erdem, Yavuz
An underestimated evaluation of systemic organs in cases with spinal fractures might jeopardize the intervention for treatment and future complications with an increased morbidity and mortality are almost warranted. In the present study, a retrospective analysis of spinal fracture cases associated with systemic trauma was performed to assess surgical success. A retrospective analysis of patients with thoracolumbar fractures who were admitted to the emergency unit between September 2012 and September 2014 was used for the study. The cases were categorized according to age, sex, reason of trauma, associated trauma, neurological condition and treatment details and results were analysed using SPSS 14.0 for Windows. The most common reason of trauma is detected as falls in 101 cases (64.3%). Radiological evaluation of spinal fractures revealed a compression fracture in 106 cases (67.5%) and other fractures in 51 cases (32.5%). Surgical treatment for spinal fracture was performed in 60.5% of the cases and conservative approach was preferred in 39.5% cases. In non-compressive spinal fractures, an associated pathology like head trauma, lower extremity fracture or neurological deficit was found to be higher in incidence (p < 0.05). Necessity for surgical intervention was found to be more prominent in this group (p < 0.05). However, the fracture type was not found to be associated with morbidity and mortality (p < 0.05). A surgical intervention for a spinal fracture necessitating surgery should rather be performed right after stabilization of the systemic condition which might be associated with decreased morbidity and mortality.
Understanding Processes and Timelines for Distributed Photovoltaic
data from more than 30,000 PV systems across 87 utilities in 16 states to better understand how solar photovoltaic (PV) interconnection process time frames in the United States. This study includes an analysis of Analysis Metrics" that shows the four steps involved in the utility interconnection process for solar
Electro-Optic Computing Architectures. Volume I
1998-02-01
The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit (OW
78 FR 24193 - Notice of Commission Staff Attendance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
... activities of PJM Interconnection, L.L.C. (PJM), Independent System Operator New England, Inc. (ISO-NE), and... Operator, Inc. Docket No. ER13-193-000, ISO New England Inc. Docket No. ER13-195, Indicated PJM Transmission Owners Docket No. ER13-196-000, ISO New England Inc. Docket No. ER13-198, PJM Interconnection, L.L...
78 FR 20312 - Notice of Commission Staff Attendance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... activities of PJM Interconnection, L.L.C. (PJM), Independent System Operator New England, Inc. (ISO-NE), and... Operator, Inc. Docket No. ER13-193-000, ISO New England Inc. Docket No. ER13-195, Indicated PJM Transmission Owners Docket No. ER13-196-000, ISO New England Inc. Docket No. ER13-198, PJM Interconnection, L.L...
32. View of relay assembly group and interconnecting group electronic ...
32. View of relay assembly group and interconnecting group electronic modules located on second floor of transmitter building no. 102 in MIP area. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Classifications of Acute Scaphoid Fractures: A Systematic Literature Review.
Ten Berg, Paul W; Drijkoningen, Tessa; Strackee, Simon D; Buijze, Geert A
2016-05-01
Background In the lack of consensus, surgeon-based preference determines how acute scaphoid fractures are classified. There is a great variety of classification systems with considerable controversies. Purposes The purpose of this study was to provide an overview of the different classification systems, clarifying their subgroups and analyzing their popularity by comparing citation indexes. The intention was to improve data comparison between studies using heterogeneous fracture descriptions. Methods We performed a systematic review of the literature based on a search of medical literature from 1950 to 2015, and a manual search using the reference lists in relevant book chapters. Only original descriptions of classifications of acute scaphoid fractures in adults were included. Popularity was based on citation index as reported in the databases of Web of Science (WoS) and Google Scholar. Articles that were cited <10 times in WoS were excluded. Results Our literature search resulted in 308 potentially eligible descriptive reports of which 12 reports met the inclusion criteria. We distinguished 13 different (sub) classification systems based on (1) fracture location, (2) fracture plane orientation, and (3) fracture stability/displacement. Based on citations numbers, the Herbert classification was most popular, followed by the Russe and Mayo classifications. All classification systems were based on plain radiography. Conclusions Most classification systems were based on fracture location, displacement, or stability. Based on the controversy and limited reliability of current classification systems, suggested research areas for an updated classification include three-dimensional fracture pattern etiology and fracture fragment mobility assessed by dynamic imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, B.
1999-02-01
This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. Themore » technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.« less
Systems and methods for locating and imaging proppant in an induced fracture
Aldridge, David F.; Bartel, Lewis C.
2016-02-02
Born Scattering Inversion (BSI) systems and methods are disclosed. A BSI system may be incorporated in a well system for accessing natural gas, oil and geothermal reserves in a geologic formation beneath the surface of the Earth. The BSI system may be used to generate a three-dimensional image of a proppant-filled hydraulically-induced fracture in the geologic formation. The BSI system may include computing equipment and sensors for measuring electromagnetic fields in the vicinity of the fracture before and after the fracture is generated, adjusting the parameters of a first Born approximation model of a scattered component of the surface electromagnetic fields using the measured electromagnetic fields, and generating the image of the proppant-filled fracture using the adjusted parameters.
NASA Astrophysics Data System (ADS)
McCreedy, Frank P.; Sample, John T.; Ladd, William P.; Thomas, Michael L.; Shaw, Kevin B.
2005-05-01
The Naval Research Laboratory"s Geospatial Information Database (GIDBTM) Portal System has been extended to now include an extensive geospatial search functionality. The GIDB Portal System interconnects over 600 distributed geospatial data sources via the Internet with a thick client, thin client and a PDA client. As the GIDB Portal System has rapidly grown over the last two years (adding hundreds of geospatial sources), the obvious requirement has arisen to more effectively mine the interconnected sources in near real-time. How the GIDB Search addresses this issue is the prime focus of this paper.
Materials for high-density electronic packaging and interconnection
NASA Technical Reports Server (NTRS)
1990-01-01
Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production.
NASA Astrophysics Data System (ADS)
Kasiński, Krzysztof; Szczygieł, Robert; Gryboś, Paweł
2011-10-01
This paper presents the prototype detector readout electronics for the STS (Silicon Tracking System) at CBM (Compressed Baryonic Matter) experiment at FAIR, GSI (Helmholtzzentrum fuer Schwerionenforschung GmbH) in Germany. The emphasis has been put on the strip detector readout chip and its interconnectivity with detector. Paper discusses the impact of the silicon strip detector and interconnection cable construction on the overall noise of the system and architecture of the TOT02 readout ASIC. The idea and problems of the double-sided silicon detector usage are also presented.
Analytical Model of Water Flow in Coal with Active Matrix
NASA Astrophysics Data System (ADS)
Siemek, Jakub; Stopa, Jerzy
2014-12-01
This paper presents new analytical model of gas-water flow in coal seams in one dimension with emphasis on interactions between water flowing in cleats and coal matrix. Coal as a flowing system, can be viewed as a solid organic material consisting of two flow subsystems: a microporous matrix and a system of interconnected macropores and fractures. Most of gas is accumulated in the microporous matrix, where the primary flow mechanism is diffusion. Fractures and cleats existing in coal play an important role as a transportation system for macro scale flow of water and gas governed by Darcy's law. The coal matrix can imbibe water under capillary forces leading to exchange of mass between fractures and coal matrix. In this paper new partial differential equation for water saturation in fractures has been formulated, respecting mass exchange between coal matrix and fractures. Exact analytical solution has been obtained using the method of characteristics. The final solution has very simple form that may be useful for practical engineering calculations. It was observed that the rate of exchange of mass between the fractures and the coal matrix is governed by an expression which is analogous to the Newton cooling law known from theory of heat exchange, but in present case the mass transfer coefficient depends not only on coal and fluid properties but also on time and position. The constant term of mass transfer coefficient depends on relation between micro porosity and macro porosity of coal, capillary forces, and microporous structure of coal matrix. This term can be expressed theoretically or obtained experimentally. W artykule zaprezentowano nowy model matematyczny przepływu wody i gazu w jednowymiarowej warstwie węglowej z uwzględnieniem wymiany masy między systemem szczelin i matrycą węglową. Węgiel jako system przepływowy traktowany jest jako układ o podwójnej porowatości i przepuszczalności, składający się z mikroporowatej matrycy węglowej oraz z systemu szczelin, spękań i ewentualnie największych porów. Przepływowi w systemie szczelin towarzyszyć może wymiana masy z matrycą, której intensywność zależy m.in. od właściwości węgla i warunków panujących w układzie przepływowym. W szczególności matryca węglowa może pochłaniać wodę pod wpływem sił kapilarnych, co wpływa na przepływ w szczelinach. W artykule zostało zaproponowane równanie różniczkowe cząstkowe opisujące nasycenie wodą w systemie szczelin z uwzględnieniem wymiany masy z matrycą pod wpływem sił kapilarnych. Podano dokładne rozwiązanie analityczne, które może być zastosowane w praktyce inżynierskiej. Zauważono, że szybkość wymiany masy między szczelinami i matrycą wyraża się formułą analogiczną do prawa stygnięcia Newtona, ale w analizowanym przypadku współczynnik wymiany masy zależy nie tylko od właściwości węgla i płynów ale również od położenia i czasu. Stały człon tego współczynnika może być obliczony teoretycznie lub wyznaczony eksperymentalnie
Cybersecurity through Real-Time Distributed Control Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger A; Manges, Wayne W; MacIntyre, Lawrence Paul
2010-04-01
Critical infrastructure sites and facilities are becoming increasingly dependent on interconnected physical and cyber-based real-time distributed control systems (RTDCSs). A mounting cybersecurity threat results from the nature of these ubiquitous and sometimes unrestrained communications interconnections. Much work is under way in numerous organizations to characterize the cyber threat, determine means to minimize risk, and develop mitigation strategies to address potential consequences. While it seems natural that a simple application of cyber-protection methods derived from corporate business information technology (IT) domain would lead to an acceptable solution, the reality is that the characteristics of RTDCSs make many of those methods inadequatemore » and unsatisfactory or even harmful. A solution lies in developing a defense-in-depth approach that ranges from protection at communications interconnect levels ultimately to the control system s functional characteristics that are designed to maintain control in the face of malicious intrusion. This paper summarizes the nature of RTDCSs from a cybersecurity perspec tive and discusses issues, vulnerabilities, candidate mitigation approaches, and metrics.« less
Compact holographic optical neural network system for real-time pattern recognition
NASA Astrophysics Data System (ADS)
Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.
1996-08-01
One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.
Liu, Derong; Wang, Ding; Li, Hongliang
2014-02-01
In this paper, using a neural-network-based online learning optimal control approach, a novel decentralized control strategy is developed to stabilize a class of continuous-time nonlinear interconnected large-scale systems. First, optimal controllers of the isolated subsystems are designed with cost functions reflecting the bounds of interconnections. Then, it is proven that the decentralized control strategy of the overall system can be established by adding appropriate feedback gains to the optimal control policies of the isolated subsystems. Next, an online policy iteration algorithm is presented to solve the Hamilton-Jacobi-Bellman equations related to the optimal control problem. Through constructing a set of critic neural networks, the cost functions can be obtained approximately, followed by the control policies. Furthermore, the dynamics of the estimation errors of the critic networks are verified to be uniformly and ultimately bounded. Finally, a simulation example is provided to illustrate the effectiveness of the present decentralized control scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Sudipta
Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of the electric power systems. Some of the urgent areas for research, as identified by inverter manufacturers, installers and utilities, are potential for transient overvoltage from PV inverters, multi-inverter anti-islanding, impact of smart inverters on volt-VAR support, impact of bidirectional power flow, and potential for distributed generation curtailment solutions to mitigate grid stability challenges. Under this project, NREL worked with SolarCity to address these challenges through research, testing and analysis at the Energy System Integration Facility (ESIF). Inverters from differentmore » manufacturers were tested at ESIF and NREL's unique power hardware-in-the-loop (PHIL) capability was utilized to evaluate various system-level impacts. Through the modeling, simulation, and testing, this project eliminated critical barriers on high PV penetration and directly supported the Department of Energy's SunShot goal of increasing the solar PV on the electrical grid.« less
Vibration isolation mounting system
NASA Technical Reports Server (NTRS)
Carter, Sam D. (Inventor); Bastin, Paul H. (Inventor)
1995-01-01
A system is disclosed for mounting a vibration producing device onto a spacecraft structure and also for isolating the vibration forces thereof from the structure. The system includes a mount on which the device is securely mounted and inner and outer rings. The rings and mount are concentrically positioned. The system includes a base (secured to the structure) and a set of links which are interconnected by a set of torsion bars which allow and resist relative rotational movement therebetween. The set of links are also rotatably connected to a set of brackets which are rigidly connected to the outer ring. Damped leaf springs interconnect the inner and outer rings and the mount allow relative translational movement therebetween in X and Y directions. The links, brackets and base are interconnected and configured so that they allow and resist translational movement of the device in the Z direction so that in combination with the springs they provide absorption of vibrational energy produced by the device in all three dimensions while providing rotational stiffness about all three axes to prevent undesired rotational motions.
Algebraic Systems and Pushdown Automata
NASA Astrophysics Data System (ADS)
Petre, Ion; Salomaa, Arto
We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.
The Binary System Laboratory Activities Based on Students Mental Model
NASA Astrophysics Data System (ADS)
Albaiti, A.; Liliasari, S.; Sumarna, O.; Martoprawiro, M. A.
2017-09-01
Generic science skills (GSS) are required to develop student conception in learning binary system. The aim of this research was to know the improvement of students GSS through the binary system labotoratory activities based on their mental model using hypothetical-deductive learning cycle. It was a mixed methods embedded experimental model research design. This research involved 15 students of a university in Papua, Indonesia. Essay test of 7 items was used to analyze the improvement of students GSS. Each items was designed to interconnect macroscopic, sub-microscopic and symbolic levels. Students worksheet was used to explore students mental model during investigation in laboratory. The increase of students GSS could be seen in their N-Gain of each GSS indicators. The results were then analyzed descriptively. Students mental model and GSS have been improved from this study. They were interconnect macroscopic and symbolic levels to explain binary systems phenomena. Furthermore, they reconstructed their mental model with interconnecting the three levels of representation in Physical Chemistry. It necessary to integrate the Physical Chemistry Laboratory into a Physical Chemistry course for effectiveness and efficiency.
Neural Network Model For Fast Learning And Retrieval
NASA Astrophysics Data System (ADS)
Arsenault, Henri H.; Macukow, Bohdan
1989-05-01
An approach to learning in a multilayer neural network is presented. The proposed network learns by creating interconnections between the input layer and the intermediate layer. In one of the new storage prescriptions proposed, interconnections are excitatory (positive) only and the weights depend on the stored patterns. In the intermediate layer each mother cell is responsible for one stored pattern. Mutually interconnected neurons in the intermediate layer perform a winner-take-all operation, taking into account correlations between stored vectors. The performance of networks using this interconnection prescription is compared with two previously proposed schemes, one using inhibitory connections at the output and one using all-or-nothing interconnections. The network can be used as a content-addressable memory or as a symbolic substitution system that yields an arbitrarily defined output for any input. The training of a model to perform Boolean logical operations is also described. Computer simulations using the network as an autoassociative content-addressable memory show the model to be efficient. Content-addressable associative memories and neural logic modules can be combined to perform logic operations on highly corrupted data.
Comparing Effects of Cluster-Coupled Patterns on Opinion Dynamics
NASA Astrophysics Data System (ADS)
Liu, Yun; Si, Xia-Meng; Zhang, Yan-Chao
2012-07-01
Community structure is another important feature besides small-world and scale-free property of complex networks. Communities can be coupled through specific fixed links between nodes, or occasional encounter behavior. We introduce a model for opinion evolution with multiple cluster-coupled patterns, in which the interconnectivity denotes the coupled degree of communities by fixed links, and encounter frequency controls the coupled degree of communities by encounter behaviors. Considering the complicated cognitive system of people, the CODA (continuous opinions and discrete actions) update rules are used to mimic how people update their decisions after interacting with someone. It is shown that, large interconnectivity and encounter frequency both can promote consensus, reduce competition between communities and propagate some opinion successfully across the whole population. Encounter frequency is better than interconnectivity at facilitating the consensus of decisions. When the degree of social cohesion is same, small interconnectivity has better effects on lessening the competence between communities than small encounter frequency does, while large encounter frequency can make the greater degree of agreement across the whole populations than large interconnectivity can.
Bali, Rishi K.; Sharma, Parveen; Jindal, Shalu; Gaba, Shivani
2013-01-01
Aims: The present study was undertaken to evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures and to study the morbidity associated with the use of biodegradable plates and screws. Materials and Methods: This prospective study consisted of 10 patients with maxillofacial fractures requiring open reduction and internal fixation. Fractures with infection, comminuted and pathological fractures were excluded. All were plated with biodegradable system (Inion CPS) using standard plating principles and observed for a total period of 24 weeks. Characteristics of the fractures, ease of use of bioresorbable plate/screw system and post operative complications were assessed. Results: Of total 10 patients, eight patients were of midface fracture and two pediatric patients with mandibular fracture, with nine male and one female. The mean age was 32.8 years. Out of 20 plates and 68 screws applied to the 10 fractures sites; there were three incidences of screw breakage with no other intraoperative difficulties. Paresthesia of the infraorbital nerve was present in two patients, and recovered completely in four weeks after surgery. Fracture reduction was considered to be satisfactory in all cases. One patient developed postsurgical infection and was managed with oral antibiotics and analgesics. Conclusions: Favorable healing can be observed through the use of biodegradable plates and screws to stabilize selected midface fractures in patients of all ages, as well as mandible fractures in early childhood, however further studies with more sample size are required. PMID:24665170
Bali, Rishi K; Sharma, Parveen; Jindal, Shalu; Gaba, Shivani
2013-07-01
The present study was undertaken to evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures and to study the morbidity associated with the use of biodegradable plates and screws. This prospective study consisted of 10 patients with maxillofacial fractures requiring open reduction and internal fixation. Fractures with infection, comminuted and pathological fractures were excluded. All were plated with biodegradable system (Inion CPS) using standard plating principles and observed for a total period of 24 weeks. Characteristics of the fractures, ease of use of bioresorbable plate/screw system and post operative complications were assessed. Of total 10 patients, eight patients were of midface fracture and two pediatric patients with mandibular fracture, with nine male and one female. The mean age was 32.8 years. Out of 20 plates and 68 screws applied to the 10 fractures sites; there were three incidences of screw breakage with no other intraoperative difficulties. Paresthesia of the infraorbital nerve was present in two patients, and recovered completely in four weeks after surgery. Fracture reduction was considered to be satisfactory in all cases. One patient developed postsurgical infection and was managed with oral antibiotics and analgesics. Favorable healing can be observed through the use of biodegradable plates and screws to stabilize selected midface fractures in patients of all ages, as well as mandible fractures in early childhood, however further studies with more sample size are required.
Reliability models applicable to space telescope solar array assembly system
NASA Technical Reports Server (NTRS)
Patil, S. A.
1986-01-01
A complex system may consist of a number of subsystems with several components in series, parallel, or combination of both series and parallel. In order to predict how well the system will perform, it is necessary to know the reliabilities of the subsystems and the reliability of the whole system. The objective of the present study is to develop mathematical models of the reliability which are applicable to complex systems. The models are determined by assuming k failures out of n components in a subsystem. By taking k = 1 and k = n, these models reduce to parallel and series models; hence, the models can be specialized to parallel, series combination systems. The models are developed by assuming the failure rates of the components as functions of time and as such, can be applied to processes with or without aging effects. The reliability models are further specialized to Space Telescope Solar Arrray (STSA) System. The STSA consists of 20 identical solar panel assemblies (SPA's). The reliabilities of the SPA's are determined by the reliabilities of solar cell strings, interconnects, and diodes. The estimates of the reliability of the system for one to five years are calculated by using the reliability estimates of solar cells and interconnects given n ESA documents. Aging effects in relation to breaks in interconnects are discussed.
Low, Dennis J.; Conger, Randall W.
2003-01-01
Between October 2002 and January 2003, geophysical logging was conducted in six boreholes at the Berks Sand Pit Superfund Site, Longswamp Township, Berks County, Pa., to determine (1) the waterproducing zones, water-receiving zones, zones of vertical borehole flow, orientation of fractures, and borehole and casing depth; and (2) the hydraulic interconnection between the six boreholes and the site extraction well. The boreholes range in depth from 61 to 270 feet. Geophysical logging included collection of caliper, natural-gamma, single-point-resistance, fluid-temperature, fluid-flow, and acoustic-televiewer logs. Caliper and acoustic-televiewer logs were used to locate fractures, joints, and weathered zones. Inflections on fluid-temperature and single-point-resistance logs indicated possible water-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance, natural-gamma, and geologist logs provided information on stratigraphy. Flowmeter measurements were conducted while the site extraction well was pumping and when it was inactive to determine the hydraulic connections between the extraction well and the boreholes.Borehole geophysical logging and heatpulse flowmetering indicate active flow in the boreholes. Two of the boreholes are in ground-water discharge areas, two boreholes are in ground-water recharge areas, and one borehole is in an intermediate regime. Flow was not determined in one borehole. Heatpulse flowmetering, in conjunction with the geologist logs, indicates highly weathered zones in the granitic gneiss can be permeable and effective transmitters of water, confirming the presence of a two-tiered ground-water-flow system. The effort to determine a hydraulic connection between the site extraction well and six logged boreholes was not conclusive. Three boreholes showed decreases in depth to water after pumping of the site extraction well; in two boreholes, the depth to water increased. One borehole was cased its entire depth and was not revisited after it was logged by the caliper log. Substantial change in flow rates or direction of borehole flow was not observed in any of the three wells logged with the heatpulse flowmeter when the site extraction well was pumping and when it was inactive.
Dense modifiable interconnections utilizing photorefractive volume holograms
NASA Astrophysics Data System (ADS)
Psaltis, Demetri; Qiao, Yong
1990-11-01
This report describes an experimental two-layer optical neural network built at Caltech. The system uses photorefractive volume holograms to implement dense, modifiable synaptic interconnections and liquid crystal light valves (LCVS) to perform nonlinear thresholding operations. Kanerva's Sparse, Distributed Memory was implemented using this network and its ability to recognize handwritten character-alphabet (A-Z) has been demonstrated experimentally. According to Kanerva's model, the first layer has fixed, random weights of interconnections and the second layer is trained by sum-of-outer-products rule. After training, the recognition rates of the network on the training set (104 patterns) and test set (520 patterns) are 100 and 50 percent, respectively.
Packaging Technology Designed, Fabricated, and Assembled for High-Temperature SiC Microsystems
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu
2003-01-01
A series of ceramic substrates and thick-film metalization-based prototype microsystem packages designed for silicon carbide (SiC) high-temperature microsystems have been developed for operation in 500 C harsh environments. These prototype packages were designed, fabricated, and assembled at the NASA Glenn Research Center. Both the electrical interconnection system and the die-attach scheme for this packaging system have been tested extensively at high temperatures. Printed circuit boards used to interconnect these chip-level packages and passive components also are being fabricated and tested. NASA space and aeronautical missions need harsh-environment, especially high-temperature, operable microsystems for probing the inner solar planets and for in situ monitoring and control of next-generation aeronautical engines. Various SiC high-temperature-operable microelectromechanical system (MEMS) sensors, actuators, and electronics have been demonstrated at temperatures as high as 600 C, but most of these devices were demonstrated only in the laboratory environment partially because systematic packaging technology for supporting these devices at temperatures of 500 C and beyond was not available. Thus, the development of a systematic high-temperature packaging technology is essential for both in situ testing and the commercialization of high-temperature SiC MEMS. Researchers at Glenn developed new prototype packages for high-temperature microsystems using ceramic substrates (aluminum nitride and 96- and 90-wt% aluminum oxides) and gold (Au) thick-film metalization. Packaging components, which include a thick-film metalization-based wirebond interconnection system and a low-electrical-resistance SiC die-attachment scheme, have been tested at temperatures up to 500 C. The interconnection system composed of Au thick-film printed wire and 1-mil Au wire bond was tested in 500 C oxidizing air with and without 50-mA direct current for over 5000 hr. The Au thick-film metalization-based wirebond electrical interconnection system was also tested in an extremely dynamic thermal environment to assess thermal reliability. The I-V curve1 of a SiC high-temperature diode was measured in oxidizing air at 500 C for 1000 hr to electrically test the Au thick-film material-based die-attach assembly.
WDM mid-board optics for chip-to-chip wavelength routing interconnects in the H2020 ICT-STREAMS
NASA Astrophysics Data System (ADS)
Kanellos, G. T.; Pleros, N.
2017-02-01
Multi-socket server boards have emerged to increase the processing power density on the board level and further flatten the data center networks beyond leaf-spine architectures. Scaling however the number of processors per board puts current electronic technologies into challenge, as it requires high bandwidth interconnects and high throughput switches with increased number of ports that are currently unavailable. On-board optical interconnection has proved the potential to efficiently satisfy the bandwidth needs, but their use has been limited to parallel links without performing any smart routing functionality. With CWDM optical interconnects already a commodity, cyclical wavelength routing proposed to fit the datacom for rack-to-rack and board-to-board communication now becomes a promising on-board routing platform. ICT-STREAMS is a European research project that aims to combine WDM parallel on-board transceivers with a cyclical AWGR, in order to create a new board-level, chip-to-chip interconnection paradigm that will leverage WDM parallel transmission to a powerful wavelength routing platform capable to interconnect multiple processors with unprecedented bandwidth and throughput capacity. Direct, any-to-any, on-board interconnection of multiple processors will significantly contribute to further flatten the data centers and facilitate east-west communication. In the present communication, we present ICT-STREAMS on-board wavelength routing architecture for multiple chip-to-chip interconnections and evaluate the overall system performance in terms of throughput and latency for several schemes and traffic profiles. We also review recent advances of the ICT-STREAMS platform key-enabling technologies that span from Si in-plane lasers and polymer based electro-optical circuit boards to silicon photonics transceivers and photonic-crystal amplifiers.
Three phase power conversion system for utility interconnected PV applications
NASA Astrophysics Data System (ADS)
Porter, David G.
1999-03-01
Omnion Power Engineering Corporation has developed a new three phase inverter that improves the cost, reliability, and performance of three phase utility interconnected photovoltaic inverters. The inverter uses a new, high manufacturing volume IGBT bridge that has better thermal performance than previous designs. A custom easily manufactured enclosure was designed. Controls were simplified to increase reliability while maintaining important user features.
Making a Computer Model of the Most Complex System Ever Built - Continuum
Eastern Interconnection, all as a function of time. All told, that's about 1,000 gigabytes of data the modeling software steps forward in time, those decisions affect how the grid operates under Interconnection at five-minute intervals for one year would have required more than 400 days of computing time
Seismic Characterizations of Fractures: Dynamic Diagnostics
NASA Astrophysics Data System (ADS)
Pyrak-Nolte, L. J.
2017-12-01
Fracture geometry controls fluid flow in a fracture, affects mechanical stability and influences energy partitioning that affects wave scattering. Our ability to detect and monitor fracture evolution is controlled by the frequency of the signal used to probe a fracture system, i.e. frequency selects the scales. No matter the frequency chosen, some set of discontinuities will be optimal for detection because different wavelengths sample different subsets of fractures. The select subset of fractures is based on the stiffness of the fractures which in turn is linked to fluid flow. A goal is obtaining information from scales outside the optimal detection regime. Fracture geometry trajectories are a potential approach to drive a fracture system across observation scales, i.e. moving systems between effective medium and scattering regimes. Dynamic trajectories (such as perturbing stress, fluid pressure, chemical alteration, etc.) can be used to perturb fracture geometry to enhance scattering or give rise to discrete modes that are intimately related to the micro-structural evolution of a fracture. However, identification of these signal features will require methods for identifying these micro-structural signatures in complicated scattered fields. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).
NASA Astrophysics Data System (ADS)
Whitaker, Fiona F.; Smart, Peter L.
1997-10-01
On the east coast of South Andros Island, Bahamas, a major bank-marginal fracture system characterised by vertically extensive cavern systems (blue holes) is developed sub-parallel to the steep-sided deep-water re-entrant of the Tongue of the Ocean. In addition to providing a discharge route for meteoric, mixed and geochemically evolved saline groundwaters, a strong local circulation occurs along the fracture system. This generates enhanced vertical mixing within voids of the fracture system, evidenced by the increasing mixing zone thickness, and the thinning and increasing salinity of brackish lens waters from north to south along the fracture system. Furthermore, tidally driven pumping of groundwaters occurs between the fracture and adjacent carbonate aquifer affecting a zone up to 200 m either side of the fracture. The resultant mixing of groundwaters of contrasting salinity and PCO 2 within and along the fracture system and with the surrounding aquifer waters, together with bacterial oxidation of organic matter, generates significant potential for locally enhanced diagenesis. Undersaturation with respect to calcite within the fresh (or brackish)-salt water mixing zone is observed in the fracture system and predicted in the adjacent aquifer, while mixing between the brackish fracture lens and surrounding high PCO 2 fresh waters causes dissolution of aragonite but not calcite. The latter gives rise to considerable secondary porosity development, because active tidal pumping ensures continued renewal of dissolutional potential. This is evidenced by calcium and strontium enrichment in the brackish lens which indicates porosity generation by aragonite dissolution at a maximum rate of 0.35% ka -1, up to twice the average estimated for the fresh water lens. In contrast saline groundwaters are depleted in calcium relative to open ocean waters suggesting the formation of calcite cements. The development of a major laterally continuous cavernous fracture zone along the margin of the carbonate platform permits enhanced groundwater flow and mixing which may result in generation of a diagenetic `halo' at a scale larger than that generally recognised around syn-sedimentary fractures in fossil carbonates. This may be characterised by increased secondary porosity where a relative fall in sea-level results in exposure and formation of a meteoric groundwater system, or cementation by `marine' calcite both below this meteoric system, and where the bank surface is flooded by seawater.
Analysis Tools for Interconnected Boolean Networks With Biological Applications.
Chaves, Madalena; Tournier, Laurent
2018-01-01
Boolean networks with asynchronous updates are a class of logical models particularly well adapted to describe the dynamics of biological networks with uncertain measures. The state space of these models can be described by an asynchronous state transition graph, which represents all the possible exits from every single state, and gives a global image of all the possible trajectories of the system. In addition, the asynchronous state transition graph can be associated with an absorbing Markov chain, further providing a semi-quantitative framework where it becomes possible to compute probabilities for the different trajectories. For large networks, however, such direct analyses become computationally untractable, given the exponential dimension of the graph. Exploiting the general modularity of biological systems, we have introduced the novel concept of asymptotic graph , computed as an interconnection of several asynchronous transition graphs and recovering all asymptotic behaviors of a large interconnected system from the behavior of its smaller modules. From a modeling point of view, the interconnection of networks is very useful to address for instance the interplay between known biological modules and to test different hypotheses on the nature of their mutual regulatory links. This paper develops two new features of this general methodology: a quantitative dimension is added to the asymptotic graph, through the computation of relative probabilities for each final attractor and a companion cross-graph is introduced to complement the method on a theoretical point of view.
Final Technical Report for Automated Manufacturing of Innovative CPV/PV Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okawa, David
Cogenra’s Dense Cell Interconnect system was designed to use traditional front-contact cells and string them together into high efficiency and high reliability “supercells”. This novel stringer allows one to take advantage of the ~100 GW/year of existing cell production capacity and create a solar product for the customer that will produce more power and last longer than traditional PV products. The goal for this program was for Cogenra Solar to design and develop a first-of-kind automated solar manufacturing line that produces strings of overlapping cells or “supercells” based on Cogenra’s Dense Cell Interconnect (DCI) technology for their Low Concentration Photovoltaicmore » (LCPV) systems. This will enable the commercialization of DCI technology to improve the efficiency, reliability and economics for their Low Concentration Photovoltaic systems. In this program, Cogenra Solar very successfully designed, developed, built, installed, and started up the ground-breaking manufacturing tools required to assemble supercells. Cogenra then successfully demonstrated operation of the integrated line at high yield and throughput far exceeding expectations. The development of a supercell production line represents a critical step toward a high volume and low cost Low Concentration Photovoltaic Module with Dense Cell Interconnect technology and has enabled the evaluation of the technology for reliability and yield. Unfortunately, performance and cost headwinds on Low Concentration Photovoltaics systems including lack of diffuse capture (10-15% hit) and more expensive tracker requirements resulted in a move away from LCPV technology. Fortunately, the versatility of Dense Cell Interconnect technology allows for application to flat plate module technology as well and Cogenra has worked with the DOE to utilize the learning from this grant to commercialize DCI technology for the solar market through the on-going grant: Catalyzing PV Manufacturing in the US With Cogenra Solar’s Next-Generation Dense Cell Interconnect PV Module Manufacturing Technology. This program is now very successfully building off of this work and commercializing the technology to enable increased solar adoption.« less
3D reconstruction of highly fragmented bone fractures
NASA Astrophysics Data System (ADS)
Willis, Andrew; Anderson, Donald; Thomas, Thad; Brown, Thomas; Marsh, J. Lawrence
2007-03-01
A system for the semi-automatic reconstruction of highly fragmented bone fractures, developed to aid in treatment planning, is presented. The system aligns bone fragment surfaces derived from segmentation of volumetric CT scan data. Each fragment surface is partitioned into intact- and fracture-surfaces, corresponding more or less to cortical and cancellous bone, respectively. A user then interactively selects fracture-surface patches in pairs that coarsely correspond. A final optimization step is performed automatically to solve the N-body rigid alignment problem. The work represents the first example of a 3D bone fracture reconstruction system and addresses two new problems unique to the reconstruction of fractured bones: (1) non-stationary noise inherent in surfaces generated from a difficult segmentation problem and (2) the possibility that a single fracture surface on a fragment may correspond to many other fragments.
Mravec, Boris; Gidron, Yori; Kukanova, Barbara; Bizik, Jozef; Kiss, Alexander; Hulin, Ivan
2006-11-01
For the precise coordination of systemic functions, the nervous system uses a variety of peripherally and centrally localized receptors, which transmit information from internal and external environments to the central nervous system. Tight interconnections between the immune, nervous, and endocrine systems provide a base for monitoring and consequent modulation of immune system functions by the brain and vice versa. The immune system plays an important role in tumorigenesis. On the basis of rich interconnections between the immune, nervous and endocrine systems, the possibility that the brain may be informed about tumorigenesis is discussed in this review article. Moreover, the eventual modulation of tumorigenesis by central nervous system is also considered. Prospective consequences of the interactions between tumor and brain for diagnosis and therapy of cancer are emphasized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krakowiak, Konrad J., E-mail: kjkrak@mit.edu; Thomas, Jeffrey J., E-mail: JThomas39@slb.com; Musso, Simone, E-mail: SMusso@slb.com
2015-01-15
With ever more challenging (T,p) environments for cementing applications in oil and gas wells, there is a need to identify the fundamental mechanisms of fracture resistant oil well cements. We report results from a multi-technique investigation of behavior and properties of API class G cement and silica-enriched cement systems subjected to hydrothermal curing from 30 °C to 200 °C; including electron probe microanalysis, X-ray diffraction, thermogravimetry analysis, electron microscopy, neutron scattering (SANS), and fracture scratch testing. The results provide a new insight into the link between system chemistry, micro-texture and micro-fracture toughness. We suggest that the strong correlation found betweenmore » chemically modulated specific surface and fracture resistance can explain the drop in fracture properties of neat oil-well cements at elevated temperatures; the fracture property enhancement in silica-rich cement systems, between 110° and 175 °C; and the drop in fracture properties of such systems through prolonged curing over 1 year at 200 °C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liss, W.; Dybel, M.; West, R.
This report covers the first year's work performed by the Gas Technology Institute and Encorp Inc. under subcontract to the National Renewable Energy Laboratory. The objective of this three-year contract is to develop innovative grid interconnection and control systems. This supports the advancement of distributed generation in the marketplace by making installations more cost-effective and compatible across the electric power and energy management systems. Specifically, the goals are: (1) To develop and demonstrate cost-effective distributed power grid interconnection products and software and communication solutions applicable to improving the economics of a broad range of distributed power systems, including existing, emerging,more » and other power generation technologies. (2) To enhance the features and capabilities of distributed power products to integrate, interact, and provide operational benefits to the electric power and advanced energy management systems. This includes features and capabilities for participating in resource planning, the provision of ancillary services, and energy management. Specific topics of this report include the development of an advanced controller, a power sensing board, expanded communication capabilities, a revenue-grade meter interface, and a case study of an interconnection distributed power system application that is a model for demonstrating the functionalities of the design of the advanced controller.« less
Role of Systemic and Local Antibiotics in the Treatment of Open Fractures.
Carver, David C; Kuehn, Sean B; Weinlein, John C
2017-04-01
The orthopedic community has learned much about the treatment of open fractures from the tremendous work of Ramon Gustilo, Michael Patzakis, and others; however, open fractures continue to be very difficult challenges. Type III open fractures continue to be associated with high infection rates. Some combination of systemic and local antibiotics may be most appropriate in these high-grade open fractures. Further research is still necessary in determining optimal systemic antibiotic regimens as well as the role of local antibiotics. Any new discoveries related to novel systemic antibiotics or local antibiotic carriers will need to be evaluated related to cost. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, J.C.; Warpinski, N.R.; Sattler, A.R.
A model is presented that suggests that regional fracture systems commonly control permeability in flat-lying reservoirs. Such fractures are distributed in a continuum of sizes and occur in subparallel, en echelon patterns. Few high-angle, orthogonal fractures exist because this system is created by high pore pressures and relatively low differential horizontal (tectonic) stresses rather than by significant structural deformation. Interfracture communication occurs primarily at infrequent, low-angle intersections of fractures. Vertical continuity of such fractures through a reservoir commonly is limited to the numerous lithologic discontinuities inherent in nonmarine sandstones. This type of fracture system has been documented in Mesaverede rocksmore » in the Rulison field of the Piceance Creek basin, northwestern Colorado, by studies of 4,300 ft (1310 m) of core from the U.S. DOE's three Multiwell Experiment (MWX) wells and by studies of the excellent nearby outcrops. Well test results and geologic data from core and outcrop support the model. The described natural fracture system has a significant effect on production and stimulation.« less
NASA Astrophysics Data System (ADS)
Massiot, Cécile; Nicol, Andrew; McNamara, David D.; Townend, John
2017-08-01
Analysis of fracture orientation, spacing, and thickness from acoustic borehole televiewer (BHTV) logs and cores in the andesite-hosted Rotokawa geothermal reservoir (New Zealand) highlights potential controls on the geometry of the fracture system. Cluster analysis of fracture orientations indicates four fracture sets. Probability distributions of fracture spacing and thickness measured on BHTV logs are estimated for each fracture set, using maximum likelihood estimations applied to truncated size distributions to account for sampling bias. Fracture spacing is dominantly lognormal, though two subordinate fracture sets have a power law spacing. This difference in spacing distributions may reflect the influence of the andesitic sequence stratification (lognormal) and tectonic faults (power law). Fracture thicknesses of 9-30 mm observed in BHTV logs, and 1-3 mm in cores, are interpreted to follow a power law. Fractures in thin sections (˜5 μm thick) do not fit this power law distribution, which, together with their orientation, reflect a change of controls on fracture thickness from uniform (such as thermal) controls at thin section scale to anisotropic (tectonic) at core and BHTV scales of observation. However, the ˜5% volumetric percentage of fractures within the rock at all three scales suggests a self-similar behavior in 3-D. Power law thickness distributions potentially associated with power law fluid flow rates, and increased connectivity where fracture sets intersect, may cause the large permeability variations that occur at hundred meter scales in the reservoir. The described fracture geometries can be incorporated into fracture and flow models to explore the roles of fracture connectivity, stress, and mineral precipitation/dissolution on permeability in such andesite-hosted geothermal systems.
Otremski, Hila; Dolkart, Oleg; Atlan, Franck; Hutt, Dan; Segev, Elad; Pritsch, Tamir; Rosenblatt, Yishai
2018-06-01
Intraoperative hairline longitudinal fractures were recently reported in association with distal radius volar plating. Our aim was to further analyze this newly described complication. A retrospective radiographic and chart review was performed on 225 patients who underwent distal radius plating between June 2013 and June 2015. The Acu-Loc/Acu-Loc2© plating system (Acumed, Hillsboro, OR, USA) was used in 208 cases, and the VariAx© plating system (Stryker, Kalamazoo, MI, USA) was used in 17 cases. Three independent reviewers performed a blind evaluation of all relevant radiographs for the occurrence of longitudinal fractures around the plate, and validity was considered only when there was agreement among all three of them. Hairline longitudinal fractures were identified in 57 cases (25%), 55 with the Acu-Loc/Acu-Loc2© system and 2 with the VariAx© system. All fractures occurred with volar plating. Fracture occurrence was associated with age over 59 years, female gender, extra-articular fractures, and the use of Hexalobe screws (Acu-Loc/Acu-Loc2© system). We believe that the source of fracture occurrence lies within the screw design and that better screw design and possibly tapping in patients at risk may reduce the occurrence of intraoperative hairline longitudinal fractures. Further clinical and biomechanical research is needed to better understand this newly reported complication.
Fracture behavior of the Space Shuttle thermal protection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komine, A.; Kobayashi, A.S.
1983-09-01
Stable crack-growth and fracture-toughness experiments were conducted using precracked specimens machined from LI-900 reusable surface insulation (RSI) tiles of the Space Shuttle thermal protection system (TPS) at room temperature. Similar fracture experiments were conducted on fracture specimens with preexisting cracks at the interface of the tile and the strain isolation pad (SIP). Stable crack growth was not observed in the LI-900 tile fracture specimens which had a fracture toughness of 12.0 kPa sq rt of m. The intermittent subcritical crack growth at the tile-pad interface of the fracture specimens was attributed to successive local pull-outs due to tensile overload inmore » the LI-900 tile and cannot be characterized by linear elastic fracture mechanics. No subcritical interfacial crack growth was observed in the fracture specimens with densified LI-900 tiles where brittle fracture initiated at an interior point away from the densification. 11 references.« less
Behavioral modeling of VCSELs for high-speed optical interconnects
NASA Astrophysics Data System (ADS)
Szczerba, Krzysztof; Kocot, Chris
2018-02-01
Transition from on-off keying to 4-level pulse amplitude modulation (PAM) in VCSEL based optical interconnects allows for an increase of data rates, at the cost of 4.8 dB sensitivity penalty. The resulting strained link budget creates a need for accurate VCSEL models for driver integrated circuit (IC) design and system level simulations. Rate equation based equivalent circuit models are convenient for the IC design, but system level analysis requires computationally efficient closed form behavioral models based Volterra series and neural networks. In this paper we present and compare these models.
Science network resources: Distributed systems
NASA Technical Reports Server (NTRS)
Cline, Neal
1991-01-01
The Master Directory, which is overview information about whole data sets, is outlined. The data system environment is depicted. The question is explored of what is a prototype international directory including purpose and features. Advantages of on-line directories are listed. Interconnected directory assumptions are given. A description of given of DIF (Directory Interchange Format), which is an exchange file for directory information, along with information content of DIF and directories. The directory population status is given in a percentage viewgraph. The present and future directory interconnections status at GSFC is also listed.
Stumm, Frederick; Chu, Anthony; Joesten, Peter K.; Noll, Michael L.; Como, Michael D.
2013-01-01
Advanced borehole-geophysical methods were used to investigate the hydrogeology of the crystalline bedrock in 36 boreholes on the northernmost part of New York County, New York, for the construction of a utilities tunnel beneath the Harlem River. The borehole-logging techniques were used to delineate bedrock fractures, foliation, and groundwater-flow zones in test boreholes at the site. Fracture indexes of the deep boreholes ranged from 0.65 to 0.76 per foot. Most of the fracture populations had either northwest to southwest or east to southeast dip azimuths with moderate dip angles. The mean foliation dip azimuth ranged from 100º to 124º southeast with dip angles of 52º to 60º. Groundwater appears to flow through an interconnected network of fractures that are affected by tidal variations from the nearby Harlem River and tunnel construction dewatering operations. The transmissivities of the 3 boreholes tested (USGS-1, USGS-3, and USGS-4), calculated from specific capacity data, were 2, 48, and 30 feet squared per day (ft2/d), respectively. The highest transmissivities were observed in wells north and west of the secant ring. Three borehole-radar velocity tomograms were collected. In the USGS-1 and USGS-4 velocity tomogram there are two areas of low radar velocity. The first is at the top of the tomogram and runs from 105 ft below land surface (BLS) at USGS-4 and extends to 125 ft BLS at USGS-1, the second area is centered at a depth of 150 ft BLS at USGS-1 and 135 to 150 ft BLS at USGS-4. Field measurements of specific conductance of 14 boreholes under ambient conditions at the site indicate an increase in conductivity toward the southwest part of the site (nearest the Harlem River). Specific conductance ranged from 107 microsiemens per centimeter (μS/cm) (borehole 63C) to 11,000 μS/cm (borehole 79B). The secant boreholes had the highest specific conductance.
Fracture Development within the Karaha-Telaga Bodas Geothermal Field, Indonesia
Nemcok, M.; Moore, J.N.; Allis, R.; McCulloch, J.
2002-01-01
Karaha-Telaga Bodas is a partially vapor-dominated geothermal system located in an active volcano in western Java. More than 2 dozen geothermal wells have been drilled to depths of 3 km. Detailed paragenetic and fluid-inclusion studies have defined liquid-dominated, transitional and vapor-dominated stages in the evolution of this system. The liquid-dominated stage was initiated by shallow magma intrusion into the base of the volcanic cone. Lava and pyroclastic flows capped a geothermal system. The uppermost andesite flows were only weakly fractured due to the insulating effect of the intervening altered pyroclastics, which absorbed the deformation. Shear and tensile fractures were filled with carbonates at shallow depths and by quartz, epidote and actinolite at depths and temperatures over 1km and 300??C. The system underwent numerous local cycles of overpressuring, which are marked by subhorizontal tensile fractures, anastomosing tensile fractures and implosion breccias. The development of the liquid system was interrupted by a catastrophic drop in fluid pressures. As the fluids boiled in response to this pressure drop, chalcedony and quartz were deposited in fractures having the largest apertures and steep dips. The orientations of these fractures indicate that the escaping overpressured fluids used the shortest possible paths to the surface. Vapor-dominated conditions were initiated within a vertical chimney over the still hot intrusion. As pressures declined these conditions spread outward. Downward migration of the chimney occurred as the intrusion cooled and the brittle-ductile transition migrated to greater depths. Condensate that formed at the top of the vapor-dominated zone percolated downward and lowsalinity meteoric water entered the marginal parts of the system. Calcite, anhydrite, and fluorite precipitated in fractures upon heating. A progressive sealing of the fractures occurred, resulting in the downward migration of the cap rock. In response to decreasing pore pressures in the expanding vapor zone, the fracture system within the vapor-dominated reservoir progressively collapsed, leaving only residual permeability, with apertures supported by asperities or propping breccia. In places, the fractures have completely collapsed where normal stresses acting on the fracture walls exceeded the compressive strength of the wall rock.
NASA Technical Reports Server (NTRS)
Jackson, M. E.
1995-01-01
This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.
Does the Modified Gartland Classification Clarify Decision Making?
Leung, Sophia; Paryavi, Ebrahim; Herman, Martin J; Sponseller, Paul D; Abzug, Joshua M
2018-01-01
The modified Gartland classification system for pediatric supracondylar fractures is often utilized as a communication tool to aid in determining whether or not a fracture warrants operative intervention. This study sought to determine the interobserver and intraobserver reliability of the Gartland classification system, as well as to determine whether there was agreement that a fracture warranted operative intervention regardless of the classification system. A total of 200 anteroposterior and lateral radiographs of pediatric supracondylar humerus fractures were retrospectively reviewed by 3 fellowship-trained pediatric orthopaedic surgeons and 2 orthopaedic residents and then classified as type I, IIa, IIb, or III. The surgeons then recorded whether they would treat the fracture nonoperatively or operatively. The κ coefficients were calculated to determine interobserver and intraobserver reliability. Overall, the Wilkins-modified Gartland classification has low-moderate interobserver reliability (κ=0.475) and high intraobserver reliability (κ=0.777). A low interobserver reliability was found when differentiating between type IIa and IIb (κ=0.240) among attendings. There was moderate-high interobserver reliability for the decision to operate (κ=0.691) and high intraobserver reliability (κ=0.760). Decreased interobserver reliability was present for decision to operate among residents. For fractures classified as type I, the decision to operate was made 3% of the time and 27% for type IIa. The decision was made to operate 99% of the time for type IIb and 100% for type III. There is almost full agreement for the nonoperative treatment of Type I fractures and operative treatment for type III fractures. There is agreement that type IIb fractures should be treated operatively and that the majority of type IIa fractures should be treated nonoperatively. However, the interobserver reliability for differentiating between type IIa and IIb fractures is low. Our results validate the Gartland classfication system as a method to help direct treatment of pediatric supracondylar humerus fractures, although the modification of the system, IIa versus IIb, seems to have limited reliability and utility. Terminology based on decision to treat may lead to a more clinically useful classification system in the evaluation and treatment of pediatric supracondylar humerus fractures. Level III-diagnostic studies.
Proximal tibial fractures: early experience using polyaxial locking-plate technology.
Nikolaou, Vassilios S; Tan, Hiang Boon; Haidukewych, George; Kanakaris, Nikolaos; Giannoudis, Peter V
2011-08-01
Between 2004 and 2009, 60 patients with proximal tibial fractures were included in this prospective study. All fractures were treated with the polyaxial locked-plate fixation system (DePuy, Warsaw, IN, USA). Clinical and radiographic data, including fracture pattern, changes in alignment, local and systemic complications, hardware failure and fracture union were analysed. The mean follow-up was 14 (12-36) months. According to the Orthopaedic Trauma Association (OTA) classification, there were five 41-A, 28 41-B and 27 41-C fractures. Fractures were treated percutaneously in 30% of cases. Double-plating was used in 11 cases. All but three fractures progressed to union at a mean of 3.2 (2.5-5) months. There was no evidence of varus collapse as a result of polyaxial screw failure. No plate fractured, and no screw cut out was noted. There was one case of lateral joint collapse (>10°) in a patient with open bicondylar plateau fracture. The mean Knee Society Score at the time of final follow-up was 91 points, and the mean functional score was 89 points. The polyaxial locking-plate system provided stable fixation of extra-articular and intra-articular proximal tibial fractures and good functional outcomes with a low complication rate.
Treatment of Pediatric Condylar Fractures: A 20-Year Experience.
Ghasemzadeh, Ali; Mundinger, Gerhard S; Swanson, Edward W; Utria, Alan F; Dorafshar, Amir H
2015-12-01
The purpose of this study was to define patterns of injury and treatment for condylar and subcondylar fractures and evaluate short-term outcomes in the pediatric population. A retrospective chart review was performed on pediatric patients with mandibular condylar fractures who presented between 1990 and 2010. Computed tomographic imaging was reviewed for all patients to assess fracture characteristics. Mandibular fractures were codified using the Strasbourg Osteosynthesis Research Group and Lindahl classification methods. Sixty-four patients with 92 condylar fractures were identified. Of these patients, 29 had isolated condylar fracture and 35 had a condylar fracture associated with an additional mandibular arch fracture. The most common fracture patterns were diacapitular fracture in the Strasbourg Osteosynthesis Research Group system (n = 46) and vertical condylar head fracture in the Lindahl system (n = 14). Condylar fracture with additional mandibular arch fractures were treated with maxillomandibular fixation more often than patients with condylar fracture [n = 40 (74.1 percent) versus n = 14 (25.9 percent); p = 0.004]. No condylar fracture was treated in an open fashion. Forty-three patients returned for follow-up. The median follow-up period was 81 days (interquartile range, 35 to 294 days). Ten patients had complications (23.3 percent). The most common complication was malocclusion (n = 5). Nine of 10 patients with complications had condylar fracture with an additional mandibular arch fracture. Closed treatment of condylar fractures yields satisfactory results in pediatric patients. Pediatric patients with condylar fractures combined with additional arch fractures experience a higher rate of unfavorable outcomes.
NASA Astrophysics Data System (ADS)
Moser, D. P.; Hamilton-Brehm, S.; Zhang, G.; Fisher, J.; Hughes, K.; Wheatley, A.; Thomas, J.; Zavarin, M.; Roberts, S. K.; Kryder, L.; McRae, R.; Howard, W.; Walker, J.; Federwisch, R.; King, M.; Friese, R.; Grim, S.; Amend, J.; Momper, L.; Sherwood Lollar, B.; Onstott, T. C.
2013-12-01
Recent decades have revealed anaerobic microbial ecosystems across a range of deep, continental settings; however, aerobic, regional aquifers represent a little-studied habitat for deep life. The US' Basin and Range Province is an extensional zone defined by deep, interconnected fracture systems that span multiple hydrologic basins and host regional aquifers. Here we describe a multi-basin microbiological assessment, applied to the Death Valley Regional Flow System (DVRFS). Our group has surveyed more than thirty deep boreholes (~ 1,000 m depth average) and deeply-sourced springs across a ~170 km inferred flow path from recharge areas in volcanic and carbonate rock highlands of the Nevada National Security Site (NNSS) and the Spring Mountains to discharge zones in Oasis, Amargosa, and Death Valleys. DVRFS waters were characterized by temperatures of 30 - 50 oC and the presence of dissolved O2 (4 - 8 mg/L in the recharge areas and ~0.2 - 2 mg/L in the discharge zones). Planktonic microbial populations, as tracked by molecular DNA approaches (e.g. 454 pyrotag), were of low abundance (e.g. ~ 10e3 ~10e6 per mL) and dominated by Proteobacteria and Nitrospirae. Archaea were also present and dominated by novel Thaumarchaeotes. Patterns of microbial diversity and the hypothesis that these patterns may have utility for recognition of hydrologic connectivity were assessed by statistical tools. At the species level, cosmopolitan, system-wide, and flow-path-specific groupings of both bacteria and archaea were detected. Even when in close proximity to aerobic springs and wells, sites sampling deep, hot, anaerobic groundwaters possessed completely distinct microbial populations (e.g. dominance by Firmicutes, ANME, and predicted methanogens). Among methodological refinements developed from this work, the repeated sampling of one deep borehole over a month-long pump test revealed that well-bore-associated contaminants required several days of pumping for complete removal and enabled the identification of the specific depth that produced most of the water. Our results reveal details of microbial community structure for a common, but little-studied microbial ecosystem and support the concept that regional flow systems possess distinct microbial populations, consistent with their geochemical and hydrologic characteristics. These results generally support the concept that microbial populations may have utility as amplifiable tracers for tracking the connectivity of fluids in the subsurface.
Systems Integration Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-01
This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstrationmore » projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.« less
Decentralized state estimation for a large-scale spatially interconnected system.
Liu, Huabo; Yu, Haisheng
2018-03-01
A decentralized state estimator is derived for the spatially interconnected systems composed of many subsystems with arbitrary connection relations. An optimization problem on the basis of linear matrix inequality (LMI) is constructed for the computations of improved subsystem parameter matrices. Several computationally effective approaches are derived which efficiently utilize the block-diagonal characteristic of system parameter matrices and the sparseness of subsystem connection matrix. Moreover, this decentralized state estimator is proved to converge to a stable system and obtain a bounded covariance matrix of estimation errors under certain conditions. Numerical simulations show that the obtained decentralized state estimator is attractive in the synthesis of a large-scale networked system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.; Balas, M. J.
1980-01-01
A novel interconnection of distributed parameter system (DPS) identification and adaptive filtering is presented, which culminates in a common statement of coupled autoregressive, moving-average expansion or parallel infinite impulse response configuration adaptive parameterization. The common restricted complexity filter objectives are seen as similar to the reduced-order requirements of the DPS expansion description. The interconnection presents the possibility of an exchange of problem formulations and solution approaches not yet easily addressed in the common finite dimensional lumped-parameter system context. It is concluded that the shared problems raised are nevertheless many and difficult.
Centralized database for interconnection system design. [for spacecraft
NASA Technical Reports Server (NTRS)
Billitti, Joseph W.
1989-01-01
A database application called DFACS (Database, Forms and Applications for Cabling and Systems) is described. The objective of DFACS is to improve the speed and accuracy of interconnection system information flow during the design and fabrication stages of a project, while simultaneously supporting both the horizontal (end-to-end wiring) and the vertical (wiring by connector) design stratagems used by the Jet Propulsion Laboratory (JPL) project engineering community. The DFACS architecture is centered around a centralized database and program methodology which emulates the manual design process hitherto used at JPL. DFACS has been tested and successfully applied to existing JPL hardware tasks with a resulting reduction in schedule time and costs.
NASA Astrophysics Data System (ADS)
Wang, Zian; Li, Shiguang; Yu, Ting
2015-12-01
This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.
2015-10-26
Conductance in Nanocarbon Thermal Interconnects", in Proceedings of Workshop on Innovative Nanoscale Devices and Systems, Eds. Koji Ishibashi, Stephen M...Workshop on Innovative Nanoscale Devices and Systems, Eds. Viktor Sverdlov, Berry Jonker, Siegfried Selberherr, Koji Ishibashi, Stephen M. Goodnick...Proceedings of Workshop on Innovative Nanoscale Devices and Systems, Eds. Koji Ishibashi, Stephen M. Goodnick, Siegfried Selberherr, Akira Fujiwara (12/2-7
2017-02-01
enable high scalability and reconfigurability for inter-CPU/Memory communications with an increased number of communication channels in frequency ...interconnect technology (MRFI) to enable high scalability and re-configurability for inter-CPU/Memory communications with an increased number of communication ...testing in the University of California, Los Angeles (UCLA) Center for High Frequency Electronics, and Dr. Afshin Momtaz at Broadcom Corporation for
Study of a Wind Energy Conversion System in New Hampshire.
1981-08-01
Federal Jurisdiction Prior to PURPA ........ . 91 2) State Jurisdiction Prior to PURPA .... ....... 93 3) The Contemplated Effect of PURPA on the FERC’s...Jurisdictional Powers ..... ...... 94 (a) Definitions and Concepts of PURPA ... .. 95 (b) Analysis of Wheeling and Interconnection . 96 (i) FPA 9 210...Regarding Certain Interconnection and Wheeling ...... .. ........ 97 (c) PURPA § 210, Cogeneration and Small Power Production ...... ... ... .. 98 b
NASA Astrophysics Data System (ADS)
Dinetta, L. C.; Hannon, M. H.
1995-10-01
Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.
1995-01-01
Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.
Is Surgical Navigation Useful During Closed Reduction of Nasal Bone Fractures?
Kim, Seon Tae; Jung, Joo Hyun; Kang, Il Gyu
2017-05-01
To report the case of a 42-year-old woman with a nasal bone fracture that was easily treated using a surgical navigation system. In this clinical report, the authors suggest that intraoperative surgical navigation systems are useful diagnostically and for localizing sites of nasal bone fractures exactly. The patient underwent successful closed reduction of the nasal bone fracture. Surgical navigation is a useful tool for identifying nasal bone fracture locations and for guiding closed reduction. Surgical navigation is recommended when nasal bone fractures are complicated or not well reduced using the ordinary method.
On the self-organized critical state of Vesuvio volcano
NASA Astrophysics Data System (ADS)
Luongo, G.; Mazzarella, A.; Palumbo, A.
1996-01-01
The catalogue of volcanic earthquakes recorded at Vesuvio (1972-1993) is shown to be complete for events with magnitude enclosed between 1.8 and 3.0. Such a result is converted in significant fractal laws (power laws) relating the distribution of earthquakes to the distribution of energy release, seismic moment, size of fractured zone and linear dimension of faults. The application of the Cantor dust model to time sequence of Vesuvio seismic and eruptive events allows the determination of significant time-clustering fractal structures. In particular, the Vesuvio eruptive activity shows a double-regime process with a stronger clustering on short-time scales than on long-time scales. The complexity of the Vesuvio system does not depend on the number of geological, geophysical and geochemical factors that govern it, but mainly on the number of their interconnections, on the intensity of such linkages and on the feed-back processes. So, all the identified fractal features are taken as evidence that the Vesuvio system is in a self-organized critical state i.e., in a marginally stable state in which a small perturbation can start a chain reaction that can lead to catastrophe. After the catatrophe, the system regulates itself and begins a new cycle, not necessarily periodic, that will end with a successive catastrophe. The variations of the fractal dimension and of the specific scale ranges, in which the fractal behaviour is found to hold, serve as possible volcanic predictors reflecting changes of the same volcanic process.
NASA Astrophysics Data System (ADS)
Lin, Chih-Kuang; Liu, Yu-An; Wu, Si-Han; Liu, Chien-Kuo; Lee, Ruey-Yi
2015-04-01
Effects of reducing environment and thermal aging on the joint strength of a BaO-B2O3-Al2O3-SiO2 glass-ceramic sealant (GC-9) with a ferritic-stainless-steel interconnect (Crofer 22 H) for planar solid oxide fuel cells are investigated. A technique is developed for conducting mechanical tests at room temperature and 800 °C in H2-7 vol% H2O under shear and tensile loadings. Given an aged condition and loading mode, the joint strength at 800 °C is lower than that at room temperature in the given humidified hydrogen atmosphere. A thermal aging at 800 °C in H2-7 vol% H2O for 100 h or 1000 h enhances both shear and tensile joint strengths at room temperature but degrades them at 800 °C in the same reducing environment. Non-aged specimens show a comparable joint strength and fracture mode when tested in humidified hydrogen and in air under a given loading mode and testing temperature. The shear strength at 800 °C for joint specimens after a 1000-h thermal aging at 800 °C in air or humidified hydrogen is reduced by a similar extent of 19%, compared to the counterpart of non-aged joint specimens tested in the same oxidizing or reducing environment.
A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering
Feng, Pei; Niu, Man; Gao, Chengde; Peng, Shuping; Shuai, Cijun
2014-01-01
In this study, nano-hydroxyapatite scaffolds with high mechanical strength and an interconnected porous structure were prepared using NTSS for the first time. The first step was performed using a laser characterized by the rapid heating to skip the surface diffusion and to obtain the driving force for grain boundary diffusion. Additionally, the interconnected porous structure was achieved by SLS. The second step consisted of isothermal heating in a furnace at a lower temperature (T2) than that of the laser beam to further increase the density and to suppress grain growth by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration. The results indicated that the mechanical properties first increased and then decreased as T2 was increased from 1050 to 1250°C. The optimal fracture toughness, compressive strength and stiffness were 1.69 MPam1/2, 18.68 MPa and 245.79 MPa, respectively. At the optimal point, the T2 was 1100°C, the grain size was 60 nm and the relative density was 97.6%. The decrease in mechanical properties was due to the growth of grains and the decomposition of HAP. The cytocompatibility test results indicated that cells adhered and spread well on the scaffolds. A bone-like apatite layer formed, indicating good bioactivity. PMID:24998362
Accommodation folding and magmatic intrusions in the Vøring Basin, Norwegian Sea
NASA Astrophysics Data System (ADS)
Omosanya, K. O.; Johansen, S. E.; Eruteya, O. E.; Waldmann, N.
2016-12-01
The geometry and growth of volcanic-related accommodation folds remain an interesting topic for both the academia and petroleum industry as these can serve as hydrocarbon traps, which directly result from the forceful emplacement of volcanic sills in the shallow subsurface. In this study, we employed a high-resolution 3D seismic reflection data to characterize the geometry and the development of a regional forced fold in the Vøring Basin, Norwegian Sea. The volcanic sills were interpreted based on the principles of volcanostratigraphy and are recognized as positive high-amplitude anomalies with similar polarity as the seabed reflection. The interpreted fold covers ca. 78 km2 with amplitude of ca. 770 m and it is underlain by an extensive complex of interconnected sills. The volcanic sills are emplaced at depths of 4000 to 5000 ms, where they include saucer-shaped, sub-vertical to transgressive sills. The accommodation fold is interfered by E-W extensional faults and several fractures related to hydrothermal vents in the southern and western parts. The overlying overburden is in turn deformed and structurally compartmentalized through regional buckling. In this work, we demonstrate that accommodation folding is formed in response to the emplacement of several interconnected sills during the opening of the Northern Atlantic Ocean. The interpreted accommodation fold characterized here represents one of the largest documented known structures so far and has important implications for hydrocarbon exploration.
NASA Astrophysics Data System (ADS)
Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.
2012-10-01
In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.
NASA Astrophysics Data System (ADS)
Hassanzadeh, H.; Jafari Raad, S. M.
2017-12-01
Linear stability analysis is conducted to study the onset of buoyancy-driven convection involved in solubility trapping of CO2 into deep fractured aquifers. In this study, the effect of fracture network physical properties on the stability criteria in a brine-rich fractured porous layer is investigated using dual porosity concept for both single and variable matrix block size distributions. Linear stability analysis results show that both fracture interporosity flow and fracture storativity factors play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in a fractured rock with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations that relate the onset of convective instability in fractured aquifers. These findings improve our understanding of buoyancy driven flow in fractured aquifers and are particularly important in estimation of potential storage capacity, risk assessment, and storage sites characterization and screening.Keywords: CO2 sequestration; fractured rock; buoyancy-driven convection; stability analysis
Designing a monitoring network for contaminated ground water in fractured chalk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nativ, R.; Adar, E.M.; Becker, A.
1999-01-01
One of the challenges of monitoring network design in a fractured rock setting is the heterogeneity of the rocks. This paper summarizes the activities and problems associated with the monitoring of contaminated groundwater in porous, low-permeability fractured chalk in the Negev Desert, Israel. Preferential flow documented in the study area required siting the monitoring boreholes in the predominant fracture systems. Lineaments traced from aerial photographs were examined in the field to sort out the large-extension, through-going, multilayer fracture systems crossing the study area. At each proposed drilling site, these fractures were exposed below the sediment cover using trenches. Slanted boreholesmore » were drilled at a distance from the fracture systems so that each borehole would intersect the targeted fracture plane below the water table. Based on their short recovery period and contaminated ground water, these newly drilled, fracture-oriented boreholes appeared to be better connected to preferential flowpaths crossing the industrial site than the old boreholes existing on site. Other considerations concerning the drilling and logging of monitoring boreholes in a fractured media were: (1) coring provides better documentation of the vertical fracture distribution, but dry augering is less costly and enables immediate ground water sampling and the sampling of vadose rock for contaminant analysis; (2) caliper and TV camera logs appear to provide only partial information regarding the vertical fracture distribution; and (3) the information gained by deepening the monitoring boreholes and testing fractures crossing their uncased walls has to be carefully weighed against the risk of potential cross-contamination through the monitoring boreholes, which is enhanced in fractured media.« less
Supplemental Information for New York State Standardized Interconnection Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, Michael; Narang, David J.; Mather, Barry A.
This document is intended to aid in the understanding and application of the New York State Standardized Interconnection Requirements (SIR) and Application Process for New Distributed Generators 5 MW or Less Connected in Parallel with Utility Distribution Systems, and it aims to provide supplemental information and discussion on selected topics relevant to the SIR. This guide focuses on technical issues that have to date resulted in the majority of utility findings within the context of interconnecting photovoltaic (PV) inverters. This guide provides background on the overall issue and related mitigation measures for selected topics, including substation backfeeding, anti-islanding and considerationsmore » for monitoring and controlling distributed energy resources (DER).« less
Collective network for computer structures
Blumrich, Matthias A; Coteus, Paul W; Chen, Dong; Gara, Alan; Giampapa, Mark E; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd E; Steinmacher-Burow, Burkhard D; Vranas, Pavlos M
2014-01-07
A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to the needs of a processing algorithm.
Parallel processor-based raster graphics system architecture
Littlefield, Richard J.
1990-01-01
An apparatus for generating raster graphics images from the graphics command stream includes a plurality of graphics processors connected in parallel, each adapted to receive any part of the graphics command stream for processing the command stream part into pixel data. The apparatus also includes a frame buffer for mapping the pixel data to pixel locations and an interconnection network for interconnecting the graphics processors to the frame buffer. Through the interconnection network, each graphics processor may access any part of the frame buffer concurrently with another graphics processor accessing any other part of the frame buffer. The plurality of graphics processors can thereby transmit concurrently pixel data to pixel locations in the frame buffer.
Collective network for computer structures
Blumrich, Matthias A [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Chen, Dong [Croton On Hudson, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Takken, Todd E [Brewster, NY; Steinmacher-Burow, Burkhard D [Wernau, DE; Vranas, Pavlos M [Bedford Hills, NY
2011-08-16
A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.
A packet switched communications system for GRO
NASA Astrophysics Data System (ADS)
Husain, Shabu; Yang, Wen-Hsing; Vadlamudi, Rani; Valenti, Joseph
1993-11-01
This paper describes the packet switched Instrumenters Communication System (ICS) that was developed for the Command Management Facility at GSFC to support the Gamma Ray Observatory (GRO) spacecraft. The GRO ICS serves as a vital science data acquisition link to the GRO scientists to initiate commands for their spacecraft instruments. The system is ready to send and receive messages at any time, 24 hours a day and seven days a week. The system is based on X.25 and the International Standard Organization's (ISO) 7-layer Open Systems Interconnection (OSI) protocol model and has client and server components. The components of the GRO ICS are discussed along with how the Communications Subsystem for Interconnection (CSFI) and Network Control Program Packet Switching Interface (NPSI) software are used in the system.
Direct generation of event-timing equations for generalized flow shop systems
NASA Astrophysics Data System (ADS)
Doustmohammadi, Ali; Kamen, Edward W.
1995-11-01
Flow shop production lines are very common in manufacturing systems such as car assemblies, manufacturing of electronic circuits, etc. In this paper, a systematic procedure is given for generating event-timing equations directly from the machine interconnections for a generalized flow shop system. The events considered here correspond to completion times of machine operations. It is assumed that the scheduling policy is cyclic (periodic). For a given flow shop system, the open connection dynamics of the machines are derived first. Then interconnection matrices characterizing the routing of parts in the system are obtained from the given system configuration. The open connection dynamics of the machines and the interconnection matrices are then combined together to obtain the overall system dynamics given by an equation of the form X(k+1) equals A(k)X(k) B(k)V(k+1) defined over the max-plus algebra. Here the state X(k) is the vector of completion times and V(k+1) is an external input vector consisting of the arrival times of parts. It is shown that if the machines are numbered in an appropriate way and the states are selected according to certain rules, the matrix A(k) will be in a special (canonical) form. The model obtained here is useful or the analysis of system behavior and for carrying out simulations. In particular, the canonical form of A(k) enables one to study system bottlenecks and the minimal cycle time during steady-state operation. The approach presented in this paper is believed to be more straightforward compared to existing max-plus algebra formulations of flow shop systems. In particular, three advantages of the proposed approach are: (1) it yields timing equations directly from the system configuration and hence there is no need to first derive a Petri net or a digraph equivalent of the system; (2) a change in the system configuration only affects the interconnection matrices and hence does not require rederiving the entire set of equations; (3) the system model is easily put into code using existing software packages such as MATLAB.
Fixation of zygomatic and mandibular fractures with biodegradable plates.
Degala, Saikrishna; Shetty, Sujeeth; Ramya, S
2013-01-01
In this prospective study, 13 randomly selected patients underwent treatment for zygomatic-complex fractures (2 site fractures) and mandibular fractures using 1.5 / 2 / 2.5-mm INION CPS biodegradable plates and screws. To assess the fixation of zygomatic-complex and mandibular fractures with biodegradable copolymer osteosynthesis system. In randomly selected 13 patients, zygomatic-complex and mandibular fractures were plated using resorbable plates and screws using Champy's principle. All the cases were evaluated clinically and radiologically for the type of fracture, need for the intermaxillary fixation (IMF) and its duration, duration of surgery, fixation at operation, state of reduction at operation, state of bone union after operation, anatomic reduction, paresthesia, occlusal discrepancies, soft tissue infection, immediate and late inflammatory reactions related to biodegradation process, and any need for the removal of the plates. Descriptives, Frequencies, and Chi-square test were used. In our study, the age group range was 5 to 55 years. Road traffic accidents accounted for the majority of patients six, (46.2%). Postoperative occlusal discrepancies were found in seven patients as mild to moderate, which resolved with IMF for 1-8 weeks. There were minimal complications seen and only as soft tissue infection. Use of biodegradable osteosynthesis system is a reliable alternative method for the fixation of zygomatic-complex and mandibular fractures. The biodegradable system still needs to be refined in material quality and handling to match the stability achieved with metal system. Biodegradable plates and screws is an ideal system for pediatric fractures with favorable outcome.
NASA Astrophysics Data System (ADS)
Agliardi, Federico; Galletti, Laura; Riva, Federico; Zanchi, Andrea; Crosta, Giovanni B.
2017-04-01
An accurate characterization of the geometry and intensity of discontinuities in a rock mass is key to assess block size distribution and degree of freedom. These are the main controls on the magnitude and mechanisms of rock slope instabilities (structurally-controlled, step-path or mass failures) and rock mass strength and deformability. Nevertheless, the use of over-simplified discontinuity characterization approaches, unable to capture the stochastic nature of discontinuity features, often hampers a correct identification of dominant rock mass behaviour. Discrete Fracture Network (DFN) modelling tools have provided new opportunities to overcome these caveats. Nevertheless, their ability to provide a representative picture of reality strongly depends on the quality and scale of field data collection. Here we used DFN modelling with FracmanTM to investigate the influence of fracture intensity, characterized on different scales and with different techniques, on the geometry and size distribution of generated blocks, in a rock slope stability perspective. We focused on a test site near Lecco (Southern Alps, Italy), where 600 m high cliffs in thickly-bedded limestones folded at the slope scale impend on the Lake Como. We characterized the 3D slope geometry by Structure-from-Motion photogrammetry (range: 150-1500m; point cloud density > 50 pts/m2). Since the nature and attributes of discontinuities are controlled by brittle failure processes associated to large-scale folding, we performed a field characterization of meso-structural features (faults and related kinematics, vein and joint associations) in different fold domains. We characterized the discontinuity populations identified by structural geology on different spatial scales ranging from outcrops (field surveys and photo-mapping) to large slope sectors (point cloud and photo-mapping). For each sampling domain, we characterized discontinuity orientation statistics and performed fracture mapping and circular window analyses in order to measure fracture intensity (P21) and persistence (trace length distributions). Then, we calibrated DFN models for different combinations of P21/P32 and trace length distributions, characteristic of data collected on different scale. Comparing fracture patterns and block size distributions obtained from different models, we outline the strong influence of field data quality and scale on the rock mass behaviours predicted by DFN. We show that accounting for small scale features (close but short fractures) results in smaller but more interconnected blocks, eventually characterized by low removability and partly supported by intact rock strength. On the other hand, DFN based on data surveyed on slope scale enhance the structural control of persistent fracture on the kinematic degree-of freedom of medium-sized blocks, with significant impacts on the selection and parametrization of rock slope stability modelling approaches.
Surveillance for work-related skull fractures in Michigan.
Kica, Joanna; Rosenman, Kenneth D
2014-12-01
The objective was to develop a multisource surveillance system for work-related skull fractures. Records on work-related skull fractures were obtained from Michigan's 134 hospitals, Michigan's Workers' Compensation Agency and death certificates. Cases from the three sources were matched to eliminate duplicates from more than one source. Workplaces where the most severe injuries occurred were referred to OSHA for an enforcement inspection. There were 318 work related skull fractures, not including facial fractures, between 2010 and 2012. In 2012, after the inclusion of facial fractures, 316 fractures were identified of which 218 (69%) were facial fractures. The Bureau of Labor Statistic's (BLS) 2012 estimate of skull fractures in Michigan, which includes facial fractures, was 170, which was 53.8% of those identified from our review of medical records. The inclusion of facial fractures in the surveillance system increased the percentage of women identified from 15.4% to 31.2%, decreased severity (hospitalization went from 48.7% to 10.6% and loss of consciousness went from 56.5% to 17.8%), decreased falls from 48.2% to 27.6%, and increased assaults from 5.0% to 20.2%, shifted the most common industry from construction (13.3%) to health care and social assistance (15.0%) and the highest incidence rate from males 65+ (6.8 per 100,000) to young men, 20-24 years (9.6 per 100,000). Workplace inspections resulted in 45 violations and $62,750 in penalties. The Michigan multisource surveillance system of workplace injuries had two major advantages over the existing national system: (a) workplace investigations were initiated hazards identified and safety changes implemented at the facilities where the injuries occurred; and (b) a more accurate count was derived, with 86% more work-related skull fractures identified than BLS's employer based estimate. A more comprehensive system to identify and target interventions for workplace injuries was implemented using hospital and emergency department medical records. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong; You, Shutang; Tan, Jin
Nonsynchronous generations such as photovoltaics (PVs) are expected to undermine bulk power systems (BPSs)' frequency response at high penetration levels. Though the underlying mechanism has been relatively well understood, the accurate assessment and effective enhancement of the U.S. interconnections, frequency response under extra-high PV penetration conditions remains an issue. In this paper, the industry-provided full-detail interconnection models were further validated by synchrophasor frequency measurements and realistically-projected PV geographic distribution information were used to develop extra-high PV penetration scenarios and dynamic models for the three main U.S. interconnections, including Eastern Interconnection (EI), Western Electricity Coordinating Council (WECC), and Electric Reliability Councilmore » of Texas (ERCOT). Up to 65% instantaneous PV and 15% wind penetration were simulated and the frequency response change trend of each U.S. interconnection due to the increasing PV penetration level were examined. Most importantly, the practical solutions to address the declining frequency response were discussed. This paper will provide valuable guidance for policy makers, utility operators and academic researchers not only in the U.S. but also other countries in the world.« less
Liu, Yong; You, Shutang; Tan, Jin; ...
2018-01-30
Nonsynchronous generations such as photovoltaics (PVs) are expected to undermine bulk power systems (BPSs)' frequency response at high penetration levels. Though the underlying mechanism has been relatively well understood, the accurate assessment and effective enhancement of the U.S. interconnections, frequency response under extra-high PV penetration conditions remains an issue. In this paper, the industry-provided full-detail interconnection models were further validated by synchrophasor frequency measurements and realistically-projected PV geographic distribution information were used to develop extra-high PV penetration scenarios and dynamic models for the three main U.S. interconnections, including Eastern Interconnection (EI), Western Electricity Coordinating Council (WECC), and Electric Reliability Councilmore » of Texas (ERCOT). Up to 65% instantaneous PV and 15% wind penetration were simulated and the frequency response change trend of each U.S. interconnection due to the increasing PV penetration level were examined. Most importantly, the practical solutions to address the declining frequency response were discussed. This paper will provide valuable guidance for policy makers, utility operators and academic researchers not only in the U.S. but also other countries in the world.« less
Spacecraft automatic umbilical system
NASA Technical Reports Server (NTRS)
Goldin, R. W.; Jacquemin, G. G.; Johnson, W. H.
1981-01-01
An umbilical system design is described that incorporates all the features specified for a power system to payload interconnect capability. A proof-of-concept prototype of the umbilical system was built to determine experimentally the suitability of the threading characteristics of the ram mechanism and to verify freedom from cross threading. It is concluded that Berthing systems that utilize remote manipulator systems (RMS) can be simplified by using RMS targets, closed circuit TV cameras, tie into the RMS control system, and grapple-fixture and end-effector-like capture and secure mechanisms. To effect a remotely controlled umbilical interconnect in proximity with a manned spacecraft and to provide for extravehicular activity backup and maintenance capabilities, 18 different mechanisms are found to be necessary. The weight impact of proving for maintenance capability in a large multiple connector umbilical system was found to be in the order of +60 percent.
Li, Ying; Donohue, Kyna S; Robbins, Christopher B; Pennock, Andrew T; Ellis, Henry B; Nepple, Jeffrey J; Pandya, Nirav; Spence, David D; Willimon, Samuel Clifton; Heyworth, Benton E
2017-09-01
There is a recent trend toward increased surgical treatment of displaced midshaft clavicle fractures in adolescents. The primary purpose of this study was to evaluate the intrarater and interrater reliability of clavicle fracture classification systems and measurements of displacement, shortening, and angulation in adolescents. The secondary purpose was to compare 2 different measurement methods for fracture shortening. This study was performed by a multicenter study group conducting a prospective, comparative, observational cohort study of adolescent clavicle fractures. Eight raters evaluated 24 deidentified anteroposterior clavicle radiographs selected from patients 10-18 years of age with midshaft clavicle fractures. Two clavicle fracture classification systems were used, and 2 measurements for shortening, 1 measurement for superior-inferior displacement, and 2 measurements for fracture angulation were performed. A minimum of 2 weeks after the first round, the process was repeated. Intraclass correlation coefficients were calculated. Good to excellent intrarater and interrater agreement was achieved for the descriptive classification system of fracture displacement, direction of angulation, presence of comminution, and all continuous variables, including both measurements of shortening, superior-inferior displacement, and degrees of angulation. Moderate agreement was achieved for the Arbeitsgemeinschaft für Osteosynthesefragen classification system overall. Mean shortening by 2 different methods were significantly different from each other (P < 0.0001). Most radiographic measurements performed by investigators in a multicenter, prospective cohort study of adolescent clavicle fractures demonstrated good-to-excellent intrarater and interrater reliability. Future consensus on the most accurate and clinically appropriate measurement method for fracture shortening is critical.
2010-10-27
The fracture system shown in this image from NASA Mars Odyssey is on the northern margin of the Kasei Valles lowland. Fractures like this can become chaos with continued downdropping of blocks and widening fractures.
Nemcok, M.; Moore, J.N.; Allis, R.; McCulloch, J.
2004-01-01
Karaha-Telaga Bodas, a vapour-dominated geothermal system located in an active volcano in western Java, is penetrated by more than two dozen deep geothermal wells reaching depths of 3 km. Detailed paragenetic and fluid-inclusion studies from over 1000 natural fractures define the liquid-dominated, transitional and vapour-dominated stages in the evolution of this system. The liquid-dominated stage was initiated by ashallow magma intrusion into the base of the volcanic cone. Lava and pyroclastic flows capped a geothermal system. The uppermost andesite flows were only weakly fractured due to the insulating effect of the intervening altered pyroclastics, which absorbed the deformation. Shear and tensile fractures that developed were filled with carbonates at shallow depths, and by quartz, epidote and actinolite at depths and temperatures over 1 km and 300??C. The system underwent numerous cycles of overpressuring, documented by subhorizontal tensile fractures, anastomosing tensile fracture patterns and implosion breccias. The development of the liquidsystem was interrupted by a catastrophic drop in fluid pressures. As the fluids boiled in response to this pressure drop, chalcedony and quartz were selectively deposited in fractures that had the largest apertures and steep dips. The orientations of these fractures indicate that the escaping overpressured fluids used the shortest possible paths to the surface. Vapour-dominated conditions were initiated at this time within a vertical chimney overlying the still hot intrusion. As pressures declined, these conditions spread outward to form the marginal vapour-dominated region encountered in the drill holes. Downward migration of the chimney, accompanied by growth of the marginal vapour-dominated regime, occurred as the intrusion cooled and the brittle-ductile transition migrated to greater depths. As the liquids boiled off, condensate that formed at the top of the vapour-dominated zone percolated downward and low-salinity meteoric water entered the marginal parts of the system. Calcite, anhydrite and fluorite precipitated in fractures on heating. Progressive sealing of the fractures resulted in the downward migration of the cap rock. In response to decreased pore pressure in the expanding vapour zone, walls of the fracture system within the vapour-dominated reservoir progressively collapsed. It left only residual permeability in the remaining fracture volume, with apertures supported only by asperities or propping breccia. In places where normal stresses acting on the fracture walls exceeded the compressive strength of the wall rock, the fractures have completely collapsed. Fractures within the present-day cap rock include strike- and oblique-slip faults, normal faults and tensile fractures, all controlled by a strike-slip stress regime. The reservoir is characterized by normal faults and tensile fractures controlled by a normal-fault stress regime. The fractures show no evidence that the orientation of the stress field has changed since fracture propagation began. Fluid migration in the lava and pyroclastic flows is controlled by fractures. Matrix permeability controls fluid flow in the sedimentary sections of the reservoir. Productive fractures are typically roughly perpendicular to the minimum compressive stress, ??3, and are prone to slip and dilation within the modern stress regime. ?? The Geological Society of London 2004.
Treatment of Pediatric Condylar Fractures: A 20-Year Experience
Ghasemzadeh, Ali; Mundinger, Gerhard S.; Swanson, Edward W.; Utria, Alan F.; Dorafshar, Amir H.
2016-01-01
Background The purpose of this study was to define patterns of injury and treatment for condylar and subcondylar fractures and evaluate short-term outcomes in the pediatric population. Methods A retrospective chart review was performed on pediatric patients with mandibular condylar fractures who presented between 1990 and 2010. Computed tomographic imaging was reviewed for all patients to assess fracture characteristics. Mandibular fractures were codified using the Strasbourg Osteosynthesis Research Group and Lindahl classification methods. Results Sixty-four patients with 92 condylar fractures were identified. Of these patients, 29 had isolated condylar fracture and 35 had a condylar fracture associated with an additional mandibular arch fracture. The most common fracture patterns were diacapitular fracture in the Strasbourg Osteosynthesis Research Group system (n = 46) and vertical condylar head fracture in the Lindahl system (n = 14). Condylar fracture with additional mandibular arch fractures were treated with maxillomandibular fixation more often than patients with condylar fracture [n = 40 (74.1 percent) versus n = 14 (25.9 percent); p = 0.004]. No condylar fracture was treated in an open fashion. Forty-three patients returned for follow-up. The median follow-up period was 81 days (interquartile range, 35 to 294 days). Ten patients had complications (23.3 percent). The most common complication was malocclusion (n = 5). Nine of 10 patients with complications had condylar fracture with an additional mandibular arch fracture. Conclusions Closed treatment of condylar fractures yields satisfactory results in pediatric patients. Pediatric patients with condylar fractures combined with additional arch fractures experience a higher rate of unfavorable outcomes. PMID:26595021
Direct costs of osteoporosis and hip fracture: an analysis for the Mexican healthcare system.
Clark, P; Carlos, F; Barrera, C; Guzman, J; Maetzel, A; Lavielle, P; Ramirez, E; Robinson, V; Rodriguez-Cabrera, R; Tamayo, J; Tugwell, P
2008-03-01
This study reports the direct costs related to osteoporosis and hip fractures paid for governmental and private institutions in the Mexican health system and estimates the impact of these entities on Mexico. We conclude that the economic burden due to the direct costs of hip fracture justifies wide-scale prevention programs for osteoporosis (OP). To estimate the total direct costs of OP and hip fractures in the Mexican Health care system, a sample of governmental and private institutions were studied. Information was gathered through direct questionnaires in 275 OP patients and 218 hip fracture cases. Additionally, a chart review was conducted and experts' opinions obtained to get accurate protocol scenarios for diagnoses and treatment of OP with no fracture. Microcosting and activity-based costing techniques were used to yield unit costs. The total direct costs for OP and hip fracture were estimated for 2006 based on the projected annual incidence of hip fractures in Mexico. A total of 22,233 hip fracture cases were estimated for 2006 with a total cost to the healthcare system of US$ 97,058,159 for the acute treatment alone ($4,365.50 per case). We found considerable differences in costs and the way the patients were treated across the different health sectors within the country. Costs of the acute treatment of hip fractures in Mexico are high and are expected to increase with the predicted increment of life expectancy and the number of elderly in our population.
Fracture loads of all-ceramic crowns under wet and dry fatigue conditions.
Borges, Gilberto A; Caldas, Danilo; Taskonak, Burak; Yan, Jiahau; Sobrinho, Lourenco Correr; de Oliveira, Wildomar José
2009-12-01
The aim of this study was to test the hypothesis that fracture loads of fatigued dental ceramic crowns are affected by testing environment and luting cement. One hundred and eighty crowns were prepared from bovine teeth using a lathe. Ceramic crowns were prepared from three types of ceramic systems: an alumina-infiltrated ceramic, a lithia-disilicate-based glass ceramic, and a leucite-reinforced ceramic. For each ceramic system, 30 crowns were cemented with a composite resin cement, and the remaining 30 with a resin-modified glass ionomer cement. For each ceramic system and cement, ten specimens were loaded to fracture without fatiguing. A second group (n = 10) was subjected to cyclic fatigue and fracture tested in a dry environment, and a third group (n = 10) was fatigued and fractured in distilled water. The results were statistically analyzed using one-way ANOVA and Tukey HSD test. The fracture loads of ceramic crowns decreased significantly after cyclic fatigue loading (p
NASA Astrophysics Data System (ADS)
Crutcher, Richard I.; Jones, R. W.; Moore, Michael R.; Smith, S. F.; Tolley, Alan L.; Rochelle, Robert W.
1997-02-01
A prototype 'smart' repeater that provides interoperability capabilities for radio communication systems in multi-agency and multi-user scenarios is being developed by the Oak Ridge National Laboratory. The smart repeater functions as a deployable communications platform that can be dynamically reconfigured to cross-link the radios of participating federal, state, and local government agencies. This interconnection capability improves the coordination and execution of multi-agency operations, including coordinated law enforcement activities and general emergency or disaster response scenarios. The repeater provides multiple channels of operation in the 30-50, 118-136, 138-174, and 403-512 MHz land mobile communications and aircraft bands while providing the ability to cross-connect among multiple frequencies, bands, modulation types, and encryption formats. Additionally, two telephone interconnects provide links to the fixed and cellular telephone networks. The 800- and 900-MHz bands are not supported by the prototype, but the modular design of the system accommodates future retrofits to extend frequency capabilities with minimal impact to the system. Configuration of the repeater is through a portable personal computer with a Windows-based graphical interface control screen that provides dynamic reconfiguration of network interconnections and formats.
Scalable Performance Environments for Parallel Systems
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Olson, Robert D.; Aydt, Ruth A.; Madhyastha, Tara M.; Birkett, Thomas; Jensen, David W.; Nazief, Bobby A. A.; Totty, Brian K.
1991-01-01
As parallel systems expand in size and complexity, the absence of performance tools for these parallel systems exacerbates the already difficult problems of application program and system software performance tuning. Moreover, given the pace of technological change, we can no longer afford to develop ad hoc, one-of-a-kind performance instrumentation software; we need scalable, portable performance analysis tools. We describe an environment prototype based on the lessons learned from two previous generations of performance data analysis software. Our environment prototype contains a set of performance data transformation modules that can be interconnected in user-specified ways. It is the responsibility of the environment infrastructure to hide details of module interconnection and data sharing. The environment is written in C++ with the graphical displays based on X windows and the Motif toolkit. It allows users to interconnect and configure modules graphically to form an acyclic, directed data analysis graph. Performance trace data are represented in a self-documenting stream format that includes internal definitions of data types, sizes, and names. The environment prototype supports the use of head-mounted displays and sonic data presentation in addition to the traditional use of visual techniques.
NASA Technical Reports Server (NTRS)
Savich, Gregory R.
2004-01-01
The time when computing power is limited by the copper wire inherent in the computer system and not the speed of the microprocessor is rapidly approaching. With constant advances in computer technology, many researchers believe that in only a few years, optical interconnects will begin to replace copper wires in your Central Processing Unit (CPU). On a more macroscopic scale, the telecommunications industry has already made the switch to optical data transmission as, to date, fiber optic technology is the only reasonable method of reliable, long range data transmission. Within the span of a decade, we will see optical technologies move from the macroscopic world of the telecommunications industry to the microscopic world of the computer chip. Already, the communications industry is marketing commercially available optical links to connect two personal computers, thereby eliminating the need for standard and comparatively slow wired and wireless Ethernet transfers and greatly increasing the distance the computers can be separated. As processing demands continue to increase, the realm of optical communications will continue to move closer to the microprocessor and quite possibly onto the microprocessor itself. A day may come when copper connections are used only to supply power, not transfer data. This summer s work marks some of the beginning stages of a 5 to 10 year, long-term research project to create and study a free-space, 1 Gigabit/sec optical interconnect. The research will result in a novel fabricated, chip-to-chip interconnect consisting of a Vertical Cavity Surface Emitting Laser (VCSEL) Diode linked through free space to a Metal- Semiconductor-Metal (MSM) Photodetector with the possible integration of microlenses for signal focusing and Micro-Electromechanical Systems (MEMS) devices for optical signal steering. The advantages, disadvantages, and practicality of incorporating flip-chip mounting technologies will also be addressed. My work began with the design and construction of a test setup for the experiment and then appropriate characterization of the test system. Specifically, I am involved in the characterization of a commercially available 1550nm wavelength, 5mW diode laser and a study of its modulation bandwidth. Commercially produced photodetectors as well as the incorporation of microwave technology, in the form of RF input and output, are used in the characterization procedure. The next stage involves the use of a probe station and network analyzer to characterize and test a series of photodetectors fabricated on a 2 inch, Indium Gallium Arsenide (InGaAs) wafer in the Branch s microlithography lab. Other project responsibilities include, but are not limited to the incorporation of a transimpedance amplifier to the photodetector circuit; a study of VCSEL technology; bit error rate analysis of an optical interconnect system; and analysis of free space divergence of the VCSEL, optical path length of the interconnect; and any other pertinent optical properties of the one gigabit per second interconnect for fabrication and testing.
Recent Developments in Ultra High Temperature Ceramics at NASA Ames
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Gasch, Matt; Lawson, John W.; Gusman, Michael I.; Stackpole, Margaret M.
2009-01-01
NASA Ames is pursuing a variety of approaches to modify and control the microstructure of UHTCs with the goal of improving fracture toughness, oxidation resistance and controlling thermal conductivity. The overall goal is to produce materials that can perform reliably as sharp leading edges or nose tips in hypersonic reentry vehicles. Processing approaches include the use of preceramic polymers as the SiC source (as opposed to powder techniques), the addition of third phases to control grain growth and oxidation, and the use of processing techniques to produce high purity materials. Both hot pressing and field assisted sintering have been used to make UHTCs. Characterization of the mechanical and thermal properties of these materials is ongoing, as is arcjet testing to evaluate performance under simulated reentry conditions. The preceramic polymer approach has generated a microstructure in which elongated SiC grains grow in the form of an in-situ composite. This microstructure has the advantage of improving fracture toughness while potentially improving oxidation resistance by reducing the amount and interconnectivity of SiC in the material. Addition of third phases, such as Ir, results in a very fine-grained microstructure, even in hot-pressed samples. The results of processing and compositional changes on microstructure and properties are reported, along with selected arcjet results.
Fu, Pengcheng; Johnson, Scott M.; Carrigan, Charles R.
2011-01-01
Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in the formations to be stimulated and it is therefore critical to understand the interactions between existing fractures and newly created fractures before optimal stimulation strategies can be developed. Our study aims to improve the understanding of EGS stimulation-response relationships by developing and applying computer-based models that can effectively reflect the key mechanisms governing interactions between complex existing fracture networks and newly created hydraulic fractures. In this paper, we first briefly describe the key modules of our methodology, namely a geomechanics solver, a discrete fracture flow solver, a rock joint response model, an adaptive remeshing module, and most importantly their effective coupling. After verifying the numerical model against classical closed-form solutions, we investigate responses of reservoirs with different preexisting natural fractures to a variety of stimulation strategies. The factors investigated include: the in situ stress states (orientation of the principal stresses and the degree of stress anisotropy), pumping pressure, and stimulation sequences of multiple wells.
Energy and environmental policy in a period of transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stalon, C.G.
1995-12-31
This paper discusses governance aspects of electric industry restructuring. The creation and preservation of a governance system to ensure reliable and efficient trades within interconnected and independent trading areas is the main topic. The closely related issue of defining and imposing responsibilities on non-utility generators is also discussed in detail. It is recommended that the Federal Energy Regulatory Commission promote private governance of interconnections. 1 tab.
Advances in Pb-free solder microstructure control and interconnect design
Reeve, Kathlene N.; Holaday, John R.; Choquette, Stephanie M.; ...
2016-06-09
New electronics applications demanding enhanced performance and higher operating temperatures have led to continued research in the field of Pb-free solder designs and interconnect solutions. In this paper, recent advances in the microstructural design of Pb-free solders and interconnect systems were discussed by highlighting two topics: increasing β-Sn nucleation in Sn-based solders, and isothermally solidified interconnects using transient liquid phases. Issues in β-Sn nucleation in Sn-based solders were summarized in the context of Swenson’s 2007 review of the topic. Recent advancements in the areas of alloy composition manipulation, nucleating heterogeneities, and rapid solidification were discussed, and a proposal based onmore » a multi-faceted solidification approach involving the promotion of constitutional undercooling and nucleating heterogeneities was outlined for future research. The second half of the paper analyzed two different approaches to liquid phase diffusion bonding as a replacement for high-Pb solders, one based on the application of the pseudo-binary Cu-Ni-Sn ternary system, and the other on a proposed thermodynamic framework for identifying potential ternary alloys for liquid phase diffusion bonding. Furthermore, all of the concepts reviewed relied upon the fundamentals of thermodynamics, kinetics, and solidification, to which Jack Smith substantially contributed during his scientific career.« less
"Processing and Mechanical Properties of NiTi-Nb Porous Structures with Microchannels"
NASA Astrophysics Data System (ADS)
Bewerse, Catherine Nicole
Nickel-Titanium alloys are able to recover high amounts of strain (~5-8%) through a reversible phase transformation. This shape recovery, and its accompanying toughness and high yield strength, make the material attractive for biomedical, actuation, and energy absorption applications. Porous structures made out of NiTi are particularly interesting, as the mechanical properties can be tailored close to that of bone. While various methods exist to create NiTi porous structures, many are limited by pore interconnectivity, pore geometry and spatial arrangement, or undesirable formation of intermetallics. In this dissertation, we present three different processing methods to fabricate NiTi(Nb) porous structures with 3D fully interconnected microchannels. These structures have controllable volume fraction, orientation, and spatial distribution of the microchannels. In addition, we characterize the NiTi-Nb eutectic material used to bond the porous structures and investigate the strain field and stress concentrations around a model pore though Digital Image Correlation (DIC) and FEM. We first present a method using hot isostatic pressing (HIPing) with a steel wire scaffold to create a structure with a 60% volume fraction of a regular 3D network of orthogonally interconnected microchannels. This structure exhibited an effective stiffness similar to cortical bone, but exhibited brittle fracture at a relatively low strength, implying poor NiTi powder bonding. This prompted the use of liquid phase sintering instead of HIPing in our second method, where a quasi-binary NiTi-Nb eutectic was used to bond the NiTi powders. The resulting structure contained 34% channel porosity with 16% matrix porosity due to void consolidation and a clearly defined 3D network of interconnected microchannels with circular cross sections. In an effort to simplify the processing of these NiTi-Nb structures and enable scalability, the final method presented employs slip casting with and without magnesium spaceholders combined with liquid phase sintering. This pressure-less processing method makes costly HIPing equipment unnecessary, with a single multi-step heat treatment in which binders and spaceholder are removed and the NiTi powder matrix is bonded. These structures have excellent shape memory properties, high toughness, and low stiffnesses between trabecular and cortical bone. The high-aspect ratio microchannels create anisotropic mechanical properties, which are also explored.
The Radiator-Enhanced Geothermal System
NASA Astrophysics Data System (ADS)
Hilpert, M.; Marsh, B. D.; Geiser, P.
2015-12-01
Standard Enhanced Geothermal Systems (EGS) have repeatedly been hobbled by the inability of rock to conductively transfer heat at rates sufficient to re-supply heat extracted convectively via artificially made fracture systems. At the root of this imbalance is the basic magnitude of thermal diffusivity for most rocks, which severely hampers heat flow once the cooled halos about fractures reach ~0.1 m or greater. This inefficiency is exacerbated by the standard EGS design of mainly horizontally constructed fracture systems with inflow and outflow access at the margins of the fracture network. We introduced an alternative system whereby the heat exchanger mimics a conventional radiator in an internal combustion engine, which we call a Radiator-EGS (i.e., RAD-EGS). The heat exchanger is built vertically with cool water entering the base and hot water extracted at the top. The RAD-EGS itself consists of a family of vertical vanes produced through sequential horizontal drilling and permeability stimulation through propellant fracking. The manufactured fracture zones share the orientation of the natural transmissive fracture system. As below about 700 m, S1 is vertical and the average strike of transmissive fractures parallels SHmax, creating vertical fractures that include S1 and SHmax requires drilling stacked laterals parallel to SHmax. The RAD-EGS is also based on the observation that the longevity of natural hydrothermal systems depends on thermal recharge through heat convection but not heat conduction. In this paper, we present numerical simulations that examine the effects of the depths of the injector and extraction wells, vane size, coolant flow rate, the natural crustal geothermal gradient, and natural regional background flow on geothermal energy extraction.
Noninvasive evaluation system of fractured bone based on speckle interferometry
NASA Astrophysics Data System (ADS)
Yamanada, Shinya; Murata, Shigeru; Tanaka, Yohsuke
2010-11-01
This paper presents a noninvasive evaluation system of fractured bone based on speckle interferometry using a modified evaluation index for higher performance, and the experiments are carried out to examine the feasibility in evaluating bone fracture healing and the influence of some system parameters on the performance. From experimental results, it is shown that the presence of fractured part of bone and the state of bone fracture healing are successfully estimated by observing fine speckle fringes on the object surface. The proposed evaluation index also can successfully express the difference between the cases with cut and without it. Since most system parameters are found not to affect the performance of the present technique, the present technique is expected to be applied to various patients that have considerable individual variability.
Impact of fluid-rock chemical interactions on tracer transport in fractured rocks.
Mukhopadhyay, Sumit; Liu, H-H; Spycher, N; Kennedy, B M
2013-11-01
In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area. © 2013.