Interconnection of Distributed Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, Emerson
2017-04-19
This is a presentation on interconnection of distributed energy resources, including the relationships between different aspects of interconnection, best practices and lessons learned from different areas of the U.S., and an update on technical advances and standards for interconnection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, H. P.; Basso, T. S.; Kroposki, B.
The Department of Energy (DOE) Distributed Power Program (DPP) is conducting work to complete, validate in the field, and support the development of a national interconnection standard for distributed energy resources (DER), and to address the institutional and regulatory barriers slowing the commercial adoption of DER systems. This work includes support for the IEEE standards, including P1547 Standard for Interconnecting Distributed Resources with Electric Power Systems, P1589 Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems, and the P1608 Application Guide. Work is also in progress on system integration research and development (R&D) on themore » interface and control of DER with local energy systems. Additional efforts are supporting high-reliability power for industry, evaluating innovative concepts for DER applications, and exploring plug-and-play interface and control technologies for intelligent autonomous interconnection systems. This paper summarizes (1) the current status of the IEEE interconnection standards and application guides in support of DER, and (2) the R&D in progress at the National Renewable Energy Laboratory (NREL) for interconnection and system integration and application of distributed energy resources.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.60 General. Each... maintaining a written standard policy relating to the Interconnection of Distributed Resources (IDR) having an...
Where Might We Be Headed? Signposts from Other States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, Emerson
2017-04-07
Presentation on the state of distributed energy resources interconnection in Wisconsin from the Wisconsin Distributed Resources Collaborative (WIDRC) Interconnection Forum for Distributed Generation. It addresses concerns over application submission and processing, lack of visibility into the distribution system, and uncertainty in upgrade costs.
NREL Leadership Contributes to Revision of Key Energy Integration Standard,
interconnection standard for distributed energy resource technologies, including rooftop solar panels. The , which establishes uniform requirements for interconnection of distributed energy resources (DERs), such foundation for integrating clean renewable energy technologies as well as other distributed generation and
DGIC Interconnection Insights | Distributed Generation Interconnection
time and resources from utilities, customers, and local permitting authorities. Past research by the interconnection processes can benefit all parties by reducing the financial and time commitments involved. In this susceptible to time-consuming setbacks-for example, if an application is submitted with incomplete information
DGIC Interconnection Insights | Distributed Generation Interconnection
appointed by the "Government/Customer" stakeholder group (one member) or the "DG Industry group. That is, the value of such a group (and the willpower to establish one) may be much less evident Distributed Resources Collaborative, California Smart Inverter Working Group, and Massachusetts Technical
Code of Federal Regulations, 2010 CFR
2010-01-01
... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.62 Definitions. “Distributed resources” as used in this subpart means sources of electric power that are not directly connected... to the borrower's electric power system through a point of common coupling. Distributed resources...
Code of Federal Regulations, 2013 CFR
2013-01-01
... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.62 Definitions. “Distributed resources” as used in this subpart means sources of electric power that are not directly connected... to the borrower's electric power system through a point of common coupling. Distributed resources...
Code of Federal Regulations, 2014 CFR
2014-01-01
... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.62 Definitions. “Distributed resources” as used in this subpart means sources of electric power that are not directly connected... to the borrower's electric power system through a point of common coupling. Distributed resources...
Code of Federal Regulations, 2011 CFR
2011-01-01
... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.62 Definitions. “Distributed resources” as used in this subpart means sources of electric power that are not directly connected... to the borrower's electric power system through a point of common coupling. Distributed resources...
Code of Federal Regulations, 2012 CFR
2012-01-01
... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.62 Definitions. “Distributed resources” as used in this subpart means sources of electric power that are not directly connected... to the borrower's electric power system through a point of common coupling. Distributed resources...
Energy Systems Integration News - September 2016 | Energy Systems
, Smarter Grid Solutions demonstrated a new distributed energy resources (DER) software control platform utility interconnections require distributed generation (DG) devices to disconnect from the grid during OpenFMB distributed applications on the microgrid test site to locally optimize renewable energy resources
7 CFR 1730.63 - IDR policy criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... policies must be consistent with prudent electric utility practice. (2) IDR policies must incorporate the Institute of Electrical and Electronic Engineers (IEEE): IEEE 1547TM—Standard for Interconnecting... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.63 IDR...
7 CFR 1730.63 - IDR policy criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... policies must be consistent with prudent electric utility practice. (2) IDR policies must incorporate the Institute of Electrical and Electronic Engineers (IEEE): IEEE 1547TM—Standard for Interconnecting... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.63 IDR...
7 CFR 1730.63 - IDR policy criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... policies must be consistent with prudent electric utility practice. (2) IDR policies must incorporate the Institute of Electrical and Electronic Engineers (IEEE): IEEE 1547TM—Standard for Interconnecting... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.63 IDR...
7 CFR 1730.63 - IDR policy criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
... policies must be consistent with prudent electric utility practice. (2) IDR policies must incorporate the Institute of Electrical and Electronic Engineers (IEEE): IEEE 1547TM—Standard for Interconnecting... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.63 IDR...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., or reliability on the borrower's electric power system or other electric power systems interconnected to the borrower's electric power system. The Agency encourages borrowers to consider model policy... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.61 RUS policy...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., or reliability on the borrower's electric power system or other electric power systems interconnected to the borrower's electric power system. The Agency encourages borrowers to consider model policy... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.61 RUS policy...
Interconnection, Integration, and Interactive Impact Analysis of Microgrids and Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Ning; Wang, Jianhui; Singh, Ravindra
2017-01-01
Distribution management systems (DMSs) are increasingly used by distribution system operators (DSOs) to manage the distribution grid and to monitor the status of both power imported from the transmission grid and power generated locally by a distributed energy resource (DER), to ensure that power flows and voltages along the feeders are maintained within designed limits and that appropriate measures are taken to guarantee service continuity and energy security. When microgrids are deployed and interconnected to the distribution grids, they will have an impact on the operation of the distribution grid. The challenge is to design this interconnection in such amore » way that it enhances the reliability and security of the distribution grid and the loads embedded in the microgrid, while providing economic benefits to all stakeholders, including the microgrid owner and operator and the distribution system operator.« less
Supplemental Information for New York State Standardized Interconnection Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, Michael; Narang, David J.; Mather, Barry A.
This document is intended to aid in the understanding and application of the New York State Standardized Interconnection Requirements (SIR) and Application Process for New Distributed Generators 5 MW or Less Connected in Parallel with Utility Distribution Systems, and it aims to provide supplemental information and discussion on selected topics relevant to the SIR. This guide focuses on technical issues that have to date resulted in the majority of utility findings within the context of interconnecting photovoltaic (PV) inverters. This guide provides background on the overall issue and related mitigation measures for selected topics, including substation backfeeding, anti-islanding and considerationsmore » for monitoring and controlling distributed energy resources (DER).« less
A Review of Microgrid Architectures and Control Strategy
NASA Astrophysics Data System (ADS)
Jadav, Krishnarajsinh A.; Karkar, Hitesh M.; Trivedi, I. N.
2017-12-01
In this paper microgrid architecture and various converters control strategies are reviewed. Microgrid is defined as interconnected network of distributed energy resources, loads and energy storage systems. This emerging concept realizes the potential of distributed generators. AC microgrid interconnects various AC distributed generators like wind turbine and DC distributed generators like PV, fuel cell using inverter. While in DC microgrid output of an AC distributed generator must be converted to DC using rectifiers and DC distributed generator can be directly interconnected. Hybrid microgrid is the solution to avoid this multiple reverse conversions AC-DC-AC and DC-AC-DC that occur in the individual AC-DC microgrid. In hybrid microgrid all AC distributed generators will be connected in AC microgrid and DC distributed generators will be connected in DC microgrid. Interlinking converter is used for power balance in both microgrids, which transfer power from one microgrid to other if any microgrid is overloaded. At the end, review of interlinking converter control strategies is presented.
Business Models and Regulation | Distributed Generation Interconnection
@nrel.gov 303-384-4641 Utilities and regulators are responding to the growth of distributed generation with new business models and approaches. The growing role of distributed resources in the electricity Electric Cooperative, Groton Utilities Distributed Solar for Small Utilities A recording of the webinar is
IEEE Honors DeBlasio with Steinmetz Award | News | NREL
for the Interconnection of Distributed Resources with the Electric Power System) removed many of the grid utilizing distributed generation, including renewable electric systems," DeBalsio said. " sustained dedication to the growth and development of the Photovoltaic Testing and Reliability, Distributed
IEEE 1547 Standards Advancing Grid Modernization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basso, Thomas; Chakraborty, Sudipta; Hoke, Andy
Technology advances including development of advanced distributed energy resources (DER) and grid-integrated operations and controls functionalities have surpassed the requirements in current standards and codes for DER interconnection with the distribution grid. The full revision of IEEE Standards 1547 (requirements for DER-grid interconnection and interoperability) and 1547.1 (test procedures for conformance to 1547) are establishing requirements and best practices for state-of-the-art DER including variable renewable energy sources. The revised standards will also address challenges associated with interoperability and transmission-level effects, in addition to strictly addressing the distribution grid needs. This paper provides the status and future direction of the ongoingmore » development focus for the 1547 standards.« less
Community and landscape change in southeast Alaska.
Linda E. Kruger
2005-01-01
Since the early 1970s, social science research has addressed issues concerning the nature and distribution of values and uses associated with natural resources. In part, this research has tried to improve our understanding of interconnections between resource management and social and cultural chahge on the Tongass National Forest in southeast Alaska. In 1997,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liss, W.; Dybel, M.; West, R.
This report covers the first year's work performed by the Gas Technology Institute and Encorp Inc. under subcontract to the National Renewable Energy Laboratory. The objective of this three-year contract is to develop innovative grid interconnection and control systems. This supports the advancement of distributed generation in the marketplace by making installations more cost-effective and compatible across the electric power and energy management systems. Specifically, the goals are: (1) To develop and demonstrate cost-effective distributed power grid interconnection products and software and communication solutions applicable to improving the economics of a broad range of distributed power systems, including existing, emerging,more » and other power generation technologies. (2) To enhance the features and capabilities of distributed power products to integrate, interact, and provide operational benefits to the electric power and advanced energy management systems. This includes features and capabilities for participating in resource planning, the provision of ancillary services, and energy management. Specific topics of this report include the development of an advanced controller, a power sensing board, expanded communication capabilities, a revenue-grade meter interface, and a case study of an interconnection distributed power system application that is a model for demonstrating the functionalities of the design of the advanced controller.« less
7 CFR 1730.66 - Administrative waiver.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Administrative waiver. 1730.66 Section 1730.66 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.66...
Taxonomy for Modeling Demand Response Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Daniel; Kiliccote, Sila; Sohn, Michael
2014-08-01
Demand response resources are an important component of modern grid management strategies. Accurate characterizations of DR resources are needed to develop systems of optimally managed grid operations and to plan future investments in generation, transmission, and distribution. The DOE Demand Response and Energy Storage Integration Study (DRESIS) project researched the degree to which demand response (DR) and energy storage can provide grid flexibility and stability in the Western Interconnection. In this work, DR resources were integrated with traditional generators in grid forecasting tools, specifically a production cost model of the Western Interconnection. As part of this study, LBNL developed amore » modeling framework for characterizing resource availability and response attributes of DR resources consistent with the governing architecture of the simulation modeling platform. In this report, we identify and describe the following response attributes required to accurately characterize DR resources: allowable response frequency, maximum response duration, minimum time needed to achieve load changes, necessary pre- or re-charging of integrated energy storage, costs of enablement, magnitude of controlled resources, and alignment of availability. We describe a framework for modeling these response attributes, and apply this framework to characterize 13 DR resources including residential, commercial, and industrial end-uses. We group these end-uses into three broad categories based on their response capabilities, and define a taxonomy for classifying DR resources within these categories. The three categories of resources exhibit different capabilities and differ in value to the grid. Results from the production cost model of the Western Interconnection illustrate that minor differences in resource attributes can have significant impact on grid utilization of DR resources. The implications of these findings will be explored in future DR valuation studies.« less
7 CFR 1730.65 - Effective dates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false Effective dates. 1730.65 Section 1730.65 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.65 Effective...
NASA Astrophysics Data System (ADS)
Duran, P.; Holloway, T.; Brinkman, G.; Denholm, P.; Littlefield, C. M.
2011-12-01
Solar photovoltaics (PV) are an attractive technology because they can be locally deployed and tend to yield high production during periods of peak electric demand. These characteristics can reduce the need for conventional large-scale electricity generation, thereby reducing emissions of criteria air pollutants (CAPs) and improving ambient air quality with regard to such pollutants as nitrogen oxides, sulfur oxides and fine particulates. Such effects depend on the local climate, time-of-day emissions, available solar resources, the structure of the electric grid, and existing electricity production among other factors. This study examines the air quality impacts of distributed PV across the United States Eastern Interconnection. In order to accurately model the air quality impact of distributed PV in space and time, we used the National Renewable Energy Lab's (NREL) Regional Energy Deployment System (ReEDS) model to form three unique PV penetration scenarios in which new PV construction is distributed spatially based upon economic drivers and natural solar resources. Those scenarios are 2006 Eastern Interconnection business as usual, 10% PV penetration, and 20% PV penetration. With the GridView (ABB, Inc) dispatch model, we used historical load data from 2006 to model electricity production and distribution for each of the three scenarios. Solar PV electric output was estimated using historical weather data from 2006. To bridge the gap between dispatch and air quality modeling, we will create emission profiles for electricity generating units (EGUs) in the Eastern Interconnection from historical Continuous Emissions Monitoring System (CEMS) data. Via those emissions profiles, we will create hourly emission data for EGUs in the Eastern Interconnect for each scenario during 2006. Those data will be incorporated in the Community Multi-scale Air Quality (CMAQ) model using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. Initial results indicate that PV penetration significantly reduces conventional peak electricity production and that, due to reduced emissions during periods of extremely active photochemistry, air quality could see benefits.
Science network resources: Distributed systems
NASA Technical Reports Server (NTRS)
Cline, Neal
1991-01-01
The Master Directory, which is overview information about whole data sets, is outlined. The data system environment is depicted. The question is explored of what is a prototype international directory including purpose and features. Advantages of on-line directories are listed. Interconnected directory assumptions are given. A description of given of DIF (Directory Interchange Format), which is an exchange file for directory information, along with information content of DIF and directories. The directory population status is given in a percentage viewgraph. The present and future directory interconnections status at GSFC is also listed.
7 CFR 1730.100 - OMB Control Number.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false OMB Control Number. 1730.100 Section 1730.100 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.100 OMB...
7 CFR 1730.67-1730.99 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 11 2010-01-01 2010-01-01 false [Reserved] 1730.67-1730.99 Section 1730.67-1730.99 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources §§ 1730.67...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-10
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-10-000] North American Natural Resources, Inc. Complainant v. PJM Interconnection, L.L.C, American Electric Power Service...), North American Natural Resource, Inc. (NSANR) filed a formal complaint against PJM Interconnection, L.L...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, N.; Ye, Z.
This report documents part of a multiyear research program dedicated to the development of requirements to support the definition, design, and demonstration of a distributed generation-electric power system interconnection interface concept. The report focuses on the dynamic behavior of power systems when a significant portion of the total energy resource is distributed generation. It also focuses on the near-term reality that the majority of new DG relies on rotating synchronous generators for energy conversion.
Impacts of Demand-Side Resources on Electric Transmission Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Stanton W.; Sanstad, Alan H.
2015-01-01
Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have an impact on electricity transmission requirements? Five drivers for transmission expansion are discussed: interconnection, reliability, economics, replacement, and policy. With that background, we review the results of a set of transmission studies that were conducted between 2010 and 2013 by electricity regulators, industry representatives, and other stakeholders in the three physical interconnections within the United States. These broad-based studies were funded by the US Department of Energy and included scenarios of reduced load growth due to EE, DR, and DG. While the studies weremore » independent and used different modeling tools and interconnect-specific assumptions, all provided valuable results and insights. However, some caveats exist. Demand resources were evaluated in conjunction with other factors, and limitations on transmission additions between scenarios made understanding the role of demand resources difficult. One study, the western study, included analyses over both 10- and 20-year planning horizons; the 10-year analysis did not show near-term reductions in transmission, but the 20-year indicated fewer transmission additions, yielding a 36percent capital cost reduction. In the eastern study the reductions in demand largely led to reductions in local generation capacity and an increased opportunity for low-cost and renewable generation to export to other regions. The Texas study evaluated generation changes due to demand, and is in the process of examining demand resource impacts on transmission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basso, T.; DeBlasio, R.
The IEEE American National Standards smart grid publications and standards development projects IEEE 2030, which addresses smart grid interoperability, and IEEE 1547TM, which addresses distributed resources interconnection with the grid, have made substantial progress since 2009. The IEEE 2030TM and 1547 standards series focus on systems-level aspects and cover many of the technical integration issues involved in a mature smart grid. The status and highlights of these two IEEE series of standards, which are sponsored by IEEE Standards Coordinating Committee 21 (SCC21), are provided in this paper.
78 FR 73239 - Small Generator Interconnection Agreements and Procedures
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-05
... distributed resources.\\35\\ Public Interest Organizations go on to state that: \\29\\ See, e.g., American Wind... Society and Wind on the Wires are referred to collectively as Public Interest Organizations in this Final...\\ Similarly, installed wind generation with a capacity of 20 MW or less has increased in the contiguous United...
Review of Interconnection Practices and Costs in the Western States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, Lori A; Flores-Espino, Francisco; Volpi, Christina M
The objective of this report is to evaluate the nature of barriers to interconnecting distributed PV, assess costs of interconnection, and compare interconnection practices across various states in the Western Interconnection. The report addresses practices for interconnecting both residential and commercial-scale PV systems to the distribution system. This study is part of a larger, joint project between the Western Interstate Energy Board (WIEB) and the National Renewable Energy Laboratory (NREL), funded by the U.S. Department of Energy, to examine barriers to distributed PV in the 11 states wholly within the Western Interconnection.
Solar Interconnection Standards & Policies
The Toolbox for Renewable Energy Project Development's Solar Interconnection Standards and Policies page provides an overview of the interconnection policy and standards, as well as, resources to help you understand the interconnection policy landscape.
77 FR 65544 - Dominion Resources Services, Inc. v. PJM Interconnection, L.L.C.; Notice of Complaint
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-12-000] Dominion Resources Services, Inc. v. PJM Interconnection, L.L.C.; Notice of Complaint Take notice that on October 19... against PJM Interconnection, L.L.C. (Respondent), alleging that the Respondent failed to properly allocate...
Orchestrating Distributed Resource Ensembles for Petascale Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldin, Ilya; Mandal, Anirban; Ruth, Paul
2014-04-24
Distributed, data-intensive computational science applications of interest to DOE scientific com- munities move large amounts of data for experiment data management, distributed analysis steps, remote visualization, and accessing scientific instruments. These applications need to orchestrate ensembles of resources from multiple resource pools and interconnect them with high-capacity multi- layered networks across multiple domains. It is highly desirable that mechanisms are designed that provide this type of resource provisioning capability to a broad class of applications. It is also important to have coherent monitoring capabilities for such complex distributed environments. In this project, we addressed these problems by designing an abstractmore » API, enabled by novel semantic resource descriptions, for provisioning complex and heterogeneous resources from multiple providers using their native provisioning mechanisms and control planes: computational, storage, and multi-layered high-speed network domains. We used an extensible resource representation based on semantic web technologies to afford maximum flexibility to applications in specifying their needs. We evaluated the effectiveness of provisioning using representative data-intensive ap- plications. We also developed mechanisms for providing feedback about resource performance to the application, to enable closed-loop feedback control and dynamic adjustments to resource allo- cations (elasticity). This was enabled through development of a novel persistent query framework that consumes disparate sources of monitoring data, including perfSONAR, and provides scalable distribution of asynchronous notifications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basso, T.
Public-private partnerships have been a mainstay of the U.S. Department of Energy and the National Renewable Energy Laboratory (DOE/NREL) approach to research and development. These partnerships also include technology development that enables grid modernization and distributed energy resources (DER) advancement, especially renewable energy systems integration with the grid. Through DOE/NREL and industry support of Institute of Electrical and Electronics Engineers (IEEE) standards development, the IEEE 1547 series of standards has helped shape the way utilities and other businesses have worked together to realize increasing amounts of DER interconnected with the distribution grid. And more recently, the IEEE 2030 series ofmore » standards is helping to further realize greater implementation of communications and information technologies that provide interoperability solutions for enhanced integration of DER and loads with the grid. For these standards development partnerships, for approximately $1 of federal funding, industry partnering has contributed $5. In this report, the status update is presented for the American National Standards IEEE 1547 and IEEE 2030 series of standards. A short synopsis of the history of the 1547 standards is first presented, then the current status and future direction of the ongoing standards development activities are discussed.« less
Constructing Scientific Applications from Heterogeneous Resources
NASA Technical Reports Server (NTRS)
Schichting, Richard D.
1995-01-01
A new model for high-performance scientific applications in which such applications are implemented as heterogeneous distributed programs or, equivalently, meta-computations, is investigated. The specific focus of this grant was a collaborative effort with researchers at NASA and the University of Toledo to test and improve Schooner, a software interconnection system, and to explore the benefits of increased user interaction with existing scientific applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
...-002; Docket No. EL11-20-001] PJM Interconnection, L.L.C.; PJM Power Providers Group v. PJM Interconnection, L.L.C.; Notice Establishing Post-Technical Comment Period As indicated in the June 29, 2011... issues related to PJM Interconnection, L.L.C. (PJM)'s Minimum Offer Price Rule (MOPR) and resources...
Challenges in reducing the computational time of QSTS simulations for distribution system analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deboever, Jeremiah; Zhang, Xiaochen; Reno, Matthew J.
The rapid increase in penetration of distributed energy resources on the electric power distribution system has created a need for more comprehensive interconnection modelling and impact analysis. Unlike conventional scenario - based studies , quasi - static time - series (QSTS) simulation s can realistically model time - dependent voltage controllers and the diversity of potential impacts that can occur at different times of year . However, to accurately model a distribution system with all its controllable devices, a yearlong simulation at 1 - second resolution is often required , which could take conventional computers a computational time of 10more » to 120 hours when an actual unbalanced distribution feeder is modeled . This computational burden is a clear l imitation to the adoption of QSTS simulation s in interconnection studies and for determining optimal control solutions for utility operations . Our ongoing research to improve the speed of QSTS simulation has revealed many unique aspects of distribution system modelling and sequential power flow analysis that make fast QSTS a very difficult problem to solve. In this report , the most relevant challenges in reducing the computational time of QSTS simulations are presented: number of power flows to solve, circuit complexity, time dependence between time steps, multiple valid power flow solutions, controllable element interactions, and extensive accurate simulation analysis.« less
NASA Astrophysics Data System (ADS)
Virkar, Yogesh S.; Shew, Woodrow L.; Restrepo, Juan G.; Ott, Edward
2016-10-01
Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this basic question have been considered. Here we propose a particularly compelling and natural mechanism for preserving stability of learning neural systems. This mechanism is based on the global processes by which metabolic resources are distributed to the neurons by glial cells. Specifically, we introduce and study a model composed of two interacting networks: a model neural network interconnected by synapses that undergo spike-timing-dependent plasticity; and a model glial network interconnected by gap junctions that diffusively transport metabolic resources among the glia and, ultimately, to neural synapses where they are consumed. Our main result is that the biophysical constraints imposed by diffusive transport of metabolic resources through the glial network can prevent runaway growth of synaptic strength, both during ongoing activity and during learning. Our findings suggest a previously unappreciated role for glial transport of metabolites in the feedback control stabilization of neural network dynamics during learning.
SLURM: Simple Linux Utility for Resource Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jette, M; Dunlap, C; Garlick, J
2002-04-24
Simple Linux Utility for Resource Management (SLURM) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for Linux clusters of thousands of nodes. Components include machine status, partition management, job management, and scheduling modules. The design also includes a scalable, general-purpose communication infrastructure. Development will take place in four phases: Phase I results in a solid infrastructure; Phase II produces a functional but limited interactive job initiation capability without use of the interconnect/switch; Phase III provides switch support and documentation; Phase IV provides job status, fault-tolerance, and job queuing and control through Livermore's Distributed Productionmore » Control System (DPCS), a meta-batch and resource management system.« less
NASA Astrophysics Data System (ADS)
Ray, Prakash K.; Mohanty, Soumya R.; Kishor, Nand
2010-07-01
This paper presents small-signal analysis of isolated as well as interconnected autonomous hybrid distributed generation system for sudden variation in load demand, wind speed and solar radiation. The hybrid systems comprise of different renewable energy resources such as wind, photovoltaic (PV) fuel cell (FC) and diesel engine generator (DEG) along with the energy storage devices such as flywheel energy storage system (FESS) and battery energy storage system (BESS). Further ultracapacitors (UC) as an alternative energy storage element and interconnection of hybrid systems through tie-line is incorporated into the system for improved performance. A comparative assessment of deviation of frequency profile for different hybrid systems in the presence of different storage system combinations is carried out graphically as well as in terms of the performance index (PI),
Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology
NASA Astrophysics Data System (ADS)
Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu
2013-08-01
From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-28
...-002; Docket No. EL11-20-001] PJM Interconnection, L.L.C., PJM Power Providers Group v. PJM Interconnection, L.L.C.; Supplemental Notice of Staff Technical Conference On June 13, 2011, the Commission issued... Resources Services, Inc., Maryland Public Service Commission, Monitoring Analytics, L.L.C., National Rural...
Subscribe to DGIC Updates | Distributed Generation Interconnection
Distributed Generation Interconnection Collaborative. Subscribe Please provide and submit the following information to subscribe. The mailing list addresses are never sold, rented, distributed, or disclosed in any
Stakeholder Convening and Working Groups | Solar Research | NREL
. Distributed Generation Interconnection Collaborative Established in 2013 by NREL, the Distributed Generation Interconnection Collaborative (DGIC) provides a forum for the exchange of best practices for distributed
Data Transparency | Distributed Generation Interconnection Collaborative |
quality and availability are increasingly vital for reducing the costs of distributed generation completion in certain areas, increasing accountability for utility application processing. As distributed PV NREL, HECO, TSRG Improving Data Transparency for the Distributed PV Interconnection Process: Emergent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Jin; Zhang, Yingchen; You, Shutang
Power grid primary frequency response will be significantly impaired by Photovoltaic (PV) penetration increase because of the decrease in inertia and governor response. PV inertia and governor emulation requires reserving PV output and leads to solar energy waste. This paper exploits current grid resources and explores energy storage for primary frequency response under high PV penetration at the interconnection level. Based on the actual models of the U.S. Eastern Interconnection grid and the Texas grid, effects of multiple factors associated with primary frequency response, including the governor ratio, governor deadband, droop rate, fast load response. are assessed under high PVmore » penetration scenarios. In addition, performance of batteries and supercapacitors using different control strategies is studied in the two interconnections. The paper quantifies the potential of various resources to improve interconnection-level primary frequency response under high PV penetration without curtailing solar output.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hambrick, J.
2012-01-01
Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation,more » etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.« less
A cooperative model for IS security risk management in distributed environment.
Feng, Nan; Zheng, Chundong
2014-01-01
Given the increasing cooperation between organizations, the flexible exchange of security information across the allied organizations is critical to effectively manage information systems (IS) security in a distributed environment. In this paper, we develop a cooperative model for IS security risk management in a distributed environment. In the proposed model, the exchange of security information among the interconnected IS under distributed environment is supported by Bayesian networks (BNs). In addition, for an organization's IS, a BN is utilized to represent its security environment and dynamically predict its security risk level, by which the security manager can select an optimal action to safeguard the firm's information resources. The actual case studied illustrates the cooperative model presented in this paper and how it can be exploited to manage the distributed IS security risk effectively.
Application Processing | Distributed Generation Interconnection
delivering swift customer service. The rapid rise of distributed generation (DG) PV interconnection speed processing, reduce paperwork, and improve customer service. Webinars and publications are
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-20
... DEPARTMENT OF ENERGY Western Area Power Administration Notice of Intent To Prepare a Supplemental Draft Environmental Impact Statement--Interconnection of the Proposed Wilton IV Wind Energy Center... Impact Statement (SDEIS) for the interconnection of NextEra Energy Resources' proposed Wilton IV Wind...
An experimental analysis of granivory in a desert ecosystem: Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.H.
1987-03-01
Controlled, replicated experiments are revealing the network of interactions that determine structure, dynamics, and energy transfer in a desert community that is functionally interconnected by the consumption of seeds (granivory). This community includes seed-eating rodents, ants, and birds, seed-producing annual and perennial plants, and other kinds of organisms that interact with these. The experiments entail removal of important species or functional groups of granivores or plants and supplementation of seed resources. The results demonstrate a large number of direct and indirect interactions that have important effects on the abundance of species and functional groups, the structure of the community, andmore » the dynamics of energy flow. The results suggest that networks of interaction are structured with sufficient overlap in resource requirements and interconnections through indirect pathways that community- and ecosystem-level processes, such as energy flow, are relatively insensitive to major perturbations in the abundance of particular species or functional groups. This preliminary finding has important implications for understanding the response of ecosystems to natural and human-caused perturbations, for the management of agricultural and other human-modified ecosystems, and for the design of perturbation-resistant networks for acquisition and distribution of human resources such energy and information. 44 refs.« less
DGIC Interconnection Insights | Distributed Generation Interconnection
Collaborative | NREL The State of Pre-Application Reports June 2017 by Zachary Peterson opportunities for improving DER interconnection processes. Some state regulators have sought the use of pre -application reports to improve interconnection data availability and application processing. A pre-application
A Tale of Two Cities: Greensburg Resurrected as a National Model for Green Communities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelley Gonzales
This fact sheet provides a summary of how NREL's technical assistance in Greensburg, Kansas, helped the town rebuild green after recovering from a tornado in May 2007. To help local distributed system owners get the most value for electricity sent back to the grid, NREL drafted safety and reliability ordinances, an interconnection agreement, and net-metering policies for the city to consider. NREL and the Energy Department also assisted with wind energy resource analysis, feasibility studies, and business plans.
Texas Solar Collaboration Action Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winland, Chris
2013-02-14
Texas Solar Collaboration Permitting and Interconenction Process Improvement Action Plan. San Antonio-specific; Investigate feasibility of using electronic signatures; Investigate feasibility of enabling other online permitting processes (e.g., commercial); Assess need for future document management and workflow/notification IT improvements; Update Information Bulletin 153 regarding City requirements and processes for PV; Educate contractors and public on CPS Energy’s new 2013 solar program processes; Continue to discuss “downtown grid” interconnection issues and identify potential solutions; Consider renaming Distributed Energy Resources (DER); and Continue to participate in collaborative actions.
A Cooperative Model for IS Security Risk Management in Distributed Environment
Zheng, Chundong
2014-01-01
Given the increasing cooperation between organizations, the flexible exchange of security information across the allied organizations is critical to effectively manage information systems (IS) security in a distributed environment. In this paper, we develop a cooperative model for IS security risk management in a distributed environment. In the proposed model, the exchange of security information among the interconnected IS under distributed environment is supported by Bayesian networks (BNs). In addition, for an organization's IS, a BN is utilized to represent its security environment and dynamically predict its security risk level, by which the security manager can select an optimal action to safeguard the firm's information resources. The actual case studied illustrates the cooperative model presented in this paper and how it can be exploited to manage the distributed IS security risk effectively. PMID:24563626
Resilient Core Networks for Energy Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuntze, Nicolai; Rudolph, Carsten; Leivesley, Sally
2014-07-28
Abstract—Substations and their control are crucial for the availability of electricity in today’s energy distribution. Ad- vanced energy grids with Distributed Energy Resources require higher complexity in substations, distributed functionality and communication between devices inside substations and between substations. Also, substations include more and more intelligent devices and ICT based systems. All these devices are connected to other systems by different types of communication links or are situated in uncontrolled environments. Therefore, the risk of ICT based attacks on energy grids is growing. Consequently, security measures to counter these risks need to be an intrinsic part of energy grids. Thismore » paper introduces the concept of a Resilient Core Network to interconnected substations. This core network provides essen- tial security features, enables fast detection of attacks and allows for a distributed and autonomous mitigation of ICT based risks.« less
DGIC Interconnection Insights | Distributed Generation Interconnection
reading. The State of Pre-Application Reports June 2017 by Zachary Peterson, National Renewable Energy DER interconnection processes. Some state regulators have sought the use of pre-application reports to
Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tian, Rui; Han, Jianrui; Lee, Young
2015-11-30
Data center interconnect with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resilience between IP and elastic optical networks that allows to accommodate data center services. In view of this, this study extends to consider the resource integration by breaking the limit of network device, which can enhance the resource utilization. We propose a novel multi-stratum resources integration (MSRI) architecture based on network function virtualization in software defined elastic data center optical interconnect. A resource integrated mapping (RIM) scheme for MSRI is introduced in the proposed architecture. The MSRI can accommodate the data center services with resources integration when the single function or resource is relatively scarce to provision the services, and enhance globally integrated optimization of optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of OpenFlow-based enhanced software defined networking (eSDN) testbed. The performance of RIM scheme under heavy traffic load scenario is also quantitatively evaluated based on MSRI architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning schemes.
NASA Technical Reports Server (NTRS)
Stevens, Grady H.
1992-01-01
The Data Distribution Satellite (DDS), operating in conjunction with the planned space network, the National Research and Education Network and its commercial derivatives, would play a key role in networking the emerging supercomputing facilities, national archives, academic, industrial, and government institutions. Centrally located over the United States in geostationary orbit, DDS would carry sophisticated on-board switching and make use of advanced antennas to provide an array of special services. Institutions needing continuous high data rate service would be networked together by use of a microwave switching matrix and electronically steered hopping beams. Simultaneously, DDS would use other beams and on board processing to interconnect other institutions with lesser, low rate, intermittent needs. Dedicated links to White Sands and other facilities would enable direct access to space payloads and sensor data. Intersatellite links to a second generation ATDRS, called Advanced Space Data Acquisition and Communications System (ASDACS), would eliminate one satellite hop and enhance controllability of experimental payloads by reducing path delay. Similarly, direct access would be available to the supercomputing facilities and national data archives. Economies with DDS would be derived from its ability to switch high rate facilities amongst users needed. At the same time, having a CONUS view, DDS would interconnect with any institution regardless of how remote. Whether one needed high rate service or low rate service would be immaterial. With the capability to assign resources on demand, DDS will need only carry a portion of the resources needed if dedicated facilities were used. Efficiently switching resources to users as needed, DDS would become a very feasible spacecraft, even though it would tie together the space network, the terrestrial network, remote sites, 1000's of small users, and those few who need very large data links intermittently.
Adaptive Distributed Intelligent Control Architecture for Future Propulsion Systems (Preprint)
2007-04-01
weight will be reduced by replacing heavy harness assemblies and FADECs , with distributed processing elements interconnected. This paper reviews...Digital Electronic Controls ( FADECs ), with distributed processing elements interconnected through a serial bus. Efficient data flow throughout the...because intelligence is embedded in components while overall control is maintained in the FADEC . The need for Distributed Control Systems in
Modeling Resource Hotspots: Critical Linkages and Processes
NASA Astrophysics Data System (ADS)
Daher, B.; Mohtar, R.; Pistikopoulos, E.; McCarl, B. A.; Yang, Y.
2017-12-01
Growing demands for interconnected resources emerge in the form of hotspots of varying characteristics. The business as usual allocation model cannot address the current, let alone anticipated, complex and highly interconnected resource challenges we face. A new paradigm for resource allocation must be adopted: one that identifies cross-sectoral synergies and, that moves away from silos to recognition of the nexus and integration of it. Doing so will result in new opportunities for business growth, economic development, and improved social well-being. Solutions and interventions must be multi-faceted; opportunities should be identified with holistic trade-offs in mind. No single solution fits all: different hotspots will require distinct interventions. Hotspots have varying resource constraints, stakeholders, goals and targets. The San Antonio region represents a complex resource hotspot with promising potential: its rapidly growing population, the Eagle Ford shale play, and the major agricultural activity there makes it a hotspot with many competing demands. Stakeholders need tools to allow them to knowledgeably address impending resource challenges. This study will identify contemporary WEF nexus questions and critical system interlinkages that will inform the modeling of the tightly interconnected resource systems and stresses using the San Antonio Region as a base; it will conceptualize a WEF nexus modeling framework, and develop assessment criteria to inform integrative planning and decision making.
NASA Technical Reports Server (NTRS)
Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.
2008-01-01
NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In addition, the performance of DSIL under different traffic loads with different mix of data and priorities are evaluated.
Interconnecting heterogeneous database management systems
NASA Technical Reports Server (NTRS)
Gligor, V. D.; Luckenbaugh, G. L.
1984-01-01
It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.
Particle seeding enhances interconnectivity in polymeric scaffolds foamed using supercritical CO(2).
Collins, Niki J; Bridson, Rachel H; Leeke, Gary A; Grover, Liam M
2010-03-01
Foaming using supercritical CO(2) is a well-known process for the production of polymeric scaffolds for tissue engineering. However, this method typically leads to scaffolds with low pore interconnectivity, resulting in insufficient mass transport and a heterogeneous distribution of cells. In this study, microparticulate silica was added to the polymer during processing and the effects of this particulate seeding on the interconnectivity of the pore structure and pore size distribution were investigated. Scaffolds comprising polylactide and a range of silica contents (0-50 wt.%) were produced by foaming with supercritical CO(2). Scaffold structure, pore size distributions and interconnectivity were assessed using X-ray computed microtomography. Interconnectivity was also determined through physical measurements. It was found that incorporation of increasing quantities of silica particles increased the interconnectivity of the scaffold pore structure. The pore size distribution was also reduced through the addition of silica, while total porosity was found to be largely independent of silica content. Physical measurements and those derived from X-ray computed microtomography were comparable. The conclusion drawn was that the architecture of foamed polymeric scaffolds can be advantageously manipulated through the incorporation of silica microparticles. The findings of this study further establish supercritical fluid foaming as an important tool in scaffold production and show how a previous limitation can be overcome. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
In-memory interconnect protocol configuration registers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Kevin Y.; Roberts, David A.
Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mappingmore » decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.« less
Yang, Hui; Zhang, Jie; Zhao, Yongli; Ji, Yuefeng; Wu, Jialin; Lin, Yi; Han, Jianrui; Lee, Young
2015-05-18
Inter-data center interconnect with IP over elastic optical network (EON) is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resources integration among IP networks, optical networks and application stratums resources that allows to accommodate data center services. In view of this, this study extends to consider the service resilience in case of edge optical node failure. We propose a novel multi-stratum resources integrated resilience (MSRIR) architecture for the services in software defined inter-data center interconnect based on IP over EON. A global resources integrated resilience (GRIR) algorithm is introduced based on the proposed architecture. The MSRIR can enable cross stratum optimization and provide resilience using the multiple stratums resources, and enhance the data center service resilience responsiveness to the dynamic end-to-end service demands. The overall feasibility and efficiency of the proposed architecture is experimentally verified on the control plane of our OpenFlow-based enhanced SDN (eSDN) testbed. The performance of GRIR algorithm under heavy traffic load scenario is also quantitatively evaluated based on MSRIR architecture in terms of path blocking probability, resilience latency and resource utilization, compared with other resilience algorithms.
A synchronized computational architecture for generalized bilateral control of robot arms
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Szakaly, Zoltan
1987-01-01
This paper describes a computational architecture for an interconnected high speed distributed computing system for generalized bilateral control of robot arms. The key method of the architecture is the use of fully synchronized, interrupt driven software. Since an objective of the development is to utilize the processing resources efficiently, the synchronization is done in the hardware level to reduce system software overhead. The architecture also achieves a balaced load on the communication channel. The paper also describes some architectural relations to trading or sharing manual and automatic control.
77 FR 41481 - Integration of Variable Energy Resources
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
...The Federal Energy Regulatory Commission is amending the pro forma Open Access Transmission Tariff to remove unduly discriminatory practices and to ensure just and reasonable rates for Commission- jurisdictional services. Specifically, this Final Rule removes barriers to the integration of variable energy resources by requiring each public utility transmission provider to: offer intra-hourly transmission scheduling; and, incorporate provisions into the pro forma Large Generator Interconnection Agreement requiring interconnection customers whose generating facilities are variable energy resources to provide meteorological and forced outage data to the public utility transmission provider for the purpose of power production forecasting.
Distributed Optimal Power Flow of AC/DC Interconnected Power Grid Using Synchronous ADMM
NASA Astrophysics Data System (ADS)
Liang, Zijun; Lin, Shunjiang; Liu, Mingbo
2017-05-01
Distributed optimal power flow (OPF) is of great importance and challenge to AC/DC interconnected power grid with different dispatching centres, considering the security and privacy of information transmission. In this paper, a fully distributed algorithm for OPF problem of AC/DC interconnected power grid called synchronous ADMM is proposed, and it requires no form of central controller. The algorithm is based on the fundamental alternating direction multiplier method (ADMM), by using the average value of boundary variables of adjacent regions obtained from current iteration as the reference values of both regions for next iteration, which realizes the parallel computation among different regions. The algorithm is tested with the IEEE 11-bus AC/DC interconnected power grid, and by comparing the results with centralized algorithm, we find it nearly no differences, and its correctness and effectiveness can be validated.
18 CFR 292.306 - Interconnection costs.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Interconnection costs... PRODUCTION AND COGENERATION Arrangements Between Electric Utilities and Qualifying Cogeneration and Small Power Production Facilities Under Section 210 of the Public Utility Regulatory Policies Act of 1978...
Cooperative crossing of traffic intersections in a distributed robot system
NASA Astrophysics Data System (ADS)
Rausch, Alexander; Oswald, Norbert; Levi, Paul
1995-09-01
In traffic scenarios a distributed robot system has to cope with problems like resource sharing, distributed planning, distributed job scheduling, etc. While travelling along a street segment can be done autonomously by each robot, crossing of an intersection as a shared resource forces the robot to coordinate its actions with those of other robots e.g. by means of negotiations. We discuss the issue of cooperation on the design of a robot control architecture. Task and sensor specific cooperation between robots requires the robots' architectures to be interlinked at different hierarchical levels. Inside each level control cycles are running in parallel and provide fast reaction on events. Internal cooperation may occur between cycles of the same level. Altogether the architecture is matrix-shaped and contains abstract control cycles with a certain degree of autonomy. Based upon the internal structure of a cycle we consider the horizontal and vertical interconnection of cycles to form an individual architecture. Thereafter we examine the linkage of several agents and its influence on an interacting architecture. A prototypical implementation of a scenario, which combines aspects of active vision and cooperation, illustrates our approach. Two vision-guided vehicles are faced with line following, intersection recognition and negotiation.
Neylon, J; Min, Y; Kupelian, P; Low, D A; Santhanam, A
2017-04-01
In this paper, a multi-GPU cloud-based server (MGCS) framework is presented for dose calculations, exploring the feasibility of remote computing power for parallelization and acceleration of computationally and time intensive radiotherapy tasks in moving toward online adaptive therapies. An analytical model was developed to estimate theoretical MGCS performance acceleration and intelligently determine workload distribution. Numerical studies were performed with a computing setup of 14 GPUs distributed over 4 servers interconnected by a 1 Gigabits per second (Gbps) network. Inter-process communication methods were optimized to facilitate resource distribution and minimize data transfers over the server interconnect. The analytically predicted computation time predicted matched experimentally observations within 1-5 %. MGCS performance approached a theoretical limit of acceleration proportional to the number of GPUs utilized when computational tasks far outweighed memory operations. The MGCS implementation reproduced ground-truth dose computations with negligible differences, by distributing the work among several processes and implemented optimization strategies. The results showed that a cloud-based computation engine was a feasible solution for enabling clinics to make use of fast dose calculations for advanced treatment planning and adaptive radiotherapy. The cloud-based system was able to exceed the performance of a local machine even for optimized calculations, and provided significant acceleration for computationally intensive tasks. Such a framework can provide access to advanced technology and computational methods to many clinics, providing an avenue for standardization across institutions without the requirements of purchasing, maintaining, and continually updating hardware.
75 FR 72909 - Revision to Electric Reliability Organization Definition of Bulk Electric System
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-26
...) Comments 135 (b) Commission Determination 139 6. Impact on Generation Owners and Operators 142 (a) Comments... Organization, the electrical generation resources, transmission lines, interconnections with neighboring... above that interconnect with registered generation facilities are excluded from NPCC's list of bulk...
A security architecture for interconnecting health information systems.
Gritzalis, Dimitris; Lambrinoudakis, Costas
2004-03-31
Several hereditary and other chronic diseases necessitate continuous and complicated health care procedures, typically offered in different, often distant, health care units. Inevitably, the medical records of patients suffering from such diseases become complex, grow in size very fast and are scattered all over the units involved in the care process, hindering communication of information between health care professionals. Web-based electronic medical records have been recently proposed as the solution to the above problem, facilitating the interconnection of the health care units in the sense that health care professionals can now access the complete medical record of the patient, even if it is distributed in several remote units. However, by allowing users to access information from virtually anywhere, the universe of ineligible people who may attempt to harm the system is dramatically expanded, thus severely complicating the design and implementation of a secure environment. This paper presents a security architecture that has been mainly designed for providing authentication and authorization services in web-based distributed systems. The architecture has been based on a role-based access scheme and on the implementation of an intelligent security agent per site (i.e. health care unit). This intelligent security agent: (a). authenticates the users, local or remote, that can access the local resources; (b). assigns, through temporary certificates, access privileges to the authenticated users in accordance to their role; and (c). communicates to other sites (through the respective security agents) information about the local users that may need to access information stored in other sites, as well as about local resources that can be accessed remotely.
Optical interconnect for large-scale systems
NASA Astrophysics Data System (ADS)
Dress, William
2013-02-01
This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.
Design of transnational mobile e-payment application based on SIM card
NASA Astrophysics Data System (ADS)
Qian, Tang; Zhen, Li
2018-05-01
Facing the stronger demands of transnational mobile communications and internet-based mobile wireless value-added services, the interconnection and interworking of multiple communication operators and their win-win cooperations become a crucial target in the new round of mobile economic development. Previous researches showed that mobile communications and value-add services are not only technical problems, but also more economic problems.we design a general oncard operating system based on SIM card that could be responsible for coordinating and distributing card hardware and software resources. These applications such as transnational mobile payment, consumption management and many other supplemented functions share the API interfaces, hardware and software resources provided by the operation system, although they are independent of each other. The layer structure of SIM card design not only greatly reduces the complexity of COS development, but also saves the most tense card resources and extends SIM cards applications.
Effects of voltage control in utility interactive dispersed storage and generation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkham, H.; Das, R.
1983-03-15
When a small generator is connected to the distribution system, the voltage at the point of interconnection is determined largely by the system and not the generator. This report examines the effect on the generator, on the load voltage and on the distribution system of a number of different voltage control strategies in the generator. Synchronous generators with three kinds of exciter control are considered, as well as induction generators and dc/ac inverters, with and without capacitor compensation. The effect of varying input power during operation (which may be experienced by generators based on renewable resources) is explored, as wellmore » as the effect of connecting and disconnecting the generator at ten percent of its rated power.« less
Design for Run-Time Monitor on Cloud Computing
NASA Astrophysics Data System (ADS)
Kang, Mikyung; Kang, Dong-In; Yun, Mira; Park, Gyung-Leen; Lee, Junghoon
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is the type of a parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring the system status change, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize resources on cloud computing. RTM monitors application software through library instrumentation as well as underlying hardware through performance counter optimizing its computing configuration based on the analyzed data.
DGIC Interconnection Insights | Distributed Generation Interconnection
Collaborative | NREL disseminate analysis findings to inform decision making and planning. Cost (SEPA) What is the need for cost certainty? As the distributed solar photovoltaic (PV) industry has , equitably and at a reasonable cost. This dynamic is now playing out in the cost certainty proposals being
Next generation space interconnect research and development in space communications
NASA Astrophysics Data System (ADS)
Collier, Charles Patrick
2017-11-01
Interconnect or "bus" is one of the critical technologies in design of spacecraft avionics systems that dictates its architecture and complexity. MIL-STD-1553B has long been used as the avionics backbone technology. As avionics systems become more and more capable and complex, however, limitations of MIL-STD-1553B such as insufficient 1 Mbps bandwidth and separability have forced current avionics architects and designers to use combination of different interconnect technologies in order to meet various requirements: CompactPCI is used for backplane interconnect; LVDS or RS422 is used for low and high-speed direct point-to-point interconnect; and some proprietary interconnect standards are designed for custom interfaces. This results in a very complicated system that consumes significant spacecraft mass and power and requires extensive resources in design, integration and testing of spacecraft systems.
77 FR 11109 - Reactive Power Resources; Notice of Technical Conference
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... options for and cost of installing reactive power equipment at the time of interconnection as well as... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. AD12-10-000] Reactive Power... the need for reactive power capability among newly interconnecting asynchronous generators and raises...
NASA Astrophysics Data System (ADS)
Sheynin, Yuriy; Shutenko, Felix; Suvorova, Elena; Yablokov, Evgenej
2008-04-01
High rate interconnections are important subsystems in modern data processing and control systems of many classes. They are especially important in prospective embedded and on-board systems that used to be multicomponent systems with parallel or distributed architecture, [1]. Modular architecture systems of previous generations were based on parallel busses that were widely used and standardised: VME, PCI, CompactPCI, etc. Busses evolution went in improvement of bus protocol efficiency (burst transactions, split transactions, etc.) and increasing operation frequencies. However, due to multi-drop bus nature and multi-wire skew problems the parallel bussing speedup became more and more limited. For embedded and on-board systems additional reason for this trend was in weight, size and power constraints of an interconnection and its components. Parallel interfaces have become technologically more challenging as their respective clock frequencies have increased to keep pace with the bandwidth requirements of their attached storage devices. Since each interface uses a data clock to gate and validate the parallel data (which is normally 8 bits or 16 bits wide), the clock frequency need only be equivalent to the byte rate or word rate being transmitted. In other words, for a given transmission frequency, the wider the data bus, the slower the clock. As the clock frequency increases, more high frequency energy is available in each of the data lines, and a portion of this energy is dissipated in radiation. Each data line not only transmits this energy but also receives some from its neighbours. This form of mutual interference is commonly called "cross-talk," and the signal distortion it produces can become another major contributor to loss of data integrity unless compensated by appropriate cable designs. Other transmission problems such as frequency-dependent attenuation and signal reflections, while also applicable to serial interfaces, are more troublesome in parallel interfaces due to the number of additional cable conductors involved. In order to compensate for these drawbacks, higher quality cables, shorter cable runs and fewer devices on the bus have been the norm. Finally, the physical bulk of the parallel cables makes them more difficult to route inside an enclosure, hinders cooling airflow and is incompatible with the trend toward smaller form-factor devices. Parallel busses worked in systems during the past 20 years, but the accumulated problems dictate the need for change and the technology is available to spur the transition. The general trend in high-rate interconnections turned from parallel bussing to scalable interconnections with a network architecture and high-rate point-to-point links. Analysis showed that data links with serial information transfer could achieve higher throughput and efficiency and it was confirmed in various research and practical design. Serial interfaces offer an improvement over older parallel interfaces: better performance, better scalability, and also better reliability as the parallel interfaces are at their limits of speed with reliable data transfers and others. The trend was implemented in major standards' families evolution: e.g. from PCI/PCI-X parallel bussing to PCIExpress interconnection architecture with serial lines, from CompactPCI parallel bus to ATCA (Advanced Telecommunications Architecture) specification with serial links and network topologies of an interconnection, etc. In the article we consider a general set of characteristics and features of serial interconnections, give a brief overview of serial interconnections specifications. In more details we present the SpaceWire interconnection technology. Have been developed for space on-board systems applications the SpaceWire has important features and characteristics that make it a prospective interconnection for wide range of embedded systems.
Interconnecting PV on New York City's Secondary Network Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, K; Coddington, M; Burman, K
2009-11-01
The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in themore » five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1PV Deployment Analysis for New York City we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2. A Briefing for Policy Makers on Connecting PV to a Network Grid presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3. Technical Review of Concerns and Solutions to PV Interconnection in New York City summarizes common concerns of utility engineers and network experts about interconnecting PV systems to secondary networks. This section also contains detailed descriptions of nine solutions, including advantages and disadvantages, potential impacts, and road maps for deployment. Section 4. Utility Application Process Reviewlooks at utility interconnection application processes across the country and identifies administrative best practices for efficient PV interconnection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schauder, C.
This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems thatmore » interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.« less
Interconnection requirements in avionic systems
NASA Astrophysics Data System (ADS)
Vergnolle, Claude; Houssay, Bruno
1991-04-01
The future aircraft generation will have thousand smart electromagnetic sensors distributed allover. Each sensor is connected with fibers links to the main-frame computer in charge of the real time signal''s correlation. Such a computer must be compactly built and massively parallel: it needs the use of 3 D optical free-space interconnect between neighbouring boards and reconfigurable interconnects via holographic backplane. The optical interconnect facilities will be also used to build fault-tolerant computer through large redundancy.
Electric network interconnection of Mashreq Arab Countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Amin, I.M.; Al-Shehri, A.M.; Opoku, G.
1994-12-01
Power system interconnection is a well established practice for a variety of technical and economical reasons. Several interconnected networks exist worldwide for a number of factors. Some of these networks cross international boundaries. This presentation discusses the future developments of the power systems of Mashreq Arab Countries (MAC). MAC consists of Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates (UAE), and Yemen. Mac power systems are operated by government or semigovernment bodies. Many of these countries have national or regional electric grids but are generally isolated from each other. With the exception of Saudi Arabiamore » power systems, which employ 60 Hz, all other MAC utilities use 50 Hz frequency. Each country is served by one utility, except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi Consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The energy resources in MAC are varied. Countries such as Egypt, Iraq, and Syria have significant hydro resources.The gulf countries and Iraq have abundant fossil fuel, The variation in energy resources as well as the characteristics of the electric load make it essential to look into interconnections beyond the national boundaries. Most of the existing or planned interconnections involve few power systems. A study involving 12 countries and over 20 utilities with different characteristics represents a very large scale undertaking.« less
Distributed Generation Interconnection Collaborative | NREL
, reduce paperwork, and improve customer service. Analytical Methods for Interconnection Many utilities and jurisdictions are seeking the right screening and analytical methods and tools to meet their reliability
NASA Technical Reports Server (NTRS)
Bartelt, Hartmut (Editor)
1990-01-01
The conference presents papers on interconnections, clock distribution, neural networks, and components and materials. Particular attention is given to a comparison of optical and electrical data interconnections at the board and backplane levels, a wafer-level optical interconnection network layout, an analysis and simulation of photonic switch networks, and the integration of picosecond GaAs photoconductive devices with silicon circuits for optical clocking and interconnects. Consideration is also given to the optical implementation of neural networks, invariance in an optoelectronic implementation of neural networks, and the recording of reversible patterns in polymer lightguides.
NASA Technical Reports Server (NTRS)
Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas
2008-01-01
A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alderfer, B.; Eldridge, M.; Starrs, T.
Distributed power is modular electric generation or storage located close to the point of use. Based on interviews of distributed generation project proponents, this report reviews the barriers that distributed generators of electricity are encountering when attempting to interconnect to the electrical grid. Descriptions of 26 of 65 case studies are included in the report. The survey found and the report describes a wide range of technical, business-practice, and regulatory barriers to interconnection. An action plan for reducing the impact of these barriers is also included.
NASA Astrophysics Data System (ADS)
Wang, Jian
2017-01-01
In order to change traditional PE teaching mode and realize the interconnection, interworking and sharing of PE teaching resources, a distance PE teaching platform based on broadband network is designed and PE teaching information resource database is set up. The designing of PE teaching information resource database takes Windows NT 4/2000Server as operating system platform, Microsoft SQL Server 7.0 as RDBMS, and takes NAS technology for data storage and flow technology for video service. The analysis of system designing and implementation shows that the dynamic PE teaching information resource sharing platform based on Web Service can realize loose coupling collaboration, realize dynamic integration and active integration and has good integration, openness and encapsulation. The distance PE teaching platform based on Web Service and the design scheme of PE teaching information resource database can effectively solve and realize the interconnection, interworking and sharing of PE teaching resources and adapt to the informatization development demands of PE teaching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tweedie, A.; Doris, E.
Establishing interconnection to the grid is a recognized barrier to the deployment of distributed energy generation. This report compares interconnection processes for photovoltaic projects in California and Germany. This report summarizes the steps of the interconnection process for developers and utilities, the average length of time utilities take to process applications, and paperwork required of project developers. Based on a review of the available literature, this report finds that while the interconnection procedures and timelines are similar in California and Germany, differences in the legal and regulatory frameworks are substantial.
Best Practices for Teaming and Collaboration in the Interconnected Systems Framework
ERIC Educational Resources Information Center
Splett, Joni W.; Perales, Kelly; Halliday-Boykins, Colleen A.; Gilchrest, Callie E.; Gibson, Nicole; Weist, Mark D.
2017-01-01
The Interconnected Systems Framework (ISF) blends school mental health practices, systems, and resources into all levels of a multitiered system of supports (e.g., positive behavior interventions and supports). The ISF aims to improve mental health and school performance for all students by emphasizing effective school-wide promotion and…
The Intersystem - Internetworking for space systems
NASA Astrophysics Data System (ADS)
Landauer, C.
This paper is a description of the Intersystem, which is a mechanism for internetworking among existing and planned military satellite communication systems. The communication systems interconnected with this mechanism are called member systems, and the interconnected set of communication systems is called the Intersystem. The Intersystem is implemented with higher layer protocols that impose a common organization on the different signaling conventions, so that end users of different systems can communicate with each other. The Intersystem provides its coordination of member system access and resource requests with Intersystem Resource Controllers (IRCs), which are processors that implement the Intersystem protocols and have interfaces to the member systems' own access and resource control mechanisms. The IRCs are connected to each other to form the IRC Subnetwork. Terminals request services from the IRC Subnetwork using the Intersystem Access Control Protocols, and the IRC Subnetwork responses to the requests are coordinated using the RCRC (Resource Controller to Resource Controller) Protocols.
Hawaiian Electric Advanced Inverter Grid Support Function Laboratory Validation and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Nagarajan, Adarsh; Prabakar, Kumar
The objective for this test plan was to better understand how to utilize the performance capabilities of advanced inverter functions to allow the interconnection of distributed energy resource (DER) systems to support the new Customer Self-Supply, Customer Grid-Supply, and other future DER programs. The purpose of this project was: 1) to characterize how the tested grid supportive inverters performed the functions of interest, 2) to evaluate the grid supportive inverters in an environment that emulates the dynamics of O'ahu's electrical distribution system, and 3) to gain insight into the benefits of the grid support functions on selected O'ahu island distributionmore » feeders. These goals were achieved through laboratory testing of photovoltaic inverters, including power hardware-in-the-loop testing.« less
Effects of voltage control in utility interactive dispersed storage and generation systems
NASA Technical Reports Server (NTRS)
Kirkham, H.; Das, R.
1983-01-01
When a small generator is connected to the distribution system, the voltage at the point of interconnection is determined largely by the system and not the generator. The effect on the generator, on the load voltage and on the distribution system of a number of different voltage control strategies in the generator is examined. Synchronous generators with three kinds of exciter control are considered, as well as induction generators and dc/ac inverters, with and without capacitor compensation. The effect of varying input power during operation (which may be experienced by generators based on renewable resources) is explored, as well as the effect of connecting and disconnecting the generator at ten percent of its rated power. Operation with a constant slightly lagging factor is shown to have some advantages.
State and Local Publications | State, Local, and Tribal Governments | NREL
residential and small commercial photovoltaic interconnection process time frames in the United States . Understanding Processes and Timelines for Distributed Photovoltaic Interconnection in the United States analyzes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheaffer, P.; Lemar, P.; Honton, E. J.
The Universal Interconnection Technology (UIT) Workshop - sponsored by the U.S. Department of Energy, Distributed Energy and Electric Reliability (DEER) Program, and Distribution and Interconnection R&D - was held July 25-26, 2002, in Chicago, Ill., to: (1) Examine the need for a modular universal interconnection technology; (2) Identify UIT functional and technical requirements; (3) Assess the feasibility of and potential roadblocks to UIT; (4) Create an action plan for UIT development. These proceedings begin with an overview of the workshop. The body of the proceedings provides a series of industry representative-prepared papers on UIT functions and features, present interconnection technology,more » approaches to modularization and expandability, and technical issues in UIT development as well as detailed summaries of group discussions. Presentations, a list of participants, a copy of the agenda, and contact information are provided in the appendices of this document.« less
Design of a highly parallel board-level-interconnection with 320 Gbps capacity
NASA Astrophysics Data System (ADS)
Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.; Bauer, H.
2012-01-01
A parallel board-level interconnection design is presented consisting of 32 channels, each operating at 10 Gbps. The hardware uses available optoelectronic components (VCSEL, TIA, pin-diodes) and a combination of planarintegrated free-space optics, fiber-bundles and available MEMS-components, like the DMD™ from Texas Instruments. As a specific feature, we present a new modular inter-board interconnect, realized by 3D fiber-matrix connectors. The performance of the interconnect is evaluated with regard to optical properties and power consumption. Finally, we discuss the application of the interconnect for strongly distributed system architectures, as, for example, in high performance embedded computing systems and data centers.
ERIC Educational Resources Information Center
Lange, Karen
The Wyoming Academic Libraries Resource Project was initiated to improve cooperation and resource sharing by developing an interconnected information access and delivery system among Wyoming's academic libraries and the State Library. The goal was to formalize communication, cooperation, and resource sharing by developing an Ariel document…
NASA Astrophysics Data System (ADS)
Zhao, Feng; Frietman, Edward E. E.; Han, Zhong; Chen, Ray T.
1999-04-01
A characteristic feature of a conventional von Neumann computer is that computing power is delivered by a single processing unit. Although increasing the clock frequency improves the performance of the computer, the switching speed of the semiconductor devices and the finite speed at which electrical signals propagate along the bus set the boundaries. Architectures containing large numbers of nodes can solve this performance dilemma, with the comment that main obstacles in designing such systems are caused by difficulties to come up with solutions that guarantee efficient communications among the nodes. Exchanging data becomes really a bottleneck should al nodes be connected by a shared resource. Only optics, due to its inherent parallelism, could solve that bottleneck. Here, we explore a multi-faceted free space image distributor to be used in optical interconnects in massively parallel processing. In this paper, physical and optical models of the image distributor are focused on from diffraction theory of light wave to optical simulations. the general features and the performance of the image distributor are also described. The new structure of an image distributor and the simulations for it are discussed. From the digital simulation and experiment, it is found that the multi-faceted free space image distributing technique is quite suitable for free space optical interconnection in massively parallel processing and new structure of the multifaceted free space image distributor would perform better.
Design and Development of a Run-Time Monitor for Multi-Core Architectures in Cloud Computing
Kang, Mikyung; Kang, Dong-In; Crago, Stephen P.; Park, Gyung-Leen; Lee, Junghoon
2011-01-01
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data. PMID:22163811
Design and development of a run-time monitor for multi-core architectures in cloud computing.
Kang, Mikyung; Kang, Dong-In; Crago, Stephen P; Park, Gyung-Leen; Lee, Junghoon
2011-01-01
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.
Optical interconnection and packaging technologies for advanced avionics systems
NASA Astrophysics Data System (ADS)
Schroeder, J. E.; Christian, N. L.; Cotti, B.
1992-09-01
An optical backplane developed to demonstrate the advantages of high-performance optical interconnections and supporting technologies and designed to be compatible with standard avionics racks is described. The hardware demonstrates the three basic components of optical interconnects: optical sources, an optical signal distribution network, and optical receivers. Results from characterization and environmental tests, including a demonstration of the reliable transmission of serial data at a 1 Gb/s, are reported.
Ring-array processor distribution topology for optical interconnects
NASA Technical Reports Server (NTRS)
Li, Yao; Ha, Berlin; Wang, Ting; Wang, Sunyu; Katz, A.; Lu, X. J.; Kanterakis, E.
1992-01-01
The existing linear and rectangular processor distribution topologies for optical interconnects, although promising in many respects, cannot solve problems such as clock skews, the lack of supporting elements for efficient optical implementation, etc. The use of a ring-array processor distribution topology, however, can overcome these problems. Here, a study of the ring-array topology is conducted with an aim of implementing various fast clock rate, high-performance, compact optical networks for digital electronic multiprocessor computers. Practical design issues are addressed. Some proof-of-principle experimental results are included.
Bandwidth Management in Resource Constrained Networks
2012-03-01
Postgraduate School OSI Open Systems Interconnection QoS Quality of Service TCP Transmission Control Protocol/Internet Protocol TCP/IP Transmission...filtering. B. NORMAL TCP/IP COMMUNICATIONS The Internet is a “complex network WAN that connects LANs and clients around the globe” (Dean, 2009...of the Open Systems Interconnection ( OSI ) model allowing them to route traffic based on MAC address (Kurose & Ross, 2009). While switching
NASA Astrophysics Data System (ADS)
White, Robert R.; Wren, James; Davis, Heath R.; Galassi, Mark; Starr, Daniel; Vestrand, W. T.; Wozniak, P.
2004-09-01
The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficiently in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation. The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescopes to be linked together and communicate. Coupled with an intelligent alert client at each telescope, it can analyze and respond to each distributed TALON alert based on the telescopes needs and schedule.
Mongolia's potential in international cooperation in the Asian energy space
NASA Astrophysics Data System (ADS)
Batmunkh, Sereeter; Stennikov, Valery; Bat-Erdene, Bayar; Erdenebaatar, Altay
2018-01-01
The paper is concerned with the issues of interstate electric power interconnections to be created in the countries of Northeast Asia. The conditions are formulated, the problems are stated, and solutions for Mongolia's entry into the Asian energy space are proposed. The electricity consumption rates are growing, however, the Northeast Asia countries differ considerably in available energy resources to cope with this growth. Therefore, the need to build international electric power interconnections that take into account climatic features, seasonal peak load differences and other factors in order to rationally match power demand and supply is getting increasingly more obvious. Mongolia can take an active part in this process, as the country is rich in energy resources and interested in their development to meet their domestic needs and exchange with neighboring countries. The establishment of interstate power interconnections in the Northeast Asia countries represents a topical task whose solution will make it possible to meet the demand of this region for electricity on mutually beneficial terms. Mongolia has a good spatial position, energy resources and is interested in ensuring domestic energy balance. Therefore, the country can be an active participant in such an integration process.
Yang, Hui; Zhang, Jie; Zhao, Yongli; Ji, Yuefeng; Li, Hui; Lin, Yi; Li, Gang; Han, Jianrui; Lee, Young; Ma, Teng
2014-07-28
Data center interconnection with elastic optical networks is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. We previously implemented enhanced software defined networking over elastic optical network for data center application [Opt. Express 21, 26990 (2013)]. On the basis of it, this study extends to consider the time-aware data center service scheduling with elastic service time and service bandwidth according to the various time sensitivity requirements. A novel time-aware enhanced software defined networking (TeSDN) architecture for elastic data center optical interconnection has been proposed in this paper, by introducing a time-aware resources scheduling (TaRS) scheme. The TeSDN can accommodate the data center services with required QoS considering the time dimensionality, and enhance cross stratum optimization of application and elastic optical network stratums resources based on spectrum elasticity, application elasticity and time elasticity. The overall feasibility and efficiency of the proposed architecture is experimentally verified on our OpenFlow-based testbed. The performance of TaRS scheme under heavy traffic load scenario is also quantitatively evaluated based on TeSDN architecture in terms of blocking probability and resource occupation rate.
WDM Nanoscale Laser Diodes for Si Photonic Interconnects
2016-07-25
mounting on silicon. The nanoscale VCSELs can achieve small optical modes and present a compact laser diode that is also robust. In this work we have used...Distribution Unlimited UU UU UU UU 25-07-2016 1-Feb-2012 31-Dec-2015 Final Report: WDM Nanoscale Laser Diodes for Si Photonic Interconnects The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 VCSEL, optical interconnect, laser diode , semiconductor laser, microcavity REPORT DOCUMENTATION
Novel Methods to Determine Feeder Locational PV Hosting Capacity and PV Impact Signatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reno, Matthew J.; Coogan, Kyle; Seuss, John
Often PV hosting capacity analysis is performed for a limited number of distribution feeders. For medium - voltage distribution feeders, previous results generally analyze less than 20 feeders, and then the results are extrapolated out to similar types of feeders. Previous hosting capacity research has often focused on determining a single value for the hosting capacity for the entire feeder, whereas this research expands previous hosting capacity work to investigate all the regions of the feeder that may allow many different hosting capacity values wit h an idea called locational hosting capacity (LHC)to determine the largest PV size that canmore » be interconnected at different locations (buses) on the study feeders. This report discusses novel methods for analyzing PV interconnections with advanced simulati on methods. The focus is feeder and location - specific impacts of PV that determine the locational PV hosting capacity. Feeder PV impact signature are used to more precisely determine the local maximum hosting capacity of individual areas of the feeder. T he feeder signature provides improved interconnection screening with certain zones that show the risk of impact to the distribution feeder from PV interconnections.« less
Microgrids and distributed generation systems: Control, operation, coordination and planning
NASA Astrophysics Data System (ADS)
Che, Liang
Distributed Energy Resources (DERs) which include distributed generations (DGs), distributed energy storage systems, and adjustable loads are key components in microgrid operations. A microgrid is a small electric power system integrated with on-site DERs to serve all or some portion of the local load and connected to the utility grid through the point of common coupling (PCC). Microgrids can operate in both grid-connected mode and island mode. The structure and components of hierarchical control for a microgrid at Illinois Institute of Technology (IIT) are discussed and analyzed. Case studies would address the reliable and economic operation of IIT microgrid. The simulation results of IIT microgrid operation demonstrate that the hierarchical control and the coordination strategy of distributed energy resources (DERs) is an effective way of optimizing the economic operation and the reliability of microgrids. The benefits and challenges of DC microgrids are addressed with a DC model for the IIT microgrid. We presented the hierarchical control strategy including the primary, secondary, and tertiary controls for economic operation and the resilience of a DC microgrid. The simulation results verify that the proposed coordinated strategy is an effective way of ensuring the resilient response of DC microgrids to emergencies and optimizing their economic operation at steady state. The concept and prototype of a community microgrid that interconnecting multiple microgrids in a community are proposed. Two works are conducted. For the coordination, novel three-level hierarchical coordination strategy to coordinate the optimal power exchanges among neighboring microgrids is proposed. For the planning, a multi-microgrid interconnection planning framework using probabilistic minimal cut-set (MCS) based iterative methodology is proposed for enhancing the economic, resilience, and reliability signals in multi-microgrid operations. The implementation of high-reliability microgrids requires proper protection schemes that effectively function in both grid-connected and island modes. This chapter presents a communication-assisted four-level hierarchical protection strategy for high-reliability microgrids, and tests the proposed protection strategy based on a loop structured microgrid. The simulation results demonstrate the proposed strategy to be an effective and efficient option for microgrid protection. Additionally, microgrid topology ought to be optimally planned. To address the microgrid topology planning, a graph-partitioning and integer-programming integrated methodology is proposed. This work is not included in the dissertation. Interested readers can refer to our related publication.
CHOmine: an integrated data warehouse for CHO systems biology and modeling
Hanscho, Michael; Ruckerbauer, David E.; Zanghellini, Jürgen; Borth, Nicole
2017-01-01
Abstract The last decade has seen a surge in published genome-scale information for Chinese hamster ovary (CHO) cells, which are the main production vehicles for therapeutic proteins. While a single access point is available at www.CHOgenome.org, the primary data is distributed over several databases at different institutions. Currently research is frequently hampered by a plethora of gene names and IDs that vary between published draft genomes and databases making systems biology analyses cumbersome and elaborate. Here we present CHOmine, an integrative data warehouse connecting data from various databases and links to other ones. Furthermore, we introduce CHOmodel, a web based resource that provides access to recently published CHO cell line specific metabolic reconstructions. Both resources allow to query CHO relevant data, find interconnections between different types of data and thus provides a simple, standardized entry point to the world of CHO systems biology. Database URL: http://www.chogenome.org PMID:28605771
Teaching Sustainable and Integrated Resource Management Using an Interactive Nexus Model
ERIC Educational Resources Information Center
Bajzelj, Bojana; Fenner, Richard A.; Curmi, Elizabeth; Richards, Keith S.
2016-01-01
Purpose: The purpose of this paper was to enhance and complement teaching about resource system feedbacks and environmental modelling. Students were given an interactive exercise based on a research model (ForeseerTM), developed by an inter-disciplinary research team, that explores the interconnectivity of water, energy and land resources. Two…
Code of Federal Regulations, 2011 CFR
2011-04-01
....310 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF... facility including whether the qualifying facility is interconnected as an energy or a network resource... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Procedures for...
NASA Astrophysics Data System (ADS)
Figueroa-Acevedo, Armando L.
Historically, the primary justification for building wide-area transmission lines in the US and around the world has been based on reliability and economic criteria. Today, the influence of renewable portfolio standards (RPS), Environmental Protection Agency (EPA) regulations, transmission needs, load diversity, and grid flexibility requirements drives interest in high capacity wide-area transmission. By making use of an optimization model to perform long-term (15 years) co-optimized generation and transmission expansion planning, this work explored the benefits of increasing transmission capacity between the US Eastern and Western Interconnections under different policy and futures assumptions. The model assessed tradeoffs between investments in cross-interconnection HVDC transmission, AC transmission needs within each interconnection, generation investment costs, and operational costs, while satisfying different policy compliance constraints. Operational costs were broken down into the following market products: energy, up-/down regulation reserve, and contingency reserve. In addition, the system operating flexibility requirements were modeled as a function of net-load variability so that the flexibility of the non-wind/non-solar resources increases with increased wind and solar investment. In addition, planning reserve constraints are imposed under the condition that they be deliverable to the load. Thus, the model allows existing and candidate generation resources for both operating reserves and deliverable planning reserves to be shared throughout the interconnections, a feature which significantly drives identification of least-cost investments. This model is used with a 169-bus representation of the North American power grid to design four different high-capacity wide-area transmission infrastructures. Results from this analysis suggest that, under policy that imposes a high-renewable future, the benefits of high capacity transmission between the Eastern and Western Interconnections outweigh its cost. A sensitivity analysis is included to test the robustness of each design under different future assumptions and approximate upper and lower bounds for cross-seam transmission between the Eastern and Western Interconnections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian
The main objectives of this report are to evaluate China's photovoltaic (PV) interconnection standards and the U.S. counterparts and to propose recommendations for future revisions to these standards. This report references the 2013 report Comparative Study of Standards for Grid-Connected PV System in China, the U.S. and European Countries, which compares U.S., European, and China's PV grid interconnection standards; reviews various metrics for the characterization of distribution network with PV; and suggests modifications to China's PV interconnection standards and requirements. The recommendations are accompanied by assessments of four high-penetration PV grid interconnection cases in the United States to illustrate solutionsmore » implemented to resolve issues encountered at different sites. PV penetration in China and in the United States has significantly increased during the past several years, presenting comparable challenges depending on the conditions of the grid at the point of interconnection; solutions are generally unique to each interconnected PV installation or PV plant.« less
High-Penetration Photovoltaic Planning Methodologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian
The main objective of this report is to provide an overview of select U.S. utility methodologies for performing high-penetration photovoltaic (HPPV) system planning and impact studies. This report covers the Federal Energy Regulatory Commission's orders related to photovoltaic (PV) power system interconnection, particularly the interconnection processes for the Large Generation Interconnection Procedures and Small Generation Interconnection Procedures. In addition, it includes U.S. state interconnection standards and procedures. The procedures used by these regulatory bodies consider the impacts of HPPV power plants on the networks. Technical interconnection requirements for HPPV voltage regulation include aspects of power monitoring, grounding, synchronization, connection tomore » the overall distribution system, back-feeds, disconnecting means, abnormal operating conditions, and power quality. This report provides a summary of mitigation strategies to minimize the impact of HPPV. Recommendations and revisions to the standards may take place as the penetration level of renewables on the grid increases and new technologies develop in future years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Sudipta
Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of the electric power systems. Some of the urgent areas for research, as identified by inverter manufacturers, installers and utilities, are potential for transient overvoltage from PV inverters, multi-inverter anti-islanding, impact of smart inverters on volt-VAR support, impact of bidirectional power flow, and potential for distributed generation curtailment solutions to mitigate grid stability challenges. Under this project, NREL worked with SolarCity to address these challenges through research, testing and analysis at the Energy System Integration Facility (ESIF). Inverters from differentmore » manufacturers were tested at ESIF and NREL's unique power hardware-in-the-loop (PHIL) capability was utilized to evaluate various system-level impacts. Through the modeling, simulation, and testing, this project eliminated critical barriers on high PV penetration and directly supported the Department of Energy's SunShot goal of increasing the solar PV on the electrical grid.« less
Master-slave mixed arrays for data-flow computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, T.L.; Fisher, P.D.
1983-01-01
Control cells (masters) and computation cells (slaves) are mixed in regular geometric patterns to form reconfigurable arrays known as master-slave mixed arrays (MSMAS). Interconnections of the corners and edges of the hexagonal control cells and the edges of the hexagonal computation cells are used to construct synchronous and asynchronous communication networks, which support local computation and local communication. Data-driven computations result in self-directed ring pipelines within the MSMA, and composite data-flow computations are executed in a pipelined fashion. By viewing an MSMA as a computing network of tightly-linked ring pipelines, data-flow programs can be uniformly distributed over these pipelines formore » efficient resource utilisation. 9 references.« less
Long-term Spatial Distribution Patterns of Protozoa in Connected Microhabitats
NASA Astrophysics Data System (ADS)
Taghon, G. L.; Tuorto, S. J.
2016-02-01
Studies of microbial ecosystems usually assume habitat homogeneity. Recent research, however, indicates that habitat structure varies at millimeter scales and that this patchiness affects abundance and behavior of microbes. In this study, two species of ciliated protozoa were maintained, together, for multiple generations in microfluidic devices consisting of arrays of interconnected microhabitats with differing resource availability. The species differed in their population dynamics and tendency to disperse among microhabitats. Both species coexisted for over 45 days, and their coexistence likely resulted from habitat selection at millimeter scales. We demonstrate that it is not only possible, but imperative, that detailed ecological phenomena of microbial systems be studied at the relevant spatial and temporal scales.
A tool for simulating parallel branch-and-bound methods
NASA Astrophysics Data System (ADS)
Golubeva, Yana; Orlov, Yury; Posypkin, Mikhail
2016-01-01
The Branch-and-Bound method is known as one of the most powerful but very resource consuming global optimization methods. Parallel and distributed computing can efficiently cope with this issue. The major difficulty in parallel B&B method is the need for dynamic load redistribution. Therefore design and study of load balancing algorithms is a separate and very important research topic. This paper presents a tool for simulating parallel Branchand-Bound method. The simulator allows one to run load balancing algorithms with various numbers of processors, sizes of the search tree, the characteristics of the supercomputer's interconnect thereby fostering deep study of load distribution strategies. The process of resolution of the optimization problem by B&B method is replaced by a stochastic branching process. Data exchanges are modeled using the concept of logical time. The user friendly graphical interface to the simulator provides efficient visualization and convenient performance analysis.
Networking and AI systems: Requirements and benefits
NASA Technical Reports Server (NTRS)
1988-01-01
The price performance benefits of network systems is well documented. The ability to share expensive resources sold timesharing for mainframes, department clusters of minicomputers, and now local area networks of workstations and servers. In the process, other fundamental system requirements emerged. These have now been generalized with open system requirements for hardware, software, applications and tools. The ability to interconnect a variety of vendor products has led to a specification of interfaces that allow new techniques to extend existing systems for new and exciting applications. As an example of the message passing system, local area networks provide a testbed for many of the issues addressed by future concurrent architectures: synchronization, load balancing, fault tolerance and scalability. Gold Hill has been working with a number of vendors on distributed architectures that range from a network of workstations to a hypercube of microprocessors with distributed memory. Results from early applications are promising both for performance and scalability.
DGIC Interconnection Insights | Distributed Generation Interconnection
Center and Energy Analysis Group. NREL researchers examined PV project data from more than 30,000 solar permission to operate. "This report represents the first data-driven evaluation of how PV deployment additional insights on the research effort and report findings, check out STAT Chat (the "Solar
Status and interconnections of selected environmental issues in the global coastal zones
Shi, Hua; Singh, Ashbindu
2003-01-01
This study focuses on assessing the state of population distribution, land cover distribution, biodiversity hotspots, and protected areas in global coastal zones. The coastal zone is defined as land within 100 km of the coastline. This study attempts to answer such questions as: how crowded are the coastal zones, what is the pattern of land cover distribution in these areas, how much of these areas are designated as protected areas, what is the state of the biodiversity hotspots, and what are the interconnections between people and coastal environment. This study uses globally consistent and comprehensive geospatial datasets based on remote sensing and other sources. The application of Geographic Information System (GIS) layering methods and consistent datasets has made it possible to identify and quantify selected coastal zones environmental issues and their interconnections. It is expected that such information provide a scientific basis for global coastal zones management and assist in policy formulations at the national and international levels.
Li, Jinyu; Zhi, Wei; Xu, Taotao; Shi, Feng; Duan, Ke; Wang, Jianxin; Mu, Yandong; Weng, Jie
2016-01-01
The macro-pore sizes of porous scaffold play a key role for regulating ectopic osteogenesis and angiogenesis but many researches ignored the influence of interconnection between macro-pores with different sizes. In order to accurately reveal the relationship between ectopic osteogenesis and macro-pore sizes in dorsal muscle and abdominal cavities of dogs, hydroxyapatite (HA) scaffolds with three different macro-pore sizes of 500–650, 750–900 and 1100–1250 µm were prepared via sugar spheres-leaching process, which also had similar interconnecting structure determined by keeping the d/s ratio of interconnecting window diameter to macro-pore size constant. The permeability test showed that the seepage flow of fluid through the porous scaffolds increased with the increase of macro-pore sizes. The cell growth in three scaffolds was not affected by the macro-pore sizes. The in vivo ectopic implantation results indicated that the macro-pore sizes of HA scaffolds with the similar interconnecting structure have impact not only the speed of osteogenesis and angiogenesis but also the space distribution of newly formed bone. The scaffold with macro-pore sizes of 750–900 µm exhibited much faster angiogenesis and osteogenesis, and much more uniformly distribution of new bone than those with other macro-pore sizes. This work illustrates the importance of a suitable macro-pore sizes in HA scaffolds with the similar interconnecting structure which provides the environment for ectopic osteogenesis and angiogenesis. PMID:27699059
NASA Technical Reports Server (NTRS)
Daines, Martha J.; Richter, Frank M.
1988-01-01
An experimental method for directly determining the degree of interconnectivity of melt in a partially molten system is discussed using an olivine-basalt system as an example. Samarium 151 is allowed time to diffuse through mixtures of olivine and basalt powder which have texturally equilibrated at 1350 C and 13 to 15 kbars. The final distribution of samarium is determined through examination of developed radiographs of the samples. Results suggest an interconnected melt network is established at melt fractions at least as low as 1 wt pct and all melt is completely interconnected at melt fractions at least as low as 2 wt pct for the system examined.
Deri, Robert J.; DeGroot, Anthony J.; Haigh, Ronald E.
2002-01-01
As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.
Large-scale optimal control of interconnected natural gas and electrical transmission systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Nai-Yuan; Zavala, Victor M.
2016-04-01
We present a detailed optimal control model that captures spatiotemporal interactions between gas and electric transmission networks. We use the model to study flexibility and economic opportunities provided by coordination. A large-scale case study in the Illinois system reveals that coordination can enable the delivery of significantly larger amounts of natural gas to the power grid. In particular, under a coordinated setting, gas-fired generators act as distributed demand response resources that can be controlled by the gas pipeline operator. This enables more efficient control of pressures and flows in space and time and overcomes delivery bottlenecks. We demonstrate that themore » additional flexibility not only can benefit the gas operator but can also lead to more efficient power grid operations and results in increased revenue for gas-fired power plants. We also use the optimal control model to analyze computational issues arising in these complex models. We demonstrate that the interconnected Illinois system with full physical resolution gives rise to a highly nonlinear optimal control problem with 4400 differential and algebraic equations and 1040 controls that can be solved with a state-of-the-art sparse optimization solver. (C) 2016 Elsevier Ltd. All rights reserved.« less
Somo, Sami I.; Akar, Banu; Bayrak, Elif S.; Larson, Jeffery C.; Appel, Alyssa A.; Mehdizadeh, Hamidreza; Cinar, Ali
2015-01-01
Rapid and controlled vascularization within biomaterials is essential for many applications in regenerative medicine. The extent of vascularization is influenced by a number of factors, including scaffold architecture. While properties such as pore size and total porosity have been studied extensively, the importance of controlling the interconnectivity of pores has received less attention. A sintering method was used to generate hydrogel scaffolds with controlled pore interconnectivity. Poly(methyl methacrylate) microspheres were used as a sacrificial agent to generate porous poly(ethylene glycol) diacrylate hydrogels with interconnectivity varying based on microsphere sintering conditions. Interconnectivity levels increased with sintering time and temperature with resultant hydrogel structure showing agreement with template structure. Porous hydrogels with a narrow pore size distribution (130–150 μm) and varying interconnectivity were investigated for their ability to influence vascularization in response to gradients of platelet-derived growth factor-BB (PDGF-BB). A rodent subcutaneous model was used to evaluate vascularized tissue formation in the hydrogels in vivo. Vascularized tissue invasion varied with interconnectivity. At week 3, higher interconnectivity hydrogels had completely vascularized with twice as much invasion. Interconnectivity also influenced PDGF-BB transport within the scaffolds. An agent-based model was used to explore the relative roles of steric and transport effects on the observed results. In conclusion, a technique for the preparation of hydrogels with controlled pore interconnectivity has been developed and evaluated. This method has been used to show that pore interconnectivity can independently influence vascularization of biomaterials. PMID:25603533
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter; Barbose, Galen L.; Stoll, Brady
Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities; forecasting capabilities can be improved, but generally at a cost. This paper informs this decision-space by using a suite of models to explore the capacity expansion and operation of the Western Interconnection over a 15-year period across a wide range of DPV growth rates and misforecast severities. The system costs under a misforecast are compared against the costs under a perfect forecast, to quantify the costs of misforecasting. Using a simplified probabilistic method applied to these modeling results, an analyst can make a first-ordermore » estimate of the financial benefit of improving a utility’s forecasting capabilities, and thus be better informed about whether to make such an investment. For example, under our base assumptions, a utility with 10 TWh per year of retail electric sales who initially estimates that DPV growth could range from 2% to 7.5% of total generation over the next 15 years could expect total present-value savings of approximately $4 million if they could reduce the severity of misforecasting to within ±25%. Utility resource planners can compare those savings against the costs needed to achieve that level of precision, to guide their decision on whether to make an investment in tools or resources.« less
Centrality-based Selection of Semantic Resources for Geosciences
NASA Astrophysics Data System (ADS)
Cerba, Otakar; Jedlicka, Karel
2017-04-01
Semantical questions intervene almost in all disciplines dealing with geographic data and information, because relevant semantics is crucial for any way of communication and interaction among humans as well as among machines. But the existence of such a large number of different semantic resources (such as various thesauri, controlled vocabularies, knowledge bases or ontologies) makes the process of semantics implementation much more difficult and complicates the use of the advantages of semantics. This is because in many cases users are not able to find the most suitable resource for their purposes. The research presented in this paper introduces a methodology consisting of an analysis of identical relations in Linked Data space, which covers a majority of semantic resources, to find a suitable resource of semantic information. Identical links interconnect representations of an object or a concept in various semantic resources. Therefore this type of relations is considered to be crucial from the view of Linked Data, because these links provide new additional information, including various views on one concept based on different cultural or regional aspects (so-called social role of Linked Data). For these reasons it is possible to declare that one reasonable criterion for feasible semantic resources for almost all domains, including geosciences, is their position in a network of interconnected semantic resources and level of linking to other knowledge bases and similar products. The presented methodology is based on searching of mutual connections between various instances of one concept using "follow your nose" approach. The extracted data on interconnections between semantic resources are arranged to directed graphs and processed by various metrics patterned on centrality computing (degree, closeness or betweenness centrality). Semantic resources recommended by the research could be used for providing semantically described keywords for metadata records or as names of items in data models. Such an approach enables much more efficient data harmonization, integration, sharing and exploitation. * * * * This publication was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports. This publication was supported by project Data-Driven Bioeconomy (DataBio) from the ICT-15-2016-2017, Big Data PPP call.
Lightwave technology in microwave systems
NASA Astrophysics Data System (ADS)
Popa, A. E.; Gee, C. M.; Yen, H. W.
1986-01-01
Many advanced microwave system concepts such as active aperture phased array antennas use distributed topologies in which lightwave circuits are being proposed to interconnect both the analog and digital modules of the system. Lightwave components designed to implement these interconnects are reviewed and their performance analyzed. The impact of trends in component development are discussed.
DGIC Interconnection Insights | Distributed Generation Interconnection
ripe for cost reductions. Utilities, public service commissions, legislators, and even developers can timelines, strand assets, stress debt service, and ultimately drive up the cost of solar energy. NREL ). The financier also indicated that solar's cost of capital, on the whole, is still 100-200 basis points
Agent-Based Simulation for Interconnection-Scale Renewable Integration and Demand Response Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Behboodi, Sahand; Crawford, Curran
This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council (WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methodsmore » presented.« less
Agent-Based Simulation for Interconnection-Scale Renewable Integration and Demand Response Studies
Chassin, David P.; Behboodi, Sahand; Crawford, Curran; ...
2015-12-23
This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council (WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methodsmore » presented.« less
Understanding the Sampling Distribution and the Central Limit Theorem.
ERIC Educational Resources Information Center
Lewis, Charla P.
The sampling distribution is a common source of misuse and misunderstanding in the study of statistics. The sampling distribution, underlying distribution, and the Central Limit Theorem are all interconnected in defining and explaining the proper use of the sampling distribution of various statistics. The sampling distribution of a statistic is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R. R.; Wren, J.; Davis, H. R.
2004-01-01
The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficienfiy in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation.more » The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescopes to be linked together and communicate. Coupled with an intelligent alert client at each telescope, it can analyze and respond to each distributed TALON alert based on the telescopes needs and schedule.« less
Evaluation of Mineral Assets: Interconnection of Financial and Managerial Aspects
ERIC Educational Resources Information Center
Sergeev, Igor B.; Lebedeva, Olesia Y.
2016-01-01
Mining business makes no sense without mineral assets comprising mineral rights, exploration and evaluation expenditures, development costs, ore reserves and resources. The paper is aimed at investigation of how mineral reserves and resources are evaluated and represented in financial statements of mining companies, and what kind of influence do…
NASA Astrophysics Data System (ADS)
Wu, Linghui; Bihari, Bipin; Gan, Jianhua; Chen, Ray T.; Tang, Suning
1998-08-01
Si-CMOS compatible polymer-based waveguides for optoelectronic interconnects and packaging have been fabricated and characterized. A 1-to-48 fanout optoelectronic interconnection layer (OIL) structure based on Ultradel 9120/9020 for the high-speed massive clock signal distribution for a Cray T-90 supercomputer board has been constructed. The OIL employs multimode polymeric channel waveguides in conjunction with surface-normal waveguide output coupler and 1-to-2 splitter. A total insertion loss of 7.98 dB at 850 nm was measured experimentally.
Miller, Brian W.; Morisette, Jeffrey T.
2014-01-01
Developing resource management strategies in the face of climate change is complicated by the considerable uncertainty associated with projections of climate and its impacts and by the complex interactions between social and ecological variables. The broad, interconnected nature of this challenge has resulted in calls for analytical frameworks that integrate research tools and can support natural resource management decision making in the face of uncertainty and complex interactions. We respond to this call by first reviewing three methods that have proven useful for climate change research, but whose application and development have been largely isolated: species distribution modeling, scenario planning, and simulation modeling. Species distribution models provide data-driven estimates of the future distributions of species of interest, but they face several limitations and their output alone is not sufficient to guide complex decisions for how best to manage resources given social and economic considerations along with dynamic and uncertain future conditions. Researchers and managers are increasingly exploring potential futures of social-ecological systems through scenario planning, but this process often lacks quantitative response modeling and validation procedures. Simulation models are well placed to provide added rigor to scenario planning because of their ability to reproduce complex system dynamics, but the scenarios and management options explored in simulations are often not developed by stakeholders, and there is not a clear consensus on how to include climate model outputs. We see these strengths and weaknesses as complementarities and offer an analytical framework for integrating these three tools. We then describe the ways in which this framework can help shift climate change research from useful to usable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, Barry
The increasing deployment of distribution-connected photovoltaic (DPV) systems requires utilities to complete complex interconnection studies. Relatively simple interconnection study methods worked well for low penetrations of photovoltaic systems, but more complicated quasi-static time-series (QSTS) analysis is required to make better interconnection decisions as DPV penetration levels increase. Tools and methods must be developed to support this. This paper presents a variable-time-step solver for QSTS analysis that significantly shortens the computational time and effort to complete a detailed analysis of the operation of a distribution circuit with many DPV systems. Specifically, it demonstrates that the proposed variable-time-step solver can reduce themore » required computational time by as much as 84% without introducing any important errors to metrics, such as the highest and lowest voltage occurring on the feeder, number of voltage regulator tap operations, and total amount of losses realized in the distribution circuit during a 1-yr period. Further improvement in computational speed is possible with the introduction of only modest errors in these metrics, such as a 91 percent reduction with less than 5 percent error when predicting voltage regulator operations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behboodi, Sahand; Chassin, David P.; Djilali, Ned
This study describes a new approach for solving the multi-area electricity resource allocation problem when considering both intermittent renewables and demand response. The method determines the hourly inter-area export/import set that maximizes the interconnection (global) surplus satisfying transmission, generation and load constraints. The optimal inter-area transfer set effectively makes the electricity price uniform over the interconnection apart from constrained areas, which overall increases the consumer surplus more than it decreases the producer surplus. The method is computationally efficient and suitable for use in simulations that depend on optimal scheduling models. The method is demonstrated on a system that represents Northmore » America Western Interconnection for the planning year of 2024. Simulation results indicate that effective use of interties reduces the system operation cost substantially. Excluding demand response, both the unconstrained and the constrained scheduling solutions decrease the global production cost (and equivalently increase the global economic surplus) by 12.30B and 10.67B per year, respectively, when compared to the standalone case in which each control area relies only on its local supply resources. This cost saving is equal to 25% and 22% of the annual production cost. Including 5% demand response, the constrained solution decreases the annual production cost by 10.70B, while increases the annual surplus by 9.32B in comparison to the standalone case.« less
Behboodi, Sahand; Chassin, David P.; Djilali, Ned; ...
2016-12-23
This study describes a new approach for solving the multi-area electricity resource allocation problem when considering both intermittent renewables and demand response. The method determines the hourly inter-area export/import set that maximizes the interconnection (global) surplus satisfying transmission, generation and load constraints. The optimal inter-area transfer set effectively makes the electricity price uniform over the interconnection apart from constrained areas, which overall increases the consumer surplus more than it decreases the producer surplus. The method is computationally efficient and suitable for use in simulations that depend on optimal scheduling models. The method is demonstrated on a system that represents Northmore » America Western Interconnection for the planning year of 2024. Simulation results indicate that effective use of interties reduces the system operation cost substantially. Excluding demand response, both the unconstrained and the constrained scheduling solutions decrease the global production cost (and equivalently increase the global economic surplus) by 12.30B and 10.67B per year, respectively, when compared to the standalone case in which each control area relies only on its local supply resources. This cost saving is equal to 25% and 22% of the annual production cost. Including 5% demand response, the constrained solution decreases the annual production cost by 10.70B, while increases the annual surplus by 9.32B in comparison to the standalone case.« less
Demonstration Advanced Avionics System (DAAS) function description
NASA Technical Reports Server (NTRS)
Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.
1982-01-01
The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft.
Understanding Processes and Timelines for Distributed Photovoltaic
data from more than 30,000 PV systems across 87 utilities in 16 states to better understand how solar photovoltaic (PV) interconnection process time frames in the United States. This study includes an analysis of Analysis Metrics" that shows the four steps involved in the utility interconnection process for solar
Cross stratum resources protection in fog-computing-based radio over fiber networks for 5G services
NASA Astrophysics Data System (ADS)
Guo, Shaoyong; Shao, Sujie; Wang, Yao; Yang, Hui
2017-09-01
In order to meet the requirement of internet of things (IoT) and 5G, the cloud radio access network is a paradigm which converges all base stations computational resources into a cloud baseband unit (BBU) pool, while the distributed radio frequency signals are collected by remote radio head (RRH). A precondition for centralized processing in the BBU pool is an interconnection fronthaul network with high capacity and low delay. However, it has become more complex and frequent in the interaction between RRH and BBU and resource scheduling among BBUs in cloud. Cloud radio over fiber network has been proposed in our previous work already. In order to overcome the complexity and latency, in this paper, we first present a novel cross stratum resources protection (CSRP) architecture in fog-computing-based radio over fiber networks (F-RoFN) for 5G services. Additionally, a cross stratum protection (CSP) scheme considering the network survivability is introduced in the proposed architecture. The CSRP with CSP scheme can effectively pull the remote processing resource locally to implement the cooperative radio resource management, enhance the responsiveness and resilience to the dynamic end-to-end 5G service demands, and globally optimize optical network, wireless and fog resources. The feasibility and efficiency of the proposed architecture with CSP scheme are verified on our software defined networking testbed in terms of service latency, transmission success rate, resource occupation rate and blocking probability.
NASA Astrophysics Data System (ADS)
Calabretta, Nicola; Miao, Wang; Dorren, Harm
2016-03-01
Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.
Load-Following Power Timeline Analyses for the International Space Station
NASA Technical Reports Server (NTRS)
Fincannon, James; Delleur, Ann; Green, Robert; Hojnicki, Jeffrey
1996-01-01
Spacecraft are typically complex assemblies of interconnected systems and components that have highly time-varying thermal communications, and power requirements. It is essential that systems designers be able to assess the capability of the spacecraft to meet these requirements which should represent a realistic projection of demand for these resources once the vehicle is on-orbit. To accomplish the assessment from the power standpoint, a computer code called ECAPS has been developed at NASA Lewis Research Center that performs a load-driven analysis of a spacecraft power system given time-varying distributed loading and other mission data. This program is uniquely capable of synthesizing all of the changing spacecraft conditions into a single, seamless analysis for a complete mission. This paper presents example power load timelines with which numerous data are integrated to provide a realistic assessment of the load-following capabilities of the power system. Results of analyses show how well the power system can meet the time-varying power resource demand.
CHOmine: an integrated data warehouse for CHO systems biology and modeling.
Gerstl, Matthias P; Hanscho, Michael; Ruckerbauer, David E; Zanghellini, Jürgen; Borth, Nicole
2017-01-01
The last decade has seen a surge in published genome-scale information for Chinese hamster ovary (CHO) cells, which are the main production vehicles for therapeutic proteins. While a single access point is available at www.CHOgenome.org, the primary data is distributed over several databases at different institutions. Currently research is frequently hampered by a plethora of gene names and IDs that vary between published draft genomes and databases making systems biology analyses cumbersome and elaborate. Here we present CHOmine, an integrative data warehouse connecting data from various databases and links to other ones. Furthermore, we introduce CHOmodel, a web based resource that provides access to recently published CHO cell line specific metabolic reconstructions. Both resources allow to query CHO relevant data, find interconnections between different types of data and thus provides a simple, standardized entry point to the world of CHO systems biology. http://www.chogenome.org. © The Author(s) 2017. Published by Oxford University Press.
Making ResourceFULL™ Decisions: A Process Model for Civic Engagement
ERIC Educational Resources Information Center
Radke, Barbara; Chazdon, Scott
2015-01-01
Many public issues are becoming more complex, interconnected, and cannot be resolved by one individual or entity. Research shows an informed decision is not enough. Addressing these issues requires authentic civic engagement (deliberative dialogue) with the public to reach resourceFULL™ decisions--a decision based on diverse sources of information…
Characterizing wind power resource reliability in southern Africa
Fant, Charles; Gunturu, Bhaskar; Schlosser, Adam
2015-08-29
Producing electricity from wind is attractive because it provides a clean, low-maintenance power supply. However, wind resource is intermittent on various timescales, thus occasionally introducing large and sudden changes in power supply. A better understanding of this variability can greatly benefit power grid planning. In the following study, wind resource is characterized using metrics that highlight these intermittency issues; therefore identifying areas of high and low wind power reliability in southern Africa and Kenya at different time-scales. After developing a wind speed profile, these metrics are applied at various heights in order to assess the added benefit of raising themore » wind turbine hub. Furthermore, since the interconnection of wind farms can aid in reducing the overall intermittency, the value of interconnecting near-by sites is mapped using two distinct methods. Of the countries in this region, the Republic of South Africa has shown the most interest in wind power investment. For this reason, we focus parts of the study on wind reliability in the country. The study finds that, although mean Wind Power Density is high in South Africa compared to its neighboring countries, wind power resource tends to be less reliable than in other parts of southern Africa—namely central Tanzania. We also find that South Africa’s potential varies over different timescales, with higher reliability in the summer than winter, and higher reliability during the day than at night. This study is concluded by introducing two methods and measures to characterize the value of interconnection, including the use of principal component analysis to identify areas with a common signal.« less
Characterizing wind power resource reliability in southern Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fant, Charles; Gunturu, Bhaskar; Schlosser, Adam
Producing electricity from wind is attractive because it provides a clean, low-maintenance power supply. However, wind resource is intermittent on various timescales, thus occasionally introducing large and sudden changes in power supply. A better understanding of this variability can greatly benefit power grid planning. In the following study, wind resource is characterized using metrics that highlight these intermittency issues; therefore identifying areas of high and low wind power reliability in southern Africa and Kenya at different time-scales. After developing a wind speed profile, these metrics are applied at various heights in order to assess the added benefit of raising themore » wind turbine hub. Furthermore, since the interconnection of wind farms can aid in reducing the overall intermittency, the value of interconnecting near-by sites is mapped using two distinct methods. Of the countries in this region, the Republic of South Africa has shown the most interest in wind power investment. For this reason, we focus parts of the study on wind reliability in the country. The study finds that, although mean Wind Power Density is high in South Africa compared to its neighboring countries, wind power resource tends to be less reliable than in other parts of southern Africa—namely central Tanzania. We also find that South Africa’s potential varies over different timescales, with higher reliability in the summer than winter, and higher reliability during the day than at night. This study is concluded by introducing two methods and measures to characterize the value of interconnection, including the use of principal component analysis to identify areas with a common signal.« less
Technologies for network-centric C4ISR
NASA Astrophysics Data System (ADS)
Dunkelberger, Kirk A.
2003-07-01
Three technologies form the heart of any network-centric command, control, communication, intelligence, surveillance, and reconnaissance (C4ISR) system: distributed processing, reconfigurable networking, and distributed resource management. Distributed processing, enabled by automated federation, mobile code, intelligent process allocation, dynamic multiprocessing groups, check pointing, and other capabilities creates a virtual peer-to-peer computing network across the force. Reconfigurable networking, consisting of content-based information exchange, dynamic ad-hoc routing, information operations (perception management) and other component technologies forms the interconnect fabric for fault tolerant inter processor and node communication. Distributed resource management, which provides the means for distributed cooperative sensor management, foe sensor utilization, opportunistic collection, symbiotic inductive/deductive reasoning and other applications provides the canonical algorithms for network-centric enterprises and warfare. This paper introduces these three core technologies and briefly discusses a sampling of their component technologies and their individual contributions to network-centric enterprises and warfare. Based on the implied requirements, two new algorithms are defined and characterized which provide critical building blocks for network centricity: distributed asynchronous auctioning and predictive dynamic source routing. The first provides a reliable, efficient, effective approach for near-optimal assignment problems; the algorithm has been demonstrated to be a viable implementation for ad-hoc command and control, object/sensor pairing, and weapon/target assignment. The second is founded on traditional dynamic source routing (from mobile ad-hoc networking), but leverages the results of ad-hoc command and control (from the contributed auctioning algorithm) into significant increases in connection reliability through forward prediction. Emphasis is placed on the advantages gained from the closed-loop interaction of the multiple technologies in the network-centric application environment.
Real time testing of intelligent relays for synchronous distributed generation islanding detection
NASA Astrophysics Data System (ADS)
Zhuang, Davy
As electric power systems continue to grow to meet ever-increasing energy demand, their security, reliability, and sustainability requirements also become more stringent. The deployment of distributed energy resources (DER), including generation and storage, in conventional passive distribution feeders, gives rise to integration problems involving protection and unintentional islanding. Distributed generators need to be islanded for safety reasons when disconnected or isolated from the main feeder as distributed generator islanding may create hazards to utility and third-party personnel, and possibly damage the distribution system infrastructure, including the distributed generators. This thesis compares several key performance indicators of a newly developed intelligent islanding detection relay, against islanding detection devices currently used by the industry. The intelligent relay employs multivariable analysis and data mining methods to arrive at decision trees that contain both the protection handles and the settings. A test methodology is developed to assess the performance of these intelligent relays on a real time simulation environment using a generic model based on a real-life distribution feeder. The methodology demonstrates the applicability and potential advantages of the intelligent relay, by running a large number of tests, reflecting a multitude of system operating conditions. The testing indicates that the intelligent relay often outperforms frequency, voltage and rate of change of frequency relays currently used for islanding detection, while respecting the islanding detection time constraints imposed by standing distributed generator interconnection guidelines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broderick, Robert Joseph; Quiroz, Jimmy Edward; Reno, Matthew J.
2015-11-01
The third solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utility Commission (CPUC) is supporting the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with collaboration from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E), in research to improve the Utility Application Review and Approval process for interconnecting distributed energy resources to the distribution system. Currently this process is the most time - consuming of any step on the path to generating power onmore » the distribution system. This CSI RD&D solicitation three project has completed the tasks of collecting data from the three utilities, clustering feeder characteristic data to attain representative feeders, detailed modeling of 16 representative feeders, analysis of PV impacts to those feeders, refinement of current screening processes, and validation of those suggested refinements. In this report each task is summarized to produce a final summary of all components of the overall project.« less
Asymptotically suboptimal control of weakly interconnected dynamical systems
NASA Astrophysics Data System (ADS)
Dmitruk, N. M.; Kalinin, A. I.
2016-10-01
Optimal control problems for a group of systems with weak dynamical interconnections between its constituent subsystems are considered. A method for decentralized control is proposed which distributes the control actions between several controllers calculating in real time control inputs only for theirs subsystems based on the solution of the local optimal control problem. The local problem is solved by asymptotic methods that employ the representation of the weak interconnection by a small parameter. Combination of decentralized control and asymptotic methods allows to significantly reduce the dimension of the problems that have to be solved in the course of the control process.
California | Midmarket Solar Policies in the United States | Solar Research
interconnection fee ($75-$150), pay all "non-bypassable" charges for all electricity consumed from the distribution grid, non-export facilities connecting to an IOU's transmission grid and all net-metered systems Interconnection All non-exporting systems or net metering facility Fast track Exporting facility â¤3MW on a 12 kV
DGIC Interconnection Insights | Distributed Generation Interconnection
Power Association (SEPA), produced a webinar Utility Participation in the Roof Top Solar PV Market with ). These leaders are pioneering utility-owned rooftop solar programs to broaden the reach of solar PV utility hired solar PV developers who, representing CPS Energy, will install, own, and maintain solar
Technology Solutions | Distributed Generation Interconnection Collaborative
technologies, both hardware and software, can support the wider adoption of distributed generation on the grid . As the penetration of distributed-generation photovoltaics (DGPV) has risen rapidly in recent years posed by high penetrations of distributed PV. Other promising technologies include new utility software
LYDIAN: An Extensible Educational Animation Environment for Distributed Algorithms
ERIC Educational Resources Information Center
Koldehofe, Boris; Papatriantafilou, Marina; Tsigas, Philippas
2006-01-01
LYDIAN is an environment to support the teaching and learning of distributed algorithms. It provides a collection of distributed algorithms as well as continuous animations. Users can combine algorithms and animations with arbitrary network structures defining the interconnection and behavior of the distributed algorithm. Further, it facilitates…
A Vision for Co-optimized T&D System Interaction with Renewables and Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Lindsay; Zéphyr, Luckny; Cardell, Judith B.
The evolution of the power system to the reliable, efficient and sustainable system of the future will involve development of both demand- and supply-side technology and operations. The use of demand response to counterbalance the intermittency of renewable generation brings the consumer into the spotlight. Though individual consumers are interconnected at the low-voltage distribution system, these resources are typically modeled as variables at the transmission network level. In this paper, a vision for cooptimized interaction of distribution systems, or microgrids, with the high-voltage transmission system is described. In this framework, microgrids encompass consumers, distributed renewables and storage. The energy managementmore » system of the microgrid can also sell (buy) excess (necessary) energy from the transmission system. Preliminary work explores price mechanisms to manage the microgrid and its interactions with the transmission system. Wholesale market operations are addressed through the development of scalable stochastic optimization methods that provide the ability to co-optimize interactions between the transmission and distribution systems. Modeling challenges of the co-optimization are addressed via solution methods for large-scale stochastic optimization, including decomposition and stochastic dual dynamic programming.« less
A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greacen, Chris; Engel, Richard; Quetchenbach, Thomas
A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW is intended to help meet the widespread need for guidance, standards, and procedures for interconnecting mini-grids with the central electric grid as rural electrification advances in developing countries, bringing these once separate power systems together. The guidebook aims to help owners and operators of renewable energy mini-grids understand the technical options available, safety and reliability issues, and engineering and administrative costs of different choices for grid interconnection. The guidebook is intentionally brief but includes a number of appendices that point the reader to additionalmore » resources for indepth information. Not included in the scope of the guidebook are policy concerns about “who pays for what,” how tariffs should be set, or other financial issues that are also paramount when “the little grid connects to the big grid.”« less
NASA Astrophysics Data System (ADS)
Heylighen, Francis
2017-01-01
The world is confronted with a variety of interdependent problems, including scarcity, unsustainability, inequality, pollution and poor governance. Tackling such complex challenges requires coordinated action. The present paper proposes the development of a self-organizing system for coordination, called an "offer network", that would use the distributed intelligence of the Internet to match the offers and needs of all human, technological and natural agents on the planet. This would maximize synergy and thus minimize waste and scarcity of resources. Implementing such coordination requires a protocol that formally defines agents, offers, needs, and the network of condition-action rules or reactions that interconnect them. Matching algorithms can then determine self-sustaining subnetworks in which each consumed resource (need) is also produced (offer). After sketching the elements of a mathematical foundation for offer networks, the paper proposes a roadmap for their practical implementation. This includes step-by-step integration with technologies such as the Semantic Web, ontologies, the Internet of Things, reputation and recommendation systems, reinforcement learning, governance through legal constraints and nudging, and ecosystem modeling. The resulting intelligent platform should be able to tackle nearly all practical and theoretical problems in a bottom-up, distributed manner, thus functioning like a Global Brain for humanity.
CLON: Overlay Networks and Gossip Protocols for Cloud Environments
NASA Astrophysics Data System (ADS)
Matos, Miguel; Sousa, António; Pereira, José; Oliveira, Rui; Deliot, Eric; Murray, Paul
Although epidemic or gossip-based multicast is a robust and scalable approach to reliable data dissemination, its inherent redundancy results in high resource consumption on both links and nodes. This problem is aggravated in settings that have costlier or resource constrained links as happens in Cloud Computing infrastructures composed by several interconnected data centers across the globe.
Electronic processing and control system with programmable hardware
NASA Technical Reports Server (NTRS)
Alkalaj, Leon (Inventor); Fang, Wai-Chi (Inventor); Newell, Michael A. (Inventor)
1998-01-01
A computer system with reprogrammable hardware allowing dynamically allocating hardware resources for different functions and adaptability for different processors and different operating platforms. All hardware resources are physically partitioned into system-user hardware and application-user hardware depending on the specific operation requirements. A reprogrammable interface preferably interconnects the system-user hardware and application-user hardware.
MinT: Middleware for Cooperative Interaction of Things
Jeon, Soobin; Jung, Inbum
2017-01-01
This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices. PMID:28632182
MinT: Middleware for Cooperative Interaction of Things.
Jeon, Soobin; Jung, Inbum
2017-06-20
This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices.
Synopsis of ground-water and surface-water resources of North Dakota
Winter, T.C.; Benson, R.D.; Engberg, R.A.; Wiche, G.J.; Emerson, D.G.; Crosby, O.A.; Miller, J.E.
1984-01-01
This report describes the surface- and ground-water resources of North Dakota and the limitations of our understanding of these resources. Ground water and surface water are actually one resource, because they are often hydraulically interconnected. They are discussed separately for convenience. In general, the surface-water resources of the mainstem of the Missouri river are abundant and suitable for most uses. Other rivers may be important locally as water-supply sources, but the quantities of flow are small, quite variable in time, and generally of an unsuitable quality for most uses. Streamflow characteristics of North Dakota reflect its arid to semiarid climate (annual precipitation varies from 13 to 20 inches from west to east across the State), cold winters (usually including a significant snowpack available for spring snowmelt runoff), and the seasonal distribution of annual precipitation (almost 50 percent falls from Nky to July).Significant volumes of shallow ground water, of variable quality are found in the glacial-drift aquifers in parts of central, northern, and eastern North Dakota. Existing information provides only a limited capability to assess the long-term reliability of these scattered aquifers. There are significant indications, however, of water-quality problems related to sustained production of wells if long-term utilization of these aquifers is planned. A summary of the general suitability for use of surface water and ground water is given in Table E1.
Three dimensional, multi-chip module
Bernhardt, A.F.; Petersen, R.W.
1993-08-31
A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow dummy chips'' are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned on the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.
Three dimensional, multi-chip module
Bernhardt, Anthony F.; Petersen, Robert W.
1993-01-01
A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow "dummy chips" are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned o the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.
Code of Federal Regulations, 2010 CFR
2010-10-01
... described in this part. (b) Cave means any naturally occurring void, cavity, recess, or system of interconnected passages beneath the surface of the earth or within a cliff or ledge, including any cave resource...
Code of Federal Regulations, 2014 CFR
2014-10-01
... described in this part. (b) Cave means any naturally occurring void, cavity, recess, or system of interconnected passages beneath the surface of the earth or within a cliff or ledge, including any cave resource...
Code of Federal Regulations, 2012 CFR
2012-10-01
... described in this part. (b) Cave means any naturally occurring void, cavity, recess, or system of interconnected passages beneath the surface of the earth or within a cliff or ledge, including any cave resource...
Code of Federal Regulations, 2011 CFR
2011-10-01
... described in this part. (b) Cave means any naturally occurring void, cavity, recess, or system of interconnected passages beneath the surface of the earth or within a cliff or ledge, including any cave resource...
Code of Federal Regulations, 2013 CFR
2013-10-01
... described in this part. (b) Cave means any naturally occurring void, cavity, recess, or system of interconnected passages beneath the surface of the earth or within a cliff or ledge, including any cave resource...
Pressurized bellows flat contact heat exchanger interface
NASA Technical Reports Server (NTRS)
Voss, Fred E. (Inventor); Howell, Harold R. (Inventor); Winkler, Roger V. (Inventor)
1990-01-01
Disclosed is an interdigitated plate-type heat exchanger interface. The interface includes a modular interconnect to thermally connect a pair or pairs of plate-type heat exchangers to a second single or multiple plate-type heat exchanger. The modular interconnect comprises a series of parallel, plate-type heat exchangers arranged in pairs to form a slot therebetween. The plate-type heat exchangers of the second heat exchanger insert into the slots of the modular interconnect. Bellows are provided between the pairs of fins of the modular interconnect so that when the bellows are pressurized, they drive the plate-type heat exchangers of the modular interconnect toward one another, thus closing upon the second heat exchanger plates. Each end of the bellows has a part thereof a thin, membrane diaphragm which readily conforms to the contours of the heat exchanger plates of the modular interconnect when the bellows is pressurized. This ensures an even distribution of pressure on the heat exchangers of the modular interconnect thus creating substantially planar contact between the two heat exchangers. The effect of the interface of the present invention is to provide a dry connection between two heat exchangers whereby the rate of heat transfer can be varied by varying the pressure within the bellows.
Analytical Methods for Interconnection | Distributed Generation
; ANALYSIS Program Lead Kristen.Ardani@nrel.gov 303-384-4641 Accurately and quickly defining the effects of designed to accommodate voltage rises, bi-directional power flows, and other effects caused by distributed
NREL, SolarCity Addressing Challenges of High Penetrations of Distributed
Companies NREL, SolarCity Addressing Challenges of High Penetrations of Distributed Photovoltaics NREL is , reliability, and stability challenges of interconnecting high penetrations of distributed photovoltaics (PV country that distributed solar is not a liability for reliability-and can even be an asset. Project Impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-09-25
The Megatux platform enables the emulation of large scale (multi-million node) distributed systems. In particular, it allows for the emulation of large-scale networks interconnecting a very large number of emulated computer systems. It does this by leveraging virtualization and associated technologies to allow hundreds of virtual computers to be hosted on a single moderately sized server or workstation. Virtualization technology provided by modern processors allows for multiple guest OSs to run at the same time, sharing the hardware resources. The Megatux platform can be deployed on a single PC, a small cluster of a few boxes or a large clustermore » of computers. With a modest cluster, the Megatux platform can emulate complex organizational networks. By using virtualization, we emulate the hardware, but run actual software enabling large scale without sacrificing fidelity.« less
Dense modifiable interconnections utilizing photorefractive volume holograms
NASA Astrophysics Data System (ADS)
Psaltis, Demetri; Qiao, Yong
1990-11-01
This report describes an experimental two-layer optical neural network built at Caltech. The system uses photorefractive volume holograms to implement dense, modifiable synaptic interconnections and liquid crystal light valves (LCVS) to perform nonlinear thresholding operations. Kanerva's Sparse, Distributed Memory was implemented using this network and its ability to recognize handwritten character-alphabet (A-Z) has been demonstrated experimentally. According to Kanerva's model, the first layer has fixed, random weights of interconnections and the second layer is trained by sum-of-outer-products rule. After training, the recognition rates of the network on the training set (104 patterns) and test set (520 patterns) are 100 and 50 percent, respectively.
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.; Balas, M. J.
1980-01-01
A novel interconnection of distributed parameter system (DPS) identification and adaptive filtering is presented, which culminates in a common statement of coupled autoregressive, moving-average expansion or parallel infinite impulse response configuration adaptive parameterization. The common restricted complexity filter objectives are seen as similar to the reduced-order requirements of the DPS expansion description. The interconnection presents the possibility of an exchange of problem formulations and solution approaches not yet easily addressed in the common finite dimensional lumped-parameter system context. It is concluded that the shared problems raised are nevertheless many and difficult.
NASA Astrophysics Data System (ADS)
McCreedy, Frank P.; Sample, John T.; Ladd, William P.; Thomas, Michael L.; Shaw, Kevin B.
2005-05-01
The Naval Research Laboratory"s Geospatial Information Database (GIDBTM) Portal System has been extended to now include an extensive geospatial search functionality. The GIDB Portal System interconnects over 600 distributed geospatial data sources via the Internet with a thick client, thin client and a PDA client. As the GIDB Portal System has rapidly grown over the last two years (adding hundreds of geospatial sources), the obvious requirement has arisen to more effectively mine the interconnected sources in near real-time. How the GIDB Search addresses this issue is the prime focus of this paper.
Urbanization, Extreme Climate Hazards and Food, Energy Water Security
NASA Astrophysics Data System (ADS)
Romero-Lankao, P.; Davidson, D.; McPhearson, T.
2016-12-01
Research is urgently needed that incorporates the interconnected nature of three critical resources supporting our cities: food, energy and water. Cities are increasing demands for food, water and energy resources that in turn stress resource supplies, creating risks of negative impacts to human and ecological wellbeing. Simultaneously, shifts in climatic conditions, including extremes such as floods, heat, and droughts, threaten the sustainable availability of adequate quantities and qualities of food, energy and water (FEW) resources needed for resilient cities and ecosystems. These resource flows cannot be treated in isolation simply because they are interconnected: shifts in food, energy or water dynamics in turn affect the others, affecting the security of the whole - i.e., FEW nexus security. We present a framework to examine the dynamic interactions of urbanization, FEW nexus security and extreme hazard risks, with two overarching research questions: Do existing and emerging actions intended to enhance a population's food, water and energy security have the capacity to ensure FEW nexus security in the face of changing climate and urban development conditions? Can we identify a common set of social, ecological and technological conditions across a diversity of urban-regions that support the emergence of innovations that can lead to structural transformations for FEW nexus security?
Two-dimensional optoelectronic interconnect-processor and its operational bit error rate
NASA Astrophysics Data System (ADS)
Liu, J. Jiang; Gollsneider, Brian; Chang, Wayne H.; Carhart, Gary W.; Vorontsov, Mikhail A.; Simonis, George J.; Shoop, Barry L.
2004-10-01
Two-dimensional (2-D) multi-channel 8x8 optical interconnect and processor system were designed and developed using complementary metal-oxide-semiconductor (CMOS) driven 850-nm vertical-cavity surface-emitting laser (VCSEL) arrays and the photodetector (PD) arrays with corresponding wavelengths. We performed operation and bit-error-rate (BER) analysis on this free-space integrated 8x8 VCSEL optical interconnects driven by silicon-on-sapphire (SOS) circuits. Pseudo-random bit stream (PRBS) data sequence was used in operation of the interconnects. Eye diagrams were measured from individual channels and analyzed using a digital oscilloscope at data rates from 155 Mb/s to 1.5 Gb/s. Using a statistical model of Gaussian distribution for the random noise in the transmission, we developed a method to compute the BER instantaneously with the digital eye-diagrams. Direct measurements on this interconnects were also taken on a standard BER tester for verification. We found that the results of two methods were in the same order and within 50% accuracy. The integrated interconnects were investigated in an optoelectronic processing architecture of digital halftoning image processor. Error diffusion networks implemented by the inherently parallel nature of photonics promise to provide high quality digital halftoned images.
Cybersecurity through Real-Time Distributed Control Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger A; Manges, Wayne W; MacIntyre, Lawrence Paul
2010-04-01
Critical infrastructure sites and facilities are becoming increasingly dependent on interconnected physical and cyber-based real-time distributed control systems (RTDCSs). A mounting cybersecurity threat results from the nature of these ubiquitous and sometimes unrestrained communications interconnections. Much work is under way in numerous organizations to characterize the cyber threat, determine means to minimize risk, and develop mitigation strategies to address potential consequences. While it seems natural that a simple application of cyber-protection methods derived from corporate business information technology (IT) domain would lead to an acceptable solution, the reality is that the characteristics of RTDCSs make many of those methods inadequatemore » and unsatisfactory or even harmful. A solution lies in developing a defense-in-depth approach that ranges from protection at communications interconnect levels ultimately to the control system s functional characteristics that are designed to maintain control in the face of malicious intrusion. This paper summarizes the nature of RTDCSs from a cybersecurity perspec tive and discusses issues, vulnerabilities, candidate mitigation approaches, and metrics.« less
NASA Technical Reports Server (NTRS)
Liang, T.
1973-01-01
Research projects concerning the development and application of remote sensors are discussed. Some of the research projects conducted are as follows: (1) aerial photographic inventory of natural resources, (2) detection of buried river channels, (3) delineation of interconnected waterways, (4) plant indicators of atmospheric pollution, and (5) techniques for data transfer from photographs to base maps. On-going projects involving earth resources analyses are described.
An Adaptive Method for Reducing Clock Skew in an Accumulative Z-Axis Interconnect System
NASA Technical Reports Server (NTRS)
Bolotin, Gary; Boyce, Lee
1997-01-01
This paper will present several methods for adjusting clock skew variations that occur in a n accumulative z-axis interconnect system. In such a system, delay between modules in a function of their distance from one another. Clock distribution in a high-speed system, where clock skew must be kept to a minimum, becomes more challenging when module order is variable before design.
Strategic siting and regional grid interconnections key to low-carbon futures in African countries
Deshmukh, Ranjit; Ndhlukula, Kudakwashe; Radojicic, Tijana; Reilly-Moman, Jessica; Phadke, Amol; Kammen, Daniel M.; Callaway, Duncan S.
2017-01-01
Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental–impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quickly served with “no-regrets” options—or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6–20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. Overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation. PMID:28348209
Strategic siting and regional grid interconnections key to low-carbon futures in African countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Grace C.; Deshmukh, Ranjit; Ndhlukula, Kudakwashe
2017-03-27
Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental– impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quicklymore » served with “no-regrets” options—or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6–20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. In conclusion, the overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation.« less
Strategic siting and regional grid interconnections key to low-carbon futures in African countries.
Wu, Grace C; Deshmukh, Ranjit; Ndhlukula, Kudakwashe; Radojicic, Tijana; Reilly-Moman, Jessica; Phadke, Amol; Kammen, Daniel M; Callaway, Duncan S
2017-04-11
Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental-impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quickly served with "no-regrets" options-or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6-20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. Overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation.
Grid and Cloud for Developing Countries
NASA Astrophysics Data System (ADS)
Petitdidier, Monique
2014-05-01
The European Grid e-infrastructure has shown the capacity to connect geographically distributed heterogeneous compute resources in a secure way taking advantages of a robust and fast REN (Research and Education Network). In many countries like in Africa the first step has been to implement a REN and regional organizations like Ubuntunet, WACREN or ASREN to coordinate the development, improvement of the network and its interconnection. The Internet connections are still exploding in those countries. The second step has been to fill up compute needs of the scientists. Even if many of them have their own multi-core or not laptops for more and more applications it is not enough because they have to face intensive computing due to the large amount of data to be processed and/or complex codes. So far one solution has been to go abroad in Europe or in America to run large applications or not to participate to international communities. The Grid is very attractive to connect geographically-distributed heterogeneous resources, aggregate new ones and create new sites on the REN with a secure access. All the users have the same servicers even if they have no resources in their institute. With faster and more robust internet they will be able to take advantage of the European Grid. There are different initiatives to provide resources and training like UNESCO/HP Brain Gain initiative, EUMEDGrid, ..Nowadays Cloud becomes very attractive and they start to be developed in some countries. In this talk challenges for those countries to implement such e-infrastructures, to develop in parallel scientific and technical research and education in the new technologies will be presented illustrated by examples.
NASA Astrophysics Data System (ADS)
Kapur, Pawan
The miniaturization paradigm for silicon integrated circuits has resulted in a tremendous cost and performance advantage. Aggressive shrinking of devices provides faster transistors and a greater functionality for circuit design. However, scaling induced smaller wire cross-sections coupled with longer lengths owing to larger chip areas, result in a steady deterioration of interconnects. This degradation in interconnect trends threatens to slow down the rapid growth along Moore's law. This work predicts that the situation is worse than anticipated. It shows that in the light of technology and reliability constraints, scaling induced increase in electron surface scattering, fractional cross section area occupied by the highly resistive barrier, and realistic interconnect operation temperature will lead to a significant rise in effective resistivity of modern copper based interconnects. We start by discussing various technology factors affecting copper resistivity. We, next, develop simulation tools to model these effects. Using these tools, we quantify the increase in realistic copper resistivity as a function of future technology nodes, under various technology assumptions. Subsequently, we evaluate the impact of these technology effects on delay and power dissipation of global signaling interconnects. Modern long on-chip wires use repeaters, which dramatically improves their delay and bandwidth. We quantify the repeated wire delays and power dissipation using realistic resistance trends at future nodes. With the motivation of reducing power, we formalize a methodology, which trades power with delay very efficiently for repeated wires. Using this method, we find that although the repeater power comes down, the total power dissipation due to wires is still found to be very large at future nodes. Finally, we explore optical interconnects as a possible substitute, for specific interconnect applications. We model an optical receiver and waveguides. Using this we assess future optical system performance. Finally, we compare the delay and power of future metal interconnects with that of optical interconnects for global signaling application. We also compare the power dissipation of the two approaches for an upper level clock distribution application. We find that for long on-chip communication links, optical interconnects have lower latencies than future metal interconnects at comparable levels of power dissipation.
NASA Astrophysics Data System (ADS)
Bokhari, Abdullah
Demarcations between traditional distribution power systems and distributed generation (DG) architectures are increasingly evolving as higher DG penetration is introduced in the system. The concerns in existing electric power systems (EPSs) to accommodate less restrictive interconnection policies while maintaining reliability and performance of power delivery have been the major challenge for DG growth. In this dissertation, the work is aimed to study power quality, energy saving and losses in a low voltage distributed network under various DG penetration cases. Simulation platform suite that includes electric power system, distributed generation and ZIP load models is implemented to determine the impact of DGs on power system steady state performance and the voltage profile of the customers/loads in the network under the voltage reduction events. The investigation designed to test the DG impact on power system starting with one type of DG, then moves on multiple DG types distributed in a random case and realistic/balanced case. The functionality of the proposed DG interconnection is designed to meet the basic requirements imposed by the various interconnection standards, most notably IEEE 1547, public service commission, and local utility regulation. It is found that implementation of DGs on the low voltage secondary network would improve customer's voltage profile, system losses and significantly provide energy savings and economics for utilities. In a network populated with DGs, utility would have a uniform voltage profile at the customers end as the voltage profile becomes more concentrated around targeted voltage level. The study further reinforced the concept that the behavior of DG in distributed network would improve voltage regulation as certain percentage reduction on utility side would ensure uniform percentage reduction seen by all customers and reduce number of voltage violations.
An assessment of renewable energy in Southern Africa: Wind, solar, hydro
NASA Astrophysics Data System (ADS)
Fant, Charles William, IV
While electricity demand is rising quickly in the Southern African Power Pool (SAPP), the nations involved struggle to build the necessary infrastructure to meet the demand. In addition, the principal member---the Republic of South Africa---has made ambitious targets to reduce emissions via renewable energy technology. In this dissertation, three stand-alone studies on this subject are presented that address the future reliability of renewable energy in southern Africa, considering climate variability as well as long-term trends caused by climate change. In the first study, a suite of models are used to assess the vulnerability of the countries dependent on resources from the Zambezi River Basin to changes in climate. The study finds that the sectors most vulnerable to climate change are: hydropower in Zambia, irrigation in Zimbabwe and Mozambique, and flooding in Mozambique. In the second study, hourly reanalysis data is used to characterize wind power intermittency and assess the value of interconnection in southern Africa. The study finds that wind potential is high in Kenya, central Tanzania, and southern South Africa. With a closer look, wind power resource in South Africa is unreliable (i.e. intermittent) and is weak when power demand is highest on all relevant time-scales. In the third study, presented in Chapter 4, we develop a risk profile for changes in the long-term mean of wind and solar power sources. To do this, we use a statistical relationship between global mean temperature and each local gridded wind speed and solar radiation from the GCMs. We find that only small changes in wind speed and solar radiation are predicted in the median of the distributions projected to 2050. Furthermore, at the extremes of the distribution, relatively significant changes are predicted in some parts of southern Africa, and are associated with low probability. Finally, in the conclusion chapter, limitations and assumptions are listed for each of the three studies, South Africa's options for reducing emissions are revisited, power trade and interconnection are discussed broadly, and future research is suggested.
Browne, A L; Bishop, B J
2011-06-01
Natural Resource Management (NRM) and Ecologically Sustainable Development (ESD) have been guiding frameworks in Australia for a number of decades. Recently, NRM and ESD have become central to climate change mitigation. In this paper, we explore the psychological paradoxes that function within climate change settings, with particular attention devoted to the way that research and development reinforces these paradoxes by advocating for participatory forms of inquiry. Paradox emerges in NRM at psychological, institutional, and organisational levels. Paradoxes are also features of different forms of democracy such as neoliberal and participatory democracy. Although NRM, ESD and climate change are often conceptualised as distinct issue domains, these policy areas are fundamentally interconnected in both theory and in practice. This interconnection between these policy and research settings, reflections on paradox, and the experience of incorporating community psychology into the paradoxical settings of NRM and climate change are captured in this paper.
Exploring system interconnection architectures with VIPACES: from direct connections to NOCs
NASA Astrophysics Data System (ADS)
Sánchez-Peña, Armando; Carballo, Pedro P.; Núñez, Antonio
2007-05-01
This paper presents a simple environment for the verification of AMBA 3 AXI systems in Verification IP (VIP) production called VIPACES (Verification Interface Primitives for the development of AXI Compliant Elements and Systems). These primitives are presented as a not compiled library written in SystemC where interfaces are the core of the library. The definition of interfaces instead of generic modules let the user construct custom modules improving the resources spent during the verification phase as well as easily adapting his modules to the AMBA 3 AXI protocol. This topic is the main discussion in the VIPACES library. The paper focuses on comparing and contrasting the main interconnection schemes for AMBA 3 AXI as modeled by VIPACES. For assessing these results we propose a validation scenario with a particular architecture belonging to the domain of MPEG4 video decoding, which is compound by an AXI bus connecting an IDCT and other processing resources.
Beyond Sister City Agreements: Exploring the Challenges of Full International Interoperability
2016-03-01
are often interconnected by more than simple proximity. They are connected through social networks, economy, culture, and shared natural resources...southern U.S. borders to determine how various regions address their cross-border agreements. Research indicated that unique challenges—such as liability...They are connected through social networks, economy, culture, and shared natural resources. Despite this interdependent relationship, and in spite
On the proportional abundance of species: Integrating population genetics and community ecology.
Marquet, Pablo A; Espinoza, Guillermo; Abades, Sebastian R; Ganz, Angela; Rebolledo, Rolando
2017-12-01
The frequency of genes in interconnected populations and of species in interconnected communities are affected by similar processes, such as birth, death and immigration. The equilibrium distribution of gene frequencies in structured populations is known since the 1930s, under Wright's metapopulation model known as the island model. The equivalent distribution for the species frequency (i.e. the species proportional abundance distribution (SPAD)), at the metacommunity level, however, is unknown. In this contribution, we develop a stochastic model to analytically account for this distribution (SPAD). We show that the same as for genes SPAD follows a beta distribution, which provides a good description of empirical data and applies across a continuum of scales. This stochastic model, based upon a diffusion approximation, provides an alternative to neutral models for the species abundance distribution (SAD), which focus on number of individuals instead of proportions, and demonstrate that the relative frequency of genes in local populations and of species within communities follow the same probability law. We hope our contribution will help stimulate the mathematical and conceptual integration of theories in genetics and ecology.
A Vision for Co-optimized T&D System Interaction with Renewables and Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C. Lindsay; Zéphyr, Luckny; Liu, Jialin
The evolution of the power system to the reliable, effi- cient and sustainable system of the future will involve development of both demand- and supply-side technology and operations. The use of demand response to counterbalance the intermittency of re- newable generation brings the consumer into the spotlight. Though individual consumers are interconnected at the low-voltage distri- bution system, these resources are typically modeled as variables at the transmission network level. In this paper, a vision for co- optimized interaction of distribution systems, or microgrids, with the high-voltage transmission system is described. In this frame- work, microgrids encompass consumers, distributed renewablesmore » and storage. The energy management system of the microgrid can also sell (buy) excess (necessary) energy from the transmission system. Preliminary work explores price mechanisms to manage the microgrid and its interactions with the transmission system. Wholesale market operations are addressed through the devel- opment of scalable stochastic optimization methods that provide the ability to co-optimize interactions between the transmission and distribution systems. Modeling challenges of the co-optimization are addressed via solution methods for large-scale stochastic op- timization, including decomposition and stochastic dual dynamic programming.« less
Applications considerations in the system design of highly concurrent multiprocessors
NASA Technical Reports Server (NTRS)
Lundstrom, Stephen F.
1987-01-01
A flow model processor approach to parallel processing is described, using very-high-performance individual processors, high-speed circuit switched interconnection networks, and a high-speed synchronization capability to minimize the effect of the inherently serial portions of applications on performance. Design studies related to the determination of the number of processors, the memory organization, and the structure of the networks used to interconnect the processor and memory resources are discussed. Simulations indicate that applications centered on the large shared data memory should be able to sustain over 500 million floating point operations per second.
System architecture for an advanced Canadian communications satellite demonstration mission
NASA Astrophysics Data System (ADS)
Takats, P.; Irani, S.
1992-03-01
An advanced communications satellite system that provides single hop interconnectivity and interworking for both a personal communications network and an advanced private business network in the Ka and Ku bands respectively, is presented. An overall network perspective is discussed that studies the interface of such an advanced satellite communication system to the terrestrial network in the context of the Open Systems Interconnection model. It is shown that this proposed satellite system can dynamically establish links and efficiently allocate the satellite resource amongst the user terminal population for a mix of data and voice traffic.
NASA Astrophysics Data System (ADS)
Oh, T.
2014-12-01
Typical studies on natural resources from a social science perspective tend to choose one type of resource—water, for example— and ask what factors contribute to the sustainable use or wasteful exploitation of that resource. However, climate change and economic development, which are causing increased pressure on local resources and presenting communities with increased levels of tradeoffs and potential conflicts, force us to consider the trade-offs between options for using a particular resource. Therefore, the transdisciplinary approach that accurately captures the advantages and disadvantages of various possible resource uses is particularly important in the complex social-ecological systems, where concerns about inequality with respect to resource use and access have become unavoidable. Needless to say, resource management and policy require sound scientific understanding of the complex interconnections between nature and society, however, in contrast to typical international discussions, I discuss Japan not as an "advanced" case where various dilemmas have been successfully addressed by the government through the optimal use of technology, but rather as a nation seeing an emerging trend that is based on a awareness of the connections between local resources and the environment. Furthermore, from a historical viewpoint, the nexus of local resources is not a brand-new idea in the experience of environmental governance in Japan. There exist the local environment movements, which emphasized the interconnection of local resources and succeeded in urging the governmental action and policymaking. For this reason, local movements and local knowledge for the resource governance warrant attention. This study focuses on the historical cases relevant to water resource management including groundwater, and considers the contexts and conditions to holistically address local resource problems, paying particular attention to interactions between science and society. I will argue the research design to enhance the holistic view of local stakeholders on local resources as the key to effective transdisciplinary approach through the on-going research project focusing on the water-energy-food nexus.
Bringing simulation to engineers in the field: a Web 2.0 approach.
Haines, Robert; Khan, Kashif; Brooke, John
2009-07-13
Field engineers working on water distribution systems have to implement day-to-day operational decisions. Since pipe networks are highly interconnected, the effects of such decisions are correlated with hydraulic and water quality conditions elsewhere in the network. This makes the provision of predictive decision support tools (DSTs) for field engineers critical to optimizing the engineering work on the network. We describe how we created DSTs to run on lightweight mobile devices by using the Web 2.0 technique known as Software as a Service. We designed our system following the architectural style of representational state transfer. The system not only displays static geographical information system data for pipe networks, but also dynamic information and prediction of network state, by invoking and displaying the results of simulations running on more powerful remote resources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... authorized under subpart J of this part. Archaeological resource means any material remains of human life or... observation, contextual measurement, controlled collection, analysis, interpretation, and explanation). Best...; pipelines; and permanently moored vessels. Any group of OCS installations interconnected with walkways, or...
18 CFR 292.308 - Standards for operating reliability.
Code of Federal Regulations, 2010 CFR
2010-04-01
... reliability. 292.308 Section 292.308 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... SMALL POWER PRODUCTION AND COGENERATION Arrangements Between Electric Utilities and Qualifying... may establish reasonable standards to ensure system safety and reliability of interconnected...
Proposal for massively parallel data storage system
NASA Technical Reports Server (NTRS)
Mansuripur, M.
1992-01-01
An architecture for integrating large numbers of data storage units (drives) to form a distributed mass storage system is proposed. The network of interconnected units consists of nodes and links. At each node there resides a controller board, a data storage unit and, possibly, a local/remote user-terminal. The links (twisted-pair wires, coax cables, or fiber-optic channels) provide the communications backbone of the network. There is no central controller for the system as a whole; all decisions regarding allocation of resources, routing of messages and data-blocks, creation and distribution of redundant data-blocks throughout the system (for protection against possible failures), frequency of backup operations, etc., are made locally at individual nodes. The system can handle as many user-terminals as there are nodes in the network. Various users compete for resources by sending their requests to the local controller-board and receiving allocations of time and storage space. In principle, each user can have access to the entire system, and all drives can be running in parallel to service the requests for one or more users. The system is expandable up to a maximum number of nodes, determined by the number of routing-buffers built into the controller boards. Additional drives, controller-boards, user-terminals, and links can be simply plugged into an existing system in order to expand its capacity.
NASA Astrophysics Data System (ADS)
Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu
2016-04-01
Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.
Additional EIPC Study Analysis: Interim Report on High Priority Topics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Stanton W
Between 2010 and 2012 the Eastern Interconnection Planning Collaborative (EIPC) conducted a major long-term resource and transmission study of the Eastern Interconnection (EI). With guidance from a Stakeholder Steering Committee (SSC) that included representatives from the Eastern Interconnection States Planning Council (EISPC) among others, the project was conducted in two phases. Phase 1 involved a long-term capacity expansion analysis that involved creation of eight major futures plus 72 sensitivities. Three scenarios were selected for more extensive transmission- focused evaluation in Phase 2. Five power flow analyses, nine production cost model runs (including six sensitivities), and three capital cost estimations weremore » developed during this second phase. The results from Phase 1 and 2 provided a wealth of data that could be examined further to address energy-related questions. A list of 13 topics was developed for further analysis; this paper discusses the first five.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, V.K.; Sandell, D.H.
The Government of Thailand is implementing a Southern Seaboard Development Project. The developing of the project will increase demand for all utility and infrastructure systems and services. The distribution of electric power in the new area falls within the responsibility of the Provincial Electricity Authority (PEA). The U.S. Trade and Development Program (TDP) funded a Definitional Mission to evaluate the prospects of TDP funding a feasibility study for an I-Shaped power interconnection study for supplying electricity to the 15 provinces in Southern Thailand. The mission concluded that TDP should provide a grant to PEA to select a U.S. firm tomore » carry out the proposed I-Shaped Interconnection study for power distribution in southern Thailand. The overall potential for exports resulting from the project is conservatively estimated at $120 million, not including any follow-on work and spare parts inventory, typical of such projects. TDP's program in Thailand has enjoyed enviable success in exports and TDP's support of the proposed feasibility study will clearly maintain and very likely add to that momentum.« less
Interconnected ponds operation for flood hazard distribution
NASA Astrophysics Data System (ADS)
Putra, S. S.; Ridwan, B. W.
2016-05-01
The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.
Analysis of PV Advanced Inverter Functions and Setpoints under Time Series Simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seuss, John; Reno, Matthew J.; Broderick, Robert Joseph
Utilities are increasingly concerned about the potential negative impacts distributed PV may have on the operational integrity of their distribution feeders. Some have proposed novel methods for controlling a PV system's grid - tie inverter to mitigate poten tial PV - induced problems. This report investigates the effectiveness of several of these PV advanced inverter controls on improving distribution feeder operational metrics. The controls are simulated on a large PV system interconnected at several locations within two realistic distribution feeder models. Due to the time - domain nature of the advanced inverter controls, quasi - static time series simulations aremore » performed under one week of representative variable irradiance and load data for each feeder. A para metric study is performed on each control type to determine how well certain measurable network metrics improve as a function of the control parameters. This methodology is used to determine appropriate advanced inverter settings for each location on the f eeder and overall for any interconnection location on the feeder.« less
Assessment of distributed solar power systems: Issues and impacts
NASA Astrophysics Data System (ADS)
Moyle, R. A.; Chernoff, H.; Schweizer, T. C.; Patton, J. B.
1982-11-01
The installation of distributed solar-power systems presents electric utilities with a host of questions. Some of the technical and economic impacts of these systems are discussed. Among the technical interconnect issues are isolated operation, power quality, line safety, and metering options. Economic issues include user purchase criteria, structures and installation costs, marketing and product distribution costs, and interconnect costs. An interactive computer program that allows easy calculation of allowable system prices and allowable generation-equipment prices was developed as part of this project. It is concluded that the technical problems raised by distributed solar systems are surmountable, but their resolution may be costly. The stringent purchase criteria likely to be imposed by many potential system users and the economies of large-scale systems make small systems (less than 10 to 20 kW) less attractive than larger systems. Utilities that consider life-cycle costs in making investment decisions and third-party investors who have tax and financial advantages are likely to place the highest value on solar-power systems.
Pasotti, Lorenzo; Bellato, Massimo; Casanova, Michela; Zucca, Susanna; Cusella De Angelis, Maria Gabriella; Magni, Paolo
2017-01-01
The study of simplified, ad-hoc constructed model systems can help to elucidate if quantitatively characterized biological parts can be effectively re-used in composite circuits to yield predictable functions. Synthetic systems designed from the bottom-up can enable the building of complex interconnected devices via rational approach, supported by mathematical modelling. However, such process is affected by different, usually non-modelled, unpredictability sources, like cell burden. Here, we analyzed a set of synthetic transcriptional cascades in Escherichia coli . We aimed to test the predictive power of a simple Hill function activation/repression model (no-burden model, NBM) and of a recently proposed model, including Hill functions and the modulation of proteins expression by cell load (burden model, BM). To test the bottom-up approach, the circuit collection was divided into training and test sets, used to learn individual component functions and test the predicted output of interconnected circuits, respectively. Among the constructed configurations, two test set circuits showed unexpected logic behaviour. Both NBM and BM were able to predict the quantitative output of interconnected devices with expected behaviour, but only the BM was also able to predict the output of one circuit with unexpected behaviour. Moreover, considering training and test set data together, the BM captures circuits output with higher accuracy than the NBM, which is unable to capture the experimental output exhibited by some of the circuits even qualitatively. Finally, resource usage parameters, estimated via BM, guided the successful construction of new corrected variants of the two circuits showing unexpected behaviour. Superior descriptive and predictive capabilities were achieved considering resource limitation modelling, but further efforts are needed to improve the accuracy of models for biological engineering.
Tomkins, James L [Albuquerque, NM; Camp, William J [Albuquerque, NM
2007-07-17
A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure includes routers in service or compute processor boards distributed in an array of cabinets connected in series on each board and to respective routers in neighboring row cabinet boards with the routers in series connection coupled to routers in series connection in respective neighboring column cabinet boards. The array can include disconnect cabinets or respective routers in all boards in each cabinet connected in a toroid. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.
Implementation of the force decomposition machine for molecular dynamics simulations.
Borštnik, Urban; Miller, Benjamin T; Brooks, Bernard R; Janežič, Dušanka
2012-09-01
We present the design and implementation of the force decomposition machine (FDM), a cluster of personal computers (PCs) that is tailored to running molecular dynamics (MD) simulations using the distributed diagonal force decomposition (DDFD) parallelization method. The cluster interconnect architecture is optimized for the communication pattern of the DDFD method. Our implementation of the FDM relies on standard commodity components even for networking. Although the cluster is meant for DDFD MD simulations, it remains general enough for other parallel computations. An analysis of several MD simulation runs on both the FDM and a standard PC cluster demonstrates that the FDM's interconnect architecture provides a greater performance compared to a more general cluster interconnect. Copyright © 2012 Elsevier Inc. All rights reserved.
Network integration of distributed power generation
NASA Astrophysics Data System (ADS)
Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco
The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.
1310nm VCSELs in 1-10Gb/s commercial applications
NASA Astrophysics Data System (ADS)
Jewell, Jack; Graham, Luke; Crom, Max; Maranowski, Kevin; Smith, Joseph; Fanning, Tom
2006-02-01
Beginning with 4 Gigabit/sec Fibre-Channel, 1310nm vertical-cavity surface-emitting lasers (VCSELs) are now entering the marketplace. Such VCSELs perform like distributed feedback lasers but have drive currents and heat dissipation like 850nm VCSELs, making them ideal for today's high-performance interconnects and the only choice for the next step in increased interconnection density. Transceiver performances at 4 and 10 Gigabits/sec over fiber lengths 10-40km are presented. The active material is extremely robust, resulting in excellent reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong; You, Shutang; Tan, Jin
Nonsynchronous generations such as photovoltaics (PVs) are expected to undermine bulk power systems (BPSs)' frequency response at high penetration levels. Though the underlying mechanism has been relatively well understood, the accurate assessment and effective enhancement of the U.S. interconnections, frequency response under extra-high PV penetration conditions remains an issue. In this paper, the industry-provided full-detail interconnection models were further validated by synchrophasor frequency measurements and realistically-projected PV geographic distribution information were used to develop extra-high PV penetration scenarios and dynamic models for the three main U.S. interconnections, including Eastern Interconnection (EI), Western Electricity Coordinating Council (WECC), and Electric Reliability Councilmore » of Texas (ERCOT). Up to 65% instantaneous PV and 15% wind penetration were simulated and the frequency response change trend of each U.S. interconnection due to the increasing PV penetration level were examined. Most importantly, the practical solutions to address the declining frequency response were discussed. This paper will provide valuable guidance for policy makers, utility operators and academic researchers not only in the U.S. but also other countries in the world.« less
Liu, Yong; You, Shutang; Tan, Jin; ...
2018-01-30
Nonsynchronous generations such as photovoltaics (PVs) are expected to undermine bulk power systems (BPSs)' frequency response at high penetration levels. Though the underlying mechanism has been relatively well understood, the accurate assessment and effective enhancement of the U.S. interconnections, frequency response under extra-high PV penetration conditions remains an issue. In this paper, the industry-provided full-detail interconnection models were further validated by synchrophasor frequency measurements and realistically-projected PV geographic distribution information were used to develop extra-high PV penetration scenarios and dynamic models for the three main U.S. interconnections, including Eastern Interconnection (EI), Western Electricity Coordinating Council (WECC), and Electric Reliability Councilmore » of Texas (ERCOT). Up to 65% instantaneous PV and 15% wind penetration were simulated and the frequency response change trend of each U.S. interconnection due to the increasing PV penetration level were examined. Most importantly, the practical solutions to address the declining frequency response were discussed. This paper will provide valuable guidance for policy makers, utility operators and academic researchers not only in the U.S. but also other countries in the world.« less
18 CFR 32.2 - Required exhibits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... facilities used for the generation and transmission of electric energy, indicating on said map the points... Section 32.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT INTERCONNECTION OF FACILITIES Application for An Order...
18 CFR 32.2 - Required exhibits.
Code of Federal Regulations, 2011 CFR
2011-04-01
... facilities used for the generation and transmission of electric energy, indicating on said map the points... Section 32.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT INTERCONNECTION OF FACILITIES Application for An Order...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyne, Sofie, E-mail: sofie.beyne@imec.be; De Wolf, Ingrid; imec, Kapeldreef 75, B-3001 Leuven
The use of 1/f noise measurements is explored for the purpose of finding faster techniques for electromigration (EM) characterization in advanced microelectronic interconnects, which also enable a better understanding of its underlying physical mechanisms. Three different applications of 1/f noise for EM characterization are explored. First, whether 1/f noise measurements during EM stress can serve as an early indicator of EM damage. Second, whether the current dependence of the noise power spectral density (PSD) can be used for a qualitative comparison of the defect concentration of different interconnects and consequently also their EM lifetime t50. Third, whether the activation energiesmore » obtained from the temperature dependence of the 1/f noise PSD correspond to the activation energies found by means of classic EM tests. In this paper, the 1/f noise technique has been used to assess and compare the EM properties of various advanced integration schemes and different materials, as they are being explored by the industry to enable advanced interconnect scaling. More concrete, different types of copper interconnects and one type of tungsten interconnect are compared. The 1/f noise measurements confirm the excellent electromigration properties of tungsten and demonstrate a dependence of the EM failure mechanism on copper grain size and distribution, where grain boundary diffusion is found to be a dominant failure mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, R.I.; Ice, G.E.; Tamura, N.
2005-09-01
The scaling of device dimensions with a simultaneous increase in functional density imposes a challenge to materials technology and reliability of interconnects. White beam X-ray microdiffraction is particularly well suited for the in situ study of electromigration. M.A. Krivoglaz theory was applied for the interpretation of white beam diffraction. The technique was used to probe microstructure in interconnects and has recently been able to monitor the onset of plastic deformation induced by mass transport during electromigration in Al(Cu) lines even before any macroscopic damage became visible. In the present paper, we demonstrate that the evolution of the dislocation structure duringmore » electromigration is highly inhomogeneous and results in the formation of unpaired randomly distributed geometrically necessary dislocations as well as geometrically necessary dislocation boundaries. When almost all unpaired dislocations and dislocation walls with the density n+ are parallel (as in the case of Al-based interconnects), the anisotropy in the scattering properties of the material becomes important, and the electrical properties of the interconnect depend strongly on the direction of the electric current relative to the orientation of the dislocation network. A coupling between the dissolution, growth and reprecipitation of Al2Cu precipitates and the electromigration-induced plastic deformation of grains in interconnects is observed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinkman, Gregory
2015-09-01
The Renewable Electricity Futures Study (RE Futures)--an analysis of the costs and grid impacts of integrating large amounts of renewable electricity generation into the U.S. power system--examined renewable energy resources, technical issues regarding the integration of these resources into the grid, and the costs associated with high renewable penetration scenarios. These scenarios included up to 90% of annual generation from renewable sources, although most of the analysis was focused on 80% penetration scenarios. Hourly production cost modeling was performed to understand the operational impacts of high penetrations. One of the conclusions of RE Futures was that further work was necessarymore » to understand whether the operation of the system was possible at sub-hourly time scales and during transient events. This study aimed to address part of this by modeling the operation of the power system at sub-hourly time scales using newer methodologies and updated data sets for transmission and generation infrastructure. The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). It focused on operational impacts, and it helps verify that the operational results from the capacity expansion models are useful. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%.« less
OhioView: Distribution of Remote Sensing Data Across Geographically Distributed Environments
NASA Technical Reports Server (NTRS)
Ramos, Calvin T.
1998-01-01
Various issues associated with the distribution of remote sensing data across geographically distributed environments are presented in viewgraph form. Specific topics include: 1) NASA education program background; 2) High level architectures, technologies and applications; 3) LeRC internal architecture and role; 4) Potential GIBN interconnect; 5) Potential areas of network investigation and research; 6) Draft of OhioView data model; and 7) the LeRC strategy and roadmap.
Inner membrane fusion mediates spatial distribution of axonal mitochondria
Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge
2016-01-01
In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817
The process of deforestation in weak democracies and the role of Intelligence.
Obydenkova, Anastassia; Nazarov, Zafar; Salahodjaev, Raufhon
2016-07-01
This article examines the interconnection between national intelligence, political institutions, and the mismanagement of public resources (deforestations). The paper examines the reasons for deforestation and investigates the factors accountable for it. The analysis builds on authors-compiled cross-national dataset on 185 countries over the time period of twenty years, from 1990 to 2010. We find that, first, nation's intelligence reduces significantly the level of deforestation in a state. Moreover, the nations' IQ seems to play an offsetting role in the natural resource conservation (forest management) in the countries with weak democratic institutions. The analysis also discovered the presence of the U-shaped relationship between democracy and deforestation. Intelligence sheds more light on this interconnection and explains the results. Our results are robust to various sample selection strategies and model specifications. The main implication from our study is that intelligence not only shapes formal rules and informal regulations such as social trust, norms and traditions but also it has the ability to reverse the paradoxical process known as "resource curse." The study contributes to better understanding of reasons of deforestation and shed light on the debated impact of political regime on forest management. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Brereton, Beverly Ann
The interconnection of neighboring electricity networks provides opportunities for the realization of synergies between electricity systems. Examples of the synergies to be realized are the rationalized management of the electricity networks whose fuel source domination differs, and the exploitation of non-coincident system peak demands. These factors allow technology diversity in the satisfaction of electricity demand, the coordination of planning and maintenance schedules between the networks by exploiting the cost differences in the pool of generation assets and the load configuration differences in the neighboring locations. The interconnection decision studied in this dissertation focused on the electricity networks of Argentina and Chile whose electricity systems operate in isolation at the current time. The cooperative game-theoretic framework was applied in the analysis of the decision facing the two countries and the net surplus to be derived from interconnection was evaluated. Measurement of the net gains from interconnection used in this study were reflected in changes in generating costs under the assumption that demand is fixed under all scenarios. With the demand for electricity assumed perfectly inelastic, passive or aggressive bidding strategies were considered under the scenarios for the generators in the two countries. The interconnection decision was modeled using a linear power flow model which utilizes linear programming techniques to reflect dispatch procedures based on generation bids. Results of the study indicate that the current interconnection project between Argentina and Chile will not result in positive net surplus under a variety of scenarios. Only under significantly reduced interconnection cost will the venture prove attractive. Possible sharing mechanisms were also explored in the research and a symmetric distribution of the net surplus to be derived under the reduced interconnection cost scenario was recommended to preserve equity in the allocation of the interconnection gains.
3D printed high density, reversible, chip-to-chip microfluidic interconnects.
Gong, Hua; Woolley, Adam T; Nordin, Gregory P
2018-02-13
Our latest developments in miniaturizing 3D printed microfluidics [Gong et al., Lab Chip, 2016, 16, 2450; Gong et al., Lab Chip, 2017, 17, 2899] offer the opportunity to fabricate highly integrated chips that measure only a few mm on a side. For such small chips, an interconnection method is needed to provide the necessary world-to-chip reagent and pneumatic connections. In this paper, we introduce simple integrated microgaskets (SIMs) and controlled-compression integrated microgaskets (CCIMs) to connect a small device chip to a larger interface chip that implements world-to-chip connections. SIMs or CCIMs are directly 3D printed as part of the device chip, and therefore no additional materials or components are required to make the connection to the larger 3D printed interface chip. We demonstrate 121 chip-to-chip interconnections in an 11 × 11 array for both SIMs and CCIMs with an areal density of 53 interconnections per mm 2 and show that they withstand fluid pressures of 50 psi. We further demonstrate their reusability by testing the devices 100 times without seal failure. Scaling experiments show that 20 × 20 interconnection arrays are feasible and that the CCIM areal density can be increased to 88 interconnections per mm 2 . We then show the utility of spatially distributed discrete CCIMs by using an interconnection chip with 28 chip-to-world interconnects to test 45 3D printed valves in a 9 × 5 array. Each valve is only 300 μm in diameter (the smallest yet reported for 3D printed valves). Every row of 5 valves is tested to at least 10 000 actuations, with one row tested to 1 000 000 actuations. In all cases, there is no sign of valve failure, and the CCIM interconnections prove an effective means of using a single interface chip to test a series of valve array chips.
Thermal stress analysis of a planar SOFC stack
NASA Astrophysics Data System (ADS)
Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang
The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.
Nune, K C; Kumar, A; Misra, R D K; Li, S J; Hao, Y L; Yang, R
2017-02-01
We elucidate here the osteoblasts functions and cellular activity in 3D printed interconnected porous architecture of functionally gradient Ti-6Al-4V alloy mesh structures in terms of cell proliferation and growth, distribution of cell nuclei, synthesis of proteins (actin, vinculin, and fibronectin), and calcium deposition. Cell culture studies with pre-osteoblasts indicated that the interconnected porous architecture of functionally gradient mesh arrays was conducive to osteoblast functions. However, there were statistically significant differences in the cellular response depending on the pore size in the functionally gradient structure. The interconnected porous architecture contributed to the distribution of cells from the large pore size (G1) to the small pore size (G3), with consequent synthesis of extracellular matrix and calcium precipitation. The gradient mesh structure significantly impacted cell adhesion and influenced the proliferation stage, such that there was high distribution of cells on struts of the gradient mesh structure. Actin and vinculin showed a significant difference in normalized expression level of protein per cell, which was absent in the case of fibronectin. Osteoblasts present on mesh struts formed a confluent sheet, bridging the pores through numerous cytoplasmic extensions. The gradient mesh structure fabricated by electron beam melting was explored to obtain fundamental insights on cellular activity with respect to osteoblast functions. Copyright © 2016 Elsevier B.V. All rights reserved.
Narayanan, Vignesh; Jagannathan, Sarangapani
2017-06-08
This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.
A Distributed Laboratory for Event-Driven Coastal Prediction and Hazard Planning
NASA Astrophysics Data System (ADS)
Bogden, P.; Allen, G.; MacLaren, J.; Creager, G. J.; Flournoy, L.; Sheng, Y. P.; Graber, H.; Graves, S.; Conover, H.; Luettich, R.; Perrie, W.; Ramakrishnan, L.; Reed, D. A.; Wang, H. V.
2006-12-01
The 2005 Atlantic hurricane season was the most active in recorded history. Collectively, 2005 hurricanes caused more than 2,280 deaths and record damages of over 100 billion dollars. Of the storms that made landfall, Dennis, Emily, Katrina, Rita, and Wilma caused most of the destruction. Accurate predictions of storm-driven surge, wave height, and inundation can save lives and help keep recovery costs down, provided the information gets to emergency response managers in time. The information must be available well in advance of landfall so that responders can weigh the costs of unnecessary evacuation against the costs of inadequate preparation. The SURA Coastal Ocean Observing and Prediction (SCOOP) Program is a multi-institution collaboration implementing a modular, distributed service-oriented architecture for real time prediction and visualization of the impacts of extreme atmospheric events. The modular infrastructure enables real-time prediction of multi- scale, multi-model, dynamic, data-driven applications. SURA institutions are working together to create a virtual and distributed laboratory integrating coastal models, simulation data, and observations with computational resources and high speed networks. The loosely coupled architecture allows teams of computer and coastal scientists at multiple institutions to innovate complex system components that are interconnected with relatively stable interfaces. The operational system standardizes at the interface level to enable substantial innovation by complementary communities of coastal and computer scientists. This architectural philosophy solves a long-standing problem associated with the transition from research to operations. The SCOOP Program thereby implements a prototype laboratory consistent with the vision of a national, multi-agency initiative called the Integrated Ocean Observing System (IOOS). Several service- oriented components of the SCOOP enterprise architecture have already been designed and implemented, including data archive and transport services, metadata registry and retrieval (catalog), resource management, and portal interfaces. SCOOP partners are integrating these at the service level and implementing reconfigurable workflows for several kinds of user scenarios, and are working with resource providers to prototype new policies and technologies for on-demand computing.
Use of DAGMan in CRAB3 to improve the splitting of CMS user jobs
NASA Astrophysics Data System (ADS)
Wolf, M.; Mascheroni, M.; Woodard, A.; Belforte, S.; Bockelman, B.; Hernandez, J. M.; Vaandering, E.
2017-10-01
CRAB3 is a workload management tool used by CMS physicists to analyze data acquired by the Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider (LHC). Research in high energy physics often requires the analysis of large collections of files, referred to as datasets. The task is divided into jobs that are distributed among a large collection of worker nodes throughout the Worldwide LHC Computing Grid (WLCG). Splitting a large analysis task into optimally sized jobs is critical to efficient use of distributed computing resources. Jobs that are too big will have excessive runtimes and will not distribute the work across all of the available nodes. However, splitting the project into a large number of very small jobs is also inefficient, as each job creates additional overhead which increases load on infrastructure resources. Currently this splitting is done manually, using parameters provided by the user. However the resources needed for each job are difficult to predict because of frequent variations in the performance of the user code and the content of the input dataset. As a result, dividing a task into jobs by hand is difficult and often suboptimal. In this work we present a new feature called “automatic splitting” which removes the need for users to manually specify job splitting parameters. We discuss how HTCondor DAGMan can be used to build dynamic Directed Acyclic Graphs (DAGs) to optimize the performance of large CMS analysis jobs on the Grid. We use DAGMan to dynamically generate interconnected DAGs that estimate the processing time the user code will require to analyze each event. This is used to calculate an estimate of the total processing time per job, and a set of analysis jobs are run using this estimate as a specified time limit. Some jobs may not finish within the alloted time; they are terminated at the time limit, and the unfinished data is regrouped into smaller jobs and resubmitted.
78 FR 59921 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... Interconnection, L.L.C. Description: Revisions to the OATT & OA re Wind Resource Lost Opportunity Cost Eligibility.... Applicants: Buffalo Dunes Wind Project, LLC. Description: Application for Authorization under Section 203 of the Federal Power Act, Request for Expedited Consideration and Confidential Treatment of Buffalo Dunes...
NASA Astrophysics Data System (ADS)
Li, Ming; Yin, Hongxi; Xing, Fangyuan; Wang, Jingchao; Wang, Honghuan
2016-02-01
With the features of network virtualization and resource programming, Software Defined Optical Network (SDON) is considered as the future development trend of optical network, provisioning a more flexible, efficient and open network function, supporting intraconnection and interconnection of data centers. Meanwhile cloud platform can provide powerful computing, storage and management capabilities. In this paper, with the coordination of SDON and cloud platform, a multi-domain SDON architecture based on cloud control plane has been proposed, which is composed of data centers with database (DB), path computation element (PCE), SDON controller and orchestrator. In addition, the structure of the multidomain SDON orchestrator and OpenFlow-enabled optical node are proposed to realize the combination of centralized and distributed effective management and control platform. Finally, the functional verification and demonstration are performed through our optical experiment network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koralewicz, Przemyslaw J; Gevorgian, Vahan; Wallen, Robert B
Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to themore » development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koralewicz, Przemyslaw J; Gevorgian, Vahan; Wallen, Robert B
Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to themore » development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.« less
Performance characteristics of the Mayo/IBM PACS
NASA Astrophysics Data System (ADS)
Persons, Kenneth R.; Gehring, Dale G.; Pavicic, Mark J.; Ding, Yingjai
1991-07-01
The Mayo Clinic and IBM (at Rochester, Minnesota) have jointly developed a picture archiving system for use with Mayo's MRI and Neuro CT imaging modalities. The communications backbone of the PACS is a portion of the Mayo institutional network: a series of 4-Mbps token rings interconnected by bridges and fiber optic extensions. The performance characteristics of this system are important to understand because they affect the response time a PACS user can expect, and the response time for non-PACS users competing for resources on the institutional network. The performance characteristics of each component and the average load levels of the network were measured for various load distributions. These data were used to quantify the response characteristics of the existing system and to tune a model developed by North Dakota State University Department of Computer Science for predicting response times of more complex topologies.
x509-free access to WLCG resources
NASA Astrophysics Data System (ADS)
Short, H.; Manzi, A.; De Notaris, V.; Keeble, O.; Kiryanov, A.; Mikkonen, H.; Tedesco, P.; Wartel, R.
2017-10-01
Access to WLCG resources is authenticated using an x509 and PKI infrastructure. Even though HEP users have always been exposed to certificates directly, the development of modern Web Applications by the LHC experiments calls for simplified authentication processes keeping the underlying software unmodified. In this work we will show a solution with the goal of providing access to WLCG resources using the user’s home organisations credentials, without the need for user-acquired x509 certificates. In particular, we focus on identity providers within eduGAIN, which interconnects research and education organisations worldwide, and enables the trustworthy exchange of identity-related information. eduGAIN has been integrated at CERN in the SSO infrastructure so that users can authenticate without the need of a CERN account. This solution achieves x509-free access to Grid resources with the help of two services: STS and an online CA. The STS (Security Token Service) allows credential translation from the SAML2 format used by Identity Federations to the VOMS-enabled x509 used by most of the Grid. The IOTA CA (Identifier-Only Trust Assurance Certification Authority) is responsible for the automatic issuing of short-lived x509 certificates. The IOTA CA deployed at CERN has been accepted by EUGridPMA as the CERN LCG IOTA CA, included in the IGTF trust anchor distribution and installed by the sites in WLCG. We will also describe the first pilot projects which are integrating the solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
Performance Monitoring of Distributed Data Processing Systems
NASA Technical Reports Server (NTRS)
Ojha, Anand K.
2000-01-01
Test and checkout systems are essential components in ensuring safety and reliability of aircraft and related systems for space missions. A variety of systems, developed over several years, are in use at the NASA/KSC. Many of these systems are configured as distributed data processing systems with the functionality spread over several multiprocessor nodes interconnected through networks. To be cost-effective, a system should take the least amount of resource and perform a given testing task in the least amount of time. There are two aspects of performance evaluation: monitoring and benchmarking. While monitoring is valuable to system administrators in operating and maintaining, benchmarking is important in designing and upgrading computer-based systems. These two aspects of performance evaluation are the foci of this project. This paper first discusses various issues related to software, hardware, and hybrid performance monitoring as applicable to distributed systems, and specifically to the TCMS (Test Control and Monitoring System). Next, a comparison of several probing instructions are made to show that the hybrid monitoring technique developed by the NIST (National Institutes for Standards and Technology) is the least intrusive and takes only one-fourth of the time taken by software monitoring probes. In the rest of the paper, issues related to benchmarking a distributed system have been discussed and finally a prescription for developing a micro-benchmark for the TCMS has been provided.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the duties described in this part. Cave means any naturally occurring void, cavity, recess, or system of interconnected passages beneath the surface of the earth or within a cliff or ledge and which is... hydrologic resources. National Forest System lands means all national forest lands reserved or withdrawn from...
West Virginia | Solar Research | NREL
Incentive Programs West Virginia currently does not have any statewide financial incentives for midmarket solar. Utility Incentive Programs Check with local utility for utility incentive programs. Resources The utility policies and incentive programs. Net Metering and Interconnection West Virginia Public Service
Code of Federal Regulations, 2012 CFR
2012-07-01
... the duties described in this part. Cave means any naturally occurring void, cavity, recess, or system of interconnected passages beneath the surface of the earth or within a cliff or ledge and which is... hydrologic resources. National Forest System lands means all national forest lands reserved or withdrawn from...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the duties described in this part. Cave means any naturally occurring void, cavity, recess, or system of interconnected passages beneath the surface of the earth or within a cliff or ledge and which is... hydrologic resources. National Forest System lands means all national forest lands reserved or withdrawn from...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the duties described in this part. Cave means any naturally occurring void, cavity, recess, or system of interconnected passages beneath the surface of the earth or within a cliff or ledge and which is... hydrologic resources. National Forest System lands means all national forest lands reserved or withdrawn from...
Code of Federal Regulations, 2013 CFR
2013-07-01
... the duties described in this part. Cave means any naturally occurring void, cavity, recess, or system of interconnected passages beneath the surface of the earth or within a cliff or ledge and which is... hydrologic resources. National Forest System lands means all national forest lands reserved or withdrawn from...
National Offshore Wind Energy Grid Interconnection Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, John P.; Liu, Shu; Ibanez, Eduardo
2014-07-30
The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systemsmore » most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.« less
Control and Coordination of Frequency Responsive Residential Water Heaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tess L.; Kalsi, Karanjit; Elizondo, Marcelo A.
2016-07-31
Demand-side frequency control can complement traditional generator controls to maintain the stability of large electric systems in the face of rising uncertainty and variability associated with renewable energy resources. This paper presents a hierarchical frequency-based load control strategy that uses a supervisor to flexibly adjust control gains that a population of end-use loads respond to in a decentralized manner to help meet the NERC BAL-003-1 frequency response standard at both the area level and interconnection level. The load model is calibrated and used to model populations of frequency-responsive water heaters in a PowerWorld simulation of the U.S. Western Interconnection (WECC).more » The proposed design is implemented and demonstrated on physical water heaters in a laboratory setting. A significant fraction of the required frequency response in the WECC could be supplied by electric water heaters alone at penetration levels of less than 15%, while contributing to NERC requirements at the interconnection and area levels.« less
A Vision of China-Arab Interconnection Transmission Network Planning with UHVDC Technology
NASA Astrophysics Data System (ADS)
Wu, Dan; Liu, Yujun; Yin, Hongyuan; Xu, Qingshan; Xu, Xiaohui; Ding, Maosheng
2017-05-01
Developments in ultra-high-voltage (UHV) power systems and clean energy technologies are paving the way towards unprecedented energy market globalization. In accordance with the international community’s enthusiasm for building up the Global Energy Internet, this paper focuses on the feasibility of transmitting large-size electricity from northwest China to Arab world through a long-distance transnational power interconnection. The complete investigations on the grids of both the sending-end and receiving-end is firstly presented. Then system configuration of the transmission scheme and corridor route planning is proposed with UHVDC technology. Based on transmission costs’ investigation about similar transmission projects worldwide, the costs of the proposed transmission scheme are estimated through adjustment factors which represent differences in latitude, topography and economy. The proposed China-Arab transmission line sheds light on the prospects of power cooperation and resource sharing between China and Arab states, and appeals for more emphasis on green energy concentrated power interconnections from a global perspective.
Additional EIPC Study Analysis. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Stanton W; Gotham, Douglas J.; Luciani, Ralph L.
Between 2010 and 2012 the Eastern Interconnection Planning Collaborative (EIPC) conducted a major long-term resource and transmission study of the Eastern Interconnection (EI). With guidance from a Stakeholder Steering Committee (SSC) that included representatives from the Eastern Interconnection States Planning Council (EISPC) among others, the project was conducted in two phases. Phase 1 involved a long-term capacity expansion analysis that involved creation of eight major futures plus 72 sensitivities. Three scenarios were selected for more extensive transmission- focused evaluation in Phase 2. Five power flow analyses, nine production cost model runs (including six sensitivities), and three capital cost estimations weremore » developed during this second phase. The results from Phase 1 and 2 provided a wealth of data that could be examined further to address energy-related questions. A list of 14 topics was developed for further analysis. This paper brings together the earlier interim reports of the first 13 topics plus one additional topic into a single final report.« less
Cross-layer restoration with software defined networking based on IP over optical transport networks
NASA Astrophysics Data System (ADS)
Yang, Hui; Cheng, Lei; Deng, Junni; Zhao, Yongli; Zhang, Jie; Lee, Young
2015-10-01
The IP over optical transport network is a very promising networking architecture applied to the interconnection of geographically distributed data centers due to the performance guarantee of low delay, huge bandwidth and high reliability at a low cost. It can enable efficient resource utilization and support heterogeneous bandwidth demands in highly-available, cost-effective and energy-effective manner. In case of cross-layer link failure, to ensure a high-level quality of service (QoS) for user request after the failure becomes a research focus. In this paper, we propose a novel cross-layer restoration scheme for data center services with software defined networking based on IP over optical network. The cross-layer restoration scheme can enable joint optimization of IP network and optical network resources, and enhance the data center service restoration responsiveness to the dynamic end-to-end service demands. We quantitatively evaluate the feasibility and performances through the simulation under heavy traffic load scenario in terms of path blocking probability and path restoration latency. Numeric results show that the cross-layer restoration scheme improves the recovery success rate and minimizes the overall recovery time.
Cooling water distribution system
Orr, Richard
1994-01-01
A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.
Thermal Imaging of the Waccasassa Bay Preserve: Image Acquisition and Processing
Raabe, Ellen A.; Bialkowska-Jelinska, Elzbieta
2010-01-01
Thermal infrared (TIR) imagery was acquired along coastal Levy County, Florida, in March 2009 with the goal of identifying groundwater-discharge locations in Waccasassa Bay Preserve State Park (WBPSP). Groundwater discharge is thermally distinct in winter when Floridan aquifer temperature, 71-72 degrees F, contrasts with the surrounding cold surface waters. Calibrated imagery was analyzed to assess temperature anomalies and related thermal traces. The influence of warm Gulf water and image artifacts on small features was successfully constrained by image evaluation in three separate zones: Creeks, Bay, and Gulf. Four levels of significant water-temperature anomalies were identified, and 488 sites of interest were mapped. Among the sites identified, at least 80 were determined to be associated with image artifacts and human activity, such as excavation pits and the Florida Barge Canal. Sites of interest were evaluated for geographic concentration and isolation. High site densities, indicating interconnectivity and prevailing flow, were located at Corrigan Reef, No. 4 Channel, Winzy Creek, Cow Creek, Withlacoochee River, and at excavation sites. In other areas, low to moderate site density indicates the presence of independent vents and unique flow paths. A directional distribution assessment of natural seep features produced a northwest trend closely matching the strike direction of regional faults. Naturally occurring seeps were located in karst ponds and tidal creeks, and several submerged sites were detected in Waccasassa River and Bay, representing the first documentation of submarine vents in the Waccasassa region. Drought conditions throughout the region placed constraints on positive feature identification. Low discharge or displacement by landward movement of saltwater may have reduced or reversed flow during this season. Approximately two-thirds of seep locations in the overlap between 2009 and 2005 TIR night imagery were positively re-identified in 2009. These results indicate a 33 percent chance of feature omission in the 2009 imagery. This assessment of seep location and distribution contributes to an understanding of the underlying geology, the role of fault and fracture patterns, and the presence of both interconnected and constrained flow paths in the region. The maps and evaluations will enhance Park management efforts, interpretation of Park resources, and increase understanding of the combined effects of land and water use on the coastal lowlands, estuarine habitats, and natural resources of WBPSP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghatikar, Girish; Mashayekh, Salman; Stadler, Michael
Distributed power systems in the U.S. and globally are evolving to provide reliable and clean energy to consumers. In California, existing regulations require significant increases in renewable generation, as well as identification of customer-side distributed energy resources (DER) controls, communication technologies, and standards for interconnection with the electric grid systems. As DER deployment expands, customer-side DER control and optimization will be critical for system flexibility and demand response (DR) participation, which improves the economic viability of DER systems. Current DER systems integration and communication challenges include leveraging the existing DER and DR technology and systems infrastructure, and enabling optimized cost,more » energy and carbon choices for customers to deploy interoperable grid transactions and renewable energy systems at scale. Our paper presents a cost-effective solution to these challenges by exploring communication technologies and information models for DER system integration and interoperability. This system uses open standards and optimization models for resource planning based on dynamic-pricing notifications and autonomous operations within various domains of the smart grid energy system. It identifies architectures and customer engagement strategies in dynamic DR pricing transactions to generate feedback information models for load flexibility, load profiles, and participation schedules. The models are tested at a real site in California—Fort Hunter Liggett (FHL). Furthermore, our results for FHL show that the model fits within the existing and new DR business models and networked systems for transactive energy concepts. Integrated energy systems, communication networks, and modeling tools that coordinate supply-side networks and DER will enable electric grid system operators to use DER for grid transactions in an integrated system.« less
Low latency network and distributed storage for next generation HPC systems: the ExaNeSt project
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Cretaro, P.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Pisani, F.; Simula, F.; Vicini, P.; Navaridas, J.; Chaix, F.; Chrysos, N.; Katevenis, M.; Papaeustathiou, V.
2017-10-01
With processor architecture evolution, the HPC market has undergone a paradigm shift. The adoption of low-cost, Linux-based clusters extended the reach of HPC from its roots in modelling and simulation of complex physical systems to a broader range of industries, from biotechnology, cloud computing, computer analytics and big data challenges to manufacturing sectors. In this perspective, the near future HPC systems can be envisioned as composed of millions of low-power computing cores, densely packed — meaning cooling by appropriate technology — with a tightly interconnected, low latency and high performance network and equipped with a distributed storage architecture. Each of these features — dense packing, distributed storage and high performance interconnect — represents a challenge, made all the harder by the need to solve them at the same time. These challenges lie as stumbling blocks along the road towards Exascale-class systems; the ExaNeSt project acknowledges them and tasks itself with investigating ways around them.
Understanding and Managing the Assessment Process
Gene Lessard; Scott Archer; John R. Probst; Sandra Clark
1999-01-01
Taking an ecological approach to management, or ecosystem management, is a developing approach for managing natural resources within the context of large geogaphic scales and over multiple time frames. Recently, the Council on Environmental Quality (CEQ) (IEMTF 1995) defined an ecosystem as "...an interconnected community of living things, including humans, and...
Creating Global Citizens through Study Abroad
ERIC Educational Resources Information Center
Bellamy, Carol; Weinberg, Adam
2006-01-01
One of the greatest challenges for a student today is how to live as a responsible citizen in a globalizing world. Today's interconnected world cannot afford bystanders or passive participants. It demands confident, skilled citizens who will make responsible choices that take into consideration how educators allocate resources and what impact…
1980-03-01
of coconut palms (Cocos nuciferza), breadfruit (Artocarpue incisus ), papaya (Carica papaya ) , banana (Msa sp.) * ( .. . . . .. *’ I. . l r l[. . . . i...interconnecting ones are generally composed of limestone gravel. Flametrees ( DeZonix regia ) are common along thorough-fares and bananas, papayas
Monash University Library and Learning: A New Paradigm for a New Age
ERIC Educational Resources Information Center
Smith, Lisa
2011-01-01
This article describes the expansion of Monash University Library's role to incorporate learning skills services, programs, and resources, within the context of the University's evolving learning landscape. It explains the Library's now holistic approach to students' development of information research and learning skills as interconnected skills…
Alaska | Midmarket Solar Policies in the United States | Solar Research |
developers may offer community solar programs. State Incentive Programs Program Administrator Incentive decisions. Utility Incentive Programs Check with local utilities for midscale solar incentives. Resources and utility policies and incentive programs. Net Metering and Interconnection Regulatory Commission of
A Transparent Framework for Evaluating the Effects of DGPV on Distribution System Costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Kelsey A; Mather, Barry A; Ding, Fei
Assessing the costs and benefits of distributed photovoltaic generators (DGPV) to the power system and electricity consumers is key to determining appropriate policies, tariff designs, and power system upgrades for the modern grid. We advance understanding of this topic by providing a transparent framework, terminology, and data set for evaluating distribution system upgrade costs, line losses, and interconnection costs as a function of DGPV penetration level.
Comparing Resource Adequacy Metrics and Their Influence on Capacity Value: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibanez, E.; Milligan, M.
2014-04-01
Traditional probabilistic methods have been used to evaluate resource adequacy. The increasing presence of variable renewable generation in power systems presents a challenge to these methods because, unlike thermal units, variable renewable generation levels change over time because they are driven by meteorological events. Thus, capacity value calculations for these resources are often performed to simple rules of thumb. This paper follows the recommendations of the North American Electric Reliability Corporation?s Integration of Variable Generation Task Force to include variable generation in the calculation of resource adequacy and compares different reliability metrics. Examples are provided using the Western Interconnection footprintmore » under different variable generation penetrations.« less
Latency Hiding in Dynamic Partitioning and Load Balancing of Grid Computing Applications
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak
2001-01-01
The Information Power Grid (IPG) concept developed by NASA is aimed to provide a metacomputing platform for large-scale distributed computations, by hiding the intricacies of highly heterogeneous environment and yet maintaining adequate security. In this paper, we propose a latency-tolerant partitioning scheme that dynamically balances processor workloads on the.IPG, and minimizes data movement and runtime communication. By simulating an unsteady adaptive mesh application on a wide area network, we study the performance of our load balancer under the Globus environment. The number of IPG nodes, the number of processors per node, and the interconnected speeds are parameterized to derive conditions under which the IPG would be suitable for parallel distributed processing of such applications. Experimental results demonstrate that effective solution are achieved when the IPG nodes are connected by a high-speed asynchronous interconnection network.
McLoon, Linda K.; Vicente, André; Fitzpatrick, Krysta R.; Lindström, Mona
2018-01-01
Purpose We examined the pattern and extent of connective tissue distribution in the extraocular muscles (EOMs) and determined the ability of the interconnected connective tissues to disseminate force laterally. Methods Human EOMs were examined for collagens I, III, IV, and VI; fibronectin; laminin; and elastin using immunohistochemistry. Connective tissue distribution was examined with scanning electron microscopy. Rabbit EOMs were examined for levels of force transmission longitudinally and transversely using in vitro force assessment. Results Collagens I, III, and VI localized to the endomysium, perimysium, and epimysium. Collagen IV, fibronectin, and laminin localized to the basal lamina surrounding all myofibers. All collagens localized similarly in the orbital and global layers throughout the muscle length. Elastin had the most irregular pattern and ran longitudinally and circumferentially throughout the length of all EOMs. Scanning electron microscopy showed these elements to be extensively interconnected, from endomysium through the perimysium to the epimysium surrounding the whole muscle. In vitro physiology demonstrated force generation in the lateral dimension, presumably through myofascial transmission, which was always proportional to the force generated in the longitudinally oriented muscles. Conclusions A striking connective tissue matrix interconnects all the myofibers and extends, via perimysial connections, to the epimysium. These interconnections are significant and allow measurable force transmission laterally as well as longitudinally, suggesting that they may contribute to the nonlinear force summation seen in motor unit recording studies. This provides strong evidence that separate compartmental movements are unlikely as no region is independent of the rest of the muscle. PMID:29346490
Paralex: An Environment for Parallel Programming in Distributed Systems
1991-12-07
distributed systems is coni- parable to assembly language programming for traditional sequential systems - the user must resort to low-level primitives ...to accomplish data encoding/decoding, communication, remote exe- cution, synchronization , failure detection and recovery. It is our belief that... synchronization . Finally, composing parallel programs by interconnecting se- quential computations allows automatic support for heterogeneity and fault tolerance
Roles of Course Facilitators, Learners, and Technology in the Flow of Information of a cMOOC
ERIC Educational Resources Information Center
Skrypnyk, Oleksandra; Joksimovic, Srec´ko; Kovanovic, Vitomir; Gas?evic, Dragan; Dawson, Shane
2015-01-01
Distributed Massive Open Online Courses (MOOCs) are based on the premise that online learning occurs through a network of interconnected learners. The teachers' role in distributed courses extends to forming such a network by facilitating communication that connects learners and their separate personal learning environments scattered around the…
The resilient hybrid fiber sensor network with self-healing function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shibo, E-mail: Shibo-Xu@tju.edu.cn; Liu, Tiegen; Ge, Chunfeng
This paper presents a novel resilient fiber sensor network (FSN) with multi-ring architecture, which could interconnect various kinds of fiber sensors responsible for more than one measurands. We explain how the intelligent control system provides sensors with self-healing function meanwhile sensors are working properly, besides each fiber in FSN is under real-time monitoring. We explain the software process and emergency mechanism to respond failures or other circumstances. To improve the efficiency in the use of limited spectrum resources in some situations, we have two different structures to distribute the light sources rationally. Then, we propose a hybrid sensor working inmore » FSN which is a combination of a distributed sensor and a FBG (Fiber Bragg Grating) array fused in a common fiber sensing temperature and vibrations simultaneously with neglectable crosstalk to each other. By making a failure to a working fiber in experiment, the feasibility and effectiveness of the network with a hybrid sensor has been demonstrated, hybrid sensors could not only work as designed but also survive from destructive failures with the help of resilient network and smart and quick self-healing actions. The network has improved the viability of the fiber sensors and diversity of measurands.« less
Modeling the Value of Integrated Canadian and U.S. Power Sector Expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley, Beiter, Philipp; Steinberg, Daniel
2016-09-08
The United States and Canada power systems are not isolated. Cross-border transmission and coordination of system operation create an interconnected power system, which results in combined imports and exports of electricity of greater than 70 TWh per year [1]. Currently, over 5 GW of new international transmission lines are in various stages of permitting and development. These lines may enable greater integration and coordination of the U.S. and Canada systems, which can in turn reduce challenges associated with integration of high penetrations of variable renewables. Furthermore, low-cost Canadian resources, such as wind and hydro, could contribute to compliance with themore » EPA's recently released Clean Power Plan. Improving integration and coordination internationally will reduce the costs of accessing these resources. This analysis work build on previous work by Ibanez and Zinaman [2]. In this work we seek to better understand the value of additional interconnection between the U.S. and Canadian power systems. Specifically, we quantify the value of additional interconnection and coordination within the Canadian-US integrated power system under scenarios in which large reductions (>80%) in power sector CO2 emissions are achieved. We explore how the ability to add additional cross-border transmission impacts capacity investment, the generation mix, system costs, and the ability of the system to integrate variable renewable energy into the power system. This analysis uses the Regional Energy Deployment System (ReEDS) capacity expansion model [3], [4] to quantify the value of the integrated power system expansion of the United States and Canada. ReEDS is an optimization model that assesses the deployment and operation (including transmission) of the electricity sector of the contiguous United States and Canadian provinces from 2016 through 2050. It has the ability to model the integration of renewable energy technologies into the grid. ReEDS captures renewable energy resources through the use of 356 individual resource regions and 134 balancing areas across the U.S. and is able to handle renewable energy issues such as variability in wind and solar output, transmission costs and constraints, and ancillary services requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This fact sheet describes the collaboration between NREL, SolarCity, and the Hawaiian Electric Companies at the Energy Systems Integration Facility (ESIF) to address the safety, reliability, and stability challenges of interconnecting high penetrations of distributed photovoltaics with the electric power system.
Ji, Chen-Chen; Xu, Mao-Wen; Bao, Shu-Juan; Cai, Chang-Jun; Lu, Zheng-Jiang; Chai, Hui; Yang, Fan; Wei, Hua
2013-10-01
Homogeneously distributed self-assembling hybrid graphene-based aerogels with 3D interconnected pores, employing three types of carbohydrates (glucose, β-cyclodextrin, and chitosan), have been fabricated by a simple hydrothermal route. Using three types of carbohydrates as morphology oriented agents and reductants can effectively tailor the microstructures, physical properties, and electrochemical performances of the products. The effects of different carbohydrates on graphene oxide reduction to form graphene-based aerogels with different microcosmic morphologies and physical properties were also systemically discussed. The electrochemical behaviors of all graphene-based aerogel samples showed remarkably strong and stable performances, which indicated that all the 3D interpenetrating microstructure graphene-based aerogel samples with well-developed porous nanostructures and interconnected conductive networks could provide fast ionic channels for electrochemical energy storage. These results demonstrate that this strategy would offer an easy and effective way to fabricate graphene-based materials. Copyright © 2013 Elsevier Inc. All rights reserved.
Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun
2015-08-10
With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.
NASA Astrophysics Data System (ADS)
Barabash, R. I.; Ice, G. E.; Tamura, N.; Valek, B. C.; Bravman, J. C.; Spolenak, R.; Patel, J. R.
2003-05-01
Electromigration during accelerated testing can induce plastic deformation in apparently undamaged Al interconnect lines as recently revealed by white beam scanning x-ray microdiffraction. In the present article, we provide a first quantitative analysis of the dislocation structure generated in individual micron-sized Al grains during an in situ electromigration experiment. Laue reflections from individual interconnect grains show pronounced streaking during the early stages of electromigration. We demonstrate that the evolution of the dislocation structure during electromigration is highly inhomogeneous and results in the formation of unpaired randomly distributed dislocations as well as geometrically necessary dislocation boundaries. Approximately half of all unpaired dislocations are grouped within the walls. The misorientation created by each boundary and density of unpaired individual dislocations is determined. The origin of the observed plastic deformation is considered in view of the constraints for dislocation arrangements under the applied electric field during electromigration.
DGIC Interconnection Insights | Distributed Generation Interconnection
Up to 2 MW 5 15 20 NJ 3 Up to 10 kW 3 10 13 Up to 2 MW 3 15 18 CO 4 Up to 10 kW 10 15 25 Up to 2 MW Screens) Total Days for Application Review and Aproval CA 4 Up tp 2 MW 10 15 25 NY 3 Up to 50 kW 5 10 15 10 15 30 AZ N/A. As of the writing of this report, Arizona has no standard timeframe requirements in
A New Generation of Networks and Computing Models for High Energy Physics in the LHC Era
NASA Astrophysics Data System (ADS)
Newman, H.
2011-12-01
Wide area networks of increasing end-to-end capacity and capability are vital for every phase of high energy physicists' work. Our bandwidth usage, and the typical capacity of the major national backbones and intercontinental links used by our field have progressed by a factor of several hundred times over the past decade. With the opening of the LHC era in 2009-10 and the prospects for discoveries in the upcoming LHC run, the outlook is for a continuation or an acceleration of these trends using next generation networks over the next few years. Responding to the need to rapidly distribute and access datasets of tens to hundreds of terabytes drawn from multi-petabyte data stores, high energy physicists working with network engineers and computer scientists are learning to use long range networks effectively on an increasing scale, and aggregate flows reaching the 100 Gbps range have been observed. The progress of the LHC, and the unprecedented ability of the experiments to produce results rapidly using worldwide distributed data processing and analysis has sparked major, emerging changes in the LHC Computing Models, which are moving from the classic hierarchical model designed a decade ago to more agile peer-to-peer-like models that make more effective use of the resources at Tier2 and Tier3 sites located throughout the world. A new requirements working group has gauged the needs of Tier2 centers, and charged the LHCOPN group that runs the network interconnecting the LHC Tierls with designing a new architecture interconnecting the Tier2s. As seen from the perspective of ICFA's Standing Committee on Inter-regional Connectivity (SCIC), the Digital Divide that separates physicists in several regions of the developing world from those in the developed world remains acute, although many countries have made major advances through the rapid installation of modern network infrastructures. A case in point is Africa, where a new round of undersea cables promises to transform the continent.
Defense Automation Resources Management Manual
1988-09-01
Electronic Command Signals Programmer, Plugboard Programmers Punch, Card Punch, Paper Tape Reader, Character Reader-Generator, Time Cards Reader...Multiplexor-Shift Register Group Multiplier Panel Control, Plugboard Panel, Interconnection, Digital Computer Panel, Meter-Attenuator, Tape Recorder PC Cards...Perforator, Tape Plug-In Unit Potentiometer, Coefficient, Analog Computer Programmer, Plugboard Punch, Paper Tape Racks Reader, Time Code Reader
Integrated Collaborative E-Learning for the Global Management Education in the 21st Century
ERIC Educational Resources Information Center
Son, Barbara W. K.
2017-01-01
Rapidly growing information and communications technology and a more interconnected global world offer benefits and challenges to global business organizations. While exploring benefits from global workforce and global production, they must successfully adapt to their local market conditions and manage their multicultural resources. How can we…
75 FR 2138 - Interconnection of the Proposed Hermosa West Wind Farm Project, Wyoming (DOE/EIS-0438)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... SWE's proposed Project would consist of up to 200 wind turbine generators with a combined total... siting process for the wind turbine strings and associated facilities considered sensitive resources, and... West Wind Farm Project, Wyoming (DOE/EIS-0438) AGENCY: Western Area Power Administration, DOE. ACTION...
Community Collaboration Using a Unique Gallery as a Literacy Resource
ERIC Educational Resources Information Center
Voelker, Anita N.
2008-01-01
According to van der Pluijm (2006), an ecological community occurs when interacting groups, living in the same area, are joined together by the set of connections. This definition implies a symbiotic relationship and the acknowledgment that what affects one member or part of the community also affects the others. When the interconnections are…
Using Object Boxes to Teach about Middle Eastern Antiquity
ERIC Educational Resources Information Center
Gianetto, Jennifer L.; Rule, Audrey C.
2005-01-01
Students need to enter the interconnected global community with an understanding of how different cultures perceive the world, how the cultures and societies of today evolved from those of the past, and how all peoples impact the development of future societies. Unfortunately, time constraints or lack of resources in schools cause many social…
Are Early Intervention Services Placing Home Languages and Cultures "At Risk"?
ERIC Educational Resources Information Center
Puig, Victoria I.
2010-01-01
This position statement considers family languages, family cultures, and partnerships between family members and early intervention (EI) professionals as intimately interconnected and resources to be accessed when serving young children with special needs and their families. It presents theory and an overview of works that examine the impact of…
Brazil's Exception to the World-Class University Movement
ERIC Educational Resources Information Center
Alperin, Juan Pablo
2013-01-01
The continued importance of university rankings has only served to fuel the growth of the "world-class" university movement. There is a growing impression that, in a globalised and interconnected world, no country can do without a world-class university. No country, that is, except Brazil. While Brazil has the resources necessary to…
Water: A Topic for All Sciences
ERIC Educational Resources Information Center
Davies, Malonne I.; Seimears, C. Matt
2008-01-01
The authors illustrate an effective lesson-planning technique known as unpacking for the broad topic of water. Interconnections among science disciplines are shown for numerous possible subtopics. Two lesson sets are included, the first dealing with properties of water and the second dealing with water as a resource. (Contains 1 table and 4…
Effective Tooling for Linked Data Publishing in Scientific Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, Sumit; Smith, William P.; Chappell, Alan R.
Challenges that make it difficult to find, share, and combine published data, such as data heterogeneity and resource discovery, have led to increased adoption of semantic data standards and data publishing technologies. To make data more accessible, interconnected and discoverable, some domains are being encouraged to publish their data as Linked Data. Consequently, this trend greatly increases the amount of data that semantic web tools are required to process, store, and interconnect. In attempting to process and manipulate large data sets, tools–ranging from simple text editors to modern triplestores– eventually breakdown upon reaching undefined thresholds. This paper offers a systematicmore » approach that data publishers can use to categorize suitable tools to meet their data publishing needs. We present a real-world use case, the Resource Discovery for Extreme Scale Collaboration (RDESC), which features a scientific dataset(maximum size of 1.4 billion triples) used to evaluate a toolbox for data publishing in climate research. This paper also introduces a semantic data publishing software suite developed for the RDESC project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Broderick, Robert; Mather, Barry
2016-05-01
This report analyzes distribution-integration challenges, solutions, and research needs in the context of distributed generation from PV (DGPV) deployment to date and the much higher levels of deployment expected with achievement of the U.S. Department of Energy's SunShot targets. Recent analyses have improved estimates of the DGPV hosting capacities of distribution systems. This report uses these results to statistically estimate the minimum DGPV hosting capacity for the contiguous United States using traditional inverters of approximately 170 GW without distribution system modifications. This hosting capacity roughly doubles if advanced inverters are used to manage local voltage and additional minor, low-cost changesmore » could further increase these levels substantially. Key to achieving these deployment levels at minimum cost is siting DGPV based on local hosting capacities, suggesting opportunities for regulatory, incentive, and interconnection innovation. Already, pre-computed hosting capacity is beginning to expedite DGPV interconnection requests and installations in select regions; however, realizing SunShot-scale deployment will require further improvements to DGPV interconnection processes, standards and codes, and compensation mechanisms so they embrace the contributions of DGPV to system-wide operations. SunShot-scale DGPV deployment will also require unprecedented coordination of the distribution and transmission systems. This includes harnessing DGPV's ability to relieve congestion and reduce system losses by generating closer to loads; minimizing system operating costs and reserve deployments through improved DGPV visibility; developing communication and control architectures that incorporate DGPV into system operations; providing frequency response, transient stability, and synthesized inertia with DGPV in the event of large-scale system disturbances; and potentially managing reactive power requirements due to large-scale deployment of advanced inverter functions. Finally, additional local and system-level value could be provided by integrating DGPV with energy storage and 'virtual storage,' which exploits improved management of electric vehicle charging, building energy systems, and other large loads. Together, continued innovation across this rich distribution landscape can enable the very-high deployment levels envisioned by SunShot.« less
Cardiac neuronal hierarchy in health and disease.
Armour, J Andrew
2004-08-01
The cardiac neuronal hierarchy can be represented as a redundant control system made up of spatially distributed cell stations comprising afferent, efferent, and interconnecting neurons. Its peripheral and central neurons are in constant communication with one another such that, for the most part, it behaves as a stochastic control system. Neurons distributed throughout this hierarchy interconnect via specific linkages such that each neuronal cell station is involved in temporally dependent cardio-cardiac reflexes that control overlapping, spatially organized cardiac regions. Its function depends primarily, but not exclusively, on inputs arising from afferent neurons transducing the cardiovascular milieu to directly or indirectly (via interconnecting neurons) modify cardiac motor neurons coordinating regional cardiac behavior. As the function of the whole is greater than that of its individual parts, stable cardiac control occurs most of the time in the absence of direct cause and effect. During altered cardiac status, its redundancy normally represents a stabilizing feature. However, in the presence of regional myocardial ischemia, components within the intrinsic cardiac nervous system undergo pathological change. That, along with any consequent remodeling of the cardiac neuronal hierarchy, alters its spatially and temporally organized reflexes such that populations of neurons, acting in isolation, may destabilize efferent neuronal control of regional cardiac electrical and/or mechanical events.
Systems Integration Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-01
This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstrationmore » projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.« less
Seasonality and pathogen transmission in pastoral cattle contact networks.
VanderWaal, Kimberly; Gilbertson, Marie; Okanga, Sharon; Allan, Brian F; Craft, Meggan E
2017-12-01
Capturing heterogeneity in contact patterns in animal populations is essential for understanding the spread of infectious diseases. In contrast to other regions of the world in which livestock movement networks are integral to pathogen prevention and control policies, contact networks are understudied in pastoral regions of Africa due to the challenge of measuring contact among mobile herds of cattle whose movements are driven by access to resources. Furthermore, the extent to which seasonal changes in the distribution of water and resources impacts the structure of contact networks in cattle is uncertain. Contact networks may be more conducive to pathogen spread in the dry season due to congregation at limited water sources. Alternatively, less abundant forage may result in decreased pathogen transmission due to competitive avoidance among herds, as measured by reduced contact rates. Here, we use GPS technology to concurrently track 49 free-roaming cattle herds within a semi-arid region of Kenya, and use these data to characterize seasonal contact networks and model the spread of a highly infectious pathogen. This work provides the first empirical data on the local contact network structure of mobile herds based on quantifiable contact events. The contact network demonstrated high levels of interconnectivity. An increase in contacts near to water resources in the dry season resulted in networks with both higher contact rates and higher potential for pathogen spread than in the wet season. Simulated disease outbreaks were also larger in the dry season. Results support the hypothesis that limited water resources enhance connectivity and transmission within contact networks, as opposed to reducing connectivity as a result of competitive avoidance. These results cast light on the impact of seasonal heterogeneity in resource availability on predicting pathogen transmission dynamics, which has implications for other free-ranging wild and domestic populations.
Wisconsin | Solar Research | NREL
of Interconnection â¤20 kW Category 1 (10 days engineering review; 10 days distribution system study study; $250 application fee) >200 kW and â¤1 MW Category 3 (20 days engineering review; 20 days distribution system study; $500 application fee) >1 MW and â¤15 MW Category 4 (40 days engineering review
Maximizing algebraic connectivity in interconnected networks.
Shakeri, Heman; Albin, Nathan; Darabi Sahneh, Faryad; Poggi-Corradini, Pietro; Scoglio, Caterina
2016-03-01
Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with interlayer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these interlayer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one interlayer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be nonuniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palminitier, Bryan; Broderick, Robert; Mather, Barry
2016-05-01
Wide use of advanced inverters could double the electricity-distribution system’s hosting capacity for distributed PV at low costs—from about 170 GW to 350 GW (see Palmintier et al. 2016). At the distribution system level, increased variable generation due to high penetrations of distributed PV (typically rooftop and smaller ground-mounted systems) could challenge the management of distribution voltage, potentially increase wear and tear on electromechanical utility equipment, and complicate the configuration of circuit-breakers and other protection systems—all of which could increase costs, limit further PV deployment, or both. However, improved analysis of distribution system hosting capacity—the amount of distributed PV thatmore » can be interconnected without changing the existing infrastructure or prematurely wearing out equipment—has overturned previous rule-of-thumb assumptions such as the idea that distributed PV penetrations higher than 15% require detailed impact studies. For example, new analysis suggests that the hosting capacity for distributed PV could rise from approximately 170 GW using traditional inverters to about 350 GW with the use of advanced inverters for voltage management, and it could be even higher using accessible and low-cost strategies such as careful siting of PV systems within a distribution feeder and additional minor changes in distribution operations. Also critical to facilitating distributed PV deployment is the improvement of interconnection processes, associated standards and codes, and compensation mechanisms so they embrace PV’s contributions to system-wide operations. Ultimately SunShot-level PV deployment will require unprecedented coordination of the historically separate distribution and transmission systems along with incorporation of energy storage and “virtual storage,” which exploits improved management of electric vehicle charging, building energy systems, and other large loads. Additional analysis and innovation are neede« less
Additional EIPC Study Analysis: Interim Report on Medium Priority Topics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Stanton W.; Gotham, Douglas J.
Between 2010 and 2012 the Eastern Interconnection Planning Collaborative (EIPC) conducted a major long-term resource and transmission study of the Eastern Interconnection (EI). With guidance from a stakeholder steering committee (SSC) that included representatives from the Eastern Interconnection States’ Planning Council (EISPC) among others, the project was conducted in two phases. The first was a 2015–2040 analysis that looked at a broad array of possible future scenarios, while the second focused on a more detailed examination of the grid in 2030. The studies provided a wealth of information on possible future generation, demand, and transmission alternatives. However, at the conclusionmore » there were still unresolved questions and issues. The US Department of Energy, which had sponsored the study, asked Oak Ridge National Laboratory researchers and others who worked on the project to conduct an additional study of the data to provide further insights for stakeholders and the industry. This report documents the second part of that follow-on study [an earlier report (Hadley 2013) covered the first part, and a subsequent report will address the last part].« less
NEXUS Scalable and Distributed Next-Generation Avionics Bus for Space Missions
NASA Technical Reports Server (NTRS)
He, Yutao; Shalom, Eddy; Chau, Savio N.; Some, Raphael R.; Bolotin, Gary S.
2011-01-01
A paper discusses NEXUS, a common, next-generation avionics interconnect that is transparently compatible with wired, fiber-optic, and RF physical layers; provides a flexible, scalable, packet switched topology; is fault-tolerant with sub-microsecond detection/recovery latency; has scalable bandwidth from 1 Kbps to 10 Gbps; has guaranteed real-time determinism with sub-microsecond latency/jitter; has built-in testability; features low power consumption (< 100 mW per Gbps); is lightweight with about a 5,000-logic-gate footprint; and is implemented in a small Bus Interface Unit (BIU) with reconfigurable back-end providing interface to legacy subsystems. NEXUS enhances a commercial interconnect standard, Serial RapidIO, to meet avionics interconnect requirements without breaking the standard. This unified interconnect technology can be used to meet performance, power, size, and reliability requirements of all ranges of equipment, sensors, and actuators at chip-to-chip, board-to-board, or box-to-box boundary. Early results from in-house modeling activity of Serial RapidIO using VisualSim indicate that the use of a switched, high-performance avionics network will provide a quantum leap in spacecraft onboard science and autonomy capability for science and exploration missions.
Solution techniques for transient stability-constrained optimal power flow – Part II
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu; ...
2017-06-28
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
Solution techniques for transient stability-constrained optimal power flow – Part II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Guangchao; Abhyankar, Shrirang; Wang, Xiaoyu
Transient stability-constrained optimal power flow is an important emerging problem with power systems pushed to the limits for economic benefits, dense and larger interconnected systems, and reduced inertia due to expected proliferation of renewable energy resources. In this study, two more approaches: single machine equivalent and computational intelligence are presented. Also discussed are various application areas, and future directions in this research area. In conclusion, a comprehensive resource for the available literature, publicly available test systems, and relevant numerical libraries is also provided.
Coastal Geographic Structures in Coastal-Marine Environmental Management
NASA Astrophysics Data System (ADS)
Baklanov, P. Ya.; Ganzei, K. S.; Ermoshin, V. V.
2018-01-01
It has been proposed to distinguish the coastal geographic structures consisting of a spatial combination of three interconnected and mutually conditioned parts (coastal-territorial, coastal, coastal-marine), which are interlinked with each other by the cumulative effect of real-energy flows. Distinguishing specific resource features of the coastal structures, by which they play a connecting role in the complex coastalmarine management, has been considered. The main integral resource feature of the coastal structures is their connecting functions, which form transitional parts mutually connecting the coastal-territorial and coastalmarine environmental management.
Bellec, Pierre; Lavoie-Courchesne, Sébastien; Dickinson, Phil; Lerch, Jason P; Zijdenbos, Alex P; Evans, Alan C
2012-01-01
The analysis of neuroimaging databases typically involves a large number of inter-connected steps called a pipeline. The pipeline system for Octave and Matlab (PSOM) is a flexible framework for the implementation of pipelines in the form of Octave or Matlab scripts. PSOM does not introduce new language constructs to specify the steps and structure of the workflow. All steps of analysis are instead described by a regular Matlab data structure, documenting their associated command and options, as well as their input, output, and cleaned-up files. The PSOM execution engine provides a number of automated services: (1) it executes jobs in parallel on a local computing facility as long as the dependencies between jobs allow for it and sufficient resources are available; (2) it generates a comprehensive record of the pipeline stages and the history of execution, which is detailed enough to fully reproduce the analysis; (3) if an analysis is started multiple times, it executes only the parts of the pipeline that need to be reprocessed. PSOM is distributed under an open-source MIT license and can be used without restriction for academic or commercial projects. The package has no external dependencies besides Matlab or Octave, is straightforward to install and supports of variety of operating systems (Linux, Windows, Mac). We ran several benchmark experiments on a public database including 200 subjects, using a pipeline for the preprocessing of functional magnetic resonance images (fMRI). The benchmark results showed that PSOM is a powerful solution for the analysis of large databases using local or distributed computing resources.
Bellec, Pierre; Lavoie-Courchesne, Sébastien; Dickinson, Phil; Lerch, Jason P.; Zijdenbos, Alex P.; Evans, Alan C.
2012-01-01
The analysis of neuroimaging databases typically involves a large number of inter-connected steps called a pipeline. The pipeline system for Octave and Matlab (PSOM) is a flexible framework for the implementation of pipelines in the form of Octave or Matlab scripts. PSOM does not introduce new language constructs to specify the steps and structure of the workflow. All steps of analysis are instead described by a regular Matlab data structure, documenting their associated command and options, as well as their input, output, and cleaned-up files. The PSOM execution engine provides a number of automated services: (1) it executes jobs in parallel on a local computing facility as long as the dependencies between jobs allow for it and sufficient resources are available; (2) it generates a comprehensive record of the pipeline stages and the history of execution, which is detailed enough to fully reproduce the analysis; (3) if an analysis is started multiple times, it executes only the parts of the pipeline that need to be reprocessed. PSOM is distributed under an open-source MIT license and can be used without restriction for academic or commercial projects. The package has no external dependencies besides Matlab or Octave, is straightforward to install and supports of variety of operating systems (Linux, Windows, Mac). We ran several benchmark experiments on a public database including 200 subjects, using a pipeline for the preprocessing of functional magnetic resonance images (fMRI). The benchmark results showed that PSOM is a powerful solution for the analysis of large databases using local or distributed computing resources. PMID:22493575
Nominate an Organization | Distributed Generation Interconnection
practices by nominating an organization to be profiled in an online case study! Please include your ; it will only be used by DGIC staff in case we need to reach you for any clarification. If you see
NetSciEd: Network Science and Education for the Interconnected World
ERIC Educational Resources Information Center
Sayama, Hiroki; Cramer, Catherine; Sheetz, Lori; Uzzo, Stephen
2017-01-01
This short article presents a summary of the NetSciEd (Network Science and Education) initiative that aims to address the need for curricula, resources, accessible materials, and tools for introducing K-12 students and the general public to the concept of networks, a crucial framework in understanding complexity. NetSciEd activities include (1)…
Choosing Discovery: A Literature Review on the Selection and Evaluation of Discovery Layers
ERIC Educational Resources Information Center
Moore, Kate B.; Greene, Courtney
2012-01-01
Within the next few years, traditional online public access catalogs will be replaced by more robust and interconnected discovery layers that can serve as primary public interfaces to simultaneously search many separate collections of resources. Librarians have envisioned this type of discovery tool since the 1980s, and research shows that…
Experimenting with an Evolving Ground/Space-based Software Architecture to Enable Sensor Webs
NASA Technical Reports Server (NTRS)
mandl, Daniel; Frye, Stuart
2005-01-01
A series of ongoing experiments are being conducted at the NASA Goddard Space Flight Center to explore integrated ground and space-based software architectures enabling sensor webs. A sensor web, as defined by Steve Talabac at NASA Goddard Space Flight Center(GSFC), is a coherent set of distributed nodes interconnected by a communications fabric, that collectively behave as a single, dynamically adaptive, observing system. The nodes can be comprised of satellites, ground instruments, computing nodes etc. Sensor web capability requires autonomous management of constellation resources. This becomes progressively more important as more and more satellites share resource, such as communication channels and ground station,s while automatically coordinating their activities. There have been five ongoing activities which include an effort to standardize a set of middleware. This paper will describe one set of activities using the Earth Observing 1 satellite, which used a variety of ground and flight software along with other satellites and ground sensors to prototype a sensor web. This activity allowed us to explore where the difficulties that occur in the assembly of sensor webs given today s technology. We will present an overview of the software system architecture, some key experiments and lessons learned to facilitate better sensor webs in the future.
NASA Astrophysics Data System (ADS)
Alfieri, Luisa
2015-12-01
Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.
Publishing biomedical journals on the World-Wide Web using an open architecture model.
Shareck, E. P.; Greenes, R. A.
1996-01-01
BACKGROUND: In many respects, biomedical publications are ideally suited for distribution via the World-Wide Web, but economic concerns have prevented the rapid adoption of an on-line publishing model. PURPOSE: We report on our experiences with assisting biomedical journals in developing an online presence, issues that were encountered, and methods used to address these issues. Our approach is based on an open architecture that fosters adaptation and interconnection of biomedical resources. METHODS: We have worked with the New England Journal of Medicine (NEJM), as well as five other publishers. A set of tools and protocols was employed to develop a scalable and customizable solution for publishing journals on-line. RESULTS: In March, 1996, the New England Journal of Medicine published its first World-Wide Web issue. Explorations with other publishers have helped to generalize the model. CONCLUSIONS: Economic and technical issues play a major role in developing World-Wide Web publishing solutions. PMID:8947685
Ecology and evolution of metabolic cross-feeding interactions in bacteria.
D'Souza, Glen; Shitut, Shraddha; Preussger, Daniel; Yousif, Ghada; Waschina, Silvio; Kost, Christian
2018-05-01
Literature covered: early 2000s to late 2017Bacteria frequently exchange metabolites with other micro- and macro-organisms. In these often obligate cross-feeding interactions, primary metabolites such as vitamins, amino acids, nucleotides, or growth factors are exchanged. The widespread distribution of this type of metabolic interactions, however, is at odds with evolutionary theory: why should an organism invest costly resources to benefit other individuals rather than using these metabolites to maximize its own fitness? Recent empirical work has shown that bacterial genotypes can significantly benefit from trading metabolites with other bacteria relative to cells not engaging in such interactions. Here, we will provide a comprehensive overview over the ecological factors and evolutionary mechanisms that have been identified to explain the evolution and maintenance of metabolic mutualisms among microorganisms. Furthermore, we will highlight general principles that underlie the adaptive evolution of interconnected microbial metabolic networks as well as the evolutionary consequences that result for cells living in such communities.
Distributed Systems: Interconnection and Fault Tolerance Studies
1992-01-01
real - time operating system , a number of new techniques have to be...problem is at the heart of a successful implementation of a real - time operating system in a distributed environment. Our studies of the issues...land, College Park MD 20742, January 1991. [i1] 6 lafur Gudmundsson, Daniel Moss6, Ashok K. Agrawala, and Satish K. Tripathi. MARUTI a hard real - time operating system .
Laboratory for Computer Science Progress Report 19, 1 July 1981-30 June 1982.
1984-05-01
Multiprocessor Architectures 202 4. TRIX Operating System 209 5. VLSI Tools 212 ’SYSTEMATIC PROGRAM DEVELOPMENT, 221 1. Introduction 222 2. Specification...exploring distributed operating systems and the architecture of single-user powerful computers that are interconnected by communication networks. The...to now. In particular, we expect to experiment with languages, operating systems , and applications that establish the feasibility of distributed
Fluid delivery manifolds and microfluidic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renzi, Ronald F.; Sommer, Gregory J.; Singh, Anup K.
2017-02-28
Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.; Lehnert, K.; Zanzerkia, E. E.
2017-12-01
The United States National Science Foundation's EarthCube program is a community-driven activity aimed at transforming the conduct of geosciences research and education by creating a well-connected cyberinfrastructure for sharing and integrating data and knowledge across all geoscience disciplines in an open, transparent, and inclusive manner and to accelerate our ability to understand and predict the Earth system. After five years of community engagement, governance, and development activities, EarthCube is now transitioning into an implementation phase. In the first phase of implementing the EarthCube architecture, the project leadership has identified the following architectural components as the top three priorities, focused on technologies, interfaces and interoperability elements that will address: a) Resource Discovery; b) Resource Registry; and c) Resource Distribution and Access. Simultaneously, EarthCube is exploring international partnerships to leverage synergies with other e-infrastructure programs and projects in Europe, Australia, and other regions and discuss potential partnerships and mutually beneficial collaborations to increase interoperability of systems for advancing EarthCube's goals in an efficient and effective manner. In this session, we will present the progress of EarthCube on a number of fronts and engage geoscientists and data scientists in the future steps toward the development of EarthCube for advancing research and discovery in the geosciences. The talk will underscore the importance of strategic partnerships with other like eScience projects and programs across the globe.
The EuroGEOSS Advanced Operating Capacity
NASA Astrophysics Data System (ADS)
Nativi, S.; Vaccari, L.; Stock, K.; Diaz, L.; Santoro, M.
2012-04-01
The concept of multidisciplinary interoperability for managing societal issues is a major challenge presently faced by the Earth and Space Science Informatics community. With this in mind, EuroGEOSS project was launched on May 1st 2009 for a three year period aiming to demonstrate the added value to the scientific community and society of providing existing earth observing systems and applications in an interoperable manner and used within the GEOSS and INSPIRE frameworks. In the first period, the project built an Initial Operating Capability (IOC) in the three strategic areas of Drought, Forestry and Biodiversity; this was then enhanced into an Advanced Operating Capacity (AOC) for multidisciplinary interoperability. Finally, the project extended the infrastructure to other scientific domains (geology, hydrology, etc.). The EuroGEOSS multidisciplinary AOC is based on the Brokering Approach. This approach aims to achieve multidisciplinary interoperability by developing an extended SOA (Service Oriented Architecture) where a new type of "expert" components is introduced: the Broker. These implement all mediation and distribution functionalities needed to interconnect the distributed and heterogeneous resources characterizing a System of Systems (SoS) environment. The EuroGEOSS AOC is comprised of the following components: • EuroGEOSS Discovery Broker: providing harmonized discovery functionalities by mediating and distributing user queries against tens of heterogeneous services; • EuroGEOSS Access Broker: enabling users to seamlessly access and use heterogeneous remote resources via a unique and standard service; • EuroGEOSS Web 2.0 Broker: enhancing the capabilities of the Discovery Broker with queries towards the new Web 2.0 services; • EuroGEOSS Semantic Discovery Broker: enhancing the capabilities of the Discovery Broker with semantic query-expansion; • EuroGEOSS Natural Language Search Component: providing users with the possibilities to search for resources using natural language queries; • Service Composition Broker: allowing users to compose and execute complex Business Processes, based on the technology developed by the FP7 UncertWeb project. Recently, the EuroGEOSS Brokering framework was presented at the GEO-VIII Plenary and Exhibition in Istanbul and introduced into the GEOSS Common Infrastructure.
Nakajima, Kenichi; Ohno, Hajime; Kondo, Yasushi; Matsubae, Kazuyo; Takeda, Osamu; Miki, Takahiro; Nakamura, Shinichiro; Nagasaka, Tetsuya
2013-05-07
Steel is not elemental iron but rather a group of iron-based alloys containing many elements, especially chromium, nickel, and molybdenum. Steel recycling is expected to promote efficient resource use. However, open-loop recycling of steel could result in quality loss of nickel and molybdenum and/or material loss of chromium. Knowledge about alloying element substance flow is needed to avoid such losses. Material flow analyses (MFAs) indicate the importance of steel recycling to recovery of alloying elements. Flows of nickel, chromium, and molybdenum are interconnected, but MFAs have paid little attention to the interconnected flow of materials/substances in supply chains. This study combined a waste input-output material flow model and physical unit input-output analysis to perform a simultaneous MFA for nickel, chromium, and molybdenum in the Japanese economy in 2000. Results indicated the importance of recovery of these elements in recycling policies for end-of-life (EoL) vehicles and constructions. Improvement in EoL sorting technologies and implementation of designs for recycling/disassembly at the manufacturing phase are needed. Possible solutions include development of sorting processes for steel scrap and introduction of easier methods for identifying the composition of secondary resources. Recovery of steel scrap with a high alloy content will reduce primary inputs of alloying elements and contribute to more efficient resource use.
Wong, Chee-Woon; Chong, Kok-Keong; Tan, Ming-Hui
2015-07-27
This paper presents an approach to optimize the electrical performance of dense-array concentrator photovoltaic system comprised of non-imaging dish concentrator by considering the circumsolar radiation and slope error effects. Based on the simulated flux distribution, a systematic methodology to optimize the layout configuration of solar cells interconnection circuit in dense array concentrator photovoltaic module has been proposed by minimizing the current mismatch caused by non-uniformity of concentrated sunlight. An optimized layout of interconnection solar cells circuit with minimum electrical power loss of 6.5% can be achieved by minimizing the effects of both circumsolar radiation and slope error.
Den Buijs, Jorn Op; Dragomir-Daescu, Dan; Ritman, Erik L
2009-08-01
Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid-structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold.
Oklahoma | Solar Research | NREL
customer-generators who install net-metered distributed generation. Utilities and cooperatives are not required to purchase monthly net excess generation from customers. A customer-generator's net excess has not adopted standardized interconnection procedures. Potential customer-generators should contact
The EOSDIS Products Usability for Disaster Response.
NASA Astrophysics Data System (ADS)
Kafle, D. N.; Wanchoo, L.; Won, Y. I.; Michael, K.
2016-12-01
The Earth Observing System (EOS) Data and Information System (EOSDIS) is a key core capability in NASA's Earth Science Data System Program. The EOSDIS science operations are performed within a distributed system of interconnected nodes: the Science Investigator-led Processing Systems (SIPS), and the distributed, discipline-specific, Earth science Distributed Active Archive Centers (DAACs), which have specific responsibilities for the production, archiving, and distribution of Earth science data products. NASA also established the Land, Atmosphere Near real-time Capability for EOS (LANCE) program through which near real-time (NRT) products are produced and distributed within a latency of no more than 3 hours. These data, including NRT, have been widely used by scientists and researchers for studying Earth system science, climate change, natural variability, and enhanced climate predictions including disaster assessments. The Subcommittee on Disaster Reduction (SDR) has defined 15 major types of disasters such as flood, hurricane, earthquake, volcano, tsunami, etc. The focus of the study is to categorize both NRT and standard data products based on applicability to the SDR-defined disaster types. This will identify which datasets from current NASA satellite missions/instruments are best suited for disaster response. The distribution metrics of the products that have been used for studying various selected disasters that have occurred over last 5 years will be analyzed that include volume, number of files, number of users, user domains, user country, etc. This data usage analysis will provide information to the data centers' staff that can help them develop the functionality and allocate the resources needed for enhanced access and timely availability of the data products that are critical for the time-sensitive analyses.
Deformation of olivine during phase transformation to wadsleyite
NASA Astrophysics Data System (ADS)
Mohiuddin, A.; Girard, J.; Karato, S. I.
2017-12-01
The strength of subducting slabs in the transition zone is critical in controlling the style of mantle convection. However, rheological properties of a subducted slab are elusive: low temperatures of a slab would make slabs strong, but in many regions there is evidence of intense deformation of slabs in the transition zone. One potential cause of intense deformation of subducting slabs is grain size reduction and accompanied microstructural changes during phase transformation of olivine to its higher-pressure polymorphs. There have been no experimental studies to quantify the influence of grain-size evolution. In addition to grain size reduction, distribution of small grains during phase transformation governs the degree of weakening during phase transformation (for e.g. load bearing framework vs. inter-connected layered framework). We conducted laboratory studies on the size and spatial distribution of new grains of wadsleyite after the transformation from olivine. Our results under static conditions show that an interconnected microstructure develops during the initial stage of phase transformation and that the grain size of the interconnected phase (wadsleyite) depends on the temperature at which the phase transformation occurs (smaller grains at lower temperatures). Development of an interconnected microstructure may lead to strain localization in the weaker phase, i.e. the fine-grained interconnected network accommodates most of the strain and therefore weakening of the entire composite. We will test this model through a series of two synchrotron in-situ deformation experiments: (i) Olivine aggregate will be deformed during slow pressure increase from deep upper mantle pressure ( 10 GPa) to transition zone pressure ( 15 GPa) at a given temperature simulating the deformation of a slab penetrating into the transition zone (ii) olivine is partially transformed to wadsleyite in a multi anvil apparatus at Yale and will be deformed within the stability field where olivine and wadsleyite coexist. We will use the Rotational Drickamer Apparatus (RDA) at a synchrotron facility (Argonne National Lab, 6-BM-B beamline, white beam and x-ray radiography) and characterize the stresses acting on olivine and wadsleyite during such simulations. We plan to present our preliminary results.
Kepper, Nick; Ettig, Ramona; Dickmann, Frank; Stehr, Rene; Grosveld, Frank G; Wedemann, Gero; Knoch, Tobias A
2010-01-01
Especially in the life-science and the health-care sectors the huge IT requirements are imminent due to the large and complex systems to be analysed and simulated. Grid infrastructures play here a rapidly increasing role for research, diagnostics, and treatment, since they provide the necessary large-scale resources efficiently. Whereas grids were first used for huge number crunching of trivially parallelizable problems, increasingly parallel high-performance computing is required. Here, we show for the prime example of molecular dynamic simulations how the presence of large grid clusters including very fast network interconnects within grid infrastructures allows now parallel high-performance grid computing efficiently and thus combines the benefits of dedicated super-computing centres and grid infrastructures. The demands for this service class are the highest since the user group has very heterogeneous requirements: i) two to many thousands of CPUs, ii) different memory architectures, iii) huge storage capabilities, and iv) fast communication via network interconnects, are all needed in different combinations and must be considered in a highly dedicated manner to reach highest performance efficiency. Beyond, advanced and dedicated i) interaction with users, ii) the management of jobs, iii) accounting, and iv) billing, not only combines classic with parallel high-performance grid usage, but more importantly is also able to increase the efficiency of IT resource providers. Consequently, the mere "yes-we-can" becomes a huge opportunity like e.g. the life-science and health-care sectors as well as grid infrastructures by reaching higher level of resource efficiency.
A decentralized software bus based on IP multicas ting
NASA Technical Reports Server (NTRS)
Callahan, John R.; Montgomery, Todd
1995-01-01
We describe decentralized reconfigurable implementation of a conference management system based on the low-level Internet Protocol (IP) multicasting protocol. IP multicasting allows low-cost, world-wide, two-way transmission of data between large numbers of conferencing participants through the Multicasting Backbone (MBone). Each conference is structured as a software bus -- a messaging system that provides a run-time interconnection model that acts as a separate agent (i.e., the bus) for routing, queuing, and delivering messages between distributed programs. Unlike the client-server interconnection model, the software bus model provides a level of indirection that enhances the flexibility and reconfigurability of a distributed system. Current software bus implementations like POLYLITH, however, rely on a centralized bus process and point-to-point protocols (i.e., TCP/IP) to route, queue, and deliver messages. We implement a software bus called the MULTIBUS that relies on a separate process only for routing and uses a reliable IP multicasting protocol for delivery of messages. The use of multicasting means that interconnections are independent of IP machine addresses. This approach allows reconfiguration of bus participants during system execution without notifying other participants of new IP addresses. The use of IP multicasting also permits an economy of scale in the number of participants. We describe the MULITIBUS protocol elements and show how our implementation performs better than centralized bus implementations.
Electromigration of intergranular voids in metal films for microelectronic interconnects
NASA Astrophysics Data System (ADS)
Averbuch, Amir; Israeli, Moshe; Ravve, Igor
2003-04-01
Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the voltage distribution is required only along the interface line, the two-dimensional discretization of the grain interior is not needed, and the static problem is solved by the boundary element method at each time step. The motion of the intergranular void was studied for different ratios between the diffusion and the electric field forces, and for different initial configurations of the void.
Ballistic One-Dimensional InAs Nanowire Cross-Junction Interconnects.
Gooth, Johannes; Borg, Mattias; Schmid, Heinz; Schaller, Vanessa; Wirths, Stephan; Moselund, Kirsten; Luisier, Mathieu; Karg, Siegfried; Riel, Heike
2017-04-12
Coherent interconnection of quantum bits remains an ongoing challenge in quantum information technology. Envisioned hardware to achieve this goal is based on semiconductor nanowire (NW) circuits, comprising individual NW devices that are linked through ballistic interconnects. However, maintaining the sensitive ballistic conduction and confinement conditions across NW intersections is a nontrivial problem. Here, we go beyond the characterization of a single NW device and demonstrate ballistic one-dimensional (1D) quantum transport in InAs NW cross-junctions, monolithically integrated on Si. Characteristic 1D conductance plateaus are resolved in field-effect measurements across up to four NW-junctions in series. The 1D ballistic transport and sub-band splitting is preserved for both crossing-directions. We show that the 1D modes of a single injection terminal can be distributed into multiple NW branches. We believe that NW cross-junctions are well-suited as cross-directional communication links for the reliable transfer of quantum information as required for quantum computational systems.
Critical tipping point distinguishing two types of transitions in modular network structures
NASA Astrophysics Data System (ADS)
Shai, Saray; Kenett, Dror Y.; Kenett, Yoed N.; Faust, Miriam; Dobson, Simon; Havlin, Shlomo
2015-12-01
Modularity is a key organizing principle in real-world large-scale complex networks. The relatively sparse interactions between modules are critical to the functionality of the system and are often the first to fail. We model such failures as site percolation targeting interconnected nodes, those connecting between modules. We find, using percolation theory and simulations, that they lead to a "tipping point" between two distinct regimes. In one regime, removal of interconnected nodes fragments the modules internally and causes the system to collapse. In contrast, in the other regime, while only attacking a small fraction of nodes, the modules remain but become disconnected, breaking the entire system. We show that networks with broader degree distribution might be highly vulnerable to such attacks since only few nodes are needed to interconnect the modules, consequently putting the entire system at high risk. Our model has the potential to shed light on many real-world phenomena, and we briefly consider its implications on recent advances in the understanding of several neurocognitive processes and diseases.
Water resources of the Batavia Kill basin at Windham, Greene County, New York
Heisig, Paul M.
1999-01-01
The water resources of a 27.6-square-mile section of the Batavia Kill Basin near the village of Windham, N.Y., which has undergone substantial development, were evaluated. The evaluation entailed (1) estimation of the magnitude and distribution of several hydrologic components, including recharge, (2) measurement of discharge and chemical quality of the Batavia Kill and selected tributaries, (3) analysis of ground-water flow and chemistry, and (4) a conceptualization of the ground-water flow system.The region consists of deeply dissected, relatively flat-lying, clastic sedimentary sequences variably overlain by as much as 120 feet of glacial deposits. The types of bedrock fractures and their distribution in the Batavia Kill valley are consistent with valley stress-relief characteristics. Till predominates in the uplands, and stratified drift typically dominates within the valley of the Batavia Kill and the lower section of its largest tributary valley (Mitchell Hollow).Fractured bedrock is the most commonly used water source within the study area. The areas of highest yielding bedrock generally are with valleys, where the shallow fractures are saturated. Stratified-drift aquifers are also limited to the largest valleys; the greatest saturated thicknesses are in the Batavia Kill valley at Windham. A conceptual model of ground-water flow within the study areas suggests that the zones of most active flow are shallow fractured bedrock in upland areas and the shallow stratified drift in the largest valleys.The hydrogeologic system has been altered by development; major effects include (1) chemical alteration of natural ground-water and surface-water quality by point- and nonpoint-source contaminants, (2) hydraulic interconnection of other-wise isolated bedrock fractures by wellbores, and (3) drawdowns in wells within the Batavia Kill valley by pumping from the bedrock aquifer. Water resource development of the most promising unconsolidated aquifer beneath Windham may be precluded by the potential for contamination by leachate from an abandoned landfill, road-salt stockpiles, and domestic septic systems in the area.
Use of DAGMan in CRAB3 to Improve the Splitting of CMS User Jobs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, M.; Mascheroni, M.; Woodard, A.
CRAB3 is a workload management tool used by CMS physicists to analyze data acquired by the Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider (LHC). Research in high energy physics often requires the analysis of large collections of files, referred to as datasets. The task is divided into jobs that are distributed among a large collection of worker nodes throughout the Worldwide LHC Computing Grid (WLCG). Splitting a large analysis task into optimally sized jobs is critical to efficient use of distributed computing resources. Jobs that are too big will have excessive runtimes and will not distributemore » the work across all of the available nodes. However, splitting the project into a large number of very small jobs is also inefficient, as each job creates additional overhead which increases load on infrastructure resources. Currently this splitting is done manually, using parameters provided by the user. However the resources needed for each job are difficult to predict because of frequent variations in the performance of the user code and the content of the input dataset. As a result, dividing a task into jobs by hand is difficult and often suboptimal. In this work we present a new feature called “automatic splitting” which removes the need for users to manually specify job splitting parameters. We discuss how HTCondor DAGMan can be used to build dynamic Directed Acyclic Graphs (DAGs) to optimize the performance of large CMS analysis jobs on the Grid. We use DAGMan to dynamically generate interconnected DAGs that estimate the processing time the user code will require to analyze each event. This is used to calculate an estimate of the total processing time per job, and a set of analysis jobs are run using this estimate as a specified time limit. Some jobs may not finish within the alloted time; they are terminated at the time limit, and the unfinished data is regrouped into smaller jobs and resubmitted.« less
DOT National Transportation Integrated Search
2007-01-01
An Internet-based, spatiotemporal Geotechnical Database Management System (GDBMS) Framework was implemented at the Virginia Department of Transportation (VDOT) in 2002 to manage geotechnical data using a distributed Geographical Information System (G...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-66-000; Docket No. EL12-63-000] Exelon Corporation, Public Service Electric and Gas Company, PSEG Power LLC, PSEG Energy Resources & Trade LLC, v. Unnamed Participant, PJM Interconnection, L.L.C.; Independent Market Monitor for PJM v. Unnamed Participant; Notice of...
ERIC Educational Resources Information Center
Blanchard, Rosemary Ann
2013-01-01
Today's education for civic engagement requires a global dimension. To live responsibly in their own communities, young people need to situate their personal and local interests in the context of their global interconnections. Bridging the personal, local, and global begins with an awareness of the universal aspirations for dignity and human…
Liu, Gang; Müller, Daniel B
2013-10-15
Material cycles have become increasingly coupled and interconnected in a globalizing era. While material flow analysis (MFA) has been widely used to characterize stocks and flows along technological life cycle within a specific geographical area, trade networks among individual cycles have remained largely unexplored. Here we developed a trade-linked multilevel MFA model to map the contemporary global journey of anthropogenic aluminum. We demonstrate that the anthropogenic aluminum cycle depends substantially on international trade of aluminum in all forms and becomes highly interconnected in nature. While the Southern hemisphere is the main primary resource supplier, aluminum production and consumption concentrate in the Northern hemisphere, where we also find the largest potential for recycling. The more developed countries tend to have a substantial and increasing presence throughout the stages after bauxite refining and possess highly consumption-based cycles, thus maintaining advantages both economically and environmentally. A small group of countries plays a key role in the global redistribution of aluminum and in the connectivity of the network, which may render some countries vulnerable to supply disruption. The model provides potential insights to inform government and industry policies in resource criticality, supply chain security, value chain management, and cross-boundary environmental impacts mitigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietryk, Steven
The primary purpose of the VOWTAP was to advance the offshore wind industry in the United States (U.S.) by demonstrating innovative technologies and process solutions that would establish offshore wind as a cost-effective renewable energy resource. The VOWTAP Team proposed to design, construct, and operate a 12 megawatt (MW) offshore wind facility located approximately 27 statute miles (mi) (24 nautical miles [nm], 43 kilometers [km]) off the coast of Virginia. The proposed Project would consist of two Alstom Haliade™ 150-6 MW turbines mounted on inward battered guide structures (IBGS), a 34.5-kilovolt (kV) alternating current (AC) submarine cable interconnecting the WTGsmore » (inter-array cable), a 34.5-kV AC submarine transmission cable (export cable), and a 34.5 kV underground cable (onshore interconnection cable) that would connect the Project with existing Dominion infrastructure located in Virginia Beach, Virginia (Figure 1). Interconnection with the existing Dominion infrastructure would also require an onshore switch cabinet, a fiber optic cable, and new interconnection station to be located entirely within the boundaries of the Camp Pendleton State Military Reservation (Camp Pendleton). The VOWTAP balanced technology innovation with commercial readiness such that turbine operations were anticipated to commence by 2018. Dominion, as the leaseholder of the Virginia Wind Energy Area (WEA), anticipated leveraging lessons learned through the VOWTAP, and applying them to future commercial-scale offshore wind development.« less
Astronomy: On the Bleeding Edge of Scholarly Infrastructure
NASA Astrophysics Data System (ADS)
Borgman, Christine; Sands, A.; Wynholds, L. A.
2013-01-01
The infrastructure for scholarship has moved online, making data, articles, papers, journals, catalogs, and other scholarly resources nodes in a deeply interconnected network. Astronomy has led the way on several fronts, developing tools such as ADS to provide unified access to astronomical publications and reaching agreement on a common data file formats such as FITS. Astronomy also was among the first fields to establish open access to substantial amounts of observational data. We report on the first three years of a long-term research project to study knowledge infrastructures in astronomy, funded by the NSF and the Alfred P. Sloan Foundation. Early findings indicate that the availability and use of networked technologies for integrating scholarly resources varies widely within astronomy. Substantial differences arise in the management of data between ground-based and space-based missions and between subfields of astronomy, for example. While large databases such as SDSS and MAST are essential resources for many researchers, much pointed, ground-based observational data exist only on local servers, with minimal curation. Some astronomy data are easily discoverable and usable, but many are not. International coordination activities such as IVOA and distributed access to high-level data products servers such as SIMBAD and NED are enabling further integration of published data. Astronomers are tackling yet more challenges in new forms of publishing data, algorithms, visualizations, and in assuring interoperability with parallel infrastructure efforts in related fields. New issues include data citation, attribution, and provenance. Substantial concerns remain for the long term discoverability, accessibility, usability, and curation of astronomy data and other scholarly resources. The presentation will outline these challenges, how they are being addressed by astronomy and related fields, and identify concerns and accomplishments expressed by the astronomers we have interviewed and observed.
Wicked problems in space technology development at NASA
NASA Astrophysics Data System (ADS)
Balint, Tibor S.; Stevens, John
2016-01-01
Technological innovation is key to enable future space exploration missions at NASA. Technology development, however, is not only driven by performance and resource considerations, but also by a broad range of directly or loosely interconnected factors. These include, among others, strategy, policy and politics at various levels, tactics and programmatics, interactions between stakeholders, resource requirements, performance goals from component to system level, mission infusion targets, portfolio execution and tracking, and technology push or mission pull. Furthermore, at NASA, these influences occur on varying timescales and at diverse geographic locations. Such a complex and interconnected system could impede space technology innovation in this examined segment of the government environment. Hence, understanding the process through NASA's Planning, Programming, Budget and Execution cycle could benefit strategic thinking, planning and execution. Insights could be gained through suitable models, for example assessing the key drivers against the framework of Wicked Problems. This paper discusses NASA specific space technology innovation and innovation barriers in the government environment through the characteristics of Wicked Problems; that is, they do not have right or wrong solutions, only improved outcomes that can be reached through authoritative, competitive, or collaborative means. We will also augment the Wicked Problems model to account for the temporally and spatially coupled, and cyclical nature of this NASA specific case, and propose how appropriate models could improve understanding of the key influencing factors. In turn, such understanding may subsequently lead to reducing innovation barriers, and stimulating technology innovation at NASA. Furthermore, our approach can be adopted for other government-directed environments to gain insights into their structures, hierarchies, operational flow, and interconnections to facilitate circular dialogs towards preferred outcomes.
The Private Lives of Minerals: Social Network Analysis Applied to Mineralogy and Petrology
NASA Astrophysics Data System (ADS)
Hazen, R. M.; Morrison, S. M.; Fox, P. A.; Golden, J. J.; Downs, R. T.; Eleish, A.; Prabhu, A.; Li, C.; Liu, C.
2016-12-01
Comprehensive databases of mineral species (rruff.info/ima) and their geographic localities and co-existing mineral assemblages (mindat.org) reveal patterns of mineral association and distribution that mimic social networks, as commonly applied to such varied topics as social media interactions, the spread of disease, terrorism networks, and research collaborations. Applying social network analysis (SNA) to common assemblages of rock-forming igneous and regional metamorphic mineral species, we find patterns of cohesion, segregation, density, and cliques that are similar to those of human social networks. These patterns highlight classic trends in lithologic evolution and are illustrated with sociograms, in which mineral species are the "nodes" and co-existing species form "links." Filters based on chemistry, age, structural group, and other parameters highlight visually both familiar and new aspects of mineralogy and petrology. We quantify sociograms with SNA metrics, including connectivity (based on the frequency of co-occurrence of mineral pairs), homophily (the extent to which co-existing mineral species share compositional and other characteristics), network closure (based on the degree of network interconnectivity), and segmentation (as revealed by isolated "cliques" of mineral species). Exploitation of large and growing mineral data resources with SNA offers promising avenues for discovering previously hidden trends in mineral diversity-distribution systematics, as well as providing new pedagogical approaches to teaching mineralogy and petrology.
Green Energy Options for Consumer-Owned Business
DOE Office of Scientific and Technical Information (OSTI.GOV)
Co-opPlus of Western Massachusetts
2006-05-01
The goal of this project was to define, test, and prototype a replicable business model for consumer-owned cooperatives. The result is a replicable consumer-owned cooperative business model for the generation, interconnection, and distribution of renewable energy that incorporates energy conservation and efficiency improvements.
Romeo, Alessia; Lacour, Stphanie P
2015-08-01
Electronic skins aim at providing distributed sensing and computation in a large-area and elastic membrane. Control and addressing of high-density soft sensors will be achieved when thin film transistor matrices are also integrated in the soft carrier substrate. Here, we report on the design, manufacturing and characterization of metal oxide thin film transistors on these stretchable substrates. The TFTs are integrated onto an engineered silicone substrate with embedded strain relief to protect the devices from catastrophic cracking. The TFT stack is composed of an amorphous In-Ga-Zn-O active layer, a hybrid AlxOy/Parylene dielectric film, gold electrodes and interconnects. All layers are prepared and patterned with planar, low temperature and dry processing. We demonstrate the interconnected IGZO TFTs sustain applied tensile strain up to 20% without electrical degradation and mechanical fracture. Active devices are critical for distributed sensing. The compatibility of IGZO TFTs with soft and biocompatible substrates is an encouraging step towards wearable electronic skins.
NASA Astrophysics Data System (ADS)
Chang, Yin-Jung
With decreasing transistor size, increasing chip speed, and larger numbers of processors in a system, the performance of a module/system is being limited by the off-chip and off-module bandwidth-distance products. Optical links have moved from fiber-based long distance communications to the cabinet level of 1m--100m, and recently to the backplane-level (10cm--1m). Board-level inter-chip parallel optical interconnects have been demonstrated recently by researchers from Intel, IBM, Fujitsu, NTT and a few research groups in universities. However, the board-level signal/clock distribution function using optical interconnects, the lightwave circuits, the system design, a practically convenient integration scheme committed to the implementation of a system prototype have not been explored or carefully investigated. In this dissertation, the development of a board-level 1 x 4 optical-to-electrical signal distribution at 10Gb/s is presented. In contrast to other prototypes demonstrating board-level parallel optical interconnects that have been drawing much attention for the past decade, the optical link design for the high-speed signal broadcasting is even more complicated and the pitch between receivers could be varying as opposed to fixed-pitch design that has been widely-used in the parallel optical interconnects. New challenges for the board-level high-speed signal broadcasting include, but are not limited to, a new optical link design, a lightwave circuit as a distribution network, and a novel integration scheme that can be a complete radical departure from the traditional assembly method. One of the key building blocks in the lightwave circuit is the distribution network in which a 1 x 4 multimode interference (MMI) splitter is employed. MMI devices operating at high data rates are important in board-level optical interconnects and need to be characterized in the application of board-level signal broadcasting. To determine the speed limitations of MMI devices, the ultra-short pulse response of these devices is modeled based on the guided-mode theory incorporated with Fourier transform technique. For example, for 50 fs Gaussian input pulses into a 1 x 16 splitter, the output pulses are severely degraded in coupling efficiency (48%) and completely broken up in time primarily due to inter-modal and intra-modal (waveguide) dispersion. Material dispersion is found to play only a minor role in the pulse response of MMI devices. However, for 1ps input pulses into the same 1 x 16 splitter, the output pulses are only moderately degraded in coupling efficiency (86%) and only slightly degraded in shape. With the understanding of the necessary condition of the distortionless high-speed signal transmission through MMI devices, high-speed data transmission at 40Gb/s per channel with a total bandwidth of 320Gb/s for 8 output ports is demonstrated for the first time on a 1 x 8 photo-definable polymer-based MMI power splitter. The device is designed with multimode input/output waveguides of 10mum in width and 7.6mum in height for a better input coupling efficiency for which the high-speed testing demands. The eye diagrams are all clear and fully open with an extinction ratio of 10.1dB and a jitter of 1.65 ps. The transmission validity is further confirmed by the bit-error-rate testing at the pseudoramdom binary sequence of 27--1. The fabrication process developed lays the cornerstone of the integration scheme and system design for the prototype of hybrid interconnects. An important problem regarding the guided-mode attenuation associated with optical-interconnect-polymer waveguides fabricated on FR-4 printed-circuit boards is also quantified for the first time. On-board optical waveguides are receiving more attention recently from Fujitsu American Laboratory, IBM Watson Research Center, and Packaging Research Center here at Georgia Tech. This branch of research work is part of the effort in investigating, scientifically, the attenuation mechanism and the effects of the buffer layer thickness on board-level in-plane optical interconnects. The rigorous transmission-line network approach is used and the FR-4 substrate is treated as a long-period substrate grating. A quantitative metric for an appropriate matrix truncation is presented. The peaks of attenuation are shown to occur near the Bragg conditions that characterize the leaky-wave stop bands. For a typical 400mum period FR-4 substrate with an 8mum corrugation depth, a buffer layer thickness of about 40mum is found to be needed to make the attenuation negligibly small. An experimental prototype for on-board optical-to-electrical signal broadcasting operating at 10Gb/s per channel over an interconnect distance of 10cm is demonstrated. An improved 1 x 4 multimode interference (MMI) splitter at 1550nm with linearly-tapered output facet is heterogeneously integrated with four p-i-n photodetectors (PDs) on a Silicon (Si) bench. The Si bench itself is hybrid integrated onto an FR-4 printed-circuit board with four receiver channels. A novel fabrication/integration approach demonstrates the simultaneous alignment between the four waveguides and the four PDs during the MMI fabrication process. The entire system is fully functional at 10Gb/s.
Albattat, Ali; Gruenwald, Benjamin C.; Yucelen, Tansel
2016-01-01
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches. PMID:27537894
Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel
2016-08-16
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.
Op Den Buijs, Jorn; Dragomir-Daescu, Dan; Ritman, Erik L.
2014-01-01
Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid–structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold. PMID:19466547
A Petri net controller for distributed hierarchical systems. Thesis
NASA Technical Reports Server (NTRS)
Peck, Joseph E.
1991-01-01
The solutions to a wide variety of problems are often best organized as a distributed hierarchical system. These systems can be graphically and mathematically modeled through the use of Petri nets, which can easily represent synchronous, asynchronous, and concurrent operations. This thesis presents a controller implementation based on Petri nets and a design methodology for the interconnection of distributed Petri nets. Two case studies are presented in which the controller operates a physical system, the Center for Intelligent Robotic Systems for Space Exploration Dual Arm Robotic Testbed.
Multiple-Ring Digital Communication Network
NASA Technical Reports Server (NTRS)
Kirkham, Harold
1992-01-01
Optical-fiber digital communication network to support data-acquisition and control functions of electric-power-distribution networks. Optical-fiber links of communication network follow power-distribution routes. Since fiber crosses open power switches, communication network includes multiple interconnected loops with occasional spurs. At each intersection node is needed. Nodes of communication network include power-distribution substations and power-controlling units. In addition to serving data acquisition and control functions, each node acts as repeater, passing on messages to next node(s). Multiple-ring communication network operates on new AbNET protocol and features fiber-optic communication.
"Tactic": Traffic Aware Cloud for Tiered Infrastructure Consolidation
ERIC Educational Resources Information Center
Sangpetch, Akkarit
2013-01-01
Large-scale enterprise applications are deployed as distributed applications. These applications consist of many inter-connected components with heterogeneous roles and complex dependencies. Each component typically consumes 5-15% of the server capacity. Deploying each component as a separate virtual machine (VM) allows us to consolidate the…
Foundationalism and Neuroscience; Silence and Language
ERIC Educational Resources Information Center
Keestra, Machiel; Cowley, Stephen J.
2009-01-01
Neuroscience offers more than new empirical evidence about the details of cognitive functions such as language, perception and action. Since it also shows many functions to be highly distributed, interconnected and dependent on mechanisms at different levels of processing, it challenges concepts that are traditionally used to describe these…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
...; EL12-43-000, EL12-43-001 TGP Granada, LLC and Roosevelt Wind Ranch, LLC v. Public Service Company of New Mexico, Tortoise Capital Resources Corp.; TGP Granada, LLC and Roosevelt Wind Ranch, LLC; Notice... over capacity on the Eastern Interconnection Project. \\1\\ TGP Granada, LLC v. Pub. Serv. Co. of New...
The role of the host in a cooperating mainframe and workstation environment, volumes 1 and 2
NASA Technical Reports Server (NTRS)
Kusmanoff, Antone; Martin, Nancy L.
1989-01-01
In recent years, advancements made in computer systems have prompted a move from centralized computing based on timesharing a large mainframe computer to distributed computing based on a connected set of engineering workstations. A major factor in this advancement is the increased performance and lower cost of engineering workstations. The shift to distributed computing from centralized computing has led to challenges associated with the residency of application programs within the system. In a combined system of multiple engineering workstations attached to a mainframe host, the question arises as to how does a system designer assign applications between the larger mainframe host and the smaller, yet powerful, workstation. The concepts related to real time data processing are analyzed and systems are displayed which use a host mainframe and a number of engineering workstations interconnected by a local area network. In most cases, distributed systems can be classified as having a single function or multiple functions and as executing programs in real time or nonreal time. In a system of multiple computers, the degree of autonomy of the computers is important; a system with one master control computer generally differs in reliability, performance, and complexity from a system in which all computers share the control. This research is concerned with generating general criteria principles for software residency decisions (host or workstation) for a diverse yet coupled group of users (the clustered workstations) which may need the use of a shared resource (the mainframe) to perform their functions.
Computation for Electromigration in Interconnects of Microelectronic Devices
NASA Astrophysics Data System (ADS)
Averbuch, Amir; Israeli, Moshe; Ravve, Igor; Yavneh, Irad
2001-03-01
Reliability and performance of microelectronic devices depend to a large extent on the resistance of interconnect lines. Voids and cracks may occur in the interconnects, causing a severe increase in the total resistance and even open circuits. In this work we analyze void motion and evolution due to surface diffusion effects and applied external voltage. The interconnects under consideration are three-dimensional (sandwich) constructs made of a very thin metal film of possibly variable thickness attached to a substrate of nonvanishing conductance. A two-dimensional level set approach was applied to study the dynamics of the moving (assumed one-dimensional) boundary of a void in the metal film. The level set formulation of an electromigration and diffusion model results in a fourth-order nonlinear (two-dimensional) time-dependent PDE. This equation was discretized by finite differences on a regular grid in space and a Runge-Kutta integration scheme in time, and solved simultaneously with a second-order static elliptic PDE describing the electric potential distribution throughout the interconnect line. The well-posed three-dimensional problem for the potential was approximated via singular perturbations, in the limit of small aspect ratio, by a two-dimensional elliptic equation with variable coefficients describing the combined local conductivity of metal and substrate (which is allowed to vary in time and space). The difference scheme for the elliptic PDE was solved by a multigrid technique at each time step. Motion of voids in both weak and strong electric fields was examined, and different initial void configurations were considered, including circles, ellipses, polygons with rounded corners, a butterfly, and long grooves. Analysis of the void behavior and its influence on the resistance gives the circuit designer a tool for choosing the proper parameters of an interconnect (width-to-length ratio, properties of the line material, conductivity of the underlayer, etc.).
Embedded 100 Gbps Photonic Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznia, Charlie
This innovation to fiber optic component technology increases the performance, reduces the size and reduces the power consumption of optical communications within dense network systems, such as advanced distributed computing systems and data centers. VCSEL technology is enabling short-reach (< 100 m) and >100 Gbps optical interconnections over multi-mode fiber in commercial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawood, A.A.
1994-12-01
This presentation examines the development of the power generation and transmission capacity of the power system of Oman. The topics of the presentation include economic development of Oman; growth of the electricity sector including capacity generation, transmission and distribution and load characteristics; involvement of the private sector; power interconnections and exchanges; privatization; and training.
Interconnect patterns for printed organic thermoelectric devices with large fill factors
NASA Astrophysics Data System (ADS)
Gordiz, Kiarash; Menon, Akanksha K.; Yee, Shannon K.
2017-09-01
Organic materials can be printed into thermoelectric (TE) devices for low temperature energy harvesting applications. The output voltage of printed devices is often limited by (i) small temperature differences across the active materials attributed to small leg lengths and (ii) the lower Seebeck coefficient of organic materials compared to their inorganic counterparts. To increase the voltage, a large number of p- and n-type leg pairs is required for organic TEs; this, however, results in an increased interconnect resistance, which then limits the device output power. In this work, we discuss practical concepts to address this problem by positioning TE legs in a hexagonal closed-packed layout. This helps achieve higher fill factors (˜91%) than conventional inorganic devices (˜25%), which ultimately results in higher voltages and power densities due to lower interconnect resistances. In addition, wiring the legs following a Hilbert spacing-filling pattern allows for facile load matching to each application. This is made possible by leveraging the fractal nature of the Hilbert interconnect pattern, which results in identical sub-modules. Using the Hilbert design, sub-modules can better accommodate non-uniform temperature distributions because they naturally self-localize. These device design concepts open new avenues for roll-to-roll printing and custom TE module shapes, thereby enabling organic TE modules for self-powered sensors and wearable electronic applications.
NASA Astrophysics Data System (ADS)
Qin, Shengchun; Yao, Tinghui; Guo, Xin; Chen, Qiang; Liu, Dequan; Liu, Qiming; Li, Yali; Li, Junshuai; He, Deyan
2018-05-01
In this paper, we report an electrode architecture of molybdenum disulfide (MoS2)/nickel sulfide (Ni3S4) composite nanosheets anchored on interconnected carbon (C) shells (C@MoS2/Ni3S4). Electrochemical measurements indicate that the C@MoS2/Ni3S4 structure possesses excellent supercapacitive properties especially for long term cycling at high current densities. A specific capacitance as high as ∼640.7 F g-1 can still be delivered even after 10,000 cycles at a high current density of 20 A g-1. From comparison of microstructures and electrochemical properties of the related materials/structures, the improved performance of C@MoS2/Ni3S4 can be attributed to the relatively dispersedly distributed nanosheet-shaped MoS2/Ni3S4 that provides efficient contact with electrolyte and effectively buffers the volume change during charge/discharge processes, enhanced cycling stability by MoS2, and reduced equivalent series resistance by the interconnected C shells.
Jing, Wencai; Zhang, Yimo; Zhou, Ge
2002-07-15
A new structure for bit synchronization in a tera-bit/s optical interconnection network has been designed using micro-electro-mechanical system (MEMS) technique. Link multiplexing has been adopted to reduce data packet communication latency. To eliminate link set-up time, adjustable optical delay lines (AODLs) have been adopted to shift the phases of the distributed optical clock signals for bit synchronization. By changing the optical path distance of the optical clock signal, the phase of the clock signal can be shifted at a very high resolution. A phase-shift resolution of 0.1 ps can be easily achieved with 30-microm alternation of the optical path length in vacuum.
Hiilangaay Hydroelectric Project – Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twitchell, Sara; Stimac, Michael; Lang, Lisa
2016-06-01
The Hiilangaay Hydroelectric Project (“Hiilangaay” or the “Project”) is a 5-megawatt hydroelectric resource currently under construction on Prince of Wales Island (POW), Alaska, approximately ten miles east of Hydaburg. The objective of the Project is to interconnect with the existing transmission grid on Prince of Wales Island, increasing the hydroelectric generation capability by 5 MW, eliminating the need for diesel generation, increasing the reliability of the electrical system, and allowing the interconnected portion of the island to have 100 percent renewable energy generation. Pre-construction activities including construction planning, permit coordination and compliance, and final design have made it possible tomore » move forward with construction of the Hiilangaay Project. Despite repeated delays to the schedule, persistence and long-term planning will culminate in the construction of the Project, and make Prince of Wales Island independent of diesel-fueled energy« less
Energy-Water Nexus Knowledge Discovery Framework, Experts’ Meeting Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaduri, Budhendra L.; Simon, AJ; Allen, Melissa R.
Energy and water generation and delivery systems are inherently interconnected. With worldwide demandfor energy growing, the energy sector is experiencing increasing competition for water. With increasingpopulation and changing environmental, socioeconomic, and demographic scenarios, new technology andinvestment decisions must be made for optimized and sustainable energy-water resource management. These decisions require novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales.
A survey of tools and resources for the next generation analyst
NASA Astrophysics Data System (ADS)
Hall, David L.; Graham, Jake; Catherman, Emily
2015-05-01
We have previously argued that a combination of trends in information technology (IT) and changing habits of people using IT provide opportunities for the emergence of a new generation of analysts that can perform effective intelligence, surveillance and reconnaissance (ISR) on a "do it yourself" (DIY) or "armchair" approach (see D.L. Hall and J. Llinas (2014)). Key technology advances include: i) new sensing capabilities including the use of micro-scale sensors and ad hoc deployment platforms such as commercial drones, ii) advanced computing capabilities in mobile devices that allow advanced signal and image processing and modeling, iii) intelligent interconnections due to advances in "web N" capabilities, and iv) global interconnectivity and increasing bandwidth. In addition, the changing habits of the digital natives reflect new ways of collecting and reporting information, sharing information, and collaborating in dynamic teams. This paper provides a survey and assessment of tools and resources to support this emerging analysis approach. The tools range from large-scale commercial tools such as IBM i2 Analyst Notebook, Palantir, and GeoSuite to emerging open source tools such as GeoViz and DECIDE from university research centers. The tools include geospatial visualization tools, social network analysis tools and decision aids. A summary of tools is provided along with links to web sites for tool access.
IO-MFA and Thermodynamic Approach for Metal Recycling
NASA Astrophysics Data System (ADS)
Nakajima, Kenichi; Matsubae, Kazuyo; Kondo, Yasushi; Nakamura, Shinichiro; Nagasaka, Tetsuya
Recently, the issue of sustainable resource management has been increasingly recognized. In order to increase resource efficiency, Castro et al. (2004) pointed out an importance to understand the interconnections between the materials' processing routes and their thermodynamic constraints, and discussed losses due to contaminations during recycling. One of the dominant solutions to avoid such losses or contaminants is knowledge about the substance flows in material cycles. Material flow analysis (MFA) is a powerful tool to understand the resource consumption and material cycle in the national economy. Some advanced MFA studies discussed the complex web of metal flows and their linkages (Nakamura et al. 2007, 2008). Discussions on the limitations of impurity removal and the recoverability of elements in the recycling of EoL metal products, however, have been insufficient even in conventional MFA studies.
Databases, Repositories, and Other Data Resources in Structural Biology.
Zheng, Heping; Porebski, Przemyslaw J; Grabowski, Marek; Cooper, David R; Minor, Wladek
2017-01-01
Structural biology, like many other areas of modern science, produces an enormous amount of primary, derived, and "meta" data with a high demand on data storage and manipulations. Primary data come from various steps of sample preparation, diffraction experiments, and functional studies. These data are not only used to obtain tangible results, like macromolecular structural models, but also to enrich and guide our analysis and interpretation of various biomedical problems. Herein we define several categories of data resources, (a) Archives, (b) Repositories, (c) Databases, and (d) Advanced Information Systems, that can accommodate primary, derived, or reference data. Data resources may be used either as web portals or internally by structural biology software. To be useful, each resource must be maintained, curated, as well as integrated with other resources. Ideally, the system of interconnected resources should evolve toward comprehensive "hubs", or Advanced Information Systems. Such systems, encompassing the PDB and UniProt, are indispensable not only for structural biology, but for many related fields of science. The categories of data resources described herein are applicable well beyond our usual scientific endeavors.
Databases, Repositories and Other Data Resources in Structural Biology
Zheng, Heping; Porebski, Przemyslaw J.; Grabowski, Marek; Cooper, David R.; Minor, Wladek
2017-01-01
Structural biology, like many other areas of modern science, produces an enormous amount of primary, derived, and “meta” data with a high demand on data storage and manipulations. Primary data comes from various steps of sample preparation, diffraction experiments, and functional studies. These data are not only used to obtain tangible results, like macromolecular structural models, but also to enrich and guide our analysis and interpretation of existing biomedical studies. Herein we define several categories of data resources, (a) Archives, (b) Repositories, (c) “Databases” and (d) Advanced Information Systems, that can accommodate primary, derived, or reference data. Data resources may be used either as web portals or internally by structural biology software. To be useful, each resource must be maintained, curated, and be integrated with other resources. Ideally, the system of interconnected resources should evolve toward comprehensive “hubs” or Advanced Information Systems. Such systems, encompassing the PDB and UniProt, are indispensable not only for structural biology, but for many related fields of science. The categories of data resources described herein are applicable well beyond our usual scientific endeavors. PMID:28573593
Autonomous Energy Grids: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroposki, Benjamin D; Dall-Anese, Emiliano; Bernstein, Andrey
With much higher levels of distributed energy resources - variable generation, energy storage, and controllable loads just to mention a few - being deployed into power systems, the data deluge from pervasive metering of energy grids, and the shaping of multi-level ancillary-service markets, current frameworks to monitoring, controlling, and optimizing large-scale energy systems are becoming increasingly inadequate. This position paper outlines the concept of 'Autonomous Energy Grids' (AEGs) - systems that are supported by a scalable, reconfigurable, and self-organizing information and control infrastructure, can be extremely secure and resilient (self-healing), and self-optimize themselves in real-time for economic and reliable performancemore » while systematically integrating energy in all forms. AEGs rely on scalable, self-configuring cellular building blocks that ensure that each 'cell' can self-optimize when isolated from a larger grid as well as partaking in the optimal operation of a larger grid when interconnected. To realize this vision, this paper describes the concepts and key research directions in the broad domains of optimization theory, control theory, big-data analytics, and complex system modeling that will be necessary to realize the AEG vision.« less
NASA Astrophysics Data System (ADS)
Srinivasan, Veena; Gorelick, Steven M.; Goulder, Lawrence
2010-07-01
In this paper, we discuss a challenging water resources problem in a developing world city, Chennai, India. The goal is to reconstruct past system behavior and diagnose the causes of a major water crisis. In order to do this, we develop a hydrologic-engineering-economic model to address the complexity of urban water supply arising from consumers' dependence on multiple interconnected sources of water. We integrate different components of the urban water system: water flowing into the reservoir system; diversion and distribution by the public water utility; groundwater flow in the aquifer beneath the city; supply, demand, and prices in the informal tanker-truck-based water market; and consumer behavior. Both the economic and physical impacts of consumers' dependence on multiple sources of water are quantified. The model is calibrated over the period 2002-2006 using a range of hydrologic and socio-economic data. The model's results highlight the inadequacy of the reservoir system and the buffering role played by the urban aquifer and consumers' coping investments during multiyear droughts.
Experimental Evaluation of Load Rejection Over-Voltage from Grid-Tied Solar Inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Hoke, Andy, Chakraborty, Sudipta; Ropp, Michael
This paper investigates the impact of load rejection over-voltage (LRO) from commercially available grid-tied photovoltaic (PV) solar inverters. LRO can occur when a local feeder or breaker opens and the power output from a distributed energy resource exceeds the load power. Simplified models of current controlled inverters can over-predict over-voltage magnitudes, thus it is useful to quantify testing. The load rejection event was replicated using a hardware testbed at the National Renewable Energy Laboratory (NREL), and a set of commercially available PV inverters was tested to quantify the impact of LRO for a range of generation-to-load ratios. The magnitude andmore » duration of the over-voltage events are reported in this paper along with a discussion of characteristic inverter output behavior. The results for the inverters under test showed that maximum over-voltage magnitudes were less than 200 percent of nominal voltage, and much lower in many test cases. These research results are important because utilities that interconnect inverter-based DER need to understand their characteristics under abnormal grid conditions.« less
Cost Benefit and Alternatives Analysis of Distribution Systems with Energy Storage Systems: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Tom; Nagarajan, Adarsh; Baggu, Murali
This paper explores monetized and non-monetized benefits from storage interconnected to distribution system through use cases illustrating potential applications for energy storage in California's electric utility system. This work supports SDG&E in its efforts to quantify, summarize, and compare the cost and benefit streams related to implementation and operation of energy storage on its distribution feeders. This effort develops the cost benefit and alternatives analysis platform, integrated with QSTS feeder simulation capability, and analyzed use cases to explore the cost-benefit of implementation and operation of energy storage for feeder support and market participation.
Modeling and Analysis of Remote, Off-grid Microgrids
NASA Astrophysics Data System (ADS)
Madathil, Sreenath Chalil
Over the past century the electric power industry has evolved to support the delivery of power over long distances with highly interconnected transmission systems. Despite this evolution, some remote communities are not connected to these systems. These communities rely on small, disconnected distribution systems, i.e., microgrids, to deliver power. Power distribution in most of these remote communities often depend on a type of microgrid called "off-grid microgrids". However, as microgrids often are not held to the same reliability standards as transmission grids, remote communities can be at risk to experience extended blackouts. Recent trends have also shown an increased use of renewable energy resources in power systems for remote communities. The increased penetration of renewable resources in power generation will require complex decision making when designing a resilient power system. This is mainly due to the stochastic nature of renewable resources that can lead to loss of load or line overload during their operations. In the first part of this thesis, we develop an optimization model and accompanying solution algorithm for capacity planning and operating microgrids that include N-1 security and other practical modeling features (e.g., AC power flow physics, component efficiencies and thermal limits). We demonstrate the effectiveness of our model and solution approach on two test systems: a modified version of the IEEE 13 node test feeder and a model of a distribution system in a remote Alaskan community. Once a tractable algorithm was identified to solve the above problem, we develop a mathematical model that includes topology design of microgrids. The topology design includes building new lines, making redundant lines, and analyzing N-1 contingencies on generators and lines. We develop a rolling horizon algorithm to efficiently analyze the model and demonstrate the strength of our algorithm in the same network. Finally, we develop a stochastic model that considers generation uncertainties along with N-1 security on generation assets. We develop a chance-constrained model to analyze the efficacy of the problem under consideration and present a case study on an adapted IEEE-13 node network. A successful implementation of this research could help remote communities around the world to enhance their quality of life by providing them with cost-effective, reliable electricity.
Systemic trade risk of critical resources.
Klimek, Peter; Obersteiner, Michael; Thurner, Stefan
2015-11-01
In the wake of the 2008 financial crisis, the role of strongly interconnected markets in causing systemic instability has been increasingly acknowledged. Trade networks of commodities are susceptible to cascades of supply shocks that increase systemic trade risks and pose a threat to geopolitical stability. We show that supply risk, scarcity, and price volatility of nonfuel mineral resources are intricately connected with the structure of the worldwide trade networks spanned by these resources. At the global level, we demonstrate that the scarcity of a resource is closely related to the susceptibility of the trade network with respect to cascading shocks. At the regional level, we find that, to some extent, region-specific price volatility and supply risk can be understood by centrality measures that capture systemic trade risk. The resources associated with the highest systemic trade risk indicators are often those that are produced as by-products of major metals. We identify significant strategic shortcomings in the management of systemic trade risk, in particular in the European Union.
Systemic trade risk of critical resources
Klimek, Peter; Obersteiner, Michael; Thurner, Stefan
2015-01-01
In the wake of the 2008 financial crisis, the role of strongly interconnected markets in causing systemic instability has been increasingly acknowledged. Trade networks of commodities are susceptible to cascades of supply shocks that increase systemic trade risks and pose a threat to geopolitical stability. We show that supply risk, scarcity, and price volatility of nonfuel mineral resources are intricately connected with the structure of the worldwide trade networks spanned by these resources. At the global level, we demonstrate that the scarcity of a resource is closely related to the susceptibility of the trade network with respect to cascading shocks. At the regional level, we find that, to some extent, region-specific price volatility and supply risk can be understood by centrality measures that capture systemic trade risk. The resources associated with the highest systemic trade risk indicators are often those that are produced as by-products of major metals. We identify significant strategic shortcomings in the management of systemic trade risk, in particular in the European Union. PMID:26702431
Towards the Formal Verification of a Distributed Real-Time Automotive System
NASA Technical Reports Server (NTRS)
Endres, Erik; Mueller, Christian; Shadrin, Andrey; Tverdyshev, Sergey
2010-01-01
We present the status of a project which aims at building, formally and pervasively verifying a distributed automotive system. The target system is a gate-level model which consists of several interconnected electronic control units with independent clocks. This model is verified against the specification as seen by a system programmer. The automotive system is implemented on several FPGA boards. The pervasive verification is carried out using combination of interactive theorem proving (Isabelle/HOL) and model checking (LTL).
Distributed Computing for Signal Processing: Modeling of Asynchronous Parallel Computation.
1986-03-01
the proposed approaches 16, 16, 40 . 451. The conclusion most often reached is that the best scheme to use in a particular design depends highly upon...76. 40 . Siegel, H. J., McMillen. R. J., and Mueller. P. T.. Jr. A survey of interconnection methods for reconligurable parallel processing systems...addressing meehaanm distributed in the network area rimonication% tit reach gigabit./second speeds je g.. PoCoS83 .’ i.V--i the lirO! lk i nitronment is
NASA Astrophysics Data System (ADS)
Maaß, Heiko; Cakmak, Hüseyin Kemal; Bach, Felix; Mikut, Ralf; Harrabi, Aymen; Süß, Wolfgang; Jakob, Wilfried; Stucky, Karl-Uwe; Kühnapfel, Uwe G.; Hagenmeyer, Veit
2015-12-01
Power networks will change from a rigid hierarchic architecture to dynamic interconnected smart grids. In traditional power grids, the frequency is the controlled quantity to maintain supply and load power balance. Thereby, high rotating mass inertia ensures for stability. In the future, system stability will have to rely more on real-time measurements and sophisticated control, especially when integrating fluctuating renewable power sources or high-load consumers like electrical vehicles to the low-voltage distribution grid.
The Design and Emulation of a System Kernel for X-Tree,
1979-03-30
DECLASSIFICATIONIDOWNGRADING I SCHEDULE 16. DISTRIBUTION STATEMENT (ol this Report) Approved for public release; distributi.- ti4imited -; T ? A~ 17. DISTRIBUTION STATEMENT...level of the tPee. ManvIL different schemes for these additional interconnections have been Proposed. No final selection h-as set been made. Pic- tured...comFletion, 5_U (b) Irenoves the Process name from the hash table, (c) F’uts the PCB back on the FREEPCB aueue for later reuse# ( d) Goes L:ack to sleep . Ai
Biological interactions and cooperative management of multiple species.
Jiang, Jinwei; Min, Yong; Chang, Jie; Ge, Ying
2017-01-01
Coordinated decision making and actions have become the primary solution for the overexploitation of interacting resources within ecosystems. However, the success of coordinated management is highly sensitive to biological, economic, and social conditions. Here, using a game theoretic framework and a 2-species model that considers various biological relationships (competition, predation, and mutualism), we compute cooperative (or joint) and non-cooperative (or separate) management equilibrium outcomes of the model and investigate the effects of the type and strength of the relationships. We find that cooperation does not always show superiority to non-cooperation in all biological interactions: (1) if and only if resources are involved in high-intensity predation relationships, cooperation can achieve a win-win scenario for ecosystem services and resource diversity; (2) for competitive resources, cooperation realizes higher ecosystem services by sacrificing resource diversity; and (3) for mutual resources, cooperation has no obvious advantage for either ecosystem services or resource evenness but can slightly improve resource abundance. Furthermore, by using a fishery model of the North California Current Marine Ecosystem with 63 species and seven fleets, we demonstrate that the theoretical results can be reproduced in real ecosystems. Therefore, effective ecosystem management should consider the interconnection between stakeholders' social relationship and resources' biological relationships.
29 CFR 1926.450 - Scope, application and definitions applicable to this subpart.
Code of Federal Regulations, 2014 CFR
2014-07-01
... means a single-point adjustable suspension scaffold consisting of a seat or sling designed to support... means a design of straps which may be secured about the employee in a manner to distribute the fall... a series of interconnected braced scaffold members or supporting structures erected to form a...
29 CFR 1926.450 - Scope, application and definitions applicable to this subpart.
Code of Federal Regulations, 2012 CFR
2012-07-01
... means a single-point adjustable suspension scaffold consisting of a seat or sling designed to support... means a design of straps which may be secured about the employee in a manner to distribute the fall... a series of interconnected braced scaffold members or supporting structures erected to form a...
29 CFR 1926.450 - Scope, application and definitions applicable to this subpart.
Code of Federal Regulations, 2013 CFR
2013-07-01
... means a single-point adjustable suspension scaffold consisting of a seat or sling designed to support... means a design of straps which may be secured about the employee in a manner to distribute the fall... a series of interconnected braced scaffold members or supporting structures erected to form a...
29 CFR 1926.450 - Scope, application and definitions applicable to this subpart.
Code of Federal Regulations, 2011 CFR
2011-07-01
... means a single-point adjustable suspension scaffold consisting of a seat or sling designed to support... means a design of straps which may be secured about the employee in a manner to distribute the fall... a series of interconnected braced scaffold members or supporting structures erected to form a...
ERIC Educational Resources Information Center
Levin, James A.; And Others
1987-01-01
The instructional media created by microcomputers interconnected by modems to form long-distance networks present some powerful new opportunities for education. While other uses of computers in education have been built on conventional instructional models of classroom interaction, instructional electronic networks facilitate a wider use of…
Stars, Galaxies, Cosmos: The Past Decade, the Next Decade.
ERIC Educational Resources Information Center
Rubin, Vera C.
1980-01-01
This article focuses on discoveries in astronomy during the past 20 years using a wide range of observing techniques. The future is seen as a time when astronomers will learn more about the distribution of mass in the universe, the physics of energetic sources, and the intricate interconnections of astrophysical processes. (Author/SA)
Optical clock distribution in supercomputers using polyimide-based waveguides
NASA Astrophysics Data System (ADS)
Bihari, Bipin; Gan, Jianhua; Wu, Linghui; Liu, Yujie; Tang, Suning; Chen, Ray T.
1999-04-01
Guided-wave optics is a promising way to deliver high-speed clock-signal in supercomputer with minimized clock-skew. Si- CMOS compatible polymer-based waveguides for optoelectronic interconnects and packaging have been fabricated and characterized. A 1-to-48 fanout optoelectronic interconnection layer (OIL) structure based on Ultradel 9120/9020 for the high-speed massive clock signal distribution for a Cray T-90 supercomputer board has been constructed. The OIL employs multimode polymeric channel waveguides in conjunction with surface-normal waveguide output coupler and 1-to-2 splitters. Surface-normal couplers can couple the optical clock signals into and out from the H-tree polyimide waveguides surface-normally, which facilitates the integration of photodetectors to convert optical-signal to electrical-signal. A 45-degree surface- normal couplers has been integrated at each output end. The measured output coupling efficiency is nearly 100 percent. The output profile from 45-degree surface-normal coupler were calculated using Fresnel approximation. the theoretical result is in good agreement with experimental result. A total insertion loss of 7.98 dB at 850 nm was measured experimentally.
Christmas Valley Renewable Energy Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Mar, Robert
In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. The Oregon Military Department (Military) acquired a large parcel of land located in south central Oregon. The landmore » was previously owned by the US Air Force and developed for an Over-the-Horizon Backscatter Radar Transmitter Facility, located about 10 miles east of the town of Christmas Valley. The Military is investigating a number of uses for the site, including Research and Development (R&D) laboratory, emergency response, military operations, developing renewable energy and related educational programs. One of the key potential uses would be for a large scale solar photovoltaic power plant. This is an attractive use because the site has excellent solar exposure; an existing strong electrical interconnection to the power grid; and a secure location at a moderate cost per acre. The project objectives include: 1. Site evaluation 2. Research and Development (R&D) facility analysis 3. Utility interconnection studies and agreements 4. Additional on-site renewable energy resources analysis 5. Community education, outreach and mitigation 6. Renewable energy and emergency readiness training program for veterans« less
System-level power optimization for real-time distributed embedded systems
NASA Astrophysics Data System (ADS)
Luo, Jiong
Power optimization is one of the crucial design considerations for modern electronic systems. In this thesis, we present several system-level power optimization techniques for real-time distributed embedded systems, based on dynamic voltage scaling, dynamic power management, and management of peak power and variance of the power profile. Dynamic voltage scaling has been widely acknowledged as an important and powerful technique to trade off dynamic power consumption and delay. Efficient dynamic voltage scaling requires effective variable-voltage scheduling mechanisms that can adjust voltages and clock frequencies adaptively based on workloads and timing constraints. For this purpose, we propose static variable-voltage scheduling algorithms utilizing criticalpath driven timing analysis for the case when tasks are assumed to have uniform switching activities, as well as energy-gradient driven slack allocation for a more general scenario. The proposed techniques can achieve closeto-optimal power savings with very low computational complexity, without violating any real-time constraints. We also present algorithms for power-efficient joint scheduling of multi-rate periodic task graphs along with soft aperiodic tasks. The power issue is addressed through both dynamic voltage scaling and power management. Periodic task graphs are scheduled statically. Flexibility is introduced into the static schedule to allow the on-line scheduler to make local changes to PE schedules through resource reclaiming and slack stealing, without interfering with the validity of the global schedule. We provide a unified framework in which the response times of aperiodic tasks and power consumption are dynamically optimized simultaneously. Interconnection network fabrics point to a new generation of power-efficient and scalable interconnection architectures for distributed embedded systems. As the system bandwidth continues to increase, interconnection networks become power/energy limited as well. Variable-frequency links have been designed by circuit designers for both parallel and serial links, which can adaptively regulate the supply voltage of transceivers to a desired link frequency, to exploit the variations in bandwidth requirement for power savings. We propose solutions for simultaneous dynamic voltage scaling of processors and links. The proposed solution considers real-time scheduling, flow control, and packet routing jointly. It can trade off the power consumption on processors and communication links via efficient slack allocation, and lead to more power savings than dynamic voltage scaling on processors alone. For battery-operated systems, the battery lifespan is an important concern. Due to the effects of discharge rate and battery recovery, the discharge pattern of batteries has an impact on the battery lifespan. Battery models indicate that even under the same average power consumption, reducing peak power current and variance in the power profile can increase the battery efficiency and thereby prolong battery lifetime. To take advantage of these effects, we propose battery-driven scheduling techniques for embedded applications, to reduce the peak power and the variance in the power profile of the overall system under real-time constraints. The proposed scheduling algorithms are also beneficial in addressing reliability and signal integrity concerns by effectively controlling peak power and variance of the power profile.
Development of a Thin-Film Solar Cell Interconnect for the Powersphere Concept
NASA Technical Reports Server (NTRS)
Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander, III; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig; Lin, John K.; Scarborough, Stephen E.
2005-01-01
Dual junction amorphous silicon (a-Si) solar cells produced on polyimide substrate have been selected as the best candidate to produce a lightweight solar array for the PowerSphere program. The PowerSphere concept features a space-inflatable, geodetic solar array approximately 0.6 meters in diameter and capable of generating about 20W of electrical power. Trade studies of various wiring concepts and connection methods led to an interconnect design with a copper contact that wraps around the edge, to the back of the solar cell. Applying Plasma Vapor Deposited (PVD) copper film to both sides and the edge of the solar cell produces the wrap around contact. This procedure results in a contact pad on the back of the solar cell, which is then laser welded to a flex circuit material. The flex circuit is constructed of copper in a custom designed routing pattern, and then sandwiched in a Kapton insulation layer. The flex circuit then serves as the primary power distribution system between the solar cells and the spacecraft. Flex circuit material is the best candidate for the wiring harness because it allows for low force deployment of the solar cells by the inflatable hinges on the PowerSphere. An additional frame structure, fabricated and assembled by ILC Dover, will reinforce the wrap around contact-flex blanket connection, thus providing a mechanically robust solar cell interconnect for the PowerSphere multifunctional program. The PowerSphere team will use the wraparound contact design approach as the primary solution for solar cell integration and the flex blanket for power distribution.
NASA Astrophysics Data System (ADS)
Ossés de Eicker, Margarita; Zah, Rainer; Triviño, Rubén; Hurni, Hans
The spatial accuracy of top-down traffic emission inventory maps obtained with a simplified disaggregation method based on street density was assessed in seven mid-sized Chilean cities. Each top-down emission inventory map was compared against a reference, namely a more accurate bottom-up emission inventory map from the same study area. The comparison was carried out using a combination of numerical indicators and visual interpretation. Statistically significant differences were found between the seven cities with regard to the spatial accuracy of their top-down emission inventory maps. In compact cities with a simple street network and a single center, a good accuracy of the spatial distribution of emissions was achieved with correlation values>0.8 with respect to the bottom-up emission inventory of reference. In contrast, the simplified disaggregation method is not suitable for complex cities consisting of interconnected nuclei, resulting in correlation values<0.5. Although top-down disaggregation of traffic emissions generally exhibits low accuracy, the accuracy is significantly higher in compact cities and might be further improved by applying a correction factor for the city center. Therefore, the method can be used by local environmental authorities in cities with limited resources and with little knowledge on the pollution situation to get an overview on the spatial distribution of the emissions generated by traffic activities.
Efficient Parallel Algorithms on Restartable Fail-Stop Processors
1991-01-01
resource (memory), and ( 3 ) that processors, memory and their interconnection must be The model of parallel computation known as the Par- perfectly...setting), arid ure an(I restart errors. We describe these arguments if] [AAtPS 871 (in a deterministic setting). Fault-tolerance Section 3 . of...grannmarity at the processor level --- for recent work on where Al is the nmber of failures during this step’s gate granilarities see [All 90, Pip 85
Advanced batteries for load-leveling - The utility perspective on system integration
NASA Astrophysics Data System (ADS)
Delmonaco, J. L.; Lewis, P. A.; Roman, H. T.; Zemkoski, J.
1982-09-01
Rechargeable battery systems for applications as utility load-leveling units, particularly in urban areas, are discussed. Particular attention is given to advanced lead-acid, zinc-halogen, sodium-sulfer, and lithium-iron sulfide battery systems, noting that battery charging can proceed at light load hours and requires no fuel on-site. Each battery site will have a master site controller and related subsystems necessary for ensuring grid-quality power output from the batteries and charging when feasible. The actual interconnection with the grid is envisioned as similar to transmission, subtransmission, or distribution systems similar to cogeneration or wind-derived energy interconnections. Analyses are presented of factors influencing the planning economics, impacts on existing grids through solid-state converters, and operational and maintenance considerations. Finally, research directions towards large scale battery implementation are outlined.
Interconnect assembly for an electronic assembly and assembly method therefor
Gerbsch, Erich William
2003-06-10
An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.
Automatic Data Distribution for CFD Applications on Structured Grids
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Yan, Jerry
2000-01-01
Data distribution is an important step in implementation of any parallel algorithm. The data distribution determines data traffic, utilization of the interconnection network and affects the overall code efficiency. In recent years a number data distribution methods have been developed and used in real programs for improving data traffic. We use some of the methods for translating data dependence and affinity relations into data distribution directives. We describe an automatic data alignment and placement tool (ADAFT) which implements these methods and show it results for some CFD codes (NPB and ARC3D). Algorithms for program analysis and derivation of data distribution implemented in ADAFT are efficient three pass algorithms. Most algorithms have linear complexity with the exception of some graph algorithms having complexity O(n(sup 4)) in the worst case.
Automatic Data Distribution for CFD Applications on Structured Grids
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Yan, Jerry
1999-01-01
Data distribution is an important step in implementation of any parallel algorithm. The data distribution determines data traffic, utilization of the interconnection network and affects the overall code efficiency. In recent years a number data distribution methods have been developed and used in real programs for improving data traffic. We use some of the methods for translating data dependence and affinity relations into data distribution directives. We describe an automatic data alignment and placement tool (ADAPT) which implements these methods and show it results for some CFD codes (NPB and ARC3D). Algorithms for program analysis and derivation of data distribution implemented in ADAPT are efficient three pass algorithms. Most algorithms have linear complexity with the exception of some graph algorithms having complexity O(n(sup 4)) in the worst case.
Fiber optic interconnect and optoelectronic packaging challenges for future generation avionics
NASA Astrophysics Data System (ADS)
Beranek, Mark W.
2007-02-01
Forecasting avionics industry fiber optic interconnect and optoelectronic packaging challenges that lie ahead first requires an assumption that military avionics architectures will evolve from today's centralized/unified concept based on gigabit laser, optical-to-electrical-to-optical switching and optical backplane technology, to a future federated/distributed or centralized/unified concept based on gigabit tunable laser, electro-optical switch and add-drop wavelength division multiplexing (WDM) technology. The requirement to incorporate avionics optical built-in test (BIT) in military avionics fiber optic systems is also assumed to be correct. Taking these assumptions further indicates that future avionics systems engineering will use WDM technology combined with photonic circuit integration and advanced packaging to form the technical basis of the next generation military avionics onboard local area network (LAN). Following this theme, fiber optic cable plants will evolve from today's multimode interconnect solution to a single mode interconnect solution that is highly installable, maintainable, reliable and supportable. Ultimately optical BIT for fiber optic fault detection and isolation will be incorporated as an integral part of a total WDM-based avionics LAN solution. Cost-efficient single mode active and passive photonic component integration and packaging integration is needed to enable reliable operation in the harsh military avionics application environment. Rugged multimode fiber-based transmitters and receivers (transceivers) with in-package optical BIT capability are also needed to enable fully BIT capable single-wavelength fiber optic links on both legacy and future aerospace platforms.
NASA Astrophysics Data System (ADS)
Wong, Elaine; Nadarajah, Nishaanthan; Chae, Chang-Joon; Nirmalathas, Ampalavanapillai; Attygalle, Sanjeewa M.
2006-01-01
We describe two optical layer schemes which simultaneously facilitate local area network emulation and automatic protection switching against distribution fiber breaks in passive optical networks. One scheme employs a narrowband fiber Bragg grating placed close to the star coupler in the feeder fiber of the passive optical network, while the other uses an additional short length distribution fiber from the star coupler to each customer for the redirection of the customer traffic. Both schemes use RF subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office at baseband. Failure detection and automatic protection switching are performed independently by each optical network unit that is located at the customer premises in a distributed manner. The restoration of traffic transported between the central office and an optical network unit in the event of the distribution fiber break is performed by interconnecting adjacent optical network units and carrying out signal transmissions via an independent but interconnected optical network unit. Such a protection mechanism enables multiple adjacent optical network units to be simultaneously protected by a single optical network unit utilizing its maximum available bandwidth. We experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the central office and 155 Mb/s local area network data transmission on a RF subcarrier frequency. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.
Managing Communications with Experts in Geographically Distributed Collaborative Networks
2009-03-01
agent architectures, and management of sensor-unmanned vehicle decision maker self organizing environments . Although CENETIX has its beginnings...understanding how everything in a complex system is interconnected. Additionally, environmental factors that impact the management of communications with...unrestricted warfare environment . In “Unconventional Insights for Managing Stakeholder Trust”, Pirson, et al. (2008) emphasizes the challenges of managing
Measurements over distributed high performance computing and storage systems
NASA Technical Reports Server (NTRS)
Williams, Elizabeth; Myers, Tom
1993-01-01
A strawman proposal is given for a framework for presenting a common set of metrics for supercomputers, workstations, file servers, mass storage systems, and the networks that interconnect them. Production control and database systems are also included. Though other applications and third part software systems are not addressed, it is important to measure them as well.
Apollo experience report: Command and service module electrical power distribution on subsystem
NASA Technical Reports Server (NTRS)
Munford, R. E.; Hendrix, B.
1974-01-01
A review of the design philosophy and development of the Apollo command and service modules electrical power distribution subsystem, a brief history of the evolution of the total system, and some of the more significant components within the system are discussed. The electrical power distribution primarily consisted of individual control units, interconnecting units, and associated protective devices. Because each unit within the system operated more or less independently of other units, the discussion of the subsystem proceeds generally in descending order of complexity; the discussion begins with the total system, progresses to the individual units of the system, and concludes with the components within the units.
Mashreq Arab interconnected power system potential for economic energy trading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Shehri, A.M.; El-Amin, I.M.; Opoku, G.
1994-12-01
The Mashreq Arab countries covered in this study are Bahrain, Egypt, Jordan, Lebanon, Oman, Qatar, Saudi Arabia, Syria, the United Arab Emirates, and Yemen. A feasibility study for the interconnection of the electrical networks of the Mashreq Arab countries, sponsored by the Arab Fund, was completed in June 1992. Each country is served by one utility except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. Thesemore » are the ones considered in this study. The Mashreq Arab region has a considerable mix of energy resources. Egypt and Syria have some limited amounts of hydropower resources, and the Arabian Gulf region is abundant in fossil fuel reserves. Owing to the differences in energy production costs, a potential exists for substantial energy trading between electric utilities in the region. The major objective of this project is to study the feasibility of electric energy trading between the Mashreq Arab countries. The basis, assumptions, and methodologies on which this energy trading study is based relate to the results and conclusions arising out of the previous study, power plant characteristics and costs, assumptions on economic parameters, rules for economy energy exchange, etc. This paper presents the basis, methodology, and major findings of the study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay Tillay
For three years, Sandia National Laboratories, Georgia Institute of Technology, and University of Illinois at Urbana-Champaign investigated a smart grid vision in which renewable-centric Virtual Power Plants (VPPs) provided ancillary services with interoperable distributed energy resources (DER). This team researched, designed, built, and evaluated real-time VPP designs incorporating DER forecasting, stochastic optimization, controls, and cyber security to construct a system capable of delivering reliable ancillary services, which have been traditionally provided by large power plants or other dedicated equipment. VPPs have become possible through an evolving landscape of state and national interconnection standards, which now require DER to include grid-supportmore » functionality and communications capabilities. This makes it possible for third party aggregators to provide a range of critical grid services such as voltage regulation, frequency regulation, and contingency reserves to grid operators. This paradigm (a) enables renewable energy, demand response, and energy storage to participate in grid operations and provide grid services, (b) improves grid reliability by providing additional operating reserves for utilities, independent system operators (ISOs), and regional transmission organization (RTOs), and (c) removes renewable energy high-penetration barriers by providing services with photovoltaics and wind resources that traditionally were the jobs of thermal generators. Therefore, it is believed VPP deployment will have far-reaching positive consequences for grid operations and may provide a robust pathway to high penetrations of renewables on US power systems. In this report, we design VPPs to provide a range of grid-support services and demonstrate one VPP which simultaneously provides bulk-system energy and ancillary reserves.« less
Interconnections Seam Study | Energy Analysis | NREL
Interconnections Seam Study Interconnections Seam Study Through the Interconnections Seam Study between the interconnections. This study will quantify the value of strengthening the connections (or Peer Review - Interconnections Seam Study to learn more. Our Approach To quantify the value of
Wind Development on Tribal Lands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ken Haukaas; Dale Osborn; Belvin Pete
Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. Themore » focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.« less
NASA Astrophysics Data System (ADS)
Schlosser, C. A.; Strzepek, K. M.; Gao, X.; Fant, C. W.; Blanc, E.; Monier, E.; Sokolov, A. P.; Paltsev, S.; Arndt, C.; Prinn, R. G.; Reilly, J. M.; Jacoby, H.
2013-12-01
The fate of natural and managed water resources is controlled to varying degrees by interlinked energy, agricultural, and environmental systems, as well as the hydro-climate cycles. The need for risk-based assessments of impacts and adaptation to regional change calls for likelihood quantification of outcomes via the representation of uncertainty - to the fullest extent possible. A hybrid approach of the MIT Integrated Global System Model (IGSM) framework provides probabilistic projections of regional climate change - generated in tandem with consistent socio-economic projections. A Water Resources System (WRS) then tracks water allocation and availability across these competing demands. As such, the IGSM-WRS is an integrated tool that provides quantitative insights on the risks and sustainability of water resources over large river basins. This pilot project focuses the IGSM-WRS on Southeast Asia (Figure 1). This region presents exceptional challenges toward sustainable water resources given its texture of basins that traverse and interconnect developing nations as well as large, ascending economies and populations - such as China and India. We employ the IGSM-WRS in a large ensemble of outcomes spanning hydro-climatic, economic, and policy uncertainties. For computational efficiency, a Gaussian Quadrature procedure sub-samples these outcomes (Figure 2). The IGSM-WRS impacts are quantified through frequency distributions of water stress changes. The results allow for interpretation of: the effects of policy measures; impacts on food production; and the value of design flexibility of infrastructure/institutions. An area of model development and exploration is the feedback of water-stress shocks to economic activity (i.e. GDP and land use). We discuss these further results (where possible) as well as other efforts to refine: uncertainty methods, greater basin-level and climate detail, and process-level representation glacial melt-water sources. Figure 1 Figure 2
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.
2015-12-01
In the attempt to develop an interconnection architecture optimized for hybrid HPC systems dedicated to scientific computing, we designed APEnet+, a point-to-point, low-latency and high-performance network controller supporting 6 fully bidirectional off-board links over a 3D torus topology. The first release of APEnet+ (named V4) was a board based on a 40 nm Altera FPGA, integrating 6 channels at 34 Gbps of raw bandwidth per direction and a PCIe Gen2 x8 host interface. It has been the first-of-its-kind device to implement an RDMA protocol to directly read/write data from/to Fermi and Kepler NVIDIA GPUs using NVIDIA peer-to-peer and GPUDirect RDMA protocols, obtaining real zero-copy GPU-to-GPU transfers over the network. The latest generation of APEnet+ systems (now named V5) implements a PCIe Gen3 x8 host interface on a 28 nm Altera Stratix V FPGA, with multi-standard fast transceivers (up to 14.4 Gbps) and an increased amount of configurable internal resources and hardware IP cores to support main interconnection standard protocols. Herein we present the APEnet+ V5 architecture, the status of its hardware and its system software design. Both its Linux Device Driver and the low-level libraries have been redeveloped to support the PCIe Gen3 protocol, introducing optimizations and solutions based on hardware/software co-design.
Mostaguir, Khaled; Hoogland, Christine; Binz, Pierre-Alain; Appel, Ron D
2003-08-01
The Make 2D-DB tool has been previously developed to help build federated two-dimensional gel electrophoresis (2-DE) databases on one's own web site. The purpose of our work is to extend the strength of the first package and to build a more efficient environment. Such an environment should be able to fulfill the different needs and requirements arising from both the growing use of 2-DE techniques and the increasing amount of distributed experimental data.
The Basal Ganglia and Adaptive Motor Control
NASA Astrophysics Data System (ADS)
Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru
1994-09-01
The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.
Hardware-assisted software clock synchronization for homogeneous distributed systems
NASA Technical Reports Server (NTRS)
Ramanathan, P.; Kandlur, Dilip D.; Shin, Kang G.
1990-01-01
A clock synchronization scheme that strikes a balance between hardware and software solutions is proposed. The proposed is a software algorithm that uses minimal additional hardware to achieve reasonably tight synchronization. Unlike other software solutions, the guaranteed worst-case skews can be made insensitive to the maximum variation of message transit delay in the system. The scheme is particularly suitable for large partially connected distributed systems with topologies that support simple point-to-point broadcast algorithms. Examples of such topologies include the hypercube and the mesh interconnection structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baggu, Murali; Giraldez, Julieta; Harris, Tom
In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service and its partners completed a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale PV. Building upon the APS Community Power Project-Flagstaff Pilot, this project investigates the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes and large, centrally located systems),more » high-speed weather and electrical data acquisition systems and digital 'smart' meters were designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models are being developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. This paper continues from a paper presented at the 2014 IEEE PVSC conference that described feeder model evaluation and high penetration advanced scenario analysis, specifically feeder reconfiguration. This paper presents results from Phase 5 of the project. Specifically, the paper discusses tool automation; interconnection assessment methodology and cost benefit analysis.« less
A Data Analysis Toolbox for Modeling the Global Food-Energy-Water Nexus
NASA Astrophysics Data System (ADS)
AghaKouchak, A.; Sadegh, M.; Mallakpour, I.
2017-12-01
Water, Food and energy systems are highly interconnected. More than seventy percent of global water resource is used for food production. Water withdrawal, purification, and transfer systems are energy intensive. Furthermore, energy generation strongly depends on water availability. Therefore, considering the interactions in the nexus of water, food and energy is crucial for sustainable management of available resources. In this presentation, we introduce a user-friendly data analysis toolbox that mines the available global data on food, energy and water, and analyzes their interactions. This toolbox provides estimates of water footprint for a wide range of food types in different countries and also approximates the required energy and water resources. The toolbox also provides estimates of the corresponding emissions and biofuel production of different crops. In summary, this toolbox allows evaluating dependencies of the food, energy, and water systems at the country scale. We present global analysis of the interactions between water, food and energy from different perspectives including efficiency and diversity of resources use.
Interrogating scarcity: how to think about ‘resource-scarce settings’
Schrecker, Ted
2013-01-01
The idea of resource scarcity permeates health ethics and health policy analysis in various contexts. However, health ethics inquiry seldom asks—as it should—why some settings are ‘resource-scarce’ and others not. In this article I describe interrogating scarcity as a strategy for inquiry into questions of resource allocation within a single political jurisdiction and, in particular, as an approach to the issue of global health justice in an interconnected world. I demonstrate its relevance to the situation of low- and middle-income countries (LMICs) with brief descriptions of four elements of contemporary globalization: trade agreements; the worldwide financial marketplace and capital flight; structural adjustment; imperial geopolitics and foreign policy. This demonstration involves not only health care, but also social determinants of health. Finally, I argue that interrogating scarcity provides the basis for a new, critical approach to health policy at the interface of ethics and the social sciences, with specific reference to market fundamentalism as the value system underlying contemporary globalization. PMID:22899597
Interrogating scarcity: how to think about 'resource-scarce settings'.
Schrecker, Ted
2013-07-01
The idea of resource scarcity permeates health ethics and health policy analysis in various contexts. However, health ethics inquiry seldom asks-as it should-why some settings are 'resource-scarce' and others not. In this article I describe interrogating scarcity as a strategy for inquiry into questions of resource allocation within a single political jurisdiction and, in particular, as an approach to the issue of global health justice in an interconnected world. I demonstrate its relevance to the situation of low- and middle-income countries (LMICs) with brief descriptions of four elements of contemporary globalization: trade agreements; the worldwide financial marketplace and capital flight; structural adjustment; imperial geopolitics and foreign policy. This demonstration involves not only health care, but also social determinants of health. Finally, I argue that interrogating scarcity provides the basis for a new, critical approach to health policy at the interface of ethics and the social sciences, with specific reference to market fundamentalism as the value system underlying contemporary globalization.
Role of Satellite Sensors in Groundwater Exploration
Mukherjee, Saumitra
2008-01-01
Spatial as well as spectral resolution has a very important role to play in water resource management. It was a challenge to explore the groundwater and rainwater harvesting sites in the Aravalli Quartzite-Granite-Pegmatite Precambrian terrain of Delhi, India. Use of only panchromatic sensor data of IRS-1D satellite with 5.8-meter spatial resolution has the potential to infer lineaments and faults in this hard rock area. It is essential to identify the location of interconnected lineaments below buried pediment plains in the hard rock area for targeting sub-surface water resources. Linear Image Self Scanning sensor data of the same satellite with 23.5-meter resolution when merged with the panchromatic data has produced very good results in delineation of interconnected lineaments over buried pediment plains as vegetation anomaly. These specific locations of vegetation anomaly were detected as dark red patches in various hard rock areas of Delhi. Field investigation was carried out on these patches by resistivity and magnetic survey in parts of Jawaharlal Nehru University (JNU), Indira Gandhi national Open University, Research and Referral Hospital and Humayuns Tomb areas. Drilling was carried out in four locations of JNU that proved to be the most potential site with ground water discharge ranging from 20,000 to 30,000 liters per hour with 2 to 4 meters draw down. Further the impact of urbanization on groundwater recharging in the terrain was studied by generating Normalized difference Vegetation Index (NDVI) map which was possible to generate by using the LISS-III sensor of IRS-1D satellite. Selection of suitable sensors has definitely a cutting edge on natural resource exploration and management including groundwater. PMID:27879808
Grid-connected distributed solar power systems
NASA Astrophysics Data System (ADS)
Moyle, R.; Chernoff, H.; Schweizer, T.
This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.
Capacity value assessments of wind power: Capacity value assessments of wind power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, Michael; Frew, Bethany; Ibanez, Eduardo
This article describes some of the recent research into the capacity value of wind power. With the worldwide increase in wind power during the past several years, there is increasing interest and significance regarding its capacity value because this has a direct influence on the amount of other (nonwind) capacity that is needed. We build on previous reviews from IEEE and IEA Wind Task 25a and examine recent work that evaluates the impact of multiple-year data sets and the impact of interconnected systems on resource adequacy. We also provide examples that explore the use of alternative reliability metrics for windmore » capacity value calculations. We show how multiple-year data sets significantly increase the robustness of results compared to single-year assessments. Assumptions regarding the transmission interconnections play a significant role. To date, results regarding which reliability metric to use for probabilistic capacity valuation show little sensitivity to the metric.« less
Frequency-encoded photonic qubits for scalable quantum information processing
Lukens, Joseph M.; Lougovski, Pavel
2016-12-21
Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel onmore » multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.« less
Frequency-encoded photonic qubits for scalable quantum information processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukens, Joseph M.; Lougovski, Pavel
Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel onmore » multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.« less
Multi-petascale highly efficient parallel supercomputer
Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng
2015-07-14
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.
Voltage Impacts of Utility-Scale Distributed Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, A.
2014-09-01
Although most utility-scale wind turbines in the United States are added at the transmission level in large wind power plants, distributed wind power offers an alternative that could increase the overall wind power penetration without the need for additional transmission. This report examines the distribution feeder-level voltage issues that can arise when adding utility-scale wind turbines to the distribution system. Four of the Pacific Northwest National Laboratory taxonomy feeders were examined in detail to study the voltage issues associated with adding wind turbines at different distances from the sub-station. General rules relating feeder resistance up to the point of turbinemore » interconnection to the expected maximum voltage change levels were developed. Additional analysis examined line and transformer overvoltage conditions.« less
A Fully Implemented 12 × 12 Data Vortex Optical Packet Switching Interconnection Network
NASA Astrophysics Data System (ADS)
Shacham, Assaf; Small, Benjamin A.; Liboiron-Ladouceur, Odile; Bergman, Keren
2005-10-01
A fully functional optical packet switching (OPS) interconnection network based on the data vortex architecture is presented. The photonic switching fabric uniquely capitalizes on the enormous bandwidth advantage of wavelength division multiplexing (WDM) wavelength parallelism while delivering minimal packet transit latency. Utilizing semiconductor optical amplifier (SOA)-based switching nodes and conventional fiber-optic technology, the 12-port system exhibits a capacity of nearly 1 Tb/s. Optical packets containing an eight-wavelength WDM payload with 10 Gb/s per wavelength are routed successfully to all 12 ports while maintaining a bit error rate (BER) of 10-12 or better. Median port-to-port latencies of 110 ns are achieved with a distributed deflection routing network that resolves packet contention on-the-fly without the use of optical buffers and maintains the entire payload path in the optical domain.
Coupled Finite Element ? Potts Model Simulations of Grain Growth in Copper Interconnects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radhakrishnan, Balasubramaniam; Gorti, Sarma B
The paper addresses grain growth in copper interconnects in the presence of thermal expansion mismatch stresses. The evolution of grain structure and texture in copper in the simultaneous presence of two driving forces, curvature and elastic stored energy difference, is modeled by using a hybrid Potts model simulation approach. The elastic stored energy is calculated by using the commercial finite element code ABAQUS, where the effect of elastic anisotropy on the thermal mismatch stress and strain distribution within a polycrystalline grain structure is modeled through a user material (UMAT) interface. Parametric studies on the effect of trench width and themore » height of the overburden were carried out. The results show that the grain structure and texture evolution are significantly altered by the presence of elastic strain energy.« less
The high speed interconnect system architecture and operation
NASA Astrophysics Data System (ADS)
Anderson, Steven C.
The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.
Active holographic interconnects for interfacing volume storage
NASA Astrophysics Data System (ADS)
Domash, Lawrence H.; Schwartz, Jay R.; Nelson, Arthur R.; Levin, Philip S.
1992-04-01
In order to achieve the promise of terabit/cm3 data storage capacity for volume holographic optical memory, two technological challenges must be met. Satisfactory storage materials must be developed and the input/output architectures able to match their capacity with corresponding data access rates must also be designed. To date the materials problem has received more attention than devices and architectures for access and addressing. Two philosophies of parallel data access to 3-D storage have been discussed. The bit-oriented approach, represented by recent work on two-photon memories, attempts to store bits at local sites within a volume without affecting neighboring bits. High speed acousto-optic or electro- optic scanners together with dynamically focused lenses not presently available would be required. The second philosophy is that volume optical storage is essentially holographic in nature, and that each data write or read is to be distributed throughout the material volume on the basis of angle multiplexing or other schemes consistent with the principles of holography. The requirements for free space optical interconnects for digital computers and fiber optic network switching interfaces are also closely related to this class of devices. Interconnects, beamlet generators, angle multiplexers, scanners, fiber optic switches, and dynamic lenses are all devices which may be implemented by holographic or microdiffractive devices of various kinds, which we shall refer to collectively as holographic interconnect devices. At present, holographic interconnect devices are either fixed holograms or spatial light modulators. Optically or computer generated holograms (submicron resolution, 2-D or 3-D, encoding 1013 bits, nearly 100 diffraction efficiency) can implement sophisticated mathematical design principles, but of course once fabricated they cannot be changed. Spatial light modulators offer high speed programmability but have limited resolution (512 X 512 pixels, encoding about 106 bits of data) and limited diffraction efficiency. For any application, one must choose between high diffractive performance and programmability.
Protocol and Topology Issues for Wide-Area Satellite Interconnection of Terrestrial Optical LANs
NASA Astrophysics Data System (ADS)
Parraga, N.
2002-01-01
Apart from broadcasting, the satellite business is targeting niche markets. Wide area interconnection is considered as one of these niche markets, since it addresses operators and business LANs (B2B, business to business) in remote areas where terrestrial infrastructure is not available. These LANs - if high-speed - are typically based on optical networks such as SONET. One of the advantages of SONET is its architecture flexibility and capacity to transport all kind of applications including multimedia with a range of different transmission rates. The applications can be carried by different protocols among which the Internet Protocol (IP) or the Asynchronous Transfer Mode (ATM) are the most prominent ones. Thus, the question arises how these protocols can be interconnected via the satellite segment. The paper addresses several solutions for interworking with different protocols. For this investigation we distinguish first of all between the topology and the switching technology of the satellites. In case of a star network with transparent satellite, the satellite protocol consists of physical layer and data layer which can be directly interconnected with layer 2 interworking function to their terrestrial counterparts in the SONET backbone. For regenerative satellites the situation is more complex: here we need to distinguish the types of transport protocols being used in the terrestrial and satellite segment. Whereas IP, ATM, MPEG dominate in the terrestrial networks, satellite systems usually do not follow these standards. Some might employ minor additions (for instance, satellite specific packet headers), some might be completely proprietary. In general, interworking must be done for the data plane on top of layer 2 (data link layer), whereas for the signaling plane the interworking is on top of layer 3. In the paper we will discuss the protocol stacks for ATM, IP, and MPEG with a regenerative satellite system. As an example we will use the EuroSkyWay satellite system for multimedia services. EuroSkyWay uses a GEO satellite with onboard switching. It has its own proprietary protocol stack for data link control (DLC), logical link control (LLC) and layer 3 functions such as resource management, call admission control and authentication. Special attention is paid to the IP interworking with Layer 3 function since IP does not support connection set-up and session protocols, thus proper interworking functions with IP signaling protocols for resource reservation routing such as RSVP, BGP, and ICMP need to be developed. Whereas the EuroSkyWay system is an representative for a meshed topology, DVB-RCS systems have usually star configuration with a central hub station. Different data streams are distinguished by program identifiers (PIDs). Recent proposals aim at the evolution of DVB-RCS towards a fully meshed structure. The paper will also discuss the protocol architecture for interconnect SONET LANs over these systems. Finally, a performance comparison of the different solutions will be given in terms of cell overhead rate and signalling effort for selected scenarios.
State University of New York Institute of Technology (SUNYIT) Visiting Scholars Program
2013-05-01
team members, and build the necessary backend metal interconnections. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 4 Baek-Young Choi...Cooperative and Opportunistic Mobile Cloud for Energy Efficient Positioning; Department of Computer Science Electrical Engineering, University of...Missouri - Kansas City The fast growing popularity of smartphones and tablets enables us the use of various intelligent mobile applications. As many of
Computer Aided Wirewrap Interconnect.
1980-11-01
ECLI (180 MHz System Clock Generated via Ring Oscillator) Clock Waveform: Synchronous Phase 0 Output Binary Counter: Power Plane Noie: (Loaded) LSB...LOGIC (ECL) (185 MHz System Clock Generated via Ring Oscillator) Clock Woveform Synchronous Phase 0 Output Binary Counter- Power Plane Voise (Loaded...High Speed .. ......... . 98 Clock Signals Into Logic Panels in a Multiboard System On-Eoard Clock Distribution Via Fanout .... ......... 102 Through
Leveraging Simulation Against the F-16 Flying Training Gap
2005-11-01
must leverage emerging simulation technology into combined flight training to counter mission employment complexity created by technology itself...two or more of these stand-alone simulators creates a mission training center (MTC), which when further networked create distributed mission...operations (DMO). Ultimately, the grand operational vision of DMO is to interconnect non-collocated users creating a “virtual” joint training environment
Electrochemical cell stack assembly
Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.
2010-06-22
Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.
Cislan-2 extension final document by University of Twente (Netherlands)
NASA Astrophysics Data System (ADS)
Niemegeers, Ignas; Baumann, Frank; Beuwer, Wim; Jordense, Marcel; Pras, Aiko; Schutte, Leon; Tracey, Ian
1992-01-01
Results of worked performed under the so called Cislan extension contract are presented. The adaptation of the Cislan 2 prototype design to an environment of interconnected Local Area Networks (LAN's) instead of a single 802.5 token ring LAN is considered. In order to extend the network architecture, the Interconnection Function (IF) protocol layer was subdivided into two protocol layers: a new IF layer, and below the Medium Enhancement (ME) protocol layer. Some small enhancements to the distributed bandwidth allocation protocol were developed, which in fact are also applicable to the 'normal' Cislan 2 system. The new services and protocols are described together with some scenarios and requirements for the new internetting Cislan 2 system. How to overcome the degradation of the quality of speech due to packet loss on the LAN subsystem was studied. Experiments were planned in order to measure this speech quality degradation. Simulations were performed of two Cislan subsystems, the bandwidth allocation protocol and the clock synchronization mechanism. Results on both simulations, performed on SUN workstations using QNAP as a simulation tool, are given. Results of the simulations of the clock synchronization mechanism, and results of the simulation of the distributed bandwidth allocation protocol are given.
Narayanan, Vignesh; Jagannathan, Sarangapani
2017-09-07
In this paper, a distributed control scheme for an interconnected system composed of uncertain input affine nonlinear subsystems with event triggered state feedback is presented by using a novel hybrid learning scheme-based approximate dynamic programming with online exploration. First, an approximate solution to the Hamilton-Jacobi-Bellman equation is generated with event sampled neural network (NN) approximation and subsequently, a near optimal control policy for each subsystem is derived. Artificial NNs are utilized as function approximators to develop a suite of identifiers and learn the dynamics of each subsystem. The NN weight tuning rules for the identifier and event-triggering condition are derived using Lyapunov stability theory. Taking into account, the effects of NN approximation of system dynamics and boot-strapping, a novel NN weight update is presented to approximate the optimal value function. Finally, a novel strategy to incorporate exploration in online control framework, using identifiers, is introduced to reduce the overall cost at the expense of additional computations during the initial online learning phase. System states and the NN weight estimation errors are regulated and local uniformly ultimately bounded results are achieved. The analytical results are substantiated using simulation studies.
NASA Astrophysics Data System (ADS)
Liang, J.; Sédillot, S.; Traverson, B.
1997-09-01
This paper addresses federation of a transactional object standard - Object Management Group (OMG) object transaction service (OTS) - with the X/Open distributed transaction processing (DTP) model and International Organization for Standardization (ISO) open systems interconnection (OSI) transaction processing (TP) communication protocol. The two-phase commit propagation rules within a distributed transaction tree are similar in the X/Open, ISO and OMG models. Building an OTS on an OSI TP protocol machine is possible because the two specifications are somewhat complementary. OTS defines a set of external interfaces without specific internal protocol machine, while OSI TP specifies an internal protocol machine without any application programming interface. Given these observations, and having already implemented an X/Open two-phase commit transaction toolkit based on an OSI TP protocol machine, we analyse the feasibility of using this implementation as a transaction service provider for OMG interfaces. Based on the favourable result of this feasibility study, we are implementing an OTS compliant system, which, by initiating the extensibility and openness strengths of OSI TP, is able to provide interoperability between X/Open DTP and OMG OTS models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazzie, K.E.; Williams, J.J.; Phillips, N.C.
2012-08-15
Sn-rich (Pb-free) alloys serve as electrical and mechanical interconnects in electronic packaging. It is critical to quantify the microstructures of Sn-rich alloys to obtain a fundamental understanding of their properties. In this work, the intermetallic precipitates in Sn-3.5Ag and Sn-0.7Cu, and globular lamellae in Sn-37Pb solder joints were visualized and quantified using 3D X-ray synchrotron tomography and focused ion beam (FIB) tomography. 3D reconstructions were analyzed to extract statistics on particle size and spatial distribution. In the Sn-Pb alloy the interconnectivity of Sn-rich and Pb-rich constituents was quantified. It will be shown that multiscale characterization using 3D X-ray and FIBmore » tomography enabled the characterization of the complex morphology, distribution, and statistics of precipitates and contiguous phases over a range of length scales. - Highlights: Black-Right-Pointing-Pointer Multiscale characterization by X-ray synchrotron and focused ion beam tomography. Black-Right-Pointing-Pointer Characterized microstructural features in several Sn-based alloys. Black-Right-Pointing-Pointer Quantified size, fraction, and clustering of microstructural features.« less
Ultralow-k nanoporous organosilicate dielectric films imprinted with dendritic spheres.
Lee, Byeongdu; Park, Young-Hee; Hwang, Yong-Taek; Oh, Weontae; Yoon, Jinhwan; Ree, Moonhor
2005-02-01
Integrated circuits that have improved functionality and speed in a smaller package and that consume less power are desired by the microelectronics industry as well as by end users, to increase device performance and reduce costs. The fabrication of high-performance integrated circuits requires the availability of materials with low or ultralow dielectric constant (low-k: k
Analysis of PURPA and solar energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, M.
The Public Utility Regulatory Policies Act of 1978 (PURPA) is designed to promote energy conservation, the efficient use of utility resources, and equitable rates. PURPA specifically directs the Federal Energy Regulatory Commission (FERC) to encourage small power production from renewable resources (and also cogeneration of electric energy as well as heat) by setting standards under which facilities qualify for interconnection, and guidelines for sales between utilities and independent facilities. The way FERC carries out this mandate may critically affect the development of solar alternatives to electric power production from fossil and nuclear resources. This report comments on proposed FERC regulationsmore » and suggests ways to encourage small power production within the PURPA mandate. In addition, some internal strains within PURPA are analyzed that seem to limit the effectiveness with which FERC can encourage independent facilities, and possible modifications to PURPA are suggested. 255 references.« less
Spreading of Cholera through Surface Water
NASA Astrophysics Data System (ADS)
Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.
2009-12-01
Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i) the spreading timescale, that is the time needed for the disease to spread and involve all the communities in the system; and ii) the epidemic timescale, defined by the duration of the epidemic in a single community. Our results suggest that in many cases of real-life epidemiological interest, timescales of disease dynamics may trigger outbreaks that significantly depart from the predictions of classical space-implicit compartmental models.
Virtual water trade and country vulnerability: A network perspective
NASA Astrophysics Data System (ADS)
Sartori, Martina; Schiavo, Stefano
2015-04-01
This work investigates the relationship between countries' participation in virtual water trade and their vulnerability to external shocks from a network perspective. In particular, we investigate whether (i) possible sources of local national crises may interact with the system, propagating through the network and affecting the other countries involved; (ii) the topological characteristics of the international agricultural trade network, translated into virtual water-equivalent flows, may favor countries' vulnerability to external crises. Our work contributes to the debate on the potential merits and risks associated with openness to trade in agricultural and food products. On the one hand, trade helps to ensure that even countries with limited water (and other relevant) resources have access to sufficient food and contribute to the global saving of water. On the other hand, there are fears that openness may increase the vulnerability to external shocks and thus make countries worse off. Here we abstract from political considerations about food sovereignty and independence from imports and focus instead on investigating whether the increased participation in global trade that the world has witnessed in the last 30 years has made the system more susceptible to large shocks. Our analysis reveals that: (i) the probability of larger supply shocks has not increased over time; (ii) the topological characteristics of the VW network are not such as to favor the systemic risk associated with shock propagation; and (iii) higher-order interconnections may reveal further important information about the structure of a network. Regarding the first result, fluctuations in output volumes, among the sources of shock analyzed here, are more likely to generate some instability. The first implication is that, on one side, past national or regional economic crises were not necessarily brought about or strengthened by global trade. The second, more remarkable, implication is that, on the other side, supporting a national policy of self-sufficiency in food production while progressively reducing the participation in international agricultural trade does not necessarily protect a country from economic instability. Moreover, it is well established in the literature that, over time, international food trade has favored more efficient use of water resources, at the global level. This fact, together with our conclusions, highlights the important role of international trade in driving the efficient allocation of water resources. To sum up, our evidence reveals that the increased globalization witnessed in the last 30 years is not associated with an increased frequency of adverse shocks (in either precipitation or food production). Furthermore, building on recent advances in network analysis that connect the stability of a complex system to the interaction between the distribution of shocks and the network topology, we find that the world is more interconnected, but not necessarily less stable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Jun-hyung
University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a hugemore » opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)« less
Anderson, Mark E.; Birren, Susan J.; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B.; Kanazawa, Hideaki; Paterson, David J.; Ripplinger, Crystal M.
2016-01-01
Abstract The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural–cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296
Command and Control for Large-Scale Hybrid Warfare Systems
2014-06-05
Prescribed by ANSI Std Z39-18 2 CK Pang et al. in C2 architectures was proposed using Petri nets (PNs).10 Liao in [11] reported an architecture for...arises from the chal- lenging and often-conflicting user requirements, scale, scope, inter-connectivity with different large-scale net - worked teams and...resources can be easily modelled and reconfigured by the notion of block matrix. At any time, the various missions of the net - worked team can be added
FPGA-based distributed computing microarchitecture for complex physical dynamics investigation.
Borgese, Gianluca; Pace, Calogero; Pantano, Pietro; Bilotta, Eleonora
2013-09-01
In this paper, we present a distributed computing system, called DCMARK, aimed at solving partial differential equations at the basis of many investigation fields, such as solid state physics, nuclear physics, and plasma physics. This distributed architecture is based on the cellular neural network paradigm, which allows us to divide the differential equation system solving into many parallel integration operations to be executed by a custom multiprocessor system. We push the number of processors to the limit of one processor for each equation. In order to test the present idea, we choose to implement DCMARK on a single FPGA, designing the single processor in order to minimize its hardware requirements and to obtain a large number of easily interconnected processors. This approach is particularly suited to study the properties of 1-, 2- and 3-D locally interconnected dynamical systems. In order to test the computing platform, we implement a 200 cells, Korteweg-de Vries (KdV) equation solver and perform a comparison between simulations conducted on a high performance PC and on our system. Since our distributed architecture takes a constant computing time to solve the equation system, independently of the number of dynamical elements (cells) of the CNN array, it allows us to reduce the elaboration time more than other similar systems in the literature. To ensure a high level of reconfigurability, we design a compact system on programmable chip managed by a softcore processor, which controls the fast data/control communication between our system and a PC Host. An intuitively graphical user interface allows us to change the calculation parameters and plot the results.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tan, Yuanlong; Lin, Yi; Han, Jianrui; Lee, Young
2015-09-07
Data center interconnection with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate data center services. In view of this, this study extends the data center resources to user side to enhance the end-to-end quality of service. We propose a novel data center service localization (DCSL) architecture based on virtual resource migration in software defined elastic data center optical network. A migration evaluation scheme (MES) is introduced for DCSL based on the proposed architecture. The DCSL can enhance the responsiveness to the dynamic end-to-end data center demands, and effectively reduce the blocking probability to globally optimize optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of our OpenFlow-based enhanced SDN testbed. The performance of MES scheme under heavy traffic load scenario is also quantitatively evaluated based on DCSL architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning scheme.
A mesoscale connectome of the mouse brain
Oh, Seung Wook; Harris, Julie A.; Ng, Lydia; Winslow, Brent; Cain, Nicholas; Mihalas, Stefan; Wang, Quanxin; Lau, Chris; Kuan, Leonard; Henry, Alex M.; Mortrud, Marty T.; Ouellette, Benjamin; Nguyen, Thuc Nghi; Sorensen, Staci A.; Slaughterbeck, Clifford R.; Wakeman, Wayne; Li, Yang; Feng, David; Ho, Anh; Nicholas, Eric; Hirokawa, Karla E.; Bohn, Phillip; Joines, Kevin M.; Peng, Hanchuan; Hawrylycz, Michael J.; Phillips, John W.; Hohmann, John G.; Wohnoutka, Paul; Gerfen, Charles R.; Koch, Christof; Bernard, Amy; Dang, Chinh; Jones, Allan R.; Zeng, Hongkui
2016-01-01
Comprehensive knowledge of the brain’s wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease. PMID:24695228
Metrics required for Power System Resilient Operations and Protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eshghi, K.; Johnson, B. K.; Rieger, C. G.
Today’s complex grid involves many interdependent systems. Various layers of hierarchical control and communication systems are coordinated, both spatially and temporally to achieve gird reliability. As new communication network based control system technologies are being deployed, the interconnected nature of these systems is becoming more complex. Deployment of smart grid concepts promises effective integration of renewable resources, especially if combined with energy storage. However, without a philosophical focus on resilience, a smart grid will potentially lead to higher magnitude and/or duration of disruptive events. The effectiveness of a resilient infrastructure depends upon its ability to anticipate, absorb, adapt to, and/ormore » rapidly recover from a potentially catastrophic event. Future system operations can be enhanced with a resilient philosophy through architecting the complexity with state awareness metrics that recognize changing system conditions and provide for an agile and adaptive response. The starting point for metrics lies in first understanding the attributes of performance that will be qualified. In this paper, we will overview those attributes and describe how they will be characterized by designing a distributed agent that can be applied to the power grid.« less
Electric power from offshore wind via synoptic-scale interconnection
Kempton, Willett; Pimenta, Felipe M.; Veron, Dana E.; Colle, Brian A.
2010-01-01
World wind power resources are abundant, but their utilization could be limited because wind fluctuates rather than providing steady power. We hypothesize that wind power output could be stabilized if wind generators were located in a meteorologically designed configuration and electrically connected. Based on 5 yr of wind data from 11 meteorological stations, distributed over a 2,500 km extent along the U.S. East Coast, power output for each hour at each site is calculated. Each individual wind power generation site exhibits the expected power ups and downs. But when we simulate a power line connecting them, called here the Atlantic Transmission Grid, the output from the entire set of generators rarely reaches either low or full power, and power changes slowly. Notably, during the 5-yr study period, the amount of power shifted up and down but never stopped. This finding is explained by examining in detail the high and low output periods, using reanalysis data to show the weather phenomena responsible for steady production and for the occasional periods of low power. We conclude with suggested institutions appropriate to create and manage the power system analyzed here. PMID:20368464
NASA Astrophysics Data System (ADS)
Elag, M.; Kumar, P.
2014-12-01
Often, scientists and small research groups collect data, which target to address issues and have limited geographic or temporal range. A large number of such collections together constitute a large database that is of immense value to Earth Science studies. Complexity of integrating these data include heterogeneity in dimensions, coordinate systems, scales, variables, providers, users and contexts. They have been defined as long-tail data. Similarly, we use "long-tail models" to characterize a heterogeneous collection of models and/or modules developed for targeted problems by individuals and small groups, which together provide a large valuable collection. Complexity of integrating across these models include differing variable names and units for the same concept, model runs at different time steps and spatial resolution, use of differing naming and reference conventions, etc. Ability to "integrate long-tail models and data" will provide an opportunity for the interoperability and reusability of communities' resources, where not only models can be combined in a workflow, but each model will be able to discover and (re)use data in application specific context of space, time and questions. This capability is essential to represent, understand, predict, and manage heterogeneous and interconnected processes and activities by harnessing the complex, heterogeneous, and extensive set of distributed resources. Because of the staggering production rate of long-tail models and data resulting from the advances in computational, sensing, and information technologies, an important challenge arises: how can geoinformatics bring together these resources seamlessly, given the inherent complexity among model and data resources that span across various domains. We will present a semantic-based framework to support integration of "long-tail" models and data. This builds on existing technologies including: (i) SEAD (Sustainable Environmental Actionable Data) which supports curation and preservation of long-tail data during its life-cycle; (ii) BrownDog, which enhances the machine interpretability of large unstructured and uncurated data; and (iii) CSDMS (Community Surface Dynamics Modeling System), which "componentizes" models by providing plug-and-play environment for models integration.
Seismic Retrofit for Electric Power Systems
Romero, Natalia; Nozick, Linda K.; Dobson, Ian; ...
2015-05-01
Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection,more » where seismic hazard stems from the New Madrid seismic zone.« less
Study of dispersed small wind systems interconnected with a utility distribution system
NASA Astrophysics Data System (ADS)
Curtice, D.; Patton, J.; Bohn, J.; Sechan, N.
1980-03-01
Operating problems for various penetrations of small wind systems connected to the distribution system on a utility are defined. Protection equipment, safety hazards, feeder voltage regulation, line losses, and voltage flicker problems are studied, assuming different small wind systems connected to an existing distribution system. To identify hardware deficiencies, possible solutions provided by off-the-shelf hardware and equipment are assessed. Results of the study indicate that existing techniques are inadequate for detecting isolated operation of a small wind system. Potential safety hazards posed by small wind systems are adequately handled by present work procedures although these procedures require a disconnect device at synchronous generator and self commutated inverter small wind systems.
NASA Astrophysics Data System (ADS)
Zhang, Xianjun
The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical output and recovered thermal output, which are affected by multiple factors and thus analyzed in different case studies. The results indicate that the designed typical gas system is capable of supplying sufficient natural gas for the DG normal operation, while the present water system cannot support the complete recovery of the exhaust heat from the DG units.
Operating health analysis of electric power systems
NASA Astrophysics Data System (ADS)
Fotuhi-Firuzabad, Mahmud
The required level of operating reserve to be maintained by an electric power system can be determined using both deterministic and probabilistic techniques. Despite the obvious disadvantages of deterministic approaches there is still considerable reluctance to apply probabilistic techniques due to the difficulty of interpreting a single numerical risk index and the lack of sufficient information provided by a single index. A practical way to overcome difficulties is to embed deterministic considerations in the probabilistic indices in order to monitor the system well-being. The system well-being can be designated as healthy, marginal and at risk. The concept of system well-being is examined and extended in this thesis to cover the overall area of operating reserve assessment. Operating reserve evaluation involves the two distinctly different aspects of unit commitment and the dispatch of the committed units. Unit commitment health analysis involves the determination of which unit should be committed to satisfy the operating criteria. The concepts developed for unit commitment health, margin and risk are extended in this thesis to evaluate the response well-being of a generating system. A procedure is presented to determine the optimum dispatch of the committed units to satisfy the response criteria. The impact on the response wellbeing being of variations in the margin time, required regulating margin and load forecast uncertainty are illustrated. The effects on the response well-being of rapid start units, interruptible loads and postponable outages are also illustrated. System well-being is, in general, greatly improved by interconnection with other power systems. The well-being concepts are extended to evaluate the spinning reserve requirements in interconnected systems. The interconnected system unit commitment problem is decomposed into two subproblems in which unit scheduling is performed in each isolated system followed by interconnected system evaluation. A procedure is illustrated to determine the well-being indices of the overall interconnected system. Under normal operating conditions, the system may also be able to carry a limited amount of interruptible load on top of its firm load without violating the operating criterion. An energy based approach is presented to determine the optimum interruptible load carrying capability in both the isolated and interconnected systems. Composite system spinning reserve assessment and composite system well-being are also examined in this research work. The impacts on the composite well-being of operating reserve considerations such as stand-by units, interruptible loads and the physical locations of these resources are illustrated. It is expected that the well-being framework and the concepts developed in this research work will prove extremely useful in the new competitive utility environment.
Index-based reactive power compensation scheme for voltage regulation
NASA Astrophysics Data System (ADS)
Dike, Damian Obioma
2008-10-01
Increasing demand for electrical power arising from deregulation and the restrictions posed to the construction of new transmission lines by environment, socioeconomic, and political issues had led to higher grid loading. Consequently, voltage instability has become a major concern, and reactive power support is vital to enhance transmission grid performance. Improved reactive power support to distressed grid is possible through the application of relatively unfamiliar emerging technologies of "Flexible AC Transmission Systems (FACTS)" devices and "Distributed Energy Resources (DERS)." In addition to these infrastructure issues, a lack of situational awareness by system operators can cause major power outages as evidenced by the August 14, 2003 widespread North American blackout. This and many other recent major outages have highlighted the inadequacies of existing power system indexes. In this work, a novel "Index-based reactive compensation scheme" appropriate for both on-line and off-line computation of grid status has been developed. A new voltage stability index (Ls-index) suitable for long transmission lines was developed, simulated, and compared to the existing two-machine modeled L-index. This showed the effect of long distance power wheeling amongst regional transmission organizations. The dissertation further provided models for index modulated voltage source converters (VSC) and index-based load flow analysis of both FACTS and microgrid interconnected power systems using the Newton-Raphson's load flow model incorporated with multi-FACTS devices. The developed package has been made user-friendly through the embodiment of interactive graphical user interface and implemented on the IEEE 14, 30, and 300 bus systems. The results showed reactive compensation has system wide-effect, provided readily accessible system status indicators, ensured seamless DERs interconnection through new islanding modes and enhanced VSC utilization. These outcomes may contribute to optimal utilization of compensation devices and available transfer capability as well as reduce system outages through better regulation of power operating voltages.
Medical Device Integration Model Based on the Internet of Things
Hao, Aiyu; Wang, Ling
2015-01-01
At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices are lack of mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical decices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop towards mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching between the data and the inspected at the device terminal in a timely manner. PMID:26628938
Medical Device Integration Model Based on the Internet of Things.
Hao, Aiyu; Wang, Ling
2015-01-01
At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices are lack of mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical decices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop towards mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching between the data and the inspected at the device terminal in a timely manner.
Wireless Interconnects for Intra-chip & Inter-chip Transmission
NASA Astrophysics Data System (ADS)
Narde, Rounak Singh
With the emergence of Internet of Things and information revolution, the demand of high performance computing systems is increasing. The copper interconnects inside the computing chips have evolved into a sophisticated network of interconnects known as Network on Chip (NoC) comprising of routers, switches, repeaters, just like computer networks. When network on chip is implemented on a large scale like in Multicore Multichip (MCMC) systems for High Performance Computing (HPC) systems, length of interconnects increases and so are the problems like power dissipation, interconnect delays, clock synchronization and electrical noise. In this thesis, wireless interconnects are chosen as the substitute for wired copper interconnects. Wireless interconnects offer easy integration with CMOS fabrication and chip packaging. Using wireless interconnects working at unlicensed mm-wave band (57-64GHz), high data rate of Gbps can be achieved. This thesis presents study of transmission between zigzag antennas as wireless interconnects for Multichip multicores (MCMC) systems and 3D IC. For MCMC systems, a four-chips 16-cores model is analyzed with only four wireless interconnects in three configurations with different antenna orientations and locations. Return loss and transmission coefficients are simulated in ANSYS HFSS. Moreover, wireless interconnects are designed, fabricated and tested on a 6'' silicon wafer with resistivity of 55O-cm using a basic standard CMOS process. Wireless interconnect are designed to work at 30GHz using ANSYS HFSS. The fabricated antennas are resonating around 20GHz with a return loss of less than -10dB. The transmission coefficients between antenna pair within a 20mm x 20mm silicon die is found to be varying between -45dB to -55dB. Furthermore, wireless interconnect approach is extended for 3D IC. Wireless interconnects are implemented as zigzag antenna. This thesis extends the work of analyzing the wireless interconnects in 3D IC with different configurations of antenna orientations and coolants. The return loss and transmission coefficients are simulated using ANSYS HFSS.
Quantification of the Water-Energy Nexus in Beijing City Based on Copula Analysis
NASA Astrophysics Data System (ADS)
Cai, J.; Cai, Y.
2017-12-01
Water resource and energy resource are intimately and highly interwoven, called ``water-energy nexus", which poses challenges for the sustainable management of water resource and energy resource. In this research, the Copula analysis method is first proposed to be applied in "water-energy nexus" field to clarify the internal relationship of water resource and energy resource, which is a favorable tool to explore the relevance among random variables. Beijing City, the capital of China, is chosen as a case study. The marginal distribution functions of water resource and energy resource are analyzed first. Then the Binary Copula function is employed to construct the joint distribution function of "water-energy nexus" to quantify the inherent relationship between water resource and energy resource. The results show that it is more appropriate to apply Lognormal distribution to establish the marginal distribution function of water resource. Meanwhile, Weibull distribution is more feasible to describe the marginal distribution function of energy resource. Furthermore, it is more suitable to adopt the Bivariate Normal Copula function to construct the joint distribution function of "water-energy nexus" in Beijing City. The findings can help to identify and quantify the "water-energy nexus". In addition, our findings can provide reasonable policy recommendations on the sustainable management of water resource and energy resource to promote regional coordinated development.
Competition and Cooperation of Distributed Generation and Power System
NASA Astrophysics Data System (ADS)
Miyake, Masatoshi; Nanahara, Toshiya
Advances in distributed generation technologies together with the deregulation of an electric power industry can lead to a massive introduction of distributed generation. Since most of distributed generation will be interconnected to a power system, coordination and competition between distributed generators and large-scale power sources would be a vital issue in realizing a more desirable energy system in the future. This paper analyzes competitions between electric utilities and cogenerators from the viewpoints of economic and energy efficiency based on the simulation results on an energy system including a cogeneration system. First, we examine best response correspondence of an electric utility and a cogenerator with a noncooperative game approach: we obtain a Nash equilibrium point. Secondly, we examine the optimum strategy that attains the highest social surplus and the highest energy efficiency through global optimization.
Zhang, L; He, Z Y; Zhang, Y Q; Jiang, Y H; Zhou, R
2016-10-01
In this work, interconnected porous Ti-HA biocomposites with enhanced bioactivity, high porosity and compressive strength were prepared by spark plasma sintering (SPS) and space holder method. Pore characteristics, mechanical properties, corrosion behaviors and in vitro bioactivity of the porous Ti-HA were investigated. Results showed that porous Ti-HA with 5-30wt% HA contents possessed not only low elastic modulus of 8.2-15.8GPa (close to that of human bone) but also high compressive strength (86-388MPa). Although the HA partially decomposed and formed secondary phases, the sintered porous Ti-HA can still be good bioactivity. The homogeneity and the thickness of apatite layer increased significantly with the increase of HA. But with the thickness of apatite layer increased, micro-cracks appeared on the surface of porous Ti-30%HA. A model was built to discuss the current distribution and sintering mechanism of HA on Ti matrix during SPS process. It indicated that the excessive addition of HA would deteriorate the sintering quality, thus decreasing the mechanical properties and corrosion resistance. However, the combination of interconnected pore characteristics, low elastic modulus, high compressive strength and enhanced bioactivity might make porous Ti-HA biocomposites prepared by SPS a promising candidate for hard tissue implants. Copyright © 2016 Elsevier B.V. All rights reserved.
Using Ant Colony Optimization for Routing in VLSI Chips
NASA Astrophysics Data System (ADS)
Arora, Tamanna; Moses, Melanie
2009-04-01
Rapid advances in VLSI technology have increased the number of transistors that fit on a single chip to about two billion. A frequent problem in the design of such high performance and high density VLSI layouts is that of routing wires that connect such large numbers of components. Most wire-routing problems are computationally hard. The quality of any routing algorithm is judged by the extent to which it satisfies routing constraints and design objectives. Some of the broader design objectives include minimizing total routed wire length, and minimizing total capacitance induced in the chip, both of which serve to minimize power consumed by the chip. Ant Colony Optimization algorithms (ACO) provide a multi-agent framework for combinatorial optimization by combining memory, stochastic decision and strategies of collective and distributed learning by ant-like agents. This paper applies ACO to the NP-hard problem of finding optimal routes for interconnect routing on VLSI chips. The constraints on interconnect routing are used by ants as heuristics which guide their search process. We found that ACO algorithms were able to successfully incorporate multiple constraints and route interconnects on suite of benchmark chips. On an average, the algorithm routed with total wire length 5.5% less than other established routing algorithms.
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Smith, MC
2016-09-01
This paper studies the problem of passive control of a multi-storey building subjected to an earthquake disturbance. The building is represented as a homogeneous mass chain model, i.e., a chain of identical masses in which there is an identical passive connection between neighbouring masses and a similar connection to a movable point. The paper considers passive interconnections of the most general type, which may require the use of inerters in addition to springs and dampers. It is shown that the scalar transfer functions from the disturbance to a given inter-storey drift can be represented as complex iterative maps. Using these expressions, two graphical approaches are proposed: one gives a method to achieve a prescribed value for the uniform boundedness of these transfer functions independent of the length of the mass chain, and the other is for a fixed length of the mass chain. A case study is presented to demonstrate the effectiveness of the proposed techniques using a 10-storey building model. The disturbance suppression performance of the designed interconnection is also verified for a 10-storey building model which has a different stiffness distribution but with the same undamped first natural frequency as the homogeneous model.
Comprehensive evaluation of global energy interconnection development index
NASA Astrophysics Data System (ADS)
Liu, Lin; Zhang, Yi
2018-04-01
Under the background of building global energy interconnection and realizing green and low-carbon development, this article constructed the global energy interconnection development index system which based on the current situation of global energy interconnection development. Through using the entropy method for the weight analysis of global energy interconnection development index, and then using gray correlation method to analyze the selected countries, this article got the global energy interconnection development index ranking and level classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-06-01
In response to a request from the Association of Southeast Asian Nations (ASEAN), the U.S. Trade and Development Program (TDP) conducted a definitional mission to evaluate the prospects of TDP funding for five Power Interconnection Projects in the ASEAN region. These projects included: Batam-Singapore Interconnection; Sumatera-Peninsular Malaysia Interconnection; Sarawak-West Kalimantan Interconnection; Sarawak-Brunei-Sabah Interconnection; and Java-Sumatera Interconnection. Based on a review of the proposed scopes of work for the projects and the discussions in the field, the report summarizes the technical details and the costs of implementation for the projects.
A high-speed GaAs MESFET optical controller
NASA Technical Reports Server (NTRS)
Claspy, P. C.; Bhasin, K. B.; Richard, M.; Bendett, M.; Gustafson, G.
1989-01-01
Optical interconnects are being considered for control signal distribution in phased array antennas. A packaged hybrid GaAs optical controller with a 1:16 demultiplexed output that is suitable for this application is described. The controller, which was fabricated using enhancement/depletion mode MESFET technology, operates at demultiplexer-limited input data rates up to 305 Mb/s and requires less than 200 microW optical input power.
Expeditionary Oblong Mezzanine
2016-03-01
Operating System OSI Open Systems Interconnection OS X Operating System Ten PDU Power Distribution Unit POE Power Over Ethernet xvii SAAS ...providing infrastructure as a service (IaaS) and software as a service ( SaaS ) cloud computing technologies. IaaS is a way of providing computing services...such as servers, storage, and network equipment services (Mell & Grance, 2009). SaaS is a means of providing software and applications as an on
Distributed Power Systems for Sustainable Energy
2012-10-01
capital investment in state-of- the-art cogeneration technologies, renewable sources, energy storage, and interconnection hardware and software. It is...8 capacity may not be well suited to support building or campus-scale microgrids. This is because new thermal and electrical energy storage devices...constraints, as well as the site location, weather, and consumption patterns. These factors change over the life of the energy microgrid. • Tradeoffs
A novel digital pulse processing architecture for nuclear instrumentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moline, Yoann; Thevenin, Mathieu; Corre, Gwenole
The field of nuclear instrumentation covers a wide range of applications, including counting, spectrometry, pulse shape discrimination and multi-channel coincidence. These applications are the topic of many researches, new algorithms and implementations are constantly proposed thanks to advances in digital signal processing. However, these improvements are not yet implemented in instrumentation devices. This is especially true for neutron-gamma discrimination applications which traditionally use charge comparison method while literature proposes other algorithms based on frequency domain or wavelet theory which show better performances. Another example is pileups which are generally rejected while pileup correction algorithms also exist. These processes are traditionallymore » performed offline due to two issues. The first is the Poissonian characteristic of the signal, composed of random arrival pulses which requires to current architectures to work in data flow. The second is the real-time requirement, which implies losing pulses when the pulse rate is too high. Despite the possibility of treating the pulses independently from each other, current architectures paralyze the acquisition of the signal during the processing of a pulse. This loss is called dead-time. These two issues have led current architectures to use dedicated solutions based on re-configurable components like Field Programmable Gate Arrays (FPGAs) to overcome the need of performance necessary to deal with dead-time. However, dedicated hardware algorithm implementations on re-configurable technologies are complex and time-consuming. For all these reasons, a programmable Digital pulse Processing (DPP) architecture in a high level language such as Cor C++ which can reduce dead-time would be worthwhile for nuclear instrumentation. This would reduce prototyping and test duration by reducing the level of hardware expertise to implement new algorithms. However, today's programmable solutions do not meet the need of performance to operate online and not allow scaling with the increase in the number of measurement channel. That is why an innovative DPP architecture is proposed in this paper. This architecture is able to overcome dead-time while being programmable and is flexible with the number of measurement channel. Proposed architecture is based on an innovative execution model for pulse processing applications which can be summarized as follow. The signal is not composed of pulses only, consequently, pulses processing does not have to operate on the entire signal. Therefore, the first step of our proposal is pulse extraction by the use of dedicated components named pulse extractors. The triggering step can be achieved after the analog-to-digital conversion without any signal shaping or filtering stages. Pileup detection and accurate pulse time stamping are done at this stage. Any application downstream this step can work on adaptive variable-sized array of samples simplifying pulse processing methods. Then, once the data flow is broken, it is possible to distribute pulses on Functional Units (FUs) which perform processing. As the date of each pulse is known, they can be processed individually out-of-order to provide the results. To manage the pulses distribution, a scheduler and an interconnection network are used. pulses are distributed on the first FU which is not busy without congesting the interconnection network. For this reason, the process duration does not result anymore in dead-time if there are enough FUs. FUs are designed to be standalone and to comprises at least a programmable general purpose processor (ARM, Microblaze) allowing the implementation of complex algorithms without any modification of the hardware. An acquisition chain is composed of a succession of algorithms which lead to organize our FUs as a software macro-pipeline, A simple approach consists in assigning one algorithm per FU. Consequently, the global latency becomes the worst latency of algorithms execution on FU. Moreover, as algorithms are executed locally - i.e. on a FU - this approach limits shared memory requirement. To handle multichannel, we propose FUs sharing, this approach maximize the chance to find a non-busy FU to process an incoming pulse. This is possible since each channel receive random event independently, the pulse extractors associated to them do not necessarily need to access simultaneously to all Computing resources at the same time to distribute their pulses. The major contribution of this paper is the proposition of an execution model and its associated hardware programmable architecture for digital pulse processing that can handle multiple acquisition channels while maintaining the scalability thanks to the use of shared resources. This execution model and associated architecture are validated by simulation of a cycle accurate architecture SystemC model. Proposed architecture shows promising results in terms of scalability while maintaining zero dead-time. This work also permit the sizing of hardware resources requirement required for a predefined set of applications. Future work will focus on the interconnection network and a scheduling policy that can exploit the variable-length of pulses. Then, the hardware implementation of this architecture will be performed and tested for a representative set of application.« less
Algorithm to determine the percolation largest component in interconnected networks.
Schneider, Christian M; Araújo, Nuno A M; Herrmann, Hans J
2013-04-01
Interconnected networks have been shown to be much more vulnerable to random and targeted failures than isolated ones, raising several interesting questions regarding the identification and mitigation of their risk. The paradigm to address these questions is the percolation model, where the resilience of the system is quantified by the dependence of the size of the largest cluster on the number of failures. Numerically, the major challenge is the identification of this cluster and the calculation of its size. Here, we propose an efficient algorithm to tackle this problem. We show that the algorithm scales as O(NlogN), where N is the number of nodes in the network, a significant improvement compared to O(N(2)) for a greedy algorithm, which permits studying much larger networks. Our new strategy can be applied to any network topology and distribution of interdependencies, as well as any sequence of failures.
Template-directed fabrication of porous gas diffusion layer for magnesium air batteries
NASA Astrophysics Data System (ADS)
Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping
2015-11-01
The uniform micropore distribution in the gas diffusion layers (GDLs) of the air-breathing cathode is very important for the metal air batteries. In this work, the super-hydrophobic GDL with the interconnected regular pores is prepared by a facile silica template method, and then the electrochemical properties of the Mg air batteries containing these GDLs are investigated. The results indicate that the interconnected and uniform pore structure, the available water-breakout pressure and the high gas permeability coefficient of the GDL can be obtained by the application of 30% silica template. The maximum power density of the Mg air battery containing the GDL with 30% regular pores reaches 88.9 mW cm-2 which is about 1.2 times that containing the pristine GDL. Furthermore, the GDL with 30% regular pores exhibits the improved the long term hydrophobic stability.
Catalytic bipolar interconnection plate for use in a fuel cell
Lessing, Paul A.
1996-01-01
A bipolar interconnection plate for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni.sub.3 Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000-30,000 psi, and heated to about 600.degree.-1000.degree. C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques.
Catalytic bipolar interconnection plate for use in a fuel cell
Lessing, P.A.
1996-03-05
A bipolar interconnection plate is described for use between adjacent fuel cell units in a stacked fuel cell assembly. Each plate is manufactured from an intermetallic composition, examples of which include NiAl or Ni{sub 3}Al which can catalyze steam reforming of hydrocarbons. Distributed within the intermetallic structure of the plate is a ceramic filler composition. The plate includes a first side with gas flow channels therein and a second side with fuel flow channels therein. A protective coating is applied to the first side, with exemplary coatings including strontium-doped or calcium-doped lanthanum chromite. To produce the plate, Ni and Al powders are combined with the filler composition, compressed at a pressure of about 10,000--30,000 psi, and heated to about 600--1000 C. The coating is then applied to the first side of the completed plate using liquid injection plasma deposition or other deposition techniques. 6 figs.
Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis
NASA Astrophysics Data System (ADS)
Zhang, Zhenzhen; Wu, Shengnan; Feng, Jie
2011-01-01
Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-α-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.
NASA Astrophysics Data System (ADS)
Dubolazov, O. V.; Ushenko, V. O.; Trifoniuk, L.; Ushenko, Yu. O.; Zhytaryuk, V. G.; Prydiy, O. G.; Grytsyuk, M.; Kushnerik, L.; Meglinskiy, I.
2017-09-01
A new technique of Mueller-matrix mapping of polycrystalline structure of histological sections of biological tissues is suggested. The algorithms of reconstruction of distribution of parameters of linear and circular birefringence of prostate histological sections are found. The interconnections between such distributions and parameters of linear and circular birefringence of prostate tissue histological sections are defined. The comparative investigations of coordinate distributions of phase anisotropy parameters formed by fibrillar networks of prostate tissues of different pathological states (adenoma and carcinoma) are performed. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of coordinate distributions of the value of linear and circular birefringence are defined. The objective criteria of cause of Benign and malignant conditions differentiation are determined.
Access to medicines from a health system perspective
Bigdeli, Maryam; Jacobs, Bart; Tomson, Goran; Laing, Richard; Ghaffar, Abdul; Dujardin, Bruno; Van Damme, Wim
2013-01-01
Most health system strengthening interventions ignore interconnections between systems components. In particular, complex relationships between medicines and health financing, human resources, health information and service delivery are not given sufficient consideration. As a consequence, populations' access to medicines (ATM) is addressed mainly through fragmented, often vertical approaches usually focusing on supply, unrelated to the wider issue of access to health services and interventions. The objective of this article is to embed ATM in a health system perspective. For this purpose, we perform a structured literature review: we examine existing ATM frameworks, review determinants of ATM and define at which level of the health system they are likely to occur; we analyse to which extent existing ATM frameworks take into account access constraints at different levels of the health system. Our findings suggest that ATM barriers are complex and interconnected as they occur at multiple levels of the health system. Existing ATM frameworks only partially address the full range of ATM barriers. We propose three essential paradigm shifts that take into account complex and dynamic relationships between medicines and other components of the health system. A holistic view of demand-side constraints in tandem with consideration of multiple and dynamic relationships between medicines and other health system resources should be applied; it should be recognized that determinants of ATM are rooted in national, regional and international contexts. These are schematized in a new framework proposing a health system perspective on ATM. PMID:23174879
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weston, F.; Harrington, C.; Moskovitz, D.
Distributed resources can provide cost-effective reliability and energy services - in many cases, obviating the need for more expensive investments in wires and central station electricity generating facilities. Given the unique features of distributed resources, the challenge facing policymakers today is how to restructure wholesale markets for electricity and related services so as to reveal the full value that distributed resources can provide to the electric power system (utility grid). This report looks at the functions that distributed resources can perform and examines the barriers to them. It then identifies a series of policy and operational approaches to promoting DRmore » in wholesale markets. This report is one in the State Electricity Regulatory Policy and Distributed Resources series developed under contract to NREL (see Annual Technical Status Report of the Regulatory Assistance Project: September 2000-September 2001, NREL/SR-560-32733). Other titles in this series are: (1) Distributed Resource Distribution Credit Pilot Programs - Revealing the Value to Consumers and Vendors, NREL/SR-560-32499; (2) Distributed Resources and Electric System Reliability, NREL/SR-560-32498; (3) Distribution System Cost Methodologies for Distributed Generation, NREL/SR-560-32500; (4) Distribution System Cost Methodologies for Distributed Generation Appendices, NREL/SR-560-32501« less
Reconfigurable optical interconnections via dynamic computer-generated holograms
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor); Zhou, Shaomin (Inventor)
1994-01-01
A system is proposed for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for largescale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.
Flexible interconnects for fuel cell stacks
Lenz, David J.; Chung, Brandon W.; Pham, Ai Quoc
2004-11-09
An interconnect that facilitates electrical connection and mechanical support with minimal mechanical stress for fuel cell stacks. The interconnects are flexible and provide mechanically robust fuel cell stacks with higher stack performance at lower cost. The flexible interconnects replace the prior rigid rib interconnects with flexible "fingers" or contact pads which will accommodate the imperfect flatness of the ceramic fuel cells. Also, the mechanical stress of stacked fuel cells will be smaller due to the flexibility of the fingers. The interconnects can be one-sided or double-sided.
Electrode and interconnect for miniature fuel cells using direct methanol feed
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor)
2004-01-01
An improved system for interconnects in a fuel cell. In one embodiment, the membranes are located in parallel with one another, and current flow between them is facilitated by interconnects. In another embodiment, all of the current flow is through the interconnects which are located on the membranes. The interconnects are located between two electrodes.
Local interconnection neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jiajun; Zhang Li; Yan Dapen
1993-06-01
The idea of a local interconnection neural network (LINN) is presentd and compared with the globally interconnected Hopfield model. Under the storage limit requirement, LINN is shown to offer the same associative memory capability as the global interconnection neural network while having a much smaller interconnection matrix. LINN can be readily implemented optically using the currently available spatial light modulators. 15 refs.
76 FR 16405 - Notice of Attendance at PJM INterconnection, L.L.C., Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... INterconnection, L.L.C., Meetings The Federal Energy Regulatory Commission (Commission) hereby gives notice that members of the Commission and Commission staff may attend upcoming PJM Interconnection, L.L.C., (PJM...: Docket No. EL05-121, PJM Interconnection, L.L.C. Docket No. ER06-456, PJM Interconnection, L.L.C. Docket...
Fiber bundle probes for interconnecting miniaturized medical imaging devices
NASA Astrophysics Data System (ADS)
Zamora, Vanessa; Hofmann, Jens; Marx, Sebastian; Herter, Jonas; Nguyen, Dennis; Arndt-Staufenbiel, Norbert; Schröder, Henning
2017-02-01
Miniaturization of medical imaging devices will significantly improve the workflow of physicians in hospitals. Photonic integrated circuit (PIC) technologies offer a high level of miniaturization. However, they need fiber optic interconnection solutions for their functional integration. As part of European funded project (InSPECT) we investigate fiber bundle probes (FBPs) to be used as multi-mode (MM) to single-mode (SM) interconnections for PIC modules. The FBP consists of a set of four or seven SM fibers hexagonally distributed and assembled into a holder that defines a multicore connection. Such a connection can be used to connect MM fibers, while each SM fiber is attached to the PIC module. The manufacturing of these probes is explored by using well-established fiber fusion, epoxy adhesive, innovative adhesive and polishing techniques in order to achieve reliable, low-cost and reproducible samples. An innovative hydrofluoric acid-free fiber etching technology has been recently investigated. The preliminary results show that the reduction of the fiber diameter shows a linear behavior as a function of etching time. Different etch rate values from 0.55 μm/min to 2.3 μm/min were found. Several FBPs with three different type of fibers have been optically interrogated at wavelengths of 630nm and 1550nm. Optical losses are found of approx. 35dB at 1550nm for FBPs composed by 80μm fibers. Although FBPs present moderate optical losses, they might be integrated using different optical fibers, covering a broad spectral range required for imaging applications. Finally, we show the use of FBPs as promising MM-to-SM interconnects for real-world interfacing to PIC's.
Printed interconnects for photovoltaic modules
Fields, J. D.; Pach, G.; Horowitz, K. A. W.; ...
2016-10-21
Film-based photovoltaic modules employ monolithic interconnects to minimize resistance loss and enhance module voltage via series connection. Conventional interconnect construction occurs sequentially, with a scribing step following deposition of the bottom electrode, a second scribe after deposition of absorber and intermediate layers, and a third following deposition of the top electrode. This method produces interconnect widths of about 300 µm, and the area comprised by interconnects within a module (generally about 3%) does not contribute to power generation. The present work reports on an increasingly popular strategy capable of reducing the interconnect width to less than 100 µm: printing interconnects.more » Cost modeling projects a savings of about $0.02/watt for CdTe module production through the use of printed interconnects, with savings coming from both reduced capital expense and increased module power output. Printed interconnect demonstrations with copper-indium-gallium-diselenide and cadmium-telluride solar cells show successful voltage addition and miniaturization down to 250 µm. As a result, material selection guidelines and considerations for commercialization are discussed.« less
Biography of a technology: North America's power grid through the twentieth century
NASA Astrophysics Data System (ADS)
Cohn, Julie A.
North Americans are among the world's most intense consumers of electricity. The vast majority in the United States and Canada access power from a network of transmission lines that stretch from the East Coast to the West Coast and from Canada to the Mexican Baja. This network, known as the largest interconnected machine in the world, evolved during the first two thirds of the twentieth century. With the very first link-ups occurring at the end of the 1890s, a wide variety of public and private utilities extended power lines to reach markets, access and manage energy resources, balance loads, realize economies of scale, provide backup power, and achieve economic stability. In 1967, utility managers and the Bureau of Reclamation connected the expansive eastern and western power pools to create the North American grid. Unlike other power grids around the world, built by single, centrally controlled entities, this large technological system emerged as the result of multiple decisions across eighty-five years of development, and negotiations for control at the economic, political, and technological levels. This dissertation describes the process of building the North American grid and the paradoxes the resulting system represents. While the grid functions as a single machine moving electricity across the continent, it is owned by many independent entities. Smooth operations suggest that the grid is a unified system; however, it operates under shared management and divided authority. In addition, although a single power network seems the logical outcome of electrification, in fact it was assembled through aggregation, not planning. Interconnections intentionally increase the robustness of individual sub-networks, yet the system itself is fragile, as demonstrated by major cascading power outages. Finally, the transmission network facilitates increased use of energy resources and consumption of power, but at certain points in the past, it also served as a technology of conservation. While this project explores the history of how and why North America has a huge interconnected power system, it also offers insights into the challenges the grid poses for our energy future.
NASA Astrophysics Data System (ADS)
Song, Da
2008-02-01
One of the major challenges confronting the current integrated circuits (IC) industry is the metal "interconnect bottleneck". To overcome this obstacle, free space optical interconnects (FSOIs) can be used to address the demand for high speed data transmission, multi-functionality and multi-dimensional integration for the next generation IC. One of the crucial elements in FSOIs system is to develop a high performance and flexible optical network to transform the incoming optical signal into a distributed set of optical signals whose direction, alignment and power can be independently controlled. Among all the optical materials for the realization of FSOI components, porous silicon (PSi) is one of the most promising candidates because of its unique optical properties, flexible fabrication methods and integration with conventional IC material sets. PSi-based Distributed Bragg Reflector (DBR) and Fabry-Perot (F-P) structures with unique optical properties are realized by electrochemical etching of silicon. By incorporating PSi optical structures with Micro-Opto-Electro-Mechanical-Systems (MOEMS), several components required for FSOI have been developed. The first type of component is the out-of-plane freestanding optical switch. Implementing a PSi DBR structure as an optically active region, the device can realize channel selection by changing the tilting angle of the micromirror supported by the thermal bimorph actuator. All the fabricated optical switches have reached kHz working frequency and life time of millions of cycles. The second type of component is the in-plane tunable optical filter. By introducing PSi F-P structure into the in-plane PSi film, a thermally tunable optical filter with a sensitivity of 7.9nm/V has been realized for add/drop optical signal selection. Also, for the first time, a new type of PSi based reconfigurable diffractive optical element (DOE) has been developed. By using patterned photoresist as a protective mask for electrochemical etching, the freestanding PSi-based MOEMS DOE has been created as a beam splitter to redistribute the incoming optical signal with onto desired detector arrays. All the developed devices are realized in array fashion and can be addressed and controlled individually. The combination of PSi and MOEMS opens the door for a new generation of silicon compatible optical interconnects.
Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)
1996-01-01
A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.
Planar high density sodium battery
Lemmon, John P.; Meinhardt, Kerry D.
2016-03-01
A method of making a molten sodium battery is disclosed. A first metallic interconnect frame having a first interconnect vent hole is provided. A second metallic interconnect frame having a second interconnect vent hole is also provided. An electrolyte plate having a cathode vent hole and an anode vent hole is interposed between the metallic interconnect frames. The metallic interconnect frames and the electrolyte plate are sealed thereby forming gaseous communication between an anode chamber through the anode vent hole and gaseous communication between a cathode chamber through the cathode vent hole.
Resource allocation for epidemic control in metapopulations.
Ndeffo Mbah, Martial L; Gilligan, Christopher A
2011-01-01
Deployment of limited resources is an issue of major importance for decision-making in crisis events. This is especially true for large-scale outbreaks of infectious diseases. Little is known when it comes to identifying the most efficient way of deploying scarce resources for control when disease outbreaks occur in different but interconnected regions. The policy maker is frequently faced with the challenge of optimizing efficiency (e.g. minimizing the burden of infection) while accounting for social equity (e.g. equal opportunity for infected individuals to access treatment). For a large range of diseases described by a simple SIRS model, we consider strategies that should be used to minimize the discounted number of infected individuals during the course of an epidemic. We show that when faced with the dilemma of choosing between socially equitable and purely efficient strategies, the choice of the control strategy should be informed by key measurable epidemiological factors such as the basic reproductive number and the efficiency of the treatment measure. Our model provides new insights for policy makers in the optimal deployment of limited resources for control in the event of epidemic outbreaks at the landscape scale.
PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data.
Hernández-de-Diego, Rafael; Tarazona, Sonia; Martínez-Mira, Carlos; Balzano-Nogueira, Leandro; Furió-Tarí, Pedro; Pappas, Georgios J; Conesa, Ana
2018-05-25
The increasing availability of multi-omic platforms poses new challenges to data analysis. Joint visualization of multi-omics data is instrumental in better understanding interconnections across molecular layers and in fully utilizing the multi-omic resources available to make biological discoveries. We present here PaintOmics 3, a web-based resource for the integrated visualization of multiple omic data types onto KEGG pathway diagrams. PaintOmics 3 combines server-end capabilities for data analysis with the potential of modern web resources for data visualization, providing researchers with a powerful framework for interactive exploration of their multi-omics information. Unlike other visualization tools, PaintOmics 3 covers a comprehensive pathway analysis workflow, including automatic feature name/identifier conversion, multi-layered feature matching, pathway enrichment, network analysis, interactive heatmaps, trend charts, and more. It accepts a wide variety of omic types, including transcriptomics, proteomics and metabolomics, as well as region-based approaches such as ATAC-seq or ChIP-seq data. The tool is freely available at www.paintomics.org.
High-Penetration PV Integration Handbook for Distribution Engineers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seguin, Rich; Woyak, Jeremy; Costyk, David
2016-01-01
This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’smore » service territory through a program approved by the California Public Utility Commission (CPUC).« less
Scalable Technology for a New Generation of Collaborative Applications
2007-04-01
of the International Symposium on Distributed Computing (DISC), Cracow, Poland, September 2005. Classic Paxos vs. Fast Paxos: Caveat Emptor, Flavio...grou or able and fast multicast primitive to layer under high-level latency across dimensions as varied as group size [10, 17],abstractions such as...servers, networked via fast , dedicated interconnects. The system to subscribe to a fraction of the equities on the software stack running on a single
Telecommunications Services Required by Distributed and Interconnected Office Centers.
1980-07-20
systems and communications management systems which are on the market . It is expected that these systems and the capabilities they offer will be available...saw the possibilities of marketing the service, but was delayed in its implementation because the high capacity communication network to support the...Jersey 07666. [181 Washburn, C, Unfolding Electronic Mail Market Leads to Integrated Info Systems, Communications News, November 1979, page 56. /191
Fan-out Estimation in Spin-based Quantum Computer Scale-up.
Nguyen, Thien; Hill, Charles D; Hollenberg, Lloyd C L; James, Matthew R
2017-10-17
Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 10 2 -10 5 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation.
Cappella, Elise; Kim, Ha Yeon; Neal, Jennifer W.; Jackson, Daisy R.
2014-01-01
Applying social capital and systems theories of social processes, we examine the role of the classroom peer context in the behavioral engagement of low-income students (N = 80) in urban elementary school classrooms (N = 22). Systematic child observations were conducted to assess behavioral engagement among second to fifth graders in the fall and spring of the same school year. Classroom observations, teacher and child questionnaires, and social network data were collected in the fall. Confirming prior research, results from multilevel models indicate that students with more behavioral difficulties or less academic motivation in the fall were less behaviorally engaged in the spring. Extending prior research, classrooms with more equitably distributed and interconnected social ties—social network equity—had more behaviorally engaged students in the spring, especially in classrooms with higher levels of observed organization (i.e., effective management of behavior, time, and attention). Moreover, social network equity attenuated the negative relation between student behavioral difficulties and behavioral engagement, suggesting that students with behavioral difficulties were less disengaged in classrooms with more equitably distributed and interconnected social ties. Findings illuminate the need to consider classroom peer contexts in future research and intervention focused on the behavioral engagement of students in urban elementary schools. PMID:24081319
Thaenkham, U; Phuphisut, O; Nuamtanong, S; Yoonuan, T; Sa-Nguankiat, S; Vonghachack, Y; Belizario, V Y; Dung, D T; Dekumyoy, P; Waikagul, J
2017-09-01
Haplorchis taichui is an intestinal heterophyid fluke that is pathogenic to humans. It is widely distributed in Asia, with a particularly high prevalence in Indochina. Previous work revealed that the lack of gene flow between three distinct populations of Vietnamese H. taichui can be attributed to their geographic isolation with no interconnected river basins. To test the hypothesis that interconnected river basins allow gene flow between otherwise isolated populations of H. taichui, as previously demonstrated for another trematode, Opisthorchis viverrini, we compared the genetic structures of seven populations of H. taichui from various localities in the lower Mekong Basin, in Thailand and Laos, with those in Vietnam, using the mitochondrial cytochrome c oxidase subunit 1 (COX1) gene. To determine the gene flow between these H. taichui populations, we calculated their phylogenetic relationships, genetic distances and haplotype diversity. Each population showed very low nucleotide diversity at this locus. However, high levels of genetic differentiation between the populations indicated very little gene flow. A phylogenetic analysis divided the populations into four clusters that correlated with the country of origin. The negligible gene flow between the Thai and Laos populations, despite sharing the Mekong Basin, caused us to reject our hypothesis. Our data suggest that the distribution of H. taichui populations was incidentally associated with national borders.
Performance of distributed multiscale simulations
Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.
2014-01-01
Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258
Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.
2017-04-04
An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.
Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.
2016-05-03
An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.
Distributed Processing of Sentinel-2 Products using the BIGEARTH Platform
NASA Astrophysics Data System (ADS)
Bacu, Victor; Stefanut, Teodor; Nandra, Constantin; Mihon, Danut; Gorgan, Dorian
2017-04-01
The constellation of observational satellites orbiting around Earth is constantly increasing, providing more data that need to be processed in order to extract meaningful information and knowledge from it. Sentinel-2 satellites, part of the Copernicus Earth Observation program, aim to be used in agriculture, forestry and many other land management applications. ESA's SNAP toolbox can be used to process data gathered by Sentinel-2 satellites but is limited to the resources provided by a stand-alone computer. In this paper we present a cloud based software platform that makes use of this toolbox together with other remote sensing software applications to process Sentinel-2 products. The BIGEARTH software platform [1] offers an integrated solution for processing Earth Observation data coming from different sources (such as satellites or on-site sensors). The flow of processing is defined as a chain of tasks based on the WorDeL description language [2]. Each task could rely on a different software technology (such as Grass GIS and ESA's SNAP) in order to process the input data. One important feature of the BIGEARTH platform comes from this possibility of interconnection and integration, throughout the same flow of processing, of the various well known software technologies. All this integration is transparent from the user perspective. The proposed platform extends the SNAP capabilities by enabling specialists to easily scale the processing over distributed architectures, according to their specific needs and resources. The software platform [3] can be used in multiple configurations. In the basic one the software platform runs as a standalone application inside a virtual machine. Obviously in this case the computational resources are limited but it will give an overview of the functionalities of the software platform, and also the possibility to define the flow of processing and later on to execute it on a more complex infrastructure. The most complex and robust configuration is based on cloud computing and allows the installation on a private or public cloud infrastructure. In this configuration, the processing resources can be dynamically allocated and the execution time can be considerably improved by the available virtual resources and the number of parallelizable sequences in the processing flow. The presentation highlights the benefits and issues of the proposed solution by analyzing some significant experimental use cases. Main references for further information: [1] BigEarth project, http://cgis.utcluj.ro/projects/bigearth [2] Constantin Nandra, Dorian Gorgan: "Defining Earth data batch processing tasks by means of a flexible workflow description language", ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-4, 59-66, (2016). [3] Victor Bacu, Teodor Stefanut, Dorian Gorgan, "Adaptive Processing of Earth Observation Data on Cloud Infrastructures Based on Workflow Description", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp.444-454, (2015).
NASA Astrophysics Data System (ADS)
Mitchell, T. M.; Backeberg, N. R.; Iacoviello, F.; Rittner, M.; Jones, A. P.; Wheeler, J.; Day, R.; Vermeesch, P.; Shearing, P. R.; Striolo, A.
2017-12-01
The permeability of shales is important, because it controls where oil and gas resources can migrate to and where in the Earth hydrocarbons are ultimately stored. Shales have a well-known anisotropic directional permeability that is inherited from the depositional layering of sedimentary laminations, where the highest permeability is measured parallel to laminations and the lowest permeability is perpendicular to laminations. We combine state of the art laboratory permeability experiments with high-resolution X-ray computed tomography and for the first time can quantify the three-dimensional interconnected pathways through a rock that define the anisotropic behaviour of shales. Experiments record a physical anisotropy in permeability of one to two orders of magnitude. Two- and three-dimensional analyses of micro- and nano-scale X-ray computed tomography illuminate that the directional anisotropy is fundamentally controlled by the bulk rock mineral geometry, which determines the finite length (or tortuosity) of the interconnected pathways through the porous/permeable phases in shales. Understanding the mineral-scale control on permeability will allow for better estimations of the extent of recoverable reserves in shale gas plays globally.
Capacity Expansion Modeling for Storage Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Elaine; Stoll, Brady; Mai, Trieu
2017-04-03
The Resource Planning Model (RPM) is a capacity expansion model designed for regional power systems and high levels of renewable generation. Recent extensions capture value-stacking for storage technologies, including batteries and concentrating solar power with storage. After estimating per-unit capacity value and curtailment reduction potential, RPM co-optimizes investment decisions and reduced-form dispatch, accounting for planning reserves; energy value, including arbitrage and curtailment reduction; and three types of operating reserves. Multiple technology cost scenarios are analyzed to determine level of deployment in the Western Interconnection under various conditions.
Smart City Energy Interconnection Technology Framework Preliminary Research
NASA Astrophysics Data System (ADS)
Zheng, Guotai; Zhao, Baoguo; Zhao, Xin; Li, Hao; Huo, Xianxu; Li, Wen; Xia, Yu
2018-01-01
to improve urban energy efficiency, improve the absorptive ratio of new energy resources and renewable energy sources, and reduce environmental pollution and other energy supply and consumption technology framework matched with future energy restriction conditions and applied technology level are required to be studied. Relative to traditional energy supply system, advanced information technology-based “Energy Internet” technical framework may give play to energy integrated application and load side interactive technology advantages, as a whole optimize energy supply and consumption and improve the overall utilization efficiency of energy.
Ethical evaluation of decision-making for distribution of health resources in China.
Guo-Ping, Wang
2007-06-01
Since distribution of health resources involves various aspects of ethics, the evaluation of ethical problems should be emphasised in health decisions using criteria of fairness and fundamental principles of ethics correctly understood and chosen in order to solve the real conflicts evident in the distribution of health resources and to enable fair and reasonable distribution of health resources.