Sample records for interdependent multi-layer networks

  1. Interdependent Multi-Layer Networks: Modeling and Survivability Analysis with Applications to Space-Based Networks

    PubMed Central

    Castet, Jean-Francois; Saleh, Joseph H.

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the results highlight the importance of the reliability of the wireless links between spacecraft (nodes) to enable any survivability improvements for space-based networks. PMID:23599835

  2. Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks.

    PubMed

    Castet, Jean-Francois; Saleh, Joseph H

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the results highlight the importance of the reliability of the wireless links between spacecraft (nodes) to enable any survivability improvements for space-based networks.

  3. CNNH_PSS: protein 8-class secondary structure prediction by convolutional neural network with highway.

    PubMed

    Zhou, Jiyun; Wang, Hongpeng; Zhao, Zhishan; Xu, Ruifeng; Lu, Qin

    2018-05-08

    Protein secondary structure is the three dimensional form of local segments of proteins and its prediction is an important problem in protein tertiary structure prediction. Developing computational approaches for protein secondary structure prediction is becoming increasingly urgent. We present a novel deep learning based model, referred to as CNNH_PSS, by using multi-scale CNN with highway. In CNNH_PSS, any two neighbor convolutional layers have a highway to deliver information from current layer to the output of the next one to keep local contexts. As lower layers extract local context while higher layers extract long-range interdependencies, the highways between neighbor layers allow CNNH_PSS to have ability to extract both local contexts and long-range interdependencies. We evaluate CNNH_PSS on two commonly used datasets: CB6133 and CB513. CNNH_PSS outperforms the multi-scale CNN without highway by at least 0.010 Q8 accuracy and also performs better than CNF, DeepCNF and SSpro8, which cannot extract long-range interdependencies, by at least 0.020 Q8 accuracy, demonstrating that both local contexts and long-range interdependencies are indeed useful for prediction. Furthermore, CNNH_PSS also performs better than GSM and DCRNN which need extra complex model to extract long-range interdependencies. It demonstrates that CNNH_PSS not only cost less computer resource, but also achieves better predicting performance. CNNH_PSS have ability to extracts both local contexts and long-range interdependencies by combing multi-scale CNN and highway network. The evaluations on common datasets and comparisons with state-of-the-art methods indicate that CNNH_PSS is an useful and efficient tool for protein secondary structure prediction.

  4. Percolation in real interdependent networks

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo

    2015-07-01

    The function of a real network depends not only on the reliability of its own components, but is affected also by the simultaneous operation of other real networks coupled with it. Whereas theoretical methods of direct applicability to real isolated networks exist, the frameworks developed so far in percolation theory for interdependent network layers are of little help in practical contexts, as they are suited only for special models in the limit of infinite size. Here, we introduce a set of heuristic equations that takes as inputs the adjacency matrices of the layers to draw the entire phase diagram for the interconnected network. We demonstrate that percolation transitions in interdependent networks can be understood by decomposing these systems into uncoupled graphs: the intersection among the layers, and the remainders of the layers. When the intersection dominates the remainders, an interconnected network undergoes a smooth percolation transition. Conversely, if the intersection is dominated by the contribution of the remainders, the transition becomes abrupt even in small networks. We provide examples of real systems that have developed interdependent networks sharing cores of `high quality’ edges to prevent catastrophic failures.

  5. Will electrical cyber-physical interdependent networks undergo first-order transition under random attacks?

    NASA Astrophysics Data System (ADS)

    Ji, Xingpei; Wang, Bo; Liu, Dichen; Dong, Zhaoyang; Chen, Guo; Zhu, Zhenshan; Zhu, Xuedong; Wang, Xunting

    2016-10-01

    Whether the realistic electrical cyber-physical interdependent networks will undergo first-order transition under random failures still remains a question. To reflect the reality of Chinese electrical cyber-physical system, the "partial one-to-one correspondence" interdependent networks model is proposed and the connectivity vulnerabilities of three realistic electrical cyber-physical interdependent networks are analyzed. The simulation results show that due to the service demands of power system the topologies of power grid and its cyber network are highly inter-similar which can effectively avoid the first-order transition. By comparing the vulnerability curves between electrical cyber-physical interdependent networks and its single-layer network, we find that complex network theory is still useful in the vulnerability analysis of electrical cyber-physical interdependent networks.

  6. Modeling the interdependent network based on two-mode networks

    NASA Astrophysics Data System (ADS)

    An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian

    2017-10-01

    Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.

  7. Randomly biased investments and the evolution of public goods on interdependent networks

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wu, Te; Li, Zhiwu; Wang, Long

    2017-08-01

    Deciding how to allocate resources between interdependent systems is significant to optimize efficiency. We study the effects of heterogeneous contribution, induced by such interdependency, on the evolution of cooperation, through implementing the public goods games on two-layer networks. The corresponding players on different layers try to share a fixed amount of resources as the initial investment properly. The symmetry breaking of investments between players located on different layers is able to either prevent investments from, or extract them out of the deadlock. Results show that a moderate investment heterogeneity is best favorable for the evolution of cooperation, and random allocation of investment bias suppresses the cooperators at a wide range of the investment bias and the enhancement effect. Further studies on time evolution with different initial strategy configurations show that the non-interdependent cooperators along the interface of interdependent cooperators also are an indispensable factor in facilitating cooperative behavior. Our main results are qualitatively unchanged even diversifying investment bias that is subject to uniform distribution. Our study may shed light on the understanding of the origin of cooperative behavior on interdependent networks.

  8. Community detection, link prediction, and layer interdependence in multilayer networks.

    PubMed

    De Bacco, Caterina; Power, Eleanor A; Larremore, Daniel B; Moore, Cristopher

    2017-04-01

    Complex systems are often characterized by distinct types of interactions between the same entities. These can be described as a multilayer network where each layer represents one type of interaction. These layers may be interdependent in complicated ways, revealing different kinds of structure in the network. In this work we present a generative model, and an efficient expectation-maximization algorithm, which allows us to perform inference tasks such as community detection and link prediction in this setting. Our model assumes overlapping communities that are common between the layers, while allowing these communities to affect each layer in a different way, including arbitrary mixtures of assortative, disassortative, or directed structure. It also gives us a mathematically principled way to define the interdependence between layers, by measuring how much information about one layer helps us predict links in another layer. In particular, this allows us to bundle layers together to compress redundant information and identify small groups of layers which suffice to predict the remaining layers accurately. We illustrate these findings by analyzing synthetic data and two real multilayer networks, one representing social support relationships among villagers in South India and the other representing shared genetic substring material between genes of the malaria parasite.

  9. Community detection, link prediction, and layer interdependence in multilayer networks

    NASA Astrophysics Data System (ADS)

    De Bacco, Caterina; Power, Eleanor A.; Larremore, Daniel B.; Moore, Cristopher

    2017-04-01

    Complex systems are often characterized by distinct types of interactions between the same entities. These can be described as a multilayer network where each layer represents one type of interaction. These layers may be interdependent in complicated ways, revealing different kinds of structure in the network. In this work we present a generative model, and an efficient expectation-maximization algorithm, which allows us to perform inference tasks such as community detection and link prediction in this setting. Our model assumes overlapping communities that are common between the layers, while allowing these communities to affect each layer in a different way, including arbitrary mixtures of assortative, disassortative, or directed structure. It also gives us a mathematically principled way to define the interdependence between layers, by measuring how much information about one layer helps us predict links in another layer. In particular, this allows us to bundle layers together to compress redundant information and identify small groups of layers which suffice to predict the remaining layers accurately. We illustrate these findings by analyzing synthetic data and two real multilayer networks, one representing social support relationships among villagers in South India and the other representing shared genetic substring material between genes of the malaria parasite.

  10. The influence of the depth of k-core layers on the robustness of interdependent networks against cascading failures

    NASA Astrophysics Data System (ADS)

    Dong, Zhengcheng; Fang, Yanjun; Tian, Meng; Kong, Zhengmin

    The hierarchical structure, k-core, is common in various complex networks, and the actual network always has successive layers from 1-core layer (the peripheral layer) to km-core layer (the core layer). The nodes within the core layer have been proved to be the most influential spreaders, but there is few work about how the depth of k-core layers (the value of km) can affect the robustness against cascading failures, rather than the interdependent networks. First, following the preferential attachment, a novel method is proposed to generate the scale-free network with successive k-core layers (KCBA network), and the KCBA network is validated more realistic than the traditional BA network. Then, with KCBA interdependent networks, the effect of the depth of k-core layers is investigated. Considering the load-based model, the loss of capacity on nodes is adopted to quantify the robustness instead of the number of functional nodes in the end. We conduct two attacking strategies, i.e. the RO-attack (Randomly remove only one node) and the RF-attack (Randomly remove a fraction of nodes). Results show that the robustness of KCBA networks not only depends on the depth of k-core layers, but also is slightly influenced by the initial load. With RO-attack, the networks with less k-core layers are more robust when the initial load is small. With RF-attack, the robustness improves with small km, but the improvement is getting weaker with the increment of the initial load. In a word, the lower the depth is, the more robust the networks will be.

  11. Breakdown of interdependent directed networks.

    PubMed

    Liu, Xueming; Stanley, H Eugene; Gao, Jianxi

    2016-02-02

    Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős-Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis.

  12. Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework

    PubMed Central

    2014-01-01

    Motivation Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among locations into both the classifier-learning and the prediction process can improve location prediction performance. Results We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location. Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations, and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available, derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to location-combinations present in the training set. PMID:24646119

  13. Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework.

    PubMed

    Simha, Ramanuja; Shatkay, Hagit

    2014-03-19

    Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among locations into both the classifier-learning and the prediction process can improve location prediction performance. We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location. Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations, and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available, derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to location-combinations present in the training set.

  14. Comparing multilayer brain networks between groups: Introducing graph metrics and recommendations.

    PubMed

    Mandke, Kanad; Meier, Jil; Brookes, Matthew J; O'Dea, Reuben D; Van Mieghem, Piet; Stam, Cornelis J; Hillebrand, Arjan; Tewarie, Prejaas

    2018-02-01

    There is an increasing awareness of the advantages of multi-modal neuroimaging. Networks obtained from different modalities are usually treated in isolation, which is however contradictory to accumulating evidence that these networks show non-trivial interdependencies. Even networks obtained from a single modality, such as frequency-band specific functional networks measured from magnetoencephalography (MEG) are often treated independently. Here, we discuss how a multilayer network framework allows for integration of multiple networks into a single network description and how graph metrics can be applied to quantify multilayer network organisation for group comparison. We analyse how well-known biases for single layer networks, such as effects of group differences in link density and/or average connectivity, influence multilayer networks, and we compare four schemes that aim to correct for such biases: the minimum spanning tree (MST), effective graph resistance cost minimisation, efficiency cost optimisation (ECO) and a normalisation scheme based on singular value decomposition (SVD). These schemes can be applied to the layers independently or to the multilayer network as a whole. For correction applied to whole multilayer networks, only the SVD showed sufficient bias correction. For correction applied to individual layers, three schemes (ECO, MST, SVD) could correct for biases. By using generative models as well as empirical MEG and functional magnetic resonance imaging (fMRI) data, we further demonstrated that all schemes were sensitive to identify network topology when the original networks were perturbed. In conclusion, uncorrected multilayer network analysis leads to biases. These biases may differ between centres and studies and could consequently lead to unreproducible results in a similar manner as for single layer networks. We therefore recommend using correction schemes prior to multilayer network analysis for group comparisons. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A stochastic multi-agent optimization model for energy infrastructure planning under uncertainty and competition.

    DOT National Transportation Integrated Search

    2017-07-04

    This paper presents a stochastic multi-agent optimization model that supports energy infrastruc- : ture planning under uncertainty. The interdependence between dierent decision entities in the : system is captured in an energy supply chain network, w...

  16. Interdependent networks - Topological percolation research and application in finance

    NASA Astrophysics Data System (ADS)

    Zhou, Di

    This dissertation covers the two major parts of my Ph.D. research: i) developing a theoretical framework of complex networks and applying simulation and numerical methods to study the robustness of the network system, and ii) applying statistical physics concepts and methods to quantitatively analyze complex systems and applying the theoretical framework to study real-world systems. In part I, we focus on developing theories of interdependent networks as well as building computer simulation models, which includes three parts: 1) We report on the effects of topology on failure propagation for a model system consisting of two interdependent networks. We find that the internal node correlations in each of the networks significantly changes the critical density of failures, which can trigger the total disruption of the two-network system. Specifically, we find that the assortativity within a single network decreases the robustness of the entire system. 2) We study the percolation behavior of two interdependent scale-free (SF) networks under random failure of 1-p fraction of nodes. We find that as the coupling strength q between the two networks reduces from 1 (fully coupled) to 0 (no coupling), there exist two critical coupling strengths q1 and q2 , which separate the behaviors of the giant component as a function of p into three different regions, and for q2 < q < q 1 , we observe a hybrid order phase transition phenomenon. 3) We study the robustness of n interdependent networks with partially support-dependent relationship both analytically and numerically. We study a starlike network of n Erdos-Renyi (ER), SF networks and a looplike network of n ER networks, and we find for starlike networks, their phase transition regions change with n, but for looplike networks the phase regions change with average degree k . In part II, we apply concepts and methods developed in statistical physics to study economic systems. We analyze stock market indices and foreign exchange daily returns for 60 countries over the period of 1999-2012. We build a multi-layer network model based on different correlation measures, and introduce a dynamic network model to simulate and analyze the initializing and spreading of financial crisis. Using different computational approaches and econometric tests, we find atypical behavior of the cross correlations and community formations in the financial networks that we study during the financial crisis of 2008. For example, the overall correlation of stock market increases during crisis while the correlation between stock market and foreign exchange market decreases. The dramatic increase in correlations between a specific nation and other nations may indicate that this nation could trigger a global financial crisis. Specifically, core countries that have higher correlations with other countries and larger Gross Domestic Product (GDP) values spread financial crisis quite effectively, yet some countries with small GDPs like Greece and Cyprus are also effective in propagating systemic risk and spreading global financial crisis.

  17. Percolation in multiplex networks with overlap.

    PubMed

    Cellai, Davide; López, Eduardo; Zhou, Jie; Gleeson, James P; Bianconi, Ginestra

    2013-11-01

    From transportation networks to complex infrastructures, and to social and communication networks, a large variety of systems can be described in terms of multiplexes formed by a set of nodes interacting through different networks (layers). Multiplexes may display an increased fragility with respect to the single layers that constitute them. However, so far the overlap of the links in different layers has been mostly neglected, despite the fact that it is an ubiquitous phenomenon in most multiplexes. Here, we show that the overlap among layers can improve the robustness of interdependent multiplex systems and change the critical behavior of the percolation phase transition in a complex way.

  18. Evolutionary games on multilayer networks: a colloquium

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wang, Lin; Szolnoki, Attila; Perc, Matjaž

    2015-05-01

    Networks form the backbone of many complex systems, ranging from the Internet to human societies. Accordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it is also a fact that the networks that are an integral part of such models are often interdependent or even interconnected. Networks of networks or multilayer networks are therefore a more apt description of social systems. This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of cooperation as one of the main pillars of modern human societies. We first give an overview of the most significant conceptual differences between single-layer and multilayer networks, and we provide basic definitions and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent populations. The focus is on coupling through the utilities of players, through the flow of information, as well as through the popularity of different strategies on different network layers. The colloquium highlights the importance of pattern formation and collective behavior for the promotion of cooperation under adverse conditions, as well as the synergies between network science and evolutionary game theory.

  19. Stability of a giant connected component in a complex network

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim; Ganin, Alexander A.; Eisenberg, Daniel A.; Krapivsky, Pavel L.; Krioukov, Dmitri; Alderson, David L.; Linkov, Igor

    2018-01-01

    We analyze the stability of the network's giant connected component under impact of adverse events, which we model through the link percolation. Specifically, we quantify the extent to which the largest connected component of a network consists of the same nodes, regardless of the specific set of deactivated links. Our results are intuitive in the case of single-layered systems: the presence of large degree nodes in a single-layered network ensures both its robustness and stability. In contrast, we find that interdependent networks that are robust to adverse events have unstable connected components. Our results bring novel insights to the design of resilient network topologies and the reinforcement of existing networked systems.

  20. Towards Optimal Connectivity on Multi-layered Networks.

    PubMed

    Chen, Chen; He, Jingrui; Bliss, Nadya; Tong, Hanghang

    2017-10-01

    Networks are prevalent in many high impact domains. Moreover, cross-domain interactions are frequently observed in many applications, which naturally form the dependencies between different networks. Such kind of highly coupled network systems are referred to as multi-layered networks , and have been used to characterize various complex systems, including critical infrastructure networks, cyber-physical systems, collaboration platforms, biological systems and many more. Different from single-layered networks where the functionality of their nodes is mainly affected by within-layer connections, multi-layered networks are more vulnerable to disturbance as the impact can be amplified through cross-layer dependencies, leading to the cascade failure to the entire system. To manipulate the connectivity in multi-layered networks, some recent methods have been proposed based on two-layered networks with specific types of connectivity measures. In this paper, we address the above challenges in multiple dimensions. First, we propose a family of connectivity measures (SUBLINE) that unifies a wide range of classic network connectivity measures. Third, we reveal that the connectivity measures in SUBLINE family enjoy diminishing returns property , which guarantees a near-optimal solution with linear complexity for the connectivity optimization problem. Finally, we evaluate our proposed algorithm on real data sets to demonstrate its effectiveness and efficiency.

  1. Optimization of robustness of interdependent network controllability by redundant design

    PubMed Central

    2018-01-01

    Controllability of complex networks has been a hot topic in recent years. Real networks regarded as interdependent networks are always coupled together by multiple networks. The cascading process of interdependent networks including interdependent failure and overload failure will destroy the robustness of controllability for the whole network. Therefore, the optimization of the robustness of interdependent network controllability is of great importance in the research area of complex networks. In this paper, based on the model of interdependent networks constructed first, we determine the cascading process under different proportions of node attacks. Then, the structural controllability of interdependent networks is measured by the minimum driver nodes. Furthermore, we propose a parameter which can be obtained by the structure and minimum driver set of interdependent networks under different proportions of node attacks and analyze the robustness for interdependent network controllability. Finally, we optimize the robustness of interdependent network controllability by redundant design including node backup and redundancy edge backup and improve the redundant design by proposing different strategies according to their cost. Comparative strategies of redundant design are conducted to find the best strategy. Results shows that node backup and redundancy edge backup can indeed decrease those nodes suffering from failure and improve the robustness of controllability. Considering the cost of redundant design, we should choose BBS (betweenness-based strategy) or DBS (degree based strategy) for node backup and HDF(high degree first) for redundancy edge backup. Above all, our proposed strategies are feasible and effective at improving the robustness of interdependent network controllability. PMID:29438426

  2. Impact of Degree Heterogeneity on Attack Vulnerability of Interdependent Networks

    NASA Astrophysics Data System (ADS)

    Sun, Shiwen; Wu, Yafang; Ma, Yilin; Wang, Li; Gao, Zhongke; Xia, Chengyi

    2016-09-01

    The study of interdependent networks has become a new research focus in recent years. We focus on one fundamental property of interdependent networks: vulnerability. Previous studies mainly focused on the impact of topological properties upon interdependent networks under random attacks, the effect of degree heterogeneity on structural vulnerability of interdependent networks under intentional attacks, however, is still unexplored. In order to deeply understand the role of degree distribution and in particular degree heterogeneity, we construct an interdependent system model which consists of two networks whose extent of degree heterogeneity can be controlled simultaneously by a tuning parameter. Meanwhile, a new quantity, which can better measure the performance of interdependent networks after attack, is proposed. Numerical simulation results demonstrate that degree heterogeneity can significantly increase the vulnerability of both single and interdependent networks. Moreover, it is found that interdependent links between two networks make the entire system much more fragile to attacks. Enhancing coupling strength between networks can greatly increase the fragility of both networks against targeted attacks, which is most evident under the case of max-max assortative coupling. Current results can help to deepen the understanding of structural complexity of complex real-world systems.

  3. Stability of Boolean multilevel networks.

    PubMed

    Cozzo, Emanuele; Arenas, Alex; Moreno, Yamir

    2012-09-01

    The study of the interplay between the structure and dynamics of complex multilevel systems is a pressing challenge nowadays. In this paper, we use a semiannealed approximation to study the stability properties of random Boolean networks in multiplex (multilayered) graphs. Our main finding is that the multilevel structure provides a mechanism for the stabilization of the dynamics of the whole system even when individual layers work on the chaotic regime, therefore identifying new ways of feedback between the structure and the dynamics of these systems. Our results point out the need for a conceptual transition from the physics of single-layered networks to the physics of multiplex networks. Finally, the fact that the coupling modifies the phase diagram and the critical conditions of the isolated layers suggests that interdependency can be used as a control mechanism.

  4. Cascading failures with local load redistribution in interdependent Watts-Strogatz networks

    NASA Astrophysics Data System (ADS)

    Hong, Chen; Zhang, Jun; Du, Wen-Bo; Sallan, Jose Maria; Lordan, Oriol

    2016-05-01

    Cascading failures of loads in isolated networks have been studied extensively over the last decade. Since 2010, such research has extended to interdependent networks. In this paper, we study cascading failures with local load redistribution in interdependent Watts-Strogatz (WS) networks. The effects of rewiring probability and coupling strength on the resilience of interdependent WS networks have been extensively investigated. It has been found that, for small values of the tolerance parameter, interdependent networks are more vulnerable as rewiring probability increases. For larger values of the tolerance parameter, the robustness of interdependent networks firstly decreases and then increases as rewiring probability increases. Coupling strength has a different impact on robustness. For low values of coupling strength, the resilience of interdependent networks decreases with the increment of the coupling strength until it reaches a certain threshold value. For values of coupling strength above this threshold, the opposite effect is observed. Our results are helpful to understand and design resilient interdependent networks.

  5. Integrated situational awareness for cyber attack detection, analysis, and mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, Yi; Sagduyu, Yalin; Deng, Julia; Li, Jason; Liu, Peng

    2012-06-01

    Real-time cyberspace situational awareness is critical for securing and protecting today's enterprise networks from various cyber threats. When a security incident occurs, network administrators and security analysts need to know what exactly has happened in the network, why it happened, and what actions or countermeasures should be taken to quickly mitigate the potential impacts. In this paper, we propose an integrated cyberspace situational awareness system for efficient cyber attack detection, analysis and mitigation in large-scale enterprise networks. Essentially, a cyberspace common operational picture will be developed, which is a multi-layer graphical model and can efficiently capture and represent the statuses, relationships, and interdependencies of various entities and elements within and among different levels of a network. Once shared among authorized users, this cyberspace common operational picture can provide an integrated view of the logical, physical, and cyber domains, and a unique visualization of disparate data sets to support decision makers. In addition, advanced analyses, such as Bayesian Network analysis, will be explored to address the information uncertainty, dynamic and complex cyber attack detection, and optimal impact mitigation issues. All the developed technologies will be further integrated into an automatic software toolkit to achieve near real-time cyberspace situational awareness and impact mitigation in large-scale computer networks.

  6. Robust-yet-fragile nature of interdependent networks

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Xia, Yongxiang; Wei, Zhi

    2015-05-01

    Interdependent networks have been shown to be extremely vulnerable based on the percolation model. Parshani et al. [Europhys. Lett. 92, 68002 (2010), 10.1209/0295-5075/92/68002] further indicated that the more intersimilar networks are, the more robust they are to random failures. When traffic load is considered, how do the coupling patterns impact cascading failures in interdependent networks? This question has been largely unexplored until now. In this paper, we address this question by investigating the robustness of interdependent Erdös-Rényi random graphs and Barabási-Albert scale-free networks under either random failures or intentional attacks. It is found that interdependent Erdös-Rényi random graphs are robust yet fragile under either random failures or intentional attacks. Interdependent Barabási-Albert scale-free networks, however, are only robust yet fragile under random failures but fragile under intentional attacks. We further analyze the interdependent communication network and power grid and achieve similar results. These results advance our understanding of how interdependency shapes network robustness.

  7. Protein (multi-)location prediction: utilizing interdependencies via a generative model

    PubMed Central

    Shatkay, Hagit

    2015-01-01

    Motivation: Proteins are responsible for a multitude of vital tasks in all living organisms. Given that a protein’s function and role are strongly related to its subcellular location, protein location prediction is an important research area. While proteins move from one location to another and can localize to multiple locations, most existing location prediction systems assign only a single location per protein. A few recent systems attempt to predict multiple locations for proteins, however, their performance leaves much room for improvement. Moreover, such systems do not capture dependencies among locations and usually consider locations as independent. We hypothesize that a multi-location predictor that captures location inter-dependencies can improve location predictions for proteins. Results: We introduce a probabilistic generative model for protein localization, and develop a system based on it—which we call MDLoc—that utilizes inter-dependencies among locations to predict multiple locations for proteins. The model captures location inter-dependencies using Bayesian networks and represents dependency between features and locations using a mixture model. We use iterative processes for learning model parameters and for estimating protein locations. We evaluate our classifier MDLoc, on a dataset of single- and multi-localized proteins derived from the DBMLoc dataset, which is the most comprehensive protein multi-localization dataset currently available. Our results, obtained by using MDLoc, significantly improve upon results obtained by an initial simpler classifier, as well as on results reported by other top systems. Availability and implementation: MDLoc is available at: http://www.eecis.udel.edu/∼compbio/mdloc. Contact: shatkay@udel.edu. PMID:26072505

  8. Protein (multi-)location prediction: utilizing interdependencies via a generative model.

    PubMed

    Simha, Ramanuja; Briesemeister, Sebastian; Kohlbacher, Oliver; Shatkay, Hagit

    2015-06-15

    Proteins are responsible for a multitude of vital tasks in all living organisms. Given that a protein's function and role are strongly related to its subcellular location, protein location prediction is an important research area. While proteins move from one location to another and can localize to multiple locations, most existing location prediction systems assign only a single location per protein. A few recent systems attempt to predict multiple locations for proteins, however, their performance leaves much room for improvement. Moreover, such systems do not capture dependencies among locations and usually consider locations as independent. We hypothesize that a multi-location predictor that captures location inter-dependencies can improve location predictions for proteins. We introduce a probabilistic generative model for protein localization, and develop a system based on it-which we call MDLoc-that utilizes inter-dependencies among locations to predict multiple locations for proteins. The model captures location inter-dependencies using Bayesian networks and represents dependency between features and locations using a mixture model. We use iterative processes for learning model parameters and for estimating protein locations. We evaluate our classifier MDLoc, on a dataset of single- and multi-localized proteins derived from the DBMLoc dataset, which is the most comprehensive protein multi-localization dataset currently available. Our results, obtained by using MDLoc, significantly improve upon results obtained by an initial simpler classifier, as well as on results reported by other top systems. MDLoc is available at: http://www.eecis.udel.edu/∼compbio/mdloc. © The Author 2015. Published by Oxford University Press.

  9. Reliable Communication Models in Interdependent Critical Infrastructure Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkeun; Chinthavali, Supriya; Shankar, Mallikarjun

    Modern critical infrastructure networks are becoming increasingly interdependent where the failures in one network may cascade to other dependent networks, causing severe widespread national-scale failures. A number of previous efforts have been made to analyze the resiliency and robustness of interdependent networks based on different models. However, communication network, which plays an important role in today's infrastructures to detect and handle failures, has attracted little attention in the interdependency studies, and no previous models have captured enough practical features in the critical infrastructure networks. In this paper, we study the interdependencies between communication network and other kinds of critical infrastructuremore » networks with an aim to identify vulnerable components and design resilient communication networks. We propose several interdependency models that systematically capture various features and dynamics of failures spreading in critical infrastructure networks. We also discuss several research challenges in building reliable communication solutions to handle failures in these models.« less

  10. Eradicating catastrophic collapse in interdependent networks via reinforced nodes

    PubMed Central

    Yuan, Xin; Hu, Yanqing; Havlin, Shlomo

    2017-01-01

    In interdependent networks, it is usually assumed, based on percolation theory, that nodes become nonfunctional if they lose connection to the network giant component. However, in reality, some nodes, equipped with alternative resources, together with their connected neighbors can still be functioning after disconnected from the giant component. Here, we propose and study a generalized percolation model that introduces a fraction of reinforced nodes in the interdependent networks that can function and support their neighborhood. We analyze, both analytically and via simulations, the order parameter—the functioning component—comprising both the giant component and smaller components that include at least one reinforced node. Remarkably, it is found that, for interdependent networks, we need to reinforce only a small fraction of nodes to prevent abrupt catastrophic collapses. Moreover, we find that the universal upper bound of this fraction is 0.1756 for two interdependent Erdős–Rényi (ER) networks: regular random (RR) networks and scale-free (SF) networks with large average degrees. We also generalize our theory to interdependent networks of networks (NONs). These findings might yield insight for designing resilient interdependent infrastructure networks. PMID:28289204

  11. Robustness analysis of interdependent networks under multiple-attacking strategies

    NASA Astrophysics Data System (ADS)

    Gao, Yan-Li; Chen, Shi-Ming; Nie, Sen; Ma, Fei; Guan, Jun-Jie

    2018-04-01

    The robustness of complex networks under attacks largely depends on the structure of a network and the nature of the attacks. Previous research on interdependent networks has focused on two types of initial attack: random attack and degree-based targeted attack. In this paper, a deliberate attack function is proposed, where six kinds of deliberate attacking strategies can be derived by adjusting the tunable parameters. Moreover, the robustness of four types of interdependent networks (BA-BA, ER-ER, BA-ER and ER-BA) with different coupling modes (random, positive and negative correlation) is evaluated under different attacking strategies. Interesting conclusions could be obtained. It can be found that the positive coupling mode can make the vulnerability of the interdependent network to be absolutely dependent on the most vulnerable sub-network under deliberate attacks, whereas random and negative coupling modes make the vulnerability of interdependent network to be mainly dependent on the being attacked sub-network. The robustness of interdependent network will be enhanced with the degree-degree correlation coefficient varying from positive to negative. Therefore, The negative coupling mode is relatively more optimal than others, which can substantially improve the robustness of the ER-ER network and ER-BA network. In terms of the attacking strategies on interdependent networks, the degree information of node is more valuable than the betweenness. In addition, we found a more efficient attacking strategy for each coupled interdependent network and proposed the corresponding protection strategy for suppressing cascading failure. Our results can be very useful for safety design and protection of interdependent networks.

  12. Dynamic clustering scheme based on the coordination of management and control in multi-layer and multi-region intelligent optical network

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi

    2011-12-01

    A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.

  13. Cooperation in group-structured populations with two layers of interactions

    PubMed Central

    Zhang, Yanling; Fu, Feng; Chen, Xiaojie; Xie, Guangming; Wang, Long

    2015-01-01

    Recently there has been a growing interest in studying multiplex networks where individuals are structured in multiple network layers. Previous agent-based simulations of games on multiplex networks reveal rich dynamics arising from interdependency of interactions along each network layer, yet there is little known about analytical conditions for cooperation to evolve thereof. Here we aim to tackle this issue by calculating the evolutionary dynamics of cooperation in group-structured populations with two layers of interactions. In our model, an individual is engaged in two layers of group interactions simultaneously and uses unrelated strategies across layers. Evolutionary competition of individuals is determined by the total payoffs accrued from two layers of interactions. We also consider migration which allows individuals to move to a new group within each layer. An approach combining the coalescence theory with the theory of random walks is established to overcome the analytical difficulty upon local migration. We obtain the exact results for all “isotropic” migration patterns, particularly for migration tuned with varying ranges. When the two layers use one game, the optimal migration ranges are proved identical across layers and become smaller as the migration probability grows. PMID:26632251

  14. Reliability analysis of interdependent lattices

    NASA Astrophysics Data System (ADS)

    Limiao, Zhang; Daqing, Li; Pengju, Qin; Bowen, Fu; Yinan, Jiang; Zio, Enrico; Rui, Kang

    2016-06-01

    Network reliability analysis has drawn much attention recently due to the risks of catastrophic damage in networked infrastructures. These infrastructures are dependent on each other as a result of various interactions. However, most of the reliability analyses of these interdependent networks do not consider spatial constraints, which are found important for robustness of infrastructures including power grid and transport systems. Here we study the reliability properties of interdependent lattices with different ranges of spatial constraints. Our study shows that interdependent lattices with strong spatial constraints are more resilient than interdependent Erdös-Rényi networks. There exists an intermediate range of spatial constraints, at which the interdependent lattices have minimal resilience.

  15. Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective.

    PubMed

    Chen, Chen; Tong, Hanghang; Xie, Lei; Ying, Lei; He, Qing

    2017-08-01

    The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model-multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm Fascinate that can reveal unobserved dependencies with linear complexity. Moreover, we derive Fascinate-ZERO, an online variant of Fascinate that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.

  16. Redundant Design in Interdependent Networks

    PubMed Central

    2016-01-01

    Modern infrastructure networks are often coupled together and thus could be modeled as interdependent networks. Overload and interdependent effect make interdependent networks more fragile when suffering from attacks. Existing research has primarily concentrated on the cascading failure process of interdependent networks without load, or the robustness of isolated network with load. Only limited research has been done on the cascading failure process caused by overload in interdependent networks. Redundant design is a primary approach to enhance the reliability and robustness of the system. In this paper, we propose two redundant methods, node back-up and dependency redundancy, and the experiment results indicate that two measures are effective and costless. Two detailed models about redundant design are introduced based on the non-linear load-capacity model. Based on the attributes and historical failure distribution of nodes, we introduce three static selecting strategies-Random-based, Degree-based, Initial load-based and a dynamic strategy-HFD (historical failure distribution) to identify which nodes could have a back-up with priority. In addition, we consider the cost and efficiency of different redundant proportions to determine the best proportion with maximal enhancement and minimal cost. Experiments on interdependent networks demonstrate that the combination of HFD and dependency redundancy is an effective and preferred measure to implement redundant design on interdependent networks. The results suggest that the redundant design proposed in this paper can permit construction of highly robust interactive networked systems. PMID:27764174

  17. A network analysis of cofactor-protein interactions for analyzing associations between human nutrition and diseases

    PubMed Central

    Scott-Boyer, Marie Pier; Lacroix, Sébastien; Scotti, Marco; Morine, Melissa J.; Kaput, Jim; Priami, Corrado

    2016-01-01

    The involvement of vitamins and other micronutrients in intermediary metabolism was elucidated in the mid 1900’s at the level of individual biochemical reactions. Biochemical pathways remain the foundational knowledgebase for understanding how micronutrient adequacy modulates health in all life stages. Current daily recommended intakes were usually established on the basis of the association of a single nutrient to a single, most sensitive adverse effect and thus neglect interdependent and pleiotropic effects of micronutrients on biological systems. Hence, the understanding of the impact of overt or sub-clinical nutrient deficiencies on biological processes remains incomplete. Developing a more complete view of the role of micronutrients and their metabolic products in protein-mediated reactions is of importance. We thus integrated and represented cofactor-protein interaction data from multiple and diverse sources into a multi-layer network representation that links cofactors, cofactor-interacting proteins, biological processes, and diseases. Network representation of this information is a key feature of the present analysis and enables the integration of data from individual biochemical reactions and protein-protein interactions into a systems view, which may guide strategies for targeted nutritional interventions aimed at improving health and preventing diseases. PMID:26777674

  18. Analysis, calculation and utilization of the k-balance attribute in interdependent networks

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Li, Qing; Wang, Dan; Xu, Mingwei

    2018-05-01

    Interdependent networks, where two networks depend on each other, are becoming more and more significant in modern systems. From previous work, it can be concluded that interdependent networks are more vulnerable than a single network. The robustness in interdependent networks deserves special attention. In this paper, we propose a metric of robustness from a new perspective-the balance. First, we define the balance-coefficient of the interdependent system. Based on precise analysis and derivation, we prove some significant theories and provide an efficient algorithm to compute the balance-coefficient. Finally, we propose an optimal solution to reduce the balance-coefficient to enhance the robustness of the given system. Comprehensive experiments confirm the efficiency of our algorithms.

  19. A Framework for Supporting Survivability, Network Planning and Cross-Layer Optimization in Future Multi-Domain Terabit Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldin, Ilya; Huang, Shu; Gopidi, Rajesh

    This final project report describes the accomplishments, products and publications from the award. It includes the overview of the project goals to devise a framework for managing resources in multi-domain, multi-layer networks, as well the details of the mathematical problem formulation and the description of the prototype built to prove the concept.

  20. Distributed Grooming in Multi-Domain IP/MPLS-DWDM Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qing

    2009-12-01

    This paper studies distributed multi-domain, multilayer provisioning (grooming) in IP/MPLS-DWDM networks. Although many multi-domain studies have emerged over the years, these have primarily considered 'homogeneous' network layers. Meanwhile, most grooming studies have assumed idealized settings with 'global' link state across all layers. Hence there is a critical need to develop practical distributed grooming schemes for real-world networks consisting of multiple domains and technology layers. Along these lines, a detailed hierarchical framework is proposed to implement inter-layer routing, distributed grooming, and setup signaling. The performance of this solution is analyzed in detail using simulation studies and future work directions are alsomore » high-lighted.« less

  1. Urban occupational structures as information networks: The effect on network density of increasing number of occupations.

    PubMed

    Shutters, Shade T; Lobo, José; Muneepeerakul, Rachata; Strumsky, Deborah; Mellander, Charlotta; Brachert, Matthias; Farinha, Teresa; Bettencourt, Luis M A

    2018-01-01

    Urban economies are composed of diverse activities, embodied in labor occupations, which depend on one another to produce goods and services. Yet little is known about how the nature and intensity of these interdependences change as cities increase in population size and economic complexity. Understanding the relationship between occupational interdependencies and the number of occupations defining an urban economy is relevant because interdependence within a networked system has implications for system resilience and for how easily can the structure of the network be modified. Here, we represent the interdependencies among occupations in a city as a non-spatial information network, where the strengths of interdependence between pairs of occupations determine the strengths of the links in the network. Using those quantified link strengths we calculate a single metric of interdependence-or connectedness-which is equivalent to the density of a city's weighted occupational network. We then examine urban systems in six industrialized countries, analyzing how the density of urban occupational networks changes with network size, measured as the number of unique occupations present in an urban workforce. We find that in all six countries, density, or economic interdependence, increases superlinearly with the number of distinct occupations. Because connections among occupations represent flows of information, we provide evidence that connectivity scales superlinearly with network size in information networks.

  2. Chaotic evolution of prisoner's dilemma game with volunteering on interdependent networks

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Zhang, Xiaolin; Zheng, YuanJie

    2017-06-01

    In this article, the evolution of prisoner's dilemma game with volunteering on interdependent networks is investigated. Different from the traditional two-strategy game, voluntary participation as an additional strategy is involved in repeated game, that can introduce more complex evolutionary dynamics. And, interdependent networks provide a more generalized network architecture to study the intricate variability of dynamics. We have showed that voluntary participation could effectively promote the density of co-operation, that is also greatly affected by interdependent strength between two coupled networks. We further discussed the influence of interdependent strength on the densities of different strategies and found that an intermediate interdependence would play a bigger role on the evolution of dynamics. Subsequently, the critical values of the defection temptation for phase transitions under different conditions have been studied. Moreover, the global oscillations induced by the circle of dominance of three strategies on interdependent networks have been quantitatively investigated. Counter-intuitively, the oscillations of strategy densities are not periodic or stochastic, but have rich dynamical behaviors. By means of various analysis tools, we have demonstrated the global oscillations of strategy densities possessed chaotic characteristics.

  3. A modeling framework for investment planning in interdependent infrastructures in multi-hazard environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nathanael J. K.; Gearhart, Jared Lee; Jones, Dean A.

    Currently, much of protection planning is conducted separately for each infrastructure and hazard. Limited funding requires a balance of expenditures between terrorism and natural hazards based on potential impacts. This report documents the results of a Laboratory Directed Research & Development (LDRD) project that created a modeling framework for investment planning in interdependent infrastructures focused on multiple hazards, including terrorism. To develop this framework, three modeling elements were integrated: natural hazards, terrorism, and interdependent infrastructures. For natural hazards, a methodology was created for specifying events consistent with regional hazards. For terrorism, we modeled the terrorists actions based on assumptions regardingmore » their knowledge, goals, and target identification strategy. For infrastructures, we focused on predicting post-event performance due to specific terrorist attacks and natural hazard events, tempered by appropriate infrastructure investments. We demonstrate the utility of this framework with various examples, including protection of electric power, roadway, and hospital networks.« less

  4. Modeling multi-process connectivity in river deltas: extending the single layer network analysis to a coupled multilayer network framework

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Longjas, A.; Foufoula-Georgiou, E.

    2017-12-01

    Previous work [e.g. Tejedor et al., 2016 - GRL] has demonstrated the potential of using graph theory to study key properties of the structure and dynamics of river delta channel networks. Although the distribution of fluxes in river deltas is mostly driven by the connectivity of its channel network a significant part of the fluxes might also arise from connectivity between the channels and islands due to overland flow and seepage. This channel-island-subsurface interaction creates connectivity pathways which facilitate or inhibit transport depending on their degree of coupling. The question we pose here is how to collectively study system connectivity that emerges from the aggregated action of different processes (different in nature, intensity and time scales). Single-layer graphs as those introduced for delta channel networks are inadequate as they lack the ability to represent coupled processes, and neglecting across-process interactions can lead to mis-representation of the overall system dynamics. We present here a framework that generalizes the traditional representation of networks (single-layer graphs) to the so-called multi-layer networks or multiplex. A multi-layer network conceptualizes the overall connectivity arising from different processes as distinct graphs (layers), while allowing at the same time to represent interactions between layers by introducing interlayer links (across process interactions). We illustrate this framework using a study of the joint connectivity that arises from the coupling of the confined flow on the channel network and the overland flow on islands, on a prototype delta. We show the potential of the multi-layer framework to answer quantitatively questions related to the characteristic time scales to steady-state transport in the system as a whole when different levels of channel-island coupling are modulated by different magnitudes of discharge rates.

  5. Cross-Layer Scheme to Control Contention Window for Per-Flow in Asymmetric Multi-Hop Networks

    NASA Astrophysics Data System (ADS)

    Giang, Pham Thanh; Nakagawa, Kenji

    The IEEE 802.11 MAC standard for wireless ad hoc networks adopts Binary Exponential Back-off (BEB) mechanism to resolve bandwidth contention between stations. BEB mechanism controls the bandwidth allocation for each station by choosing a back-off value from one to CW according to the uniform random distribution, where CW is the contention window size. However, in asymmetric multi-hop networks, some stations are disadvantaged in opportunity of access to the shared channel and may suffer severe throughput degradation when the traffic load is large. Then, the network performance is degraded in terms of throughput and fairness. In this paper, we propose a new cross-layer scheme aiming to solve the per-flow unfairness problem and achieve good throughput performance in IEEE 802.11 multi-hop ad hoc networks. Our cross-layer scheme collects useful information from the physical, MAC and link layers of own station. This information is used to determine the optimal Contention Window (CW) size for per-station fairness. We also use this information to adjust CW size for each flow in the station in order to achieve per-flow fairness. Performance of our cross-layer scheme is examined on various asymmetric multi-hop network topologies by using Network Simulator (NS-2).

  6. Quality of Service Metrics in Wireless Sensor Networks: A Survey

    NASA Astrophysics Data System (ADS)

    Snigdh, Itu; Gupta, Nisha

    2016-03-01

    Wireless ad hoc network is characterized by autonomous nodes communicating with each other by forming a multi hop radio network and maintaining connectivity in a decentralized manner. This paper presents a systematic approach to the interdependencies and the analogy of the various factors that affect and constrain the wireless sensor network. This article elaborates the quality of service parameters in terms of methods of deployment, coverage and connectivity which affect the lifetime of the network that have been addressed, till date by the different literatures. The analogy of the indispensable rudiments was discussed that are important factors to determine the varied quality of service achieved, yet have not been duly focused upon.

  7. Multiplex PageRank.

    PubMed

    Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra

    2013-01-01

    Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.

  8. Urban occupational structures as information networks: The effect on network density of increasing number of occupations

    PubMed Central

    Lobo, José; Muneepeerakul, Rachata; Strumsky, Deborah; Mellander, Charlotta; Brachert, Matthias; Farinha, Teresa; Bettencourt, Luis M. A.

    2018-01-01

    Urban economies are composed of diverse activities, embodied in labor occupations, which depend on one another to produce goods and services. Yet little is known about how the nature and intensity of these interdependences change as cities increase in population size and economic complexity. Understanding the relationship between occupational interdependencies and the number of occupations defining an urban economy is relevant because interdependence within a networked system has implications for system resilience and for how easily can the structure of the network be modified. Here, we represent the interdependencies among occupations in a city as a non-spatial information network, where the strengths of interdependence between pairs of occupations determine the strengths of the links in the network. Using those quantified link strengths we calculate a single metric of interdependence–or connectedness–which is equivalent to the density of a city’s weighted occupational network. We then examine urban systems in six industrialized countries, analyzing how the density of urban occupational networks changes with network size, measured as the number of unique occupations present in an urban workforce. We find that in all six countries, density, or economic interdependence, increases superlinearly with the number of distinct occupations. Because connections among occupations represent flows of information, we provide evidence that connectivity scales superlinearly with network size in information networks. PMID:29734354

  9. Resilience of networks formed of interdependent modular networks

    NASA Astrophysics Data System (ADS)

    Shekhtman, Louis M.; Shai, Saray; Havlin, Shlomo

    2015-12-01

    Many infrastructure networks have a modular structure and are also interdependent with other infrastructures. While significant research has explored the resilience of interdependent networks, there has been no analysis of the effects of modularity. Here we develop a theoretical framework for attacks on interdependent modular networks and support our results through simulations. We focus, for simplicity, on the case where each network has the same number of communities and the dependency links are restricted to be between pairs of communities of different networks. This is particularly realistic for modeling infrastructure across cities. Each city has its own infrastructures and different infrastructures are dependent only within the city. However, each infrastructure is connected within and between cities. For example, a power grid will connect many cities as will a communication network, yet a power station and communication tower that are interdependent will likely be in the same city. It has previously been shown that single networks are very susceptible to the failure of the interconnected nodes (between communities) (Shai et al 2014 arXiv:1404.4748) and that attacks on these nodes are even more crippling than attacks based on betweenness (da Cunha et al 2015 arXiv:1502.00353). In our example of cities these nodes have long range links which are more likely to fail. For both treelike and looplike interdependent modular networks we find distinct regimes depending on the number of modules, m. (i) In the case where there are fewer modules with strong intraconnections, the system first separates into modules in an abrupt first-order transition and then each module undergoes a second percolation transition. (ii) When there are more modules with many interconnections between them, the system undergoes a single transition. Overall, we find that modular structure can significantly influence the type of transitions observed in interdependent networks and should be considered in attempts to make interdependent networks more resilient.

  10. Optimal interdependence enhances the dynamical robustness of complex systems.

    PubMed

    Singh, Rishu Kumar; Sinha, Sitabhra

    2017-08-01

    Although interdependent systems have usually been associated with increased fragility, we show that strengthening the interdependence between dynamical processes on different networks can make them more likely to survive over long times. By coupling the dynamics of networks that in isolation exhibit catastrophic collapse with extinction of nodal activity, we demonstrate system-wide persistence of activity for an optimal range of interdependence between the networks. This is related to the appearance of attractors of the global dynamics comprising disjoint sets ("islands") of stable activity.

  11. Optimal interdependence enhances the dynamical robustness of complex systems

    NASA Astrophysics Data System (ADS)

    Singh, Rishu Kumar; Sinha, Sitabhra

    2017-08-01

    Although interdependent systems have usually been associated with increased fragility, we show that strengthening the interdependence between dynamical processes on different networks can make them more likely to survive over long times. By coupling the dynamics of networks that in isolation exhibit catastrophic collapse with extinction of nodal activity, we demonstrate system-wide persistence of activity for an optimal range of interdependence between the networks. This is related to the appearance of attractors of the global dynamics comprising disjoint sets ("islands") of stable activity.

  12. Anatomy of the bacitracin resistance network in Bacillus subtilis.

    PubMed

    Radeck, Jara; Gebhard, Susanne; Orchard, Peter Shevlin; Kirchner, Marion; Bauer, Stephanie; Mascher, Thorsten; Fritz, Georg

    2016-05-01

    Protection against antimicrobial peptides (AMPs) often involves the parallel production of multiple, well-characterized resistance determinants. So far, little is known about how these resistance modules interact and how they jointly protect the cell. Here, we studied the interdependence between different layers of the envelope stress response of Bacillus subtilis when challenged with the lipid II cycle-inhibiting AMP bacitracin. The underlying regulatory network orchestrates the production of the ABC transporter BceAB, the UPP phosphatase BcrC and the phage-shock proteins LiaIH. Our systems-level analysis reveals a clear hierarchy, allowing us to discriminate between primary (BceAB) and secondary (BcrC and LiaIH) layers of bacitracin resistance. Deleting the primary layer provokes an enhanced induction of the secondary layer to partially compensate for this loss. This study reveals a direct role of LiaIH in bacitracin resistance, provides novel insights into the feedback regulation of the Lia system, and demonstrates a pivotal role of BcrC in maintaining cell wall homeostasis. The compensatory regulation within the bacitracin network can also explain how gene expression noise propagates between resistance layers. We suggest that this active redundancy in the bacitracin resistance network of B. subtilis is a general principle to be found in many bacterial antibiotic resistance networks. © 2016 John Wiley & Sons Ltd.

  13. Multi-layer service function chaining scheduling based on auxiliary graph in IP over optical network

    NASA Astrophysics Data System (ADS)

    Li, Yixuan; Li, Hui; Liu, Yuze; Ji, Yuefeng

    2017-10-01

    Software Defined Optical Network (SDON) can be considered as extension of Software Defined Network (SDN) in optical networks. SDON offers a unified control plane and makes optical network an intelligent transport network with dynamic flexibility and service adaptability. For this reason, a comprehensive optical transmission service, able to achieve service differentiation all the way down to the optical transport layer, can be provided to service function chaining (SFC). IP over optical network, as a promising networking architecture to interconnect data centers, is the most widely used scenarios of SFC. In this paper, we offer a flexible and dynamic resource allocation method for diverse SFC service requests in the IP over optical network. To do so, we firstly propose the concept of optical service function (OSF) and a multi-layer SFC model. OSF represents the comprehensive optical transmission service (e.g., multicast, low latency, quality of service, etc.), which can be achieved in multi-layer SFC model. OSF can also be considered as a special SF. Secondly, we design a resource allocation algorithm, which we call OSF-oriented optical service scheduling algorithm. It is able to address multi-layer SFC optical service scheduling and provide comprehensive optical transmission service, while meeting multiple optical transmission requirements (e.g., bandwidth, latency, availability). Moreover, the algorithm exploits the concept of Auxiliary Graph. Finally, we compare our algorithm with the Baseline algorithm in simulation. And simulation results show that our algorithm achieves superior performance than Baseline algorithm in low traffic load condition.

  14. Group percolation in interdependent networks

    NASA Astrophysics Data System (ADS)

    Wang, Zexun; Zhou, Dong; Hu, Yanqing

    2018-03-01

    In many real network systems, nodes usually cooperate with each other and form groups to enhance their robustness to risks. This motivates us to study an alternative type of percolation, group percolation, in interdependent networks under attack. In this model, nodes belonging to the same group survive or fail together. We develop a theoretical framework for this group percolation and find that the formation of groups can improve the resilience of interdependent networks significantly. However, the percolation transition is always of first order, regardless of the distribution of group sizes. As an application, we map the interdependent networks with intersimilarity structures, which have attracted much attention recently, onto the group percolation and confirm the nonexistence of continuous phase transitions.

  15. Global multi-layer network of human mobility

    PubMed Central

    Belyi, Alexander; Bojic, Iva; Sobolevsky, Stanislav; Sitko, Izabela; Hawelka, Bartosz; Rudikova, Lada; Kurbatski, Alexander; Ratti, Carlo

    2017-01-01

    ABSTRACT Recent availability of geo-localized data capturing individual human activity together with the statistical data on international migration opened up unprecedented opportunities for a study on global mobility. In this paper, we consider it from the perspective of a multi-layer complex network, built using a combination of three datasets: Twitter, Flickr and official migration data. Those datasets provide different, but equally important insights on the global mobility – while the first two highlight short-term visits of people from one country to another, the last one – migration – shows the long-term mobility perspective, when people relocate for good. The main purpose of the paper is to emphasize importance of this multi-layer approach capturing both aspects of human mobility at the same time. On the one hand, we show that although the general properties of different layers of the global mobility network are similar, there are important quantitative differences among them. On the other hand, we demonstrate that consideration of mobility from a multi-layer perspective can reveal important global spatial patterns in a way more consistent with those observed in other available relevant sources of international connections, in comparison to the spatial structure inferred from each network layer taken separately. PMID:28553155

  16. Detection of gene communities in multi-networks reveals cancer drivers

    NASA Astrophysics Data System (ADS)

    Cantini, Laura; Medico, Enzo; Fortunato, Santo; Caselle, Michele

    2015-12-01

    We propose a new multi-network-based strategy to integrate different layers of genomic information and use them in a coordinate way to identify driving cancer genes. The multi-networks that we consider combine transcription factor co-targeting, microRNA co-targeting, protein-protein interaction and gene co-expression networks. The rationale behind this choice is that gene co-expression and protein-protein interactions require a tight coregulation of the partners and that such a fine tuned regulation can be obtained only combining both the transcriptional and post-transcriptional layers of regulation. To extract the relevant biological information from the multi-network we studied its partition into communities. To this end we applied a consensus clustering algorithm based on state of art community detection methods. Even if our procedure is valid in principle for any pathology in this work we concentrate on gastric, lung, pancreas and colorectal cancer and identified from the enrichment analysis of the multi-network communities a set of candidate driver cancer genes. Some of them were already known oncogenes while a few are new. The combination of the different layers of information allowed us to extract from the multi-network indications on the regulatory pattern and functional role of both the already known and the new candidate driver genes.

  17. Deep Visual Attention Prediction

    NASA Astrophysics Data System (ADS)

    Wang, Wenguan; Shen, Jianbing

    2018-05-01

    In this work, we aim to predict human eye fixation with view-free scenes based on an end-to-end deep learning architecture. Although Convolutional Neural Networks (CNNs) have made substantial improvement on human attention prediction, it is still needed to improve CNN based attention models by efficiently leveraging multi-scale features. Our visual attention network is proposed to capture hierarchical saliency information from deep, coarse layers with global saliency information to shallow, fine layers with local saliency response. Our model is based on a skip-layer network structure, which predicts human attention from multiple convolutional layers with various reception fields. Final saliency prediction is achieved via the cooperation of those global and local predictions. Our model is learned in a deep supervision manner, where supervision is directly fed into multi-level layers, instead of previous approaches of providing supervision only at the output layer and propagating this supervision back to earlier layers. Our model thus incorporates multi-level saliency predictions within a single network, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales. Extensive experimental analysis on various challenging benchmark datasets demonstrate our method yields state-of-the-art performance with competitive inference time.

  18. Software-Defined Architectures for Spectrally Efficient Cognitive Networking in Extreme Environments

    NASA Astrophysics Data System (ADS)

    Sklivanitis, Georgios

    The objective of this dissertation is the design, development, and experimental evaluation of novel algorithms and reconfigurable radio architectures for spectrally efficient cognitive networking in terrestrial, airborne, and underwater environments. Next-generation wireless communication architectures and networking protocols that maximize spectrum utilization efficiency in congested/contested or low-spectral availability (extreme) communication environments can enable a rich body of applications with unprecedented societal impact. In recent years, underwater wireless networks have attracted significant attention for military and commercial applications including oceanographic data collection, disaster prevention, tactical surveillance, offshore exploration, and pollution monitoring. Unmanned aerial systems that are autonomously networked and fully mobile can assist humans in extreme or difficult-to-reach environments and provide cost-effective wireless connectivity for devices without infrastructure coverage. Cognitive radio (CR) has emerged as a promising technology to maximize spectral efficiency in dynamically changing communication environments by adaptively reconfiguring radio communication parameters. At the same time, the fast developing technology of software-defined radio (SDR) platforms has enabled hardware realization of cognitive radio algorithms for opportunistic spectrum access. However, existing algorithmic designs and protocols for shared spectrum access do not effectively capture the interdependencies between radio parameters at the physical (PHY), medium-access control (MAC), and network (NET) layers of the network protocol stack. In addition, existing off-the-shelf radio platforms and SDR programmable architectures are far from fulfilling runtime adaptation and reconfiguration across PHY, MAC, and NET layers. Spectrum allocation in cognitive networks with multi-hop communication requirements depends on the location, network traffic load, and interference profile at each network node. As a result, the development and implementation of algorithms and cross-layer reconfigurable radio platforms that can jointly treat space, time, and frequency as a unified resource to be dynamically optimized according to inter- and intra-network interference constraints is of fundamental importance. In the next chapters, we present novel algorithmic and software/hardware implementation developments toward the deployment of spectrally efficient terrestrial, airborne, and underwater wireless networks. In Chapter 1 we review the state-of-art in commercially available SDR platforms, describe their software and hardware capabilities, and classify them based on their ability to enable rapid prototyping and advance experimental research in wireless networks. Chapter 2 discusses system design and implementation details toward real-time evaluation of a software-radio platform for all-spectrum cognitive channelization in the presence of narrowband or wideband primary stations. All-spectrum channelization is achieved by designing maximum signal-to-interference-plus-noise ratio (SINR) waveforms that span the whole continuum of the device-accessible spectrum, while satisfying peak power and interference temperature (IT) constraints for the secondary and primary users, respectively. In Chapter 3, we introduce the concept of all-spectrum channelization based on max-SINR optimized sparse-binary waveforms, we propose optimal and suboptimal waveform design algorithms, and evaluate their SINR and bit-error-rate (BER) performance in an SDR testbed. Chapter 4 considers the problem of channel estimation with minimal pilot signaling in multi-cell multi-user multi-input multi-output (MIMO) systems with very large antenna arrays at the base station, and proposes a least-squares (LS)-type algorithm that iteratively extracts channel and data estimates from a short record of data measurements. Our algorithmic developments toward spectrally-efficient cognitive networking through joint optimization of channel access code-waveforms and routes in a multi-hop network are described in Chapter 5. Algorithmic designs are software optimized on heterogeneous multi-core general-purpose processor (GPP)-based SDR architectures by leveraging a novel software-radio framework that offers self-optimization and real-time adaptation capabilities at the PHY, MAC, and NET layers of the network protocol stack. Our system design approach is experimentally validated under realistic conditions in a large-scale hybrid ground-air testbed deployment. Chapter 6 reviews the state-of-art in software and hardware platforms for underwater wireless networking and proposes a software-defined acoustic modem prototype that enables (i) cognitive reconfiguration of PHY/MAC parameters, and (ii) cross-technology communication adaptation. The proposed modem design is evaluated in terms of effective communication data rate in both water tank and lake testbed setups. In Chapter 7, we present a novel receiver configuration for code-waveform-based multiple-access underwater communications. The proposed receiver is fully reconfigurable and executes (i) all-spectrum cognitive channelization, and (ii) combined synchronization, channel estimation, and demodulation. Experimental evaluation in terms of SINR and BER show that all-spectrum channelization is a powerful proposition for underwater communications. At the same time, the proposed receiver design can significantly enhance bandwidth utilization. Finally, in Chapter 8, we focus on challenging practical issues that arise in underwater acoustic sensor network setups where co-located multi-antenna sensor deployment is not feasible due to power, computation, and hardware limitations, and design, implement, and evaluate an underwater receiver structure that accounts for multiple carrier frequency and timing offsets in virtual (distributed) MIMO underwater systems.

  19. Challenges in network science: Applications to infrastructures, climate, social systems and economics

    NASA Astrophysics Data System (ADS)

    Havlin, S.; Kenett, D. Y.; Ben-Jacob, E.; Bunde, A.; Cohen, R.; Hermann, H.; Kantelhardt, J. W.; Kertész, J.; Kirkpatrick, S.; Kurths, J.; Portugali, J.; Solomon, S.

    2012-11-01

    Network theory has become one of the most visible theoretical frameworks that can be applied to the description, analysis, understanding, design and repair of multi-level complex systems. Complex networks occur everywhere, in man-made and human social systems, in organic and inorganic matter, from nano to macro scales, and in natural and anthropogenic structures. New applications are developed at an ever-increasing rate and the promise for future growth is high, since increasingly we interact with one another within these vital and complex environments. Despite all the great successes of this field, crucial aspects of multi-level complex systems have been largely ignored. Important challenges of network science are to take into account many of these missing realistic features such as strong coupling between networks (networks are not isolated), the dynamics of networks (networks are not static), interrelationships between structure, dynamics and function of networks, interdependencies in given networks (and other classes of links, including different signs of interactions), and spatial properties (including geographical aspects) of networks. This aim of this paper is to introduce and discuss the challenges that future network science needs to address, and how different disciplines will be accordingly affected.

  20. Identifying the Community Structure of the Food-Trade International Multi-Network

    NASA Technical Reports Server (NTRS)

    Torreggiani, S.; Mangioni, G.

    2018-01-01

    Achieving international food security requires improved understanding of how international trade networks connect countries around the world through the import-export flows of food commodities. The properties of international food trade networks are still poorly documented, especially from a multi-network perspective. In particular, nothing is known about the multi-network's community structure. Here we find that the individual crop-specific layers of the multi-network have densely connected trading groups, a consistent characteristic over the period 2001-2011. Further, the multi-network is characterized by low variability over this period but with substantial heterogeneity across layers in each year. In particular, the layers are mostly assortative: more-intensively connected countries tend to import from and export to countries that are themselves more connected. We also fit econometric models to identify social, economic and geographic factors explaining the probability that any two countries are co-present in the same community. Our estimates indicate that the probability of country pairs belonging to the same food trade community depends more on geopolitical and economic factors-such as geographical proximity and trade-agreement co-membership-than on country economic size and/or income. These community-structure findings of the multi-network are especially valuable for efforts to understand past and emerging dynamics in the global food system, especially those that examine potential 'shocks' to global food trade.

  1. Cooperation in memory-based prisoner's dilemma game on interdependent networks

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Zhang, Xiaolin; Liu, Hong; Shao, Rui

    2016-05-01

    Memory or so-called experience normally plays the important role to guide the human behaviors in real world, that is essential for rational decisions made by individuals. Hence, when the evolutionary behaviors of players with bounded rationality are investigated, it is reasonable to make an assumption that players in system are with limited memory. Besides, in order to unravel the intricate variability of complex systems in real world and make a highly integrative understanding of their dynamics, in recent years, interdependent networks as a comprehensive network structure have obtained more attention in this community. In this article, the evolution of cooperation in memory-based prisoner's dilemma game (PDG) on interdependent networks composed by two coupled square lattices is studied. Herein, all or part of players are endowed with finite memory ability, and we focus on the mutual influence of memory effect and interdependent network reciprocity on cooperation of spatial PDG. We show that the density of cooperation can be significantly promoted within an optimal region of memory length and interdependent strength. Furthermore, distinguished by whether having memory ability/external links or not, each kind of players on networks would have distinct evolutionary behaviors. Our work could be helpful to understand the emergence and maintenance of cooperation under the evolution of memory-based players on interdependent networks.

  2. An inference method from multi-layered structure of biomedical data.

    PubMed

    Kim, Myungjun; Nam, Yonghyun; Shin, Hyunjung

    2017-05-18

    Biological system is a multi-layered structure of omics with genome, epigenome, transcriptome, metabolome, proteome, etc., and can be further stretched to clinical/medical layers such as diseasome, drugs, and symptoms. One advantage of omics is that we can figure out an unknown component or its trait by inferring from known omics components. The component can be inferred by the ones in the same level of omics or the ones in different levels. To implement the inference process, an algorithm that can be applied to the multi-layered complex system is required. In this study, we develop a semi-supervised learning algorithm that can be applied to the multi-layered complex system. In order to verify the validity of the inference, it was applied to the prediction problem of disease co-occurrence with a two-layered network composed of symptom-layer and disease-layer. The symptom-disease layered network obtained a fairly high value of AUC, 0.74, which is regarded as noticeable improvement when comparing 0.59 AUC of single-layered disease network. If further stretched to whole layered structure of omics, the proposed method is expected to produce more promising results. This research has novelty in that it is a new integrative algorithm that incorporates the vertical structure of omics data, on contrary to other existing methods that integrate the data in parallel fashion. The results can provide enhanced guideline for disease co-occurrence prediction, thereby serve as a valuable tool for inference process of multi-layered biological system.

  3. Optimal interdependence between networks for the evolution of cooperation.

    PubMed

    Wang, Zhen; Szolnoki, Attila; Perc, Matjaž

    2013-01-01

    Recent research has identified interactions between networks as crucial for the outcome of evolutionary games taking place on them. While the consensus is that interdependence does promote cooperation by means of organizational complexity and enhanced reciprocity that is out of reach on isolated networks, we here address the question just how much interdependence there should be. Intuitively, one might assume the more the better. However, we show that in fact only an intermediate density of sufficiently strong interactions between networks warrants an optimal resolution of social dilemmas. This is due to an intricate interplay between the heterogeneity that causes an asymmetric strategy flow because of the additional links between the networks, and the independent formation of cooperative patterns on each individual network. Presented results are robust to variations of the strategy updating rule, the topology of interdependent networks, and the governing social dilemma, thus suggesting a high degree of universality.

  4. Optimal interdependence between networks for the evolution of cooperation

    PubMed Central

    Wang, Zhen; Szolnoki, Attila; Perc, Matjaž

    2013-01-01

    Recent research has identified interactions between networks as crucial for the outcome of evolutionary games taking place on them. While the consensus is that interdependence does promote cooperation by means of organizational complexity and enhanced reciprocity that is out of reach on isolated networks, we here address the question just how much interdependence there should be. Intuitively, one might assume the more the better. However, we show that in fact only an intermediate density of sufficiently strong interactions between networks warrants an optimal resolution of social dilemmas. This is due to an intricate interplay between the heterogeneity that causes an asymmetric strategy flow because of the additional links between the networks, and the independent formation of cooperative patterns on each individual network. Presented results are robust to variations of the strategy updating rule, the topology of interdependent networks, and the governing social dilemma, thus suggesting a high degree of universality. PMID:23959086

  5. Inferring the mesoscale structure of layered, edge-valued, and time-varying networks

    NASA Astrophysics Data System (ADS)

    Peixoto, Tiago P.

    2015-10-01

    Many network systems are composed of interdependent but distinct types of interactions, which cannot be fully understood in isolation. These different types of interactions are often represented as layers, attributes on the edges, or as a time dependence of the network structure. Although they are crucial for a more comprehensive scientific understanding, these representations offer substantial challenges. Namely, it is an open problem how to precisely characterize the large or mesoscale structure of network systems in relation to these additional aspects. Furthermore, the direct incorporation of these features invariably increases the effective dimension of the network description, and hence aggravates the problem of overfitting, i.e., the use of overly complex characterizations that mistake purely random fluctuations for actual structure. In this work, we propose a robust and principled method to tackle these problems, by constructing generative models of modular network structure, incorporating layered, attributed and time-varying properties, as well as a nonparametric Bayesian methodology to infer the parameters from data and select the most appropriate model according to statistical evidence. We show that the method is capable of revealing hidden structure in layered, edge-valued, and time-varying networks, and that the most appropriate level of granularity with respect to the additional dimensions can be reliably identified. We illustrate our approach on a variety of empirical systems, including a social network of physicians, the voting correlations of deputies in the Brazilian national congress, the global airport network, and a proximity network of high-school students.

  6. Identifying the community structure of the food-trade international multi-network

    NASA Astrophysics Data System (ADS)

    Torreggiani, S.; Mangioni, G.; Puma, M. J.; Fagiolo, G.

    2018-05-01

    Achieving international food security requires improved understanding of how international trade networks connect countries around the world through the import-export flows of food commodities. The properties of international food trade networks are still poorly documented, especially from a multi-network perspective. In particular, nothing is known about the multi-network’s community structure. Here we find that the individual crop-specific layers of the multi-network have densely connected trading groups, a consistent characteristic over the period 2001–2011. Further, the multi-network is characterized by low variability over this period but with substantial heterogeneity across layers in each year. In particular, the layers are mostly assortative: more-intensively connected countries tend to import from and export to countries that are themselves more connected. We also fit econometric models to identify social, economic and geographic factors explaining the probability that any two countries are co-present in the same community. Our estimates indicate that the probability of country pairs belonging to the same food trade community depends more on geopolitical and economic factors—such as geographical proximity and trade-agreement co-membership—than on country economic size and/or income. These community-structure findings of the multi-network are especially valuable for efforts to understand past and emerging dynamics in the global food system, especially those that examine potential ‘shocks’ to global food trade.

  7. A multi-layer steganographic method based on audio time domain segmented and network steganography

    NASA Astrophysics Data System (ADS)

    Xue, Pengfei; Liu, Hanlin; Hu, Jingsong; Hu, Ronggui

    2018-05-01

    Both audio steganography and network steganography are belong to modern steganography. Audio steganography has a large capacity. Network steganography is difficult to detect or track. In this paper, a multi-layer steganographic method based on the collaboration of them (MLS-ATDSS&NS) is proposed. MLS-ATDSS&NS is realized in two covert layers (audio steganography layer and network steganography layer) by two steps. A new audio time domain segmented steganography (ATDSS) method is proposed in step 1, and the collaboration method of ATDSS and NS is proposed in step 2. The experimental results showed that the advantage of MLS-ATDSS&NS over others is better trade-off between capacity, anti-detectability and robustness, that means higher steganographic capacity, better anti-detectability and stronger robustness.

  8. Reliability analysis in interdependent smart grid systems

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  9. Deciphering the Interdependence between Ecological and Evolutionary Networks.

    PubMed

    Melián, Carlos J; Matthews, Blake; de Andreazzi, Cecilia S; Rodríguez, Jorge P; Harmon, Luke J; Fortuna, Miguel A

    2018-05-24

    Biological systems consist of elements that interact within and across hierarchical levels. For example, interactions among genes determine traits of individuals, competitive and cooperative interactions among individuals influence population dynamics, and interactions among species affect the dynamics of communities and ecosystem processes. Such systems can be represented as hierarchical networks, but can have complex dynamics when interdependencies among levels of the hierarchy occur. We propose integrating ecological and evolutionary processes in hierarchical networks to explore interdependencies in biological systems. We connect gene networks underlying predator-prey trait distributions to food webs. Our approach addresses longstanding questions about how complex traits and intraspecific trait variation affect the interdependencies among biological levels and the stability of meta-ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Resource allocation in road infrastructure using ANP priorities with ZOGP formulation-A case study

    NASA Astrophysics Data System (ADS)

    Alias, Suriana; Adna, Norfarziah; Soid, Siti Khuzaimah; Kardri, Mahani

    2013-09-01

    Road Infrastructure (RI) project evaluation and selection is concern with the allocation of scarce organizational resources. In this paper, it is suggest an improved RI project selection methodology which reflects interdependencies among evaluation criteria and candidate projects. Fuzzy Delphi Method (FDM) is use to evoking expert group opinion and also to determine a degree of interdependences relationship between the alternative projects. In order to provide a systematic approach to set priorities among multi-criteria and trade-off among objectives, Analytic Network Process (ANP) is suggested to be applied prior to Zero-One Goal Programming (ZOGP) formulation. Specifically, this paper demonstrated how to combined FDM and ANP with ZOGP through a real-world RI empirical example on an ongoing decision-making project in Johor, Malaysia.

  11. Spontaneous Symmetry Breaking in Interdependent Networked Game

    PubMed Central

    Jin, Qing; Wang, Lin; Xia, Cheng-Yi; Wang, Zhen

    2014-01-01

    Spatial evolution game has traditionally assumed that players interact with direct neighbors on a single network, which is isolated and not influenced by other systems. However, this is not fully consistent with recent research identification that interactions between networks play a crucial rule for the outcome of evolutionary games taking place on them. In this work, we introduce the simple game model into the interdependent networks composed of two networks. By means of imitation dynamics, we display that when the interdependent factor α is smaller than a threshold value αC, the symmetry of cooperation can be guaranteed. Interestingly, as interdependent factor exceeds αC, spontaneous symmetry breaking of fraction of cooperators presents itself between different networks. With respect to the breakage of symmetry, it is induced by asynchronous expansion between heterogeneous strategy couples of both networks, which further enriches the content of spatial reciprocity. Moreover, our results can be well predicted by the strategy-couple pair approximation method. PMID:24526076

  12. Cascading Failures and Recovery in Networks of Networks

    NASA Astrophysics Data System (ADS)

    Havlin, Shlomo

    Network science have been focused on the properties of a single isolated network that does not interact or depends on other networks. In reality, many real-networks, such as power grids, transportation and communication infrastructures interact and depend on other networks. I will present a framework for studying the vulnerability and the recovery of networks of interdependent networks. In interdependent networks, when nodes in one network fail, they cause dependent nodes in other networks to also fail. This is also the case when some nodes like certain locations play a role in two networks -multiplex. This may happen recursively and can lead to a cascade of failures and to a sudden fragmentation of the system. I will present analytical solutions for the critical threshold and the giant component of a network of n interdependent networks. I will show, that the general theory has many novel features that are not present in the classical network theory. When recovery of components is possible global spontaneous recovery of the networks and hysteresis phenomena occur and the theory suggests an optimal repairing strategy of system of systems. I will also show that interdependent networks embedded in space are significantly more vulnerable compared to non embedded networks. In particular, small localized attacks may lead to cascading failures and catastrophic consequences.Thus, analyzing data of real network of networks is highly required to understand the system vulnerability. DTRA, ONR, Israel Science Foundation.

  13. Non-consensus Opinion Models on Complex Networks

    NASA Astrophysics Data System (ADS)

    Li, Qian; Braunstein, Lidia A.; Wang, Huijuan; Shao, Jia; Stanley, H. Eugene; Havlin, Shlomo

    2013-04-01

    Social dynamic opinion models have been widely studied to understand how interactions among individuals cause opinions to evolve. Most opinion models that utilize spin interaction models usually produce a consensus steady state in which only one opinion exists. Because in reality different opinions usually coexist, we focus on non-consensus opinion models in which above a certain threshold two opinions coexist in a stable relationship. We revisit and extend the non-consensus opinion (NCO) model introduced by Shao et al. (Phys. Rev. Lett. 103:01870, 2009). The NCO model in random networks displays a second order phase transition that belongs to regular mean field percolation and is characterized by the appearance (above a certain threshold) of a large spanning cluster of the minority opinion. We generalize the NCO model by adding a weight factor W to each individual's original opinion when determining their future opinion (NCO W model). We find that as W increases the minority opinion holders tend to form stable clusters with a smaller initial minority fraction than in the NCO model. We also revisit another non-consensus opinion model based on the NCO model, the inflexible contrarian opinion (ICO) model (Li et al. in Phys. Rev. E 84:066101, 2011), which introduces inflexible contrarians to model the competition between two opinions in a steady state. Inflexible contrarians are individuals that never change their original opinion but may influence the opinions of others. To place the inflexible contrarians in the ICO model we use two different strategies, random placement and one in which high-degree nodes are targeted. The inflexible contrarians effectively decrease the size of the largest rival-opinion cluster in both strategies, but the effect is more pronounced under the targeted method. All of the above models have previously been explored in terms of a single network, but human communities are usually interconnected, not isolated. Because opinions propagate not only within single networks but also between networks, and because the rules of opinion formation within a network may differ from those between networks, we study here the opinion dynamics in coupled networks. Each network represents a social group or community and the interdependent links joining individuals from different networks may be social ties that are unusually strong, e.g., married couples. We apply the non-consensus opinion (NCO) rule on each individual network and the global majority rule on interdependent pairs such that two interdependent agents with different opinions will, due to the influence of mass media, follow the majority opinion of the entire population. The opinion interactions within each network and the interdependent links across networks interlace periodically until a steady state is reached. We find that the interdependent links effectively force the system from a second order phase transition, which is characteristic of the NCO model on a single network, to a hybrid phase transition, i.e., a mix of second-order and abrupt jump-like transitions that ultimately becomes, as we increase the percentage of interdependent agents, a pure abrupt transition. We conclude that for the NCO model on coupled networks, interactions through interdependent links could push the non-consensus opinion model to a consensus opinion model, which mimics the reality that increased mass communication causes people to hold opinions that are increasingly similar. We also find that the effect of interdependent links is more pronounced in interdependent scale free networks than in interdependent Erdős Rényi networks.

  14. Optimized planning methodologies of ASON implementation

    NASA Astrophysics Data System (ADS)

    Zhou, Michael M.; Tamil, Lakshman S.

    2005-02-01

    Advanced network planning concerns effective network-resource allocation for dynamic and open business environment. Planning methodologies of ASON implementation based on qualitative analysis and mathematical modeling are presented in this paper. The methodology includes method of rationalizing technology and architecture, building network and nodal models, and developing dynamic programming for multi-period deployment. The multi-layered nodal architecture proposed here can accommodate various nodal configurations for a multi-plane optical network and the network modeling presented here computes the required network elements for optimizing resource allocation.

  15. Predicting multicellular function through multi-layer tissue networks

    PubMed Central

    Zitnik, Marinka; Leskovec, Jure

    2017-01-01

    Abstract Motivation: Understanding functions of proteins in specific human tissues is essential for insights into disease diagnostics and therapeutics, yet prediction of tissue-specific cellular function remains a critical challenge for biomedicine. Results: Here, we present OhmNet, a hierarchy-aware unsupervised node feature learning approach for multi-layer networks. We build a multi-layer network, where each layer represents molecular interactions in a different human tissue. OhmNet then automatically learns a mapping of proteins, represented as nodes, to a neural embedding-based low-dimensional space of features. OhmNet encourages sharing of similar features among proteins with similar network neighborhoods and among proteins activated in similar tissues. The algorithm generalizes prior work, which generally ignores relationships between tissues, by modeling tissue organization with a rich multiscale tissue hierarchy. We use OhmNet to study multicellular function in a multi-layer protein interaction network of 107 human tissues. In 48 tissues with known tissue-specific cellular functions, OhmNet provides more accurate predictions of cellular function than alternative approaches, and also generates more accurate hypotheses about tissue-specific protein actions. We show that taking into account the tissue hierarchy leads to improved predictive power. Remarkably, we also demonstrate that it is possible to leverage the tissue hierarchy in order to effectively transfer cellular functions to a functionally uncharacterized tissue. Overall, OhmNet moves from flat networks to multiscale models able to predict a range of phenotypes spanning cellular subsystems. Availability and implementation: Source code and datasets are available at http://snap.stanford.edu/ohmnet. Contact: jure@cs.stanford.edu PMID:28881986

  16. Unraveling spurious properties of interaction networks with tailored random networks.

    PubMed

    Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus

    2011-01-01

    We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures--known for their complex spatial and temporal dynamics--we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.

  17. Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks

    PubMed Central

    Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus

    2011-01-01

    We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures – known for their complex spatial and temporal dynamics – we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis. PMID:21850239

  18. Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries.

    PubMed

    Choi, Jin-Hoon; Ryu, Won-Hee; Park, Kyusung; Jo, Jeong-Dai; Jo, Sung-Moo; Lim, Dae-Soon; Kim, Il-Doo

    2014-12-05

    Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g(-1) at a high rate of 100C even after 1000 cycles.

  19. Multilayer motif analysis of brain networks

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito

    2017-04-01

    In the last decade, network science has shed new light both on the structural (anatomical) and on the functional (correlations in the activity) connectivity among the different areas of the human brain. The analysis of brain networks has made possible to detect the central areas of a neural system and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on anatomical and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows us to perform an analysis of the human brain where the structural and functional layers are considered together. In this work, we describe how to classify the subgraphs of a multiplex network, and we extend the motif analysis to networks with an arbitrary number of layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, anatomical and functional, respectively, obtained from diffusion and functional magnetic resonance imaging. Results indicate that subgraphs in which the presence of a physical connection between brain areas (links at the structural layer) coexists with a non-trivial positive correlation in their activities are statistically overabundant. Finally, we investigate the existence of a reinforcement mechanism between the two layers by looking at how the probability to find a link in one layer depends on the intensity of the connection in the other one. Showing that functional connectivity is non-trivially constrained by the underlying anatomical network, our work contributes to a better understanding of the interplay between the structure and function in the human brain.

  20. Cross Layered Multi-Meshed Tree Scheme for Cognitive Networks

    DTIC Science & Technology

    2011-06-01

    Meshed Tree Routing protocol wireless ad hoc networks ,” Second IEEE International Workshop on Enabling Technologies and Standards for Wireless Mesh ...and Sensor Networks , 2004 43. Chen G.; Stojmenovic I., “Clustering and routing in mobile wireless networks ,” Technical Report TR-99-05, SITE, June...Cross-layer optimization, intra-cluster routing , packet forwarding, inter-cluster routing , mesh network communications,

  1. Percolation and Reinforcement on Complex Networks

    NASA Astrophysics Data System (ADS)

    Yuan, Xin

    Complex networks appear in almost every aspect of our daily life and are widely studied in the fields of physics, mathematics, finance, biology and computer science. This work utilizes percolation theory in statistical physics to explore the percolation properties of complex networks and develops a reinforcement scheme on improving network resilience. This dissertation covers two major parts of my Ph.D. research on complex networks: i) probe--in the context of both traditional percolation and k-core percolation--the resilience of complex networks with tunable degree distributions or directed dependency links under random, localized or targeted attacks; ii) develop and propose a reinforcement scheme to eradicate catastrophic collapses that occur very often in interdependent networks. We first use generating function and probabilistic methods to obtain analytical solutions to percolation properties of interest, such as the giant component size and the critical occupation probability. We study uncorrelated random networks with Poisson, bi-Poisson, power-law, and Kronecker-delta degree distributions and construct those networks which are based on the configuration model. The computer simulation results show remarkable agreement with theoretical predictions. We discover an increase of network robustness as the degree distribution broadens and a decrease of network robustness as directed dependency links come into play under random attacks. We also find that targeted attacks exert the biggest damage to the structure of both single and interdependent networks in k-core percolation. To strengthen the resilience of interdependent networks, we develop and propose a reinforcement strategy and obtain the critical amount of reinforced nodes analytically for interdependent Erdḧs-Renyi networks and numerically for scale-free and for random regular networks. Our mechanism leads to improvement of network stability of the West U.S. power grid. This dissertation provides us with a deeper understanding of the effects of structural features on network stability and fresher insights into designing resilient interdependent infrastructure networks.

  2. Research on a Denial of Service (DoS) Detection System Based on Global Interdependent Behaviors in a Sensor Network Environment

    PubMed Central

    Song, Jae-gu; Jung, Sungmo; Kim, Jong Hyun; Seo, Dong Il; Kim, Seoksoo

    2010-01-01

    This research suggests a Denial of Service (DoS) detection method based on the collection of interdependent behavior data in a sensor network environment. In order to collect the interdependent behavior data, we use a base station to analyze traffic and behaviors among nodes and introduce methods of detecting changes in the environment with precursor symptoms. The study presents a DoS Detection System based on Global Interdependent Behaviors and shows the result of detecting a sensor carrying out DoS attacks through the test-bed. PMID:22163475

  3. The physics of teams: Interdependence, measurable entropy and computational emotion

    NASA Astrophysics Data System (ADS)

    Lawless, William F.

    2017-08-01

    Most of the social sciences, including psychology, economics and subjective social network theory, are modeled on the individual, leaving the field not only a-theoretical, but also inapplicable to a physics of hybrid teams, where hybrid refers to arbitrarily combining humans, machines and robots into a team to perform a dedicated mission (e.g., military, business, entertainment) or to solve a targeted problem (e.g., with scientists, engineers, entrepreneurs). As a common social science practice, the ingredient at the heart of the social interaction, interdependence, is statistically removed prior to the replication of social experiments; but, as an analogy, statistically removing social interdependence to better study the individual is like statistically removing quantum effects as a complication to the study of the atom. Further, in applications of Shannon’s information theory to teams, the effects of interdependence are minimized, but even there, interdependence is how classical information is transmitted. Consequently, numerous mistakes are made when applying non-interdependent models to policies, the law and regulations, impeding social welfare by failing to exploit the power of social interdependence. For example, adding redundancy to human teams is thought by subjective social network theorists to improve the efficiency of a network, easily contradicted by our finding that redundancy is strongly associated with corruption in non-free markets. Thus, built atop the individual, most of the social sciences, economics and social network theory have little if anything to contribute to the engineering of hybrid teams. In defense of the social sciences, the mathematical physics of interdependence is elusive, non-intuitive and non-rational. However, by replacing determinism with bistable states, interdependence at the social level mirrors entanglement at the quantum level, suggesting the applicability of quantum tools for social science. We report how our quantum-like models capture some of the essential aspects of interdependence, a tool for the metrics of hybrid teams; as an example, we find additional support for our model of the solution to the open problem of team size. We also report on progress with the theory of computational emotion for hybrid teams, linking it qualitatively to the second law of thermodynamics. We conclude that the science of interdependence

  4. Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI

    NASA Astrophysics Data System (ADS)

    Olyaee, Saeed; Hamedi, Samaneh

    2011-02-01

    In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.

  5. Competition of simple and complex adoption on interdependent networks

    NASA Astrophysics Data System (ADS)

    Czaplicka, Agnieszka; Toral, Raul; San Miguel, Maxi

    2016-12-01

    We consider the competition of two mechanisms for adoption processes: a so-called complex threshold dynamics and a simple susceptible-infected-susceptible (SIS) model. Separately, these mechanisms lead, respectively, to first-order and continuous transitions between nonadoption and adoption phases. We consider two interconnected layers. While all nodes on the first layer follow the complex adoption process, all nodes on the second layer follow the simple adoption process. Coupling between the two adoption processes occurs as a result of the inclusion of some additional interconnections between layers. We find that the transition points and also the nature of the transitions are modified in the coupled dynamics. In the complex adoption layer, the critical threshold required for extension of adoption increases with interlayer connectivity whereas in the case of an isolated single network it would decrease with average connectivity. In addition, the transition can become continuous depending on the detailed interlayer and intralayer connectivities. In the SIS layer, any interlayer connectivity leads to the extension of the adopter phase. Besides, a new transition appears as a sudden drop of the fraction of adopters in the SIS layer. The main numerical findings are described by a mean-field type analytical approach appropriately developed for the threshold-SIS coupled system.

  6. Robustness of non-interdependent and interdependent networks against dependent and adaptive attacks

    NASA Astrophysics Data System (ADS)

    Tyra, Adam; Li, Jingtao; Shang, Yilun; Jiang, Shuo; Zhao, Yanjun; Xu, Shouhuai

    2017-09-01

    Robustness of complex networks has been extensively studied via the notion of site percolation, which typically models independent and non-adaptive attacks (or disruptions). However, real-life attacks are often dependent and/or adaptive. This motivates us to characterize the robustness of complex networks, including non-interdependent and interdependent ones, against dependent and adaptive attacks. For this purpose, dependent attacks are accommodated by L-hop percolation where the nodes within some L-hop (L ≥ 0) distance of a chosen node are all deleted during one attack (with L = 0 degenerating to site percolation). Whereas, adaptive attacks are launched by attackers who can make node-selection decisions based on the network state in the beginning of each attack. The resulting characterization enriches the body of knowledge with new insights, such as: (i) the Achilles' Heel phenomenon is only valid for independent attacks, but not for dependent attacks; (ii) powerful attack strategies (e.g., targeted attacks and dependent attacks, dependent attacks and adaptive attacks) are not compatible and cannot help the attacker when used collectively. Our results shed some light on the design of robust complex networks.

  7. Percolation of localized attack on isolated and interdependent random networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo

    2014-03-01

    Percolation properties of isolated and interdependent random networks have been investigated extensively. The focus of these studies has been on random attacks where each node in network is attacked with the same probability or targeted attack where each node is attacked with a probability being a function of its centrality, such as degree. Here we discuss a new type of realistic attacks which we call a localized attack where a group of neighboring nodes in the networks are attacked. We attack a randomly chosen node, its neighbors, and its neighbor of neighbors and so on, until removing a fraction (1 - p) of the network. This type of attack reflects damages due to localized disasters, such as earthquakes, floods and war zones in real-world networks. We study, both analytically and by simulations the impact of localized attack on percolation properties of random networks with arbitrary degree distributions and discuss in detail random regular (RR) networks, Erdős-Rényi (ER) networks and scale-free (SF) networks. We extend and generalize our theoretical and simulation results of single isolated networks to networks formed of interdependent networks.

  8. Heterogeneous Coupling between Interdependent Lattices Promotes the Cooperation in the Prisoner’s Dilemma Game

    PubMed Central

    Xia, Cheng-Yi; Meng, Xiao-Kun; Wang, Zhen

    2015-01-01

    In the research realm of game theory, interdependent networks have extended the content of spatial reciprocity, which needs the suitable coupling between networks. However, thus far, the vast majority of existing works just assume that the coupling strength between networks is symmetric. This hypothesis, to some extent, seems inconsistent with the ubiquitous observation of heterogeneity. Here, we study how the heterogeneous coupling strength, which characterizes the interdependency of utility between corresponding players of both networks, affects the evolution of cooperation in the prisoner’s dilemma game with two types of coupling schemes (symmetric and asymmetric ones). Compared with the traditional case, we show that heterogeneous coupling greatly promotes the collective cooperation. The symmetric scheme seems much better than the asymmetric case. Moreover, the role of varying amplitude of coupling strength is also studied on these two interdependent ways. Current findings are helpful for us to understand the evolution of cooperation within many real-world systems, in particular for the interconnected and interrelated systems. PMID:26102082

  9. Heterogeneous Coupling between Interdependent Lattices Promotes the Cooperation in the Prisoner's Dilemma Game.

    PubMed

    Xia, Cheng-Yi; Meng, Xiao-Kun; Wang, Zhen

    2015-01-01

    In the research realm of game theory, interdependent networks have extended the content of spatial reciprocity, which needs the suitable coupling between networks. However, thus far, the vast majority of existing works just assume that the coupling strength between networks is symmetric. This hypothesis, to some extent, seems inconsistent with the ubiquitous observation of heterogeneity. Here, we study how the heterogeneous coupling strength, which characterizes the interdependency of utility between corresponding players of both networks, affects the evolution of cooperation in the prisoner's dilemma game with two types of coupling schemes (symmetric and asymmetric ones). Compared with the traditional case, we show that heterogeneous coupling greatly promotes the collective cooperation. The symmetric scheme seems much better than the asymmetric case. Moreover, the role of varying amplitude of coupling strength is also studied on these two interdependent ways. Current findings are helpful for us to understand the evolution of cooperation within many real-world systems, in particular for the interconnected and interrelated systems.

  10. Centralized Routing and Scheduling Using Multi-Channel System Single Transceiver in 802.16d

    NASA Astrophysics Data System (ADS)

    Al-Hemyari, A.; Noordin, N. K.; Ng, Chee Kyun; Ismail, A.; Khatun, S.

    This paper proposes a cross-layer optimized strategy that reduces the effect of interferences from neighboring nodes within a mesh networks. This cross-layer design relies on the routing information in network layer and the scheduling table in medium access control (MAC) layer. A proposed routing algorithm in network layer is exploited to find the best route for all subscriber stations (SS). Also, a proposed centralized scheduling algorithm in MAC layer is exploited to assign a time slot for each possible node transmission. The cross-layer optimized strategy is using multi-channel single transceiver and single channel single transceiver systems for WiMAX mesh networks (WMNs). Each node in WMN has a transceiver that can be tuned to any available channel for eliminating the secondary interference. Among the considered parameters in the performance analysis are interference from the neighboring nodes, hop count to the base station (BS), number of children per node, slot reuse, load balancing, quality of services (QoS), and node identifier (ID). Results show that the proposed algorithms significantly improve the system performance in terms of length of scheduling, channel utilization ratio (CUR), system throughput, and average end to end transmission delay.

  11. A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology

    PubMed Central

    2011-01-01

    Background Genome-scale metabolic reconstructions provide a biologically meaningful mechanistic basis for the genotype-phenotype relationship. The global human metabolic network, termed Recon 1, has recently been reconstructed allowing the systems analysis of human metabolic physiology and pathology. Utilizing high-throughput data, Recon 1 has recently been tailored to different cells and tissues, including the liver, kidney, brain, and alveolar macrophage. These models have shown utility in the study of systems medicine. However, no integrated analysis between human tissues has been done. Results To describe tissue-specific functions, Recon 1 was tailored to describe metabolism in three human cells: adipocytes, hepatocytes, and myocytes. These cell-specific networks were manually curated and validated based on known cellular metabolic functions. To study intercellular interactions, a novel multi-tissue type modeling approach was developed to integrate the metabolic functions for the three cell types, and subsequently used to simulate known integrated metabolic cycles. In addition, the multi-tissue model was used to study diabetes: a pathology with systemic properties. High-throughput data was integrated with the network to determine differential metabolic activity between obese and type II obese gastric bypass patients in a whole-body context. Conclusion The multi-tissue type modeling approach presented provides a platform to study integrated metabolic states. As more cell and tissue-specific models are released, it is critical to develop a framework in which to study their interdependencies. PMID:22041191

  12. Interdependent Network Recovery Games.

    PubMed

    Smith, Andrew M; González, Andrés D; Dueñas-Osorio, Leonardo; D'Souza, Raissa M

    2017-10-30

    Recovery of interdependent infrastructure networks in the presence of catastrophic failure is crucial to the economy and welfare of society. Recently, centralized methods have been developed to address optimal resource allocation in postdisaster recovery scenarios of interdependent infrastructure systems that minimize total cost. In real-world systems, however, multiple independent, possibly noncooperative, utility network controllers are responsible for making recovery decisions, resulting in suboptimal decentralized processes. With the goal of minimizing recovery cost, a best-case decentralized model allows controllers to develop a full recovery plan and negotiate until all parties are satisfied (an equilibrium is reached). Such a model is computationally intensive for planning and negotiating, and time is a crucial resource in postdisaster recovery scenarios. Furthermore, in this work, we prove this best-case decentralized negotiation process could continue indefinitely under certain conditions. Accounting for network controllers' urgency in repairing their system, we propose an ad hoc sequential game-theoretic model of interdependent infrastructure network recovery represented as a discrete time noncooperative game between network controllers that is guaranteed to converge to an equilibrium. We further reduce the computation time needed to find a solution by applying a best-response heuristic and prove bounds on ε-Nash equilibrium, where ε depends on problem inputs. We compare best-case and ad hoc models on an empirical interdependent infrastructure network in the presence of simulated earthquakes to demonstrate the extent of the tradeoff between optimality and computational efficiency. Our method provides a foundation for modeling sociotechnical systems in a way that mirrors restoration processes in practice. © 2017 Society for Risk Analysis.

  13. Dynamic Graph Analytic Framework (DYGRAF): greater situation awareness through layered multi-modal network analysis

    NASA Astrophysics Data System (ADS)

    Margitus, Michael R.; Tagliaferri, William A., Jr.; Sudit, Moises; LaMonica, Peter M.

    2012-06-01

    Understanding the structure and dynamics of networks are of vital importance to winning the global war on terror. To fully comprehend the network environment, analysts must be able to investigate interconnected relationships of many diverse network types simultaneously as they evolve both spatially and temporally. To remove the burden from the analyst of making mental correlations of observations and conclusions from multiple domains, we introduce the Dynamic Graph Analytic Framework (DYGRAF). DYGRAF provides the infrastructure which facilitates a layered multi-modal network analysis (LMMNA) approach that enables analysts to assemble previously disconnected, yet related, networks in a common battle space picture. In doing so, DYGRAF provides the analyst with timely situation awareness, understanding and anticipation of threats, and support for effective decision-making in diverse environments.

  14. Attention to negative emotion is related to longitudinal social network change: The moderating effect of interdependent self-construal.

    PubMed

    Li, Tianyuan; Fung, Helene H; Isaacowitz, Derek M; Lang, Frieder R

    2015-08-01

    Many previous studies have investigated older adults' attentional preference toward different emotions. Interdependent self-construal is identified to be an important moderator of this phenomenon. However, despite the important social functions of emotions, the social consequence of older adults' emotional preferences in attention have not yet been examined. The current study tested how older adults' attentional preferences assessed in the laboratory influenced changes in their real-life social network, and how interdependent self-construal moderated this effect. A total of 45 older adults aged 60-84 years participated in an eye-tracking session that measured their attentional preference to emotional faces versus neutral faces. After that, participants completed the Self-Construal Scale. Participants' social network was then assessed by the Social Convoy Questionnaire twice over a 2-year period. Interdependent self-construal significantly moderated the effect of attention to angry and sad faces on older adults' real-life social network changes. For older adults with a higher level of interdependent self-construal, more attention toward negative emotions was related to longitudinal decreases in the number of their emotionally close social partners. The present study shows the important role of attentional preferences in older adults' social network maintenance. It identified a real-life macro level social outcome of a micro level laboratory phenomenon, which can be an important direction for future research. © 2014 Japan Geriatrics Society.

  15. Robustness of network of networks under targeted attack.

    PubMed

    Dong, Gaogao; Gao, Jianxi; Du, Ruijin; Tian, Lixin; Stanley, H Eugene; Havlin, Shlomo

    2013-05-01

    The robustness of a network of networks (NON) under random attack has been studied recently [Gao et al., Phys. Rev. Lett. 107, 195701 (2011)]. Understanding how robust a NON is to targeted attacks is a major challenge when designing resilient infrastructures. We address here the question how the robustness of a NON is affected by targeted attack on high- or low-degree nodes. We introduce a targeted attack probability function that is dependent upon node degree and study the robustness of two types of NON under targeted attack: (i) a tree of n fully interdependent Erdős-Rényi or scale-free networks and (ii) a starlike network of n partially interdependent Erdős-Rényi networks. For any tree of n fully interdependent Erdős-Rényi networks and scale-free networks under targeted attack, we find that the network becomes significantly more vulnerable when nodes of higher degree have higher probability to fail. When the probability that a node will fail is proportional to its degree, for a NON composed of Erdős-Rényi networks we find analytical solutions for the mutual giant component P(∞) as a function of p, where 1-p is the initial fraction of failed nodes in each network. We also find analytical solutions for the critical fraction p(c), which causes the fragmentation of the n interdependent networks, and for the minimum average degree k[over ¯](min) below which the NON will collapse even if only a single node fails. For a starlike NON of n partially interdependent Erdős-Rényi networks under targeted attack, we find the critical coupling strength q(c) for different n. When q>q(c), the attacked system undergoes an abrupt first order type transition. When q≤q(c), the system displays a smooth second order percolation transition. We also evaluate how the central network becomes more vulnerable as the number of networks with the same coupling strength q increases. The limit of q=0 represents no dependency, and the results are consistent with the classical percolation theory of a single network under targeted attack.

  16. Discovering functional interdependence relationship in PPI networks for protein complex identification.

    PubMed

    Lam, Winnie W M; Chan, Keith C C

    2012-04-01

    Protein molecules interact with each other in protein complexes to perform many vital functions, and different computational techniques have been developed to identify protein complexes in protein-protein interaction (PPI) networks. These techniques are developed to search for subgraphs of high connectivity in PPI networks under the assumption that the proteins in a protein complex are highly interconnected. While these techniques have been shown to be quite effective, it is also possible that the matching rate between the protein complexes they discover and those that are previously determined experimentally be relatively low and the "false-alarm" rate can be relatively high. This is especially the case when the assumption of proteins in protein complexes being more highly interconnected be relatively invalid. To increase the matching rate and reduce the false-alarm rate, we have developed a technique that can work effectively without having to make this assumption. The name of the technique called protein complex identification by discovering functional interdependence (PCIFI) searches for protein complexes in PPI networks by taking into consideration both the functional interdependence relationship between protein molecules and the network topology of the network. The PCIFI works in several steps. The first step is to construct a multiple-function protein network graph by labeling each vertex with one or more of the molecular functions it performs. The second step is to filter out protein interactions between protein pairs that are not functionally interdependent of each other in the statistical sense. The third step is to make use of an information-theoretic measure to determine the strength of the functional interdependence between all remaining interacting protein pairs. Finally, the last step is to try to form protein complexes based on the measure of the strength of functional interdependence and the connectivity between proteins. For performance evaluation, PCIFI was used to identify protein complexes in real PPI network data and the protein complexes it found were matched against those that were previously known in MIPS. The results show that PCIFI can be an effective technique for the identification of protein complexes. The protein complexes it found can match more known protein complexes with a smaller false-alarm rate and can provide useful insights into the understanding of the functional interdependence relationships between proteins in protein complexes.

  17. 3 Things Your Robot Should Know

    NASA Astrophysics Data System (ADS)

    Seaman, Rob

    2011-03-01

    Observational astronomy is an ancient pursuit, following an exponential trend since Galileo of ever greater capabilities. Or rather, a series of exponentials of growing apertures, the opening of new windows on the electromagnetic universe, photographic to photoelectric to digital instrumentation, balloons and spacecraft rising above atmospheric murk, to more avant-garde empirical endeavors such as multi-messenger facilities no longer recognizable as telescopes. At the same time the operational logistics of astronomy have been evolving. New observing modes and new scheduling paradigms have multiplied. Multi-year surveys supply last minute targets-of-opportunity. Astronomical software has mutated and ramified a millionfold from FORTH and FORTRAN to the Virtual Observatory (http://www.usvao.org). The beat goes on, but with accelerating syncopation. The majority of astronomical data nonetheless continues to be collected more-or-less directly by humans. Perhaps not the bottleneck, we are often the cork. The next revolution (evidenced by this conference) is toward autonomous technologies such as telepresence, robotic control, and complex telescope networks - power tools for observers. These technologies are intrinsically complex and interdependent, emergent in nature and benefit from network externality - that is, the scientific value will increase with the number of interconnected nodes. Such a wholesale cybernetic re-imagining of astronomy will only succeed if layered on an upgraded foundation. Three key elements of this new infrastructure will be discussed, particularly in the context of the astronomical time domain. These are 1) standardized transient celestial event messaging (http://voevent.org), 2) the efficient representation of data via compression technologies (http://heasarc.gsfc.nasa.gov/fitsio/fpack), and 3) traceability in timekeeping signals - NTP, GPS, and the uncertain future of UTC (http://ucolick.org/~sla/leapsecs).

  18. Improved efficient routing strategy on two-layer complex networks

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Han, Weizhan; Guo, Qing; Zhang, Shuai; Wang, Junfang; Wang, Zhihao

    2016-10-01

    The traffic dynamics of multi-layer networks has become a hot research topic since many networks are comprised of two or more layers of subnetworks. Due to its low traffic capacity, the traditional shortest path routing (SPR) protocol is susceptible to congestion on two-layer complex networks. In this paper, we propose an efficient routing strategy named improved global awareness routing (IGAR) strategy which is based on the betweenness centrality of nodes in the two layers. With the proposed strategy, the routing paths can bypass hub nodes of both layers to enhance the transport efficiency. Simulation results show that the IGAR strategy can bring much better traffic capacity than the SPR and the global awareness routing (GAR) strategies. Because of the significantly improved traffic performance, this study is helpful to alleviate congestion of the two-layer complex networks.

  19. The Fragility of Interdependency: Coupled Networks Switching Phenomena

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene

    2013-03-01

    Recent disasters ranging from abrupt financial ``flash crashes'' and large-scale power outages to sudden death among the elderly dramatically exemplify the fact that the most dangerous vulnerability is hiding in the many interdependencies among different networks. In the past year, we have quantified failures in model of interconnected networks, and demonstrated the need to consider mutually dependent network properties in designing resilient systems. Specifically, we have uncovered new laws governing the nature of switching phenomena in coupled networks, and found that phenomena that are continuous ``second order'' phase transitions in isolated networks become discontinuous abrupt ``first order'' transitions in interdependent networks [S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, ``Catastrophic Cascade of Failures in Interdependent Networks,'' Nature 464, 1025 (2010); J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, ``Novel Behavior of Networks Formed from Interdependent Networks,'' Nature Physics 8, 40 (2012). We conclude by discussing the network basis for understanding sudden death in the elderly, and the possibility that financial ``flash crashes'' are not unlike the catastrophic first-order failure incidents occurring in coupled networks. Specifically, we study the coupled networks that are responsible for financial fluctuations. It appears that ``trend switching phenomena'' that we uncover are remarkably independent of the scale over which they are analyzed. For example, we find that the same laws governing the formation and bursting of the largest financial bubbles also govern the tiniest finance bubbles, over a factor of 1,000,000,000 in time scale [T. Preis, J. Schneider, and H. E. Stanley, ``Switching Processes in Financial Markets,'' Proc. Natl. Acad. Sci. USA 108, 7674 (2011); T. Preis and H. E. Stanley, ``Bubble Trouble: Can a Law Describe Bubbles and Crashes in Financial Markets?'' Physics World 24, No. 5, 29 (May 2011)]. This work was carried out in collaboration with a number of colleagues, including T. Preis, J. J. Schneider, S. Havlin, R. Parshani, S. V. Buldyrev, J. Gao, and G. Paul-see ``When Networks Network,'' Science News, 22 Sept. 2012.

  20. A multi-layer MRI description of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    La Rocca, M.; Amoroso, N.; Lella, E.; Bellotti, R.; Tangaro, S.

    2017-09-01

    Magnetic resonance imaging (MRI) along with complex network is currently one of the most widely adopted techniques for detection of structural changes in neurological diseases, such as Parkinson's Disease (PD). In this paper, we present a digital image processing study, within the multi-layer network framework, combining more classifiers to evaluate the informative power of the MRI features, for the discrimination of normal controls (NC) and PD subjects. We define a network for each MRI scan; the nodes are the sub-volumes (patches) the images are divided into and the links are defined using the Pearson's pairwise correlation between patches. We obtain a multi-layer network whose important network features, obtained with different feature selection methods, are used to feed a supervised multi-level random forest classifier which exploits this base of knowledge for accurate classification. Method evaluation has been carried out using T1 MRI scans of 354 individuals, including 177 PD subjects and 177 NC from the Parkinson's Progression Markers Initiative (PPMI) database. The experimental results demonstrate that the features obtained from multiplex networks are able to accurately describe PD patterns. Besides, also if a privileged scale for studying PD disease exists, exploring the informative content of more scales leads to a significant improvement of the performances in the discrimination between disease and healthy subjects. In particular, this method gives a comprehensive overview of brain regions statistically affected by the disease, an additional value to the presented study.

  1. Cascading failures in interdependent networks with finite functional components

    NASA Astrophysics Data System (ADS)

    Di Muro, M. A.; Buldyrev, S. V.; Stanley, H. E.; Braunstein, L. A.

    2016-10-01

    We present a cascading failure model of two interdependent networks in which functional nodes belong to components of size greater than or equal to s . We find theoretically and via simulation that in complex networks with random dependency links the transition is first order for s ≥3 and continuous for s =2 . We also study interdependent lattices with a distance constraint r in the dependency links and find that increasing r moves the system from a regime without a phase transition to one with a second-order transition. As r continues to increase, the system collapses in a first-order transition. Each regime is associated with a different structure of domain formation of functional nodes.

  2. Modelling innovation performance of European regions using multi-output neural networks

    PubMed Central

    Henriques, Roberto

    2017-01-01

    Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics) regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes. PMID:28968449

  3. Modelling innovation performance of European regions using multi-output neural networks.

    PubMed

    Hajek, Petr; Henriques, Roberto

    2017-01-01

    Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics) regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes.

  4. Interdependent networks: the fragility of control

    PubMed Central

    Morris, Richard G.; Barthelemy, Marc

    2013-01-01

    Recent work in the area of interdependent networks has focused on interactions between two systems of the same type. However, an important and ubiquitous class of systems are those involving monitoring and control, an example of interdependence between processes that are very different. In this Article, we introduce a framework for modelling ‘distributed supervisory control' in the guise of an electrical network supervised by a distributed system of control devices. The system is characterised by degrees of freedom salient to real-world systems— namely, the number of control devices, their inherent reliability, and the topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the number of devices being the relevant parameter. For unreliable devices, the topology of the control network is important and can dramatically reduce the resilience of the system. PMID:24067404

  5. Multi-Topic Tracking Model for dynamic social network

    NASA Astrophysics Data System (ADS)

    Li, Yuhua; Liu, Changzheng; Zhao, Ming; Li, Ruixuan; Xiao, Hailing; Wang, Kai; Zhang, Jun

    2016-07-01

    The topic tracking problem has attracted much attention in the last decades. However, existing approaches rarely consider network structures and textual topics together. In this paper, we propose a novel statistical model based on dynamic bayesian network, namely Multi-Topic Tracking Model for Dynamic Social Network (MTTD). It takes influence phenomenon, selection phenomenon, document generative process and the evolution of textual topics into account. Specifically, in our MTTD model, Gibbs Random Field is defined to model the influence of historical status of users in the network and the interdependency between them in order to consider the influence phenomenon. To address the selection phenomenon, a stochastic block model is used to model the link generation process based on the users' interests to topics. Probabilistic Latent Semantic Analysis (PLSA) is used to describe the document generative process according to the users' interests. Finally, the dependence on the historical topic status is also considered to ensure the continuity of the topic itself in topic evolution model. Expectation Maximization (EM) algorithm is utilized to estimate parameters in the proposed MTTD model. Empirical experiments on real datasets show that the MTTD model performs better than Popular Event Tracking (PET) and Dynamic Topic Model (DTM) in generalization performance, topic interpretability performance, topic content evolution and topic popularity evolution performance.

  6. Multi-Layered Feedforward Neural Networks for Image Segmentation

    DTIC Science & Technology

    1991-12-01

    the Gram-Schmidt Network ...................... 80 xi Preface WILLIAM SHAKESPEARE 1564-1616 Is this a dagger which I see before me, The handle toward...any input-output mapping with a single hidden layer of non-linear nodes, the result may be like proving that a monkey could write Hamlet . Certainly it

  7. Optimizing interconnections to maximize the spectral radius of interdependent networks

    NASA Astrophysics Data System (ADS)

    Chen, Huashan; Zhao, Xiuyan; Liu, Feng; Xu, Shouhuai; Lu, Wenlian

    2017-03-01

    The spectral radius (i.e., the largest eigenvalue) of the adjacency matrices of complex networks is an important quantity that governs the behavior of many dynamic processes on the networks, such as synchronization and epidemics. Studies in the literature focused on bounding this quantity. In this paper, we investigate how to maximize the spectral radius of interdependent networks by optimally linking k internetwork connections (or interconnections for short). We derive formulas for the estimation of the spectral radius of interdependent networks and employ these results to develop a suite of algorithms that are applicable to different parameter regimes. In particular, a simple algorithm is to link the k nodes with the largest k eigenvector centralities in one network to the node in the other network with a certain property related to both networks. We demonstrate the applicability of our algorithms via extensive simulations. We discuss the physical implications of the results, including how the optimal interconnections can more effectively decrease the threshold of epidemic spreading in the susceptible-infected-susceptible model and the threshold of synchronization of coupled Kuramoto oscillators.

  8. Algorithm to Identify Frequent Coupled Modules from Two-Layered Network Series: Application to Study Transcription and Splicing Coupling

    PubMed Central

    Li, Wenyuan; Dai, Chao; Liu, Chun-Chi

    2012-01-01

    Abstract Current network analysis methods all focus on one or multiple networks of the same type. However, cells are organized by multi-layer networks (e.g., transcriptional regulatory networks, splicing regulatory networks, protein-protein interaction networks), which interact and influence each other. Elucidating the coupling mechanisms among those different types of networks is essential in understanding the functions and mechanisms of cellular activities. In this article, we developed the first computational method for pattern mining across many two-layered graphs, with the two layers representing different types yet coupled biological networks. We formulated the problem of identifying frequent coupled clusters between the two layers of networks into a tensor-based computation problem, and proposed an efficient solution to solve the problem. We applied the method to 38 two-layered co-transcription and co-splicing networks, derived from 38 RNA-seq datasets. With the identified atlas of coupled transcription-splicing modules, we explored to what extent, for which cellular functions, and by what mechanisms transcription-splicing coupling takes place. PMID:22697243

  9. Social Support and Networks: Cardiovascular Responses Following Recall on Immigration Stress Among Chinese Americans

    PubMed Central

    Suchday, Sonia; Wylie-Rosett, Judith

    2014-01-01

    Social support has been shown to act as a buffer for cardiovascular responses to stress. However, little is known about how social support and networks are related to cardiovascular responses to immigration stress recall. The current study evaluated the impact of structural and functional support on cardiovascular reaction following immigrant stress recall provocation as well as the moderation effect of interdependent self-construal among first-generation Chinese immigrants. One hundred fifty Chinese immigrants were recruited in the New York Chinatown area. Participants completed questionnaires assessing their levels of social support and networks, and interdependent self-construal. Following adaptation, participants recalled a recent post-immigration stress-provoking situation. Cardiovascular measures were taken during adaptation, stressor task, and recovery period. Hierarchical multiple regression analysis was performed. Social network size and type, as well as perceived emotional support were positively predictive of systolic blood pressure (SBP) reactivity changes. Instrumental support seeking was a positive predictor of SBP and diastolic blood pressure (DBP) reactivity. The moderation effect between instrumental support seeking and interdependent self-construal were significantly predictive of DBP reactivity and recovery, suggesting that perceptions about themselves in relation to others is a crucial factor for determining whether support seeking is beneficial or not. Social support was not a direct buffer on cardiovascular responses to stress among Chinese immigrants. Chinese values of interdependence and collectivism may partly explain the disconfirming results. Still, when interdependent self-construal was taken into account, Chinese immigrants who had less interdependent self-construal, but solicited more instrumental support, had faster adaptation to stress over the long term. PMID:24288021

  10. Utility Evaluation Based on One-To-N Mapping in the Prisoner's Dilemma Game for Interdependent Networks.

    PubMed

    Wang, Juan; Lu, Wenwen; Liu, Lina; Li, Li; Xia, Chengyi

    2016-01-01

    In the field of evolutionary game theory, network reciprocity has become an important means to promote the level of promotion within the population system. Recently, the interdependency provides a novel perspective to understand the widespread cooperation behavior in many real-world systems. In previous works, interdependency is often built from the direct or indirect connections between two networks through the one-to-one mapping mode. However, under many realistic scenarios, players may need much more information from many neighboring agents so as to make a more rational decision. Thus, beyond the one-to-one mapping mode, we investigate the cooperation behavior on two interdependent lattices, in which the utility evaluation of a focal player on one lattice may not only concern himself, but also integrate the payoff information of several corresponding players on the other lattice. Large quantities of simulations indicate that the cooperation can be substantially promoted when compared to the traditionally spatial lattices. The cluster formation and phase transition are also analyzed in order to explore the role of interdependent utility coupling in the collective cooperation. Current results are beneficial to deeply understand various mechanisms to foster the cooperation exhibited inside natural, social and engineering systems.

  11. Deep multi-scale convolutional neural network for hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Zhang, Feng-zhe; Yang, Xia

    2018-04-01

    In this paper, we proposed a multi-scale convolutional neural network for hyperspectral image classification task. Firstly, compared with conventional convolution, we utilize multi-scale convolutions, which possess larger respective fields, to extract spectral features of hyperspectral image. We design a deep neural network with a multi-scale convolution layer which contains 3 different convolution kernel sizes. Secondly, to avoid overfitting of deep neural network, dropout is utilized, which randomly sleeps neurons, contributing to improve the classification accuracy a bit. In addition, new skills like ReLU in deep learning is utilized in this paper. We conduct experiments on University of Pavia and Salinas datasets, and obtained better classification accuracy compared with other methods.

  12. Robust hepatic vessel segmentation using multi deep convolution network

    NASA Astrophysics Data System (ADS)

    Kitrungrotsakul, Titinunt; Han, Xian-Hua; Iwamoto, Yutaro; Foruzan, Amir Hossein; Lin, Lanfen; Chen, Yen-Wei

    2017-03-01

    Extraction of blood vessels of the organ is a challenging task in the area of medical image processing. It is really difficult to get accurate vessel segmentation results even with manually labeling by human being. The difficulty of vessels segmentation is the complicated structure of blood vessels and its large variations that make them hard to recognize. In this paper, we present deep artificial neural network architecture to automatically segment the hepatic vessels from computed tomography (CT) image. We proposed novel deep neural network (DNN) architecture for vessel segmentation from a medical CT volume, which consists of three deep convolution neural networks to extract features from difference planes of CT data. The three networks have share features at the first convolution layer but will separately learn their own features in the second layer. All three networks will join again at the top layer. To validate effectiveness and efficiency of our proposed method, we conduct experiments on 12 CT volumes which training data are randomly generate from 5 CT volumes and 7 using for test. Our network can yield an average dice coefficient 0.830, while 3D deep convolution neural network can yield around 0.7 and multi-scale can yield only 0.6.

  13. Controllability of multiplex, multi-time-scale networks

    NASA Astrophysics Data System (ADS)

    Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.

    2016-09-01

    The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified model, we provide crucial insight into disentangling how our ability to control real interacting complex systems is affected by a variety of sources of complexity.

  14. Optical Network Virtualisation Using Multitechnology Monitoring and SDN-Enabled Optical Transceiver

    NASA Astrophysics Data System (ADS)

    Ou, Yanni; Davis, Matthew; Aguado, Alejandro; Meng, Fanchao; Nejabati, Reza; Simeonidou, Dimitra

    2018-05-01

    We introduce the real-time multi-technology transport layer monitoring to facilitate the coordinated virtualisation of optical and Ethernet networks supported by optical virtualise-able transceivers (V-BVT). A monitoring and network resource configuration scheme is proposed to include the hardware monitoring in both Ethernet and Optical layers. The scheme depicts the data and control interactions among multiple network layers under the software defined network (SDN) background, as well as the application that analyses the monitored data obtained from the database. We also present a re-configuration algorithm to adaptively modify the composition of virtual optical networks based on two criteria. The proposed monitoring scheme is experimentally demonstrated with OpenFlow (OF) extensions for a holistic (re-)configuration across both layers in Ethernet switches and V-BVTs.

  15. Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks.

    PubMed

    Savalia, Shalin; Emamian, Vahid

    2018-05-04

    The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular diseases. If a documented ECG signal has a certain irregularity in its predefined features, this is called arrhythmia, the types of which include tachycardia, bradycardia, supraventricular arrhythmias, and ventricular, etc. This has encouraged us to do research that consists of distinguishing between several arrhythmias by using deep neural network algorithms such as multi-layer perceptron (MLP) and convolution neural network (CNN). The TensorFlow library that was established by Google for deep learning and machine learning is used in python to acquire the algorithms proposed here. The ECG databases accessible at PhysioBank.com and kaggle.com were used for training, testing, and validation of the MLP and CNN algorithms. The proposed algorithm consists of four hidden layers with weights, biases in MLP, and four-layer convolution neural networks which map ECG samples to the different classes of arrhythmia. The accuracy of the algorithm surpasses the performance of the current algorithms that have been developed by other cardiologists in both sensitivity and precision.

  16. Resilience and Robustness in Long-Term Planning of the National Energy and Transportation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibanez, Eduardo; Lavrenz, Steven; Gkritza, Konstantina

    2016-01-01

    The most significant energy consuming infrastructures and the greatest contributors to greenhouse gases for any developed nation today are electric and freight/passenger transportation systems. Technological alternatives for producing, transporting and converting energy for electric and transportation systems are numerous. Addressing costs, sustainability and resilience of electric and transportation needs requires long-term assessment since these capital-intensive infrastructures take years to build with lifetimes approaching a century. Yet, the advent of electrically driven transportation, including cars, trucks and trains, creates potential interdependencies between the two infrastructures that may be both problematic and beneficial. We are developing modelling capability to perform long-term electricmore » and transportation infrastructure design at a national level, accounting for their interdependencies. The approach combines network flow modelling with a multi-objective solution method. We describe and compare it to the state of the art in energy planning models. An example is presented to illustrate important features of this new approach.« less

  17. A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network

    PubMed Central

    Liu, Zengkai; Liu, Yonghong; Shan, Hongkai; Cai, Baoping; Huang, Qing

    2015-01-01

    This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD) method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs) are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information. PMID:25938760

  18. A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network.

    PubMed

    Liu, Zengkai; Liu, Yonghong; Shan, Hongkai; Cai, Baoping; Huang, Qing

    2015-01-01

    This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD) method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs) are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information.

  19. Enhancing robustness of interdependent network by adding connectivity and dependence links

    NASA Astrophysics Data System (ADS)

    Cui, Pengshuai; Zhu, Peidong; Wang, Ke; Xun, Peng; Xia, Zhuoqun

    2018-05-01

    Enhancing robustness of interdependent networks by adding connectivity links has been researched extensively, however, few of them are focusing on adding both connectivity and dependence links to enhance robustness. In this paper, we aim to study how to allocate the limited costs reasonably to add both connectivity and dependence links. Firstly, we divide the attackers into stubborn attackers and smart attackers according to whether would they change their attack modes with the changing of network structure; Then by simulations, link addition strategies are given separately according to different attackers, with which we can allocate the limited costs to add connectivity links and dependence links reasonably and achieve more robustness than only adding connectivity links or dependence links. The results show that compared to only adding connectivity links or dependence links, allocating the limited resources reasonably and adding both connectivity links and dependence links could bring more robustness to the interdependent networks.

  20. Study on Data Clustering and Intelligent Decision Algorithm of Indoor Localization

    NASA Astrophysics Data System (ADS)

    Liu, Zexi

    2018-01-01

    Indoor positioning technology enables the human beings to have the ability of positional perception in architectural space, and there is a shortage of single network coverage and the problem of location data redundancy. So this article puts forward the indoor positioning data clustering algorithm and intelligent decision-making research, design the basic ideas of multi-source indoor positioning technology, analyzes the fingerprint localization algorithm based on distance measurement, position and orientation of inertial device integration. By optimizing the clustering processing of massive indoor location data, the data normalization pretreatment, multi-dimensional controllable clustering center and multi-factor clustering are realized, and the redundancy of locating data is reduced. In addition, the path is proposed based on neural network inference and decision, design the sparse data input layer, the dynamic feedback hidden layer and output layer, low dimensional results improve the intelligent navigation path planning.

  1. Empirical and Theoretical Aspects of Generation and Transfer of Information in a Neuromagnetic Source Network

    PubMed Central

    Vakorin, Vasily A.; Mišić, Bratislav; Krakovska, Olga; McIntosh, Anthony Randal

    2011-01-01

    Variability in source dynamics across the sources in an activated network may be indicative of how the information is processed within a network. Information-theoretic tools allow one not only to characterize local brain dynamics but also to describe interactions between distributed brain activity. This study follows such a framework and explores the relations between signal variability and asymmetry in mutual interdependencies in a data-driven pipeline of non-linear analysis of neuromagnetic sources reconstructed from human magnetoencephalographic (MEG) data collected as a reaction to a face recognition task. Asymmetry in non-linear interdependencies in the network was analyzed using transfer entropy, which quantifies predictive information transfer between the sources. Variability of the source activity was estimated using multi-scale entropy, quantifying the rate of which information is generated. The empirical results are supported by an analysis of synthetic data based on the dynamics of coupled systems with time delay in coupling. We found that the amount of information transferred from one source to another was correlated with the difference in variability between the dynamics of these two sources, with the directionality of net information transfer depending on the time scale at which the sample entropy was computed. The results based on synthetic data suggest that both time delay and strength of coupling can contribute to the relations between variability of brain signals and information transfer between them. Our findings support the previous attempts to characterize functional organization of the activated brain, based on a combination of non-linear dynamics and temporal features of brain connectivity, such as time delay. PMID:22131968

  2. Multi-channels coupling-induced pattern transition in a tri-layer neuronal network

    NASA Astrophysics Data System (ADS)

    Wu, Fuqiang; Wang, Ya; Ma, Jun; Jin, Wuyin; Hobiny, Aatef

    2018-03-01

    Neurons in nerve system show complex electrical behaviors due to complex connection types and diversity in excitability. A tri-layer network is constructed to investigate the signal propagation and pattern formation by selecting different coupling channels between layers. Each layer is set as different states, and the local kinetics is described by Hindmarsh-Rose neuron model. By changing the number of coupling channels between layers and the state of the first layer, the collective behaviors of each layer and synchronization pattern of network are investigated. A statistical factor of synchronization on each layer is calculated. It is found that quiescent state in the second layer can be excited and disordered state in the third layer is suppressed when the first layer is controlled by a pacemaker, and the developed state is dependent on the number of coupling channels. Furthermore, the collapse in the first layer can cause breakdown of other layers in the network, and the mechanism is that disordered state in the third layer is enhanced when sampled signals from the collapsed layer can impose continuous disturbance on the next layer.

  3. Sampling Approaches for Multi-Domain Internet Performance Measurement Infrastructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calyam, Prasad

    2014-09-15

    The next-generation of high-performance networks being developed in DOE communities are critical for supporting current and emerging data-intensive science applications. The goal of this project is to investigate multi-domain network status sampling techniques and tools to measure/analyze performance, and thereby provide “network awareness” to end-users and network operators in DOE communities. We leverage the infrastructure and datasets available through perfSONAR, which is a multi-domain measurement framework that has been widely deployed in high-performance computing and networking communities; the DOE community is a core developer and the largest adopter of perfSONAR. Our investigations include development of semantic scheduling algorithms, measurement federationmore » policies, and tools to sample multi-domain and multi-layer network status within perfSONAR deployments. We validate our algorithms and policies with end-to-end measurement analysis tools for various monitoring objectives such as network weather forecasting, anomaly detection, and fault-diagnosis. In addition, we develop a multi-domain architecture for an enterprise-specific perfSONAR deployment that can implement monitoring-objective based sampling and that adheres to any domain-specific measurement policies.« less

  4. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    PubMed

    Xiao, WenBo; Nazario, Gina; Wu, HuaMing; Zhang, HuaMing; Cheng, Feng

    2017-01-01

    In this article, we introduced an artificial neural network (ANN) based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  5. Working together versus working autonomously: a new power-dependence perspective on the individual-level of analysis.

    PubMed

    de Jong, Simon B

    2014-01-01

    Recent studies have indicated that it is important to investigate the interaction between task interdependence and task autonomy because this interaction can affect team effectiveness. However, only a limited number of studies have been conducted and those studies focused solely on the team level of analysis. Moreover, there has also been a dearth of theoretical development. Therefore, this study develops and tests an alternative theoretical perspective in an attempt to understand if, and if so why, this interaction is important at the individual level of analysis. Based on interdependence theory and power-dependence theory, we expected that highly task-interdependent individuals who reported high task autonomy would be more powerful and better performers. In contrast, we expected that similarly high task-interdependent individuals who reported less task autonomy would be less powerful and would be weaker performers. These expectations were supported by multi-level and bootstrapping analyses performed on a multi-source dataset (self-, peer-, manager-ratings) comprised of 182 employees drawn from 37 teams. More specifically, the interaction between task interdependence and task autonomy was γ =.128, p <.05 for power and γ =.166, p <.05 for individual performance. The 95% bootstrap interval ranged from .0038 to .0686.

  6. Measuring interdependence in ambulatory care.

    PubMed

    Katerndahl, David; Wood, Robert; Jaen, Carlos R

    2017-04-01

    Complex systems differ from complicated systems in that they are nonlinear, unpredictable and lacking clear cause-and-effect relationships, largely due to the interdependence of their components (effects of interconnectedness on system behaviour and consequences). The purpose of this study was to demonstrate the potential for network density to serve as a measure of interdependence, assess its concurrent validity and test whether the use of valued or binary ties yields better results. This secondary analysis used the 2010 National Ambulatory Care Medical Survey to assess interdependence of 'top 20' diagnoses seen and medications prescribed for 14 specialties. The degree of interdependence was measured as the level of association between diagnoses and drug interactions among medications. Both valued and binary network densities were computed for each specialty. To assess concurrent validity, these measures were correlated with previously-derived valid measures of complexity of care using the same database, adjusting for diagnosis and medication diversity. Partial correlations between diagnosis density, and both diagnosis and total input complexity, were significant, as were those between medication density and both medication and total output complexity; for both diagnosis and medication densities, adjusted correlations were higher for binary rather than valued densities. This study demonstrated the feasibility and validity of using network density as a measure of interdependence. When adjusted for measure diversity, density-complexity correlations were significant and higher for binary than valued density. This approach complements other methods of estimating complexity of care and may be applicable to unique settings. © 2015 John Wiley & Sons, Ltd.

  7. Utility Evaluation Based on One-To-N Mapping in the Prisoner’s Dilemma Game for Interdependent Networks

    PubMed Central

    Wang, Juan; Lu, Wenwen; Liu, Lina; Li, Li; Xia, Chengyi

    2016-01-01

    In the field of evolutionary game theory, network reciprocity has become an important means to promote the level of promotion within the population system. Recently, the interdependency provides a novel perspective to understand the widespread cooperation behavior in many real-world systems. In previous works, interdependency is often built from the direct or indirect connections between two networks through the one-to-one mapping mode. However, under many realistic scenarios, players may need much more information from many neighboring agents so as to make a more rational decision. Thus, beyond the one-to-one mapping mode, we investigate the cooperation behavior on two interdependent lattices, in which the utility evaluation of a focal player on one lattice may not only concern himself, but also integrate the payoff information of several corresponding players on the other lattice. Large quantities of simulations indicate that the cooperation can be substantially promoted when compared to the traditionally spatial lattices. The cluster formation and phase transition are also analyzed in order to explore the role of interdependent utility coupling in the collective cooperation. Current results are beneficial to deeply understand various mechanisms to foster the cooperation exhibited inside natural, social and engineering systems. PMID:27907024

  8. Robustness of networks formed from interdependent correlated networks under intentional attacks

    NASA Astrophysics Data System (ADS)

    Liu, Long; Meng, Ke; Dong, Zhaoyang

    2018-02-01

    We study the problem of intentional attacks targeting to interdependent networks generated with known degree distribution (in-degree oriented model) or distribution of interlinks (out-degree oriented model). In both models, each node's degree is correlated with the number of its links that connect to the other network. For both models, varying the correlation coefficient has a significant effect on the robustness of a system undergoing random attacks or attacks targeting nodes with low degree. For a system with an assortative relationship between in-degree and out-degree, reducing the broadness of networks' degree distributions can increase the resistance of systems against intentional attacks.

  9. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science.

    PubMed

    Mocanu, Decebal Constantin; Mocanu, Elena; Stone, Peter; Nguyen, Phuong H; Gibescu, Madeleine; Liotta, Antonio

    2018-06-19

    Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erdős-Rényi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.

  10. SINET3: advanced optical and IP hybrid network

    NASA Astrophysics Data System (ADS)

    Urushidani, Shigeo

    2007-11-01

    This paper introduces the new Japanese academic backbone network called SINET3, which has been in full-scale operation since June 2007. SINET3 provides a wide variety of network services, such as multi-layer transfer, enriched VPN, enhanced QoS, and layer-1 bandwidth on demand (BoD) services to create an innovative and prolific science infrastructure for more than 700 universities and research institutions. The network applies an advanced hybrid network architecture composed of 75 layer-1 switches and 12 high-performance IP routers to accommodate such diversified services in a single network platform, and provides sufficient bandwidth using Japan's first STM256 (40 Gbps) lines. The network adopts lots of the latest networking technologies, such as next-generation SDH (VCAT/GFP/LCAS), GMPLS, advanced MPLS, and logical-router technologies, for high network convergence, flexible resource assignment, and high service availability. This paper covers the network services, network design, and networking technologies of SINET3.

  11. Uncoordinated MAC for Adaptive Multi-Beam Directional Networks: Analysis and Evaluation

    DTIC Science & Technology

    2016-04-10

    transmission times, hence traditional CSMA approaches are not appropriate. We first present our model of these multi-beamforming capa- bilities and the...resulting wireless interference. We then derive an upper bound on multi-access performance for an idealized version of this physical layer. We then present... transmissions and receptions in a mobile ad-hoc network has in practice led to very constrained topologies. As mentioned, one approach for system design is to de

  12. The importance of structural softening for the evolution and architecture of passive margins

    PubMed Central

    Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.

    2016-01-01

    Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057

  13. SENSITIVITY ANALYSIS OF THE MULTI-LAYER MODEL USED IN THE CLEAN AIR STATUS AND TRENDS NETWORK (CASTNET)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) established the Clean Air Status and Trends Network (CASTNET) and its predecessor, the National Dry Deposition Network (NDDN), as national air quality and meteorological monitoring networks. The purpose of CASTNET is to track the pr...

  14. ON AERODYNAMIC AND BOUNDARY LAYER RESISTANCES WITHIN DRY DEPOSITION MODELS

    EPA Science Inventory

    There have been many empirical parameterizations for the aerodynamic and boundary layer resistances proposed in the literature, e.g. those of the Meyers Multi-Layer Deposition Model (MLM) used with the nation-wide dry deposition network. Many include arbitrary constants or par...

  15. Adaptation technology between IP layer and optical layer in optical Internet

    NASA Astrophysics Data System (ADS)

    Ji, Yuefeng; Li, Hua; Sun, Yongmei

    2001-10-01

    Wavelength division multiplexing (WDM) optical network provides a platform with high bandwidth capacity and is supposed to be the backbone infrastructure supporting the next-generation high-speed multi-service networks (ATM, IP, etc.). In the foreseeable future, IP will be the predominant data traffic, to make fully use of the bandwidth of the WDM optical network, many attentions have been focused on IP over WDM, which has been proposed as the most promising technology for new kind of network, so-called Optical Internet. According to OSI model, IP is in the 3rd layer (network layer) and optical network is in the 1st layer (physical layer), so the key issue is what adaptation technology should be used in the 2nd layer (data link layer). In this paper, firstly, we analyze and compare the current adaptation technologies used in backbone network nowadays. Secondly, aiming at the drawbacks of above technologies, we present a novel adaptation protocol (DONA) between IP layer and optical layer in Optical Internet and describe it in details. Thirdly, the gigabit transmission adapter (GTA) we accomplished based on the novel protocol is described. Finally, we set up an experiment platform to apply and verify the DONA and GTA, the results and conclusions of the experiment are given.

  16. Inter-layer synchronization in non-identical multi-layer networks

    NASA Astrophysics Data System (ADS)

    Leyva, I.; Sevilla-Escoboza, R.; Sendiña-Nadal, I.; Gutiérrez, R.; Buldú, J. M.; Boccaletti, S.

    2017-04-01

    Inter-layer synchronization is a dynamical process occurring in multi-layer networks composed of identical nodes. This process emerges when all layers are synchronized, while nodes in each layer do not necessarily evolve in unison. So far, the study of such inter-layer synchronization has been restricted to the case in which all layers have an identical connectivity structure. When layers are not identical, the inter-layer synchronous state is no longer a stable solution of the system. Nevertheless, when layers differ in just a few links, an approximate treatment is still feasible, and allows one to gather information on whether and how the system may wander around an inter-layer synchronous configuration. We report the details of an approximate analytical treatment for a two-layer multiplex, which results in the introduction of an extra inertial term accounting for structural differences. Numerical validation of the predictions highlights the usefulness of our approach, especially for small or moderate topological differences in the intra-layer coupling. Moreover, we identify a non-trivial relationship connecting the betweenness centrality of the missing links and the intra-layer coupling strength. Finally, by the use of multiplexed layers of electronic circuits, we study the inter-layer synchronization as a function of the removed links.

  17. Percolation of a general network of networks.

    PubMed

    Gao, Jianxi; Buldyrev, Sergey V; Stanley, H Eugene; Xu, Xiaoming; Havlin, Shlomo

    2013-12-01

    Percolation theory is an approach to study the vulnerability of a system. We develop an analytical framework and analyze the percolation properties of a network composed of interdependent networks (NetONet). Typically, percolation of a single network shows that the damage in the network due to a failure is a continuous function of the size of the failure, i.e., the fraction of failed nodes. In sharp contrast, in NetONet, due to the cascading failures, the percolation transition may be discontinuous and even a single node failure may lead to an abrupt collapse of the system. We demonstrate our general framework for a NetONet composed of n classic Erdős-Rényi (ER) networks, where each network depends on the same number m of other networks, i.e., for a random regular network (RR) formed of interdependent ER networks. The dependency between nodes of different networks is taken as one-to-one correspondence, i.e., a node in one network can depend only on one node in the other network (no-feedback condition). In contrast to a treelike NetONet in which the size of the largest connected cluster (mutual component) depends on n, the loops in the RR NetONet cause the largest connected cluster to depend only on m and the topology of each network but not on n. We also analyzed the extremely vulnerable feedback condition of coupling, where the coupling between nodes of different networks is not one-to-one correspondence. In the case of NetONet formed of ER networks, percolation only exhibits two phases, a second order phase transition and collapse, and no first order percolation transition regime is found in the case of the no-feedback condition. In the case of NetONet composed of RR networks, there exists a first order phase transition when the coupling strength q (fraction of interdependency links) is large and a second order phase transition when q is small. Our insight on the resilience of coupled networks might help in designing robust interdependent systems.

  18. Spatially Nonlinear Interdependence of Alpha-Oscillatory Neural Networks under Chan Meditation

    PubMed Central

    Chang, Chih-Hao

    2013-01-01

    This paper reports the results of our investigation of the effects of Chan meditation on brain electrophysiological behaviors from the viewpoint of spatially nonlinear interdependence among regional neural networks. Particular emphasis is laid on the alpha-dominated EEG (electroencephalograph). Continuous-time wavelet transform was adopted to detect the epochs containing substantial alpha activities. Nonlinear interdependence quantified by similarity index S(X∣Y), the influence of source signal Y on sink signal X, was applied to the nonlinear dynamical model in phase space reconstructed from multichannel EEG. Experimental group involved ten experienced Chan-Meditation practitioners, while control group included ten healthy subjects within the same age range, yet, without any meditation experience. Nonlinear interdependence among various cortical regions was explored for five local neural-network regions, frontal, posterior, right-temporal, left-temporal, and central regions. In the experimental group, the inter-regional interaction was evaluated for the brain dynamics under three different stages, at rest (stage R, pre-meditation background recording), in Chan meditation (stage M), and the unique Chakra-focusing practice (stage C). Experimental group exhibits stronger interactions among various local neural networks at stages M and C compared with those at stage R. The intergroup comparison demonstrates that Chan-meditation brain possesses better cortical inter-regional interactions than the resting brain of control group. PMID:24489583

  19. Interdependence and dynamics of essential services in an extensive risk context: a case study in Montserrat, West Indies

    NASA Astrophysics Data System (ADS)

    Sword-Daniels, V. L.; Rossetto, T.; Wilson, T. M.; Sargeant, S.

    2015-05-01

    The essential services that support urban living are complex and interdependent, and their disruption in disasters directly affects society. Yet there are few empirical studies to inform our understanding of the vulnerabilities and resilience of complex infrastructure systems in disasters. This research takes a systems thinking approach to explore the dynamic behaviour of a network of essential services, in the presence and absence of volcanic ashfall hazards in Montserrat, West Indies. Adopting a case study methodology and qualitative methods to gather empirical data, we centre the study on the healthcare system and its interconnected network of essential services. We identify different types of relationship between sectors and develop a new interdependence classification system for analysis. Relationships are further categorised by hazard conditions, for use in extensive risk contexts. During heightened volcanic activity, relationships between systems transform in both number and type: connections increase across the network by 41%, and adapt to increase cooperation and information sharing. Interconnections add capacities to the network, increasing the resilience of prioritised sectors. This in-depth and context-specific approach provides a new methodology for studying the dynamics of infrastructure interdependence in an extensive risk context, and can be adapted for use in other hazard contexts.

  20. Interdependence and dynamics of essential services in an extensive risk context: a case study in Montserrat, West Indies

    NASA Astrophysics Data System (ADS)

    Sword-Daniels, V. L.; Rossetto, T.; Wilson, T. M.; Sargeant, S.

    2015-02-01

    The essential services that support urban living are complex and interdependent, and their disruption in disasters directly affects society. Yet there are few empirical studies to inform our understanding of the vulnerabilities and resilience of complex infrastructure systems in disasters. This research takes a systems thinking approach to explore the dynamic behaviour of a network of essential services, in the presence and absence of volcanic ashfall hazards in Montserrat, West Indies. Adopting a case study methodology and qualitative methods to gather empirical data we centre the study on the healthcare system and its interconnected network of essential services. We identify different types of relationship between sectors and develop a new interdependence classification system for analysis. Relationships are further categorised by hazard condition, for use in extensive risk contexts. During heightened volcanic activity, relationships between systems transform in both number and type: connections increase across the network by 41%, and adapt to increase cooperation and information sharing. Interconnections add capacities to the network, increasing the resilience of prioritised sectors. This in-depth and context-specific approach provides a new methodology for studying the dynamics of infrastructure interdependence in an extensive risk context, and can be adapted for use in other hazard contexts.

  1. Multi-focus image fusion with the all convolutional neural network

    NASA Astrophysics Data System (ADS)

    Du, Chao-ben; Gao, She-sheng

    2018-01-01

    A decision map contains complete and clear information about the image to be fused, which is crucial to various image fusion issues, especially multi-focus image fusion. However, in order to get a satisfactory image fusion effect, getting a decision map is very necessary and usually difficult to finish. In this letter, we address this problem with convolutional neural network (CNN), aiming to get a state-of-the-art decision map. The main idea is that the max-pooling of CNN is replaced by a convolution layer, the residuals are propagated backwards by gradient descent, and the training parameters of the individual layers of the CNN are updated layer by layer. Based on this, we propose a new all CNN (ACNN)-based multi-focus image fusion method in spatial domain. We demonstrate that the decision map obtained from the ACNN is reliable and can lead to high-quality fusion results. Experimental results clearly validate that the proposed algorithm can obtain state-of-the-art fusion performance in terms of both qualitative and quantitative evaluations.

  2. Defect detection of helical gears based on time-frequency analysis and using multi-layer fusion network

    NASA Astrophysics Data System (ADS)

    Ebrahimi Orimi, H.; Esmaeili, M.; Refahi Oskouei, A.; Mirhadizadehd, S. A.; Tse, P. W.

    2017-10-01

    Condition monitoring of rotary devices such as helical gears is an issue of great significance in industrial projects. This paper introduces a feature extraction method for gear fault diagnosis using wavelet packet due to its higher frequency resolution. During this investigation, the mother wavelet Daubechies 10 (Db-10) was applied to calculate the coefficient entropy of each frequency band of 5th level (32 frequency bands) as features. In this study, the peak value of the signal entropies was selected as applicable features in order to improve frequency band differentiation and reduce feature vectors' dimension. Feature extraction is followed by the fusion network where four different structured multi-layer perceptron networks are trained to classify the recorded signals (healthy/faulty). The robustness of fusion network outputs is greater compared to perceptron networks. The results provided by the fusion network indicate a classification of 98.88 and 97.95% for healthy and faulty classes, respectively.

  3. Estimating the Propagation of Interdependent Cascading Outages with Multi-Type Branching Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Junjian; Ju, Wenyun; Sun, Kai

    In this paper, the multi-type branching process is applied to describe the statistics and interdependencies of line outages, the load shed, and isolated buses. The offspring mean matrix of the multi-type branching process is estimated by the Expectation Maximization (EM) algorithm and can quantify the extent of outage propagation. The joint distribution of two types of outages is estimated by the multi-type branching process via the Lagrange-Good inversion. The proposed model is tested with data generated by the AC OPA cascading simulations on the IEEE 118-bus system. The largest eigenvalues of the offspring mean matrix indicate that the system ismore » closer to criticality when considering the interdependence of different types of outages. Compared with empirically estimating the joint distribution of the total outages, good estimate is obtained by using the multitype branching process with a much smaller number of cascades, thus greatly improving the efficiency. It is shown that the multitype branching process can effectively predict the distribution of the load shed and isolated buses and their conditional largest possible total outages even when there are no data of them.« less

  4. Cross-layer protocols optimized for real-time multimedia services in energy-constrained mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2003-07-01

    Mobile ad hoc networking (MANET) supports self-organizing, mobile infrastructures and enables an autonomous network of mobile nodes that can operate without a wired backbone. Ad hoc networks are characterized by multihop, wireless connectivity via packet radios and by the need for efficient dynamic protocols. All routers are mobile and can establish connectivity with other nodes only when they are within transmission range. Importantly, ad hoc wireless nodes are resource-constrained, having limited processing, memory, and battery capacity. Delivery of high quality-ofservice (QoS), real-time multimedia services from Internet-based applications over a MANET is a challenge not yet achieved by proposed Internet Engineering Task Force (IETF) ad hoc network protocols in terms of standard performance metrics such as end-to-end throughput, packet error rate, and delay. In the distributed operations of route discovery and maintenance, strong interaction occurs across MANET protocol layers, in particular, the physical, media access control (MAC), network, and application layers. The QoS requirements are specified for the service classes by the application layer. The cross-layer design must also satisfy the battery-limited energy constraints, by minimizing the distributed power consumption at the nodes and of selected routes. Interactions across the layers are modeled in terms of the set of concatenated design parameters including associated energy costs. Functional dependencies of the QoS metrics are described in terms of the concatenated control parameters. New cross-layer designs are sought that optimize layer interdependencies to achieve the "best" QoS available in an energy-constrained, time-varying network. The protocol design, based on a reactive MANET protocol, adapts the provisioned QoS to dynamic network conditions and residual energy capacities. The cross-layer optimization is based on stochastic dynamic programming conditions derived from time-dependent models of MANET packet flows. Regulation of network behavior is modeled by the optimal control of the conditional rates of multivariate point processes (MVPPs); these rates depend on the concatenated control parameters through a change of probability measure. The MVPP models capture behavior of many service applications, e.g., voice, video and the self-similar behavior of Internet data sessions. Performance verification of the cross-layer protocols, derived from the dynamic programming conditions, can be achieved by embedding the conditions in a reactive routing protocol for MANETs, in a simulation environment, such as the wireless extension of ns-2. A canonical MANET scenario consists of a distributed collection of battery-powered laptops or hand-held terminals, capable of hosting multimedia applications. Simulation details and performance tradeoffs, not presented, remain for a sequel to the paper.

  5. Detection of social group instability among captive rhesus macaques using joint network modeling

    PubMed Central

    Beisner, Brianne A.; Jin, Jian; Fushing, Hsieh; Mccowan, Brenda

    2015-01-01

    Social stability in group-living animals is an emergent property which arises from the interaction amongst multiple behavioral networks. However, pinpointing when a social group is at risk of collapse is difficult. We used a joint network modeling approach to examine the interdependencies between two behavioral networks, aggression and status signaling, from four stable and three unstable groups of rhesus macaques in order to identify characteristic patterns of network interdependence in stable groups that are readily distinguishable from unstable groups. Our results showed that the most prominent source of aggression-status network interdependence in stable social groups came from more frequent dyads than expected with opposite direction status-aggression (i.e. A threatens B and B signals acceptance of subordinate status). In contrast, unstable groups showed a decrease in opposite direction aggression-status dyads (but remained higher than expected) as well as more frequent than expected dyads with bidirectional aggression. These results demonstrate that not only was the stable joint relationship between aggression and status networks readily distinguishable from unstable time points, social instability manifested in at least two different ways. In sum, our joint modeling approach may prove useful in quantifying and monitoring the complex social dynamics of any wild or captive social system, as all social systems are composed of multiple interconnected networks PMID:26052339

  6. Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services.

    PubMed

    Zervas, Georgios S; Triay, Joan; Amaya, Norberto; Qin, Yixuan; Cervelló-Pastor, Cristina; Simeonidou, Dimitra

    2011-12-12

    This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated. © 2011 Optical Society of America

  7. Research on networked manufacturing system for reciprocating pump industry

    NASA Astrophysics Data System (ADS)

    Wu, Yangdong; Qi, Guoning; Xie, Qingsheng; Lu, Yujun

    2005-12-01

    Networked manufacturing is a trend of reciprocating pump industry. According to the enterprises' requirement, the architecture of networked manufacturing system for reciprocating pump industry was proposed, which composed of infrastructure layer, system management layer, application service layer and user layer. Its main functions included product data management, ASP service, business management, and customer relationship management, its physics framework was a multi-tier internet-based model; the concept of ASP service integration was put forward and its process model was also established. As a result, a networked manufacturing system aimed at the characteristics of reciprocating pump industry was built. By implementing this system, reciprocating pump industry can obtain a new way to fully utilize their own resources and enhance the capabilities to respond to the global market quickly.

  8. Reliable Broadcast under Cascading Failures in Interdependent Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Sisi; Lee, Sangkeun; Chinthavali, Supriya

    Reliable broadcast is an essential tool to disseminate information among a set of nodes in the presence of failures. We present a novel study of reliable broadcast in interdependent networks, in which the failures in one network may cascade to another network. In particular, we focus on the interdependency between the communication network and power grid network, where the power grid depends on the signals from the communication network for control and the communication network depends on the grid for power. In this paper, we build a resilient solution to handle crash failures in the communication network that may causemore » cascading failures and may even partition the network. In order to guarantee that all the correct nodes deliver the messages, we use soft links, which are inactive backup links to non-neighboring nodes that are only active when failures occur. At the core of our work is a fully distributed algorithm for the nodes to predict and collect the information of cascading failures so that soft links can be maintained to correct nodes prior to the failures. In the presence of failures, soft links are activated to guarantee message delivery and new soft links are built accordingly for long term robustness. Our evaluation results show that the algorithm achieves low packet drop rate and handles cascading failures with little overhead.« less

  9. Game among interdependent networks: The impact of rationality on system robustness

    NASA Astrophysics Data System (ADS)

    Fan, Yuhang; Cao, Gongze; He, Shibo; Chen, Jiming; Sun, Youxian

    2016-12-01

    Many real-world systems are composed of interdependent networks that rely on one another. Such networks are typically designed and operated by different entities, who aim at maximizing their own payoffs. There exists a game among these entities when designing their own networks. In this paper, we study the game investigating how the rational behaviors of entities impact the system robustness. We first introduce a mathematical model to quantify the interacting payoffs among varying entities. Then we study the Nash equilibrium of the game and compare it with the optimal social welfare. We reveal that the cooperation among different entities can be reached to maximize the social welfare in continuous game only when the average degree of each network is constant. Therefore, the huge gap between Nash equilibrium and optimal social welfare generally exists. The rationality of entities makes the system inherently deficient and even renders it extremely vulnerable in some cases. We analyze our model for two concrete systems with continuous strategy space and discrete strategy space, respectively. Furthermore, we uncover some factors (such as weakening coupled strength of interdependent networks, designing a suitable topology dependence of the system) that help reduce the gap and the system vulnerability.

  10. Neural Networks

    NASA Astrophysics Data System (ADS)

    Schwindling, Jerome

    2010-04-01

    This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p.) corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  11. SpaceFibre: The Standard and the Multi-Lane Layer

    NASA Astrophysics Data System (ADS)

    Parkes, Steve; McClements, Chris; McLaren, David; Florit, Albert Ferrer; Gonzalez Villafranca, Alberto

    2016-08-01

    SpaceFibre is a new standard for spacecraft on-board data-handling networks, initially designed to deliver multi-Gbit/s data rates for synthetic aperture radar and high-resolution, multi-spectral imaging instruments, The addition of quality of service (QoS) and fault detection, isolation and recovery (FDIR) capabilities to SpaceFibre has resulted in a unified network technology. SpaceFibre provides high bandwidth, low latency, fault isolation and recovery suitable for space applications, and novel QoS that combines priority, bandwidth reservation and scheduling and which provides babbling node protection. SpaceFibre is backwards compatible with the widely used SpaceWire standard at the network level allowing simple interconnection of existing SpaceWire equipment to a SpaceFibre link or network.Developed by STAR-Dundee and the University of Dundee for the European Space Agency (ESA) SpaceFibre is able to operate over fibre-optic and electrical cable. A single lane of SpaceFibre comprises four signals (TX+/- and RX+/-) and supports data rates of 2 Gbits/s (2.5 Gbits/s data signalling rate) with data rates up to 5 Gbits/s already planned.Several lanes can operate together to provide a multi- lane link. Multi-laning increases the data-rate to well over 20 Gbits/s.This paper details the current state of SpaceFibre which is now in the process of formal standardisation by the European Cooperation for Space Standardization (ECSS). The multi-lane layer of SpaceFibre is then described.

  12. MAC layer security issues in wireless mesh networks

    NASA Astrophysics Data System (ADS)

    Reddy, K. Ganesh; Thilagam, P. Santhi

    2016-03-01

    Wireless Mesh Networks (WMNs) have emerged as a promising technology for a broad range of applications due to their self-organizing, self-configuring and self-healing capability, in addition to their low cost and easy maintenance. Securing WMNs is more challenging and complex issue due to their inherent characteristics such as shared wireless medium, multi-hop and inter-network communication, highly dynamic network topology and decentralized architecture. These vulnerable features expose the WMNs to several types of attacks in MAC layer. The existing MAC layer standards and implementations are inadequate to secure these features and fail to provide comprehensive security solutions to protect both backbone and client mesh. Hence, there is a need for developing efficient, scalable and integrated security solutions for WMNs. In this paper, we classify the MAC layer attacks and analyze the existing countermeasures. Based on attacks classification and countermeasures analysis, we derive the research directions to enhance the MAC layer security for WMNs.

  13. Constructing general partial differential equations using polynomial and neural networks.

    PubMed

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Anomalous Signal Detection in ELF Band Electromagnetic Wave using Multi-layer Neural Network with Wavelet Decomposition

    NASA Astrophysics Data System (ADS)

    Itai, Akitoshi; Yasukawa, Hiroshi; Takumi, Ichi; Hata, Masayasu

    It is well known that electromagnetic waves radiated from the earth's crust are useful for predicting earthquakes. We analyze the electromagnetic waves received at the extremely low frequency band of 223Hz. These observed signals contain the seismic radiation from the earth's crust, but also include several undesired signals. Our research focuses on the signal detection technique to identify an anomalous signal corresponding to the seismic radiation in the observed signal. Conventional anomalous signal detections lack a wide applicability due to their assumptions, e.g. the digital data have to be observed at the same time or the same sensor. In order to overcome the limitation related to the observed signal, we proposed the anomalous signals detection based on a multi-layer neural network which is trained by digital data observed during a span of a day. In the neural network approach, training data do not need to be recorded at the same place or the same time. However, some noises, which have a large amplitude, are detected as the anomalous signal. This paper develops a multi-layer neural network to decrease the false detection of the anomalous signal from the electromagnetic wave. The training data for the proposed network is the decomposed signal of the observed signal during several days, since the seismic radiations are often recorded from several days to a couple of weeks. Results show that the proposed neural network is useful to achieve the accurate detection of the anomalous signal that indicates seismic activity.

  15. Competitive dynamics of lexical innovations in multi-layer networks

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto

    2014-04-01

    We study the introduction of lexical innovations into a community of language users. Lexical innovations, i.e. new term added to people's vocabulary, plays an important role in the process of language evolution. Nowadays, information is spread through a variety of networks, including, among others, online and offline social networks and the World Wide Web. The entire system, comprising networks of different nature, can be represented as a multi-layer network. In this context, lexical innovations diffusion occurs in a peculiar fashion. In particular, a lexical innovation can undergo three different processes: its original meaning is accepted; its meaning can be changed or misunderstood (e.g. when not properly explained), hence more than one meaning can emerge in the population. Lastly, in the case of a loan word, it can be translated into the population language (i.e. defining a new lexical innovation or using a synonym) or into a dialect spoken by part of the population. Therefore, lexical innovations cannot be considered simply as information. We develop a model for analyzing this scenario using a multi-layer network comprising a social network and a media network. The latter represents the set of all information systems of a society, e.g. television, the World Wide Web and radio. Furthermore, we identify temporal directed edges between the nodes of these two networks. In particular, at each time-step, nodes of the media network can be connected to randomly chosen nodes of the social network and vice versa. In doing so, information spreads through the whole system and people can share a lexical innovation with their neighbors or, in the event they work as reporters, by using media nodes. Lastly, we use the concept of "linguistic sign" to model lexical innovations, showing its fundamental role in the study of these dynamics. Many numerical simulations have been performed to analyze the proposed model and its outcomes.

  16. Hierarchical combinatorial deep learning architecture for pancreas segmentation of medical computed tomography cancer images.

    PubMed

    Fu, Min; Wu, Wenming; Hong, Xiafei; Liu, Qiuhua; Jiang, Jialin; Ou, Yaobin; Zhao, Yupei; Gong, Xinqi

    2018-04-24

    Efficient computational recognition and segmentation of target organ from medical images are foundational in diagnosis and treatment, especially about pancreas cancer. In practice, the diversity in appearance of pancreas and organs in abdomen, makes detailed texture information of objects important in segmentation algorithm. According to our observations, however, the structures of previous networks, such as the Richer Feature Convolutional Network (RCF), are too coarse to segment the object (pancreas) accurately, especially the edge. In this paper, we extend the RCF, proposed to the field of edge detection, for the challenging pancreas segmentation, and put forward a novel pancreas segmentation network. By employing multi-layer up-sampling structure replacing the simple up-sampling operation in all stages, the proposed network fully considers the multi-scale detailed contexture information of object (pancreas) to perform per-pixel segmentation. Additionally, using the CT scans, we supply and train our network, thus get an effective pipeline. Working with our pipeline with multi-layer up-sampling model, we achieve better performance than RCF in the task of single object (pancreas) segmentation. Besides, combining with multi scale input, we achieve the 76.36% DSC (Dice Similarity Coefficient) value in testing data. The results of our experiments show that our advanced model works better than previous networks in our dataset. On the other words, it has better ability in catching detailed contexture information. Therefore, our new single object segmentation model has practical meaning in computational automatic diagnosis.

  17. Space-Time Processing for Tactical Mobile Ad Hoc Networks

    DTIC Science & Technology

    2007-08-01

    rates in mobile ad hoc networks. In addition, he has considered the design of a cross-layer multi-user resource allocation framework using a... framework for many-to-one communication. In this context, multiple nodes cooperate to transmit their packets simultaneously to a single node using multi...spatially multiplexed signals transmitted from multiple nodes. Our goal is to form a framework that activates different sets of communication links

  18. Artificial vision by multi-layered neural networks: neocognitron and its advances.

    PubMed

    Fukushima, Kunihiko

    2013-01-01

    The neocognitron is a neural network model proposed by Fukushima (1980). Its architecture was suggested by neurophysiological findings on the visual systems of mammals. It is a hierarchical multi-layered network. It acquires the ability to robustly recognize visual patterns through learning. Although the neocognitron has a long history, modifications of the network to improve its performance are still going on. For example, a recent neocognitron uses a new learning rule, named add-if-silent, which makes the learning process much simpler and more stable. Nevertheless, a high recognition rate can be kept with a smaller scale of the network. Referring to the history of the neocognitron, this paper discusses recent advances in the neocognitron. We also show that various new functions can be realized by, for example, introducing top-down connections to the neocognitron: mechanism of selective attention, recognition and completion of partly occluded patterns, restoring occluded contours, and so on. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Using Hybrid Algorithm to Improve Intrusion Detection in Multi Layer Feed Forward Neural Networks

    ERIC Educational Resources Information Center

    Ray, Loye Lynn

    2014-01-01

    The need for detecting malicious behavior on a computer networks continued to be important to maintaining a safe and secure environment. The purpose of this study was to determine the relationship of multilayer feed forward neural network architecture to the ability of detecting abnormal behavior in networks. This involved building, training, and…

  20. Energy management and multi-layer control of networked microgrids

    NASA Astrophysics Data System (ADS)

    Zamora, Ramon

    Networked microgrids is a group of neighboring microgrids that has ability to interchange power when required in order to increase reliability and resiliency. Networked microgrid can operate in different possible configurations including: islanded microgrid, a grid-connected microgrid without a tie-line converter, a grid-connected microgrid with a tie-line converter, and networked microgrids. These possible configurations and specific characteristics of renewable energy offer challenges in designing control and management algorithms for voltage, frequency and power in all possible operating scenarios. In this work, control algorithm is designed based on large-signal model that enables microgrid to operate in wide range of operating points. A combination between PI controller and feed-forward measured system responses will compensate for the changes in operating points. The control architecture developed in this work has multi-layers and the outer layer is slower than the inner layer in time response. The main responsibility of the designed controls are to regulate voltage magnitude and frequency, as well as output power of the DG(s). These local controls also integrate with a microgrid level energy management system or microgrid central controller (MGCC) for power and energy balance for. the entire microgrid in islanded, grid-connected, or networked microgid mode. The MGCC is responsible to coordinate the lower level controls to have reliable and resilient operation. In case of communication network failure, the decentralized energy management will operate locally and will activate droop control. Simulation results indicate the superiority of designed control algorithms compared to existing ones.

  1. Multiplex lexical networks reveal patterns in early word acquisition in children

    NASA Astrophysics Data System (ADS)

    Stella, Massimo; Beckage, Nicole M.; Brede, Markus

    2017-04-01

    Network models of language have provided a way of linking cognitive processes to language structure. However, current approaches focus only on one linguistic relationship at a time, missing the complex multi-relational nature of language. In this work, we overcome this limitation by modelling the mental lexicon of English-speaking toddlers as a multiplex lexical network, i.e. a multi-layered network where N = 529 words/nodes are connected according to four relationship: (i) free association, (ii) feature sharing, (iii) co-occurrence, and (iv) phonological similarity. We investigate the topology of the resulting multiplex and then proceed to evaluate single layers and the full multiplex structure on their ability to predict empirically observed age of acquisition data of English speaking toddlers. We find that the multiplex topology is an important proxy of the cognitive processes of acquisition, capable of capturing emergent lexicon structure. In fact, we show that the multiplex structure is fundamentally more powerful than individual layers in predicting the ordering with which words are acquired. Furthermore, multiplex analysis allows for a quantification of distinct phases of lexical acquisition in early learners: while initially all the multiplex layers contribute to word learning, after about month 23 free associations take the lead in driving word acquisition.

  2. Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness.

    PubMed

    Ray, Sandipan; Reddy, Akhilesh B

    2016-04-01

    Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep-wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of autonomous redox oscillations in cells has expanded our view of the clockwork beyond conventional transcription/translation feedback loop models, which have been dominant since the first circadian period mutants were identified in fruit fly. Consequently, non-transcriptional timekeeping mechanisms have been proposed, and the antioxidant peroxiredoxin proteins have been identified as conserved markers for 24-hour rhythms. Here, we review recent advances in our understanding of interdependencies amongst circadian rhythms, sleep homeostasis, redox cycles, and other cellular metabolic networks. We speculate that systems-level investigations implementing integrated multi-omics approaches could provide novel mechanistic insights into the connectivity between daily cycles and metabolic systems. © 2016 The Authors. Bioessays published by WILEY Periodicals, Inc.

  3. Multi-responsive hydrogels for drug delivery and tissue engineering applications

    PubMed Central

    Knipe, Jennifer M.; Peppas, Nicholas A.

    2014-01-01

    Multi-responsive hydrogels, or ‘intelligent’ hydrogels that respond to more than one environmental stimulus, have demonstrated great utility as a regenerative biomaterial in recent years. They are structured biocompatible materials that provide specific and distinct responses to varied physiological or externally applied stimuli. As evidenced by a burgeoning number of investigators, multi-responsive hydrogels are endowed with tunable, controllable and even biomimetic behavior well-suited for drug delivery and tissue engineering or regenerative growth applications. This article encompasses recent developments and challenges regarding supramolecular, layer-by-layer assembled and covalently cross-linked multi-responsive hydrogel networks and their application to drug delivery and tissue engineering. PMID:26816625

  4. World Input-Output Network

    PubMed Central

    Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo

    2015-01-01

    Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389

  5. Co-occurrence Analysis of Microbial Taxa in the Atlantic Ocean Reveals High Connectivity in the Free-Living Bacterioplankton

    PubMed Central

    Milici, Mathias; Deng, Zhi-Luo; Tomasch, Jürgen; Decelle, Johan; Wos-Oxley, Melissa L.; Wang, Hui; Jáuregui, Ruy; Plumeier, Iris; Giebel, Helge-Ansgar; Badewien, Thomas H.; Wurst, Mascha; Pieper, Dietmar H.; Simon, Meinhard; Wagner-Döbler, Irene

    2016-01-01

    We determined the taxonomic composition of the bacterioplankton of the epipelagic zone of the Atlantic Ocean along a latitudinal transect (51°S–47°N) using Illumina sequencing of the V5-V6 region of the 16S rRNA gene and inferred co-occurrence networks. Bacterioplankon community composition was distinct for Longhurstian provinces and water depth. Free-living microbial communities (between 0.22 and 3 μm) were dominated by highly abundant and ubiquitous taxa with streamlined genomes (e.g., SAR11, SAR86, OM1, Prochlorococcus) and could clearly be separated from particle-associated communities which were dominated by Bacteroidetes, Planktomycetes, Verrucomicrobia, and Roseobacters. From a total of 369 different communities we then inferred co-occurrence networks for each size fraction and depth layer of the plankton between bacteria and between bacteria and phototrophic micro-eukaryotes. The inferred networks showed a reduction of edges in the deepest layer of the photic zone. Networks comprised of free-living bacteria had a larger amount of connections per OTU when compared to the particle associated communities throughout the water column. Negative correlations accounted for roughly one third of the total edges in the free-living communities at all depths, while they decreased with depth in the particle associated communities where they amounted for roughly 10% of the total in the last part of the epipelagic zone. Co-occurrence networks of bacteria with phototrophic micro-eukaryotes were not taxon-specific, and dominated by mutual exclusion (~60%). The data show a high degree of specialization to micro-environments in the water column and highlight the importance of interdependencies particularly between free-living bacteria in the upper layers of the epipelagic zone. PMID:27199970

  6. Social class shapes the form and function of relationships and selves.

    PubMed

    Carey, Rebecca M; Markus, Hazel Rose

    2017-12-01

    Social class shapes relational realities, which in turn situate and structure different selves and their associated psychological tendencies. We first briefly review how higher class contexts tend to foster independent models of self and lower class contexts tend to foster interdependent models of self. We then consider how these independent and interdependent models of self are situated in and adapted to different social class-driven relational realities. We review research demonstrating that in lower social class contexts, social networks tend to be small, dense, homogenous and strongly connected. Ties in these networks provide the bonding capital that is key for survival and that promotes the interdependence between self and other(s). In higher social class contexts, social networks tend to be large, far-reaching, diverse and loosely connected. Ties in these networks provide the bridging capital that is key for achieving personal goals and that promotes an independence of self from other. We conclude that understanding and addressing issues tied to social class and inequality requires understanding the form and function of relationships across class contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Comprehensive Logic Based Analyses of Toll-Like Receptor 4 Signal Transduction Pathway

    PubMed Central

    Padwal, Mahesh Kumar; Sarma, Uddipan; Saha, Bhaskar

    2014-01-01

    Among the 13 TLRs in the vertebrate systems, only TLR4 utilizes both Myeloid differentiation factor 88 (MyD88) and Toll/Interleukin-1 receptor (TIR)-domain-containing adapter interferon-β-inducing Factor (TRIF) adaptors to transduce signals triggering host-protective immune responses. Earlier studies on the pathway combined various experimental data in the form of one comprehensive map of TLR signaling. But in the absence of adequate kinetic parameters quantitative mathematical models that reveal emerging systems level properties and dynamic inter-regulation among the kinases/phosphatases of the TLR4 network are not yet available. So, here we used reaction stoichiometry-based and parameter independent logical modeling formalism to build the TLR4 signaling network model that captured the feedback regulations, interdependencies between signaling kinases and phosphatases and the outcome of simulated infections. The analyses of the TLR4 signaling network revealed 360 feedback loops, 157 negative and 203 positive; of which, 334 loops had the phosphatase PP1 as an essential component. The network elements' interdependency (positive or negative dependencies) in perturbation conditions such as the phosphatase knockout conditions revealed interdependencies between the dual-specific phosphatases MKP-1 and MKP-3 and the kinases in MAPK modules and the role of PP2A in the auto-regulation of Calmodulin kinase-II. Our simulations under the specific kinase or phosphatase gene-deficiency or inhibition conditions corroborated with several previously reported experimental data. The simulations to mimic Yersinia pestis and E. coli infections identified the key perturbation in the network and potential drug targets. Thus, our analyses of TLR4 signaling highlights the role of phosphatases as key regulatory factors in determining the global interdependencies among the network elements; uncovers novel signaling connections; identifies potential drug targets for infections. PMID:24699232

  8. Multiple effect of social influence on cooperation in interdependent network games.

    PubMed

    Jiang, Luo-Luo; Li, Wen-Jing; Wang, Zhen

    2015-10-01

    The social influence exists widely in the human society, where individual decision-making process (from congressional election to electronic commerce) may be affected by the attitude and behavior of others belonging to different social networks. Here, we couple the snowdrift (SD) game and the prisoner's dilemma (PD) game on two interdependent networks, where strategies in both games are associated by social influence to mimick the majority rule. More accurately, individuals' strategies updating refers to social learning (based on payoff difference) and above-mentioned social influence (related with environment of interdependent group), which is controlled by social influence strength s. Setting s = 0 decouples the networks and returns the traditional network game; while its increase involves the interactions between networks. By means of numerous Monte Carlo simulations, we find that such a mechanism brings multiple influence to the evolution of cooperation. Small s leads to unequal cooperation level in both games, because social learning is still the main updating rule for most players. Though intermediate and large s guarantees the synchronized evolution of strategy pairs, cooperation finally dies out and reaches a completely dominance in both cases. Interestingly, these observations are attributed to the expansion of cooperation clusters. Our work may provide a new understanding to the emergence of cooperation in intercorrelated social systems.

  9. Multiple effect of social influence on cooperation in interdependent network games

    NASA Astrophysics Data System (ADS)

    Jiang, Luo-Luo; Li, Wen-Jing; Wang, Zhen

    2015-10-01

    The social influence exists widely in the human society, where individual decision-making process (from congressional election to electronic commerce) may be affected by the attitude and behavior of others belonging to different social networks. Here, we couple the snowdrift (SD) game and the prisoner’s dilemma (PD) game on two interdependent networks, where strategies in both games are associated by social influence to mimick the majority rule. More accurately, individuals’ strategies updating refers to social learning (based on payoff difference) and above-mentioned social influence (related with environment of interdependent group), which is controlled by social influence strength s. Setting s = 0 decouples the networks and returns the traditional network game; while its increase involves the interactions between networks. By means of numerous Monte Carlo simulations, we find that such a mechanism brings multiple influence to the evolution of cooperation. Small s leads to unequal cooperation level in both games, because social learning is still the main updating rule for most players. Though intermediate and large s guarantees the synchronized evolution of strategy pairs, cooperation finally dies out and reaches a completely dominance in both cases. Interestingly, these observations are attributed to the expansion of cooperation clusters. Our work may provide a new understanding to the emergence of cooperation in intercorrelated social systems.

  10. Leveraging Structural Characteristics of Interdependent Networks to Model Non-linear Cascading Characteristics

    DTIC Science & Technology

    2015-06-29

    17.476 237.18 17.5 237.2 91.64216359 6.752418 -20- References Asuncion, A., Welling, M., Smyth, P., & Teh , P. Y. ( 2009 ). On Smoothing and inference...networks of interdependent programs [Lewin 1999, Flowe et al., 2009 ]. Also, the acquisition paradigm established in statute 10 U.S.C. 2434, policy...results. Number of topics (k) for input data: Quality of results of modeling can be measured using a factor called perplexity (Asuncion et al. 2009

  11. Research of future network with multi-layer IP address

    NASA Astrophysics Data System (ADS)

    Li, Guoling; Long, Zhaohua; Wei, Ziqiang

    2018-04-01

    The shortage of IP addresses and the scalability of routing systems [1] are challenges for the Internet. The idea of dividing existing IP addresses between identities and locations is one of the important research directions. This paper proposed a new decimal network architecture based on IPv9 [11], and decimal network IP address from E.164 principle of traditional telecommunication network, the IP address level, which helps to achieve separation and identification and location of IP address, IP address form a multilayer network structure, routing scalability problem in remission at the same time, to solve the problem of IPv4 address depletion. On the basis of IPv9, a new decimal network architecture is proposed, and the IP address of the decimal network draws on the E.164 principle of the traditional telecommunication network, and the IP addresses are hierarchically divided, which helps to realize the identification and location separation of IP addresses, the formation of multi-layer IP address network structure, while easing the scalability of the routing system to find a way out of IPv4 address exhausted. In addition to modifying DNS [10] simply and adding the function of digital domain, a DDNS [12] is formed. At the same time, a gateway device is added, that is, IPV9 gateway. The original backbone network and user network are unchanged.

  12. Hybrid monitoring scheme for end-to-end performance enhancement of multicast-based real-time media

    NASA Astrophysics Data System (ADS)

    Park, Ju-Won; Kim, JongWon

    2004-10-01

    As real-time media applications based on IP multicast networks spread widely, end-to-end QoS (quality of service) provisioning for these applications have become very important. To guarantee the end-to-end QoS of multi-party media applications, it is essential to monitor the time-varying status of both network metrics (i.e., delay, jitter and loss) and system metrics (i.e., CPU and memory utilization). In this paper, targeting the multicast-enabled AG (Access Grid) a next-generation group collaboration tool based on multi-party media services, the applicability of hybrid monitoring scheme that combines active and passive monitoring is investigated. The active monitoring measures network-layer metrics (i.e., network condition) with probe packets while the passive monitoring checks both application-layer metrics (i.e., user traffic condition by analyzing RTCP packets) and system metrics. By comparing these hybrid results, we attempt to pinpoint the causes of performance degradation and explore corresponding reactions to improve the end-to-end performance. The experimental results show that the proposed hybrid monitoring can provide useful information to coordinate the performance improvement of multi-party real-time media applications.

  13. Understanding auditory distance estimation by humpback whales: a computational approach.

    PubMed

    Mercado, E; Green, S R; Schneider, J N

    2008-02-01

    Ranging, the ability to judge the distance to a sound source, depends on the presence of predictable patterns of attenuation. We measured long-range sound propagation in coastal waters to assess whether humpback whales might use frequency degradation cues to range singing whales. Two types of neural networks, a multi-layer and a single-layer perceptron, were trained to classify recorded sounds by distance traveled based on their frequency content. The multi-layer network successfully classified received sounds, demonstrating that the distorting effects of underwater propagation on frequency content provide sufficient cues to estimate source distance. Normalizing received sounds with respect to ambient noise levels increased the accuracy of distance estimates by single-layer perceptrons, indicating that familiarity with background noise can potentially improve a listening whale's ability to range. To assess whether frequency patterns predictive of source distance were likely to be perceived by whales, recordings were pre-processed using a computational model of the humpback whale's peripheral auditory system. Although signals processed with this model contained less information than the original recordings, neural networks trained with these physiologically based representations estimated source distance more accurately, suggesting that listening whales should be able to range singers using distance-dependent changes in frequency content.

  14. Effect of self-organized interdependence between populations on the evolution of cooperation

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Zhang, Xiaolin

    2017-01-01

    In this article, based on interdependent networks, the effect of self-organized interdependence on the evolution of cooperation is studied. Different from the previous works, the interdependent strength, which can effectively improve the fitness of players, is taken as a kind of limited resources and co-evolves with players' strategy. We show that the self-organization of interdependent strength would spontaneously lead to power law distribution at the stationary state, where the level of cooperation in system can be significantly promoted. Furthermore, when intermediate quantity of interdependence resources existing in system, the power law distribution is most evident with the power β ≈ 1.72, meanwhile the level of cooperation also reaches the maximum value. We discuss the related microscopic system properties which are responsible for the observed results and also demonstrate that the power law distribution of interdependence resources is an elementary property which is robust against the governing repeated games and the initial resources allocation patterns.

  15. Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

    DTIC Science & Technology

    2001-01-01

    Proc. Vol. 635 © 2001 Materials Research Society Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Donglu...interconnected organic and inorganic networks results in coatings with a very low permeability for gases and liquids. Hybrid materials are very suitable for... materials consist of a clear alcoholic solution that can easily be processed by classical application techniques such as dipping, spraying, or spin coating

  16. Fractal multi-level organisation of human groups in a virtual world.

    PubMed

    Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan

    2014-10-06

    Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology.

  17. Fractal multi-level organisation of human groups in a virtual world

    PubMed Central

    Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan

    2014-01-01

    Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology. PMID:25283998

  18. Fractal multi-level organisation of human groups in a virtual world

    NASA Astrophysics Data System (ADS)

    Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan

    2014-10-01

    Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology.

  19. Video Super-Resolution via Bidirectional Recurrent Convolutional Networks.

    PubMed

    Huang, Yan; Wang, Wei; Wang, Liang

    2018-04-01

    Super resolving a low-resolution video, namely video super-resolution (SR), is usually handled by either single-image SR or multi-frame SR. Single-Image SR deals with each video frame independently, and ignores intrinsic temporal dependency of video frames which actually plays a very important role in video SR. Multi-Frame SR generally extracts motion information, e.g., optical flow, to model the temporal dependency, but often shows high computational cost. Considering that recurrent neural networks (RNNs) can model long-term temporal dependency of video sequences well, we propose a fully convolutional RNN named bidirectional recurrent convolutional network for efficient multi-frame SR. Different from vanilla RNNs, 1) the commonly-used full feedforward and recurrent connections are replaced with weight-sharing convolutional connections. So they can greatly reduce the large number of network parameters and well model the temporal dependency in a finer level, i.e., patch-based rather than frame-based, and 2) connections from input layers at previous timesteps to the current hidden layer are added by 3D feedforward convolutions, which aim to capture discriminate spatio-temporal patterns for short-term fast-varying motions in local adjacent frames. Due to the cheap convolutional operations, our model has a low computational complexity and runs orders of magnitude faster than other multi-frame SR methods. With the powerful temporal dependency modeling, our model can super resolve videos with complex motions and achieve well performance.

  20. Phonological Constraint Induction in a Connectionist Network: Learning OCP-Place Constraints from Data

    ERIC Educational Resources Information Center

    Alderete, John; Tupper, Paul; Frisch, Stefan A.

    2013-01-01

    A significant problem in computational language learning is that of inferring the content of well-formedness constraints from input data. In this article, we approach the constraint induction problem as the gradual adjustment of subsymbolic constraints in a connectionist network. In particular, we develop a multi-layer feed-forward network that…

  1. Distributed Processing System for Restoration of Electric Power Distribution Network Using Two-Layered Contract Net Protocol

    NASA Astrophysics Data System (ADS)

    Kodama, Yu; Hamagami, Tomoki

    Distributed processing system for restoration of electric power distribution network using two-layered CNP is proposed. The goal of this study is to develop the restoration system which adjusts to the future power network with distributed generators. The state of the art of this study is that the two-layered CNP is applied for the distributed computing environment in practical use. The two-layered CNP has two classes of agents, named field agent and operating agent in the network. In order to avoid conflicts of tasks, operating agent controls privilege for managers to send the task announcement messages in CNP. This technique realizes the coordination between agents which work asynchronously in parallel with others. Moreover, this study implements the distributed processing system using a de-fact standard multi-agent framework, JADE(Java Agent DEvelopment framework). This study conducts the simulation experiments of power distribution network restoration and compares the proposed system with the previous system. We confirmed the results show effectiveness of the proposed system.

  2. Neural networks within multi-core optic fibers

    PubMed Central

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-01-01

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911

  3. Neural networks within multi-core optic fibers.

    PubMed

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-07-07

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

  4. Robust, Multi-layered Plan Execution and Revision for Operation of a Network of Communication Antennas

    NASA Technical Reports Server (NTRS)

    Chien, S. A.; Hill, R. W., Jr.; Govindjee, A.; Wang, X.; Estlin, T.; Griesel, M. A.; Lam, R.; Fayyad, K. V.

    1996-01-01

    This paper describes a hierarchical scheduling, planning, control, and execution monitoring architecture for automating operations of a worldwide network of communications antennas. The purpose of this paper is to describe an architecture for automating the process of capturing spacecraft data.

  5. Efficient evaluation of wireless real-time control networks.

    PubMed

    Horvath, Peter; Yampolskiy, Mark; Koutsoukos, Xenofon

    2015-02-11

    In this paper, we present a system simulation framework for the design and performance evaluation of complex wireless cyber-physical systems. We describe the simulator architecture and the specific developments that are required to simulate cyber-physical systems relying on multi-channel, multihop mesh networks. We introduce realistic and efficient physical layer models and a system simulation methodology, which provides statistically significant performance evaluation results with low computational complexity. The capabilities of the proposed framework are illustrated in the example of WirelessHART, a centralized, real-time, multi-hop mesh network designed for industrial control and monitor applications.

  6. Analytical approach to cross-layer protocol optimization in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    In the distributed operations of route discovery and maintenance, strong interaction occurs across mobile ad hoc network (MANET) protocol layers. Quality of service (QoS) requirements of multimedia service classes must be satisfied by the cross-layer protocol, along with minimization of the distributed power consumption at nodes and along routes to battery-limited energy constraints. In previous work by the author, cross-layer interactions in the MANET protocol are modeled in terms of a set of concatenated design parameters and associated resource levels by multivariate point processes (MVPPs). Determination of the "best" cross-layer design is carried out using the optimal control of martingale representations of the MVPPs. In contrast to the competitive interaction among nodes in a MANET for multimedia services using limited resources, the interaction among the nodes of a wireless sensor network (WSN) is distributed and collaborative, based on the processing of data from a variety of sensors at nodes to satisfy common mission objectives. Sensor data originates at the nodes at the periphery of the WSN, is successively transported to other nodes for aggregation based on information-theoretic measures of correlation and ultimately sent as information to one or more destination (decision) nodes. The "multimedia services" in the MANET model are replaced by multiple types of sensors, e.g., audio, seismic, imaging, thermal, etc., at the nodes; the QoS metrics associated with MANETs become those associated with the quality of fused information flow, i.e., throughput, delay, packet error rate, data correlation, etc. Significantly, the essential analytical approach to MANET cross-layer optimization, now based on the MVPPs for discrete random events occurring in the WSN, can be applied to develop the stochastic characteristics and optimality conditions for cross-layer designs of sensor network protocols. Functional dependencies of WSN performance metrics are described in terms of the concatenated protocol parameters. New source-to-destination routes are sought that optimize cross-layer interdependencies to achieve the "best available" performance in the WSN. The protocol design, modified from a known reactive protocol, adapts the achievable performance to the transient network conditions and resource levels. Control of network behavior is realized through the conditional rates of the MVPPs. Optimal cross-layer protocol parameters are determined by stochastic dynamic programming conditions derived from models of transient packetized sensor data flows. Moreover, the defining conditions for WSN configurations, grouping sensor nodes into clusters and establishing data aggregation at processing nodes within those clusters, lead to computationally tractable solutions to the stochastic differential equations that describe network dynamics. Closed-form solution characteristics provide an alternative to the "directed diffusion" methods for resource-efficient WSN protocols published previously by other researchers. Performance verification of the resulting cross-layer designs is found by embedding the optimality conditions for the protocols in actual WSN scenarios replicated in a wireless network simulation environment. Performance tradeoffs among protocol parameters remain for a sequel to the paper.

  7. Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task

    PubMed Central

    2017-01-01

    Neural networks with a single plastic layer employing reward modulated spike time dependent plasticity (STDP) are capable of learning simple foraging tasks. Here we demonstrate advanced pattern discrimination and continuous learning in a network of spiking neurons with multiple plastic layers. The network utilized both reward modulated and non-reward modulated STDP and implemented multiple mechanisms for homeostatic regulation of synaptic efficacy, including heterosynaptic plasticity, gain control, output balancing, activity normalization of rewarded STDP and hard limits on synaptic strength. We found that addition of a hidden layer of neurons employing non-rewarded STDP created neurons that responded to the specific combinations of inputs and thus performed basic classification of the input patterns. When combined with a following layer of neurons implementing rewarded STDP, the network was able to learn, despite the absence of labeled training data, discrimination between rewarding patterns and the patterns designated as punishing. Synaptic noise allowed for trial-and-error learning that helped to identify the goal-oriented strategies which were effective in task solving. The study predicts a critical set of properties of the spiking neuronal network with STDP that was sufficient to solve a complex foraging task involving pattern classification and decision making. PMID:28961245

  8. Cascading failures in interdependent systems under a flow redistribution model

    NASA Astrophysics Data System (ADS)

    Zhang, Yingrui; Arenas, Alex; Yaǧan, Osman

    2018-02-01

    Robustness and cascading failures in interdependent systems has been an active research field in the past decade. However, most existing works use percolation-based models where only the largest component of each network remains functional throughout the cascade. Although suitable for communication networks, this assumption fails to capture the dependencies in systems carrying a flow (e.g., power systems, road transportation networks), where cascading failures are often triggered by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of systems A and B with initial line loads and capacities given by {LA,i,CA ,i} i =1 n and {LB,i,CB ,i} i =1 n, respectively. When a line fails in system A , a fraction of its load is redistributed to alive lines in B , while remaining (1 -a ) fraction is redistributed equally among all functional lines in A ; a line failure in B is treated similarly with b giving the fraction to be redistributed to A . We give a thorough analysis of cascading failures of this model initiated by a random attack targeting p1 fraction of lines in A and p2 fraction in B . We show that (i) the model captures the real-world phenomenon of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is always first order, but it can be preceded by a sequence of first- and second-order transitions; (ii) network robustness tightly depends on the coupling coefficients a and b , and robustness is maximized at non-trivial a ,b values in general; (iii) unlike most existing models, interdependence has a multifaceted impact on system robustness in that interdependency can lead to an improved robustness for each individual network.

  9. Cascading failures in interdependent systems under a flow redistribution model.

    PubMed

    Zhang, Yingrui; Arenas, Alex; Yağan, Osman

    2018-02-01

    Robustness and cascading failures in interdependent systems has been an active research field in the past decade. However, most existing works use percolation-based models where only the largest component of each network remains functional throughout the cascade. Although suitable for communication networks, this assumption fails to capture the dependencies in systems carrying a flow (e.g., power systems, road transportation networks), where cascading failures are often triggered by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of systems A and B with initial line loads and capacities given by {L_{A,i},C_{A,i}}_{i=1}^{n} and {L_{B,i},C_{B,i}}_{i=1}^{n}, respectively. When a line fails in system A, a fraction of its load is redistributed to alive lines in B, while remaining (1-a) fraction is redistributed equally among all functional lines in A; a line failure in B is treated similarly with b giving the fraction to be redistributed to A. We give a thorough analysis of cascading failures of this model initiated by a random attack targeting p_{1} fraction of lines in A and p_{2} fraction in B. We show that (i) the model captures the real-world phenomenon of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is always first order, but it can be preceded by a sequence of first- and second-order transitions; (ii) network robustness tightly depends on the coupling coefficients a and b, and robustness is maximized at non-trivial a,b values in general; (iii) unlike most existing models, interdependence has a multifaceted impact on system robustness in that interdependency can lead to an improved robustness for each individual network.

  10. Distributed Multihoming Routing Method by Crossing Control MIPv6 with SCTP

    NASA Astrophysics Data System (ADS)

    Shi, Hongbo; Hamagami, Tomoki

    There are various wireless communication technologies, such as 3G, WiFi, used widely in the world. Recently, not only the laptop but also the smart phones can be equipped with multiple wireless devices. The communication terminals which are implemented with multiple interfaces are usually called multi-homed nodes. Meanwhile, a multi-homed node with multiple interfaces can also be regarded as multiple single-homed nodes. For example, when a person who is using smart phone and laptop to connect to the Internet concurrently, we may regard the person as a multi-homed node in the Internet. This paper proposes a new routing method, Multi-homed Mobile Cross-layer Control to handle multi-homed mobile nodes. Our suggestion can provide a distributed end-to-end routing method for handling the communications among multi-homed nodes at the fundamental network layer.

  11. Hazard Interactions and Interaction Networks (Cascades) within Multi-Hazard Methodologies

    NASA Astrophysics Data System (ADS)

    Gill, Joel; Malamud, Bruce D.

    2016-04-01

    Here we combine research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between 'multi-layer single hazard' approaches and 'multi-hazard' approaches that integrate such interactions. This synthesis suggests that ignoring interactions could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. We proceed to present an enhanced multi-hazard framework, through the following steps: (i) describe and define three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment; (ii) outline three types of interaction relationship (triggering, increased probability, and catalysis/impedance); and (iii) assess the importance of networks of interactions (cascades) through case-study examples (based on literature, field observations and semi-structured interviews). We further propose visualisation frameworks to represent these networks of interactions. Our approach reinforces the importance of integrating interactions between natural hazards, anthropogenic processes and technological hazards/disasters into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential, and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.

  12. Bayesian characterization of micro-perforated panels and multi-layer absorbers

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew Alexander Joseph

    First described by the late acoustician Dah-You Maa, micro-perforated panel (MPP) absorbers produce extremely high acoustic absorption coefficients. This is done without the use of conventional fibrous or porous materials that are often used in acoustic treatments, meaning MPP absorbers are capable of being implemented and withstanding critical situations where traditional absorbers do not suffice. The absorption function of a micro-perforated panel yields high yet relatively narrow results at certain frequencies, although wide-band absorption can be designed by stacking multiple MPP absorbers comprised of different characteristic parameters. Using Bayesian analysis, the physical properties of panel thickness, pore diameter, perforation ratio, and air depth are estimated inversely from experimental data of acoustic absorption, based on theoretical models for design of micro-perforated panels. Furthermore, this analysis helps to understand the interdependence and uncertainties of the parameters and how each affects the performance of the panel. Various micro-perforated panels are manufactured and tested in single- and double-layer absorber constructions.

  13. INTERDEPENDENCIES OF MULTI-POLLUTANT CONTROL SIMULATIONS IN AN AIR QUALITY MODEL

    EPA Science Inventory

    In this work, we use the Community Multi-Scale Air Quality (CMAQ) modeling system to examine the effect of several control strategies on simultaneous concentrations of ozone, PM2.5, and three important HAPs: formaldehyde, acetaldehyde and benzene.

  14. Multinetwork of international trade: A commodity-specific analysis

    NASA Astrophysics Data System (ADS)

    Barigozzi, Matteo; Fagiolo, Giorgio; Garlaschelli, Diego

    2010-04-01

    We study the topological properties of the multinetwork of commodity-specific trade relations among world countries over the 1992-2003 period, comparing them with those of the aggregate-trade network, known in the literature as the international-trade network (ITN). We show that link-weight distributions of commodity-specific networks are extremely heterogeneous and (quasi) log normality of aggregate link-weight distribution is generated as a sheer outcome of aggregation. Commodity-specific networks also display average connectivity, clustering, and centrality levels very different from their aggregate counterpart. We also find that ITN complete connectivity is mainly achieved through the presence of many weak links that keep commodity-specific networks together and that the correlation structure existing between topological statistics within each single network is fairly robust and mimics that of the aggregate network. Finally, we employ cross-commodity correlations between link weights to build hierarchies of commodities. Our results suggest that on the top of a relatively time-invariant “intrinsic” taxonomy (based on inherent between-commodity similarities), the roles played by different commodities in the ITN have become more and more dissimilar, possibly as the result of an increased trade specialization. Our approach is general and can be used to characterize any multinetwork emerging as a nontrivial aggregation of several interdependent layers.

  15. Simultaneous modelling of multi-purpose/multi-stop activity patterns and quantities consumed

    NASA Astrophysics Data System (ADS)

    Roy, John R.; Smith, Nariida C.; Xu, Blake

    Whereas for commuting travel there is a one-to-one correspondence between commuters and jobs, and for commodity flows a one-to-one correspondence between the size of orders and the shipping cost of the commodities, the situation is much more complex for retail/service travel. A typical shopper may make a single trip or multi-stop tour to buy/consume a quite diverse set of commodities/services at different locations in quite variable quantities. At the same time, the general pattern of the tour is clearly dependent on the activities and goods available at potential stops. These interdependencies have been alluded to in the literature, especially by spatial economists. However, until some preliminary work by the first author, there has been no attempt to formally include these interdependencies in a general model. This paper presents a framework for achieving this goal by developing an evolutionary set of models starting from the simplest forms available. From the above, it is clear that such interdependency models will inevitably have high dimensionality and combinatorial complexity. This rules out a simultaneous treatment of all the events using an individual choice approach. If an individual choice approach is to be applied in a tractable manner, the set of interdependent events needs to be segmented into several subsets, with simultaneity recognised within each subset, but a mere sequential progression occurring between subsets. In this paper, full event interdependencies are retained at the expense of modelling market segments of consumers rather than a sample of representative individuals. We couple the travel and consumption events in the only feasible way, by modelling the tours as discrete entities, in conjunction with the amount of each commodity consumed per stop on each such tour in terms of the continuous quantities of microeconomics. This is performed both under a budget/income constraint from microeconomics and a time budget constraint from time geography. The model considers both physical trips and tele-orders.

  16. Adaptive nonlinear polynomial neural networks for control of boundary layer/structural interaction

    NASA Technical Reports Server (NTRS)

    Parker, B. Eugene, Jr.; Cellucci, Richard L.; Abbott, Dean W.; Barron, Roger L.; Jordan, Paul R., III; Poor, H. Vincent

    1993-01-01

    The acoustic pressures developed in a boundary layer can interact with an aircraft panel to induce significant vibration in the panel. Such vibration is undesirable due to the aerodynamic drag and structure-borne cabin noises that result. The overall objective of this work is to develop effective and practical feedback control strategies for actively reducing this flow-induced structural vibration. This report describes the results of initial evaluations using polynomial, neural network-based, feedback control to reduce flow induced vibration in aircraft panels due to turbulent boundary layer/structural interaction. Computer simulations are used to develop and analyze feedback control strategies to reduce vibration in a beam as a first step. The key differences between this work and that going on elsewhere are as follows: that turbulent and transitional boundary layers represent broadband excitation and thus present a more complex stochastic control scenario than that of narrow band (e.g., laminar boundary layer) excitation; and secondly, that the proposed controller structures are adaptive nonlinear infinite impulse response (IIR) polynomial neural network, as opposed to the traditional adaptive linear finite impulse response (FIR) filters used in most studies to date. The controllers implemented in this study achieved vibration attenuation of 27 to 60 dB depending on the type of boundary layer established by laminar, turbulent, and intermittent laminar-to-turbulent transitional flows. Application of multi-input, multi-output, adaptive, nonlinear feedback control of vibration in aircraft panels based on polynomial neural networks appears to be feasible today. Plans are outlined for Phase 2 of this study, which will include extending the theoretical investigation conducted in Phase 2 and verifying the results in a series of laboratory experiments involving both bum and plate models.

  17. A fiber optic tactical voice/data network based on FDDI

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Hartmayer, R.; Marelid, S.; Wu, W. H.; Edgar, G.; Cassell, P.; Mancini, R.; Kiernicki, J.; Paul, L. J.; Jeng, J.

    1988-01-01

    An asynchronous high-speed fiber optic local area network is described that supports ordinary data packet traffic simultaneously with synchronous Tl voice traffic over a common FDDI token ring channel. A voice interface module was developed that parses, buffers, and resynchronizes the voice data to the packet network. The technique is general, however, and can be applied to any deterministic class of networks, including multi-tier backbones. A conventional single token access protocol was employed at the lowest layer, with fixed packet sizes for voice and variable for data. In addition, the higher layer packet data protocols are allowed to operate independently of those for the voice thereby permitting great flexibility in reconfiguring the network. Voice call setup and switching functions were performed external to the network with PABX equipment.

  18. Phylogenetic convolutional neural networks in metagenomics.

    PubMed

    Fioravanti, Diego; Giarratano, Ylenia; Maggio, Valerio; Agostinelli, Claudio; Chierici, Marco; Jurman, Giuseppe; Furlanello, Cesare

    2018-03-08

    Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.

  19. Watchdog Sensor Network with Multi-Stage RF Signal Identification and Cooperative Intrusion Detection

    DTIC Science & Technology

    2012-03-01

    detection and physical layer authentication in mobile Ad Hoc networks and wireless sensor networks (WSNs) have been investigated. Résume Le rapport...IEEE 802.16 d and e (WiMAX); (b) IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s (c) Sensor networks based on IEEE 802.15.4: Wireless USB, Bluetooth... sensor network are investigated for standard compatible wireless signals. The proposed signal existence detection and identification process consists

  20. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias

    With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by firstmore » layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.« less

  1. Estimation of effective connectivity using multi-layer perceptron artificial neural network.

    PubMed

    Talebi, Nasibeh; Nasrabadi, Ali Motie; Mohammad-Rezazadeh, Iman

    2018-02-01

    Studies on interactions between brain regions estimate effective connectivity, (usually) based on the causality inferences made on the basis of temporal precedence. In this study, the causal relationship is modeled by a multi-layer perceptron feed-forward artificial neural network, because of the ANN's ability to generate appropriate input-output mapping and to learn from training examples without the need of detailed knowledge of the underlying system. At any time instant, the past samples of data are placed in the network input, and the subsequent values are predicted at its output. To estimate the strength of interactions, the measure of " Causality coefficient " is defined based on the network structure, the connecting weights and the parameters of hidden layer activation function. Simulation analysis demonstrates that the method, called "CREANN" (Causal Relationship Estimation by Artificial Neural Network), can estimate time-invariant and time-varying effective connectivity in terms of MVAR coefficients. The method shows robustness with respect to noise level of data. Furthermore, the estimations are not significantly influenced by the model order (considered time-lag), and the different initial conditions (initial random weights and parameters of the network). CREANN is also applied to EEG data collected during a memory recognition task. The results implicate that it can show changes in the information flow between brain regions, involving in the episodic memory retrieval process. These convincing results emphasize that CREANN can be used as an appropriate method to estimate the causal relationship among brain signals.

  2. Interdependent Risk and Cyber Security: An Analysis of Security Investment and Cyber Insurance

    ERIC Educational Resources Information Center

    Shim, Woohyun

    2010-01-01

    An increasing number of firms rely on highly interconnected information networks. In such environments, defense against cyber attacks is complicated by residual risks caused by the interdependence of information security decisions of firms. IT security is affected not only by a firm's own management strategies but also by those of others. This…

  3. Network architecture in a converged optical + IP network

    NASA Astrophysics Data System (ADS)

    Wakim, Walid; Zottmann, Harald

    2012-01-01

    As demands on Provider Networks continue to grow at exponential rates, providers are forced to evaluate how to continue to grow the network while increasing service velocity, enhancing resiliency while decreasing the total cost of ownership (TCO). The bandwidth growth that networks are experiencing is in the form packet based multimedia services such as video, video conferencing, gaming, etc... mixed with Over the Top (OTT) content providers such as Netflix, and the customer's expectations that best effort is not enough you end up with a situation that forces the provider to analyze how to gain more out of the network with less cost. In this paper we will discuss changes in the network that are driving us to a tighter integration between packet and optical layers and how to improve on today's multi - layer inefficiencies to drive down network TCO and provide for a fully integrated and dynamic network that will decrease time to revenue.

  4. Interdependencies and Risks at the Nexus of Energy, Water, and Land Systems

    NASA Astrophysics Data System (ADS)

    Geernaert, G. L.

    2016-12-01

    During recent years, the federal agencies have rallied around efforts to understand and predict the interdependencies involving various combinations of energy infrastructure and supply, water supply and quality, and land use that combines agriculture and food production. The US Department of Energy has, in particular, focused on the energy-water nexus, with specific goals to understand the degree of interdependence that leads to multi-sector risk and, in the worst case, the precursors that can lead to cascading failure. Determining thresholds for system interdependence, evaluating the impact of drought on systems, and planning for robust mitigation options to avert future risks, are among DOE's highest research priorities. In this presentation, the DOE program plan and its rationale will be described; and the DOE plan will be placed in context of broader efforts across the federal government.

  5. Analysis of Critical Infrastructure Dependencies and Interdependencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Frederic; Verner, Duane; Brannegan, David

    2015-06-01

    The report begins by defining dependencies and interdependencies and exploring basic concepts of dependencies in order to facilitate a common understanding and consistent analytical approaches. Key concepts covered include; Characteristics of dependencies: upstream dependencies, internal dependencies, and downstream dependencies; Classes of dependencies: physical, cyber, geographic, and logical; and Dimensions of dependencies: operating environment, coupling and response behavior, type of failure, infrastructure characteristics, and state of operations From there, the report proposes a multi-phase roadmap to support dependency and interdependency assessment activities nationwide, identifying a range of data inputs, analysis activities, and potential products for each phase, as well as keymore » steps needed to progress from one phase to the next. The report concludes by outlining a comprehensive, iterative, and scalable framework for analyzing dependencies and interdependencies that stakeholders can integrate into existing risk and resilience assessment efforts.« less

  6. Multi-Level and Multi-Scale Feature Aggregation Using Pretrained Convolutional Neural Networks for Music Auto-Tagging

    NASA Astrophysics Data System (ADS)

    Lee, Jongpil; Nam, Juhan

    2017-08-01

    Music auto-tagging is often handled in a similar manner to image classification by regarding the 2D audio spectrogram as image data. However, music auto-tagging is distinguished from image classification in that the tags are highly diverse and have different levels of abstractions. Considering this issue, we propose a convolutional neural networks (CNN)-based architecture that embraces multi-level and multi-scaled features. The architecture is trained in three steps. First, we conduct supervised feature learning to capture local audio features using a set of CNNs with different input sizes. Second, we extract audio features from each layer of the pre-trained convolutional networks separately and aggregate them altogether given a long audio clip. Finally, we put them into fully-connected networks and make final predictions of the tags. Our experiments show that using the combination of multi-level and multi-scale features is highly effective in music auto-tagging and the proposed method outperforms previous state-of-the-arts on the MagnaTagATune dataset and the Million Song Dataset. We further show that the proposed architecture is useful in transfer learning.

  7. Aging in complex interdependency networks.

    PubMed

    Vural, Dervis C; Morrison, Greg; Mahadevan, L

    2014-02-01

    Although species longevity is subject to a diverse range of evolutionary forces, the mortality curves of a wide variety of organisms are rather similar. Here we argue that qualitative and quantitative features of aging can be reproduced by a simple model based on the interdependence of fault-prone agents on one other. In addition to fitting our theory to the empiric mortality curves of six very different organisms, we establish the dependence of lifetime and aging rate on initial conditions, damage and repair rate, and system size. We compare the size distributions of disease and death and see that they have qualitatively different properties. We show that aging patterns are independent of the details of interdependence network structure, which suggests that aging is a many-body effect, and that the qualitative and quantitative features of aging are not sensitively dependent on the details of dependency structure or its formation.

  8. Salient object detection based on multi-scale contrast.

    PubMed

    Wang, Hai; Dai, Lei; Cai, Yingfeng; Sun, Xiaoqiang; Chen, Long

    2018-05-01

    Due to the development of deep learning networks, a salient object detection based on deep learning networks, which are used to extract the features, has made a great breakthrough compared to the traditional methods. At present, the salient object detection mainly relies on very deep convolutional network, which is used to extract the features. In deep learning networks, an dramatic increase of network depth may cause more training errors instead. In this paper, we use the residual network to increase network depth and to mitigate the errors caused by depth increase simultaneously. Inspired by image simplification, we use color and texture features to obtain simplified image with multiple scales by means of region assimilation on the basis of super-pixels in order to reduce the complexity of images and to improve the accuracy of salient target detection. We refine the feature on pixel level by the multi-scale feature correction method to avoid the feature error when the image is simplified at the above-mentioned region level. The final full connection layer not only integrates features of multi-scale and multi-level but also works as classifier of salient targets. The experimental results show that proposed model achieves better results than other salient object detection models based on original deep learning networks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Application-oriented programming model for sensor networks embedded in the human body.

    PubMed

    Barbosa, Talles M G de A; Sene, Iwens G; da Rocha, Adson F; Nascimento, Fransisco A de O; Carvalho, Hervaldo S; Camapum, Juliana F

    2006-01-01

    This work presents a new programming model for sensor networks embedded in the human body which is based on the concept of multi-programming application-oriented software. This model was conceived with a top-down approach of four layers and its main goal is to allow the healthcare professionals to program and to reconfigure the network locally or by the Internet. In order to evaluate this hypothesis, a benchmarking was executed in order to allow the assessment of the mean time spent in the programming of a multi-functional sensor node used for the measurement and transmission of the electrocardiogram.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Jacob; Edgar, Thomas W.; Daily, Jeffrey A.

    With an ever-evolving power grid, concerns regarding how to maintain system stability, efficiency, and reliability remain constant because of increasing uncertainties and decreasing rotating inertia. To alleviate some of these concerns, demand response represents a viable solution and is virtually an untapped resource in the current power grid. This work describes a hierarchical control framework that allows coordination between distributed energy resources and demand response. This control framework is composed of two control layers: a coordination layer that ensures aggregations of resources are coordinated to achieve system objectives and a device layer that controls individual resources to assure the predeterminedmore » power profile is tracked in real time. Large-scale simulations are executed to study the hierarchical control, requiring advancements in simulation capabilities. Technical advancements necessary to investigate and answer control interaction questions, including the Framework for Network Co-Simulation platform and Arion modeling capability, are detailed. Insights into the interdependencies of controls across a complex system and how they must be tuned, as well as validation of the effectiveness of the proposed control framework, are yielded using a large-scale integrated transmission system model coupled with multiple distribution systems.« less

  11. Effect of molecular properties on the performance of polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ramos, Marta M. D.; Almeida, A. M.; Correia, Helena M. G.; Ribeiro, R. Mendes; Stoneham, A. M.

    2004-11-01

    The performance of a single layer polymer light-emitting diode depends on several interdependent factors, although recombination between electrons and holes within the polymer layer is believed to play an important role. Our aim is to carry out computer experiments in which bipolar charge carriers are injected in polymer networks made of poly(p-phenylene vinylene) chains randomly oriented. In these simulations, we follow the charge evolution in time from some initial state to the steady state. The intra-molecular properties of the polymer molecules obtained from self-consistent quantum molecular dynamics calculations are used in the mesoscopic model. The purpose of the present work is to clarify the effects of intra-molecular charge mobility and energy disorder on recombination efficiency. In particular, we find that charge mobility along the polymer chains has a serious influence on recombination within the polymer layer. Our results also show that energy disorder due to differences in ionization potential and electron affinity of neighbouring molecules affects mainly recombinations that occur near the electrodes at polymer chains parallel to them.

  12. Learning relevant features of data with multi-scale tensor networks

    NASA Astrophysics Data System (ADS)

    Miles Stoudenmire, E.

    2018-07-01

    Inspired by coarse-graining approaches used in physics, we show how similar algorithms can be adapted for data. The resulting algorithms are based on layered tree tensor networks and scale linearly with both the dimension of the input and the training set size. Computing most of the layers with an unsupervised algorithm, then optimizing just the top layer for supervised classification of the MNIST and fashion MNIST data sets gives very good results. We also discuss mixing a prior guess for supervised weights together with an unsupervised representation of the data, yielding a smaller number of features nevertheless able to give good performance.

  13. Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes.

    PubMed

    Gao, Jianxi; Buldyrev, S V; Havlin, S; Stanley, H E

    2012-06-01

    Many real-world networks interact with and depend upon other networks. We develop an analytical framework for studying a network formed by n fully interdependent randomly connected networks, each composed of the same number of nodes N. The dependency links connecting nodes from different networks establish a unique one-to-one correspondence between the nodes of one network and the nodes of the other network. We study the dynamics of the cascades of failures in such a network of networks (NON) caused by a random initial attack on one of the networks, after which a fraction p of its nodes survives. We find for the fully interdependent loopless NON that the final state of the NON does not depend on the dynamics of the cascades but is determined by a uniquely defined mutual giant component of the NON, which generalizes both the giant component of regular percolation of a single network (n=1) and the recently studied case of the mutual giant component of two interdependent networks (n=2). We also find that the mutual giant component does not depend on the topology of the NON and express it in terms of generating functions of the degree distributions of the network. Our results show that, for any n≥2 there exists a critical p=p(c)>0 below which the mutual giant component abruptly collapses from a finite nonzero value for p≥p(c) to zero for p2, a RR NON is stable for any n with p(c)<1). This results arises from the critical role played by singly connected nodes which exist in an ER NON and enhance the cascading failures, but do not exist in a RR NON.

  14. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.

    Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less

  15. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    DOE PAGES

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; ...

    2017-03-20

    Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less

  16. Flexible and scalable wavelength multicast of coherent optical OFDM with tolerance against pump phase-noise using reconfigurable coherent multi-carrier pumping.

    PubMed

    Lu, Guo-Wei; Bo, Tianwai; Sakamoto, Takahide; Yamamoto, Naokatsu; Chan, Calvin Chun-Kit

    2016-10-03

    Recently the ever-growing demand for dynamic and high-capacity services in optical networks has resulted in new challenges that require improved network agility and flexibility in order for network resources to become more "consumable" and dynamic, or elastic, in response to requests from higher network layers. Flexible and scalable wavelength conversion or multicast is one of the most important technologies needed for developing agility in the physical layer. This paper will investigate how, using a reconfigurable coherent multi-carrier as a pump, the multicast scalability and the flexibility in wavelength allocation of the converted signals can be effectively improved. Moreover, the coherence in the multiple carriers prevents the phase noise transformation from the local pump to the converted signals, which is imperative for the phase-noise-sensitive multi-level single- or multi-carrier modulated signal. To verify the feasibility of the proposed scheme, we experimentally demonstrate the wavelength multicast of coherent optical orthogonal frequency division multiplexing (CO-OFDM) signals using a reconfigurable coherent multi-carrier pump, showing flexibility in wavelength allocation, scalability in multicast, and tolerance against pump phase noise. Less than 0.5 dB and 1.8 dB power penalties at a bit-error rate (BER) of 10-3 are obtained for the converted CO-OFDM-quadrature phase-shift keying (QPSK) and CO-OFDM-16-ary quadrature amplitude modulation (16QAM) signals, respectively, even when using a distributed feedback laser (DFB) as a pump source. In contrast, with a free-running pumping scheme, the phase noise from DFB pumps severely deteriorates the CO-OFDM signals, resulting in a visible error-floor at a BER of 10-2 in the converted CO-OFDM-16QAM signals.

  17. Bribery games on inter-dependent regular networks.

    PubMed

    Verma, Prateek; Nandi, Anjan K; Sengupta, Supratim

    2017-02-16

    We examine a scenario of social conflict that is manifest during an interaction between government servants providing a service and citizens who are legally entitled to the service, using evolutionary game-theory in structured populations characterized by an inter-dependent network. Bribe-demands by government servants during such transactions, called harassment bribes, constitute a widespread form of corruption in many countries. We investigate the effect of varying bribe demand made by corrupt officials and the cost of complaining incurred by harassed citizens, on the proliferation of corrupt strategies in the population. We also examine how the connectivity of the various constituent networks affects the spread of corrupt officials in the population. We find that incidents of bribery can be considerably reduced in a network-structured populations compared to mixed populations. Interestingly, we also find that an optimal range for the connectivity of nodes in the citizen's network (signifying the degree of influence a citizen has in affecting the strategy of other citizens in the network) as well as the interaction network aids in the fixation of honest officers. Our results reveal the important role of network structure and connectivity in asymmetric games.

  18. Optimizing Airborne Networking Performance with Cross-Layer Design Approach

    DTIC Science & Technology

    2009-06-01

    Schiavone , L.J.; “Airborne Networking –Approaches and Challenges,” Military Communications Conference IEEE, Oct 31 – Nov 3, 2004, Vol. 1, pp. 404...www.ccny.cuny.edu/cint/ [5] John Seguí and Esther Jennings,’’ Delay Tolerant Networking – Bundle Protocol Simulation’’ [6] DTNRG website...throughput route selection in multi-rate ad hoc wireless networks,” Technical report, Johns Hopkins CS Dept, March 2003. v 2. [15] R. Draves, J

  19. Interconnectedness and interdependencies of critical infrastructures in the US economy: Implications for resilience

    NASA Astrophysics Data System (ADS)

    Chopra, Shauhrat S.; Khanna, Vikas

    2015-10-01

    Natural disasters in 2011 yielded close to 55 billion in economic damages alone in the United States (US), which highlights the need to reduce impacts of such disasters or other deliberate attacks. The US Department of Homeland Security (DHS) identifies a list of 16 Critical Infrastructure Sectors (CIS) whose incapacity due to disruptions would have a debilitating impact on the nation's economy. The goal of this work is to understand the implications of interdependencies among CIS on the resilience of the US economic system as a whole. We develop a framework that combines the empirical economic input-output (EIO) model with graph theory based techniques for understanding interdependencies, interconnectedness and resilience in the US economic system. By representing the US economy as a network, we are able to analyze its topology by separately looking at its unweighted and weighted forms. Topological analysis of the US EIO network suggests that it exhibits small world properties for the unweighted case, and in the weighted case, the throughput of industry sectors follows a power-law with an exponential cutoff. Implications of these topological properties are discussed in the paper. We also simulate hypothetical disruptions on CIS in order to identify industrial sectors that experience the largest economic impacts, and to quantify systemic vulnerability in economic terms. In addition, insights from community detection and hypothetical disruption scenarios help assess vulnerability of individual industrial communities to disruptions on individual CIS. These methodologies also provide insights regarding the extent of coupling between each CIS in the US EIO network. Based on our analysis, we observe that excessive interconnectedness and interdependencies of CIS results in high systemic vulnerability. This information can guide policymakers to design policies that improve resilience of economic networks, and evaluate policies that might indirectly increase coupling between CIS.

  20. Zigbee networking technology and its application in Lamost optical fiber positioning and control system

    NASA Astrophysics Data System (ADS)

    Jin, Yi; Zhai, Chao; Gu, Yonggang; Zhou, Zengxiang; Gai, Xiaofeng

    2010-07-01

    4,000 fiber positioning units need to be positioned precisely in LAMOST(Large Sky Area Multi-object Optical Spectroscopic Telescope) optical fiber positioning & control system, and every fiber positioning unit needs two stepper motors for its driven, so 8,000 stepper motors need to be controlled in the entire system. Wireless communication mode is adopted to save the installing space on the back of the focal panel, and can save more than 95% external wires compared to the traditional cable control mode. This paper studies how to use the ZigBee technology to group these 8000 nodes, explores the pros and cons of star network and tree network in order to search the stars quickly and efficiently. ZigBee technology is a short distance, low-complexity, low power, low data rate, low-cost two-way wireless communication technology based on the IEEE 802.15.4 protocol. It based on standard Open Systems Interconnection (OSI): The 802.15.4 standard specifies the lower protocol layers-the physical layer (PHY), and the media access control (MAC). ZigBee Alliance defined on this basis, the rest layers such as the network layer and application layer, and is responsible for high-level applications, testing and marketing. The network layer used here, based on ad hoc network protocols, includes the following functions: construction and maintenance of the topological structure, nomenclature and associated businesses which involves addressing, routing and security and a self-organizing-self-maintenance functions which will minimize consumer spending and maintenance costs. In this paper, freescale's 802.15.4 protocol was used to configure the network layer. A star network and a tree network topology is realized, which can build network, maintenance network and create a routing function automatically. A concise tree network address allocate algorithm is present to assign the network ID automatically.

  1. An Integrated Multi-layer Approach for Seamless Soft Handoff in Mobile Ad Hoc Networks

    DTIC Science & Technology

    2011-01-01

    network to showcase how to leverage the IEEE 802.21 Media Independent Handover ( MIH ) framework [3] in our handoff solution. Moreover, to further...to the seamless handoff problem. The architecture leverages the IEEE 802.21 MIH standard to facilitate handover related decisions on multiple...provided by the MIH function (MIHF), the topology control manager dynamically activates/deactivates the wireless interfaces to ensure the network is

  2. A network-based framework for assessing infrastructure resilience: a case study of the London metro system.

    PubMed

    Chopra, Shauhrat S; Dillon, Trent; Bilec, Melissa M; Khanna, Vikas

    2016-05-01

    Modern society is increasingly dependent on the stability of a complex system of interdependent infrastructure sectors. It is imperative to build resilience of large-scale infrastructures like metro systems for addressing the threat of natural disasters and man-made attacks in urban areas. Analysis is needed to ensure that these systems are capable of withstanding and containing unexpected perturbations, and develop heuristic strategies for guiding the design of more resilient networks in the future. We present a comprehensive, multi-pronged framework that analyses information on network topology, spatial organization and passenger flow to understand the resilience of the London metro system. Topology of the London metro system is not fault tolerant in terms of maintaining connectivity at the periphery of the network since it does not exhibit small-world properties. The passenger strength distribution follows a power law, suggesting that while the London metro system is robust to random failures, it is vulnerable to disruptions on a few critical stations. The analysis further identifies particular sources of structural and functional vulnerabilities that need to be mitigated for improving the resilience of the London metro network. The insights from our framework provide useful strategies to build resilience for both existing and upcoming metro systems. © 2016 The Author(s).

  3. Selecting public relations personnel of hospitals by analytic network process.

    PubMed

    Liao, Sen-Kuei; Chang, Kuei-Lun

    2009-01-01

    This study describes the use of analytic network process (ANP) in the Taiwanese hospital public relations personnel selection process. Starting with interviewing 48 practitioners and executives in north Taiwan, we collected selection criteria. Then, we retained the 12 critical criteria that were mentioned above 40 times by theses respondents, including: interpersonal skill, experience, negotiation, language, ability to follow orders, cognitive ability, adaptation to environment, adaptation to company, emotion, loyalty, attitude, and Response. Finally, we discussed with the 20 executives to take these important criteria into three perspectives to structure the hierarchy for hospital public relations personnel selection. After discussing with practitioners and executives, we find that selecting criteria are interrelated. The ANP, which incorporates interdependence relationships, is a new approach for multi-criteria decision-making. Thus, we apply ANP to select the most optimal public relations personnel of hospitals. An empirical study of public relations personnel selection problems in Taiwan hospitals is conducted to illustrate how the selection procedure works.

  4. Adapting Agricultural Water Use to Climate Change in a Post-Soviet Context: Challenges and Opportunities in Southeast Kazakhstan.

    PubMed

    Barrett, Tristam; Feola, Giuseppe; Khusnitdinova, Marina; Krylova, Viktoria

    2017-01-01

    The convergence of climate change and post-Soviet socio-economic and institutional transformations has been underexplored so far, as have the consequences of such convergence on crop agriculture in Central Asia. This paper provides a place-based analysis of constraints and opportunities for adaptation to climate change, with a specific focus on water use, in two districts in southeast Kazakhstan. Data were collected by 2 multi-stakeholder participatory workshops, 21 semi-structured in-depth interviews, and secondary statistical data. The present-day agricultural system is characterised by enduring Soviet-era management structures, but without state inputs that previously sustained agricultural productivity. Low margins of profitability on many privatised farms mean that attempts to implement integrated water management have produced water users associations unable to maintain and upgrade a deteriorating irrigation infrastructure. Although actors engage in tactical adaptation measures, necessary structural adaptation of the irrigation system remains difficult without significant public or private investments. Market-based water management models have been translated ambiguously to this region, which fails to encourage efficient water use and hinders adaptation to water stress. In addition, a mutual interdependence of informal networks and formal institutions characterises both state governance and everyday life in Kazakhstan. Such interdependence simultaneously facilitates operational and tactical adaptation, but hinders structural adaptation, as informal networks exist as a parallel system that achieves substantive outcomes while perpetuating the inertia and incapacity of the state bureaucracy. This article has relevance for critical understanding of integrated water management in practice and adaptation to climate change in post-Soviet institutional settings more broadly.

  5. Using deep recurrent neural network for direct beam solar irradiance cloud screening

    NASA Astrophysics Data System (ADS)

    Chen, Maosi; Davis, John M.; Liu, Chaoshun; Sun, Zhibin; Zempila, Melina Maria; Gao, Wei

    2017-09-01

    Cloud screening is an essential procedure for in-situ calibration and atmospheric properties retrieval on (UV-)MultiFilter Rotating Shadowband Radiometer [(UV-)MFRSR]. Previous study has explored a cloud screening algorithm for direct-beam (UV-)MFRSR voltage measurements based on the stability assumption on a long time period (typically a half day or a whole day). To design such an algorithm requires in-depth understanding of radiative transfer and delicate data manipulation. Recent rapid developments on deep neural network and computation hardware have opened a window for modeling complicated End-to-End systems with a standardized strategy. In this study, a multi-layer dynamic bidirectional recurrent neural network is built for determining the cloudiness on each time point with a 17-year training dataset and tested with another 1-year dataset. The dataset is the daily 3-minute cosine corrected voltages, airmasses, and the corresponding cloud/clear-sky labels at two stations of the USDA UV-B Monitoring and Research Program. The results show that the optimized neural network model (3-layer, 250 hidden units, and 80 epochs of training) has an overall test accuracy of 97.87% (97.56% for the Oklahoma site and 98.16% for the Hawaii site). Generally, the neural network model grasps the key concept of the original model to use data in the entire day rather than short nearby measurements to perform cloud screening. A scrutiny of the logits layer suggests that the neural network model automatically learns a way to calculate a quantity similar to total optical depth and finds an appropriate threshold for cloud screening.

  6. Networks for image acquisition, processing and display

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1990-01-01

    The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.

  7. Multi-layer holographic bifurcative neural network system for real-time adaptive EOS data analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Huang, K. S.; Diep, J.

    1993-01-01

    Optical data processing techniques have the inherent advantage of high data throughout, low weight and low power requirements. These features are particularly desirable for onboard spacecraft in-situ real-time data analysis and data compression applications. the proposed multi-layer optical holographic neural net pattern recognition technique will utilize the nonlinear photorefractive devices for real-time adaptive learning to classify input data content and recognize unexpected features. Information can be stored either in analog or digital form in a nonlinear photofractive device. The recording can be accomplished in time scales ranging from milliseconds to microseconds. When a system consisting of these devices is organized in a multi-layer structure, a feedforward neural net with bifurcating data classification capability is formed. The interdisciplinary research will involve the collaboration with top digital computer architecture experts at the University of Southern California.

  8. Effects of temporal correlations in social multiplex networks.

    PubMed

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2017-08-17

    Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a 'multitasking' behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.

  9. Genetic algorithm for neural networks optimization

    NASA Astrophysics Data System (ADS)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  10. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies

    NASA Astrophysics Data System (ADS)

    Gill, Joel C.; Malamud, Bruce D.

    2016-08-01

    This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.

  11. Computational Analysis of Molecular Interaction Networks Underlying Change of HIV-1 Resistance to Selected Reverse Transcriptase Inhibitors

    PubMed Central

    Kierczak, Marcin; Dramiński, Michał; Koronacki, Jacek; Komorowski, Jan

    2010-01-01

    Motivation Despite more than two decades of research, HIV resistance to drugs remains a serious obstacle in developing efficient AIDS treatments. Several computational methods have been developed to predict resistance level from the sequence of viral proteins such as reverse transcriptase (RT) or protease. These methods, while powerful and accurate, give very little insight into the molecular interactions that underly acquisition of drug resistance/hypersusceptibility. Here, we attempt at filling this gap by using our Monte Carlo feature selection and interdependency discovery method (MCFS-ID) to elucidate molecular interaction networks that characterize viral strains with altered drug resistance levels. Results We analyzed a number of HIV-1 RT sequences annotated with drug resistance level using the MCFS-ID method. This let us expound interdependency networks that characterize change of drug resistance to six selected RT inhibitors: Abacavir, Lamivudine, Stavudine, Zidovudine, Tenofovir and Nevirapine. The networks consider interdependencies at the level of physicochemical properties of mutating amino acids, eg,: polarity. We mapped each network on the 3D structure of RT in attempt to understand the molecular meaning of interacting pairs. The discovered interactions describe several known drug resistance mechanisms and, importantly, some previously unidentified ones. Our approach can be easily applied to a whole range of problems from the domain of protein engineering. Availability A portable Java implementation of our MCFS-ID method is freely available for academic users and can be obtained at: http://www.ipipan.eu/staff/m.draminski/software.htm. PMID:21234299

  12. Computational Analysis of Molecular Interaction Networks Underlying Change of HIV-1 Resistance to Selected Reverse Transcriptase Inhibitors.

    PubMed

    Kierczak, Marcin; Dramiński, Michał; Koronacki, Jacek; Komorowski, Jan

    2010-12-12

    Despite more than two decades of research, HIV resistance to drugs remains a serious obstacle in developing efficient AIDS treatments. Several computational methods have been developed to predict resistance level from the sequence of viral proteins such as reverse transcriptase (RT) or protease. These methods, while powerful and accurate, give very little insight into the molecular interactions that underly acquisition of drug resistance/hypersusceptibility. Here, we attempt at filling this gap by using our Monte Carlo feature selection and interdependency discovery method (MCFS-ID) to elucidate molecular interaction networks that characterize viral strains with altered drug resistance levels. We analyzed a number of HIV-1 RT sequences annotated with drug resistance level using the MCFS-ID method. This let us expound interdependency networks that characterize change of drug resistance to six selected RT inhibitors: Abacavir, Lamivudine, Stavudine, Zidovudine, Tenofovir and Nevirapine. The networks consider interdependencies at the level of physicochemical properties of mutating amino acids, eg,: polarity. We mapped each network on the 3D structure of RT in attempt to understand the molecular meaning of interacting pairs. The discovered interactions describe several known drug resistance mechanisms and, importantly, some previously unidentified ones. Our approach can be easily applied to a whole range of problems from the domain of protein engineering. A portable Java implementation of our MCFS-ID method is freely available for academic users and can be obtained at: http://www.ipipan.eu/staff/m.draminski/software.htm.

  13. Cross-border Portfolio Investment Networks and Indicators for Financial Crises

    PubMed Central

    Joseph, Andreas C.; Joseph, Stephan E.; Chen, Guanrong

    2014-01-01

    Cross-border equity and long-term debt securities portfolio investment networks are analysed from 2002 to 2012, covering the 2008 global financial crisis. They serve as network-proxies for measuring the robustness of the global financial system and the interdependence of financial markets, respectively. Two early-warning indicators for financial crises are identified: First, the algebraic connectivity of the equity securities network, as a measure for structural robustness, drops close to zero already in 2005, while there is an over-representation of high-degree off-shore financial centres among the countries most-related to this observation, suggesting an investigation of such nodes with respect to the structural stability of the global financial system. Second, using a phenomenological model, the edge density of the debt securities network is found to describe, and even forecast, the proliferation of several over-the-counter-traded financial derivatives, most prominently credit default swaps, enabling one to detect potentially dangerous levels of market interdependence and systemic risk. PMID:24510060

  14. Cross-border Portfolio Investment Networks and Indicators for Financial Crises

    NASA Astrophysics Data System (ADS)

    Joseph, Andreas C.; Joseph, Stephan E.; Chen, Guanrong

    2014-02-01

    Cross-border equity and long-term debt securities portfolio investment networks are analysed from 2002 to 2012, covering the 2008 global financial crisis. They serve as network-proxies for measuring the robustness of the global financial system and the interdependence of financial markets, respectively. Two early-warning indicators for financial crises are identified: First, the algebraic connectivity of the equity securities network, as a measure for structural robustness, drops close to zero already in 2005, while there is an over-representation of high-degree off-shore financial centres among the countries most-related to this observation, suggesting an investigation of such nodes with respect to the structural stability of the global financial system. Second, using a phenomenological model, the edge density of the debt securities network is found to describe, and even forecast, the proliferation of several over-the-counter-traded financial derivatives, most prominently credit default swaps, enabling one to detect potentially dangerous levels of market interdependence and systemic risk.

  15. Cross-border portfolio investment networks and indicators for financial crises.

    PubMed

    Joseph, Andreas C; Joseph, Stephan E; Chen, Guanrong

    2014-02-10

    Cross-border equity and long-term debt securities portfolio investment networks are analysed from 2002 to 2012, covering the 2008 global financial crisis. They serve as network-proxies for measuring the robustness of the global financial system and the interdependence of financial markets, respectively. Two early-warning indicators for financial crises are identified: First, the algebraic connectivity of the equity securities network, as a measure for structural robustness, drops close to zero already in 2005, while there is an over-representation of high-degree off-shore financial centres among the countries most-related to this observation, suggesting an investigation of such nodes with respect to the structural stability of the global financial system. Second, using a phenomenological model, the edge density of the debt securities network is found to describe, and even forecast, the proliferation of several over-the-counter-traded financial derivatives, most prominently credit default swaps, enabling one to detect potentially dangerous levels of market interdependence and systemic risk.

  16. Design and FPGA implementation for MAC layer of Ethernet PON

    NASA Astrophysics Data System (ADS)

    Zhu, Zengxi; Lin, Rujian; Chen, Jian; Ye, Jiajun; Chen, Xinqiao

    2004-04-01

    Ethernet passive optical network (EPON), which represents the convergence of low-cost, high-bandwidth and supporting multiple services, appears to be one of the best candidates for the next-generation access network. The work of standardizing EPON as a solution for access network is still underway in the IEEE802.3ah Ethernet in the first mile (EFM) task force. The final release is expected in 2004. Up to now, there has been no standard application specific integrated circuit (ASIC) chip available which fulfills the functions of media access control (MAC) layer of EPON. The MAC layer in EPON system has many functions, such as point-to-point emulation (P2PE), Ethernet MAC functionality, multi-point control protocol (MPCP), network operation, administration and maintenance (OAM) and link security. To implement those functions mentioned above, an embedded real-time operating system (RTOS) and a flexible programmable logic device (PLD) with an embedded processor are used. The software and hardware functions in MAC layer are realized through programming embedded microprocessor and field programmable gate array(FPGA). Finally, some experimental results are given in this paper. The method stated here can provide a valuable reference for developing EPON MAC layer ASIC.

  17. Synchronization in interdependent networks

    NASA Astrophysics Data System (ADS)

    Um, Jaegon; Minnhagen, Petter; Kim, Beom Jun

    2011-06-01

    We explore the synchronization behavior in interdependent systems, where the one-dimensional (1D) network (the intranetwork coupling strength JI) is ferromagnetically intercoupled (the strength J) to the Watts-Strogatz (WS) small-world network (the intranetwork coupling strength JII). In the absence of the internetwork coupling (J =0), the former network is well known not to exhibit the synchronized phase at any finite coupling strength, whereas the latter displays the mean-field transition. Through an analytic approach based on the mean-field approximation, it is found that for the weakly coupled 1D network (JI≪1) the increase of J suppresses synchrony, because the nonsynchronized 1D network becomes a heavier burden for the synchronization process of the WS network. As the coupling in the 1D network becomes stronger, it is revealed by the renormalization group (RG) argument that the synchronization is enhanced as JI is increased, implying that the more enhanced partial synchronization in the 1D network makes the burden lighter. Extensive numerical simulations confirm these expected behaviors, while exhibiting a reentrant behavior in the intermediate range of JI. The nonmonotonic change of the critical value of JII is also compared with the result from the numerical RG calculation.

  18. Digital Telematics: Present and Future.

    ERIC Educational Resources Information Center

    Stalberg, Christian E.

    1987-01-01

    This overview of developments in international telecommunications networks focuses on their importance for developing countries and the necessary interdependence of all countries. Highlights include digital technology, telephone service, packet switching networks, communications satellites, fiber optic cables, and possible future developments.…

  19. A Hierarchical multi-input and output Bi-GRU Model for Sentiment Analysis on Customer Reviews

    NASA Astrophysics Data System (ADS)

    Zhang, Liujie; Zhou, Yanquan; Duan, Xiuyu; Chen, Ruiqi

    2018-03-01

    Multi-label sentiment classification on customer reviews is a practical challenging task in Natural Language Processing. In this paper, we propose a hierarchical multi-input and output model based bi-directional recurrent neural network, which both considers the semantic and lexical information of emotional expression. Our model applies two independent Bi-GRU layer to generate part of speech and sentence representation. Then the lexical information is considered via attention over output of softmax activation on part of speech representation. In addition, we combine probability of auxiliary labels as feature with hidden layer to capturing crucial correlation between output labels. The experimental result shows that our model is computationally efficient and achieves breakthrough improvements on customer reviews dataset.

  20. Generalized information fusion and visualization using spatial voting and data modeling

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.

    2013-05-01

    We present a novel and innovative information fusion and visualization framework for multi-source intelligence (multiINT) data using Spatial Voting (SV) and Data Modeling. We describe how different sources of information can be converted into numerical form for further processing downstream, followed by a short description of how this information can be fused using the SV grid. As an illustrative example, we show the modeling of cyberspace as cyber layers for the purpose of tracking cyber personas. Finally we describe a path ahead for creating interactive agile networks through defender customized Cyber-cubes for network configuration and attack visualization.

  1. A Cross-Layer Approach to Multi-Hop Networking with Cognitive Radios

    DTIC Science & Technology

    2008-11-01

    recent investigations. In [2], Behzad and Rubin studied the special case that the same power level are used at each node and found that the maximum...Sep. 2, 2005. [2] A. Behzad and I. Rubin, “Impact of power control on the performance of ad hoc wireless networks,” in Proc. IEEE Infocom, pp. 102–113

  2. Three layers multi-granularity OCDM switching system based on learning-stateful PCE

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Liu, Yanfei; Sun, Hao

    2017-10-01

    In the existing three layers multi-granularity OCDM switching system (TLMG-OCDMSS), F-LSP, L-LSP and OC-LSP can be bundled as switching granularity. For CPU-intensive network, the node not only needs to compute the path but also needs to bundle the switching granularity so that the load of single node is heavy. The node will paralyze when the traffic of the node is too heavy, which will impact the performance of the whole network seriously. The introduction of stateful PCE(S-PCE) will effectively solve these problems. PCE is composed of two parts, namely, the path computation element and the database (TED and LSPDB), and returns the result of path computation to PCC (path computation clients) after PCC sends the path computation request to it. In this way, the pressure of the distributed path computation in each node is reduced. In this paper, we propose the concept of Learning PCE (L-PCE), which uses the existing LSPDB as the data source of PCE's learning. By this means, we can simplify the path computation and reduce the network delay, as a result, improving the performance of network.

  3. A Quantum Approach to Multi-Agent Systems (MAS), Organizations, and Control

    DTIC Science & Technology

    2003-06-01

    interdependent interactions between individuals represented approximately as vocal harmonic I resonators. Then the growth rate of an organization fits ...A quantum approach to multi-agent systems (MAS), organizations , and control W.F. Lawless Paine College 1235 15th Street Augusta, GA 30901...AND SUBTITLE A quantum approach to multi-agent systems (MAS), organizations , and control 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  4. A Theory of How Columns in the Neocortex Enable Learning the Structure of the World

    PubMed Central

    Hawkins, Jeff; Ahmad, Subutai; Cui, Yuwei

    2017-01-01

    Neocortical regions are organized into columns and layers. Connections between layers run mostly perpendicular to the surface suggesting a columnar functional organization. Some layers have long-range excitatory lateral connections suggesting interactions between columns. Similar patterns of connectivity exist in all regions but their exact role remain a mystery. In this paper, we propose a network model composed of columns and layers that performs robust object learning and recognition. Each column integrates its changing input over time to learn complete predictive models of observed objects. Excitatory lateral connections across columns allow the network to more rapidly infer objects based on the partial knowledge of adjacent columns. Because columns integrate input over time and space, the network learns models of complex objects that extend well beyond the receptive field of individual cells. Our network model introduces a new feature to cortical columns. We propose that a representation of location relative to the object being sensed is calculated within the sub-granular layers of each column. The location signal is provided as an input to the network, where it is combined with sensory data. Our model contains two layers and one or more columns. Simulations show that using Hebbian-like learning rules small single-column networks can learn to recognize hundreds of objects, with each object containing tens of features. Multi-column networks recognize objects with significantly fewer movements of the sensory receptors. Given the ubiquity of columnar and laminar connectivity patterns throughout the neocortex, we propose that columns and regions have more powerful recognition and modeling capabilities than previously assumed. PMID:29118696

  5. Weighted complex network analysis of the Beijing subway system: Train and passenger flows

    NASA Astrophysics Data System (ADS)

    Feng, Jia; Li, Xiamiao; Mao, Baohua; Xu, Qi; Bai, Yun

    2017-05-01

    In recent years, complex network theory has become an important approach to the study of the structure and dynamics of traffic networks. However, because traffic data is difficult to collect, previous studies have usually focused on the physical topology of subway systems, whereas few studies have considered the characteristics of traffic flows through the network. Therefore, in this paper, we present a multi-layer model to analyze traffic flow patterns in subway networks, based on trip data and an operation timetable obtained from the Beijing Subway System. We characterize the patterns in terms of the spatiotemporal flow size distributions of both the train flow network and the passenger flow network. In addition, we describe the essential interactions between these two networks based on statistical analyses. The results of this study suggest that layered models of transportation systems can elucidate fundamental differences between the coexisting traffic flows and can also clarify the mechanism that causes these differences.

  6. Multiplex congruence network of natural numbers.

    PubMed

    Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua

    2016-03-31

    Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations.

  7. Multiplex congruence network of natural numbers

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua

    2016-03-01

    Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations.

  8. Bribery games on inter-dependent regular networks

    NASA Astrophysics Data System (ADS)

    Verma, Prateek; Nandi, Anjan K.; Sengupta, Supratim

    2017-02-01

    We examine a scenario of social conflict that is manifest during an interaction between government servants providing a service and citizens who are legally entitled to the service, using evolutionary game-theory in structured populations characterized by an inter-dependent network. Bribe-demands by government servants during such transactions, called harassment bribes, constitute a widespread form of corruption in many countries. We investigate the effect of varying bribe demand made by corrupt officials and the cost of complaining incurred by harassed citizens, on the proliferation of corrupt strategies in the population. We also examine how the connectivity of the various constituent networks affects the spread of corrupt officials in the population. We find that incidents of bribery can be considerably reduced in a network-structured populations compared to mixed populations. Interestingly, we also find that an optimal range for the connectivity of nodes in the citizen’s network (signifying the degree of influence a citizen has in affecting the strategy of other citizens in the network) as well as the interaction network aids in the fixation of honest officers. Our results reveal the important role of network structure and connectivity in asymmetric games.

  9. Bribery games on inter-dependent regular networks

    PubMed Central

    Verma, Prateek; Nandi, Anjan K.; Sengupta, Supratim

    2017-01-01

    We examine a scenario of social conflict that is manifest during an interaction between government servants providing a service and citizens who are legally entitled to the service, using evolutionary game-theory in structured populations characterized by an inter-dependent network. Bribe-demands by government servants during such transactions, called harassment bribes, constitute a widespread form of corruption in many countries. We investigate the effect of varying bribe demand made by corrupt officials and the cost of complaining incurred by harassed citizens, on the proliferation of corrupt strategies in the population. We also examine how the connectivity of the various constituent networks affects the spread of corrupt officials in the population. We find that incidents of bribery can be considerably reduced in a network-structured populations compared to mixed populations. Interestingly, we also find that an optimal range for the connectivity of nodes in the citizen’s network (signifying the degree of influence a citizen has in affecting the strategy of other citizens in the network) as well as the interaction network aids in the fixation of honest officers. Our results reveal the important role of network structure and connectivity in asymmetric games. PMID:28205644

  10. Using bivariate signal analysis to characterize the epileptic focus: the benefit of surrogates.

    PubMed

    Andrzejak, R G; Chicharro, D; Lehnertz, K; Mormann, F

    2011-04-01

    The disease epilepsy is related to hypersynchronous activity of networks of neurons. While acute epileptic seizures are the most extreme manifestation of this hypersynchronous activity, an elevated level of interdependence of neuronal dynamics is thought to persist also during the seizure-free interval. In multichannel recordings from brain areas involved in the epileptic process, this interdependence can be reflected in an increased linear cross correlation but also in signal properties of higher order. Bivariate time series analysis comprises a variety of approaches, each with different degrees of sensitivity and specificity for interdependencies reflected in lower- or higher-order properties of pairs of simultaneously recorded signals. Here we investigate which approach is best suited to detect putatively elevated interdependence levels in signals recorded from brain areas involved in the epileptic process. For this purpose, we use the linear cross correlation that is sensitive to lower-order signatures of interdependence, a nonlinear interdependence measure that integrates both lower- and higher-order properties, and a surrogate-corrected nonlinear interdependence measure that aims to specifically characterize higher-order properties. We analyze intracranial electroencephalographic recordings of the seizure-free interval from 29 patients with an epileptic focus located in the medial temporal lobe. Our results show that all three approaches detect higher levels of interdependence for signals recorded from the brain hemisphere containing the epileptic focus as compared to signals recorded from the opposite hemisphere. For the linear cross correlation, however, these differences are not significant. For the nonlinear interdependence measure, results are significant but only of moderate accuracy with regard to the discriminative power for the focal and nonfocal hemispheres. The highest significance and accuracy is obtained for the surrogate-corrected nonlinear interdependence measure.

  11. Using bivariate signal analysis to characterize the epileptic focus: The benefit of surrogates

    NASA Astrophysics Data System (ADS)

    Andrzejak, R. G.; Chicharro, D.; Lehnertz, K.; Mormann, F.

    2011-04-01

    The disease epilepsy is related to hypersynchronous activity of networks of neurons. While acute epileptic seizures are the most extreme manifestation of this hypersynchronous activity, an elevated level of interdependence of neuronal dynamics is thought to persist also during the seizure-free interval. In multichannel recordings from brain areas involved in the epileptic process, this interdependence can be reflected in an increased linear cross correlation but also in signal properties of higher order. Bivariate time series analysis comprises a variety of approaches, each with different degrees of sensitivity and specificity for interdependencies reflected in lower- or higher-order properties of pairs of simultaneously recorded signals. Here we investigate which approach is best suited to detect putatively elevated interdependence levels in signals recorded from brain areas involved in the epileptic process. For this purpose, we use the linear cross correlation that is sensitive to lower-order signatures of interdependence, a nonlinear interdependence measure that integrates both lower- and higher-order properties, and a surrogate-corrected nonlinear interdependence measure that aims to specifically characterize higher-order properties. We analyze intracranial electroencephalographic recordings of the seizure-free interval from 29 patients with an epileptic focus located in the medial temporal lobe. Our results show that all three approaches detect higher levels of interdependence for signals recorded from the brain hemisphere containing the epileptic focus as compared to signals recorded from the opposite hemisphere. For the linear cross correlation, however, these differences are not significant. For the nonlinear interdependence measure, results are significant but only of moderate accuracy with regard to the discriminative power for the focal and nonfocal hemispheres. The highest significance and accuracy is obtained for the surrogate-corrected nonlinear interdependence measure.

  12. Nonlinear Deep Kernel Learning for Image Annotation.

    PubMed

    Jiu, Mingyuan; Sahbi, Hichem

    2017-02-08

    Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.

  13. Mean-field crack networks on desiccated films and their applications: Girl with a Pearl Earring.

    PubMed

    Flores, J C

    2017-02-15

    Usual requirements for bulk and fissure energies are considered in obtaining the interdependence among external stress, thickness and area of crack polygons in desiccated films. The average area of crack polygons increases with thickness as a power-law of 4/3. The sequential fragmentation process is characterized by a topological factor related to a scaling finite procedure. Non-sequential overly tensioned (prompt) fragmentation is briefly discussed. Vermeer's painting, Girl with a Pearl Earring, is considered explicitly by using computational image tools and simple experiments and applying the proposed theoretical analysis. In particular, concerning the source of lightened effects on the girl's face, the left/right thickness layer ratio (≈1.34) and the stress ratio (≈1.102) are evaluated. Other master paintings are briefly considered.

  14. Operational resilience: concepts, design and analysis

    NASA Astrophysics Data System (ADS)

    Ganin, Alexander A.; Massaro, Emanuele; Gutfraind, Alexander; Steen, Nicolas; Keisler, Jeffrey M.; Kott, Alexander; Mangoubi, Rami; Linkov, Igor

    2016-01-01

    Building resilience into today’s complex infrastructures is critical to the daily functioning of society and its ability to withstand and recover from natural disasters, epidemics, and cyber-threats. This study proposes quantitative measures that capture and implement the definition of engineering resilience advanced by the National Academy of Sciences. The approach is applicable across physical, information, and social domains. It evaluates the critical functionality, defined as a performance function of time set by the stakeholders. Critical functionality is a source of valuable information, such as the integrated system resilience over a time interval, and its robustness. The paper demonstrates the formulation on two classes of models: 1) multi-level directed acyclic graphs, and 2) interdependent coupled networks. For both models synthetic case studies are used to explore trends. For the first class, the approach is also applied to the Linux operating system. Results indicate that desired resilience and robustness levels are achievable by trading off different design parameters, such as redundancy, node recovery time, and backup supply available. The nonlinear relationship between network parameters and resilience levels confirms the utility of the proposed approach, which is of benefit to analysts and designers of complex systems and networks.

  15. Operational resilience: concepts, design and analysis

    PubMed Central

    Ganin, Alexander A.; Massaro, Emanuele; Gutfraind, Alexander; Steen, Nicolas; Keisler, Jeffrey M.; Kott, Alexander; Mangoubi, Rami; Linkov, Igor

    2016-01-01

    Building resilience into today’s complex infrastructures is critical to the daily functioning of society and its ability to withstand and recover from natural disasters, epidemics, and cyber-threats. This study proposes quantitative measures that capture and implement the definition of engineering resilience advanced by the National Academy of Sciences. The approach is applicable across physical, information, and social domains. It evaluates the critical functionality, defined as a performance function of time set by the stakeholders. Critical functionality is a source of valuable information, such as the integrated system resilience over a time interval, and its robustness. The paper demonstrates the formulation on two classes of models: 1) multi-level directed acyclic graphs, and 2) interdependent coupled networks. For both models synthetic case studies are used to explore trends. For the first class, the approach is also applied to the Linux operating system. Results indicate that desired resilience and robustness levels are achievable by trading off different design parameters, such as redundancy, node recovery time, and backup supply available. The nonlinear relationship between network parameters and resilience levels confirms the utility of the proposed approach, which is of benefit to analysts and designers of complex systems and networks. PMID:26782180

  16. Operational resilience: concepts, design and analysis.

    PubMed

    Ganin, Alexander A; Massaro, Emanuele; Gutfraind, Alexander; Steen, Nicolas; Keisler, Jeffrey M; Kott, Alexander; Mangoubi, Rami; Linkov, Igor

    2016-01-19

    Building resilience into today's complex infrastructures is critical to the daily functioning of society and its ability to withstand and recover from natural disasters, epidemics, and cyber-threats. This study proposes quantitative measures that capture and implement the definition of engineering resilience advanced by the National Academy of Sciences. The approach is applicable across physical, information, and social domains. It evaluates the critical functionality, defined as a performance function of time set by the stakeholders. Critical functionality is a source of valuable information, such as the integrated system resilience over a time interval, and its robustness. The paper demonstrates the formulation on two classes of models: 1) multi-level directed acyclic graphs, and 2) interdependent coupled networks. For both models synthetic case studies are used to explore trends. For the first class, the approach is also applied to the Linux operating system. Results indicate that desired resilience and robustness levels are achievable by trading off different design parameters, such as redundancy, node recovery time, and backup supply available. The nonlinear relationship between network parameters and resilience levels confirms the utility of the proposed approach, which is of benefit to analysts and designers of complex systems and networks.

  17. Cascades in interdependent flow networks

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; De Sanctis Lucentini, Pier Giorgio; Caldarelli, Guido; D'Agostino, Gregorio

    2016-06-01

    In this manuscript, we investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of first order transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase in the couplings between the grids has two competing effects: on the one hand, it increases the safety region where grids can operate without withstanding systemic failures; on the other hand, it increases the possibility of a joint systems' failure.

  18. Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Richter, Caleb; Cha, Kenny

    2018-02-01

    We propose a cross-domain, multi-task transfer learning framework to transfer knowledge learned from non-medical images by a deep convolutional neural network (DCNN) to medical image recognition task while improving the generalization by multi-task learning of auxiliary tasks. A first stage cross-domain transfer learning was initiated from ImageNet trained DCNN to mammography trained DCNN. 19,632 regions-of-interest (ROI) from 2,454 mass lesions were collected from two imaging modalities: digitized-screen film mammography (SFM) and full-field digital mammography (DM), and split into training and test sets. In the multi-task transfer learning, the DCNN learned the mass classification task simultaneously from the training set of SFM and DM. The best transfer network for mammography was selected from three transfer networks with different number of convolutional layers frozen. The performance of single-task and multitask transfer learning on an independent SFM test set in terms of the area under the receiver operating characteristic curve (AUC) was 0.78+/-0.02 and 0.82+/-0.02, respectively. In the second stage cross-domain transfer learning, a set of 12,680 ROIs from 317 mass lesions on DBT were split into validation and independent test sets. We first studied the data requirements for the first stage mammography trained DCNN by varying the mammography training data from 1% to 100% and evaluated its learning on the DBT validation set in inference mode. We found that the entire available mammography set provided the best generalization. The DBT validation set was then used to train only the last four fully connected layers, resulting in an AUC of 0.90+/-0.04 on the independent DBT test set.

  19. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology,more » comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)« less

  20. Validating Farmers' Indigenous Social Networks for Local Seed Supply in Central Rift Valley of Ethiopia.

    ERIC Educational Resources Information Center

    Seboka, B.; Deressa, A.

    2000-01-01

    Indigenous social networks of Ethiopian farmers participate in seed exchange based on mutual interdependence and trust. A government-imposed extension program must validate the role of local seed systems in developing a national seed industry. (SK)

  1. Spin switches for compact implementation of neuron and synapse

    NASA Astrophysics Data System (ADS)

    Quang Diep, Vinh; Sutton, Brian; Behin-Aein, Behtash; Datta, Supriyo

    2014-06-01

    Nanomagnets driven by spin currents provide a natural implementation for a neuron and a synapse: currents allow convenient summation of multiple inputs, while the magnet provides the threshold function. The objective of this paper is to explore the possibility of a hardware neural network implementation using a spin switch (SS) as its basic building block. SS is a recently proposed device based on established technology with a transistor-like gain and input-output isolation. This allows neural networks to be constructed with purely passive interconnections without intervening clocks or amplifiers. The weights for the neural network are conveniently adjusted through analog voltages that can be stored in a non-volatile manner in an underlying CMOS layer using a floating gate low dropout voltage regulator. The operation of a multi-layer SS neural network designed for character recognition is demonstrated using a standard simulation model based on coupled Landau-Lifshitz-Gilbert equations, one for each magnet in the network.

  2. Combinatorial techniques to efficiently investigate and optimize organic thin film processing and properties.

    PubMed

    Wieberger, Florian; Kolb, Tristan; Neuber, Christian; Ober, Christopher K; Schmidt, Hans-Werner

    2013-04-08

    In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.

  3. Nonparametric Representations for Integrated Inference, Control, and Sensing

    DTIC Science & Technology

    2015-10-01

    Learning (ICML), 2013. [20] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. DeCAF: A deep ...unlimited. Multi-layer feature learning “SuperVision” Convolutional Neural Network (CNN) ImageNet Classification with Deep Convolutional Neural Networks...to develop a new framework for autonomous operations that will extend the state of the art in distributed learning and modeling from data, and

  4. Rochester Connectionist Papers. 1979-1985

    DTIC Science & Technology

    1985-12-01

    updated and improved version of the thesis account of recent neurolinguistic data. Fanty, M., "Context-free parsing in connectionist networks." TR 174...April 1982. Our first large program in the connectionist paradigm. It simulates a multi- layer network for recognizing line drawings of Origami figures...The program successfully deals with noise and simple occlusion and the thesis incorporates many key ideas on designing and running large models. Small

  5. Generalized model for k -core percolation and interdependent networks

    NASA Astrophysics Data System (ADS)

    Panduranga, Nagendra K.; Gao, Jianxi; Yuan, Xin; Stanley, H. Eugene; Havlin, Shlomo

    2017-09-01

    Cascading failures in complex systems have been studied extensively using two different models: k -core percolation and interdependent networks. We combine the two models into a general model, solve it analytically, and validate our theoretical results through extensive simulations. We also study the complete phase diagram of the percolation transition as we tune the average local k -core threshold and the coupling between networks. We find that the phase diagram of the combined processes is very rich and includes novel features that do not appear in the models studying each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a lower occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition changes from first-order → second-order → two-stage → first-order as the k -core threshold is increased. The analytic equations describing the phase boundaries of the two-stage transition region are set up, and the critical exponents for each type of transition are derived analytically.

  6. A novel hybrid MCDM model for performance evaluation of research and technology organizations based on BSC approach.

    PubMed

    Varmazyar, Mohsen; Dehghanbaghi, Maryam; Afkhami, Mehdi

    2016-10-01

    Balanced Scorecard (BSC) is a strategic evaluation tool using both financial and non-financial indicators to determine the business performance of organizations or companies. In this paper, a new integrated approach based on the Balanced Scorecard (BSC) and multi-criteria decision making (MCDM) methods are proposed to evaluate the performance of research centers of research and technology organization (RTO) in Iran. Decision-Making Trial and Evaluation Laboratory (DEMATEL) are employed to reflect the interdependencies among BSC perspectives. Then, Analytic Network Process (ANP) is utilized to weight the indices influencing the considered problem. In the next step, we apply four MCDM methods including Additive Ratio Assessment (ARAS), Complex Proportional Assessment (COPRAS), Multi-Objective Optimization by Ratio Analysis (MOORA), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for ranking of alternatives. Finally, the utility interval technique is applied to combine the ranking results of MCDM methods. Weighted utility intervals are computed by constructing a correlation matrix between the ranking methods. A real case is presented to show the efficacy of the proposed approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. INTEGRATED ENVIRONMENTAL ASSESSMENT OF THE MID-ATLANTIC REGION WITH ANALYTICAL NETWORK PROCESS

    EPA Science Inventory

    A decision analysis method for integrating environmental indicators was developed. This was a combination of Principal Component Analysis (PCA) and the Analytic Network Process (ANP). Being able to take into account interdependency among variables, the method was capable of ran...

  8. Neurocognitive Dimensions of Lexical Complexity in Polish

    ERIC Educational Resources Information Center

    Szlachta, Zanna; Bozic, Mirjana; Jelowicka, Aleksandra; Marslen-Wilson, William D.

    2012-01-01

    Neuroimaging studies of English suggest that speech comprehension engages two interdependent systems: a bilateral fronto-temporal network responsible for general perceptual and cognitive processing, and a specialised left-lateralised network supporting specifically linguistic processing. Using fMRI we test this hypothesis in Polish, a Slavic…

  9. Ultra-high aggregate bandwidth two-dimensional multiple-wavelength diode laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie

    1994-04-01

    Two-dimensional (2D) multi-wavelength vertical cavity surface emitting laser (VCSEL) arrays is promising for ultrahigh aggregate capacity optical networks. A 2D VCSEL array emitting 140 distinct wavelengths was reported by implementing a spatially graded layer in the VCSEL structure, which in turn creates a wavelength spread. In this program, we concentrated on novel epitaxial growth techniques to make reproducible and repeatable multi-wavelength VCSEL arrays.

  10. Self-Organized Information Processing in Neuronal Networks: Replacing Layers in Deep Networks by Dynamics

    NASA Astrophysics Data System (ADS)

    Kirst, Christoph

    It is astonishing how the sub-parts of a brain co-act to produce coherent behavior. What are mechanism that coordinate information processing and communication and how can those be changed flexibly in order to cope with variable contexts? Here we show that when information is encoded in the deviations around a collective dynamical reference state of a recurrent network the propagation of these fluctuations is strongly dependent on precisely this underlying reference. Information here 'surfs' on top of the collective dynamics and switching between states enables fast and flexible rerouting of information. This in turn affects local processing and consequently changes in the global reference dynamics that re-regulate the distribution of information. This provides a generic mechanism for self-organized information processing as we demonstrate with an oscillatory Hopfield network that performs contextual pattern recognition. Deep neural networks have proven to be very successful recently. Here we show that generating information channels via collective reference dynamics can effectively compress a deep multi-layer architecture into a single layer making this mechanism a promising candidate for the organization of information processing in biological neuronal networks.

  11. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.

    PubMed

    Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold

    2016-12-01

    In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Inter-allotropic transformations in the heterogeneous carbon nanotube networks.

    PubMed

    Jung, Hyun Young; Jung, Sung Mi; Kim, Dong Won; Jung, Yung Joon

    2017-01-19

    The allotropic transformations of carbon provide an immense technological interest for tailoring the desired molecular structures in the scalable nanoelectronic devices. Herein, we explore the effects of morphology and geometric alignment of the nanotubes for the re-engineering of carbon bonds in the heterogeneous carbon nanotube (CNT) networks. By applying alternating voltage pulses and electrical forces, the single-walled CNTs in networks were predominantly transformed into other predetermined sp 2 carbon structures (multi-walled CNTs and multi-layered graphitic nanoribbons), showing a larger intensity in a coalescence-induced mode of Raman spectra with the increasing channel width. Moreover, the transformed networks have a newly discovered sp 2 -sp 3 hybrid nanostructures in accordance with the alignment. The sp 3 carbon structures at the small channel are controlled, such that they contain up to about 29.4% networks. This study provides a controllable method for specific types of inter-allotropic transformations/hybridizations, which opens up the further possibility for the engineering of nanocarbon allotropes in the robust large-scale network-based devices.

  13. Biochemical component identification by plasmonic improved whispering gallery mode optical resonance based sensor

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-05-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.

  14. Causes, effects and connectivity changes in MS-related cognitive decline.

    PubMed

    Rimkus, Carolina de Medeiros; Steenwijk, Martijn D; Barkhof, Frederik

    2016-01-01

    Cognitive decline is a frequent but undervalued aspect of multiple sclerosis (MS). Currently, it remains unclear what the strongest determinants of cognitive dysfunction are, with grey matter damage most directly related to cognitive impairment. Multi-parametric studies seem to indicate that individual factors of MS-pathology are highly interdependent causes of grey matter atrophy and permanent brain damage. They are associated with intermediate functional effects (e.g. in functional MRI) representing a balance between disconnection and (mal) adaptive connectivity changes. Therefore, a more comprehensive MRI approach is warranted, aiming to link structural changes with functional brain organization. To better understand the disconnection syndromes and cognitive decline in MS, this paper reviews the associations between MRI metrics and cognitive performance, by discussing the interactions between multiple facets of MS pathology as determinants of brain damage and how they affect network efficiency.

  15. Agent-based modeling of porous scaffold degradation and vascularization: Optimal scaffold design based on architecture and degradation dynamics.

    PubMed

    Mehdizadeh, Hamidreza; Bayrak, Elif S; Lu, Chenlin; Somo, Sami I; Akar, Banu; Brey, Eric M; Cinar, Ali

    2015-11-01

    A multi-layer agent-based model (ABM) of biomaterial scaffold vascularization is extended to consider the effects of scaffold degradation kinetics on blood vessel formation. A degradation model describing the bulk disintegration of porous hydrogels is incorporated into the ABM. The combined degradation-angiogenesis model is used to investigate growing blood vessel networks in the presence of a degradable scaffold structure. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support results in failure for the material. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as a way to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric parameters and degradation behavior of scaffolds, and enables easy refinement of the model as new knowledge about the underlying biological phenomena becomes available. This paper proposes a multi-layer agent-based model (ABM) of biomaterial scaffold vascularization integrated with a structural-kinetic model describing bulk degradation of porous hydrogels to consider the effects of scaffold degradation kinetics on blood vessel formation. This enables the assessment of scaffold characteristics and in particular the disintegration characteristics of the scaffold on angiogenesis. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support by scaffold disintegration results in failure of the material and disruption of angiogenesis. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as away to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric and degradation characteristics of tissue engineering scaffolds. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Emergence of robustness in networks of networks

    NASA Astrophysics Data System (ADS)

    Roth, Kevin; Morone, Flaviano; Min, Byungjoon; Makse, Hernán A.

    2017-06-01

    A model of interdependent networks of networks (NONs) was introduced recently [Proc. Natl. Acad. Sci. (USA) 114, 3849 (2017), 10.1073/pnas.1620808114] in the context of brain activation to identify the neural collective influencers in the brain NON. Here we investigate the emergence of robustness in such a model, and we develop an approach to derive an exact expression for the random percolation transition in Erdös-Rényi NONs of this kind. Analytical calculations are in agreement with numerical simulations, and highlight the robustness of the NON against random node failures, which thus presents a new robust universality class of NONs. The key aspect of this robust NON model is that a node can be activated even if it does not belong to the giant mutually connected component, thus allowing the NON to be built from below the percolation threshold, which is not possible in previous models of interdependent networks. Interestingly, the phase diagram of the model unveils particular patterns of interconnectivity for which the NON is most vulnerable, thereby marking the boundary above which the robustness of the system improves with increasing dependency connections.

  17. Dense deconvolution net: Multi path fusion and dense deconvolution for high resolution skin lesion segmentation.

    PubMed

    He, Xinzi; Yu, Zhen; Wang, Tianfu; Lei, Baiying; Shi, Yiyan

    2018-01-01

    Dermoscopy imaging has been a routine examination approach for skin lesion diagnosis. Accurate segmentation is the first step for automatic dermoscopy image assessment. The main challenges for skin lesion segmentation are numerous variations in viewpoint and scale of skin lesion region. To handle these challenges, we propose a novel skin lesion segmentation network via a very deep dense deconvolution network based on dermoscopic images. Specifically, the deep dense layer and generic multi-path Deep RefineNet are combined to improve the segmentation performance. The deep representation of all available layers is aggregated to form the global feature maps using skip connection. Also, the dense deconvolution layer is leveraged to capture diverse appearance features via the contextual information. Finally, we apply the dense deconvolution layer to smooth segmentation maps and obtain final high-resolution output. Our proposed method shows the superiority over the state-of-the-art approaches based on the public available 2016 and 2017 skin lesion challenge dataset and achieves the accuracy of 96.0% and 93.9%, which obtained a 6.0% and 1.2% increase over the traditional method, respectively. By utilizing Dense Deconvolution Net, the average time for processing one testing images with our proposed framework was 0.253 s.

  18. Trade-off analysis of discharge-desiltation-turbidity and ANN analysis on sedimentation of a combined reservoir-reach system under multi-phase and multi-layer conjunctive releasing operation

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Lin; Hsu, Nien-Sheng; Wei, Chih-Chiang; Yao, Chun-Hao

    2017-10-01

    Multi-objective reservoir operation considering the trade-off of discharge-desiltation-turbidity during typhoons and sediment concentration (SC) simulation modeling are the vital components for sustainable reservoir management. The purposes of this study were (1) to analyze the multi-layer release trade-offs between reservoir desiltation and intake turbidity of downstream purification plants and thus propose a superior conjunctive operation strategy and (2) to develop ANFIS-based (adaptive network-based fuzzy inference system) and RTRLNN-based (real-time recurrent learning neural networks) substitute SC simulation models. To this end, this study proposed a methodology to develop (1) a series of multi-phase and multi-layer sediment-flood conjunctive release modes and (2) a specialized SC numerical model for a combined reservoir-reach system. The conjunctive release modes involve (1) an optimization model where the decision variables are multi-phase reduction/scaling ratios and the timings to generate a superior total release hydrograph for flood control (Phase I: phase prior to flood arrival, Phase II/III: phase prior to/subsequent to peak flow) and (2) a combination method with physical limitations regarding separation of the singular hydrograph into multi-layer release hydrographs for sediment control. This study employed the featured signals obtained from statistical quartiles/sediment duration curve in mesh segmentation, and an iterative optimization model with a sediment unit response matrix and corresponding geophysical-based acceleration factors, for efficient parameter calibration. This research applied the developed methodology to the Shihmen Reservoir basin in Taiwan. The trade-off analytical results using Typhoons Sinlaku and Jangmi as case examples revealed that owing to gravity current and re-suspension effects, Phase I + II can de-silt safely without violating the intake's turbidity limitation before reservoir discharge reaches 2238 m3/s; however, Phase III can only de-silt after the release at spillway reaches 827 m3/s, and before reservoir discharge reaches 1924 m3/s, with corresponding maximum desiltation ratio being 0.221 and 0.323, respectively. Moreover, the model construction results demonstrated that the self-adaption/fuzzy inference of ANFIS can effectively simulate the SC hydrograph in an unsteady state for suspended load-dominated water bodies, and that the real-time recurrent deterministic routing of RTRLNN can accurately simulate that of a bedload-dominated flow regime.

  19. Dynamical origins of the community structure of an online multi-layer society

    NASA Astrophysics Data System (ADS)

    Klimek, Peter; Diakonova, Marina; Eguíluz, Víctor M.; San Miguel, Maxi; Thurner, Stefan

    2016-08-01

    Social structures emerge as a result of individuals managing a variety of different social relationships. Societies can be represented as highly structured dynamic multiplex networks. Here we study the dynamical origins of the specific community structures of a large-scale social multiplex network of a human society that interacts in a virtual world of a massive multiplayer online game. There we find substantial differences in the community structures of different social actions, represented by the various layers in the multiplex network. Community sizes distributions are either fat-tailed or appear to be centered around a size of 50 individuals. To understand these observations we propose a voter model that is built around the principle of triadic closure. It explicitly models the co-evolution of node- and link-dynamics across different layers of the multiplex network. Depending on link and node fluctuation probabilities, the model exhibits an anomalous shattered fragmentation transition, where one layer fragments from one large component into many small components. The observed community size distributions are in good agreement with the predicted fragmentation in the model. This suggests that several detailed features of the fragmentation in societies can be traced back to the triadic closure processes.

  20. A new algorithm to detect earthquakes outside the seismic network: preliminary results

    NASA Astrophysics Data System (ADS)

    Giudicepietro, Flora; Esposito, Antonietta Maria; Ricciolino, Patrizia

    2017-04-01

    In this text we are going to present a new technique for detecting earthquakes outside the seismic network, which are often the cause of fault of automatic analysis system. Our goal is to develop a robust method that provides the discrimination result as quickly as possible. We discriminate local earthquakes from regional earthquakes, both recorded at SGG station, equipped with short period sensors, operated by Osservatorio Vesuviano (INGV) in the Southern Apennines (Italy). The technique uses a Multi Layer Perceptron (MLP) neural network with an architecture composed by an input layer, a hidden layer and a single node output layer. We pre-processed the data using the Linear Predictive Coding (LPC) technique to extract the spectral features of the signals in a compact form. We performed several experiments by shortening the signal window length. In particular, we used windows of 4, 2 and 1 seconds containing the onset of the local and the regional earthquakes. We used a dataset of 103 local earthquakes and 79 regional earthquakes, most of which occurred in Greece, Albania and Crete. We split the dataset into a training set, for the network training, and a testing set to evaluate the network's capacity of discrimination. In order to assess the network stability, we repeated this procedure six times, randomly changing the data composition of the training and testing set and the initial weights of the net. We estimated the performance of this method by calculating the average of correct detection percentages obtained for each of the six permutations. The average performances are 99.02%, 98.04% and 98.53%, which concern respectively the experiments carried out on 4, 2 and 1 seconds signal windows. The results show that our method is able to recognize the earthquakes outside the seismic network using only the first second of the seismic records, with a suitable percentage of correct detection. Therefore, this algorithm can be profitably used to make earthquake automatic analyses more robust and reliable. Finally, with appropriate tuning, it can be integrated in multi-parametric systems for monitoring high natural risk areas.

  1. Development blocks in innovation networks: The Swedish manufacturing industry, 1970-2007.

    PubMed

    Taalbi, Josef

    2017-01-01

    The notion of development blocks (Dahmén, 1950, 1991) suggests the co-evolution of technologies and industries through complementarities and the overcoming of imbalances. This study proposes and applies a methodology to analyse development blocks empirically. To assess the extent and character of innovational interdependencies between industries the study combines analysis of innovation biographies and statistical network analysis. This is made possible by using data from a newly constructed innovation output database for Sweden. The study finds ten communities of closely related industries in which innovation activity has been prompted by the emergence of technological imbalances or by the exploitation of new technological opportunities. The communities found in the Swedish network of innovation are shown to be stable over time and often characterized by strong user-supplier interdependencies. These findings serve to stress how historical imbalances and opportunities are key to understanding the dynamics of the long-run development of industries and new technologies.

  2. Fixation of CO2 in bi-layered coordination networks of zinc tetra(4-carboxyphenyl)porphyrin with multi-component [Pr2Na3(NO3)(H2O)3] connectors.

    PubMed

    Nandi, Goutam; Goldberg, Israel

    2014-11-14

    CO2 is fixed in a rare μ2-η bridging mode by bi-layered coordination networks of ZnTCPP tessellated along the four equatorial directions by [Pr2Na3(NO3)(H2O)3](8+) connecting clusters in a 2 : 1 ratio (1), but not in the isomorphous free-base porphyrin analogue [(TCPPH2)2(Pr2Na3(NO3)(H2O)3)]n (2), revealing the crucial role of the zinc metal in this process.

  3. The algorithm study for using the back propagation neural network in CT image segmentation

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Liu, Jie; Chen, Chen; Li, Ying Qi

    2017-01-01

    Back propagation neural network(BP neural network) is a type of multi-layer feed forward network which spread positively, while the error spread backwardly. Since BP network has advantages in learning and storing the mapping between a large number of input and output layers without complex mathematical equations to describe the mapping relationship, it is most widely used. BP can iteratively compute the weight coefficients and thresholds of the network based on the training and back propagation of samples, which can minimize the error sum of squares of the network. Since the boundary of the computed tomography (CT) heart images is usually discontinuous, and it exist large changes in the volume and boundary of heart images, The conventional segmentation such as region growing and watershed algorithm can't achieve satisfactory results. Meanwhile, there are large differences between the diastolic and systolic images. The conventional methods can't accurately classify the two cases. In this paper, we introduced BP to handle the segmentation of heart images. We segmented a large amount of CT images artificially to obtain the samples, and the BP network was trained based on these samples. To acquire the appropriate BP network for the segmentation of heart images, we normalized the heart images, and extract the gray-level information of the heart. Then the boundary of the images was input into the network to compare the differences between the theoretical output and the actual output, and we reinput the errors into the BP network to modify the weight coefficients of layers. Through a large amount of training, the BP network tend to be stable, and the weight coefficients of layers can be determined, which means the relationship between the CT images and the boundary of heart.

  4. A framework for modelling the complexities of food and water security under globalisation

    NASA Astrophysics Data System (ADS)

    Dermody, Brian J.; Sivapalan, Murugesu; Stehfest, Elke; van Vuuren, Detlef P.; Wassen, Martin J.; Bierkens, Marc F. P.; Dekker, Stefan C.

    2018-01-01

    We present a new framework for modelling the complexities of food and water security under globalisation. The framework sets out a method to capture regional and sectoral interdependencies and cross-scale feedbacks within the global food system that contribute to emergent water use patterns. The framework integrates aspects of existing models and approaches in the fields of hydrology and integrated assessment modelling. The core of the framework is a multi-agent network of city agents connected by infrastructural trade networks. Agents receive socio-economic and environmental constraint information from integrated assessment models and hydrological models respectively and simulate complex, socio-environmental dynamics that operate within those constraints. The emergent changes in food and water resources are aggregated and fed back to the original models with minimal modification of the structure of those models. It is our conviction that the framework presented can form the basis for a new wave of decision tools that capture complex socio-environmental change within our globalised world. In doing so they will contribute to illuminating pathways towards a sustainable future for humans, ecosystems and the water they share.

  5. New Abstractions for Mobile Connectivity and Resource Management

    DTIC Science & Technology

    2016-05-01

    networked systems, con- sisting of replicated backend services and mobile , multi-homed clients. We derive a state machine for ECCP supporting migration...makes ECCP useful not only for mobility of client devices, but also for backend services which are increasingly run in VMs or containers on platforms...layers of the network stack, instead of the traditional IP/port, improve mobility for clients and backend services and reduce unnecessary coupling of

  6. Synchronized and mixed outbreaks of coupled recurrent epidemics.

    PubMed

    Zheng, Muhua; Zhao, Ming; Min, Byungjoon; Liu, Zonghua

    2017-05-25

    Epidemic spreading has been studied for a long time and most of them are focused on the growing aspect of a single epidemic outbreak. Recently, we extended the study to the case of recurrent epidemics (Sci. Rep. 5, 16010 (2015)) but limited only to a single network. We here report from the real data of coupled regions or cities that the recurrent epidemics in two coupled networks are closely related to each other and can show either synchronized outbreak pattern where outbreaks occur simultaneously in both networks or mixed outbreak pattern where outbreaks occur in one network but do not in another one. To reveal the underlying mechanism, we present a two-layered network model of coupled recurrent epidemics to reproduce the synchronized and mixed outbreak patterns. We show that the synchronized outbreak pattern is preferred to be triggered in two coupled networks with the same average degree while the mixed outbreak pattern is likely to show for the case with different average degrees. Further, we show that the coupling between the two layers tends to suppress the mixed outbreak pattern but enhance the synchronized outbreak pattern. A theoretical analysis based on microscopic Markov-chain approach is presented to explain the numerical results. This finding opens a new window for studying the recurrent epidemics in multi-layered networks.

  7. Operational problems of Haniwa net as a form of social capital: interdependence between human networks of physicians and information networks.

    PubMed

    Maeda, Minoru; Araki, Sanae; Suzuki, Muneou; Umemoto, Katsuhiro; Kai, Yukiko; Araki, Kenji

    2012-10-01

    In August 2009, Miyazaki Health and Welfare Network (Haniwa Net, hereafter referred to as "the Net"), centrally led by University of Miyazaki Hospital (UMH), adopted a center hospital-based system offering a unilateral linkage that enables the viewing of UMH's medical records through a web-based browser (electronic medical records (EMR)). By the end of December 2010, the network had developed into a system of 79 collaborating physicians from within the prefecture. Beginning in August 2010, physicians in 12 medical institutions were visited and asked to speak freely on the operational issues concerning the Net. Recordings and written accounts were coded using the text analysis software MAXQDA 10 to understand the actual state of operations. Analysis of calculations of Kendall's rank correlation confirmed that the interdependency between human networks and information networks is significant. At the same time, while the negative opinions concerning the functions of the Net were somewhat conspicuous, the results showed a correlation between requests and proposals for operational improvements of the Net, clearly indicating the need for a more user-friendly system and a better viewer.

  8. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence.

    PubMed

    Korkali, Mert; Veneman, Jason G; Tivnan, Brian F; Bagrow, James P; Hines, Paul D H

    2017-03-20

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a "smart" power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.

  9. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    NASA Astrophysics Data System (ADS)

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-03-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.

  10. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    PubMed Central

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-01-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained. PMID:28317835

  11. The benefits of convergence.

    PubMed

    Chang, Gee-Kung; Cheng, Lin

    2016-03-06

    A multi-tier radio access network (RAN) combining the strength of fibre-optic and radio access technologies employing adaptive microwave photonics interfaces and radio-over-fibre (RoF) techniques is envisioned for future heterogeneous wireless communications. All-band radio spectrum from 0.1 to 100 GHz will be used to deliver wireless services with high capacity, high link speed and low latency. The multi-tier RAN will improve the cell-edge performance in an integrated heterogeneous environment enabled by fibre-wireless integration and networking for mobile fronthaul/backhaul, resource sharing and all-layer centralization of multiple standards with different frequency bands and modulation formats. In essence, this is a 'no-more-cells' architecture in which carrier aggregation among multiple frequency bands can be easily achieved with seamless handover between cells. In this way, current and future mobile network standards such as 4G and 5G can coexist with optimized and continuous cell coverage using multi-tier RoF regardless of the underlying network topology or protocol. In terms of users' experience, the future-proof approach achieves the goals of system capacity, link speed, latency and continuous heterogeneous cell coverage while overcoming the bandwidth crunch in next-generation communication networks. © 2016 The Author(s).

  12. PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data.

    PubMed

    Hernández-de-Diego, Rafael; Tarazona, Sonia; Martínez-Mira, Carlos; Balzano-Nogueira, Leandro; Furió-Tarí, Pedro; Pappas, Georgios J; Conesa, Ana

    2018-05-25

    The increasing availability of multi-omic platforms poses new challenges to data analysis. Joint visualization of multi-omics data is instrumental in better understanding interconnections across molecular layers and in fully utilizing the multi-omic resources available to make biological discoveries. We present here PaintOmics 3, a web-based resource for the integrated visualization of multiple omic data types onto KEGG pathway diagrams. PaintOmics 3 combines server-end capabilities for data analysis with the potential of modern web resources for data visualization, providing researchers with a powerful framework for interactive exploration of their multi-omics information. Unlike other visualization tools, PaintOmics 3 covers a comprehensive pathway analysis workflow, including automatic feature name/identifier conversion, multi-layered feature matching, pathway enrichment, network analysis, interactive heatmaps, trend charts, and more. It accepts a wide variety of omic types, including transcriptomics, proteomics and metabolomics, as well as region-based approaches such as ATAC-seq or ChIP-seq data. The tool is freely available at www.paintomics.org.

  13. Bayesian network models for error detection in radiotherapy plans

    NASA Astrophysics Data System (ADS)

    Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.

    2015-04-01

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.

  14. Multi-level deep supervised networks for retinal vessel segmentation.

    PubMed

    Mo, Juan; Zhang, Lei

    2017-12-01

    Changes in the appearance of retinal blood vessels are an important indicator for various ophthalmologic and cardiovascular diseases, including diabetes, hypertension, arteriosclerosis, and choroidal neovascularization. Vessel segmentation from retinal images is very challenging because of low blood vessel contrast, intricate vessel topology, and the presence of pathologies such as microaneurysms and hemorrhages. To overcome these challenges, we propose a neural network-based method for vessel segmentation. A deep supervised fully convolutional network is developed by leveraging multi-level hierarchical features of the deep networks. To improve the discriminative capability of features in lower layers of the deep network and guide the gradient back propagation to overcome gradient vanishing, deep supervision with auxiliary classifiers is incorporated in some intermediate layers of the network. Moreover, the transferred knowledge learned from other domains is used to alleviate the issue of insufficient medical training data. The proposed approach does not rely on hand-crafted features and needs no problem-specific preprocessing or postprocessing, which reduces the impact of subjective factors. We evaluate the proposed method on three publicly available databases, the DRIVE, STARE, and CHASE_DB1 databases. Extensive experiments demonstrate that our approach achieves better or comparable performance to state-of-the-art methods with a much faster processing speed, making it suitable for real-world clinical applications. The results of cross-training experiments demonstrate its robustness with respect to the training set. The proposed approach segments retinal vessels accurately with a much faster processing speed and can be easily applied to other biomedical segmentation tasks.

  15. The Organizational Potential of Women in Agriculture to Sustain Rural Communities.

    ERIC Educational Resources Information Center

    Wells, Betty L.; Tanner, Bonnie O.

    1994-01-01

    The Agricultural Women's Leadership Network illustrates the following processes of social change in gendered organizations: (1) change begins as social networks expand to focus on issues; (2) women's organizations gain a foothold during economic crises; (3) new interdependencies bring new organizational alliances; (4) change continues as identity…

  16. The Role of Probability-Based Inference in an Intelligent Tutoring System.

    ERIC Educational Resources Information Center

    Mislevy, Robert J.; Gitomer, Drew H.

    Probability-based inference in complex networks of interdependent variables is an active topic in statistical research, spurred by such diverse applications as forecasting, pedigree analysis, troubleshooting, and medical diagnosis. This paper concerns the role of Bayesian inference networks for updating student models in intelligent tutoring…

  17. Identifying Jets Using Artifical Neural Networks

    NASA Astrophysics Data System (ADS)

    Rosand, Benjamin; Caines, Helen; Checa, Sofia

    2017-09-01

    We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.

  18. Multi-time scale control of demand flexibility in smart distribution networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte

    This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less

  19. Multi-time scale control of demand flexibility in smart distribution networks

    DOE PAGES

    Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte; ...

    2017-01-01

    This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less

  20. Design of QoS-Aware Multi-Level MAC-Layer for Wireless Body Area Network.

    PubMed

    Hu, Long; Zhang, Yin; Feng, Dakui; Hassan, Mohammad Mehedi; Alelaiwi, Abdulhameed; Alamri, Atif

    2015-12-01

    With the advances in wearable computing and various wireless technologies, there is an increasing trend to outsource body signals from wireless body area network (WBAN) to outside world including cyber space, healthcare big data clouds, etc. Since the environmental and physiological data collected by multimodal sensors have different importance, the provisioning of quality of service (QoS) for the sensory data in WBAN is a critical issue. This paper proposes multiple level-based QoS design at WBAN media access control layer in terms of user level, data level and time level. In the proposed QoS provisioning scheme, different users have different priorities, various sensory data collected by different sensor nodes have different importance, while data priority for the same sensor node varies over time. The experimental results show that the proposed multi-level based QoS provisioning solution in WBAN yields better performance for meeting QoS requirements of personalized healthcare applications while achieving energy saving.

  1. Dynamic multicast routing scheme in WDM optical network

    NASA Astrophysics Data System (ADS)

    Zhu, Yonghua; Dong, Zhiling; Yao, Hong; Yang, Jianyong; Liu, Yibin

    2007-11-01

    During the information era, the Internet and the service of World Wide Web develop rapidly. Therefore, the wider and wider bandwidth is required with the lower and lower cost. The demand of operation turns out to be diversified. Data, images, videos and other special transmission demands share the challenge and opportunity with the service providers. Simultaneously, the electrical equipment has approached their limit. So the optical communication based on the wavelength division multiplexing (WDM) and the optical cross-connects (OXCs) shows great potentials and brilliant future to build an optical network based on the unique technical advantage and multi-wavelength characteristic. In this paper, we propose a multi-layered graph model with inter-path between layers to solve the problem of multicast routing wavelength assignment (RWA) contemporarily by employing an efficient graph theoretic formulation. And at the same time, an efficient dynamic multicast algorithm named Distributed Message Copying Multicast (DMCM) mechanism is also proposed. The multicast tree with minimum hops can be constructed dynamically according to this proposed scheme.

  2. Modeling Heterogeneous Carbon Nanotube Networks for Photovoltaic Applications Using Silvaco Atlas Software

    DTIC Science & Technology

    2012-06-01

    Nanotube MWCNT Multi-Walled Carbon Nanotube PET Polyethylene Terephthalate 4H-SiC 4-H Silicon Carbide AlGaAs Aluminum Gallium Arsenide...nanotubes ( MWCNTs ). SWCNTs are structured with one layer of graphene rolled into a CNT. MWCNTs are contrastingly composed of 23 multiple layers...simulation 19 times to extract cell parameters at #varying widths set cellWidth=200 loop steps=19 go atlas #Constants which are used to set the

  3. The organization and control of an evolving interdependent population

    PubMed Central

    Vural, Dervis C.; Isakov, Alexander; Mahadevan, L.

    2015-01-01

    Starting with Darwin, biologists have asked how populations evolve from a low fitness state that is evolutionarily stable to a high fitness state that is not. Specifically of interest is the emergence of cooperation and multicellularity where the fitness of individuals often appears in conflict with that of the population. Theories of social evolution and evolutionary game theory have produced a number of fruitful results employing two-state two-body frameworks. In this study, we depart from this tradition and instead consider a multi-player, multi-state evolutionary game, in which the fitness of an agent is determined by its relationship to an arbitrary number of other agents. We show that populations organize themselves in one of four distinct phases of interdependence depending on one parameter, selection strength. Some of these phases involve the formation of specialized large-scale structures. We then describe how the evolution of independence can be manipulated through various external perturbations. PMID:26040593

  4. The Multiplex Network of EU Lobby Organizations.

    PubMed

    Zeng, An; Battiston, Stefano

    2016-01-01

    The practice of lobbying in the interest of economic or social groups plays an important role in the policy making process of most economies. While no data is available at this stage to examine the success of lobbies in exerting influence on specific policy issues, we perform a first systematic multi-layer network analysis of a large lobby registry. Here we focus on the domains of finance and climate and we combine information on affiliation and client relations from the EU transparency register with information about shareholding and interlocking directorates of firms. We find that the network centrality of lobby organizations has no simple relation with their lobbying budget. Moreover, different layers of the multiplex network provide complementary information to characterize organizations' potential influence. At the aggregate level, it appears that while the domains of finance and climate are separated on the layer of affiliation relations, they become intertwined when economic relations are considered. Because groups of interest differ not only in their budget and network centrality but also in terms of their internal cohesiveness, drawing a map of both connections across and within groups is a precondition to better understand the dynamics of influence on policy making and the forces at play.

  5. The Multiplex Network of EU Lobby Organizations

    PubMed Central

    Zeng, An; Battiston, Stefano

    2016-01-01

    The practice of lobbying in the interest of economic or social groups plays an important role in the policy making process of most economies. While no data is available at this stage to examine the success of lobbies in exerting influence on specific policy issues, we perform a first systematic multi-layer network analysis of a large lobby registry. Here we focus on the domains of finance and climate and we combine information on affiliation and client relations from the EU transparency register with information about shareholding and interlocking directorates of firms. We find that the network centrality of lobby organizations has no simple relation with their lobbying budget. Moreover, different layers of the multiplex network provide complementary information to characterize organizations’ potential influence. At the aggregate level, it appears that while the domains of finance and climate are separated on the layer of affiliation relations, they become intertwined when economic relations are considered. Because groups of interest differ not only in their budget and network centrality but also in terms of their internal cohesiveness, drawing a map of both connections across and within groups is a precondition to better understand the dynamics of influence on policy making and the forces at play. PMID:27792734

  6. On Applications of Disruption Tolerant Networking to Optical Networking in Space

    NASA Technical Reports Server (NTRS)

    Hylton, Alan Guy; Raible, Daniel E.; Juergens, Jeffrey; Iannicca, Dennis

    2012-01-01

    The integration of optical communication links into space networks via Disruption Tolerant Networking (DTN) is a largely unexplored area of research. Building on successful foundational work accomplished at JPL, we discuss a multi-hop multi-path network featuring optical links. The experimental test bed is constructed at the NASA Glenn Research Center featuring multiple Ethernet-to-fiber converters coupled with free space optical (FSO) communication channels. The test bed architecture models communication paths from deployed Mars assets to the deep space network (DSN) and finally to the mission operations center (MOC). Reliable versus unreliable communication methods are investigated and discussed; including reliable transport protocols, custody transfer, and fragmentation. Potential commercial applications may include an optical communications infrastructure deployment to support developing nations and remote areas, which are unburdened with supporting an existing heritage means of telecommunications. Narrow laser beam widths and control of polarization states offer inherent physical layer security benefits with optical communications over RF solutions. This paper explores whether or not DTN is appropriate for space-based optical networks, optimal payload sizes, reliability, and a discussion on security.

  7. Neural network diagnosis of avascular necrosis from magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Manduca, Armando; Christy, Paul S.; Ehman, Richard L.

    1993-09-01

    We have explored the use of artificial neural networks to diagnose avascular necrosis (AVN) of the femoral head from magnetic resonance images. We have developed multi-layer perceptron networks, trained with conjugate gradient optimization, which diagnose AVN from single sagittal images of the femoral head with 100% accuracy on the training data and 97% accuracy on test data. These networks use only the raw image as input (with minimal preprocessing to average the images down to 32 X 32 size and to scale the input data values) and learn to extract their own features for the diagnosis decision. Various experiments with these networks are described.

  8. Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network

    PubMed Central

    Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann

    2009-01-01

    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly’s halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support. PMID:20396612

  9. Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network.

    PubMed

    Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann

    2009-06-01

    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.

  10. Network Interdependency Modeling for Risk Assessment on Built Infrastructure Systems

    DTIC Science & Technology

    2013-10-01

    does begin to address infrastructure decay as a source of risk comes from the Department of Homeland Security (DHS). In 2009, the DHS Science and...network of connected edges and nodes. The National Research Council (2005) reported that the study of networks as a science and applications of...principles from this science are still in its early stages. As modern infrastructures have become more interlinked, knowledge of an infrastructure’s network

  11. Bribery games on interdependent complex networks.

    PubMed

    Verma, Prateek; Nandi, Anjan K; Sengupta, Supratim

    2018-08-07

    Bribe demands present a social conflict scenario where decisions have wide-ranging economic and ethical consequences. Nevertheless, such incidents occur daily in many countries across the globe. Harassment bribery constitute a significant sub-set of such bribery incidents where a government official demands a bribe for providing a service to a citizen legally entitled to it. We employ an evolutionary game-theoretic framework to analyse the evolution of corrupt and honest strategies in structured populations characterized by an interdependent complex network. The effects of changing network topology, average number of links and asymmetry in size of the citizen and officer population on the proliferation of incidents of bribery are explored. A complex network topology is found to be beneficial for the dominance of corrupt strategies over a larger region of phase space when compared with the outcome for a regular network, for equal citizen and officer population sizes. However, the extent of the advantage depends critically on the network degree and topology. A different trend is observed when there is a difference between the citizen and officer population sizes. Under those circumstances, increasing randomness of the underlying citizen network can be beneficial to the fixation of honest officers up to a certain value of the network degree. Our analysis reveals how the interplay between network topology, connectivity and strategy update rules can affect population level outcomes in such asymmetric games. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Information Extraction from Large-Multi-Layer Social Networks

    DTIC Science & Technology

    2015-08-06

    mization [4]. Methods that fall into this category include spec- tral algorithms, modularity methods, and methods that rely on statistical inference...Snijders and Chris Baerveldt, “A multilevel network study of the effects of delinquent behavior on friendship evolution,” Journal of mathematical sociol- ogy...1970. [10] Ulrike Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol. 17, no. 4, pp. 395–416, Dec. 2007. [11] R. A. Fisher, “On

  13. Optical network democratization.

    PubMed

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).

  14. Spin switches for compact implementation of neuron and synapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quang Diep, Vinh, E-mail: vdiep@purdue.edu; Sutton, Brian; Datta, Supriyo

    2014-06-02

    Nanomagnets driven by spin currents provide a natural implementation for a neuron and a synapse: currents allow convenient summation of multiple inputs, while the magnet provides the threshold function. The objective of this paper is to explore the possibility of a hardware neural network implementation using a spin switch (SS) as its basic building block. SS is a recently proposed device based on established technology with a transistor-like gain and input-output isolation. This allows neural networks to be constructed with purely passive interconnections without intervening clocks or amplifiers. The weights for the neural network are conveniently adjusted through analog voltagesmore » that can be stored in a non-volatile manner in an underlying CMOS layer using a floating gate low dropout voltage regulator. The operation of a multi-layer SS neural network designed for character recognition is demonstrated using a standard simulation model based on coupled Landau-Lifshitz-Gilbert equations, one for each magnet in the network.« less

  15. USING METEOROLOGICAL MODEL OUTPUT AS A SURROGATE FOR ON-SITE OBSERVATIONS TO PREDICT DEPOSITION VELOCITY

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration's Multi-Layer Model (NOAA-MLM) is used by several operational dry deposition networks for estimating the deposition velocity of O , SO , HNO , and particles. The NOAA-MLM requires hourly values of meteorological variables and...

  16. Combining multi-layered bitmap files using network specific hardware

    DOEpatents

    DuBois, David H [Los Alamos, NM; DuBois, Andrew J [Santa Fe, NM; Davenport, Carolyn Connor [Los Alamos, NM

    2012-02-28

    Images and video can be produced by compositing or alpha blending a group of image layers or video layers. Increasing resolution or the number of layers results in increased computational demands. As such, the available computational resources limit the images and videos that can be produced. A computational architecture in which the image layers are packetized and streamed through processors can be easily scaled so to handle many image layers and high resolutions. The image layers are packetized to produce packet streams. The packets in the streams are received, placed in queues, and processed. For alpha blending, ingress queues receive the packetized image layers which are then z sorted and sent to egress queues. The egress queue packets are alpha blended to produce an output image or video.

  17. Integrated performance and reliability specification for digital avionics systems

    NASA Technical Reports Server (NTRS)

    Brehm, Eric W.; Goettge, Robert T.

    1995-01-01

    This paper describes an automated tool for performance and reliability assessment of digital avionics systems, called the Automated Design Tool Set (ADTS). ADTS is based on an integrated approach to design assessment that unifies traditional performance and reliability views of system designs, and that addresses interdependencies between performance and reliability behavior via exchange of parameters and result between mathematical models of each type. A multi-layer tool set architecture has been developed for ADTS that separates the concerns of system specification, model generation, and model solution. Performance and reliability models are generated automatically as a function of candidate system designs, and model results are expressed within the system specification. The layered approach helps deal with the inherent complexity of the design assessment process, and preserves long-term flexibility to accommodate a wide range of models and solution techniques within the tool set structure. ADTS research and development to date has focused on development of a language for specification of system designs as a basis for performance and reliability evaluation. A model generation and solution framework has also been developed for ADTS, that will ultimately encompass an integrated set of analytic and simulated based techniques for performance, reliability, and combined design assessment.

  18. Artificial neural networks in Space Station optimal attitude control

    NASA Astrophysics Data System (ADS)

    Kumar, Renjith R.; Seywald, Hans; Deshpande, Samir M.; Rahman, Zia

    1995-01-01

    Innovative techniques of using "artificial neural networks" (ANN) for improving the performance of the pitch axis attitude control system of Space Station Freedom using control moment gyros (CMGs) are investigated. The first technique uses a feed-forward ANN with multi-layer perceptrons to obtain an on-line controller which improves the performance of the control system via a model following approach. The second technique uses a single layer feed-forward ANN with a modified back propagation scheme to estimate the internal plant variations and the external disturbances separately. These estimates are then used to solve two differential Riccati equations to obtain time varying gains which improve the control system performance in successive orbits.

  19. Interdependency enriches the spatial reciprocity in prisoner's dilemma game on weighted networks

    NASA Astrophysics Data System (ADS)

    Meng, Xiaokun; Sun, Shiwen; Li, Xiaoxuan; Wang, Li; Xia, Chengyi; Sun, Junqing

    2016-01-01

    To model the evolution of cooperation under the realistic scenarios, we propose an interdependent network-based game model which simultaneously considers the difference of individual roles in the spatial prisoner's dilemma game. In our model, the system is composed of two lattices on which an agent designated as a cooperator or defector will be allocated, meanwhile each agent will be endowed as a specific weight taking from three typical distributions on one lattice (i.e., weighted lattice), and set to be 1.0 on the other one (i.e., un-weighted or standard lattice). In addition, the interdependency will be built through the utility coupling between point-to-point partners. Extensive simulations indicate that the cooperation will be continuously elevated for the weighted lattice as the utility coupling strength (α) increases; while the cooperation will take on a nontrivial evolution on the standard lattice as α varies, and will be still greatly promoted when compared to the case of α = 0. At the same time, the full T - K phase diagrams are also explored to illustrate the evolutionary behaviors, and it is powerfully shown that the interdependency drives the defectors to survive within the narrower range, but individual weighting of utility will further broaden the coexistence space of cooperators and defectors, which renders the nontrivial evolution of cooperation in our model. Altogether, the current consequences about the evolution of cooperation will be helpful for us to provide the insights into the prevalent cooperation phenomenon within many real-world systems.

  20. Continuum vs. spring network models of airway-parenchymal interdependence

    PubMed Central

    Ma, Baoshun

    2012-01-01

    The outward tethering forces exerted by the lung parenchyma on the airways embedded within it are potent modulators of the ability of the airway smooth muscle to shorten. Much of our understanding of these tethering forces is based on treating the parenchyma as an elastic continuum; yet, on a small enough scale, the lung parenchyma in two dimensions would seem to be more appropriately described as a discrete spring network. We therefore compared how the forces and displacements in the parenchyma surrounding a contracting airway are predicted to differ depending on whether the parenchyma is modeled as an elastic continuum or as a spring network. When the springs were arranged hexagonally to represent alveolar walls, the predicted parenchymal stresses and displacements propagated substantially farther away from the airway than when the springs were arranged in a triangular pattern or when the parenchyma was modeled as a continuum. Thus, to the extent that the parenchyma in vivo behaves as a hexagonal spring network, our results suggest that the range of interdependence forces due to airway contraction may have a greater influence than was previously thought. PMID:22500006

  1. APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musson, John C.; Seaton, Chad; Spata, Mike F.

    2012-11-01

    Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementationmore » of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.« less

  2. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taft, Jeffrey D.; Becker-Dippmann, Angela S.

    2015-08-01

    This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system formore » purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.« less

  3. Evolution of Bow-Tie Architectures in Biology

    PubMed Central

    Friedlander, Tamar; Mayo, Avraham E.; Tlusty, Tsvi; Alon, Uri

    2015-01-01

    Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal) determines the size of the narrowest part of the network—that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved. PMID:25798588

  4. Heterogeneous flow in multi-layer joint networks and its influence on incipient karst generation

    NASA Astrophysics Data System (ADS)

    Wang, X.; Jourde, H.

    2017-12-01

    Various dissolution types (e.g. pipe, stripe and sheet karstic features) have been observed in fractured layered limestones. Yet, due to a large range of structural and hydraulic parameters play a role in the karstification process, the dissolution mechanism, occurring either along fractures or bedding planes, is difficult to quantify. In this study, we use numerical models to investigate the influence of these parameters on the generation of different types of incipient karst. Specifically, we focus on two parameters: the fracture intensity contrast between adjacent layers and the aperture ratio between bedding planes and joints (abed/ajoint). The DFN models were generated using a pseudo-genetic code that considers the stress shadow zone. Flow simulations were performed using a combined finite-volume finite-element simulator under practical boundary conditions. The flow channeling within the fracture networks was characterized by applying a multi-fractal technique. The rock block equivalent permeability (keff) was also calculated to quantify the change in bulk hydraulic properties when changing the selected structural and hydraulic parameters. The flow simulation results show that the abed/ajoint ratio has a first-order control on the heterogeneous distribution of flow in the multi-layer system and on the magnitude of equivalent permeability. When abed/ajoint < 0.1, flow in the system is highly localized and controlled by joints, and the keff is low; while, when abed/ajoint > 0.1, the bedding plane has more control and flow becomes more pervasive and uniform, and the keff is accordingly high. A simple model, accounting for the calculation of the heterogeneous distributions of Damköhler number associated with different aperture ratios, is proposed to predict what type of incipient karst tends to develop under the studied flow conditions.

  5. On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks

    PubMed Central

    Li, Qiao-Qin; Gong, Haigang; Liu, Ming; Yang, Mei; Zheng, Jun

    2011-01-01

    This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures. PMID:22163809

  6. Approximation methods for the stability analysis of complete synchronization on duplex networks

    NASA Astrophysics Data System (ADS)

    Han, Wenchen; Yang, Junzhong

    2018-01-01

    Recently, the synchronization on multi-layer networks has drawn a lot of attention. In this work, we study the stability of the complete synchronization on duplex networks. We investigate effects of coupling function on the complete synchronization on duplex networks. We propose two approximation methods to deal with the stability of the complete synchronization on duplex networks. In the first method, we introduce a modified master stability function and, in the second method, we only take into consideration the contributions of a few most unstable transverse modes to the stability of the complete synchronization. We find that both methods work well for predicting the stability of the complete synchronization for small networks. For large networks, the second method still works pretty well.

  7. Artificial neural networks and the study of the psychoactivity of cannabinoid compounds.

    PubMed

    Honório, Káthia M; de Lima, Emmanuela F; Quiles, Marcos G; Romero, Roseli A F; Molfetta, Fábio A; da Silva, Albérico B F

    2010-06-01

    Cannabinoid compounds have widely been employed because of its medicinal and psychotropic properties. These compounds are isolated from Cannabis sativa (or marijuana) and are used in several medical treatments, such as glaucoma, nausea associated to chemotherapy, pain and many other situations. More recently, its use as appetite stimulant has been indicated in patients with cachexia or AIDS. In this work, the influence of several molecular descriptors on the psychoactivity of 50 cannabinoid compounds is analyzed aiming one obtain a model able to predict the psychoactivity of new cannabinoids. For this purpose, initially, the selection of descriptors was carried out using the Fisher's weight, the correlation matrix among the calculated variables and principal component analysis. From these analyses, the following descriptors have been considered more relevant: E(LUMO) (energy of the lowest unoccupied molecular orbital), Log P (logarithm of the partition coefficient), VC4 (volume of the substituent at the C4 position) and LP1 (Lovasz-Pelikan index, a molecular branching index). To follow, two neural network models were used to construct a more adequate model for classifying new cannabinoid compounds. The first model employed was multi-layer perceptrons, with algorithm back-propagation, and the second model used was the Kohonen network. The results obtained from both networks were compared and showed that both techniques presented a high percentage of correctness to discriminate psychoactive and psychoinactive compounds. However, the Kohonen network was superior to multi-layer perceptrons.

  8. Know the Network, Knit the Network: Applying SNA to N2C2 Maturity Model Experiments

    DTIC Science & Technology

    2010-06-01

    Networks (COINS) 2009. Procedia - Social and Behavioral Sciences (2009). Snijders, Tom A.B., Christian E. G. Steglich and Michael Schweinberger...8217 patterning that create social structures. As an interdisciplinary behavioural science specialty, SNA defends that social actors are interdependent...production of social science data involve a process of interpretation. To carry out such interpretation robustly it is understood that it is imperative to

  9. Architectural and engineering issues for building an optical Internet

    NASA Astrophysics Data System (ADS)

    St. Arnaud, Bill

    1998-10-01

    Recent developments in high density Wave Division Multiplexing fiber systems allows for the deployment of a dedicated optical Internet network for large volume backbone pipes that does not require an underlying multi-service SONET/SDH and ATM transport protocol. Some intrinsic characteristics of Internet traffic such as its self similar nature, server bound congestion, routing and data asymmetry allow for highly optimized traffic engineered networks using individual wavelengths. By transmitting GigaBit Ethernet or SONET/SDH frames natively over WDM wavelengths that directly interconnect high performance routers the original concept of the Internet as an intrinsically survivable datagram network is possible. Traffic engineering, restoral, protection and bandwidth management of the network must now be carried out at the IP layer and so new routing or switching protocols such as MPLS that allow for uni- directional paths with fast restoral and protection at the IP layer become essential for a reliable production network. The deployment of high density WDM municipal and campus networks also gives carriers and ISPs the flexibility to offer customers as integrated and seamless set of optical Internet services.

  10. Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.

    PubMed

    Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan

    2016-01-01

    Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.

  11. Energy Efficient, Cross-Layer Enabled, Dynamic Aggregation Networks for Next Generation Internet

    NASA Astrophysics Data System (ADS)

    Wang, Michael S.

    Today, the Internet traffic is growing at a near exponential rate, driven predominately by data center-based applications and Internet-of-Things services. This fast-paced growth in Internet traffic calls into question the ability of the existing optical network infrastructure to support this continued growth. The overall optical networking equipment efficiency has not been able to keep up with the traffic growth, creating a energy gap that makes energy and cost expenditures scale linearly with the traffic growth. The implication of this energy gap is that it is infeasible to continue using existing networking equipment to meet the growing bandwidth demand. A redesign of the optical networking platform is needed. The focus of this dissertation is on the design and implementation of energy efficient, cross-layer enabled, dynamic optical networking platforms, which is a promising approach to address the exponentially growing Internet bandwidth demand. Chapter 1 explains the motivation for this work by detailing the huge Internet traffic growth and the unsustainable energy growth of today's networking equipment. Chapter 2 describes the challenges and objectives of enabling agile, dynamic optical networking platforms and the vision of the Center for Integrated Access Networks (CIAN) to realize these objectives; the research objectives of this dissertation and the large body of related work in this field is also summarized. Chapter 3 details the design and implementation of dynamic networking platforms that support wavelength switching granularity. The main contribution of this work involves the experimental validation of deep cross-layer communication across the optical performance monitoring (OPM), data, and control planes. The first experiment shows QoS-aware video streaming over a metro-scale test-bed through optical power monitoring of the transmission wavelength and cross-layer feedback control of the power level. The second experiment extends the performance monitoring capabilities to include real-time monitoring of OSNR and polarization mode dispersion (PMD) to enable dynamic wavelength switching and selective restoration. Chapter 4 explains the author?s contributions in designing dynamic networking at the sub-wavelength switching granularity, which can provide greater network efficiency due to its finer granularity. To support dynamic switching, regeneration, adding/dropping, and control decisions on each individual packet, the cross-layer enabled node architecture is enhanced with a FPGA controller that brings much more precise timing and control to the switching, OPM, and control planes. Furthermore, QoS-aware packet protection and dynamic switching, dropping, and regeneration functionalities were experimentally demonstrated in a multi-node network. Chapter 5 describes a technique to perform optical grooming, a process of optically combining multiple incoming data streams into a single data stream, which can simultaneously achieve greater bandwidth utilization and increased spectral efficiency. In addition, an experimental demonstration highlighting a fully functioning multi-node, agile optical networking platform is detailed. Finally, a summary and discussion of future work is provided in Chapter 6. The future of the Internet is very exciting, filled with not-yet-invented applications and services driven by cloud computing and Internet-of-Things. The author is cautiously optimistic that agile, dynamically reconfigurable optical networking is the solution to realizing this future.

  12. The optimization of force inputs for active structural acoustic control using a neural network

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Lester, H. C.; Silcox, R. J.

    1992-01-01

    This paper investigates the use of a neural network to determine which force actuators, of a multi-actuator array, are best activated in order to achieve structural-acoustic control. The concept is demonstrated using a cylinder/cavity model on which the control forces, produced by piezoelectric actuators, are applied with the objective of reducing the interior noise. A two-layer neural network is employed and the back propagation solution is compared with the results calculated by a conventional, least-squares optimization analysis. The ability of the neural network to accurately and efficiently control actuator activation for interior noise reduction is demonstrated.

  13. Telecommunications and Information Services in Brazil.

    ERIC Educational Resources Information Center

    Tarapanoff, Kira; Alvares, Lillian

    1995-01-01

    Discusses the interdependence of telecommunications and information sciences in Brazil. Highlights include new technologies and telecommunications: satellites, fiber optic cables, data communication networks, information superhighways, and cooperative projects; and information services development. (AEF)

  14. Conformal bi-layered perovskite/spinel coating on a metallic wire network for solid oxide fuel cells via an electrodeposition-based route

    NASA Astrophysics Data System (ADS)

    Park, Beom-Kyeong; Song, Rak-Hyun; Lee, Seung-Bok; Lim, Tak-Hyoung; Park, Seok-Joo; Jung, WooChul; Lee, Jong-Won

    2017-04-01

    Solid oxide fuel cells (SOFCs) require low-cost metallic components for current collection from electrodes as well as electrical connection between unit cells; however, the degradation of their electrical properties and surface stability associated with high-temperature oxidation is of great concern. It is thus important to develop protective conducting oxide coatings capable of mitigating the degradation of metallic components under SOFC operating conditions. Here, we report a conformal bi-layered coating composed of perovskite and spinel oxides on a metallic wire network fabricated by a facile electrodeposition-based route. A highly dense, crack-free, and adhesive bi-layered LaMnO3/Co3O4 coating of ∼1.2 μm thickness is conformally formed on the surfaces of wires with ∼100 μm diameter. We demonstrate that the bi-layered LaMnO3/Co3O4 coating plays a key role in improving the power density and durability of a tubular SOFC by stabilizing the surface of the metallic wire network used as a cathode current collector. The electrodeposition-based technique presented in this study offers a low-cost and scalable process to fabricate conformal multi-layered coatings on various metallic structures.

  15. Minority healthcare providers experience challenges, trust, and interdependency in a multicultural team.

    PubMed

    Egede-Nissen, Veslemøy; Sellevold, Gerd Sylvi; Jakobsen, Rita; Sørlie, Venke

    2018-01-01

    The nursing community in the Nordic countries has become multicultural because of migration from European, Asian and African countries. In Norway, minority health care providers are recruited in to nursing homes which have become multicultural workplaces. They overcome challenges such as language and strangeness but as a group they are vulnerable and exposed to many challenges. The aim is to explore minority healthcare providers, trained nurses and nurses' assistants, and their experiences of challenges when working in a multicultural team in a Norwegian context. The study has a qualitative design, using narrative interviews, and a phenomenological-hermeneutic analysis method to explore the experiences of challenges in dementia care. Ethical considerations: The study was approved by The Norwegian Regional Ethics Committee, and the Norwegian Social Science Data Services. Participation and research context: Five informants from different African, Asian and European countries participated in the study. The study was conducted in a Norwegian nursing home, in a dementia care unit. The results show that minority health care providers experience and find meaning in being a member of a team, they overcome challenges, characterized by the interdependency in the team, appreciating new cultural experiences and striving to belong. They must overcome challenges such as language problems and the feeling of strangeness. The findings are discussed considering Løgstrup's ethic of proximity, the ethical demand of trust, and interdependency. The ethical demand is an answer to a common, transparent, unspoken agreement to be met, seen, and understood. The study shows that cooperation in a multi-professional and multi-ethnic team is important, and secures the quality of care to persons with dementia. Further research is necessary to examine the relation between a multi-ethnic staff and the patients experiencing dementia. Further research is necessary to examine ethnicity, the relation between a multi-ethnic staff, the patients experiencing dementia and next of kin.

  16. Leadership of Self-Organized Networks Lessons from the War on Terror

    ERIC Educational Resources Information Center

    Wheatley, Margaret J.

    2007-01-01

    In the past few decades, scientists have developed a rich understanding of how living systems organize and function. They describe life's capacity to self-organize as networks of interdependent relationships, to learn and adapt, and to grow more capable and orderly over time. These dynamics and descriptions stand in stark contrast to how we humans…

  17. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.

    PubMed

    Wachinger, Christian; Reuter, Martin; Klein, Tassilo

    2018-04-15

    We introduce DeepNAT, a 3D Deep convolutional neural network for the automatic segmentation of NeuroAnaTomy in T1-weighted magnetic resonance images. DeepNAT is an end-to-end learning-based approach to brain segmentation that jointly learns an abstract feature representation and a multi-class classification. We propose a 3D patch-based approach, where we do not only predict the center voxel of the patch but also neighbors, which is formulated as multi-task learning. To address a class imbalance problem, we arrange two networks hierarchically, where the first one separates foreground from background, and the second one identifies 25 brain structures on the foreground. Since patches lack spatial context, we augment them with coordinates. To this end, we introduce a novel intrinsic parameterization of the brain volume, formed by eigenfunctions of the Laplace-Beltrami operator. As network architecture, we use three convolutional layers with pooling, batch normalization, and non-linearities, followed by fully connected layers with dropout. The final segmentation is inferred from the probabilistic output of the network with a 3D fully connected conditional random field, which ensures label agreement between close voxels. The roughly 2.7million parameters in the network are learned with stochastic gradient descent. Our results show that DeepNAT compares favorably to state-of-the-art methods. Finally, the purely learning-based method may have a high potential for the adaptation to young, old, or diseased brains by fine-tuning the pre-trained network with a small training sample on the target application, where the availability of larger datasets with manual annotations may boost the overall segmentation accuracy in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Human fatigue expression recognition through image-based dynamic multi-information and bimodal deep learning

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Wang, Zengcai; Wang, Xiaojin; Qi, Yazhou; Liu, Qing; Zhang, Guoxin

    2016-09-01

    Human fatigue is an important cause of traffic accidents. To improve the safety of transportation, we propose, in this paper, a framework for fatigue expression recognition using image-based facial dynamic multi-information and a bimodal deep neural network. First, the landmark of face region and the texture of eye region, which complement each other in fatigue expression recognition, are extracted from facial image sequences captured by a single camera. Then, two stacked autoencoder neural networks are trained for landmark and texture, respectively. Finally, the two trained neural networks are combined by learning a joint layer on top of them to construct a bimodal deep neural network. The model can be used to extract a unified representation that fuses landmark and texture modalities together and classify fatigue expressions accurately. The proposed system is tested on a human fatigue dataset obtained from an actual driving environment. The experimental results demonstrate that the proposed method performs stably and robustly, and that the average accuracy achieves 96.2%.

  19. The role of self-construal in predicting self-presentational motives for online social network use in the UK and Japan.

    PubMed

    Long, Karen; Zhang, Xiao

    2014-07-01

    Self-presentational motives underlying online social network (OSN) use were explored in samples of British and Japanese users. Self-expression, maintaining privacy, and attention seeking were strong motives in both samples; impression management and modesty were less strongly endorsed. Measures of independent and interdependent self-construal, as well as narcissism and modesty, were investigated as potential predictors of these motivations. Independent self-construal emerged as the most important predictor across both samples, with less independent participants showing more concern with image management and modesty. Participants with more interdependent self-construals were more concerned about maintaining privacy. There were some differences in the patterns of prediction between the samples, but overall self-construal measures contributed to the explanation of the majority of the motivations, whereas narcissistic or modest personality variables did not.

  20. Evaluating the performance of free-formed surface parts using an analytic network process

    NASA Astrophysics Data System (ADS)

    Qian, Xueming; Ma, Yanqiao; Liang, Dezhi

    2018-03-01

    To successfully design parts with a free-formed surface, the critical issue of how to evaluate and select a favourable evaluation strategy before design is raised. The evaluation of free-formed surface parts is a multiple criteria decision-making (MCDM) problem that requires the consideration of a large number of interdependent factors. The analytic network process (ANP) is a relatively new MCDM method that can systematically deal with all kinds of dependences. In this paper, the factors, which come from the life-cycle and influence the design of free-formed surface parts, are proposed. After analysing the interdependence among these factors, a Hybrid ANP (HANP) structure for evaluating the part’s curved surface is constructed. Then, a HANP evaluation of an impeller is presented to illustrate the application of the proposed method.

  1. Simulating economic effects of disruptions in the telecommunications infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Roger Gary; Barton, Dianne Catherine; Reinert, Rhonda K.

    2004-01-01

    CommAspen is a new agent-based model for simulating the interdependent effects of market decisions and disruptions in the telecommunications infrastructure on other critical infrastructures in the U.S. economy such as banking and finance, and electric power. CommAspen extends and modifies the capabilities of Aspen-EE, an agent-based model previously developed by Sandia National Laboratories to analyze the interdependencies between the electric power system and other critical infrastructures. CommAspen has been tested on a series of scenarios in which the communications network has been disrupted, due to congestion and outages. Analysis of the scenario results indicates that communications networks simulated by themore » model behave as their counterparts do in the real world. Results also show that the model could be used to analyze the economic impact of communications congestion and outages.« less

  2. Multi-objective evolutionary optimization for constructing neural networks for virtual reality visual data mining: application to geophysical prospecting.

    PubMed

    Valdés, Julio J; Barton, Alan J

    2007-05-01

    A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.

  3. Flat Surface Damage Detection System (FSDDS)

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina

    2013-01-01

    The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.

  4. Modelization of three-layered polymer coated steel-strip ironing process using a neural network

    NASA Astrophysics Data System (ADS)

    Sellés, M. A.; Schmid, S. R.; Sánchez-Caballero, S.; Seguí, V. J.; Reig, M. J.; Pla, R.

    2012-04-01

    An alternative to the traditional can manufacturing process is to use plastic laminated rolled steels as base stocks. This material consist of pre-heated steel coils that are sandwiched between one or two sheets of polymer. The heated sheets are then immediately quenched, which yields a strong bond between the layers. Such polymer-coated steels were investigated by Jaworski [1,2] and Sellés [3], and found to be suitable for ironing with carefully controlled conditions. A novel multi-layer polymer coated steel has been developed for container applications. This material presents an interesting extension to previous research on polymer laminated steel in ironing, and offers several advantages over the previous material (Sellés [3]). This document shows a modelization for the ironing process (the most crucial step in can manufacturing) done by using a neural network

  5. An ANN-Based Smart Tomographic Reconstructor in a Dynamic Environment

    PubMed Central

    de Cos Juez, Francisco J.; Lasheras, Fernando Sánchez; Roqueñí, Nieves; Osborn, James

    2012-01-01

    In astronomy, the light emitted by an object travels through the vacuum of space and then the turbulent atmosphere before arriving at a ground based telescope. By passing through the atmosphere a series of turbulent layers modify the light's wave-front in such a way that Adaptive Optics reconstruction techniques are needed to improve the image quality. A novel reconstruction technique based in Artificial Neural Networks (ANN) is proposed. The network is designed to use the local tilts of the wave-front measured by a Shack Hartmann Wave-front Sensor (SHWFS) as inputs and estimate the turbulence in terms of Zernike coefficients. The ANN used is a Multi-Layer Perceptron (MLP) trained with simulated data with one turbulent layer changing in altitude. The reconstructor was tested using three different atmospheric profiles and compared with two existing reconstruction techniques: Least Squares type Matrix Vector Multiplication (LS) and Learn and Apply (L + A). PMID:23012524

  6. The KUPNetViz: a biological network viewer for multiple -omics datasets in kidney diseases.

    PubMed

    Moulos, Panagiotis; Klein, Julie; Jupp, Simon; Stevens, Robert; Bascands, Jean-Loup; Schanstra, Joost P

    2013-07-24

    Constant technological advances have allowed scientists in biology to migrate from conventional single-omics to multi-omics experimental approaches, challenging bioinformatics to bridge this multi-tiered information. Ongoing research in renal biology is no exception. The results of large-scale and/or high throughput experiments, presenting a wealth of information on kidney disease are scattered across the web. To tackle this problem, we recently presented the KUPKB, a multi-omics data repository for renal diseases. In this article, we describe KUPNetViz, a biological graph exploration tool allowing the exploration of KUPKB data through the visualization of biomolecule interactions. KUPNetViz enables the integration of multi-layered experimental data over different species, renal locations and renal diseases to protein-protein interaction networks and allows association with biological functions, biochemical pathways and other functional elements such as miRNAs. KUPNetViz focuses on the simplicity of its usage and the clarity of resulting networks by reducing and/or automating advanced functionalities present in other biological network visualization packages. In addition, it allows the extrapolation of biomolecule interactions across different species, leading to the formulations of new plausible hypotheses, adequate experiment design and to the suggestion of novel biological mechanisms. We demonstrate the value of KUPNetViz by two usage examples: the integration of calreticulin as a key player in a larger interaction network in renal graft rejection and the novel observation of the strong association of interleukin-6 with polycystic kidney disease. The KUPNetViz is an interactive and flexible biological network visualization and exploration tool. It provides renal biologists with biological network snapshots of the complex integrated data of the KUPKB allowing the formulation of new hypotheses in a user friendly manner.

  7. The KUPNetViz: a biological network viewer for multiple -omics datasets in kidney diseases

    PubMed Central

    2013-01-01

    Background Constant technological advances have allowed scientists in biology to migrate from conventional single-omics to multi-omics experimental approaches, challenging bioinformatics to bridge this multi-tiered information. Ongoing research in renal biology is no exception. The results of large-scale and/or high throughput experiments, presenting a wealth of information on kidney disease are scattered across the web. To tackle this problem, we recently presented the KUPKB, a multi-omics data repository for renal diseases. Results In this article, we describe KUPNetViz, a biological graph exploration tool allowing the exploration of KUPKB data through the visualization of biomolecule interactions. KUPNetViz enables the integration of multi-layered experimental data over different species, renal locations and renal diseases to protein-protein interaction networks and allows association with biological functions, biochemical pathways and other functional elements such as miRNAs. KUPNetViz focuses on the simplicity of its usage and the clarity of resulting networks by reducing and/or automating advanced functionalities present in other biological network visualization packages. In addition, it allows the extrapolation of biomolecule interactions across different species, leading to the formulations of new plausible hypotheses, adequate experiment design and to the suggestion of novel biological mechanisms. We demonstrate the value of KUPNetViz by two usage examples: the integration of calreticulin as a key player in a larger interaction network in renal graft rejection and the novel observation of the strong association of interleukin-6 with polycystic kidney disease. Conclusions The KUPNetViz is an interactive and flexible biological network visualization and exploration tool. It provides renal biologists with biological network snapshots of the complex integrated data of the KUPKB allowing the formulation of new hypotheses in a user friendly manner. PMID:23883183

  8. Trends of the World Input and Output Network of Global Trade

    PubMed Central

    del Río-Chanona, Rita María; Grujić, Jelena; Jeldtoft Jensen, Henrik

    2017-01-01

    The international trade naturally maps onto a complex networks. Theoretical analysis of this network gives valuable insights about the global economic system. Although different economic data sets have been investigated from the network perspective, little attention has been paid to its dynamical behaviour. Here we take the World Input Output Data set, which has values of the annual transactions between 40 different countries of 35 different sectors for the period of 15 years, and infer the time interdependence between countries and sectors. As a measure of interdependence we use correlations between various time series of the network characteristics. First we form 15 primary networks for each year of the data we have, where nodes are countries and links are annual exports from one country to the other. Then we calculate the strengths (weighted degree) and PageRank of each country in each of the 15 networks for 15 different years. This leads to sets of time series and by calculating the correlations between these we form a secondary network where the links are the positive correlations between different countries or sectors. Furthermore, we also form a secondary network where the links are negative correlations in order to study the competition between countries and sectors. By analysing this secondary network we obtain a clearer picture of the mutual influences between countries. As one might expect, we find that political and geographical circumstances play an important role. However, the derived correlation network reveals surprising aspects which are hidden in the primary network. Sometimes countries which belong to the same community in the original network are found to be competitors in the secondary networks. E.g. Spain and Portugal are always in the same trade flow community, nevertheless secondary network analysis reveal that they exhibit contrary time evolution. PMID:28125656

  9. Trends of the World Input and Output Network of Global Trade.

    PubMed

    Del Río-Chanona, Rita María; Grujić, Jelena; Jeldtoft Jensen, Henrik

    2017-01-01

    The international trade naturally maps onto a complex networks. Theoretical analysis of this network gives valuable insights about the global economic system. Although different economic data sets have been investigated from the network perspective, little attention has been paid to its dynamical behaviour. Here we take the World Input Output Data set, which has values of the annual transactions between 40 different countries of 35 different sectors for the period of 15 years, and infer the time interdependence between countries and sectors. As a measure of interdependence we use correlations between various time series of the network characteristics. First we form 15 primary networks for each year of the data we have, where nodes are countries and links are annual exports from one country to the other. Then we calculate the strengths (weighted degree) and PageRank of each country in each of the 15 networks for 15 different years. This leads to sets of time series and by calculating the correlations between these we form a secondary network where the links are the positive correlations between different countries or sectors. Furthermore, we also form a secondary network where the links are negative correlations in order to study the competition between countries and sectors. By analysing this secondary network we obtain a clearer picture of the mutual influences between countries. As one might expect, we find that political and geographical circumstances play an important role. However, the derived correlation network reveals surprising aspects which are hidden in the primary network. Sometimes countries which belong to the same community in the original network are found to be competitors in the secondary networks. E.g. Spain and Portugal are always in the same trade flow community, nevertheless secondary network analysis reveal that they exhibit contrary time evolution.

  10. An Analytic Network Process approach for the environmental aspect selection problem — A case study for a hand blender

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bereketli Zafeirakopoulos, Ilke, E-mail: ibereketli@gsu.edu.tr; Erol Genevois, Mujde, E-mail: merol@gsu.edu.tr

    Life Cycle Assessment is a tool to assess, in a systematic way, the environmental aspects and its potential environmental impacts and resources used throughout a product's life cycle. It is widely accepted and considered as one of the most powerful tools to support decision-making processes used in ecodesign and sustainable production in order to learn about the most problematic parts and life cycle phases of a product and to have a projection for future improvements. However, since Life Cycle Assessment is a cost and time intensive method, companies do not intend to carry out a full version of it, exceptmore » for large corporate ones. Especially for small and medium sized enterprises, which do not have enough budget for and knowledge on sustainable production and ecodesign approaches, focusing only on the most important possible environmental aspect is unavoidable. In this direction, finding the right environmental aspect to work on is crucial for the companies. In this study, a multi-criteria decision-making methodology, Analytic Network Process is proposed to select the most relevant environmental aspect. The proposed methodology aims at providing a simplified environmental assessment to producers. It is applied for a hand blender, which is a member of the Electrical and Electronic Equipment family. The decision criteria for the environmental aspects and relations of dependence are defined. The evaluation is made by the Analytic Network Process in order to create a realistic approach to inter-dependencies among the criteria. The results are computed via the Super Decisions software. Finally, it is observed that the procedure is completed in less time, with less data, with less cost and in a less subjective way than conventional approaches. - Highlights: • We present a simplified environmental assessment methodology to support LCA. • ANP is proposed to select the most relevant environmental aspect. • ANP deals well with the interdependencies between aspects and impacts. • The methodology is less subjective, less complicated, and less time–money consuming. • The proposed methodology is suitable for use by SMEs.« less

  11. Demonstration and field trial of a resilient hybrid NG-PON test-bed

    NASA Astrophysics Data System (ADS)

    Prat, Josep; Polo, Victor; Schrenk, Bernhard; Lazaro, Jose A.; Bonada, Francesc; Lopez, Eduardo T.; Omella, Mireia; Saliou, Fabienne; Le, Quang T.; Chanclou, Philippe; Leino, Dmitri; Soila, Risto; Spirou, Spiros; Costa, Liliana; Teixeira, Antonio; Tosi-Beleffi, Giorgio M.; Klonidis, Dimitrios; Tomkos, Ioannis

    2014-10-01

    A multi-layer next generation PON prototype has been built and tested, to show the feasibility of extended hybrid DWDM/TDM-XGPON FTTH networks with resilient optically-integrated ring-trees architecture, supporting broadband multimedia services. It constitutes a transparent common platform for the coexistence of multiple operators sharing the optical infrastructure of the central metro ring, passively combining the access and the metropolitan network sections. It features 32 wavelength connections at 10 Gbps, up to 1000 users distributed in 16 independent resilient sub-PONs over 100 km. This paper summarizes the network operation, demonstration and field trial results.

  12. Development and Implementation of the X.25 Protocol for the Universal Network Interface Device (UNID) II. Volume 1.

    DTIC Science & Technology

    1985-12-01

    development of an improved Universal Network Interface Device (UNID II). The UNID II’s architecture was based on a preliminary design project at...interface device, performing all functions required ,: the multi-ring LAN. The device depicted by RADC’s studies would connect a highly variable group of host...used the ISO Open Systems Ilterconnection (OSI) seven layer model as the basic structure for data flow and program development . In 1982 Cuomo

  13. Investigation of Large Scale Cortical Models on Clustered Multi-Core Processors

    DTIC Science & Technology

    2013-02-01

    with the bias node ( gray ) denoted as ww and the weights associated with the remaining first layer nodes (black) denoted as W. In forming the overall...Implementation of RBF network on GPU Platform 3.5.1 The Cholesky decomposition algorithm We need to invert the matrix multiplication GTG to

  14. Towards deep learning with segregated dendrites

    PubMed Central

    Guerguiev, Jordan; Lillicrap, Timothy P

    2017-01-01

    Deep learning has led to significant advances in artificial intelligence, in part, by adopting strategies motivated by neurophysiology. However, it is unclear whether deep learning could occur in the real brain. Here, we show that a deep learning algorithm that utilizes multi-compartment neurons might help us to understand how the neocortex optimizes cost functions. Like neocortical pyramidal neurons, neurons in our model receive sensory information and higher-order feedback in electrotonically segregated compartments. Thanks to this segregation, neurons in different layers of the network can coordinate synaptic weight updates. As a result, the network learns to categorize images better than a single layer network. Furthermore, we show that our algorithm takes advantage of multilayer architectures to identify useful higher-order representations—the hallmark of deep learning. This work demonstrates that deep learning can be achieved using segregated dendritic compartments, which may help to explain the morphology of neocortical pyramidal neurons. PMID:29205151

  15. Towards deep learning with segregated dendrites.

    PubMed

    Guerguiev, Jordan; Lillicrap, Timothy P; Richards, Blake A

    2017-12-05

    Deep learning has led to significant advances in artificial intelligence, in part, by adopting strategies motivated by neurophysiology. However, it is unclear whether deep learning could occur in the real brain. Here, we show that a deep learning algorithm that utilizes multi-compartment neurons might help us to understand how the neocortex optimizes cost functions. Like neocortical pyramidal neurons, neurons in our model receive sensory information and higher-order feedback in electrotonically segregated compartments. Thanks to this segregation, neurons in different layers of the network can coordinate synaptic weight updates. As a result, the network learns to categorize images better than a single layer network. Furthermore, we show that our algorithm takes advantage of multilayer architectures to identify useful higher-order representations-the hallmark of deep learning. This work demonstrates that deep learning can be achieved using segregated dendritic compartments, which may help to explain the morphology of neocortical pyramidal neurons.

  16. Millimetre-Wave Backhaul for 5G Networks: Challenges and Solutions.

    PubMed

    Feng, Wei; Li, Yong; Jin, Depeng; Su, Li; Chen, Sheng

    2016-06-16

    The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design.

  17. Multi-field coupled sensing network for health monitoring of composite bolted joint

    NASA Astrophysics Data System (ADS)

    Wang, Yishou; Qing, Xinlin; Dong, Liang; Banerjee, Sourav

    2016-04-01

    Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and excellent designability. As key components of large composite structures, joints play important roles to ensure the integrity of the composite structures. However, it is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure state of composite joints. This paper proposes a multi-field coupled sensing network for health monitoring of composite bolted joints. Major work of this paper includes: 1) The concept of multifunctional sensor layer integrated with eddy current sensors, Rogowski coil and arrayed piezoelectric sensors; 2) Development of the process for integrating the eddy current sensor foil, Rogowski coil and piezoelectric sensor array in multifunctional sensor layer; 3) A new concept of smart composite joint with multifunctional sensing capability. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the study.

  18. A Network of Networks Perspective on Global Trade.

    PubMed

    Maluck, Julian; Donner, Reik V

    2015-01-01

    Mutually intertwined supply chains in contemporary economy result in a complex network of trade relationships with a highly non-trivial topology that varies with time. In order to understand the complex interrelationships among different countries and economic sectors, as well as their dynamics, a holistic view on the underlying structural properties of this network is necessary. This study employs multi-regional input-output data to decompose 186 national economies into 26 industry sectors and utilizes the approach of interdependent networks to analyze the substructure of the resulting international trade network for the years 1990-2011. The partition of the network into national economies is observed to be compatible with the notion of communities in the sense of complex network theory. By studying internal versus cross-subgraph contributions to established complex network metrics, new insights into the architecture of global trade are obtained, which allow to identify key elements of global economy. Specifically, financial services and business activities dominate domestic trade whereas electrical and machinery industries dominate foreign trade. In order to further specify each national sector's role individually, (cross-)clustering coefficients and cross-betweenness are obtained for different pairs of subgraphs. The corresponding analysis reveals that specific industrial sectors tend to favor distinct directionality patterns and that the cross-clustering coefficient for geographically close country pairs is remarkably high, indicating that spatial factors are still of paramount importance for the organization of trade patterns in modern economy. Regarding the evolution of the trade network's substructure, globalization is well-expressed by trends of several structural characteristics (e.g., link density and node strength) in the interacting network framework. Extreme events, such as the financial crisis 2008/2009, are manifested as anomalies superimposed to these trends. The marked reorganization of trade patterns, associated with this economic crisis in comparison to "normal" annual fluctuations in the network structure is traced and quantified by a new widely applicable generalization of the Hamming distance to weighted networks.

  19. Special issue on network coding

    NASA Astrophysics Data System (ADS)

    Monteiro, Francisco A.; Burr, Alister; Chatzigeorgiou, Ioannis; Hollanti, Camilla; Krikidis, Ioannis; Seferoglu, Hulya; Skachek, Vitaly

    2017-12-01

    Future networks are expected to depart from traditional routing schemes in order to embrace network coding (NC)-based schemes. These have created a lot of interest both in academia and industry in recent years. Under the NC paradigm, symbols are transported through the network by combining several information streams originating from the same or different sources. This special issue contains thirteen papers, some dealing with design aspects of NC and related concepts (e.g., fountain codes) and some showcasing the application of NC to new services and technologies, such as data multi-view streaming of video or underwater sensor networks. One can find papers that show how NC turns data transmission more robust to packet losses, faster to decode, and more resilient to network changes, such as dynamic topologies and different user options, and how NC can improve the overall throughput. This issue also includes papers showing that NC principles can be used at different layers of the networks (including the physical layer) and how the same fundamental principles can lead to new distributed storage systems. Some of the papers in this issue have a theoretical nature, including code design, while others describe hardware testbeds and prototypes.

  20. SU-F-E-09: Respiratory Signal Prediction Based On Multi-Layer Perceptron Neural Network Using Adjustable Training Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, W; Jiang, M; Yin, F

    Purpose: Dynamic tracking of moving organs, such as lung and liver tumors, under radiation therapy requires prediction of organ motions prior to delivery. The shift of moving organ may change a lot due to huge transform of respiration at different periods. This study aims to reduce the influence of that changes using adjustable training signals and multi-layer perceptron neural network (ASMLP). Methods: Respiratory signals obtained using a Real-time Position Management(RPM) device were used for this study. The ASMLP uses two multi-layer perceptron neural networks(MLPs) to infer respiration position alternately and the training sample will be updated with time. Firstly, amore » Savitzky-Golay finite impulse response smoothing filter was established to smooth the respiratory signal. Secondly, two same MLPs were developed to estimate respiratory position from its previous positions separately. Weights and thresholds were updated to minimize network errors according to Leverberg-Marquart optimization algorithm through backward propagation method. Finally, MLP 1 was used to predict 120∼150s respiration position using 0∼120s training signals. At the same time, MLP 2 was trained using 30∼150s training signals. Then MLP is used to predict 150∼180s training signals according to 30∼150s training signals. The respiration position is predicted as this way until it was finished. Results: In this experiment, the two methods were used to predict 2.5 minute respiratory signals. For predicting 1s ahead of response time, correlation coefficient was improved from 0.8250(MLP method) to 0.8856(ASMLP method). Besides, a 30% improvement of mean absolute error between MLP(0.1798 on average) and ASMLP(0.1267 on average) was achieved. For predicting 2s ahead of response time, correlation coefficient was improved from 0.61415 to 0.7098.Mean absolute error of MLP method(0.3111 on average) was reduced by 35% using ASMLP method(0.2020 on average). Conclusion: The preliminary results demonstrate that the ASMLP respiratory prediction method is more accurate than MLP method and can improve the respiration forecast accuracy.« less

  1. Uric acid, lung function, physical capacity and exacerbation frequency in patients with COPD: a multi-dimensional approach.

    PubMed

    Kahnert, Kathrin; Alter, Peter; Welte, Tobias; Huber, Rudolf M; Behr, Jürgen; Biertz, Frank; Watz, Henrik; Bals, Robert; Vogelmeier, Claus F; Jörres, Rudolf A

    2018-06-04

    Recent investigations showed single associations between uric acid levels, functional parameters, exacerbations and mortality in COPD patients. The aim of this study was to describe the role of uric acid within the network of multiple relationships between function, exacerbation and comorbidities. We used baseline data from the German COPD cohort COSYCONET which were evaluated by standard multiple regression analyses as well as path analysis to quantify the network of relations between parameters, particularly uric acid. Data from 1966 patients were analyzed. Uric acid was significantly associated with reduced FEV 1 , reduced 6-MWD, higher burden of exacerbations (GOLD criteria) and cardiovascular comorbidities, in addition to risk factors such as BMI and packyears. These associations remained significant after taking into account their multiple interdependences. Compared to uric acid levels the diagnosis of hyperuricemia and its medication played a minor role. Within the limits of a cross-sectional approach, our results strongly suggest that uric acid is a biomarker of high impact in COPD and plays a genuine role for relevant outcomes such as physical capacity and exacerbations. These findings suggest that more attention should be paid to uric acid in the evaluation of COPD disease status.

  2. Prediction of beta-turns and beta-turn types by a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN).

    PubMed

    Kirschner, Andreas; Frishman, Dmitrij

    2008-10-01

    Prediction of beta-turns from amino acid sequences has long been recognized as an important problem in structural bioinformatics due to their frequent occurrence as well as their structural and functional significance. Because various structural features of proteins are intercorrelated, secondary structure information has been often employed as an additional input for machine learning algorithms while predicting beta-turns. Here we present a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN) capable of predicting multiple mutually dependent structural motifs and demonstrate its efficiency in recognizing three aspects of protein structure: beta-turns, beta-turn types, and secondary structure. The advantage of our method compared to other predictors is that it does not require any external input except for sequence profiles because interdependencies between different structural features are taken into account implicitly during the learning process. In a sevenfold cross-validation experiment on a standard test dataset our method exhibits the total prediction accuracy of 77.9% and the Mathew's Correlation Coefficient of 0.45, the highest performance reported so far. It also outperforms other known methods in delineating individual turn types. We demonstrate how simultaneous prediction of multiple targets influences prediction performance on single targets. The MOLEBRNN presented here is a generic method applicable in a variety of research fields where multiple mutually depending target classes need to be predicted. http://webclu.bio.wzw.tum.de/predator-web/.

  3. Disentangling the multigenic and pleiotropic nature of molecular function

    PubMed Central

    2015-01-01

    Background Biological processes at the molecular level are usually represented by molecular interaction networks. Function is organised and modularity identified based on network topology, however, this approach often fails to account for the dynamic and multifunctional nature of molecular components. For example, a molecule engaging in spatially or temporally independent functions may be inappropriately clustered into a single functional module. To capture biologically meaningful sets of interacting molecules, we use experimentally defined pathways as spatial/temporal units of molecular activity. Results We defined functional profiles of Saccharomyces cerevisiae based on a minimal set of Gene Ontology terms sufficient to represent each pathway's genes. The Gene Ontology terms were used to annotate 271 pathways, accounting for pathway multi-functionality and gene pleiotropy. Pathways were then arranged into a network, linked by shared functionality. Of the genes in our data set, 44% appeared in multiple pathways performing a diverse set of functions. Linking pathways by overlapping functionality revealed a modular network with energy metabolism forming a sparse centre, surrounded by several denser clusters comprised of regulatory and metabolic pathways. Signalling pathways formed a relatively discrete cluster connected to the centre of the network. Genetic interactions were enriched within the clusters of pathways by a factor of 5.5, confirming the organisation of our pathway network is biologically significant. Conclusions Our representation of molecular function according to pathway relationships enables analysis of gene/protein activity in the context of specific functional roles, as an alternative to typical molecule-centric graph-based methods. The pathway network demonstrates the cooperation of multiple pathways to perform biological processes and organises pathways into functionally related clusters with interdependent outcomes. PMID:26678917

  4. Spiritual and Religious Supports Part 8: Church G.L.U.E.

    ERIC Educational Resources Information Center

    Newman, Barbara J.

    2009-01-01

    CLC Network is an organization that partners with churches, schools, and families to help promote and build inclusive and interdependent communities for those with disabilities. This article describes CLC Network's most recent tool--a book entitled the G.L.U.E. Training Manual. G.L.U.E. is an adhesive process to allow each individual to be firmly…

  5. Robustness of coevolution in resolving prisoner's dilemma games on interdependent networks subject to attack

    NASA Astrophysics Data System (ADS)

    Liu, Penghui; Liu, Jing

    2017-08-01

    Recently, coevolution between strategy and network structure has been established as a rule to resolve social dilemmas and reach optimal situations for cooperation. Many follow-up researches have focused on studying how coevolution helps networks reorganize to deter the defectors and many coevolution methods have been proposed. However, the robustness of the coevolution rules against attacks have not been studied much. Since attacks may directly influence the original evolutionary process of cooperation, the robustness should be an important index while evaluating the quality of a coevolution method. In this paper, we focus on investigating the robustness of an elementary coevolution method in resolving the prisoner's dilemma game upon the interdependent networks. Three different types of time-independent attacks, named as edge attacks, instigation attacks and node attacks have been employed to test its robustness. Through analyzing the simulation results obtained, we find this coevolution method is relatively robust against the edge attack and the node attack as it successfully maintains cooperation in the population over the entire attack range. However, when the instigation probability of the attacked individuals is large or the attack range of instigation attack is wide enough, coevolutionary rule finally fails in maintaining cooperation in the population.

  6. Experimental high-speed network

    NASA Astrophysics Data System (ADS)

    McNeill, Kevin M.; Klein, William P.; Vercillo, Richard; Alsafadi, Yasser H.; Parra, Miguel V.; Dallas, William J.

    1993-09-01

    Many existing local area networking protocols currently applied in medical imaging were originally designed for relatively low-speed, low-volume networking. These protocols utilize small packet sizes appropriate for text based communication. Local area networks of this type typically provide raw bandwidth under 125 MHz. These older network technologies are not optimized for the low delay, high data traffic environment of a totally digital radiology department. Some current implementations use point-to-point links when greater bandwidth is required. However, the use of point-to-point communications for a total digital radiology department network presents many disadvantages. This paper describes work on an experimental multi-access local area network called XFT. The work includes the protocol specification, and the design and implementation of network interface hardware and software. The protocol specifies the Physical and Data Link layers (OSI layers 1 & 2) for a fiber-optic based token ring providing a raw bandwidth of 500 MHz. The protocol design and implementation of the XFT interface hardware includes many features to optimize image transfer and provide flexibility for additional future enhancements which include: a modular hardware design supporting easy portability to a variety of host system buses, a versatile message buffer design providing 16 MB of memory, and the capability to extend the raw bandwidth of the network to 3.0 GHz.

  7. A Network of Networks Perspective on Global Trade

    PubMed Central

    Maluck, Julian; Donner, Reik V.

    2015-01-01

    Mutually intertwined supply chains in contemporary economy result in a complex network of trade relationships with a highly non-trivial topology that varies with time. In order to understand the complex interrelationships among different countries and economic sectors, as well as their dynamics, a holistic view on the underlying structural properties of this network is necessary. This study employs multi-regional input-output data to decompose 186 national economies into 26 industry sectors and utilizes the approach of interdependent networks to analyze the substructure of the resulting international trade network for the years 1990–2011. The partition of the network into national economies is observed to be compatible with the notion of communities in the sense of complex network theory. By studying internal versus cross-subgraph contributions to established complex network metrics, new insights into the architecture of global trade are obtained, which allow to identify key elements of global economy. Specifically, financial services and business activities dominate domestic trade whereas electrical and machinery industries dominate foreign trade. In order to further specify each national sector’s role individually, (cross-)clustering coefficients and cross-betweenness are obtained for different pairs of subgraphs. The corresponding analysis reveals that specific industrial sectors tend to favor distinct directionality patterns and that the cross-clustering coefficient for geographically close country pairs is remarkably high, indicating that spatial factors are still of paramount importance for the organization of trade patterns in modern economy. Regarding the evolution of the trade network’s substructure, globalization is well-expressed by trends of several structural characteristics (e.g., link density and node strength) in the interacting network framework. Extreme events, such as the financial crisis 2008/2009, are manifested as anomalies superimposed to these trends. The marked reorganization of trade patterns, associated with this economic crisis in comparison to “normal” annual fluctuations in the network structure is traced and quantified by a new widely applicable generalization of the Hamming distance to weighted networks. PMID:26197439

  8. Analytical Modeling of Medium Access Control Protocols in Wireless Networks

    DTIC Science & Technology

    2006-03-01

    Rician-fading channels. However, no provision was made to consider a multihop ad hoc network and the interdependencies among the nodes. Gitman [54...published what is arguably the first paper that actually dealt with a mul- tihop system. Gitman considered a two-hop centralized network consisting of a...of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications, 21(3):281–302, April 2003. [54] I. Gitman . On the

  9. Restoration and Humanitarian Aid Delivery on Interdependent Transportation and Communication Networks After an Extreme Event

    DTIC Science & Technology

    2015-03-26

    Transportation and Communication network Restoration and Distribution (TCRD) problem. In Chapter 4, we conduct computational tests on realistic networks using a...speed and overall demand fulfillment when deciding how many machines to dispatch. We found that there exist certain key communciation entities and...ACM symposium on Theory of Computing . ACM. 16. Holgúın-Veras, José, Jaller, Miguel, Van Wassenhove, Luk N, Pérez, Noel, & Wachtendorf, Tricia. 2012

  10. Mi'kmaq Night Sky Stories; Patterns of Interconnectiveness, Vitality and Nourishment

    NASA Astrophysics Data System (ADS)

    Harris, P.; Bartlett, C.; Marshall, M.; Marshall, A.

    2010-10-01

    This article shares some of the experiences of an integrative science team based at Cape Breton University, Canada. Integrative science is defined as "bringing together Indigenous and Western scientific knowledge and ways of knowing" and the team includes Mi'kmaq Elders and educators, Cheryl Bartlett and her Research Associates. Together we worked to rekindle the Mi'kmaq Sky Story, Muin and the Seven Hunters, to produce a DVD of the story as well as a children's book, and then to share it with people throughout Canada and the world. We offer insights into the manner in which night sky stories engender interconnectiveness and interdependability through their cultural, scientific and ecological teachings and so help to revitalise the culture and the individual by feeding all aspects of the human experience (spiritual, emotional, physical and cognitional). We explore the concept of storywork, with emphasis on the relationship between storyteller and listener as a story is told, as well as considering the multi-layered aspect of Indigenous stories.

  11. Peering Strategic Game Models for Interdependent ISPs in Content Centric Internet

    PubMed Central

    Guan, Jianfeng; Xu, Changqiao; Su, Wei; Zhang, Hongke

    2013-01-01

    Emergent content-oriented networks prompt Internet service providers (ISPs) to evolve and take major responsibility for content delivery. Numerous content items and varying content popularities motivate interdependence between peering ISPs to elaborate their content caching and sharing strategies. In this paper, we propose the concept of peering for content exchange between interdependent ISPs in content centric Internet to minimize content delivery cost by a proper peering strategy. We model four peering strategic games to formulate four types of peering relationships between ISPs who are characterized by varying degrees of cooperative willingness from egoism to altruism and interconnected as profit-individuals or profit-coalition. Simulation results show the price of anarchy (PoA) and communication cost in the four games to validate that ISPs should decide their peering strategies by balancing intradomain content demand and interdomain peering relations for an optimal cost of content delivery. PMID:24381517

  12. Peering strategic game models for interdependent ISPs in content centric Internet.

    PubMed

    Zhao, Jia; Guan, Jianfeng; Xu, Changqiao; Su, Wei; Zhang, Hongke

    2013-01-01

    Emergent content-oriented networks prompt Internet service providers (ISPs) to evolve and take major responsibility for content delivery. Numerous content items and varying content popularities motivate interdependence between peering ISPs to elaborate their content caching and sharing strategies. In this paper, we propose the concept of peering for content exchange between interdependent ISPs in content centric Internet to minimize content delivery cost by a proper peering strategy. We model four peering strategic games to formulate four types of peering relationships between ISPs who are characterized by varying degrees of cooperative willingness from egoism to altruism and interconnected as profit-individuals or profit-coalition. Simulation results show the price of anarchy (PoA) and communication cost in the four games to validate that ISPs should decide their peering strategies by balancing intradomain content demand and interdomain peering relations for an optimal cost of content delivery.

  13. Fundamental Lifetime Mechanisms in Routing Protocols for Wireless Sensor Networks: A Survey and Open Issues

    PubMed Central

    Eslaminejad, Mohammadreza; Razak, Shukor Abd

    2012-01-01

    Wireless sensor networks basically consist of low cost sensor nodes which collect data from environment and relay them to a sink, where they will be subsequently processed. Since wireless nodes are severely power-constrained, the major concern is how to conserve the nodes' energy so that network lifetime can be extended significantly. Employing one static sink can rapidly exhaust the energy of sink neighbors. Furthermore, using a non-optimal single path together with a maximum transmission power level may quickly deplete the energy of individual nodes on the route. This all results in unbalanced energy consumption through the sensor field, and hence a negative effect on the network lifetime. In this paper, we present a comprehensive taxonomy of the various mechanisms applied for increasing the network lifetime. These techniques, whether in the routing or cross-layer area, fall within the following types: multi-sink, mobile sink, multi-path, power control and bio-inspired algorithms, depending on the protocol operation. In this taxonomy, special attention has been devoted to the multi-sink, power control and bio-inspired algorithms, which have not yet received much consideration in the literature. Moreover, each class covers a variety of the state-of-the-art protocols, which should provide ideas for potential future works. Finally, we compare these mechanisms and discuss open research issues. PMID:23202008

  14. Fundamental lifetime mechanisms in routing protocols for wireless sensor networks: a survey and open issues.

    PubMed

    Eslaminejad, Mohammadreza; Razak, Shukor Abd

    2012-10-09

    Wireless sensor networks basically consist of low cost sensor nodes which collect data from environment and relay them to a sink, where they will be subsequently processed. Since wireless nodes are severely power-constrained, the major concern is how to conserve the nodes' energy so that network lifetime can be extended significantly. Employing one static sink can rapidly exhaust the energy of sink neighbors. Furthermore, using a non-optimal single path together with a maximum transmission power level may quickly deplete the energy of individual nodes on the route. This all results in unbalanced energy consumption through the sensor field, and hence a negative effect on the network lifetime. In this paper, we present a comprehensive taxonomy of the various mechanisms applied for increasing the network lifetime. These techniques, whether in the routing or cross-layer area, fall within the following types: multi-sink, mobile sink, multi-path, power control and bio-inspired algorithms, depending on the protocol operation. In this taxonomy, special attention has been devoted to the multi-sink, power control and bio-inspired algorithms, which have not yet received much consideration in the literature. Moreover, each class covers a variety of the state-of-the-art protocols, which should provide ideas for potential future works. Finally, we compare these mechanisms and discuss open research issues.

  15. Research on a Banknote Printing Wastewater Monitoring System based on Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Li, B. B.; Yuan, Z. F.

    2006-10-01

    In this paper, a banknote printing wastewater monitoring system based on WSN is presented in line with the system demands and actual condition of the worksite for a banknote printing factory. In Physical Layer, the network node is a nRF9e5-centric embedded instrument, which can realize the multi-function such as data collecting, status monitoring, wireless data transmission and so on. Limited by the computing capability, memory capability, communicating energy and others factors, it is impossible for the node to get every detail information of the network, so the communication protocol on WSN couldn't be very complicated. The competitive-based MACA (Multiple Access with Collision Avoidance) Protocol is introduced in MAC, which can decide the communication process and working mode of the nodes, avoid the collision of data transmission, hidden and exposed station problem of nodes. On networks layer, the routing protocol in charge of the transmitting path of the data, the networks topology structure is arranged based on address assignation. Accompanied with some redundant nodes, the network performances stabile and expandable. The wastewater monitoring system is a tentative practice of WSN theory in engineering. Now, the system has passed test and proved efficiently.

  16. An extremely simple macroscale electronic skin realized by deep machine learning.

    PubMed

    Sohn, Kee-Sun; Chung, Jiyong; Cho, Min-Young; Timilsina, Suman; Park, Woon Bae; Pyo, Myungho; Shin, Namsoo; Sohn, Keemin; Kim, Ji Sik

    2017-09-11

    Complicated structures consisting of multi-layers with a multi-modal array of device components, i.e., so-called patterned multi-layers, and their corresponding circuit designs for signal readout and addressing are used to achieve a macroscale electronic skin (e-skin). In contrast to this common approach, we realized an extremely simple macroscale e-skin only by employing a single-layered piezoresistive MWCNT-PDMS composite film with neither nano-, micro-, nor macro-patterns. It is the deep machine learning that made it possible to let such a simple bulky material play the role of a smart sensory device. A deep neural network (DNN) enabled us to process electrical resistance change induced by applied pressure and thereby to instantaneously evaluate the pressure level and the exact position under pressure. The great potential of this revolutionary concept for the attainment of pressure-distribution sensing on a macroscale area could expand its use to not only e-skin applications but to other high-end applications such as touch panels, portable flexible keyboard, sign language interpreting globes, safety diagnosis of social infrastructures, and the diagnosis of motility and peristalsis disorders in the gastrointestinal tract.

  17. A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array

    PubMed Central

    Lee, Dongjin; Ondrake, Janet; Cui, Tianhong

    2011-01-01

    We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor chip onto a ceramic pin grid array is tested using syringe pump driven feed and multi-channel I–V measurement system. It is successfully demonstrated that glucose is detected in many different sensing sites within a chip, leading to concentration dependent currents. The sensitivity has been found to be dependent on the channel length of the resistor, 4–12 nA/mM for channel lengths of 5–20 μm, while the apparent Michaelis-Menten constant is 20 mM. By using sensor array, analytical data could be obtained with a single step of sample solution feeding. This work sheds light on the applicability of the developed nanoparticle microsensor array to multi-analyte sensors, novel bioassay platforms, and sensing components in a lab-on-a-chip. PMID:22163696

  18. A Case Study of Facebook Use: Outlining a Multi-Layer Strategy for Higher Education

    ERIC Educational Resources Information Center

    Menzies, Rachel; Petrie, Karen; Zarb, Mark

    2017-01-01

    Many students are looking to appropriate social networking sites, amongst them, Facebook, to enhance their learning experience. A growing body of literature reports on the motivation of students and staff to engage with Facebook as a learning platform as well as mapping such activities to pedagogy and curricula. This paper presents student…

  19. Mobile, Virtual Enhancements for Rehabilitation (MOVER)

    DTIC Science & Technology

    2013-11-28

    Modeling Autobiographical Memory for Believable Agents, AIIDE, Boston, MA. 2013. From the abstract: “We present a multi-layer hierarchical...connectionist network model for simulating human autobiographical memory in believable agents. Grounded in psychological theory, this model improves on...previous attempts to model agents’ event knowledge by providing a more dynamic and nondeterministic representation of autobiographical memories .” This

  20. Designing an Adaptive Web-Based Learning System Based on Students' Cognitive Styles Identified Online

    ERIC Educational Resources Information Center

    Lo, Jia-Jiunn; Chan, Ya-Chen; Yeh, Shiou-Wen

    2012-01-01

    This study developed an adaptive web-based learning system focusing on students' cognitive styles. The system is composed of a student model and an adaptation model. It collected students' browsing behaviors to update the student model for unobtrusively identifying student cognitive styles through a multi-layer feed-forward neural network (MLFF).…

  1. The Role of Language Teachers as Cultural Diplomats

    ERIC Educational Resources Information Center

    Moutinho, Ricardo; Carlos Paes de Almeida Filho, José

    2015-01-01

    In an increasingly multi-territorialized and interdependent world, people are getting more in touch with each other than ever before through many mass media services. This provides the possibility to overcome geographical boarders in order to build new relationships that foster mutual interests in economical and socio-cultural aspects from…

  2. Stochastic Coloured Petrinet Based Healthcare Infrastructure Interdependency Model

    NASA Astrophysics Data System (ADS)

    Nukavarapu, Nivedita; Durbha, Surya

    2016-06-01

    The Healthcare Critical Infrastructure (HCI) protects all sectors of the society from hazards such as terrorism, infectious disease outbreaks, and natural disasters. HCI plays a significant role in response and recovery across all other sectors in the event of a natural or manmade disaster. However, for its continuity of operations and service delivery HCI is dependent on other interdependent Critical Infrastructures (CI) such as Communications, Electric Supply, Emergency Services, Transportation Systems, and Water Supply System. During a mass casualty due to disasters such as floods, a major challenge that arises for the HCI is to respond to the crisis in a timely manner in an uncertain and variable environment. To address this issue the HCI should be disaster prepared, by fully understanding the complexities and interdependencies that exist in a hospital, emergency department or emergency response event. Modelling and simulation of a disaster scenario with these complexities would help in training and providing an opportunity for all the stakeholders to work together in a coordinated response to a disaster. The paper would present interdependencies related to HCI based on Stochastic Coloured Petri Nets (SCPN) modelling and simulation approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The entire model would be integrated with Geographic information based decision support system to visualize the dynamic behaviour of the interdependency of the Healthcare and related CI network in a geographically based environment.

  3. Beyond Sister City Agreements: Exploring the Challenges of Full International Interoperability

    DTIC Science & Technology

    2016-03-01

    are often interconnected by more than simple proximity. They are connected through social networks, economy, culture, and shared natural resources...southern U.S. borders to determine how various regions address their cross-border agreements. Research indicated that unique challenges—such as liability...They are connected through social networks, economy, culture, and shared natural resources. Despite this interdependent relationship, and in spite

  4. So what exactly are social-ecological network studies? Findings from a literature review

    EPA Science Inventory

    To solve most environmental management problems academics and practitioners must work across traditionally compartmentalized management arenas (e.g., food, water, and wildlife) and among spatially distant ecosystems and resource users. Managing interdependent ecosystem services, ...

  5. Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG.

    PubMed

    Tagluk, M Emin; Sezgin, Necmettin; Akin, Mehmet

    2010-08-01

    Analysis and classification of sleep stages is essential in sleep research. In this particular study, an alternative system which estimates sleep stages of human being through a multi-layer neural network (NN) that simultaneously employs EEG, EMG and EOG. The data were recorded through polisomnography device for 7 h for each subject. These collective variant data were first grouped by an expert physician and the software of polisomnography, and then used for training and testing the proposed Artificial Neural Network (ANN). A good scoring was attained through the trained ANN, so it may be put into use in clinics where lacks of specialist physicians.

  6. Region Based CNN for Foreign Object Debris Detection on Airfield Pavement

    PubMed Central

    Cao, Xiaoguang; Wang, Peng; Meng, Cai; Gong, Guoping; Liu, Miaoming; Qi, Jun

    2018-01-01

    In this paper, a novel algorithm based on convolutional neural network (CNN) is proposed to detect foreign object debris (FOD) based on optical imaging sensors. It contains two modules, the improved region proposal network (RPN) and spatial transformer network (STN) based CNN classifier. In the improved RPN, some extra select rules are designed and deployed to generate high quality candidates with fewer numbers. Moreover, the efficiency of CNN detector is significantly improved by introducing STN layer. Compared to faster R-CNN and single shot multiBox detector (SSD), the proposed algorithm achieves better result for FOD detection on airfield pavement in the experiment. PMID:29494524

  7. Region Based CNN for Foreign Object Debris Detection on Airfield Pavement.

    PubMed

    Cao, Xiaoguang; Wang, Peng; Meng, Cai; Bai, Xiangzhi; Gong, Guoping; Liu, Miaoming; Qi, Jun

    2018-03-01

    In this paper, a novel algorithm based on convolutional neural network (CNN) is proposed to detect foreign object debris (FOD) based on optical imaging sensors. It contains two modules, the improved region proposal network (RPN) and spatial transformer network (STN) based CNN classifier. In the improved RPN, some extra select rules are designed and deployed to generate high quality candidates with fewer numbers. Moreover, the efficiency of CNN detector is significantly improved by introducing STN layer. Compared to faster R-CNN and single shot multiBox detector (SSD), the proposed algorithm achieves better result for FOD detection on airfield pavement in the experiment.

  8. The Identification of Filters and Interdependencies for Effective Resource Allocation: Coupling the Mitigation of Natural Hazards to Economic Development.

    NASA Astrophysics Data System (ADS)

    Agar, S. M.; Kunreuther, H.

    2005-12-01

    Policy formulation for the mitigation and management of risks posed by natural hazards requires that governments confront difficult decisions for resource allocation and be able to justify their spending. Governments also need to recognize when spending offers little improvement and the circumstances in which relatively small amounts of spending can make substantial differences. Because natural hazards can have detrimental impacts on local and regional economies, patterns of economic development can also be affected by spending decisions for disaster mitigation. This paper argues that by mapping interdependencies among physical, social and economic factors, governments can improve resource allocation to mitigate the risks of natural hazards while improving economic development on local and regional scales. Case studies of natural hazards in Turkey have been used to explore specific "filters" that act to modify short- and long-term outcomes. Pre-event filters can prevent an event from becoming a natural disaster or change a routine event into a disaster. Post-event filters affect both short and long-term recovery and development. Some filters cannot be easily modified by spending (e.g., rural-urban migration) but others (e.g., land-use practices) provide realistic spending targets. Net social benefits derived from spending, however, will also depend on the ways by which filters are linked, or so-called "interdependencies". A single weak link in an interdependent system, such as a power grid, can trigger a cascade of failures. Similarly, weak links in social and commercial networks can send waves of disruption through communities. Conversely, by understanding the positive impacts of interdependencies, spending can be targeted to maximize net social benefits while mitigating risks and improving economic development. Detailed information on public spending was not available for this study but case studies illustrate how networks of interdependent filters can modify social benefits and costs. For example, spending after the 1992 Erzincan earthquake targeted local businesses but limited alternative employment, labor losses and diminished local markets all contributed to economic stagnation. Spending after the 1995 Dinar earthquake provided rent subsidies, supporting a major exodus from the town. Consequently many local people were excluded from reconstruction decisions and benefits offered by reconstruction funds. After the 1999 Marmara earthquakes, a 3-year economic decline in Yalova illustrates the vulnerability of local economic stability to weak regulation enforcement by a few agents. A resource allocation framework indicates that government-community relations, lack of economic diversification, beliefs, and compensation are weak links for effective spending. Stronger positive benefits could be achieved through spending to target land-use regulation enforcement, labor losses, time-critical needs of small businesses, and infrastructure. While the impacts of the Marmara earthquakes were devastating, strong commercial networks and international interests helped to re-establish the regional economy. Interdependencies may have helped to drive a recovery. Smaller events in eastern Turkey, however, can wipe out entire communities and can have long-lasting impacts on economic development. These differences may accelerate rural to urban migration and perpetuate regional economic divergence in the country. 1: Research performed in the Wharton MBA Program, Univ. of Pennsylvania.

  9. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    PubMed

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  10. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    PubMed Central

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  11. Application of SQL database to the control system of MOIRCS

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Tomohiro; Omata, Koji; Konishi, Masahiro; Ichikawa, Takashi; Suzuki, Ryuji; Tokoku, Chihiro; Uchimoto, Yuka Katsuno; Nishimura, Tetsuo

    2006-06-01

    MOIRCS (Multi-Object Infrared Camera and Spectrograph) is a new instrument for the Subaru telescope. In order to perform observations of near-infrared imaging and spectroscopy with cold slit mask, MOIRCS contains many device components, which are distributed on an Ethernet LAN. Two PCs wired to the focal plane array electronics operate two HAWAII2 detectors, respectively, and other two PCs are used for integrated control and quick data reduction, respectively. Though most of the devices (e.g., filter and grism turrets, slit exchange mechanism for spectroscopy) are controlled via RS232C interface, they are accessible from TCP/IP connection using TCP/IP to RS232C converters. Moreover, other devices are also connected to the Ethernet LAN. This network distributed structure provides flexibility of hardware configuration. We have constructed an integrated control system for such network distributed hardwares, named T-LECS (Tohoku University - Layered Electronic Control System). T-LECS has also network distributed software design, applying TCP/IP socket communication to interprocess communication. In order to help the communication between the device interfaces and the user interfaces, we defined three layers in T-LECS; an external layer for user interface applications, an internal layer for device interface applications, and a communication layer, which connects two layers above. In the communication layer, we store the data of the system to an SQL database server; they are status data, FITS header data, and also meta data such as device configuration data and FITS configuration data. We present our software system design and the database schema to manage observations of MOIRCS with Subaru.

  12. Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation

    PubMed Central

    Scellier, Benjamin; Bengio, Yoshua

    2017-01-01

    We introduce Equilibrium Propagation, a learning framework for energy-based models. It involves only one kind of neural computation, performed in both the first phase (when the prediction is made) and the second phase of training (after the target or prediction error is revealed). Although this algorithm computes the gradient of an objective function just like Backpropagation, it does not need a special computation or circuit for the second phase, where errors are implicitly propagated. Equilibrium Propagation shares similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving the theoretical issues of both algorithms: our algorithm computes the gradient of a well-defined objective function. Because the objective function is defined in terms of local perturbations, the second phase of Equilibrium Propagation corresponds to only nudging the prediction (fixed point or stationary distribution) toward a configuration that reduces prediction error. In the case of a recurrent multi-layer supervised network, the output units are slightly nudged toward their target in the second phase, and the perturbation introduced at the output layer propagates backward in the hidden layers. We show that the signal “back-propagated” during this second phase corresponds to the propagation of error derivatives and encodes the gradient of the objective function, when the synaptic update corresponds to a standard form of spike-timing dependent plasticity. This work makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains, since leaky integrator neural computation performs both inference and error back-propagation in our model. The only local difference between the two phases is whether synaptic changes are allowed or not. We also show experimentally that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be trained by Equilibrium Propagation on the permutation-invariant MNIST task. PMID:28522969

  13. Influence of Different Coupling Modes on the Robustness of Smart Grid under Targeted Attack.

    PubMed

    Kang, WenJie; Hu, Gang; Zhu, PeiDong; Liu, Qiang; Hang, Zhi; Liu, Xin

    2018-05-24

    Many previous works only focused on the cascading failure of global coupling of one-to-one structures in interdependent networks, but the local coupling of dual coupling structures has rarely been studied due to its complex structure. This will result in a serious consequence that many conclusions of the one-to-one structure may be incorrect in the dual coupling network and do not apply to the smart grid. Therefore, it is very necessary to subdivide the dual coupling link into a top-down coupling link and a bottom-up coupling link in order to study their influence on network robustness by combining with different coupling modes. Additionally, the power flow of the power grid can cause the load of a failed node to be allocated to its neighboring nodes and trigger a new round of load distribution when the load of these nodes exceeds their capacity. This means that the robustness of smart grids may be affected by four factors, i.e., load redistribution, local coupling, dual coupling link and coupling mode; however, the research on the influence of those factors on the network robustness is missing. In this paper, firstly, we construct the smart grid as a two-layer network with a dual coupling link and divide the power grid and communication network into many subnets based on the geographical location of their nodes. Secondly, we define node importance ( N I ) as an evaluation index to access the impact of nodes on the cyber or physical network and propose three types of coupling modes based on N I of nodes in the cyber and physical subnets, i.e., Assortative Coupling in Subnets (ACIS), Disassortative Coupling in Subnets (DCIS), and Random Coupling in Subnets (RCIS). Thirdly, a cascading failure model is proposed for studying the effect of local coupling of dual coupling link in combination with ACIS, DCIS, and RCIS on the robustness of the smart grid against a targeted attack, and the survival rate of functional nodes is used to assess the robustness of the smart grid. Finally, we use the IEEE 118-Bus System and the Italian High-Voltage Electrical Transmission Network to verify our model and obtain the same conclusions: (I) DCIS applied to the top-down coupling link is better able to enhance the robustness of the smart grid against a targeted attack than RCIS or ACIS, (II) ACIS applied to a bottom-up coupling link is better able to enhance the robustness of the smart grid against a targeted attack than RCIS or DCIS, and (III) the robustness of the smart grid can be improved by increasing the tolerance α . This paper provides some guidelines for slowing down the speed of the cascading failures in the design of architecture and optimization of interdependent networks, such as a top-down link with DCIS, a bottom-up link with ACIS, and an increased tolerance α .

  14. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage.

    PubMed

    Zhou, Zehang; Panatdasirisuk, Weerapha; Mathis, Tyler S; Anasori, Babak; Lu, Canhui; Zhang, Xinxing; Liao, Zhiwei; Gogotsi, Yury; Yang, Shu

    2018-03-29

    Free-standing, highly flexible and foldable supercapacitor electrodes were fabricated through the spray-coating assisted layer-by-layer assembly of Ti3C2Tx (MXene) nanoflakes together with multi-walled carbon nanotubes (MWCNTs) on electrospun polycaprolactone (PCL) fiber networks. The open structure of the PCL network and the use of MWCNTs as spacers not only limit the restacking of Ti3C2Tx flakes but also increase the accessible surface of the active materials, facilitating fast diffusion of electrolyte ions within the electrode. Composite electrodes have areal capacitance (30-50 mF cm-2) comparable to other templated electrodes reported in the literature, but showed significantly improved rate performance (14-16% capacitance retention at a scan rate of 100 V s-1). Furthermore, the composite electrodes are flexible and foldable, demonstrating good tolerance against repeated mechanical deformation, including twisting and folding. Therefore, these tens of micron thick fiber electrodes will be attractive for applications in energy storage, electroanalytical chemistry, brain electrodes, electrocatalysis and other fields, where flexible freestanding electrodes with an open and accessible surface are highly desired.

  15. Stochastic Packet Loss Model to Evaluate QoE Impairments

    NASA Astrophysics Data System (ADS)

    Hohlfeld, Oliver

    With provisioning of broadband access for mass market—even in wireless and mobile networks—multimedia content, especially real-time streaming of high-quality audio and video, is extensively viewed and exchanged over the Internet. Quality of Experience (QoE) aspects, describing the service quality perceived by the user, is a vital factor in ensuring customer satisfaction in today's communication networks. Frameworks for accessing quality degradations in streamed video currently are investigated as a complex multi-layered research topic, involving network traffic load, codec functions and measures of user perception of video quality.

  16. Optimized star sensors laboratory calibration method using a regularization neural network.

    PubMed

    Zhang, Chengfen; Niu, Yanxiong; Zhang, Hao; Lu, Jiazhen

    2018-02-10

    High-precision ground calibration is essential to ensure the performance of star sensors. However, the complex distortion and multi-error coupling have brought great difficulties to traditional calibration methods, especially for large field of view (FOV) star sensors. Although increasing the complexity of models is an effective way to improve the calibration accuracy, it significantly increases the demand for calibration data. In order to achieve high-precision calibration of star sensors with large FOV, a novel laboratory calibration method based on a regularization neural network is proposed. A multi-layer structure neural network is designed to represent the mapping of the star vector and the corresponding star point coordinate directly. To ensure the generalization performance of the network, regularization strategies are incorporated into the net structure and the training algorithm. Simulation and experiment results demonstrate that the proposed method can achieve high precision with less calibration data and without any other priori information. Compared with traditional methods, the calibration error of the star sensor decreased by about 30%. The proposed method can satisfy the precision requirement for large FOV star sensors.

  17. Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim.

    PubMed

    Parasuram, Harilal; Nair, Bipin; D'Angelo, Egidio; Hines, Michael; Naldi, Giovanni; Diwakar, Shyam

    2016-01-01

    Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals.

  18. Multi-modality image fusion based on enhanced fuzzy radial basis function neural networks.

    PubMed

    Chao, Zhen; Kim, Dohyeon; Kim, Hee-Joung

    2018-04-01

    In clinical applications, single modality images do not provide sufficient diagnostic information. Therefore, it is necessary to combine the advantages or complementarities of different modalities of images. Recently, neural network technique was applied to medical image fusion by many researchers, but there are still many deficiencies. In this study, we propose a novel fusion method to combine multi-modality medical images based on the enhanced fuzzy radial basis function neural network (Fuzzy-RBFNN), which includes five layers: input, fuzzy partition, front combination, inference, and output. Moreover, we propose a hybrid of the gravitational search algorithm (GSA) and error back propagation algorithm (EBPA) to train the network to update the parameters of the network. Two different patterns of images are used as inputs of the neural network, and the output is the fused image. A comparison with the conventional fusion methods and another neural network method through subjective observation and objective evaluation indexes reveals that the proposed method effectively synthesized the information of input images and achieved better results. Meanwhile, we also trained the network by using the EBPA and GSA, individually. The results reveal that the EBPGSA not only outperformed both EBPA and GSA, but also trained the neural network more accurately by analyzing the same evaluation indexes. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Resting State Network Estimation in Individual Subjects

    PubMed Central

    Hacker, Carl D.; Laumann, Timothy O.; Szrama, Nicholas P.; Baldassarre, Antonello; Snyder, Abraham Z.

    2014-01-01

    Resting-state functional magnetic resonance imaging (fMRI) has been used to study brain networks associated with both normal and pathological cognitive function. The objective of this work is to reliably compute resting state network (RSN) topography in single participants. We trained a supervised classifier (multi-layer perceptron; MLP) to associate blood oxygen level dependent (BOLD) correlation maps corresponding to pre-defined seeds with specific RSN identities. Hard classification of maps obtained from a priori seeds was highly reliable across new participants. Interestingly, continuous estimates of RSN membership retained substantial residual error. This result is consistent with the view that RSNs are hierarchically organized, and therefore not fully separable into spatially independent components. After training on a priori seed-based maps, we propagated voxel-wise correlation maps through the MLP to produce estimates of RSN membership throughout the brain. The MLP generated RSN topography estimates in individuals consistent with previous studies, even in brain regions not represented in the training data. This method could be used in future studies to relate RSN topography to other measures of functional brain organization (e.g., task-evoked responses, stimulation mapping, and deficits associated with lesions) in individuals. The multi-layer perceptron was directly compared to two alternative voxel classification procedures, specifically, dual regression and linear discriminant analysis; the perceptron generated more spatially specific RSN maps than either alternative. PMID:23735260

  20. Promoting Strong Community Alliances with Public Schools

    ERIC Educational Resources Information Center

    Swafford, Melinda; Ramsey, Elizabeth; Self-Mullens, Lizabeth

    2015-01-01

    Family and consumer sciences (FCS) professionals utilize the body of knowledge (BOK) as they support individuals, families, and communities. The BOK uses an ecological perspective, with emphasis on individual and family well-being. This holistic approach identifies interdependence of the environmental layers that must be considered when analyzing…

  1. A review and analysis of neural networks for classification of remotely sensed multispectral imagery

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1993-01-01

    A literature survey and analysis of the use of neural networks for the classification of remotely sensed multispectral imagery is presented. As part of a brief mathematical review, the backpropagation algorithm, which is the most common method of training multi-layer networks, is discussed with an emphasis on its application to pattern recognition. The analysis is divided into five aspects of neural network classification: (1) input data preprocessing, structure, and encoding; (2) output encoding and extraction of classes; (3) network architecture, (4) training algorithms; and (5) comparisons to conventional classifiers. The advantages of the neural network method over traditional classifiers are its non-parametric nature, arbitrary decision boundary capabilities, easy adaptation to different types of data and input structures, fuzzy output values that can enhance classification, and good generalization for use with multiple images. The disadvantages of the method are slow training time, inconsistent results due to random initial weights, and the requirement of obscure initialization values (e.g., learning rate and hidden layer size). Possible techniques for ameliorating these problems are discussed. It is concluded that, although the neural network method has several unique capabilities, it will become a useful tool in remote sensing only if it is made faster, more predictable, and easier to use.

  2. Temporal neural networks and transient analysis of complex engineering systems

    NASA Astrophysics Data System (ADS)

    Uluyol, Onder

    A theory is introduced for a multi-layered Local Output Gamma Feedback (LOGF) neural network within the paradigm of Locally-Recurrent Globally-Feedforward neural networks. It is developed for the identification, prediction, and control tasks of spatio-temporal systems and allows for the presentation of different time scales through incorporation of a gamma memory. It is initially applied to the tasks of sunspot and Mackey-Glass series prediction as benchmarks, then it is extended to the task of power level control of a nuclear reactor at different fuel cycle conditions. The developed LOGF neuron model can also be viewed as a Transformed Input and State (TIS) Gamma memory for neural network architectures for temporal processing. The novel LOGF neuron model extends the static neuron model by incorporating into it a short-term memory structure in the form of a digital gamma filter. A feedforward neural network made up of LOGF neurons can thus be used to model dynamic systems. A learning algorithm based upon the Backpropagation-Through-Time (BTT) approach is derived. It is applicable for training a general L-layer LOGF neural network. The spatial and temporal weights and parameters of the network are iteratively optimized for a given problem using the derived learning algorithm.

  3. Application of Artificial Neural Network to Predict the use of Runway at Juanda International Airport

    NASA Astrophysics Data System (ADS)

    Putra, J. C. P.; Safrilah

    2017-06-01

    Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.

  4. Collards and Caterpillars

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2007-01-01

    "Community," "assemblage," "network," "complex," "interdependent," "web," and "synergism"--definitions of an ecosystem often include these words to highlight the dynamic interrelated workings of plants and animals with their physical environment. Young children don't understand the complexities of ecosystems, but they can begin to understand that…

  5. Integrated RF/Optical Interplanetary Networking Preliminary Explorations and Empirical Results

    NASA Technical Reports Server (NTRS)

    Raible, Daniel E.; Hylton, Alan G.

    2012-01-01

    Over the last decade interplanetary telecommunication capabilities have been significantly expanded--specifically in support of the Mars exploration rover and lander missions. NASA is continuing to drive advances in new, high payoff optical communications technologies to enhance the network to Gbps performance from Mars, and the transition from technology demonstration to operational system is examined through a hybrid RF/optical approach. Such a system combines the best features of RF and optical communications considering availability and performance to realize a dual band trunk line operating within characteristic constraints. Disconnection due to planetary obscuration and solar conjunction, link delays, timing, ground terminal mission congestion and scheduling policy along with space and atmospheric weather disruptions all imply the need for network protocol solutions to ultimately manage the physical layer in a transparent manner to the end user. Delay Tolerant Networking (DTN) is an approach under evaluation which addresses these challenges. A multi-hop multi-path hybrid RF and optical test bed has been constructed to emulate the integrated deep space network and to support protocol and hardware refinement. Initial experimental results characterize several of these challenges and evaluate the effectiveness of DTN as a solution to mitigate them.

  6. Wishart Deep Stacking Network for Fast POLSAR Image Classification.

    PubMed

    Jiao, Licheng; Liu, Fang

    2016-05-11

    Inspired by the popular deep learning architecture - Deep Stacking Network (DSN), a specific deep model for polarimetric synthetic aperture radar (POLSAR) image classification is proposed in this paper, which is named as Wishart Deep Stacking Network (W-DSN). First of all, a fast implementation of Wishart distance is achieved by a special linear transformation, which speeds up the classification of POLSAR image and makes it possible to use this polarimetric information in the following Neural Network (NN). Then a single-hidden-layer neural network based on the fast Wishart distance is defined for POLSAR image classification, which is named as Wishart Network (WN) and improves the classification accuracy. Finally, a multi-layer neural network is formed by stacking WNs, which is in fact the proposed deep learning architecture W-DSN for POLSAR image classification and improves the classification accuracy further. In addition, the structure of WN can be expanded in a straightforward way by adding hidden units if necessary, as well as the structure of the W-DSN. As a preliminary exploration on formulating specific deep learning architecture for POLSAR image classification, the proposed methods may establish a simple but clever connection between POLSAR image interpretation and deep learning. The experiment results tested on real POLSAR image show that the fast implementation of Wishart distance is very efficient (a POLSAR image with 768000 pixels can be classified in 0.53s), and both the single-hidden-layer architecture WN and the deep learning architecture W-DSN for POLSAR image classification perform well and work efficiently.

  7. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    PubMed

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Topological Vulnerability Analysis

    NASA Astrophysics Data System (ADS)

    Jajodia, Sushil; Noel, Steven

    Traditionally, network administrators rely on labor-intensive processes for tracking network configurations and vulnerabilities. This requires a great deal of expertise, and is error prone because of the complexity of networks and associated security data. The interdependencies of network vulnerabilities make traditional point-wise vulnerability analysis inadequate. We describe a Topological Vulnerability Analysis (TVA) approach that analyzes vulnerability dependencies and shows all possible attack paths into a network. From models of the network vulnerabilities and potential attacker exploits, we compute attack graphs that convey the impact of individual and combined vulnerabilities on overall security. TVA finds potential paths of vulnerability through a network, showing exactly how attackers may penetrate a network. From this, we identify key vulnerabilities and provide strategies for protection of critical network assets.

  9. Power laws and fragility in flow networks.

    PubMed

    Shore, Jesse; Chu, Catherine J; Bianchi, Matt T

    2013-01-01

    What makes economic and ecological networks so unlike other highly skewed networks in their tendency toward turbulence and collapse? Here, we explore the consequences of a defining feature of these networks: their nodes are tied together by flow. We show that flow networks tend to the power law degree distribution (PLDD) due to a self-reinforcing process involving position within the global network structure, and thus present the first random graph model for PLDDs that does not depend on a rich-get-richer function of nodal degree. We also show that in contrast to non-flow networks, PLDD flow networks are dramatically more vulnerable to catastrophic failure than non-PLDD flow networks, a finding with potential explanatory power in our age of resource- and financial-interdependence and turbulence.

  10. Neural network controller development for a magnetically suspended flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Fittro, Roger L.; Pang, Da-Chen; Anand, Davinder K.

    1994-01-01

    A neural network controller has been developed to accommodate disturbances and nonlinearities and improve the robustness of a magnetically suspended flywheel energy storage system. The controller is trained using the back propagation-through-time technique incorporated with a time-averaging scheme. The resulting nonlinear neural network controller improves system performance by adapting flywheel stiffness and damping based on operating speed. In addition, a hybrid multi-layered neural network controller is developed off-line which is capable of improving system performance even further. All of the research presented in this paper was implemented via a magnetic bearing computer simulation. However, careful attention was paid to developing a practical methodology which will make future application to the actual bearing system fairly straightforward.

  11. A hybrid MAC protocol design for energy-efficient very-high-throughput millimeter wave, wireless sensor communication networks

    NASA Astrophysics Data System (ADS)

    Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung

    2010-12-01

    This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.

  12. Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.

    PubMed

    Liu, Manhua; Cheng, Danni; Wang, Kundong; Wang, Yaping

    2018-03-23

    Accurate and early diagnosis of Alzheimer's disease (AD) plays important role for patient care and development of future treatment. Structural and functional neuroimages, such as magnetic resonance images (MRI) and positron emission tomography (PET), are providing powerful imaging modalities to help understand the anatomical and functional neural changes related to AD. In recent years, machine learning methods have been widely studied on analysis of multi-modality neuroimages for quantitative evaluation and computer-aided-diagnosis (CAD) of AD. Most existing methods extract the hand-craft imaging features after image preprocessing such as registration and segmentation, and then train a classifier to distinguish AD subjects from other groups. This paper proposes to construct cascaded convolutional neural networks (CNNs) to learn the multi-level and multimodal features of MRI and PET brain images for AD classification. First, multiple deep 3D-CNNs are constructed on different local image patches to transform the local brain image into more compact high-level features. Then, an upper high-level 2D-CNN followed by softmax layer is cascaded to ensemble the high-level features learned from the multi-modality and generate the latent multimodal correlation features of the corresponding image patches for classification task. Finally, these learned features are combined by a fully connected layer followed by softmax layer for AD classification. The proposed method can automatically learn the generic multi-level and multimodal features from multiple imaging modalities for classification, which are robust to the scale and rotation variations to some extent. No image segmentation and rigid registration are required in pre-processing the brain images. Our method is evaluated on the baseline MRI and PET images of 397 subjects including 93 AD patients, 204 mild cognitive impairment (MCI, 76 pMCI +128 sMCI) and 100 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 93.26% for classification of AD vs. NC and 82.95% for classification pMCI vs. NC, demonstrating the promising classification performance.

  13. Research on performance of three-layer MG-OXC system based on MLAG and OCDM

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Ren, Yanfei; Meng, Ying; Bai, Jian

    2017-10-01

    At present, as traffic volume which optical transport networks convey and species of traffic grooming methods increase rapidly, optical switching techniques are faced with a series of issues, such as more requests for the number of wavelengths and complicated structure management and implementation. This work introduces optical code switching based on wavelength switching, constructs the three layers multi-granularity optical cross connection (MG-OXC) system on the basis of optical code division multiplexing (OCDM) and presents a new traffic grooming algorithm. The proposed architecture can improve the flexibility of traffic grooming, reduce the amount of used wavelengths and save the number of consumed ports, hence, it can simplify routing device and enhance the performance of the system significantly. Through analyzing the network model of switching structure on multicast layered auxiliary graph (MLAG) and the establishment of traffic grooming links, and the simulation of blocking probability and throughput, this paper shows the excellent performance of this mentioned architecture.

  14. Multi-Layer Approach for the Detection of Selective Forwarding Attacks

    PubMed Central

    Alajmi, Naser; Elleithy, Khaled

    2015-01-01

    Security breaches are a major threat in wireless sensor networks (WSNs). WSNs are increasingly used due to their broad range of important applications in both military and civilian domains. WSNs are prone to several types of security attacks. Sensor nodes have limited capacities and are often deployed in dangerous locations; therefore, they are vulnerable to different types of attacks, including wormhole, sinkhole, and selective forwarding attacks. Security attacks are classified as data traffic and routing attacks. These security attacks could affect the most significant applications of WSNs, namely, military surveillance, traffic monitoring, and healthcare. Therefore, there are different approaches to detecting security attacks on the network layer in WSNs. Reliability, energy efficiency, and scalability are strong constraints on sensor nodes that affect the security of WSNs. Because sensor nodes have limited capabilities in most of these areas, selective forwarding attacks cannot be easily detected in networks. In this paper, we propose an approach to selective forwarding detection (SFD). The approach has three layers: MAC pool IDs, rule-based processing, and anomaly detection. It maintains the safety of data transmission between a source node and base station while detecting selective forwarding attacks. Furthermore, the approach is reliable, energy efficient, and scalable. PMID:26610499

  15. Multi-Layer Approach for the Detection of Selective Forwarding Attacks.

    PubMed

    Alajmi, Naser; Elleithy, Khaled

    2015-11-19

    Security breaches are a major threat in wireless sensor networks (WSNs). WSNs are increasingly used due to their broad range of important applications in both military and civilian domains. WSNs are prone to several types of security attacks. Sensor nodes have limited capacities and are often deployed in dangerous locations; therefore, they are vulnerable to different types of attacks, including wormhole, sinkhole, and selective forwarding attacks. Security attacks are classified as data traffic and routing attacks. These security attacks could affect the most significant applications of WSNs, namely, military surveillance, traffic monitoring, and healthcare. Therefore, there are different approaches to detecting security attacks on the network layer in WSNs. Reliability, energy efficiency, and scalability are strong constraints on sensor nodes that affect the security of WSNs. Because sensor nodes have limited capabilities in most of these areas, selective forwarding attacks cannot be easily detected in networks. In this paper, we propose an approach to selective forwarding detection (SFD). The approach has three layers: MAC pool IDs, rule-based processing, and anomaly detection. It maintains the safety of data transmission between a source node and base station while detecting selective forwarding attacks. Furthermore, the approach is reliable, energy efficient, and scalable.

  16. Interference Drop Scheme: Enhancing QoS Provision in Multi-Hop Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Luo, Chang-Yi; Komuro, Nobuyoshi; Takahashi, Kiyoshi; Kasai, Hiroyuki; Ueda, Hiromi; Tsuboi, Toshinori

    Ad hoc networking uses wireless technologies to construct networks with no physical infrastructure and so are expected to provide instant networking in areas such as disaster recovery sites and inter-vehicle communication. Unlike conventional wired networks services, services in ad hoc networks are easily disrupted by the frequent changes in traffic and topology. Therefore, solutions to assure the Quality of Services (QoS) in ad hoc networks are different from the conventional ones used in wired networks. In this paper, we propose a new queue management scheme, Interference Drop Scheme (IDS) for ad hoc networks. In the conventional queue management approaches such as FIFO (First-in First-out) and RED (Random Early Detection), a queue is usually managed by a queue length limit. FIFO discards packets according to the queue limit, and RED discards packets in an early and random fashion. IDS, on the other hand, manages the queue according to wireless interference time, which increases as the number of contentions in the MAC layer increases. When there are many MAC contentions, IDS discards TCP data packets. By observing the interference time and discarding TCP data packets, our simulation results show that IDS improves TCP performance and reduces QoS violations in UDP in ad hoc networks with chain, grid, and random topologies. Our simulation results also demonstrate that wireless interference time is a better metric than queue length limit for queue management in multi-hop ad hoc networks.

  17. LBMR: Load-Balanced Multipath Routing for Wireless Data-Intensive Transmission in Real-Time Medical Monitoring.

    PubMed

    Tseng, Chinyang Henry

    2016-05-31

    In wireless networks, low-power Zigbee is an excellent network solution for wireless medical monitoring systems. Medical monitoring generally involves transmission of a large amount of data and easily causes bottleneck problems. Although Zigbee's AODV mesh routing provides extensible multi-hop data transmission to extend network coverage, it originally does not, and needs to support some form of load balancing mechanism to avoid bottlenecks. To guarantee a more reliable multi-hop data transmission for life-critical medical applications, we have developed a multipath solution, called Load-Balanced Multipath Routing (LBMR) to replace Zigbee's routing mechanism. LBMR consists of three main parts: Layer Routing Construction (LRC), a Load Estimation Algorithm (LEA), and a Route Maintenance (RM) mechanism. LRC assigns nodes into different layers based on the node's distance to the medical data gateway. Nodes can have multiple next-hops delivering medical data toward the gateway. All neighboring layer-nodes exchange flow information containing current load, which is the used by the LEA to estimate future load of next-hops to the gateway. With LBMR, nodes can choose the neighbors with the least load as the next-hops and thus can achieve load balancing and avoid bottlenecks. Furthermore, RM can detect route failures in real-time and perform route redirection to ensure routing robustness. Since LRC and LEA prevent bottlenecks while RM ensures routing fault tolerance, LBMR provides a highly reliable routing service for medical monitoring. To evaluate these accomplishments, we compare LBMR with Zigbee's AODV and another multipath protocol, AOMDV. The simulation results demonstrate LBMR achieves better load balancing, less unreachable nodes, and better packet delivery ratio than either AODV or AOMDV.

  18. LBMR: Load-Balanced Multipath Routing for Wireless Data-Intensive Transmission in Real-Time Medical Monitoring

    PubMed Central

    Tseng, Chinyang Henry

    2016-01-01

    In wireless networks, low-power Zigbee is an excellent network solution for wireless medical monitoring systems. Medical monitoring generally involves transmission of a large amount of data and easily causes bottleneck problems. Although Zigbee’s AODV mesh routing provides extensible multi-hop data transmission to extend network coverage, it originally does not, and needs to support some form of load balancing mechanism to avoid bottlenecks. To guarantee a more reliable multi-hop data transmission for life-critical medical applications, we have developed a multipath solution, called Load-Balanced Multipath Routing (LBMR) to replace Zigbee’s routing mechanism. LBMR consists of three main parts: Layer Routing Construction (LRC), a Load Estimation Algorithm (LEA), and a Route Maintenance (RM) mechanism. LRC assigns nodes into different layers based on the node’s distance to the medical data gateway. Nodes can have multiple next-hops delivering medical data toward the gateway. All neighboring layer-nodes exchange flow information containing current load, which is the used by the LEA to estimate future load of next-hops to the gateway. With LBMR, nodes can choose the neighbors with the least load as the next-hops and thus can achieve load balancing and avoid bottlenecks. Furthermore, RM can detect route failures in real-time and perform route redirection to ensure routing robustness. Since LRC and LEA prevent bottlenecks while RM ensures routing fault tolerance, LBMR provides a highly reliable routing service for medical monitoring. To evaluate these accomplishments, we compare LBMR with Zigbee’s AODV and another multipath protocol, AOMDV. The simulation results demonstrate LBMR achieves better load balancing, less unreachable nodes, and better packet delivery ratio than either AODV or AOMDV. PMID:27258297

  19. Identifying Corresponding Patches in SAR and Optical Images With a Pseudo-Siamese CNN

    NASA Astrophysics Data System (ADS)

    Hughes, Lloyd H.; Schmitt, Michael; Mou, Lichao; Wang, Yuanyuan; Zhu, Xiao Xiang

    2018-05-01

    In this letter, we propose a pseudo-siamese convolutional neural network (CNN) architecture that enables to solve the task of identifying corresponding patches in very-high-resolution (VHR) optical and synthetic aperture radar (SAR) remote sensing imagery. Using eight convolutional layers each in two parallel network streams, a fully connected layer for the fusion of the features learned in each stream, and a loss function based on binary cross-entropy, we achieve a one-hot indication if two patches correspond or not. The network is trained and tested on an automatically generated dataset that is based on a deterministic alignment of SAR and optical imagery via previously reconstructed and subsequently co-registered 3D point clouds. The satellite images, from which the patches comprising our dataset are extracted, show a complex urban scene containing many elevated objects (i.e. buildings), thus providing one of the most difficult experimental environments. The achieved results show that the network is able to predict corresponding patches with high accuracy, thus indicating great potential for further development towards a generalized multi-sensor key-point matching procedure. Index Terms-synthetic aperture radar (SAR), optical imagery, data fusion, deep learning, convolutional neural networks (CNN), image matching, deep matching

  20. Comparing success levels of different neural network structures in extracting discriminative information from the response patterns of a temperature-modulated resistive gas sensor

    NASA Astrophysics Data System (ADS)

    Hosseini-Golgoo, S. M.; Bozorgi, H.; Saberkari, A.

    2015-06-01

    Performances of three neural networks, consisting of a multi-layer perceptron, a radial basis function, and a neuro-fuzzy network with local linear model tree training algorithm, in modeling and extracting discriminative features from the response patterns of a temperature-modulated resistive gas sensor are quantitatively compared. For response pattern recording, a voltage staircase containing five steps each with a 20 s plateau is applied to the micro-heater of the sensor, when 12 different target gases, each at 11 concentration levels, are present. In each test, the hidden layer neuron weights are taken as the discriminatory feature vector of the target gas. These vectors are then mapped to a 3D feature space using linear discriminant analysis. The discriminative information content of the feature vectors are determined by the calculation of the Fisher’s discriminant ratio, affording quantitative comparison among the success rates achieved by the different neural network structures. The results demonstrate a superior discrimination ratio for features extracted from local linear neuro-fuzzy and radial-basis-function networks with recognition rates of 96.27% and 90.74%, respectively.

  1. Heart Rate Variability Dynamics for the Prognosis of Cardiovascular Risk

    PubMed Central

    Ramirez-Villegas, Juan F.; Lam-Espinosa, Eric; Ramirez-Moreno, David F.; Calvo-Echeverry, Paulo C.; Agredo-Rodriguez, Wilfredo

    2011-01-01

    Statistical, spectral, multi-resolution and non-linear methods were applied to heart rate variability (HRV) series linked with classification schemes for the prognosis of cardiovascular risk. A total of 90 HRV records were analyzed: 45 from healthy subjects and 45 from cardiovascular risk patients. A total of 52 features from all the analysis methods were evaluated using standard two-sample Kolmogorov-Smirnov test (KS-test). The results of the statistical procedure provided input to multi-layer perceptron (MLP) neural networks, radial basis function (RBF) neural networks and support vector machines (SVM) for data classification. These schemes showed high performances with both training and test sets and many combinations of features (with a maximum accuracy of 96.67%). Additionally, there was a strong consideration for breathing frequency as a relevant feature in the HRV analysis. PMID:21386966

  2. Testing the applicability of artificial intelligence techniques to the subject of erythemal ultraviolet solar radiation. Part two: an intelligent system based on multi-classifier technique.

    PubMed

    Elminir, Hamdy K; Own, Hala S; Azzam, Yosry A; Riad, A M

    2008-03-28

    The problem we address here describes the on-going research effort that takes place to shed light on the applicability of using artificial intelligence techniques to predict the local noon erythemal UV irradiance in the plain areas of Egypt. In light of this fact, we use the bootstrap aggregating (bagging) algorithm to improve the prediction accuracy reported by a multi-layer perceptron (MLP) network. The results showed that, the overall prediction accuracy for the MLP network was only 80.9%. When bagging algorithm is used, the accuracy reached 94.8%; an improvement of about 13.9% was achieved. These improvements demonstrate the efficiency of the bagging procedure, and may be used as a promising tool at least for the plain areas of Egypt.

  3. APPLICATION OF A NEW LAND-SURFACE, DRY DEPOSITION, AND PBL MODEL IN THE MODELS-3 COMMUNITY MULTI-SCALE AIR QUALITY (CMAQ) MODEL SYSTEM

    EPA Science Inventory

    Like most air quality modeling systems, CMAQ divides the treatment of meteorological and chemical/transport processes into separate models run sequentially. A potential drawback to this approach is that it creates the illusion that these processes are minimally interdependent an...

  4. On the Political Economy of Educational Vouchers. NBER Working Paper No. 17986

    ERIC Educational Resources Information Center

    Epple, Dennis N.; Romano, Richard

    2012-01-01

    Two significant challenges hamper analyses of collective choice of educational vouchers. One is the multi-dimensional choice set arising from the interdependence of the voucher, public education spending, and taxation. The other is that household preferences between public and private schooling vary with the policy chosen. Even absent a voucher,…

  5. Millimetre-Wave Backhaul for 5G Networks: Challenges and Solutions

    PubMed Central

    Feng, Wei; Li, Yong; Jin, Depeng; Su, Li; Chen, Sheng

    2016-01-01

    The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design. PMID:27322265

  6. Super-Joule heating in graphene and silver nanowire network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maize, Kerry; Das, Suprem R.; Sadeque, Sajia

    Transistors, sensors, and transparent conductors based on randomly assembled nanowire networks rely on multi-component percolation for unique and distinctive applications in flexible electronics, biochemical sensing, and solar cells. While conduction models for 1-D and 1-D/2-D networks have been developed, typically assuming linear electronic transport and self-heating, the model has not been validated by direct high-resolution characterization of coupled electronic pathways and thermal response. In this letter, we show the occurrence of nonlinear “super-Joule” self-heating at the transport bottlenecks in networks of silver nanowires and silver nanowire/single layer graphene hybrid using high resolution thermoreflectance (TR) imaging. TR images at the microscopicmore » self-heating hotspots within nanowire network and nanowire/graphene hybrid network devices with submicron spatial resolution are used to infer electrical current pathways. The results encourage a fundamental reevaluation of transport models for network-based percolating conductors.« less

  7. Exploring the Relationship between Technology and Social Values.

    ERIC Educational Resources Information Center

    Marker, Gerald W.

    Modern society should consider the social consequences of science and technology. Examples of problems which have recently arisen from the increased interdependence of technology and society include depletion of the ozone layer of the atmosphere by aerosol sprays, prolongation of life by artificial means, and rapidly increasing population due…

  8. Multilayer network modeling of integrated biological systems. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    NASA Astrophysics Data System (ADS)

    De Domenico, Manlio

    2018-03-01

    Biological systems, from a cell to the human brain, are inherently complex. A powerful representation of such systems, described by an intricate web of relationships across multiple scales, is provided by complex networks. Recently, several studies are highlighting how simple networks - obtained by aggregating or neglecting temporal or categorical description of biological data - are not able to account for the richness of information characterizing biological systems. More complex models, namely multilayer networks, are needed to account for interdependencies, often varying across time, of biological interacting units within a cell, a tissue or parts of an organism.

  9. Economic networks: the new challenges.

    PubMed

    Schweitzer, Frank; Fagiolo, Giorgio; Sornette, Didier; Vega-Redondo, Fernando; Vespignani, Alessandro; White, Douglas R

    2009-07-24

    The current economic crisis illustrates a critical need for new and fundamental understanding of the structure and dynamics of economic networks. Economic systems are increasingly built on interdependencies, implemented through trans-national credit and investment networks, trade relations, or supply chains that have proven difficult to predict and control. We need, therefore, an approach that stresses the systemic complexity of economic networks and that can be used to revise and extend established paradigms in economic theory. This will facilitate the design of policies that reduce conflicts between individual interests and global efficiency, as well as reduce the risk of global failure by making economic networks more robust.

  10. GMPLS-based control plane for optical networks: early implementation experience

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Pendarakis, Dimitrios; Komaee, Nooshin; Saha, Debanjan

    2002-07-01

    Generalized Multi-Protocol Label Switching (GMPLS) extends MPLS signaling and Internet routing protocols to provide a scalable, interoperable, distributed control plane, which is applicable to multiple network technologies such as optical cross connects (OXCs), photonic switches, IP routers, ATM switches, SONET and DWDM systems. It is intended to facilitate automatic service provisioning and dynamic neighbor and topology discovery across multi-vendor intelligent transport networks, as well as their clients. Efforts to standardize such a distributed common control plane have reached various stages in several bodies such as the IETF, ITU and OIF. This paper describes the design considerations and architecture of a GMPLS-based control plane that we have prototyped for core optical networks. Functional components of GMPLS signaling and routing are integrated in this architecture with an application layer controller module. Various requirements including bandwidth, network protection and survivability, traffic engineering, optimal utilization of network resources, and etc. are taken into consideration during path computation and provisioning. Initial experiments with our prototype demonstrate the feasibility and main benefits of GMPLS as a distributed control plane for core optical networks. In addition to such feasibility results, actual adoption and deployment of GMPLS as a common control plane for intelligent transport networks will depend on the successful completion of relevant standardization activities, extensive interoperability testing as well as the strengthening of appropriate business drivers.

  11. Assessing Group Interaction with Social Language Network Analysis

    NASA Astrophysics Data System (ADS)

    Scholand, Andrew J.; Tausczik, Yla R.; Pennebaker, James W.

    In this paper we discuss a new methodology, social language network analysis (SLNA), that combines tools from social language processing and network analysis to assess socially situated working relationships within a group. Specifically, SLNA aims to identify and characterize the nature of working relationships by processing artifacts generated with computer-mediated communication systems, such as instant message texts or emails. Because social language processing is able to identify psychological, social, and emotional processes that individuals are not able to fully mask, social language network analysis can clarify and highlight complex interdependencies between group members, even when these relationships are latent or unrecognized.

  12. Modelling the effect of perceived interdependence among mental healthcare professionals on their work role performance.

    PubMed

    Markon, Marie-Pierre; Chiocchio, François; Fleury, Marie-Josée

    2017-07-01

    The purpose of mental healthcare system reform was to enhance service efficiency by strengthening primary mental healthcare and increasing service integration in communities. Reinforcing interprofessional teamwork also intended to address the extensive and multidimensional needs of patients with mental disorders by bringing together a broader array of expertise. In this context, mental healthcare professionals (MHCPs) from various health and social care professions are more interdependent in many aspects of their work (tasks, resources, and goals). We wanted to examine the effect of perceived interdependence among MHCPs on their work role performance in the context of mental healthcare. For this purpose, we developed and tested a model coherent with the Input-Mediator-Outcome-Input (IMOI) framework of team effectiveness. Data from questionnaires administered to 315 MHCPs from four local health service networks in Quebec, Canada were analysed through structural equation modelling and mediation analysis. The structural equation model provided a good fit for the data and explained 51% of the variance of work role performance. Perceived collaboration, confidence in the advantages of interprofessional collaboration, involvement in the decision process, knowledge sharing, and satisfaction with the nature of the work partially mediated the effect of perceived interdependence among team members on work role performance. Therefore, perceived interdependence among team members had a positive impact on the work role performance of MHCPs mostly through its effect on favourable team functioning features. This implies, in practice, that increased interdependence of MHCPs would be more likely to truly enhance work role performance if team-based interventions to promote collaborative work and interprofessional teaching and training programs to support work within interprofessional teams were jointly implemented. Participation in the decision process and knowledge sharing should also be fostered, for instance, by adopting knowledge management best practices.

  13. Educating American Protestant Religious Educators

    ERIC Educational Resources Information Center

    Foster, Charles R.

    2015-01-01

    The voluntarism in Protestant theologies and practices has significantly shaped the education of lay and professional Protestant religious educators in networks of voluntary and academic training programs that through the years have emphasized the interdependence of pedagogical, religious/theological, and social science theories and practices.…

  14. New solutions for climate network visualization

    NASA Astrophysics Data System (ADS)

    Nocke, Thomas; Buschmann, Stefan; Donges, Jonathan F.; Marwan, Norbert

    2016-04-01

    An increasing amount of climate and climate impact research methods deals with geo-referenced networks, including energy, trade, supply-chain, disease dissemination and climatic tele-connection networks. At the same time, the size and complexity of these networks increases, resulting in networks of more than hundred thousand or even millions of edges, which are often temporally evolving, have additional data at nodes and edges, and can consist of multiple layers even in real 3D. This gives challenges to both the static representation and the interactive exploration of these networks, first of all avoiding edge clutter ("edge spagetti") and allowing interactivity even for unfiltered networks. Within this presentation, we illustrate potential solutions to these challenges. Therefore, we give a glimpse on a questionnaire performed with climate and complex system scientists with respect to their network visualization requirements, and on a review of available state-of-the-art visualization techniques and tools for this purpose (see as well Nocke et al., 2015). In the main part, we present alternative visualization solutions for several use cases (global, regional, and multi-layered climate networks) including alternative geographic projections, edge bundling, and 3-D network support (based on CGV and GTX tools), and implementation details to reach interactive frame rates. References: Nocke, T., S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz, and C. Tominski: Review: Visual analytics of climate networks, Nonlinear Processes in Geophysics, 22, 545-570, doi:10.5194/npg-22-545-2015, 2015

  15. Visual pathways from the perspective of cost functions and multi-task deep neural networks.

    PubMed

    Scholte, H Steven; Losch, Max M; Ramakrishnan, Kandan; de Haan, Edward H F; Bohte, Sander M

    2018-01-01

    Vision research has been shaped by the seminal insight that we can understand the higher-tier visual cortex from the perspective of multiple functional pathways with different goals. In this paper, we try to give a computational account of the functional organization of this system by reasoning from the perspective of multi-task deep neural networks. Machine learning has shown that tasks become easier to solve when they are decomposed into subtasks with their own cost function. We hypothesize that the visual system optimizes multiple cost functions of unrelated tasks and this causes the emergence of a ventral pathway dedicated to vision for perception, and a dorsal pathway dedicated to vision for action. To evaluate the functional organization in multi-task deep neural networks, we propose a method that measures the contribution of a unit towards each task, applying it to two networks that have been trained on either two related or two unrelated tasks, using an identical stimulus set. Results show that the network trained on the unrelated tasks shows a decreasing degree of feature representation sharing towards higher-tier layers while the network trained on related tasks uniformly shows high degree of sharing. We conjecture that the method we propose can be used to analyze the anatomical and functional organization of the visual system and beyond. We predict that the degree to which tasks are related is a good descriptor of the degree to which they share downstream cortical-units. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modeling Water and Nutrient Transport through the Soil-Root-Canopy Continuum: Explicitly Linking the Below- and Above-Ground Processes

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Quijano, J. C.; Drewry, D.

    2010-12-01

    Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling results using coupled partial differential equations of transport in soils and roots along with that for nutrient dynamics. We study the feedbkack of HR on the dynamics of water and nitrogen cycling in the soil and how these dynamics influence root water and nitrogen uptake and consequently carbon assimilation by the canopy. The forcing data is obtained from the Ameriflux Tower located in Blodgett Forest, Sierra Nevada, California. We consider single-species (Ponderosa Pine) and multi-species (overstory Ponderosa Pine and understory shrubs) interaction. When single species is considered, the near surface soil-moisture available from HR during dry summer season is an important source of evaporation and contributes significantly to the total ET flux. However, when multi-species interactions are taken into account, the soil-water from the HR becomes an important source of transpiration from the understory. The results also show that passive plant nitrogen uptake is higher when HR is present and it is critical for sustaining expected rates of carbon assimilation.

  17. A Multi-Modal Face Recognition Method Using Complete Local Derivative Patterns and Depth Maps

    PubMed Central

    Yin, Shouyi; Dai, Xu; Ouyang, Peng; Liu, Leibo; Wei, Shaojun

    2014-01-01

    In this paper, we propose a multi-modal 2D + 3D face recognition method for a smart city application based on a Wireless Sensor Network (WSN) and various kinds of sensors. Depth maps are exploited for the 3D face representation. As for feature extraction, we propose a new feature called Complete Local Derivative Pattern (CLDP). It adopts the idea of layering and has four layers. In the whole system, we apply CLDP separately on Gabor features extracted from a 2D image and depth map. Then, we obtain two features: CLDP-Gabor and CLDP-Depth. The two features weighted by the corresponding coefficients are combined together in the decision level to compute the total classification distance. At last, the probe face is assigned the identity with the smallest classification distance. Extensive experiments are conducted on three different databases. The results demonstrate the robustness and superiority of the new approach. The experimental results also prove that the proposed multi-modal 2D + 3D method is superior to other multi-modal ones and CLDP performs better than other Local Binary Pattern (LBP) based features. PMID:25333290

  18. Cellular computational generalized neuron network for frequency situational intelligence in a multi-machine power system.

    PubMed

    Wei, Yawei; Venayagamoorthy, Ganesh Kumar

    2017-09-01

    To prevent large interconnected power system from a cascading failure, brownout or even blackout, grid operators require access to faster than real-time information to make appropriate just-in-time control decisions. However, the communication and computational system limitations of currently used supervisory control and data acquisition (SCADA) system can only deliver delayed information. However, the deployment of synchrophasor measurement devices makes it possible to capture and visualize, in near-real-time, grid operational data with extra granularity. In this paper, a cellular computational network (CCN) approach for frequency situational intelligence (FSI) in a power system is presented. The distributed and scalable computing unit of the CCN framework makes it particularly flexible for customization for a particular set of prediction requirements. Two soft-computing algorithms have been implemented in the CCN framework: a cellular generalized neuron network (CCGNN) and a cellular multi-layer perceptron network (CCMLPN), for purposes of providing multi-timescale frequency predictions, ranging from 16.67 ms to 2 s. These two developed CCGNN and CCMLPN systems were then implemented on two different scales of power systems, one of which installed a large photovoltaic plant. A real-time power system simulator at weather station within the Real-Time Power and Intelligent Systems (RTPIS) laboratory at Clemson, SC, was then used to derive typical FSI results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. An architecture for designing fuzzy logic controllers using neural networks

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  20. Network theory and its applications in economic systems

    NASA Astrophysics Data System (ADS)

    Huang, Xuqing

    This dissertation covers the two major parts of my Ph.D. research: i) developing theoretical framework of complex networks; and ii) applying complex networks models to quantitatively analyze economics systems. In part I, we focus on developing theories of interdependent networks, which includes two chapters: 1) We develop a mathematical framework to study the percolation of interdependent networks under targeted-attack and find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc = 0, coupled SF networks are significantly more vulnerable with pc significantly larger than zero. 2) We analytically demonstrates that clustering, which quantifies the propensity for two neighbors of the same vertex to also be neighbors of each other, significantly increases the vulnerability of the system. In part II, we apply the complex networks models to study economics systems, which also includes two chapters: 1) We study the US corporate governance network, in which nodes representing directors and links between two directors representing their service on common company boards, and propose a quantitative measure of information and influence transformation in the network. Thus we are able to identify the most influential directors in the network. 2) We propose a bipartite networks model to simulate the risk propagation process among commercial banks during financial crisis. With empirical bank's balance sheet data in 2007 as input to the model, we find that our model efficiently identifies a significant portion of the actual failed banks reported by Federal Deposit Insurance Corporation during the financial crisis between 2008 and 2011. The results suggest that complex networks model could be useful for systemic risk stress testing for financial systems. The model also identifies that commercial rather than residential real estate assets are major culprits for the failure of over 350 US commercial banks during 2008 - 2011.

  1. Synchronous Chaos and Broad Band Gamma Rhythm in a Minimal Multi-Layer Model of Primary Visual Cortex

    PubMed Central

    Battaglia, Demian; Hansel, David

    2011-01-01

    Visually induced neuronal activity in V1 displays a marked gamma-band component which is modulated by stimulus properties. It has been argued that synchronized oscillations contribute to these gamma-band activity. However, analysis of Local Field Potentials (LFPs) across different experiments reveals considerable diversity in the degree of oscillatory behavior of this induced activity. Contrast-dependent power enhancements can indeed occur over a broad band in the gamma frequency range and spectral peaks may not arise at all. Furthermore, even when oscillations are observed, they undergo temporal decorrelation over very few cycles. This is not easily accounted for in previous network modeling of gamma oscillations. We argue here that interactions between cortical layers can be responsible for this fast decorrelation. We study a model of a V1 hypercolumn, embedding a simplified description of the multi-layered structure of the cortex. When the stimulus contrast is low, the induced activity is only weakly synchronous and the network resonates transiently without developing collective oscillations. When the contrast is high, on the other hand, the induced activity undergoes synchronous oscillations with an irregular spatiotemporal structure expressing a synchronous chaotic state. As a consequence the population activity undergoes fast temporal decorrelation, with concomitant rapid damping of the oscillations in LFPs autocorrelograms and peak broadening in LFPs power spectra. We show that the strength of the inter-layer coupling crucially affects this spatiotemporal structure. We predict that layer VI inactivation should induce global changes in the spectral properties of induced LFPs, reflecting their slower temporal decorrelation in the absence of inter-layer feedback. Finally, we argue that the mechanism underlying the emergence of synchronous chaos in our model is in fact very general. It stems from the fact that gamma oscillations induced by local delayed inhibition tend to develop chaos when coupled by sufficiently strong excitation. PMID:21998568

  2. Deep learning in the small sample size setting: cascaded feed forward neural networks for medical image segmentation

    NASA Astrophysics Data System (ADS)

    Gaonkar, Bilwaj; Hovda, David; Martin, Neil; Macyszyn, Luke

    2016-03-01

    Deep Learning, refers to large set of neural network based algorithms, have emerged as promising machine- learning tools in the general imaging and computer vision domains. Convolutional neural networks (CNNs), a specific class of deep learning algorithms, have been extremely effective in object recognition and localization in natural images. A characteristic feature of CNNs, is the use of a locally connected multi layer topology that is inspired by the animal visual cortex (the most powerful vision system in existence). While CNNs, perform admirably in object identification and localization tasks, typically require training on extremely large datasets. Unfortunately, in medical image analysis, large datasets are either unavailable or are extremely expensive to obtain. Further, the primary tasks in medical imaging are organ identification and segmentation from 3D scans, which are different from the standard computer vision tasks of object recognition. Thus, in order to translate the advantages of deep learning to medical image analysis, there is a need to develop deep network topologies and training methodologies, that are geared towards medical imaging related tasks and can work in a setting where dataset sizes are relatively small. In this paper, we present a technique for stacked supervised training of deep feed forward neural networks for segmenting organs from medical scans. Each `neural network layer' in the stack is trained to identify a sub region of the original image, that contains the organ of interest. By layering several such stacks together a very deep neural network is constructed. Such a network can be used to identify extremely small regions of interest in extremely large images, inspite of a lack of clear contrast in the signal or easily identifiable shape characteristics. What is even more intriguing is that the network stack achieves accurate segmentation even when it is trained on a single image with manually labelled ground truth. We validate this approach,using a publicly available head and neck CT dataset. We also show that a deep neural network of similar depth, if trained directly using backpropagation, cannot acheive the tasks achieved using our layer wise training paradigm.

  3. Hybrid phase transition into an absorbing state: Percolation and avalanches

    NASA Astrophysics Data System (ADS)

    Lee, Deokjae; Choi, S.; Stippinger, M.; Kertész, J.; Kahng, B.

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent βm of the order parameter is 1 /2 under general conditions, while the value of the exponent γm characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, βa and γa. These two critical behaviors are coupled by a scaling law: 1 -βm=γa .

  4. Trust Management and Accountability for Internet Security

    ERIC Educational Resources Information Center

    Liu, Wayne W.

    2011-01-01

    Adversarial yet interacting interdependent relationships in information sharing and service provisioning have been a pressing issue of the Internet. Such relationships exist among autonomous software agents, in networking system peers, as well as between "service users and providers." Traditional "ad hoc" security approaches effective in…

  5. Assessment of wastewater treatment alternatives for small communities: An analytic network process approach.

    PubMed

    Molinos-Senante, María; Gómez, Trinidad; Caballero, Rafael; Hernández-Sancho, Francesc; Sala-Garrido, Ramón

    2015-11-01

    The selection of the most appropriate wastewater treatment (WWT) technology is a complex problem since many alternatives are available and many criteria are involved in the decision-making process. To deal with this challenge, the analytic network process (ANP) is applied for the first time to rank a set of seven WWT technology set-ups for secondary treatment in small communities. A major advantage of ANP is that it incorporates interdependent relationships between elements. Results illustrated that extensive technologies, constructed wetlands and pond systems are the most preferred alternatives by WWT experts. The sensitivity analysis performed verified that the ranking of WWT alternatives is very stable since constructed wetlands are almost always placed in the first position. This paper showed that ANP analysis is suitable to deal with complex decision-making problems, such as the selection of the most appropriate WWT system contributing to better understand the multiple interdependences among elements involved in the assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The interdependence of excitation and inhibition for the control of dynamic breathing rhythms.

    PubMed

    Baertsch, Nathan Andrew; Baertsch, Hans Christopher; Ramirez, Jan Marino

    2018-02-26

    The preBötzinger Complex (preBötC), a medullary network critical for breathing, relies on excitatory interneurons to generate the inspiratory rhythm. Yet, half of preBötC neurons are inhibitory, and the role of inhibition in rhythmogenesis remains controversial. Using optogenetics and electrophysiology in vitro and in vivo, we demonstrate that the intrinsic excitability of excitatory neurons is reduced following large depolarizing inspiratory bursts. This refractory period limits the preBötC to very slow breathing frequencies. Inhibition integrated within the network is required to prevent overexcitation of preBötC neurons, thereby regulating the refractory period and allowing rapid breathing. In vivo, sensory feedback inhibition also regulates the refractory period, and in slowly breathing mice with sensory feedback removed, activity of inhibitory, but not excitatory, neurons restores breathing to physiological frequencies. We conclude that excitation and inhibition are interdependent for the breathing rhythm, because inhibition permits physiological preBötC bursting by controlling refractory properties of excitatory neurons.

  7. Variable weight spectral amplitude coding for multiservice OCDMA networks

    NASA Astrophysics Data System (ADS)

    Seyedzadeh, Saleh; Rahimian, Farzad Pour; Glesk, Ivan; Kakaee, Majid H.

    2017-09-01

    The emergence of heterogeneous data traffic such as voice over IP, video streaming and online gaming have demanded networks with capability of supporting quality of service (QoS) at the physical layer with traffic prioritisation. This paper proposes a new variable-weight code based on spectral amplitude coding for optical code-division multiple-access (OCDMA) networks to support QoS differentiation. The proposed variable-weight multi-service (VW-MS) code relies on basic matrix construction. A mathematical model is developed for performance evaluation of VW-MS OCDMA networks. It is shown that the proposed code provides an optimal code length with minimum cross-correlation value when compared to other codes. Numerical results for a VW-MS OCDMA network designed for triple-play services operating at 0.622 Gb/s, 1.25 Gb/s and 2.5 Gb/s are considered.

  8. Comparison of universal approximators incorporating partial monotonicity by structure.

    PubMed

    Minin, Alexey; Velikova, Marina; Lang, Bernhard; Daniels, Hennie

    2010-05-01

    Neural networks applied in control loops and safety-critical domains have to meet more requirements than just the overall best function approximation. On the one hand, a small approximation error is required; on the other hand, the smoothness and the monotonicity of selected input-output relations have to be guaranteed. Otherwise, the stability of most of the control laws is lost. In this article we compare two neural network-based approaches incorporating partial monotonicity by structure, namely the Monotonic Multi-Layer Perceptron (MONMLP) network and the Monotonic MIN-MAX (MONMM) network. We show the universal approximation capabilities of both types of network for partially monotone functions. On a number of datasets, we investigate the advantages and disadvantages of these approaches related to approximation performance, training of the model and convergence. 2009 Elsevier Ltd. All rights reserved.

  9. Correlated network of networks enhances robustness against catastrophic failures.

    PubMed

    Min, Byungjoon; Zheng, Muhua

    2018-01-01

    Networks in nature rarely function in isolation but instead interact with one another with a form of a network of networks (NoN). A network of networks with interdependency between distinct networks contains instability of abrupt collapse related to the global rule of activation. As a remedy of the collapse instability, here we investigate a model of correlated NoN. We find that the collapse instability can be removed when hubs provide the majority of interconnections and interconnections are convergent between hubs. Thus, our study identifies a stable structure of correlated NoN against catastrophic failures. Our result further suggests a plausible way to enhance network robustness by manipulating connection patterns, along with other methods such as controlling the state of node based on a local rule.

  10. Correlated network of networks enhances robustness against catastrophic failures

    PubMed Central

    Zheng, Muhua

    2018-01-01

    Networks in nature rarely function in isolation but instead interact with one another with a form of a network of networks (NoN). A network of networks with interdependency between distinct networks contains instability of abrupt collapse related to the global rule of activation. As a remedy of the collapse instability, here we investigate a model of correlated NoN. We find that the collapse instability can be removed when hubs provide the majority of interconnections and interconnections are convergent between hubs. Thus, our study identifies a stable structure of correlated NoN against catastrophic failures. Our result further suggests a plausible way to enhance network robustness by manipulating connection patterns, along with other methods such as controlling the state of node based on a local rule. PMID:29668730

  11. Preparation and properties of the multi-layer aerogel thermal insulation composites

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Feng, Junzong; Jiang, Yonggang; Zhang, Zhongming; Feng, Jian

    2018-03-01

    Multi-layer insulation materials possess low radiation thermal conductivity, and excellent thermal insulation property in a vacuum environment. However, the spacers of the traditional multi-layer insulation materials are mostly loose fibers, which lead to more sensitive to the vacuum environmental of serviced. With the vacuum degree declining, gas phases thermal convection increase obviously, and the reflective screen will be severe oxidation, all of these make the thermal insulation property of traditional multi-layer insulation deteriorate, thus limits its application scope. In this paper, traditional multi-layer insulation material is combined with aerogel and obtain a new multi-layer aerogel thermal insulation composite, and the effects of the number, thickness and type of the reflective screens on the thermal insulation properties of the multi-layer composites are also studied. The result is that the thermal insulation property of the new type multi-layer aerogel composites is better than the pure aerogel composites and the traditional multi-layer insulation composites. When the 0.01 mm stainless steel foil as the reflective screen, and the aluminum silicate fiber and silica aerogel as the spacer layer, the layer density of composite with the best thermal insulation property is one layer per millimeter at 1000 °C.

  12. The 3-D image recognition based on fuzzy neural network technology

    NASA Technical Reports Server (NTRS)

    Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei

    1993-01-01

    Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.

  13. Artificial neural networks and approximate reasoning for intelligent control in space

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    A method is introduced for learning to refine the control rules of approximate reasoning-based controllers. A reinforcement-learning technique is used in conjunction with a multi-layer neural network model of an approximate reasoning-based controller. The model learns by updating its prediction of the physical system's behavior. The model can use the control knowledge of an experienced operator and fine-tune it through the process of learning. Some of the space domains suitable for applications of the model such as rendezvous and docking, camera tracking, and tethered systems control are discussed.

  14. System approach to distributed sensor management

    NASA Astrophysics Data System (ADS)

    Mayott, Gregory; Miller, Gordon; Harrell, John; Hepp, Jared; Self, Mid

    2010-04-01

    Since 2003, the US Army's RDECOM CERDEC Night Vision Electronic Sensor Directorate (NVESD) has been developing a distributed Sensor Management System (SMS) that utilizes a framework which demonstrates application layer, net-centric sensor management. The core principles of the design support distributed and dynamic discovery of sensing devices and processes through a multi-layered implementation. This results in a sensor management layer that acts as a System with defined interfaces for which the characteristics, parameters, and behaviors can be described. Within the framework, the definition of a protocol is required to establish the rules for how distributed sensors should operate. The protocol defines the behaviors, capabilities, and message structures needed to operate within the functional design boundaries. The protocol definition addresses the requirements for a device (sensors or processes) to dynamically join or leave a sensor network, dynamically describe device control and data capabilities, and allow dynamic addressing of publish and subscribe functionality. The message structure is a multi-tiered definition that identifies standard, extended, and payload representations that are specifically designed to accommodate the need for standard representations of common functions, while supporting the need for feature-based functions that are typically vendor specific. The dynamic qualities of the protocol enable a User GUI application the flexibility of mapping widget-level controls to each device based on reported capabilities in real-time. The SMS approach is designed to accommodate scalability and flexibility within a defined architecture. The distributed sensor management framework and its application to a tactical sensor network will be described in this paper.

  15. NASA GIBS Use in Live Planetarium Shows

    NASA Astrophysics Data System (ADS)

    Emmart, C. B.

    2015-12-01

    The American Museum of Natural History's Hayden Planetarium was rebuilt in year 2000 as an immersive theater for scientific data visualization to show the universe in context to our planet. Specific astrophysical movie productions provide the main daily programming, but interactive control software, developed at AMNH allows immersive presentation within a data aggregation of astronomical catalogs called the Digital Universe 3D Atlas. Since 2006, WMS globe browsing capabilities have been built into a software development collaboration with Sweden's Linkoping University (LiU). The resulting Uniview software, now a product of the company SCISS, is operated by about fifty planetariums around that world with ability to network amongst the sites for global presentations. Public presentation of NASA GIBS has allowed authoritative narratives to be presented within the range of data available in context to other sources such as Science on a Sphere, NASA Earth Observatory and Google Earth KML resources. Specifically, the NOAA supported World Views Network conducted a series of presentations across the US that focused on local ecological issues that could then be expanded in the course of presentation to national and global scales of examination. NASA support of for GIBS resources in an easy access multi scale streaming format like WMS has tremendously enabled particularly facile presentations of global monitoring like never before. Global networking of theaters for distributed presentations broadens out the potential for impact of this medium. Archiving and refinement of these presentations has already begun to inform new types of documentary productions that examine pertinent, global interdependency topics.

  16. Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity.

    PubMed

    Kaya, Mine; Hajimirza, Shima

    2018-05-25

    This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.

  17. Fuzzy Neural Classifiers for Multi-Wavelength Interdigital Sensors

    NASA Astrophysics Data System (ADS)

    Xenides, D.; Vlachos, D. S.; Simos, T. E.

    2007-12-01

    The use of multi-wavelength interdigital sensors for non-destructive testing is based on the capability of the measuring system to classify the measured impendence according to some physical properties of the material under test. By varying the measuring frequency and the wavelength of the sensor (and thus the penetration depth of the electric field inside the material under test) we can produce images that correspond to various configurations of dielectric materials under different geometries. The implementation of a fuzzy neural network witch inputs these images for both quantitative and qualitative sensing is demonstrated. The architecture of the system is presented with some references to the general theory of fuzzy sets and fuzzy calculus. Experimental results are presented in the case of a set of 8 well characterized dielectric layers. Finally the effect of network parameters to the functionality of the system is discussed, especially in the case of functions evaluating the fuzzy AND and OR operations.

  18. A GIS-BASED MULTI-CRITERIA EVALUATION SYSTEM FOR SELECTION OF LANDFILL SITES: a case study from Abu Dhabi, United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Issa, S. M.; Shehhi, B. Al

    2012-07-01

    Landfill sites receive 92% of total annual solid waste produced by municipalities in the emirate of Abu Dhabi. In this study, candidate sites for an appropriate landfill location for the Abu Dhabi municipal area are determined by integrating geographic information systems (GIS) and multi-criteria evaluation (MCE) analysis. To identify appropriate landfill sites, eight input map layers including proximity to urban areas, proximity to wells and water table depth, geology and topography, proximity to touristic and archeological sites, distance from roads network, distance from drainage networks, and land slope are used in constraint mapping. A final map was generated which identified potential areas showing suitability for the location of the landfill site. Results revealed that 30% of the study area was identified as highly suitable, 25% as suitable, and 45% as unsuitable. The selection of the final landfill site, however, requires further field research.

  19. Urdu Nasta'liq text recognition using implicit segmentation based on multi-dimensional long short term memory neural networks.

    PubMed

    Naz, Saeeda; Umar, Arif Iqbal; Ahmed, Riaz; Razzak, Muhammad Imran; Rashid, Sheikh Faisal; Shafait, Faisal

    2016-01-01

    The recognition of Arabic script and its derivatives such as Urdu, Persian, Pashto etc. is a difficult task due to complexity of this script. Particularly, Urdu text recognition is more difficult due to its Nasta'liq writing style. Nasta'liq writing style inherits complex calligraphic nature, which presents major issues to recognition of Urdu text owing to diagonality in writing, high cursiveness, context sensitivity and overlapping of characters. Therefore, the work done for recognition of Arabic script cannot be directly applied to Urdu recognition. We present Multi-dimensional Long Short Term Memory (MDLSTM) Recurrent Neural Networks with an output layer designed for sequence labeling for recognition of printed Urdu text-lines written in the Nasta'liq writing style. Experiments show that MDLSTM attained a recognition accuracy of 98% for the unconstrained Urdu Nasta'liq printed text, which significantly outperforms the state-of-the-art techniques.

  20. Heave motion prediction of a large barge in random seas by using artificial neural network

    NASA Astrophysics Data System (ADS)

    Lee, Hsiu Eik; Liew, Mohd Shahir; Zawawi, Noor Amila Wan Abdullah; Toloue, Iraj

    2017-11-01

    This paper describes the development of a multi-layer feed forward artificial neural network (ANN) to predict rigid heave body motions of a large catenary moored barge subjected to multi-directional irregular waves. The barge is idealized as a rigid plate of finite draft with planar dimensions 160m (length) and 100m (width) which is held on station using a six point chain catenary mooring in 50m water depth. Hydroelastic effects are neglected from the physical model as the chief intent of this study is focused on large plate rigid body hydrodynamics modelling using ANN. Even with this assumption, the computational requirements for time domain coupled hydrodynamic simulations of a moored floating body is considerably costly, particularly if a large number of simulations are required such as in the case of response based design (RBD) methods. As an alternative to time consuming numerical hydrodynamics, a regression-type ANN model has been developed for efficient prediction of the barge's heave responses to random waves from various directions. It was determined that a network comprising of 3 input features, 2 hidden layers with 5 neurons each and 1 output was sufficient to produce acceptable predictions within 0.02 mean squared error. By benchmarking results from the ANN with those generated by a fully coupled dynamic model in OrcaFlex, it is demonstrated that the ANN is capable of predicting the barge's heave responses with acceptable accuracy.

  1. Skimming Digits: Neuromorphic Classification of Spike-Encoded Images

    PubMed Central

    Cohen, Gregory K.; Orchard, Garrick; Leng, Sio-Hoi; Tapson, Jonathan; Benosman, Ryad B.; van Schaik, André

    2016-01-01

    The growing demands placed upon the field of computer vision have renewed the focus on alternative visual scene representations and processing paradigms. Silicon retinea provide an alternative means of imaging the visual environment, and produce frame-free spatio-temporal data. This paper presents an investigation into event-based digit classification using N-MNIST, a neuromorphic dataset created with a silicon retina, and the Synaptic Kernel Inverse Method (SKIM), a learning method based on principles of dendritic computation. As this work represents the first large-scale and multi-class classification task performed using the SKIM network, it explores different training patterns and output determination methods necessary to extend the original SKIM method to support multi-class problems. Making use of SKIM networks applied to real-world datasets, implementing the largest hidden layer sizes and simultaneously training the largest number of output neurons, the classification system achieved a best-case accuracy of 92.87% for a network containing 10,000 hidden layer neurons. These results represent the highest accuracies achieved against the dataset to date and serve to validate the application of the SKIM method to event-based visual classification tasks. Additionally, the study found that using a square pulse as the supervisory training signal produced the highest accuracy for most output determination methods, but the results also demonstrate that an exponential pattern is better suited to hardware implementations as it makes use of the simplest output determination method based on the maximum value. PMID:27199646

  2. Dynamic Hop Service Differentiation Model for End-to-End QoS Provisioning in Multi-Hop Wireless Networks

    NASA Astrophysics Data System (ADS)

    Youn, Joo-Sang; Seok, Seung-Joon; Kang, Chul-Hee

    This paper presents a new QoS model for end-to-end service provisioning in multi-hop wireless networks. In legacy IEEE 802.11e based multi-hop wireless networks, the fixed assignment of service classes according to flow's priority at every node causes priority inversion problem when performing end-to-end service differentiation. Thus, this paper proposes a new QoS provisioning model called Dynamic Hop Service Differentiation (DHSD) to alleviate the problem and support effective service differentiation between end-to-end nodes. Many previous works for QoS model through the 802.11e based service differentiation focus on packet scheduling on several service queues with different service rate and service priority. Our model, however, concentrates on a dynamic class selection scheme, called Per Hop Class Assignment (PHCA), in the node's MAC layer, which selects a proper service class for each packet, in accordance with queue states and service requirement, in every node along the end-to-end route of the packet. The proposed QoS solution is evaluated using the OPNET simulator. The simulation results show that the proposed model outperforms both best-effort and 802.11e based strict priority service models in mobile ad hoc environments.

  3. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading.

    PubMed

    Li, Siqi; Jiang, Huiyan; Pang, Wenbo

    2017-05-01

    Accurate cell grading of cancerous tissue pathological image is of great importance in medical diagnosis and treatment. This paper proposes a joint multiple fully connected convolutional neural network with extreme learning machine (MFC-CNN-ELM) architecture for hepatocellular carcinoma (HCC) nuclei grading. First, in preprocessing stage, each grayscale image patch with the fixed size is obtained using center-proliferation segmentation (CPS) method and the corresponding labels are marked under the guidance of three pathologists. Next, a multiple fully connected convolutional neural network (MFC-CNN) is designed to extract the multi-form feature vectors of each input image automatically, which considers multi-scale contextual information of deep layer maps sufficiently. After that, a convolutional neural network extreme learning machine (CNN-ELM) model is proposed to grade HCC nuclei. Finally, a back propagation (BP) algorithm, which contains a new up-sample method, is utilized to train MFC-CNN-ELM architecture. The experiment comparison results demonstrate that our proposed MFC-CNN-ELM has superior performance compared with related works for HCC nuclei grading. Meanwhile, external validation using ICPR 2014 HEp-2 cell dataset shows the good generalization of our MFC-CNN-ELM architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A survey on sensor coverage and visual data capturing/processing/transmission in wireless visual sensor networks.

    PubMed

    Yap, Florence G H; Yen, Hong-Hsu

    2014-02-20

    Wireless Visual Sensor Networks (WVSNs) where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs) that can only transmit scalar information (e.g., temperature), the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/ transmit visual data in limited resources (hardware capability and bandwidth) WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/ processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs.

  5. A Survey on Sensor Coverage and Visual Data Capturing/Processing/Transmission in Wireless Visual Sensor Networks

    PubMed Central

    Yap, Florence G. H.; Yen, Hong-Hsu

    2014-01-01

    Wireless Visual Sensor Networks (WVSNs) where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs) that can only transmit scalar information (e.g., temperature), the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/transmit visual data in limited resources (hardware capability and bandwidth) WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs. PMID:24561401

  6. Geo-Distinctive Comorbidity Networks of Pediatric Asthma.

    PubMed

    Shin, Eun Kyong; Shaban-Nejad, Arash

    2018-01-01

    Most pediatric asthma cases occur in complex interdependencies, exhibiting complex manifestation of multiple symptoms. Studying asthma comorbidities can help to better understand the etiology pathway of the disease. Albeit such relations of co-expressed symptoms and their interactions have been highlighted recently, empirical investigation has not been rigorously applied to pediatric asthma cases. In this study, we use computational network modeling and analysis to reveal the links and associations between commonly co-observed diseases/conditions with asthma among children in Memphis, Tennessee. We present a novel method for geo-parsed comorbidity network analysis to show the distinctive patterns of comorbidity networks in urban and suburban areas in Memphis.

  7. Interamerican networks for physics education: some issues and comments

    NASA Astrophysics Data System (ADS)

    Halpern, Teodoro

    1988-10-01

    This paper provides comments about some critical and fundamental issues relevant to the creation of successful interamerican Networks for Physics Education, stressing the need for: Establishing the underlying educational goals for the proposed projects. Clear communication of these goals to interested constituencies and the public at large. Forceful image development to obtain wide-based funding. The interdependence of individuals and institutions in the networks. Closing the developed-vs.-underdeveloped schism. Sucess in this endeavour will eliminate one of the main reasons for failure of a ``cooperative'' project. This paper also provides examples of succesful interamerican Networks and some of the underlying for their successes.

  8. Why is no financial crisis a dress rehearsal for the next? Exploring contagious heterogeneities across major Asian stock markets

    NASA Astrophysics Data System (ADS)

    Dewandaru, Ginanjar; Masih, Rumi; Masih, A. Mansur M.

    2015-02-01

    Our study attempts to discover pure contagion or interdependence amongst the Asian equity markets (China, India, Taiwan and South Korea) due to the shocks stemming from eleven major crises around the world. We apply wavelet decomposition in both its discrete and continuous forms to unveil the multi-horizon nature of co-movement, volatility and lead-lag relationship. We find that most of the earlier shocks were transmitted via excessive linkages or pure contagion, while the recent subprime crisis appears to have resulted mostly in fundamentals-based contagion or interdependence. This assertion is based mainly on the deepening fundamental integration particularly after the Asian financial crisis period. We also find the relatively dominating role of China and South Korea after this crisis.

  9. Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks.

    PubMed

    Sharghi Ido, A; Bonyadi, M R; Etaati, G R; Shahriari, M

    2009-10-01

    Artificial neural networks technology has been applied to unfold the neutron spectra from the pulse height distribution measured with NE213 liquid scintillator. Here, both the single and multi-layer perceptron neural network models have been implemented to unfold the neutron spectrum from an Am-Be neutron source. The activation function and the connectivity of the neurons have been investigated and the results have been analyzed in terms of the network's performance. The simulation results show that the neural network that utilizes the Satlins transfer function has the best performance. In addition, omitting the bias connection of the neurons improve the performance of the network. Also, the SCINFUL code is used for generating the response functions in the training phase of the process. Finally, the results of the neural network simulation have been compared with those of the FORIST unfolding code for both (241)Am-Be and (252)Cf neutron sources. The results of neural network are in good agreement with FORIST code.

  10. Performance analysis of cooperative virtual MIMO systems for wireless sensor networks.

    PubMed

    Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan

    2013-05-28

    Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs.

  11. Performance Analysis of Cooperative Virtual MIMO Systems for Wireless Sensor Networks

    PubMed Central

    Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan

    2013-01-01

    Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs. PMID:23760087

  12. A Multilayer perspective for the analysis of urban transportation systems

    PubMed Central

    Aleta, Alberto; Meloni, Sandro; Moreno, Yamir

    2017-01-01

    Public urban mobility systems are composed by several transportation modes connected together. Most studies in urban mobility and planning often ignore the multi-layer nature of transportation systems considering only aggregated versions of this complex scenario. In this work we present a model for the representation of the transportation system of an entire city as a multiplex network. Using two different perspectives, one in which each line is a layer and one in which lines of the same transportation mode are grouped together, we study the interconnected structure of 9 different cities in Europe raging from small towns to mega-cities like London and Berlin highlighting their vulnerabilities and possible improvements. Finally, for the city of Zaragoza in Spain, we also consider data about service schedule and waiting times, which allow us to create a simple yet realistic model for urban mobility able to reproduce real-world facts and to test for network improvements. PMID:28295015

  13. A Multilayer perspective for the analysis of urban transportation systems.

    PubMed

    Aleta, Alberto; Meloni, Sandro; Moreno, Yamir

    2017-03-15

    Public urban mobility systems are composed by several transportation modes connected together. Most studies in urban mobility and planning often ignore the multi-layer nature of transportation systems considering only aggregated versions of this complex scenario. In this work we present a model for the representation of the transportation system of an entire city as a multiplex network. Using two different perspectives, one in which each line is a layer and one in which lines of the same transportation mode are grouped together, we study the interconnected structure of 9 different cities in Europe raging from small towns to mega-cities like London and Berlin highlighting their vulnerabilities and possible improvements. Finally, for the city of Zaragoza in Spain, we also consider data about service schedule and waiting times, which allow us to create a simple yet realistic model for urban mobility able to reproduce real-world facts and to test for network improvements.

  14. Temperature based Restricted Boltzmann Machines

    NASA Astrophysics Data System (ADS)

    Li, Guoqi; Deng, Lei; Xu, Yi; Wen, Changyun; Wang, Wei; Pei, Jing; Shi, Luping

    2016-01-01

    Restricted Boltzmann machines (RBMs), which apply graphical models to learning probability distribution over a set of inputs, have attracted much attention recently since being proposed as building blocks of multi-layer learning systems called deep belief networks (DBNs). Note that temperature is a key factor of the Boltzmann distribution that RBMs originate from. However, none of existing schemes have considered the impact of temperature in the graphical model of DBNs. In this work, we propose temperature based restricted Boltzmann machines (TRBMs) which reveals that temperature is an essential parameter controlling the selectivity of the firing neurons in the hidden layers. We theoretically prove that the effect of temperature can be adjusted by setting the parameter of the sharpness of the logistic function in the proposed TRBMs. The performance of RBMs can be improved by adjusting the temperature parameter of TRBMs. This work provides a comprehensive insights into the deep belief networks and deep learning architectures from a physical point of view.

  15. SignaLink 2 – a signaling pathway resource with multi-layered regulatory networks

    PubMed Central

    2013-01-01

    Background Signaling networks in eukaryotes are made up of upstream and downstream subnetworks. The upstream subnetwork contains the intertwined network of signaling pathways, while the downstream regulatory part contains transcription factors and their binding sites on the DNA as well as microRNAs and their mRNA targets. Currently, most signaling and regulatory databases contain only a subsection of this network, making comprehensive analyses highly time-consuming and dependent on specific data handling expertise. The need for detailed mapping of signaling systems is also supported by the fact that several drug development failures were caused by undiscovered cross-talk or regulatory effects of drug targets. We previously created a uniformly curated signaling pathway resource, SignaLink, to facilitate the analysis of pathway cross-talks. Here, we present SignaLink 2, which significantly extends the coverage and applications of its predecessor. Description We developed a novel concept to integrate and utilize different subsections (i.e., layers) of the signaling network. The multi-layered (onion-like) database structure is made up of signaling pathways, their pathway regulators (e.g., scaffold and endocytotic proteins) and modifier enzymes (e.g., phosphatases, ubiquitin ligases), as well as transcriptional and post-transcriptional regulators of all of these components. The user-friendly website allows the interactive exploration of how each signaling protein is regulated. The customizable download page enables the analysis of any user-specified part of the signaling network. Compared to other signaling resources, distinctive features of SignaLink 2 are the following: 1) it involves experimental data not only from humans but from two invertebrate model organisms, C. elegans and D. melanogaster; 2) combines manual curation with large-scale datasets; 3) provides confidence scores for each interaction; 4) operates a customizable download page with multiple file formats (e.g., BioPAX, Cytoscape, SBML). Non-profit users can access SignaLink 2 free of charge at http://SignaLink.org. Conclusions With SignaLink 2 as a single resource, users can effectively analyze signaling pathways, scaffold proteins, modifier enzymes, transcription factors and miRNAs that are important in the regulation of signaling processes. This integrated resource allows the systems-level examination of how cross-talks and signaling flow are regulated, as well as provide data for cross-species comparisons and drug discovery analyses. PMID:23331499

  16. SignaLink 2 - a signaling pathway resource with multi-layered regulatory networks.

    PubMed

    Fazekas, Dávid; Koltai, Mihály; Türei, Dénes; Módos, Dezső; Pálfy, Máté; Dúl, Zoltán; Zsákai, Lilian; Szalay-Bekő, Máté; Lenti, Katalin; Farkas, Illés J; Vellai, Tibor; Csermely, Péter; Korcsmáros, Tamás

    2013-01-18

    Signaling networks in eukaryotes are made up of upstream and downstream subnetworks. The upstream subnetwork contains the intertwined network of signaling pathways, while the downstream regulatory part contains transcription factors and their binding sites on the DNA as well as microRNAs and their mRNA targets. Currently, most signaling and regulatory databases contain only a subsection of this network, making comprehensive analyses highly time-consuming and dependent on specific data handling expertise. The need for detailed mapping of signaling systems is also supported by the fact that several drug development failures were caused by undiscovered cross-talk or regulatory effects of drug targets. We previously created a uniformly curated signaling pathway resource, SignaLink, to facilitate the analysis of pathway cross-talks. Here, we present SignaLink 2, which significantly extends the coverage and applications of its predecessor. We developed a novel concept to integrate and utilize different subsections (i.e., layers) of the signaling network. The multi-layered (onion-like) database structure is made up of signaling pathways, their pathway regulators (e.g., scaffold and endocytotic proteins) and modifier enzymes (e.g., phosphatases, ubiquitin ligases), as well as transcriptional and post-transcriptional regulators of all of these components. The user-friendly website allows the interactive exploration of how each signaling protein is regulated. The customizable download page enables the analysis of any user-specified part of the signaling network. Compared to other signaling resources, distinctive features of SignaLink 2 are the following: 1) it involves experimental data not only from humans but from two invertebrate model organisms, C. elegans and D. melanogaster; 2) combines manual curation with large-scale datasets; 3) provides confidence scores for each interaction; 4) operates a customizable download page with multiple file formats (e.g., BioPAX, Cytoscape, SBML). Non-profit users can access SignaLink 2 free of charge at http://SignaLink.org. With SignaLink 2 as a single resource, users can effectively analyze signaling pathways, scaffold proteins, modifier enzymes, transcription factors and miRNAs that are important in the regulation of signaling processes. This integrated resource allows the systems-level examination of how cross-talks and signaling flow are regulated, as well as provide data for cross-species comparisons and drug discovery analyses.

  17. One Family, Two Households: Rural-Urban Kin Networks in Nairobi.

    ERIC Educational Resources Information Center

    Weisner, Thomas S.

    The document examines appropriate units for studying changes in familial relations and rural-urban ties, including the importance of the increasing interdependence of rural and urban contexts in family interaction. There have been two broadly contrasting approaches to the problems of urbanization and family change in Africa: (1)…

  18. The Organization of Mental Health Services in Cuba.

    ERIC Educational Resources Information Center

    Camayd-Freixas, Yohel; Uriarte, Miren

    1980-01-01

    Reviews the status and organization of the Cuban mental health system. Focuses on the deliberate and systematic interdependence of mental health, public health, and socio-political structures; inpatient treatment modes and rehabilitation programs; use of social networks to support discharged patients; community-based care; and primary to tertiary…

  19. New Forms of Learning in Co-Configuration Work

    ERIC Educational Resources Information Center

    Engestrom, Yrjo

    2004-01-01

    This article focuses on the theories and study of organizational and workplace learning. It outlines the landscape of learning in co-configuration settings, a new type of work that includes interdependency between multiple producers forming a strategic alliance, supplier network, or other such pattern of partnership which collaboratively puts…

  20. Youth Transitions and Interdependent Adult-Child Relations in Rural Bolivia.

    ERIC Educational Resources Information Center

    Punch, Samantha

    2002-01-01

    Draws on ethnographic fieldwork in southern Bolivia to explore how rural Bolivian youth negotiate structural constraints on choices of work versus secondary education, including local versus urban location, economic resources, parental attitudes, gender, family characteristics, social networks and support, and peer role models. Suggests the notion…

  1. Modeling Uncertainty and Its Implications in Complex Interdependent Networks

    DTIC Science & Technology

    2016-04-30

    observables chosen evolve dynamically (i.e., change over time); also, it is absolutely NECESSARY for these to be numerical, or to correspond to some sort ...ascertain the quantitative mechanism for color transitions of the red, yellow, or green bubbles that capture the changes in value of Cost, Schedule

  2. Reconfiguration of a Multi-oscillator Network by Light in the Drosophila Circadian Clock.

    PubMed

    Chatterjee, Abhishek; Lamaze, Angélique; De, Joydeep; Mena, Wilson; Chélot, Elisabeth; Martin, Béatrice; Hardin, Paul; Kadener, Sebastian; Emery, Patrick; Rouyer, François

    2018-06-07

    The brain clock that drives circadian rhythms of locomotor activity relies on a multi-oscillator neuronal network. In addition to synchronizing the clock with day-night cycles, light also reformats the clock-driven daily activity pattern. How changes in lighting conditions modify the contribution of the different oscillators to remodel the daily activity pattern remains largely unknown. Our data in Drosophila indicate that light readjusts the interactions between oscillators through two different modes. We show that a morning s-LNv > DN1p circuit works in series, whereas two parallel evening circuits are contributed by LNds and other DN1ps. Based on the photic context, the master pacemaker in the s-LNv neurons swaps its enslaved partner-oscillator-LNd in the presence of light or DN1p in the absence of light-to always link up with the most influential phase-determining oscillator. When exposure to light further increases, the light-activated LNd pacemaker becomes independent by decoupling from the s-LNvs. The calibration of coupling by light is layered on a clock-independent network interaction wherein light upregulates the expression of the PDF neuropeptide in the s-LNvs, which inhibits the behavioral output of the DN1p evening oscillator. Thus, light modifies inter-oscillator coupling and clock-independent output-gating to achieve flexibility in the network. It is likely that the light-induced changes in the Drosophila brain circadian network could reveal general principles of adapting to varying environmental cues in any neuronal multi-oscillator system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. An expert-based approach to forest road network planning by combining Delphi and spatial multi-criteria evaluation.

    PubMed

    Hayati, Elyas; Majnounian, Baris; Abdi, Ehsan; Sessions, John; Makhdoum, Majid

    2013-02-01

    Changes in forest landscapes resulting from road construction have increased remarkably in the last few years. On the other hand, the sustainable management of forest resources can only be achieved through a well-organized road network. In order to minimize the environmental impacts of forest roads, forest road managers must design the road network efficiently and environmentally as well. Efficient planning methodologies can assist forest road managers in considering the technical, economic, and environmental factors that affect forest road planning. This paper describes a three-stage methodology using the Delphi method for selecting the important criteria, the Analytic Hierarchy Process for obtaining the relative importance of the criteria, and finally, a spatial multi-criteria evaluation in a geographic information system (GIS) environment for identifying the lowest-impact road network alternative. Results of the Delphi method revealed that ground slope, lithology, distance from stream network, distance from faults, landslide susceptibility, erosion susceptibility, geology, and soil texture are the most important criteria for forest road planning in the study area. The suitability map for road planning was then obtained by combining the fuzzy map layers of these criteria with respect to their weights. Nine road network alternatives were designed using PEGGER, an ArcView GIS extension, and finally, their values were extracted from the suitability map. Results showed that the methodology was useful for identifying road that met environmental and cost considerations. Based on this work, we suggest future work in forest road planning using multi-criteria evaluation and decision making be considered in other regions and that the road planning criteria identified in this study may be useful.

  4. Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.

    2015-01-01

    This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less

  5. Flowable conducting particle networks in redox-active electrolytes for grid energy storage

    DOE PAGES

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; ...

    2015-01-09

    This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO 2+/VO 2 + redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage.more » Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO 2+/VO 2 + redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s -1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less

  6. A design philosophy for multi-layer neural networks with applications to robot control

    NASA Technical Reports Server (NTRS)

    Vadiee, Nader; Jamshidi, MO

    1989-01-01

    A system is proposed which receives input information from many sensors that may have diverse scaling, dimension, and data representations. The proposed system tolerates sensory information with faults. The proposed self-adaptive processing technique has great promise in integrating the techniques of artificial intelligence and neural networks in an attempt to build a more intelligent computing environment. The proposed architecture can provide a detailed decision tree based on the input information, information stored in a long-term memory, and the adapted rule-based knowledge. A mathematical model for analysis will be obtained to validate the cited hypotheses. An extensive software program will be developed to simulate a typical example of pattern recognition problem. It is shown that the proposed model displays attention, expectation, spatio-temporal, and predictory behavior which are specific to the human brain. The anticipated results of this research project are: (1) creation of a new dynamic neural network structure, and (2) applications to and comparison with conventional multi-layer neural network structures. The anticipated benefits from this research are vast. The model can be used in a neuro-computer architecture as a building block which can perform complicated, nonlinear, time-varying mapping from a multitude of input excitory classes to an output or decision environment. It can be used for coordinating different sensory inputs and past experience of a dynamic system and actuating signals. The commercial applications of this project can be the creation of a special-purpose neuro-computer hardware which can be used in spatio-temporal pattern recognitions in such areas as air defense systems, e.g., target tracking, and recognition. Potential robotics-related applications are trajectory planning, inverse dynamics computations, hierarchical control, task-oriented control, and collision avoidance.

  7. Photometric redshift estimation based on data mining with PhotoRApToR

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Brescia, M.; De Stefano, V.; Longo, G.

    2015-03-01

    Photometric redshifts (photo-z) are crucial to the scientific exploitation of modern panchromatic digital surveys. In this paper we present PhotoRApToR (Photometric Research Application To Redshift): a Java/C ++ based desktop application capable to solve non-linear regression and multi-variate classification problems, in particular specialized for photo-z estimation. It embeds a machine learning algorithm, namely a multi-layer neural network trained by the Quasi Newton learning rule, and special tools dedicated to pre- and post-processing data. PhotoRApToR has been successfully tested on several scientific cases. The application is available for free download from the DAME Program web site.

  8. Multi-label spacecraft electrical signal classification method based on DBN and random forest

    PubMed Central

    Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng

    2017-01-01

    In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data. PMID:28486479

  9. Multi-label spacecraft electrical signal classification method based on DBN and random forest.

    PubMed

    Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng

    2017-01-01

    In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data.

  10. Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed.

    PubMed

    Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P

    2013-03-11

    Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.

  11. Advanced diagnostic system for piston slap faults in IC engines, based on the non-stationary characteristics of the vibration signals

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Randall, Robert Bond; Peeters, Bart

    2016-06-01

    Artificial Neural Networks (ANNs) have the potential to solve the problem of automated diagnostics of piston slap faults, but the critical issue for the successful application of ANN is the training of the network by a large amount of data in various engine conditions (different speed/load conditions in normal condition, and with different locations/levels of faults). On the other hand, the latest simulation technology provides a useful alternative in that the effect of clearance changes may readily be explored without recourse to cutting metal, in order to create enough training data for the ANNs. In this paper, based on some existing simplified models of piston slap, an advanced multi-body dynamic simulation software was used to simulate piston slap faults with different speeds/loads and clearance conditions. Meanwhile, the simulation models were validated and updated by a series of experiments. Three-stage network systems are proposed to diagnose piston faults: fault detection, fault localisation and fault severity identification. Multi Layer Perceptron (MLP) networks were used in the detection stage and severity/prognosis stage and a Probabilistic Neural Network (PNN) was used to identify which cylinder has faults. Finally, it was demonstrated that the networks trained purely on simulated data can efficiently detect piston slap faults in real tests and identify the location and severity of the faults as well.

  12. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks.

    PubMed

    Zhong, Jiandan; Lei, Tao; Yao, Guangle

    2017-11-24

    Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed.

  13. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks

    PubMed Central

    Zhong, Jiandan; Lei, Tao; Yao, Guangle

    2017-01-01

    Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed. PMID:29186756

  14. Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net.

    PubMed

    Wu, Hongbo; Bailey, Chris; Rasoulinejad, Parham; Li, Shuo

    2018-05-18

    Automated quantitative estimation of spinal curvature is an important task for the ongoing evaluation and treatment planning of Adolescent Idiopathic Scoliosis (AIS). It solves the widely accepted disadvantage of manual Cobb angle measurement (time-consuming and unreliable) which is currently the gold standard for AIS assessment. Attempts have been made to improve the reliability of automated Cobb angle estimation. However, it is very challenging to achieve accurate and robust estimation of Cobb angles due to the need for correctly identifying all the required vertebrae in both Anterior-posterior (AP) and Lateral (LAT) view x-rays. The challenge is especially evident in LAT x-ray where occlusion of vertebrae by the ribcage occurs. We therefore propose a novel Multi-View Correlation Network (MVC-Net) architecture that can provide a fully automated end-to-end framework for spinal curvature estimation in multi-view (both AP and LAT) x-rays. The proposed MVC-Net uses our newly designed multi-view convolution layers to incorporate joint features of multi-view x-rays, which allows the network to mitigate the occlusion problem by utilizing the structural dependencies of the two views. The MVC-Net consists of three closely-linked components: (1) a series of X-modules for joint representation of spinal structure (2) a Spinal Landmark Estimator network for robust spinal landmark estimation, and (3) a Cobb Angle Estimator network for accurate Cobb Angles estimation. By utilizing an iterative multi-task training algorithm to train the Spinal Landmark Estimator and Cobb Angle Estimator in tandem, the MVC-Net leverages the multi-task relationship between landmark and angle estimation to reliably detect all the required vertebrae for accurate Cobb angles estimation. Experimental results on 526 x-ray images from 154 patients show an impressive 4.04° Circular Mean Absolute Error (CMAE) in AP Cobb angle and 4.07° CMAE in LAT Cobb angle estimation, which demonstrates the MVC-Net's capability of robust and accurate estimation of Cobb angles in multi-view x-rays. Our method therefore provides clinicians with a framework for efficient, accurate, and reliable estimation of spinal curvature for comprehensive AIS assessment. Copyright © 2018. Published by Elsevier B.V.

  15. Financial time series prediction using spiking neural networks.

    PubMed

    Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam

    2014-01-01

    In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.

  16. A Rediscovered Alliance: Can New Music Performance Teaching Policy Save Music Education? A New Framework for the Music Studio

    ERIC Educational Resources Information Center

    Wexler, Mathias

    2012-01-01

    Music education in K-12 school programs may continue to lose ground to other subjects unless music education and performance studies are viewed as interdependent. The author argues that the reinvigoration of both music education and performance requires that the studio experience integrate a research-based pedagogy, multi-stylistic range of…

  17. Data on distribution and abundance: Monitoring for research and management [Chapter 6

    Treesearch

    Samuel A. Cushman; Kevin S. McKelvey

    2010-01-01

    In the first chapter of this book we identified the interdependence of method, data and theory as an important influence on the progress of science. The first several chapters focused mostly on progress in theory, in the areas of integrating spatial and temporal complexity into ecological analysis, the emergence of landscape ecology and its transformation into a multi-...

  18. Technology Entrepreneurship: A Deliberation on Success and Failure in Technology Venturing toward a Grounded Theory of Dystechnia

    ERIC Educational Resources Information Center

    Stewart, McDonald R.

    2011-01-01

    In the realm of social sciences, the greater body of business and economic theory constructs frameworks of complex organizational systems: the firm, the industry, the institution. Underlying these interdependent and concentric layers are individuals whose behaviors exist first; behaviors must give rise to institutions before institutions can mold…

  19. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2017-02-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  20. Material optimization of multi-layered enhanced nanostructures

    NASA Astrophysics Data System (ADS)

    Strobbia, Pietro

    The employment of surface enhanced Raman scattering (SERS)-based sensing in real-world scenarios will offer numerous advantages over current optical sensors. Examples of these advantages are the intrinsic and simultaneous detection of multiple analytes, among many others. To achieve such a goal, SERS substrates with throughput and reproducibility comparable to commonly used fluorescence sensors have to be developed. To this end, our lab has discovered a multi-layer geometry, based on alternating films of a metal and a dielectric, that amplifies the SERS signal (multi-layer enhancement). The advantage of these multi-layered structures is to amplify the SERS signal exploiting layer-to-layer interactions in the volume of the structures, rather than on its surface. This strategy permits an amplification of the signal without modifying the surface characteristics of a substrate, and therefore conserving its reproducibility. Multi-layered structures can therefore be used to amplify the sensitivity and throughput of potentially any previously developed SERS sensor. In this thesis, these multi-layered structures were optimized and applied to different SERS substrates. The role of the dielectric spacer layer in the multi-layer enhancement was elucidated by fabricating spacers with different characteristics and studying their effect on the overall enhancement. Thickness, surface coverage and physical properties of the spacer were studied. Additionally, the multi-layered structures were applied to commercial SERS substrates and to isolated SERS probes. Studies on the dependence of the multi-layer enhancement on the thickness of the spacer demonstrated that the enhancement increases as a function of surface coverage at sub-monolayer thicknesses, due to the increasing multi-layer nature of the substrates. For fully coalescent spacers the enhancement decreases as a function of thickness, due to the loss of interaction between proximal metallic films. The influence of the physical properties of the spacer on the multi-layer enhancement were also studied. The trends in Schottky barrier height, interfacial potential and dielectric constant were isolated by using different materials as spacers (i.e., TiO2, HfO2, Ag 2O and Al2O3). The results show that the bulk dielectric constant of the material can be used to predict the relative magnitude of the multi-layer enhancement, with low dielectric constant materials performing more efficiently as spacers. Optimal spacer layers were found to be ultrathin coalescent films (ideally a monolayer) of low dielectric constant materials. Finally, multi-layered structures were observed to be employable to amplify SERS in drastically different substrate geometries. The multi-layered structures were applied to disposable commercial SERS substrates (i.e., Klarite). This project involved the regeneration of the used substrates, by stripping and redepositing the gold coating layer, and their amplification, by using the multi-layer geometry. The latter was observed to amplify the sensitivity of the substrates. Additionally, the multi-layered structures were applied to probes dispersed in solution. Such probes were observed to yield stronger SERS signal when optically trapped and to reduce the background signal. The application of the multi-layered structures on trapped probes, not only further amplified the SERS signal, but also increased the maximum number of applicable layers for the structures.

Top