Sample records for interface allowing users

  1. Intelligent user interface concept for space station

    NASA Technical Reports Server (NTRS)

    Comer, Edward; Donaldson, Cameron; Bailey, Elizabeth; Gilroy, Kathleen

    1986-01-01

    The space station computing system must interface with a wide variety of users, from highly skilled operations personnel to payload specialists from all over the world. The interface must accommodate a wide variety of operations from the space platform, ground control centers and from remote sites. As a result, there is a need for a robust, highly configurable and portable user interface that can accommodate the various space station missions. The concept of an intelligent user interface executive, written in Ada, that would support a number of advanced human interaction techniques, such as windowing, icons, color graphics, animation, and natural language processing is presented. The user interface would provide intelligent interaction by understanding the various user roles, the operations and mission, the current state of the environment and the current working context of the users. In addition, the intelligent user interface executive must be supported by a set of tools that would allow the executive to be easily configured and to allow rapid prototyping of proposed user dialogs. This capability would allow human engineering specialists acting in the role of dialog authors to define and validate various user scenarios. The set of tools required to support development of this intelligent human interface capability is discussed and the prototyping and validation efforts required for development of the Space Station's user interface are outlined.

  2. Distributed user interfaces for clinical ubiquitous computing applications.

    PubMed

    Bång, Magnus; Larsson, Anders; Berglund, Erik; Eriksson, Henrik

    2005-08-01

    Ubiquitous computing with multiple interaction devices requires new interface models that support user-specific modifications to applications and facilitate the fast development of active workspaces. We have developed NOSTOS, a computer-augmented work environment for clinical personnel to explore new user interface paradigms for ubiquitous computing. NOSTOS uses several devices such as digital pens, an active desk, and walk-up displays that allow the system to track documents and activities in the workplace. We present the distributed user interface (DUI) model that allows standalone applications to distribute their user interface components to several devices dynamically at run-time. This mechanism permit clinicians to develop their own user interfaces and forms to clinical information systems to match their specific needs. We discuss the underlying technical concepts of DUIs and show how service discovery, component distribution, events and layout management are dealt with in the NOSTOS system. Our results suggest that DUIs--and similar network-based user interfaces--will be a prerequisite of future mobile user interfaces and essential to develop clinical multi-device environments.

  3. Hypertext-based design of a user interface for scheduling

    NASA Technical Reports Server (NTRS)

    Woerner, Irene W.; Biefeld, Eric

    1993-01-01

    Operations Mission Planner (OMP) is an ongoing research project at JPL that utilizes AI techniques to create an intelligent, automated planning and scheduling system. The information space reflects the complexity and diversity of tasks necessary in most real-world scheduling problems. Thus the problem of the user interface is to present as much information as possible at a given moment and allow the user to quickly navigate through the various types of displays. This paper describes a design which applies the hypertext model to solve these user interface problems. The general paradigm is to provide maps and search queries to allow the user to quickly find an interesting conflict or problem, and then allow the user to navigate through the displays in a hypertext fashion.

  4. CERESVis: A QC Tool for CERES that Leverages Browser Technology for Data Validation

    NASA Astrophysics Data System (ADS)

    Chu, C.; Sun-Mack, S.; Heckert, E.; Chen, Y.; Doelling, D.

    2015-12-01

    In this poster, we are going to present three user interfaces that CERES team uses to validate pixel-level data. Besides our home grown tools, we will aslo present the browser technology that we use to provide interactive interfaces, such as jquery, HighCharts and Google Earth. We pass data to the users' browsers and use the browsers to do some simple computations. The three user interfaces are: Thumbnails -- it displays hundrends images to allow users to browse 24-hour data files in few seconds. Multiple-synchronized cursors -- it allows users to compare multiple images side by side. Bounding Boxes and Histograms -- it allows users to draw multiple bounding boxes on an image and the browser computes/display the histograms.

  5. Human-computer interface including haptically controlled interactions

    DOEpatents

    Anderson, Thomas G.

    2005-10-11

    The present invention provides a method of human-computer interfacing that provides haptic feedback to control interface interactions such as scrolling or zooming within an application. Haptic feedback in the present method allows the user more intuitive control of the interface interactions, and allows the user's visual focus to remain on the application. The method comprises providing a control domain within which the user can control interactions. For example, a haptic boundary can be provided corresponding to scrollable or scalable portions of the application domain. The user can position a cursor near such a boundary, feeling its presence haptically (reducing the requirement for visual attention for control of scrolling of the display). The user can then apply force relative to the boundary, causing the interface to scroll the domain. The rate of scrolling can be related to the magnitude of applied force, providing the user with additional intuitive, non-visual control of scrolling.

  6. A web based Radiation Oncology Dose Manager with a rich User Interface developed using AJAX, ruby, dynamic XHTML and the new Yahoo/EXT User Interface Library.

    PubMed

    Vali, Faisal; Hong, Robert

    2007-10-11

    With the evolution of AJAX, ruby on rails, advanced dynamic XHTML technologies and the advent of powerful user interface libraries for javascript (EXT, Yahoo User Interface Library), developers now have the ability to provide truly rich interfaces within web browsers, with reasonable effort and without third-party plugins. We designed and developed an example of such a solution. The User Interface allows radiation oncology practices to intuitively manage different dose fractionation schemes by helping estimate total dose to irradiated organs.

  7. Learning Analytics for Natural User Interfaces

    ERIC Educational Resources Information Center

    Martinez-Maldonado, Roberto; Shum, Simon Buckingham; Schneider, Bertrand; Charleer, Sven; Klerkx, Joris; Duval, Erik

    2017-01-01

    The continuous advancement of natural user interfaces (NUIs) allows for the development\tof novel and creative ways to support collocated collaborative work in a wide range of areas, including teaching and learning. The use of NUIs, such as those based on interactive multi-touch surfaces and tangible user interfaces (TUIs), can offer unique…

  8. A Prototype Lisp-Based Soft Real-Time Object-Oriented Graphical User Interface for Control System Development

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Wong, Edmond; Simon, Donald L.

    1994-01-01

    A prototype Lisp-based soft real-time object-oriented Graphical User Interface for control system development is presented. The Graphical User Interface executes alongside a test system in laboratory conditions to permit observation of the closed loop operation through animation, graphics, and text. Since it must perform interactive graphics while updating the screen in real time, techniques are discussed which allow quick, efficient data processing and animation. Examples from an implementation are included to demonstrate some typical functionalities which allow the user to follow the control system's operation.

  9. MOO in Your Face: Researching, Designing, and Programming a User-Friendly Interface.

    ERIC Educational Resources Information Center

    Haas, Mark; Gardner, Clinton

    1999-01-01

    Suggests the learning curve of a multi-user, object-oriented domain (MOO) blockades effective use. Discusses use of an IBM/PC-compatible interface that allows developers to modify the interface to provide a sense of presence for the user. Concludes that work in programming a variety of interfaces has led to a more intuitive environment for…

  10. Minimum Hamiltonian ascent trajectory evaluation (MASTRE) program (update to automatic flight trajectory design, performance prediction, and vehicle sizing for support of shuttle and shuttle derived vehicles) users manual

    NASA Technical Reports Server (NTRS)

    Lyons, J. T.; Borchers, William R.

    1993-01-01

    Documentation for the User Interface Program for the Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) is provided. The User Interface Program is a separate software package designed to ease the user input requirements when using the MASTRE Trajectory Program. This document supplements documentation on the MASTRE Program that consists of the MASTRE Engineering Manual and the MASTRE Programmers Guide. The User Interface Program provides a series of menus and tables using the VAX Screen Management Guideline (SMG) software. These menus and tables allow the user to modify the MASTRE Program input without the need for learning the various program dependent mnemonics. In addition, the User Interface Program allows the user to modify and/or review additional input Namelist and data files, to build and review command files, to formulate and calculate mass properties related data, and to have a plotting capability.

  11. Railroad track inspection interface demonstration : final report.

    DOT National Transportation Integrated Search

    2016-01-01

    This project developed a track data user interface utilizing the Google Glass optical display device. The interface allows the user : to recall data stored remotely and view the data on the Google Glass. The technical effort required developing a com...

  12. Stand-alone digital data storage control system including user control interface

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D. (Inventor); Gray, David L. (Inventor)

    1994-01-01

    A storage control system includes an apparatus and method for user control of a storage interface to operate a storage medium to store data obtained by a real-time data acquisition system. Digital data received in serial format from the data acquisition system is first converted to a parallel format and then provided to the storage interface. The operation of the storage interface is controlled in accordance with instructions based on user control input from a user. Also, a user status output is displayed in accordance with storage data obtained from the storage interface. By allowing the user to control and monitor the operation of the storage interface, a stand-alone, user-controllable data storage system is provided for storing the digital data obtained by a real-time data acquisition system.

  13. Embedded Web Technology: Applying World Wide Web Standards to Embedded Systems

    NASA Technical Reports Server (NTRS)

    Ponyik, Joseph G.; York, David W.

    2002-01-01

    Embedded Systems have traditionally been developed in a highly customized manner. The user interface hardware and software along with the interface to the embedded system are typically unique to the system for which they are built, resulting in extra cost to the system in terms of development time and maintenance effort. World Wide Web standards have been developed in the passed ten years with the goal of allowing servers and clients to intemperate seamlessly. The client and server systems can consist of differing hardware and software platforms but the World Wide Web standards allow them to interface without knowing about the details of system at the other end of the interface. Embedded Web Technology is the merging of Embedded Systems with the World Wide Web. Embedded Web Technology decreases the cost of developing and maintaining the user interface by allowing the user to interface to the embedded system through a web browser running on a standard personal computer. Embedded Web Technology can also be used to simplify an Embedded System's internal network.

  14. Human-computer interface incorporating personal and application domains

    DOEpatents

    Anderson, Thomas G [Albuquerque, NM

    2011-03-29

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  15. Human-computer interface incorporating personal and application domains

    DOEpatents

    Anderson, Thomas G.

    2004-04-20

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  16. 'Fly Like This': Natural Language Interface for UAV Mission Planning

    NASA Technical Reports Server (NTRS)

    Chandarana, Meghan; Meszaros, Erica L.; Trujillo, Anna; Allen, B. Danette

    2017-01-01

    With the increasing presence of unmanned aerial vehicles (UAVs) in everyday environments, the user base of these powerful and potentially intelligent machines is expanding beyond exclusively highly trained vehicle operators to include non-expert system users. Scientists seeking to augment costly and often inflexible methods of data collection historically used are turning towards lower cost and reconfigurable UAVs. These new users require more intuitive and natural methods for UAV mission planning. This paper explores two natural language interfaces - gesture and speech - for UAV flight path generation through individual user studies. Subjects who participated in the user studies also used a mouse-based interface for a baseline comparison. Each interface allowed the user to build flight paths from a library of twelve individual trajectory segments. Individual user studies evaluated performance, efficacy, and ease-of-use of each interface using background surveys, subjective questionnaires, and observations on time and correctness. Analysis indicates that natural language interfaces are promising alternatives to traditional interfaces. The user study data collected on the efficacy and potential of each interface will be used to inform future intuitive UAV interface design for non-expert users.

  17. Introduction of knowledge bases in patient's data management system: role of the user interface.

    PubMed

    Chambrin, M C; Ravaux, P; Jaborska, A; Beugnet, C; Lestavel, P; Chopin, C; Boniface, M

    1995-02-01

    As the number of signals and data to be handled grows in intensive care unit, it is necessary to design more powerful computing systems that integrate and summarize all this information. The manual input of data as e.g. clinical signs and drug prescription and the synthetic representation of these data requires an ever more sophisticated user interface. The introduction of knowledge bases in the data management allows to conceive contextual interfaces. The objective of this paper is to show the importance of the design of the user interface, in the daily use of clinical information system. Then we describe a methodology that uses the man-machine interaction to capture the clinician knowledge during the clinical practice. The different steps are the audit of the user's actions, the elaboration of statistic models allowing the definition of new knowledge, and the validation that is performed before complete integration. A part of this knowledge can be used to improve the user interface. Finally, we describe the implementation of these concepts on a UNIX platform using OSF/MOTIF graphical interface.

  18. AXAF user interfaces for heterogeneous analysis environments

    NASA Technical Reports Server (NTRS)

    Mandel, Eric; Roll, John; Ackerman, Mark S.

    1992-01-01

    The AXAF Science Center (ASC) will develop software to support all facets of data center activities and user research for the AXAF X-ray Observatory, scheduled for launch in 1999. The goal is to provide astronomers with the ability to utilize heterogeneous data analysis packages, that is, to allow astronomers to pick the best packages for doing their scientific analysis. For example, ASC software will be based on IRAF, but non-IRAF programs will be incorporated into the data system where appropriate. Additionally, it is desired to allow AXAF users to mix ASC software with their own local software. The need to support heterogeneous analysis environments is not special to the AXAF project, and therefore finding mechanisms for coordinating heterogeneous programs is an important problem for astronomical software today. The approach to solving this problem has been to develop two interfaces that allow the scientific user to run heterogeneous programs together. The first is an IRAF-compatible parameter interface that provides non-IRAF programs with IRAF's parameter handling capabilities. Included in the interface is an application programming interface to manipulate parameters from within programs, and also a set of host programs to manipulate parameters at the command line or from within scripts. The parameter interface has been implemented to support parameter storage formats other than IRAF parameter files, allowing one, for example, to access parameters that are stored in data bases. An X Windows graphical user interface called 'agcl' has been developed, layered on top of the IRAF-compatible parameter interface, that provides a standard graphical mechanism for interacting with IRAF and non-IRAF programs. Users can edit parameters and run programs for both non-IRAF programs and IRAF tasks. The agcl interface allows one to communicate with any command line environment in a transparent manner and without any changes to the original environment. For example, the authors routinely layer the GUI on top of IRAF, ksh, SMongo, and IDL. The agcl, based on the facilities of a system called Answer Garden, also has sophisticated support for examining documentation and help files, asking questions of experts, and developing a knowledge base of frequently required information. Thus, the GUI becomes a total environment for running programs, accessing information, examining documents, and finding human assistance. Because the agcl can communicate with any command-line environment, most projects can make use of it easily. New applications are continually being found for these interfaces. It is the authors' intention to evolve the GUI and its underlying parameter interface in response to these needs - from users as well as developers - throughout the astronomy community. This presentation describes the capabilities and technology of the above user interface mechanisms and tools. It also discusses the design philosophies guiding the work, as well as hopes for the future.

  19. XPI: The Xanadu Parameter Interface

    NASA Technical Reports Server (NTRS)

    White, N.; Barrett, P.; Oneel, B.; Jacobs, P.

    1992-01-01

    XPI is a table driven parameter interface which greatly simplifies both command driven programs such as BROWSE and XIMAGE as well as stand alone single-task programs. It moves all of the syntax and semantic parsing of commands and parameters out of the users code into common code and externally defined tables. This allows the programmer to concentrate on writing the code unique to the application rather than reinventing the user interface and for external graphical interfaces to interface with no changes to the command driven program. XPI also includes a compatibility library which allows programs written using the IRAF host interface (Mandel and Roll) to use XPI in place of the IRAF host interface.

  20. Developing A Web-based User Interface for Semantic Information Retrieval

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Keller, Richard M.

    2003-01-01

    While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.

  1. A user interface development tool for space science systems Transportable Applications Environment (TAE) Plus

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1990-01-01

    The Transportable Applications Environment Plus (TAE PLUS), developed at NASA's Goddard Space Flight Center, is a portable What You See Is What You Get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development that of user interfaces, as well as management of the user interface within the operational domain. Although TAE Plus is applicable to many types of applications, its focus is supporting user interfaces for space applications. This paper discusses what TAE Plus provides and how the implementation has utilized state-of-the-art technologies within graphic workstations, windowing systems and object-oriented programming languages.

  2. Systems Engineering Model and Training Application for Desktop Environment

    NASA Technical Reports Server (NTRS)

    May, Jeffrey T.

    2010-01-01

    Provide a graphical user interface based simulator for desktop training, operations and procedure development and system reference. This simulator allows for engineers to train and further understand the dynamics of their system from their local desktops. It allows the users to train and evaluate their system at a pace and skill level based on the user's competency and from a perspective based on the user's need. The simulator will not require any special resources to execute and should generally be available for use. The interface is based on a concept of presenting the model of the system in ways that best suits the user's application or training needs. The three levels of views are Component View, the System View (overall system), and the Console View (monitor). These views are portals into a single model, so changing the model from one view or from a model manager Graphical User Interface will be reflected on all other views.

  3. Simulation in a dynamic prototyping environment: Petri nets or rules?

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Price, Shannon W.; Hale, Joseph P.

    1994-01-01

    An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are normally delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development.

  4. Simulation in a dynamic prototyping environment: Petri nets or rules?

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Price, Shannon; Hale, Joseph P.

    1994-01-01

    An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development.

  5. NLEdit: A generic graphical user interface for Fortran programs

    NASA Technical Reports Server (NTRS)

    Curlett, Brian P.

    1994-01-01

    NLEdit is a generic graphical user interface for the preprocessing of Fortran namelist input files. The interface consists of a menu system, a message window, a help system, and data entry forms. A form is generated for each namelist. The form has an input field for each namelist variable along with a one-line description of that variable. Detailed help information, default values, and minimum and maximum allowable values can all be displayed via menu picks. Inputs are processed through a scientific calculator program that allows complex equations to be used instead of simple numeric inputs. A custom user interface is generated simply by entering information about the namelist input variables into an ASCII file. There is no need to learn a new graphics system or programming language. NLEdit can be used as a stand-alone program or as part of a larger graphical user interface. Although NLEdit is intended for files using namelist format, it can be easily modified to handle other file formats.

  6. Transportable Applications Environment (TAE) Plus: A NASA tool for building and managing graphical user interfaces

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1991-01-01

    The Transportable Applications Environment (TAE) Plus, developed at GSFC, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUI's), supports prototyping, allows applications to be ported easily between different platforms and encourages appropriate levels of user interface consistency between applications. The following topics are discussed: the capabilities of the TAE Plus tool; how the implementation has utilized state-of-the-art technologies within graphic workstations; and how it has been used both within and outside of NASA.

  7. Designing a Humane Multimedia Interface for the Visually Impaired.

    ERIC Educational Resources Information Center

    Ghaoui, Claude; Mann, M.; Ng, Eng Huat

    2001-01-01

    Promotes the provision of interfaces that allow users to access most of the functionality of existing graphical user interfaces (GUI) using speech. Uses the design of a speech control tool that incorporates speech recognition and synthesis into existing packaged software such as Teletext, the Internet, or a word processor. (Contains 22…

  8. The SHIP: A SIP to HTTP Interaction Protocol

    NASA Astrophysics Data System (ADS)

    Zeiß, Joachim; Gabner, Rene; Bessler, Sandford; Happenhofer, Marco

    IMS is capable of providing a wide range of services. As a result, terminal software becomes more and more complex to deliver network intelligence to user applications. Currently mobile terminal software needs to be permanently updated so that the latest network services and functionality can be delivered to the user. In the Internet, browser based user interfaces assure that an interface is made available to the user which offers the latest services in the net immediately. Our approach combines the benefits of the Session Initiation Protocol (SIP) and those of the HTTP protocol to bring the same type of user interfacing to IMS. SIP (IMS) realizes authentication, session management, charging and Quality of Service (QoS), HTTP provides access to Internet services and allows the user interface of an application to run on a mobile terminal while processing and orchestration is done on the server. A SHIP enabled IMS client only needs to handle data transport and session management via SIP, HTTP and RTP and render streaming media, HTML and Javascript. SHIP allows new kinds of applications, which combine audio, video and data within a single multimedia session.

  9. Allowing the Advantaged User in a Network Centric System to Get Through the Disadvantaged Interface

    DTIC Science & Technology

    2009-09-01

    ADVANTAGED USER IN A NETWORK CENTRIC SYSTEM TO GET THROUGH THE DISADVANTAGED INTERFACE by Lawrence Brandon September 2009 Thesis Advisor...Through the Disadvantaged Interface 6. AUTHOR(S) Lawrence Brandon 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...identify those factors that cause disadvantaged interfaces within network centric systems and provides recommendations to these challenges so that

  10. Use of force feedback to enhance graphical user interfaces

    NASA Astrophysics Data System (ADS)

    Rosenberg, Louis B.; Brave, Scott

    1996-04-01

    This project focuses on the use of force feedback sensations to enhance user interaction with standard graphical user interface paradigms. While typical joystick and mouse devices are input-only, force feedback controllers allow physical sensations to be reflected to a user. Tasks that require users to position a cursor on a given target can be enhanced by applying physical forces to the user that aid in targeting. For example, an attractive force field implemented at the location of a graphical icon can greatly facilitate target acquisition and selection of the icon. It has been shown that force feedback can enhance a users ability to perform basic functions within graphical user interfaces.

  11. Putting Home Data Management into Perspective

    DTIC Science & Technology

    2009-12-01

    approaches. However, users of home and personal storage live it. Popular interfaces (e.g., iTunes , iPhoto, and even drop-down lists of recently...users of home and personal storage live it. Popular interfaces (e.g., iTunes , iPhoto, and even drop-down lists of recently-opened Word documents...live it. Popular interfaces (e.g., iTunes , iPhoto, and even drop- down lists of recently-opened Word documents) allow users to navigate file

  12. Dynamic Distribution and Layouting of Model-Based User Interfaces in Smart Environments

    NASA Astrophysics Data System (ADS)

    Roscher, Dirk; Lehmann, Grzegorz; Schwartze, Veit; Blumendorf, Marco; Albayrak, Sahin

    The developments in computer technology in the last decade change the ways of computer utilization. The emerging smart environments make it possible to build ubiquitous applications that assist users during their everyday life, at any time, in any context. But the variety of contexts-of-use (user, platform and environment) makes the development of such ubiquitous applications for smart environments and especially its user interfaces a challenging and time-consuming task. We propose a model-based approach, which allows adapting the user interface at runtime to numerous (also unknown) contexts-of-use. Based on a user interface modelling language, defining the fundamentals and constraints of the user interface, a runtime architecture exploits the description to adapt the user interface to the current context-of-use. The architecture provides automatic distribution and layout algorithms for adapting the applications also to contexts unforeseen at design time. Designers do not specify predefined adaptations for each specific situation, but adaptation constraints and guidelines. Furthermore, users are provided with a meta user interface to influence the adaptations according to their needs. A smart home energy management system serves as running example to illustrate the approach.

  13. Concepts and implementations of natural language query systems

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Liu, I-Hsiung

    1984-01-01

    The currently developed user language interfaces of information systems are generally intended for serious users. These interfaces commonly ignore potentially the largest user group, i.e., casual users. This project discusses the concepts and implementations of a natural query language system which satisfy the nature and information needs of casual users by allowing them to communicate with the system in the form of their native (natural) language. In addition, a framework for the development of such an interface is also introduced for the MADAM (Multics Approach to Data Access and Management) system at the University of Southwestern Louisiana.

  14. AQBE — QBE Style Queries for Archetyped Data

    NASA Astrophysics Data System (ADS)

    Sachdeva, Shelly; Yaginuma, Daigo; Chu, Wanming; Bhalla, Subhash

    Large-scale adoption of electronic healthcare applications requires semantic interoperability. The new proposals propose an advanced (multi-level) DBMS architecture for repository services for health records of patients. These also require query interfaces at multiple levels and at the level of semi-skilled users. In this regard, a high-level user interface for querying the new form of standardized Electronic Health Records system has been examined in this study. It proposes a step-by-step graphical query interface to allow semi-skilled users to write queries. Its aim is to decrease user effort and communication ambiguities, and increase user friendliness.

  15. An open source web interface for linking models to infrastructure system databases

    NASA Astrophysics Data System (ADS)

    Knox, S.; Mohamed, K.; Harou, J. J.; Rheinheimer, D. E.; Medellin-Azuara, J.; Meier, P.; Tilmant, A.; Rosenberg, D. E.

    2016-12-01

    Models of networked engineered resource systems such as water or energy systems are often built collaboratively with developers from different domains working at different locations. These models can be linked to large scale real world databases, and they are constantly being improved and extended. As the development and application of these models becomes more sophisticated, and the computing power required for simulations and/or optimisations increases, so has the need for online services and tools which enable the efficient development and deployment of these models. Hydra Platform is an open source, web-based data management system, which allows modellers of network-based models to remotely store network topology and associated data in a generalised manner, allowing it to serve multiple disciplines. Hydra Platform uses a web API using JSON to allow external programs (referred to as `Apps') to interact with its stored networks and perform actions such as importing data, running models, or exporting the networks to different formats. Hydra Platform supports multiple users accessing the same network and has a suite of functions for managing users and data. We present ongoing development in Hydra Platform, the Hydra Web User Interface, through which users can collaboratively manage network data and models in a web browser. The web interface allows multiple users to graphically access, edit and share their networks, run apps and view results. Through apps, which are located on the server, the web interface can give users access to external data sources and models without the need to install or configure any software. This also ensures model results can be reproduced by removing platform or version dependence. Managing data and deploying models via the web interface provides a way for multiple modellers to collaboratively manage data, deploy and monitor model runs and analyse results.

  16. Human-computer interface

    DOEpatents

    Anderson, Thomas G.

    2004-12-21

    The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.

  17. Transportable Applications Environment (TAE) Plus: A NASA user interface development and management system

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1991-01-01

    The transportable Applications Environment Plus (TAE Plus), developed at the NASA Goddard Space FLight Center, is a portable, What you see is what you get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development of graphical user interfaces, as well as management of the user interface within the operational domain. TAE Plus is being applied to many types of applications, and what TAE Plus provides, how the implementation has utilizes state-of-the-art technologies within graphic workstations, and how it has been used both within and without NASA are discussed.

  18. Preparing for Future Learning with a Tangible User Interface: The Case of Neuroscience

    ERIC Educational Resources Information Center

    Schneider, B.; Wallace, J.; Blikstein, P.; Pea, R.

    2013-01-01

    In this paper, we describe the development and evaluation of a microworld-based learning environment for neuroscience. Our system, BrainExplorer, allows students to discover the way neural pathways work by interacting with a tangible user interface. By severing and reconfiguring connections, users can observe how the visual field is impaired and,…

  19. StarView: The object oriented design of the ST DADS user interface

    NASA Technical Reports Server (NTRS)

    Williams, J. D.; Pollizzi, J. A.

    1992-01-01

    StarView is the user interface being developed for the Hubble Space Telescope Data Archive and Distribution Service (ST DADS). ST DADS is the data archive for HST observations and a relational database catalog describing the archived data. Users will use StarView to query the catalog and select appropriate datasets for study. StarView sends requests for archived datasets to ST DADS which processes the requests and returns the database to the user. StarView is designed to be a powerful and extensible user interface. Unique features include an internal relational database to navigate query results, a form definition language that will work with both CRT and X interfaces, a data definition language that will allow StarView to work with any relational database, and the ability to generate adhoc queries without requiring the user to understand the structure of the ST DADS catalog. Ultimately, StarView will allow the user to refine queries in the local database for improved performance and merge in data from external sources for correlation with other query results. The user will be able to create a query from single or multiple forms, merging the selected attributes into a single query. Arbitrary selection of attributes for querying is supported. The user will be able to select how query results are viewed. A standard form or table-row format may be used. Navigation capabilities are provided to aid the user in viewing query results. Object oriented analysis and design techniques were used in the design of StarView to support the mechanisms and concepts required to implement these features. One such mechanism is the Model-View-Controller (MVC) paradigm. The MVC allows the user to have multiple views of the underlying database, while providing a consistent mechanism for interaction regardless of the view. This approach supports both CRT and X interfaces while providing a common mode of user interaction. Another powerful abstraction is the concept of a Query Model. This concept allows a single query to be built form a single or multiple forms before it is submitted to ST DADS. Supporting this concept is the adhoc query generator which allows the user to select and qualify an indeterminate number attributes from the database. The user does not need any knowledge of how the joins across various tables are to be resolved. The adhoc generator calculates the joins automatically and generates the correct SQL query.

  20. Transaction Logging.

    ERIC Educational Resources Information Center

    Jones, S.; And Others

    1997-01-01

    Discusses the use of transaction logging in Okapi-related projects to allow search algorithms and user interfaces to be investigated, evaluated, and compared. A series of examples is presented, illustrating logging software for character-based and graphical user interface systems, and demonstrating the usefulness of relational database management…

  1. Gestures in an Intelligent User Interface

    NASA Astrophysics Data System (ADS)

    Fikkert, Wim; van der Vet, Paul; Nijholt, Anton

    In this chapter we investigated which hand gestures are intuitive to control a large display multimedia interface from a user's perspective. Over the course of two sequential user evaluations, we defined a simple gesture set that allows users to fully control a large display multimedia interface, intuitively. First, we evaluated numerous gesture possibilities for a set of commands that can be issued to the interface. These gestures were selected from literature, science fiction movies, and a previous exploratory study. Second, we implemented a working prototype with which the users could interact with both hands and the preferred hand gestures with 2D and 3D visualizations of biochemical structures. We found that the gestures are influenced to significant extent by the fast paced developments in multimedia interfaces such as the Apple iPhone and the Nintendo Wii and to no lesser degree by decades of experience with the more traditional WIMP-based interfaces.

  2. Developing a Graphical User Interface for the ALSS Crop Planning Tool

    NASA Technical Reports Server (NTRS)

    Koehlert, Erik

    1997-01-01

    The goal of my project was to create a graphical user interface for a prototype crop scheduler. The crop scheduler was developed by Dr. Jorge Leon and Laura Whitaker for the ALSS (Advanced Life Support System) program. The addition of a system-independent graphical user interface to the crop planning tool will make the application more accessible to a wider range of users and enhance its value as an analysis, design, and planning tool. My presentation will demonstrate the form and functionality of this interface. This graphical user interface allows users to edit system parameters stored in the file system. Data on the interaction of the crew, crops, and waste processing system with the available system resources is organized and labeled. Program output, which is stored in the file system, is also presented to the user in performance-time plots and organized charts. The menu system is designed to guide the user through analysis and decision making tasks, providing some help if necessary. The Java programming language was used to develop this interface in hopes of providing portability and remote operation.

  3. Development of a Mobile User Interface for Image-based Dietary Assessment.

    PubMed

    Kim, Sungye; Schap, Tusarebecca; Bosch, Marc; Maciejewski, Ross; Delp, Edward J; Ebert, David S; Boushey, Carol J

    2010-12-31

    In this paper, we present a mobile user interface for image-based dietary assessment. The mobile user interface provides a front end to a client-server image recognition and portion estimation software. In the client-server configuration, the user interactively records a series of food images using a built-in camera on the mobile device. Images are sent from the mobile device to the server, and the calorie content of the meal is estimated. In this paper, we describe and discuss the design and development of our mobile user interface features. We discuss the design concepts, through initial ideas and implementations. For each concept, we discuss qualitative user feedback from participants using the mobile client application. We then discuss future designs, including work on design considerations for the mobile application to allow the user to interactively correct errors in the automatic processing while reducing the user burden associated with classical pen-and-paper dietary records.

  4. Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms

    PubMed Central

    Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon

    2011-01-01

    Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532

  5. Development of a simulated smart pump interface.

    PubMed

    Elias, Beth L; Moss, Jacqueline A; Shih, Alan; Dillavou, Marcus

    2014-01-01

    Medical device user interfaces are increasingly complex, resulting in a need for evaluation in clinicallyaccurate settings. Simulation of these interfaces can allow for evaluation, training, and use for research without the risk of harming patients and with a significant cost reduction over using the actual medical devices. This pilot project was phase 1 of a study to define and evaluate a methodology for development of simulated medical device interface technology to be used for education, device development, and research. Digital video and audio recordings of interface interactions were analyzed to develop a model of a smart intravenous medication infusion pump user interface. This model was used to program a high-fidelity simulated smart intravenous medication infusion pump user interface on an inexpensive netbook platform.

  6. Usability and Functional Enhancements to an Online Interface for Predicting Post Fire Erosion (WEPP-PEP)

    NASA Astrophysics Data System (ADS)

    Lew, Roger; Dobre, Mariana; Elliot, William; Robichaud, Pete; Brooks, Erin; Frankenberger, Jim

    2017-04-01

    There is an increased interest in the United States to use soil burn severity maps in watershed-scale hydrologic models to estimate post-fire sediment erosion from burned areas. This information is needed by stakeholders in order to concentrate their pre- or post-fire management efforts in ecologically sensitive areas to decrease the probability of post-fire sediment delivery. But these tools traditionally have been time consuming and difficult to use by managers because input datasets must be obtained and correctly processed for valid results. The Water Erosion Prediction Project (WEPP) has previously been developed as an online and easy-to-use interface to help land managers with running simulations without any knowledge of computer programming or hydrologic modeling. The interface automates the acquisition of DEM, climate, soils, and landcover data, and also automates channel and hillslope delineation for the users. The backend is built with Mapserver, GDAL, PHP, C++, Python while the front end uses OpenLayers, and, of course, JavaScript. The existing WEPP online interface was enhanced to provide better usability to stakeholders in United States (Forest Service, BLM, USDA) as well as to provide enhanced functionality for managing both pre-fire and post-fire treatments. Previously, only site administrators could add burn severity maps. The interface now allows users to create accounts to upload and share FlamMap prediction maps, differenced Normalized Burned Ratio (dNBR), or Burned Area Reflectance Classification (BARC) maps. All maps are loaded into a sortable catalog so users can quickly find their area of interest. Once loaded, the interface has been modified to support running comparisons between baseline condition with "no burn" and with a burn severity classification map. The interface has also been enhanced to allow users to conduct single storm analyses to examine, for example, how much soil loss would result after a 100-year storm. An OpenLayers map allows users to overlay the watershed hillslopes and channels, burn severity, and erosion. The interface provides flowpath results for each hillslope and at the outlet, as well as return period and frequency analysis reports. Once problematic areas have been identified, the interface allows users to export the watershed in a format that can be used by the Erosion Risk Management Tool (ERMiT) and Disturbed WEPP (post-disturbance modeling) for more detailed hillslope-level analyses. Numerous other changes were made to improve the overall usability of the interface: allow simulations in both SI and English units, added immovable pop-up dialogs to guide the users, and removed extraneous information from the interface. In upcoming months, a workshop will be conducted to demonstrate these new capabilities to stakeholders. Efforts are underway to use site-specific SSURGO soils to that are modified based on burn severity rather than using generic soil classes.

  7. The Johnson Space Center management information systems: User's guide to JSCMIS

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.; Erickson, Lloyd

    1990-01-01

    The Johnson Space Center Management Information System (JSCMIS) is an interface to computer data bases at the NASA Johnson Space Center which allows an authorized user to browse and retrieve information from a variety of sources with minimum effort. The User's Guide to JSCMIS is the supplement to the JSCMIS Research Report which details the objectives, the architecture, and implementation of the interface. It is a tutorial on how to use the interface and a reference for details about it. The guide is structured like an extended JSCMIS session, describing all of the interface features and how to use them. It also contains an appendix with each of the standard FORMATs currently included in the interface. Users may review them to decide which FORMAT most suits their needs.

  8. Three-dimensional user interfaces for scientific visualization

    NASA Technical Reports Server (NTRS)

    Vandam, Andries

    1995-01-01

    The main goal of this project is to develop novel and productive user interface techniques for creating and managing visualizations of computational fluid dynamics (CFD) datasets. We have implemented an application framework in which we can visualize computational fluid dynamics user interfaces. This UI technology allows users to interactively place visualization probes in a dataset and modify some of their parameters. We have also implemented a time-critical scheduling system which strives to maintain a constant frame-rate regardless of the number of visualization techniques. In the past year, we have published parts of this research at two conferences, the research annotation system at Visualization 1994, and the 3D user interface at UIST 1994. The real-time scheduling system has been submitted to SIGGRAPH 1995 conference. Copies of these documents are included with this report.

  9. An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.

    1994-01-01

    An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.

  10. A Web Interface for Eco System Modeling

    NASA Astrophysics Data System (ADS)

    McHenry, K.; Kooper, R.; Serbin, S. P.; LeBauer, D. S.; Desai, A. R.; Dietze, M. C.

    2012-12-01

    We have developed the Predictive Ecosystem Analyzer (PEcAn) as an open-source scientific workflow system and ecoinformatics toolbox that manages the flow of information in and out of regional-scale terrestrial biosphere models, facilitates heterogeneous data assimilation, tracks data provenance, and enables more effective feedback between models and field research. The over-arching goal of PEcAn is to make otherwise complex analyses transparent, repeatable, and accessible to a diverse array of researchers, allowing both novice and expert users to focus on using the models to examine complex ecosystems rather than having to deal with complex computer system setup and configuration questions in order to run the models. Through the developed web interface we hide much of the data and model details and allow the user to simply select locations, ecosystem models, and desired data sources as inputs to the model. Novice users are guided by the web interface through setting up a model execution and plotting the results. At the same time expert users are given enough freedom to modify specific parameters before the model gets executed. This will become more important as more and more models are added to the PEcAn workflow as well as more and more data that will become available as NEON comes online. On the backend we support the execution of potentially computationally expensive models on different High Performance Computers (HPC) and/or clusters. The system can be configured with a single XML file that gives it the flexibility needed for configuring and running the different models on different systems using a combination of information stored in a database as well as pointers to files on the hard disk. While the web interface usually creates this configuration file, expert users can still directly edit it to fine tune the configuration.. Once a workflow is finished the web interface will allow for the easy creation of plots over result data while also allowing the user to download the results for further processing. The current workflow in the web interface is a simple linear workflow, but will be expanded to allow for more complex workflows. We are working with Kepler and Cyberintegrator to allow for these more complex workflows as well as collecting provenance of the workflow being executed. This provenance regarding model executions is stored in a database along with the derived results. All of this information is then accessible using the BETY database web frontend. The PEcAn interface.

  11. SVM Classifier - a comprehensive java interface for support vector machine classification of microarray data.

    PubMed

    Pirooznia, Mehdi; Deng, Youping

    2006-12-12

    Graphical user interface (GUI) software promotes novelty by allowing users to extend the functionality. SVM Classifier is a cross-platform graphical application that handles very large datasets well. The purpose of this study is to create a GUI application that allows SVM users to perform SVM training, classification and prediction. The GUI provides user-friendly access to state-of-the-art SVM methods embodied in the LIBSVM implementation of Support Vector Machine. We implemented the java interface using standard swing libraries. We used a sample data from a breast cancer study for testing classification accuracy. We achieved 100% accuracy in classification among the BRCA1-BRCA2 samples with RBF kernel of SVM. We have developed a java GUI application that allows SVM users to perform SVM training, classification and prediction. We have demonstrated that support vector machines can accurately classify genes into functional categories based upon expression data from DNA microarray hybridization experiments. Among the different kernel functions that we examined, the SVM that uses a radial basis kernel function provides the best performance. The SVM Classifier is available at http://mfgn.usm.edu/ebl/svm/.

  12. Tools for Integrating Data Access from the IRIS DMC into Research Workflows

    NASA Astrophysics Data System (ADS)

    Reyes, C. G.; Suleiman, Y. Y.; Trabant, C.; Karstens, R.; Weertman, B. R.

    2012-12-01

    Web service interfaces at the IRIS Data Management Center (DMC) provide access to a vast archive of seismological and related geophysical data. These interfaces are designed to easily incorporate data access into data processing workflows. Examples of data that may be accessed include: time series data, related metadata, and earthquake information. The DMC has developed command line scripts, MATLAB® interfaces and a Java library to support a wide variety of data access needs. Users of these interfaces do not need to concern themselves with web service details, networking, or even (in most cases) data conversion. Fetch scripts allow access to the DMC archive and are a comfortable fit for command line users. These scripts are written in Perl and are well suited for automation and integration into existing workflows on most operating systems. For metdata and event information, the Fetch scripts even parse the returned data into simple text summaries. The IRIS Java Web Services Library (IRIS-WS Library) allows Java developers the ability to create programs that access the DMC archives seamlessly. By returning the data and information as native Java objects the Library insulates the developer from data formats, network programming and web service details. The MATLAB interfaces leverage this library to allow users access to the DMC archive directly from within MATLAB (r2009b or newer), returning data into variables for immediate use. Data users and research groups are developing other toolkits that use the DMC's web services. Notably, the ObsPy framework developed at LMU Munich is a Python Toolbox that allows seamless access to data and information via the DMC services. Another example is the MATLAB-based GISMO and Waveform Suite developments that can now access data via web services. In summary, there now exist a host of ways that researchers can bring IRIS DMC data directly into their workflows. MATLAB users can use irisFetch.m, command line users can use the various Fetch scripts, Java users can use the IRIS-WS library, and Python users may request data through ObsPy. To learn more about any of these clients see http://www.iris.edu/ws/wsclients/.

  13. A Randomized Trial Comparing Classical Participatory Design to VandAID, an Interactive CrowdSourcing Platform to Facilitate User-centered Design.

    PubMed

    Dufendach, Kevin R; Koch, Sabine; Unertl, Kim M; Lehmann, Christoph U

    2017-10-26

    Early involvement of stakeholders in the design of medical software is particularly important due to the need to incorporate complex knowledge and actions associated with clinical work. Standard user-centered design methods include focus groups and participatory design sessions with individual stakeholders, which generally limit user involvement to a small number of individuals due to the significant time investments from designers and end users. The goal of this project was to reduce the effort for end users to participate in co-design of a software user interface by developing an interactive web-based crowdsourcing platform. In a randomized trial, we compared a new web-based crowdsourcing platform to standard participatory design sessions. We developed an interactive, modular platform that allows responsive remote customization and design feedback on a visual user interface based on user preferences. The responsive canvas is a dynamic HTML template that responds in real time to user preference selections. Upon completion, the design team can view the user's interface creations through an administrator portal and download the structured selections through a REDCap interface. We have created a software platform that allows users to customize a user interface and see the results of that customization in real time, receiving immediate feedback on the impact of their design choices. Neonatal clinicians used the new platform to successfully design and customize a neonatal handoff tool. They received no specific instruction and yet were able to use the software easily and reported high usability. VandAID, a new web-based crowdsourcing platform, can involve multiple users in user-centered design simultaneously and provides means of obtaining design feedback remotely. The software can provide design feedback at any stage in the design process, but it will be of greatest utility for specifying user requirements and evaluating iterative designs with multiple options.

  14. Transportable Applications Environment (TAE) Plus - A NASA productivity tool used to develop graphical user interfaces

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1991-01-01

    The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUIs), supports prototyping, allows applications to be oported easily between different platforms, and encourages appropriate levels of user interface consistency between applications. This paper discusses the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUIs easier for the application developers. The paper also explains how tools like TAE Plus provide for reusability and ensure reliability of UI software components, as well as how they aid in the reduction of development and maintenance costs.

  15. Smartphone interface to USGS 'Did You Feel It?' - Getting More Citizens Involved in Science

    NASA Astrophysics Data System (ADS)

    Savran, W. H.; Petersen, R. I.; Wukusick, M.

    2013-12-01

    Over the last hundred years, we have put forth a concerted effort to install a dense array of seismometers - used to monitor and measure seismic waves propagating through the earth. In addition to expensive instrumentation, citizens provide useful data to the earthquake science community as demonstrated by the USGS 'Did you feel it?' project. Currently, the 'Did You Feel It?' data is acquired, through an internet browser, from a long questionnaire. With the increasing number of smartphone owners, an application interfacing the population with the 'Did you feel it?' project introduces the next logical step in progressing this technology. We are developing an application, which utilizes many features of modern smartphones to provide a better interface from citizen to scientist. Our application will notify users of any earthquake within a predefined distance above a predefined size. At this point, the user has the option to answer the questionnaire and send their experience of the earthquake to the USGS 'Did you feel it?' database or simply decline. Instead of a cumbersome web-form, the user will be prompted for questions in line with the paradigm of current smartphone application development. An easy, interactive interface allows the user to answer the questions rapidly in a fun manner, resulting in more participation. In addition to putting earthquake science into the hands of many more citizens, the application will also allow the user to place an emergency call in case of casualty during the next big one. Future versions of the application will allow users to take, view, and submit photographs of damage caused by the earthquake. Also, users will be able to view intensity maps generated for the event they evaluated. The USGS has already done an incredible job setting up the 'Did you feel it?' framework; having a more accessible user interface to acquire data will greatly expand the possibilities of the 'Did you feel it?' project.

  16. MTVis: tree exploration using a multitouch interface

    NASA Astrophysics Data System (ADS)

    Andrews, David; Teoh, Soon Tee

    2010-01-01

    We present MTVis, a multi-touch interactive tree visualization system. The multi-touch interface display hardware is built using the LED-LP technology, and the tree layout is based on RINGS, but enhanced with multitouch interactions. We describe the features of the system, and how the multi-touch interface enhances the user's experience in exploring the tree data structure. In particular, the multi-touch interface allows the user to simultaneously control two child nodes of the root, and rotate them so that some nodes are magnified, while preserving the layout of the tree. We also describe the other meaninful touch screen gestures the users can use to intuitively explore the tree.

  17. Development of a Mobile User Interface for Image-based Dietary Assessment

    PubMed Central

    Kim, SungYe; Schap, TusaRebecca; Bosch, Marc; Maciejewski, Ross; Delp, Edward J.; Ebert, David S.; Boushey, Carol J.

    2011-01-01

    In this paper, we present a mobile user interface for image-based dietary assessment. The mobile user interface provides a front end to a client-server image recognition and portion estimation software. In the client-server configuration, the user interactively records a series of food images using a built-in camera on the mobile device. Images are sent from the mobile device to the server, and the calorie content of the meal is estimated. In this paper, we describe and discuss the design and development of our mobile user interface features. We discuss the design concepts, through initial ideas and implementations. For each concept, we discuss qualitative user feedback from participants using the mobile client application. We then discuss future designs, including work on design considerations for the mobile application to allow the user to interactively correct errors in the automatic processing while reducing the user burden associated with classical pen-and-paper dietary records. PMID:24455755

  18. A Hybrid 2D/3D User Interface for Radiological Diagnosis.

    PubMed

    Mandalika, Veera Bhadra Harish; Chernoglazov, Alexander I; Billinghurst, Mark; Bartneck, Christoph; Hurrell, Michael A; Ruiter, Niels de; Butler, Anthony P H; Butler, Philip H

    2018-02-01

    This paper presents a novel 2D/3D desktop virtual reality hybrid user interface for radiology that focuses on improving 3D manipulation required in some diagnostic tasks. An evaluation of our system revealed that our hybrid interface is more efficient for novice users and more accurate for both novice and experienced users when compared to traditional 2D only interfaces. This is a significant finding because it indicates, as the techniques mature, that hybrid interfaces can provide significant benefit to image evaluation. Our hybrid system combines a zSpace stereoscopic display with 2D displays, and mouse and keyboard input. It allows the use of 2D and 3D components interchangeably, or simultaneously. The system was evaluated against a 2D only interface with a user study that involved performing a scoliosis diagnosis task. There were two user groups: medical students and radiology residents. We found improvements in completion time for medical students, and in accuracy for both groups. In particular, the accuracy of medical students improved to match that of the residents.

  19. Web-based Hyper Suprime-Cam Data Providing System

    NASA Astrophysics Data System (ADS)

    Koike, M.; Furusawa, H.; Takata, T.; Price, P.; Okura, Y.; Yamada, Y.; Yamanoi, H.; Yasuda, N.; Bickerton, S.; Katayama, N.; Mineo, S.; Lupton, R.; Bosch, J.; Loomis, C.

    2014-05-01

    We describe a web-based user interface to retrieve Hyper Suprime-Cam data products, including images and. Users can access data directly from a graphical user interface or by writing a database SQL query. The system provides raw images, reduced images and stacked images (from multiple individual exposures), with previews available. Catalog queries can be executed in preview or queue mode, allowing for both exploratory and comprehensive investigations.

  20. Integrating Virtual Worlds with Tangible User Interfaces for Teaching Mathematics: A Pilot Study.

    PubMed

    Guerrero, Graciela; Ayala, Andrés; Mateu, Juan; Casades, Laura; Alamán, Xavier

    2016-10-25

    This article presents a pilot study of the use of two new tangible interfaces and virtual worlds for teaching geometry in a secondary school. The first tangible device allows the user to control a virtual object in six degrees of freedom. The second tangible device is used to modify virtual objects, changing attributes such as position, size, rotation and color. A pilot study on using these devices was carried out at the "Florida Secundaria" high school. A virtual world was built where students used the tangible interfaces to manipulate geometrical figures in order to learn different geometrical concepts. The pilot experiment results suggest that the use of tangible interfaces and virtual worlds allowed a more meaningful learning (concepts learnt were more durable).

  1. Using R in Introductory Statistics Courses with the pmg Graphical User Interface

    ERIC Educational Resources Information Center

    Verzani, John

    2008-01-01

    The pmg add-on package for the open source statistics software R is described. This package provides a simple to use graphical user interface (GUI) that allows introductory statistics students, without advanced computing skills, to quickly create the graphical and numeric summaries expected of them. (Contains 9 figures.)

  2. Teleoperation of Robonaut Using Finger Tracking

    NASA Technical Reports Server (NTRS)

    Champoux, Rachel G.; Luo, Victor

    2012-01-01

    With the advent of new finger tracking systems, the idea of a more expressive and intuitive user interface is being explored and implemented. One practical application for this new kind of interface is that of teleoperating a robot. For humanoid robots, a finger tracking interface is required due to the level of complexity in a human-like hand, where a joystick isn't accurate. Moreover, for some tasks, using one's own hands allows the user to communicate their intentions more effectively than other input. The purpose of this project was to develop a natural user interface for someone to teleoperate a robot that is elsewhere. Specifically, this was designed to control Robonaut on the international space station to do tasks too dangerous and/or too trivial for human astronauts. This interface was developed by integrating and modifying 3Gear's software, which includes a library of gestures and the ability to track hands. The end result is an interface in which the user can manipulate objects in real time in the user interface. then, the information is relayed to a simulator, the stand in for Robonaut, at a slight delay.

  3. User-Centered Design, Experience, and Usability of an Electronic Consent User Interface to Facilitate Informed Decision-Making in an HIV Clinic.

    PubMed

    Ramos, S Raquel

    2017-11-01

    Health information exchange is the electronic accessibility and transferability of patient medical records across various healthcare settings and providers. In some states, patients have to formally give consent to allow their medical records to be electronically shared. The purpose of this study was to apply a novel user-centered, multistep, multiframework approach to design and test an electronic consent user interface, so patients with HIV can make more informed decisions about electronically sharing their health information. This study consisted of two steps. Step 1 was a cross-sectional, descriptive, qualitative study that used user-centric design interviews to create the user interface. This informed Step 2. Step 2 consisted of a one group posttest to examine perceptions of usefulness, ease of use, preference, and comprehension of a health information exchange electronic consent user interface. More than half of the study population had college experience, but challenges remained with overall comprehension regarding consent. The user interface was not independently successful, suggesting that in addition to an electronic consent user interface, human interaction may also be necessary to address the complexities associated with consenting to electronically share health information. Comprehension is key factor in the ability to make informed decisions.

  4. Fragment-Based Docking: Development of the CHARMMing Web User Interface as a Platform for Computer-Aided Drug Design

    PubMed Central

    2015-01-01

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser.1 One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing’s capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of “re-dockings” with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing’s docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening. PMID:25151852

  5. Fragment-based docking: development of the CHARMMing Web user interface as a platform for computer-aided drug design.

    PubMed

    Pevzner, Yuri; Frugier, Emilie; Schalk, Vinushka; Caflisch, Amedeo; Woodcock, H Lee

    2014-09-22

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser. One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing's capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of "re-dockings" with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing's docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening.

  6. An Evaluation of the Interactive Query Expansion in an Online Library Catalogue with a Graphical User Interface.

    ERIC Educational Resources Information Center

    Hancock-Beaulieu, Micheline; And Others

    1995-01-01

    An online library catalog was used to evaluate an interactive query expansion facility based on relevance feedback for the Okapi, probabilistic, term weighting, retrieval system. A graphical user interface allowed searchers to select candidate terms extracted from relevant retrieved items to reformulate queries. Results suggested that the…

  7. Linking Audio and Visual Information while Navigating in a Virtual Reality Kiosk Display

    ERIC Educational Resources Information Center

    Sullivan, Briana; Ware, Colin; Plumlee, Matthew

    2006-01-01

    3D interactive virtual reality museum exhibits should be easy to use, entertaining, and informative. If the interface is intuitive, it will allow the user more time to learn the educational content of the exhibit. This research deals with interface issues concerning activating audio descriptions of images in such exhibits while the user is…

  8. Flexible software architecture for user-interface and machine control in laboratory automation.

    PubMed

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  9. InterFace: A software package for face image warping, averaging, and principal components analysis.

    PubMed

    Kramer, Robin S S; Jenkins, Rob; Burton, A Mike

    2017-12-01

    We describe InterFace, a software package for research in face recognition. The package supports image warping, reshaping, averaging of multiple face images, and morphing between faces. It also supports principal components analysis (PCA) of face images, along with tools for exploring the "face space" produced by PCA. The package uses a simple graphical user interface, allowing users to perform these sophisticated image manipulations without any need for programming knowledge. The program is available for download in the form of an app, which requires that users also have access to the (freely available) MATLAB Runtime environment.

  10. Design criteria for a PC-based common user interface to remote information systems

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Hall, Philip P.

    1984-01-01

    A set of design criteria are presented which will allow the implementation of an interface to multiple remote information systems on a microcomputer. The focus of the design description is on providing the user with the functionality required to retrieve, store and manipulate data residing in remote information systems through the utilization of a standardized interface system. The intent is to spare the user from learning the details of retrieval from specific systems while retaining the full capabilities of each system. The system design includes multi-level capabilities to enhance usability by a wide range of users and utilizes microcomputer graphics capabilities where applicable. A data collection subsystem for evaluation purposes is also described.

  11. Imagining a Stata / Python Combination

    NASA Technical Reports Server (NTRS)

    Fiedler, James

    2012-01-01

    There are occasions when a task is difficult in Stata, but fairly easy in a more general programming language. Python is a popular language for a range of uses. It is easy to use, has many high ]quality packages, and programs can be written relatively quickly. Is there any advantage in combining Stata and Python within a single interface? Stata already offers support for user-written programs, which allow extensive control over calculations, but somewhat less control over graphics. Also, except for specifying output, the user has minimal programmatic control over the user interface. Python can be used in a way that allows more control over the interface and graphics, and in so doing provide a roundabout method for satisfying some user requests (e.g., transparency levels in graphics and the ability to clear the results window). My talk will explore these ideas, present a possible method for combining Stata and Python, and give examples to demonstrate how this combination might be useful.

  12. Qualitative CFD for Rapid Learning in Industrial and Academic Applications

    NASA Astrophysics Data System (ADS)

    Variano, Evan

    2010-11-01

    We present a set of tools that allow CFD to be used at an early stage in the design process. Users can rapidly explore the qualitative aspects of fluid flow using real-time simulations that react immediately to design changes. This can guide the design process by fostering an intuitive understanding of fluid dynamics at the prototyping stage. We use an extremely stable Navier-Stokes solver that is available commercially (and free to academic users) plus a custom user interface. The code is designed for the animation and gaming industry, and we exploit the powerful graphical display capabilities to develop a unique human-machine interface. This interface allows the user to efficiently explore the flow in 3D + real time, fostering an intuitive understanding of steady and unsteady flow patterns. There are obvious extensions to use in an academic setting. The trade-offs between accuracy and speed will be discussed in the context of CFD's role in design and education.

  13. Integrating Virtual Worlds with Tangible User Interfaces for Teaching Mathematics: A Pilot Study

    PubMed Central

    Guerrero, Graciela; Ayala, Andrés; Mateu, Juan; Casades, Laura; Alamán, Xavier

    2016-01-01

    This article presents a pilot study of the use of two new tangible interfaces and virtual worlds for teaching geometry in a secondary school. The first tangible device allows the user to control a virtual object in six degrees of freedom. The second tangible device is used to modify virtual objects, changing attributes such as position, size, rotation and color. A pilot study on using these devices was carried out at the “Florida Secundaria” high school. A virtual world was built where students used the tangible interfaces to manipulate geometrical figures in order to learn different geometrical concepts. The pilot experiment results suggest that the use of tangible interfaces and virtual worlds allowed a more meaningful learning (concepts learnt were more durable). PMID:27792132

  14. MASH Suite: a user-friendly and versatile software interface for high-resolution mass spectrometry data interpretation and visualization.

    PubMed

    Guner, Huseyin; Close, Patrick L; Cai, Wenxuan; Zhang, Han; Peng, Ying; Gregorich, Zachery R; Ge, Ying

    2014-03-01

    The rapid advancements in mass spectrometry (MS) instrumentation, particularly in Fourier transform (FT) MS, have made the acquisition of high-resolution and high-accuracy mass measurements routine. However, the software tools for the interpretation of high-resolution MS data are underdeveloped. Although several algorithms for the automatic processing of high-resolution MS data are available, there is still an urgent need for a user-friendly interface with functions that allow users to visualize and validate the computational output. Therefore, we have developed MASH Suite, a user-friendly and versatile software interface for processing high-resolution MS data. MASH Suite contains a wide range of features that allow users to easily navigate through data analysis, visualize complex high-resolution MS data, and manually validate automatically processed results. Furthermore, it provides easy, fast, and reliable interpretation of top-down, middle-down, and bottom-up MS data. MASH Suite is convenient, easily operated, and freely available. It can greatly facilitate the comprehensive interpretation and validation of high-resolution MS data with high accuracy and reliability.

  15. MuSim, a Graphical User Interface for Multiple Simulation Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Thomas; Cummings, Mary Anne; Johnson, Rolland

    2016-06-01

    MuSim is a new user-friendly program designed to interface to many different particle simulation codes, regardless of their data formats or geometry descriptions. It presents the user with a compelling graphical user interface that includes a flexible 3-D view of the simulated world plus powerful editing and drag-and-drop capabilities. All aspects of the design can be parametrized so that parameter scans and optimizations are easy. It is simple to create plots and display events in the 3-D viewer (with a slider to vary the transparency of solids), allowing for an effortless comparison of different simulation codes. Simulation codes: G4beamline, MAD-X,more » and MCNP; more coming. Many accelerator design tools and beam optics codes were written long ago, with primitive user interfaces by today's standards. MuSim is specifically designed to make it easy to interface to such codes, providing a common user experience for all, and permitting the construction and exploration of models with very little overhead. For today's technology-driven students, graphical interfaces meet their expectations far better than text-based tools, and education in accelerator physics is one of our primary goals.« less

  16. An SSVEP-Based Brain-Computer Interface for Text Spelling With Adaptive Queries That Maximize Information Gain Rates.

    PubMed

    Akce, Abdullah; Norton, James J S; Bretl, Timothy

    2015-09-01

    This paper presents a brain-computer interface for text entry using steady-state visually evoked potentials (SSVEP). Like other SSVEP-based spellers, ours identifies the desired input character by posing questions (or queries) to users through a visual interface. Each query defines a mapping from possible characters to steady-state stimuli. The user responds by attending to one of these stimuli. Unlike other SSVEP-based spellers, ours chooses from a much larger pool of possible queries-on the order of ten thousand instead of ten. The larger query pool allows our speller to adapt more effectively to the inherent structure of what is being typed and to the input performance of the user, both of which make certain queries provide more information than others. In particular, our speller chooses queries from this pool that maximize the amount of information to be received per unit of time, a measure of mutual information that we call information gain rate. To validate our interface, we compared it with two other state-of-the-art SSVEP-based spellers, which were re-implemented to use the same input mechanism. Results showed that our interface, with the larger query pool, allowed users to spell multiple-word texts nearly twice as fast as they could with the compared spellers.

  17. Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    NASA Technical Reports Server (NTRS)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.

  18. Developing a Natural User Interface and Facial Recognition System With OpenCV and the Microsoft Kinect

    NASA Technical Reports Server (NTRS)

    Gutensohn, Michael

    2018-01-01

    The task for this project was to design, develop, test, and deploy a facial recognition system for the Kennedy Space Center Augmented/Virtual Reality Lab. This system will serve as a means of user authentication as part of the NUI of the lab. The overarching goal is to create a seamless user interface that will allow the user to initiate and interact with AR and VR experiences without ever needing to use a mouse or keyboard at any step in the process.

  19. The Philosophy of User Interfaces in HELIO and the Importance of CASSIS

    NASA Astrophysics Data System (ADS)

    Bonnin, X.; Aboudarham, J.; Renié, C.; Csillaghy, A.; Messerotti, M.; Bentley, R. D.

    2012-09-01

    HELIO is a European project funded under FP7 (Project No. 238969). One of its goals as a Heliospheric Virtual Observatory is to provide an easy access to many datasets scattered all over the world, in the fields of Solar physics, Heliophysics, and Planetary magnetospheres. The efficiency of such a tool is very much related to the quality of the user interface. HELIO infrastructure is based on a Service Oriented Architecture (SOA), regrouping a network of standalone components, which allows four main types of interfaces: - HELIO Front End (HFE) is a browser-based user interface, which offers a centralized access to the HELIO main functionalities. Especially, it provides the possibility to reach data directly, or to refine selection by determination of observing characteristics, such as which instrument was observing at that time, which instrument was at this location, etc. - Many services/components provide their own standalone graphical user interface. While one can directly access individually each of these interfaces, they can also be connected together. - Most services also provide direct access for any tools through a public interface. A small java library, called Java API, simplifies this access by providing client stubs for services and shields the user from security, discovery and failover issues. - Workflows capabilities are available in HELIO, allowing complex combination of queries over several services. We want the user to be able to navigate easily, at his needs, through the various interfaces, and possibly use a specific one in order to make much-dedicated queries. We will also emphasize the importance of the CASSIS project (Coordination Action for the integration of Solar System Infrastructure and Science) in encouraging the interoperability necessary to undertake scientific studies that span disciplinary boundaries. If related projects follow the guidelines being developed by CASSIS then using external resources with HELIO will be greatly simplified.

  20. Research and Development for an Operational Information Ecology: The User-System Interface Agent Project

    NASA Technical Reports Server (NTRS)

    Srivastava, Sadanand; deLamadrid, James

    1998-01-01

    The User System Interface Agent (USIA) is a special type of software agent which acts as the "middle man" between a human user and an information processing environment. USIA consists of a group of cooperating agents which are responsible for assisting users in obtaining information processing services intuitively and efficiently. Some of the main features of USIA include: (1) multiple interaction modes and (2) user-specific and stereotype modeling and adaptation. This prototype system provides us with a development platform towards the realization of an operational information ecology. In the first phase of this project we focus on the design and implementation of prototype system of the User-System Interface Agent (USIA). The second face of USIA allows user interaction via a restricted query language as well as through a taxonomy of windows. In third phase the USIA system architecture was revised.

  1. Concurrent Image Processing Executive (CIPE). Volume 3: User's guide

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Cooper, Gregory T.; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.; Kong, Mih-Seh

    1990-01-01

    CIPE (the Concurrent Image Processing Executive) is both an executive which organizes the parameter inputs for hypercube applications and an environment which provides temporary data workspace and simple real-time function definition facilities for image analysis. CIPE provides two types of user interface. The Command Line Interface (CLI) provides a simple command-driven environment allowing interactive function definition and evaluation of algebraic expressions. The menu interface employs a hierarchical screen-oriented menu system where the user is led through a menu tree to any specific application and then given a formatted panel screen for parameter entry. How to initialize the system through the setup function, how to read data into CIPE symbols, how to manipulate and display data through the use of executive functions, and how to run an application in either user interface mode, are described.

  2. Software engineering activities at SEI (Software Engineering Institute)

    NASA Technical Reports Server (NTRS)

    Chittister, Clyde

    1990-01-01

    Prototyping was shown to ease system specification and implementation, especially in the area of user interfaces. Other prototyping approaches do not allow for the evolution of the prototype into a production system or support maintenance after the system is fielded. A set of goals is presented for a modern user interface environment and Serpent, a prototype implementation that achieves these goals, is described.

  3. Web-based, GPU-accelerated, Monte Carlo simulation and visualization of indirect radiation imaging detector performance.

    PubMed

    Dong, Han; Sharma, Diksha; Badano, Aldo

    2014-12-01

    Monte Carlo simulations play a vital role in the understanding of the fundamental limitations, design, and optimization of existing and emerging medical imaging systems. Efforts in this area have resulted in the development of a wide variety of open-source software packages. One such package, hybridmantis, uses a novel hybrid concept to model indirect scintillator detectors by balancing the computational load using dual CPU and graphics processing unit (GPU) processors, obtaining computational efficiency with reasonable accuracy. In this work, the authors describe two open-source visualization interfaces, webmantis and visualmantis to facilitate the setup of computational experiments via hybridmantis. The visualization tools visualmantis and webmantis enable the user to control simulation properties through a user interface. In the case of webmantis, control via a web browser allows access through mobile devices such as smartphones or tablets. webmantis acts as a server back-end and communicates with an NVIDIA GPU computing cluster that can support multiuser environments where users can execute different experiments in parallel. The output consists of point response and pulse-height spectrum, and optical transport statistics generated by hybridmantis. The users can download the output images and statistics through a zip file for future reference. In addition, webmantis provides a visualization window that displays a few selected optical photon path as they get transported through the detector columns and allows the user to trace the history of the optical photons. The visualization tools visualmantis and webmantis provide features such as on the fly generation of pulse-height spectra and response functions for microcolumnar x-ray imagers while allowing users to save simulation parameters and results from prior experiments. The graphical interfaces simplify the simulation setup and allow the user to go directly from specifying input parameters to receiving visual feedback for the model predictions.

  4. Emotion scents: a method of representing user emotions on GUI widgets

    NASA Astrophysics Data System (ADS)

    Cernea, Daniel; Weber, Christopher; Ebert, Achim; Kerren, Andreas

    2013-01-01

    The world of desktop interfaces has been dominated for years by the concept of windows and standardized user interface (UI) components. Still, while supporting the interaction and information exchange between the users and the computer system, graphical user interface (GUI) widgets are rather one-sided, neglecting to capture the subjective facets of the user experience. In this paper, we propose a set of design guidelines for visualizing user emotions on standard GUI widgets (e.g., buttons, check boxes, etc.) in order to enrich the interface with a new dimension of subjective information by adding support for emotion awareness as well as post-task analysis and decision making. We highlight the use of an EEG headset for recording the various emotional states of the user while he/she is interacting with the widgets of the interface. We propose a visualization approach, called emotion scents, that allows users to view emotional reactions corresponding to di erent GUI widgets without in uencing the layout or changing the positioning of these widgets. Our approach does not focus on highlighting the emotional experience during the interaction with an entire system, but on representing the emotional perceptions and reactions generated by the interaction with a particular UI component. Our research is motivated by enabling emotional self-awareness and subjectivity analysis through the proposed emotionenhanced UI components for desktop interfaces. These assumptions are further supported by an evaluation of emotion scents.

  5. User interface user's guide for HYPGEN

    NASA Technical Reports Server (NTRS)

    Chiu, Ing-Tsau

    1992-01-01

    The user interface (UI) of HYPGEN is developed using Panel Library to shorten the learning curve for new users and provide easier ways to run HYPGEN for casual users as well as for advanced users. Menus, buttons, sliders, and type-in fields are used extensively in UI to allow users to point and click with a mouse to choose various available options or to change values of parameters. On-line help is provided to give users information on using UI without consulting the manual. Default values are set for most parameters and boundary conditions are determined by UI to further reduce the effort needed to run HYPGEN; however, users are free to make any changes and save it in a file for later use. A hook to PLOT3D is built in to allow graphics manipulation. The viewpoint and min/max box for PLOT3D windows are computed by UI and saved in a PLOT3D journal file. For large grids which take a long time to generate on workstations, the grid generator (HYPGEN) can be run on faster computers such as Crays, while UI stays at the workstation.

  6. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management.

    PubMed

    Hocraffer, Amy; Nam, Chang S

    2017-01-01

    A meta-analysis was conducted to systematically evaluate the current state of research on human-system interfaces for users controlling semi-autonomous swarms composed of groups of drones or unmanned aerial vehicles (UAVs). UAV swarms pose several human factors challenges, such as high cognitive demands, non-intuitive behavior, and serious consequences for errors. This article presents findings from a meta-analysis of 27 UAV swarm management papers focused on the human-system interface and human factors concerns, providing an overview of the advantages, challenges, and limitations of current UAV management interfaces, as well as information on how these interfaces are currently evaluated. In general allowing user and mission-specific customization to user interfaces and raising the swarm's level of autonomy to reduce operator cognitive workload are beneficial and improve situation awareness (SA). It is clear more research is needed in this rapidly evolving field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. MailMinder: taming DHCP's mailman interface.

    PubMed

    Shultz, E K; Brown, R; Kotta, G

    1992-01-01

    While the Department of Veteran's Affairs Decentralized Hospital Computer Program (DHCP) is one of the most widely disseminated and successful hospital information systems in existence, it currently is accessed through a user interface which is not as mature as the rest of the system. This interface is a VT-100 compatible, character oriented interface using menus accessed by typed commands for feature access. This project demonstrated that a mature graphical user interface (MailMinder) can be successfully used as a "front-end" to DHCP. MailMinder is completely compatible with the existing unmodified DHCP electronic mail program, Mailman. MailMinder allows the user to be more efficient than the current interface and offers additional features over the current mail system. The program has undergone evaluation and limited deployment at five separate sites. The feature set of this program and its operation will be shown at this demonstration. The demonstration has implications for all current hospital information systems.

  8. MailMinder: taming DHCP's mailman interface.

    PubMed Central

    Shultz, E. K.; Brown, R.; Kotta, G.

    1992-01-01

    While the Department of Veteran's Affairs Decentralized Hospital Computer Program (DHCP) is one of the most widely disseminated and successful hospital information systems in existence, it currently is accessed through a user interface which is not as mature as the rest of the system. This interface is a VT-100 compatible, character oriented interface using menus accessed by typed commands for feature access. This project demonstrated that a mature graphical user interface (MailMinder) can be successfully used as a "front-end" to DHCP. MailMinder is completely compatible with the existing unmodified DHCP electronic mail program, Mailman. MailMinder allows the user to be more efficient than the current interface and offers additional features over the current mail system. The program has undergone evaluation and limited deployment at five separate sites. The feature set of this program and its operation will be shown at this demonstration. The demonstration has implications for all current hospital information systems. PMID:1482995

  9. Combining multivariate statistics and the think-aloud protocol to assess Human-Computer Interaction barriers in symptom checkers.

    PubMed

    Marco-Ruiz, Luis; Bønes, Erlend; de la Asunción, Estela; Gabarron, Elia; Aviles-Solis, Juan Carlos; Lee, Eunji; Traver, Vicente; Sato, Keiichi; Bellika, Johan G

    2017-10-01

    Symptom checkers are software tools that allow users to submit a set of symptoms and receive advice related to them in the form of a diagnosis list, health information or triage. The heterogeneity of their potential users and the number of different components in their user interfaces can make testing with end-users unaffordable. We designed and executed a two-phase method to test the respiratory diseases module of the symptom checker Erdusyk. Phase I consisted of an online test with a large sample of users (n=53). In Phase I, users evaluated the system remotely and completed a questionnaire based on the Technology Acceptance Model. Principal Component Analysis was used to correlate each section of the interface with the questionnaire responses, thus identifying which areas of the user interface presented significant contributions to the technology acceptance. In the second phase, the think-aloud procedure was executed with a small number of samples (n=15), focusing on the areas with significant contributions to analyze the reasons for such contributions. Our method was used effectively to optimize the testing of symptom checker user interfaces. The method allowed kept the cost of testing at reasonable levels by restricting the use of the think-aloud procedure while still assuring a high amount of coverage. The main barriers detected in Erdusyk were related to problems understanding time repetition patterns, the selection of levels in scales to record intensities, navigation, the quantification of some symptom attributes, and the characteristics of the symptoms. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A graphical user interface for RAId, a knowledge integrated proteomics analysis suite with accurate statistics.

    PubMed

    Joyce, Brendan; Lee, Danny; Rubio, Alex; Ogurtsov, Aleksey; Alves, Gelio; Yu, Yi-Kuo

    2018-03-15

    RAId is a software package that has been actively developed for the past 10 years for computationally and visually analyzing MS/MS data. Founded on rigorous statistical methods, RAId's core program computes accurate E-values for peptides and proteins identified during database searches. Making this robust tool readily accessible for the proteomics community by developing a graphical user interface (GUI) is our main goal here. We have constructed a graphical user interface to facilitate the use of RAId on users' local machines. Written in Java, RAId_GUI not only makes easy executions of RAId but also provides tools for data/spectra visualization, MS-product analysis, molecular isotopic distribution analysis, and graphing the retrieval versus the proportion of false discoveries. The results viewer displays and allows the users to download the analyses results. Both the knowledge-integrated organismal databases and the code package (containing source code, the graphical user interface, and a user manual) are available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/raid.html .

  11. The development of a prototype intelligent user interface subsystem for NASA's scientific database systems

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Roelofs, Larry H.; Short, Nicholas M., Jr.

    1987-01-01

    The National Space Science Data Center (NSSDC) has initiated an Intelligent Data Management (IDM) research effort which has as one of its components the development of an Intelligent User Interface (IUI).The intent of the latter is to develop a friendly and intelligent user interface service that is based on expert systems and natural language processing technologies. The purpose is to support the large number of potential scientific and engineering users presently having need of space and land related research and technical data but who have little or no experience in query languages or understanding of the information content or architecture of the databases involved. This technical memorandum presents prototype Intelligent User Interface Subsystem (IUIS) using the Crustal Dynamics Project Database as a test bed for the implementation of the CRUDDES (Crustal Dynamics Expert System). The knowledge base has more than 200 rules and represents a single application view and the architectural view. Operational performance using CRUDDES has allowed nondatabase users to obtain useful information from the database previously accessible only to an expert database user or the database designer.

  12. Transportable Applications Environment (TAE) Plus: A NASA tool for building and managing graphical user interfaces

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1993-01-01

    The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development which simplifies the process of creating and managing complex application graphical user interfaces (GUI's). TAE Plus supports the rapid prototyping of GUI's and allows applications to be ported easily between different platforms. This paper will discuss the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUI's easier for application developers. TAE Plus is being applied to many types of applications, and this paper discusses how it has been used both within and outside NASA.

  13. Identifying User Interaction Patterns in E-Textbooks

    PubMed Central

    Saarinen, Santeri; Turunen, Markku; Mikkilä-Erdmann, Mirjamaija; Erdmann, Norbert; Yrjänäinen, Sari; Keskinen, Tuuli

    2015-01-01

    We introduce a new architecture for e-textbooks which contains two navigational aids: an index and a concept map. We report results from an evaluation in a university setting with 99 students. The interaction sequences of the users were captured during the user study. We found several clusters of user interaction types in our data. Three separate user types were identified based on the interaction sequences: passive user, term clicker, and concept map user. We also discovered that with the concept map interface users started to interact with the application significantly sooner than with the index interface. Overall, our findings suggest that analysis of interaction patterns allows deeper insights into the use of e-textbooks than is afforded by summative evaluation. PMID:26605377

  14. Identifying User Interaction Patterns in E-Textbooks.

    PubMed

    Saarinen, Santeri; Heimonen, Tomi; Turunen, Markku; Mikkilä-Erdmann, Mirjamaija; Raisamo, Roope; Erdmann, Norbert; Yrjänäinen, Sari; Keskinen, Tuuli

    2015-01-01

    We introduce a new architecture for e-textbooks which contains two navigational aids: an index and a concept map. We report results from an evaluation in a university setting with 99 students. The interaction sequences of the users were captured during the user study. We found several clusters of user interaction types in our data. Three separate user types were identified based on the interaction sequences: passive user, term clicker, and concept map user. We also discovered that with the concept map interface users started to interact with the application significantly sooner than with the index interface. Overall, our findings suggest that analysis of interaction patterns allows deeper insights into the use of e-textbooks than is afforded by summative evaluation.

  15. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  16. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  17. Enabling User to User Interactions in Web Lectures with History-Aware User Awareness

    ERIC Educational Resources Information Center

    Ketterl, Markus; Mertens, Robert; Wiesen, Christoph; Vornberger, Oliver

    2011-01-01

    Purpose: The purpose of this paper is to present a user interface for web lectures for engaging with other users while working with video based learning content. The application allows its users to ask questions about the content and to get answers from those users that currently online are more familiar with it. The filtering is based on the…

  18. Software for Remote Monitoring of Space-Station Payloads

    NASA Technical Reports Server (NTRS)

    Schneider, Michelle; Lippincott, Jeff; Chubb, Steve; Whitaker, Jimmy; Gillis, Robert; Sellers, Donna; Sims, Chris; Rice, James

    2003-01-01

    Telescience Resource Kit (TReK) is a suite of application programs that enable geographically dispersed users to monitor scientific payloads aboard the International Space Station (ISS). TReK provides local ground support services that can simultaneously receive, process, record, playback, and display data from multiple sources. TReK also provides interfaces to use the remote services provided by the Payload Operations Integration Center which manages all ISS payloads. An application programming interface (API) allows for payload users to gain access to all data processed by TReK and allows payload-specific tools and programs to be built or integrated with TReK. Used in conjunction with other ISS-provided tools, TReK provides the ability to integrate payloads with the operational ground system early in the lifecycle. This reduces the potential for operational problems and provides "cradle-to-grave" end-to-end operations. TReK contains user guides and self-paced tutorials along with training applications to allow the user to become familiar with the system.

  19. CE-SAM: a conversational interface for ISR mission support

    NASA Astrophysics Data System (ADS)

    Pizzocaro, Diego; Parizas, Christos; Preece, Alun; Braines, Dave; Mott, David; Bakdash, Jonathan Z.

    2013-05-01

    There is considerable interest in natural language conversational interfaces. These allow for complex user interactions with systems, such as fulfilling information requirements in dynamic environments, without requiring extensive training or a technical background (e.g. in formal query languages or schemas). To leverage the advantages of conversational interactions we propose CE-SAM (Controlled English Sensor Assignment to Missions), a system that guides users through refining and satisfying their information needs in the context of Intelligence, Surveillance, and Reconnaissance (ISR) operations. The rapidly-increasing availability of sensing assets and other information sources poses substantial challenges to effective ISR resource management. In a coalition context, the problem is even more complex, because assets may be "owned" by different partners. We show how CE-SAM allows a user to refine and relate their ISR information needs to pre-existing concepts in an ISR knowledge base, via conversational interaction implemented on a tablet device. The knowledge base is represented using Controlled English (CE) - a form of controlled natural language that is both human-readable and machine processable (i.e. can be used to implement automated reasoning). Users interact with the CE-SAM conversational interface using natural language, which the system converts to CE for feeding-back to the user for confirmation (e.g. to reduce misunderstanding). We show that this process not only allows users to access the assets that can support their mission needs, but also assists them in extending the CE knowledge base with new concepts.

  20. Toward visual user interfaces supporting collaborative multimedia content management

    NASA Astrophysics Data System (ADS)

    Husein, Fathi; Leissler, Martin; Hemmje, Matthias

    2000-12-01

    Supporting collaborative multimedia content management activities, as e.g., image and video acquisition, exploration, and access dialogues between naive users and multi media information systems is a non-trivial task. Although a wide variety of experimental and prototypical multimedia storage technologies as well as corresponding indexing and retrieval engines are available, most of them lack appropriate support for collaborative end-user oriented user interface front ends. The development of advanced user adaptable interfaces is necessary for building collaborative multimedia information- space presentations based upon advanced tools for information browsing, searching, filtering, and brokering to be applied on potentially very large and highly dynamic multimedia collections with a large number of users and user groups. Therefore, the development of advanced and at the same time adaptable and collaborative computer graphical information presentation schemes that allow to easily apply adequate visual metaphors for defined target user stereotypes has to become a key focus within ongoing research activities trying to support collaborative information work with multimedia collections.

  1. Graphical Language for Data Processing

    NASA Technical Reports Server (NTRS)

    Alphonso, Keith

    2011-01-01

    A graphical language for processing data allows processing elements to be connected with virtual wires that represent data flows between processing modules. The processing of complex data, such as lidar data, requires many different algorithms to be applied. The purpose of this innovation is to automate the processing of complex data, such as LIDAR, without the need for complex scripting and programming languages. The system consists of a set of user-interface components that allow the user to drag and drop various algorithmic and processing components onto a process graph. By working graphically, the user can completely visualize the process flow and create complex diagrams. This innovation supports the nesting of graphs, such that a graph can be included in another graph as a single step for processing. In addition to the user interface components, the system includes a set of .NET classes that represent the graph internally. These classes provide the internal system representation of the graphical user interface. The system includes a graph execution component that reads the internal representation of the graph (as described above) and executes that graph. The execution of the graph follows the interpreted model of execution in that each node is traversed and executed from the original internal representation. In addition, there are components that allow external code elements, such as algorithms, to be easily integrated into the system, thus making the system infinitely expandable.

  2. MollDE: a homology modeling framework you can click with.

    PubMed

    Canutescu, Adrian A; Dunbrack, Roland L

    2005-06-15

    Molecular Integrated Development Environment (MolIDE) is an integrated application designed to provide homology modeling tools and protocols under a uniform, user-friendly graphical interface. Its main purpose is to combine the most frequent modeling steps in a semi-automatic, interactive way, guiding the user from the target protein sequence to the final three-dimensional protein structure. The typical basic homology modeling process is composed of building sequence profiles of the target sequence family, secondary structure prediction, sequence alignment with PDB structures, assisted alignment editing, side-chain prediction and loop building. All of these steps are available through a graphical user interface. MolIDE's user-friendly and streamlined interactive modeling protocol allows the user to focus on the important modeling questions, hiding from the user the raw data generation and conversion steps. MolIDE was designed from the ground up as an open-source, cross-platform, extensible framework. This allows developers to integrate additional third-party programs to MolIDE. http://dunbrack.fccc.edu/molide/molide.php rl_dunbrack@fccc.edu.

  3. The Technology Information Environment with Industry{trademark} system description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detry, R.; Machin, G.

    The Technology Information Environment with Industry (TIE-In{trademark}) provides users with controlled access to distributed laboratory resources that are packaged in intelligent user interfaces. These interfaces help users access resources without requiring the user to have technical or computer expertise. TIE-In utilizes existing, proven technologies such as the Kerberos authentication system, X-Windows, and UNIX sockets. A Front End System (FES) authenticates users and allows them to register for resources and subsequently access them. The FES also stores status and accounting information, and provides an automated method for the resource owners to recover costs from users. The resources available through TIE-In aremore » typically laboratory-developed applications that are used to help design, analyze, and test components in the nation`s nuclear stockpile. Many of these applications can also be used by US companies for non-weapons-related work. TIE-In allows these industry partners to obtain laboratory-developed technical solutions without requiring them to duplicate the technical resources (people, hardware, and software) at Sandia.« less

  4. GUIdock: Using Docker Containers with a Common Graphics User Interface to Address the Reproducibility of Research

    PubMed Central

    Yeung, Ka Yee

    2016-01-01

    Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface. PMID:27045593

  5. GUIdock: Using Docker Containers with a Common Graphics User Interface to Address the Reproducibility of Research.

    PubMed

    Hung, Ling-Hong; Kristiyanto, Daniel; Lee, Sung Bong; Yeung, Ka Yee

    2016-01-01

    Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface.

  6. PyMidas: Interface from Python to Midas

    NASA Astrophysics Data System (ADS)

    Maisala, Sami; Oittinen, Tero

    2014-01-01

    PyMidas is an interface between Python and MIDAS, the major ESO legacy general purpose data processing system. PyMidas allows a user to exploit both the rich legacy of MIDAS software and the power of Python scripting in a unified interactive environment. PyMidas also allows the usage of other Python-based astronomical analysis systems such as PyRAF.

  7. ORBIT: an integrated environment for user-customized bioinformatics tools.

    PubMed

    Bellgard, M I; Hiew, H L; Hunter, A; Wiebrands, M

    1999-10-01

    There are a large number of computational programs freely available to bioinformaticians via a client/server, web-based environment. However, the client interface to these tools (typically an html form page) cannot be customized from the client side as it is created by the service provider. The form page is usually generic enough to cater for a wide range of users. However, this implies that a user cannot set as 'default' advanced program parameters on the form or even customize the interface to his/her specific requirements or preferences. Currently, there is a lack of end-user interface environments that can be modified by the user when accessing computer programs available on a remote server running on an intranet or over the Internet. We have implemented a client/server system called ORBIT (Online Researcher's Bioinformatics Interface Tools) where individual clients can have interfaces created and customized to command-line-driven, server-side programs. Thus, Internet-based interfaces can be tailored to a user's specific bioinformatic needs. As interfaces are created on the client machine independent of the server, there can be different interfaces to the same server-side program to cater for different parameter settings. The interface customization is relatively quick (between 10 and 60 min) and all client interfaces are integrated into a single modular environment which will run on any computer platform supporting Java. The system has been developed to allow for a number of future enhancements and features. ORBIT represents an important advance in the way researchers gain access to bioinformatics tools on the Internet.

  8. Neuronvisio: A Graphical User Interface with 3D Capabilities for NEURON.

    PubMed

    Mattioni, Michele; Cohen, Uri; Le Novère, Nicolas

    2012-01-01

    The NEURON simulation environment is a commonly used tool to perform electrical simulation of neurons and neuronal networks. The NEURON User Interface, based on the now discontinued InterViews library, provides some limited facilities to explore models and to plot their simulation results. Other limitations include the inability to generate a three-dimensional visualization, no standard mean to save the results of simulations, or to store the model geometry within the results. Neuronvisio (http://neuronvisio.org) aims to address these deficiencies through a set of well designed python APIs and provides an improved UI, allowing users to explore and interact with the model. Neuronvisio also facilitates access to previously published models, allowing users to browse, download, and locally run NEURON models stored in ModelDB. Neuronvisio uses the matplotlib library to plot simulation results and uses the HDF standard format to store simulation results. Neuronvisio can be viewed as an extension of NEURON, facilitating typical user workflows such as model browsing, selection, download, compilation, and simulation. The 3D viewer simplifies the exploration of complex model structure, while matplotlib permits the plotting of high-quality graphs. The newly introduced ability of saving numerical results allows users to perform additional analysis on their previous simulations.

  9. Discrete Abstractions of Hybrid Systems: Verification of Safety and Application to User-Interface Design

    NASA Technical Reports Server (NTRS)

    Oishi, Meeko; Tomlin, Claire; Degani, Asaf

    2003-01-01

    Human interaction with complex hybrid systems involves the user, the automation's discrete mode logic, and the underlying continuous dynamics of the physical system. Often the user-interface of such systems displays a reduced set of information about the entire system. In safety-critical systems, how can we identify user-interface designs which do not have adequate information, or which may confuse the user? Here we describe a methodology, based on hybrid system analysis, to verify that a user-interface contains information necessary to safely complete a desired procedure or task. Verification within a hybrid framework allows us to account for the continuous dynamics underlying the simple, discrete representations displayed to the user. We provide two examples: a car traveling through a yellow light at an intersection and an aircraft autopilot in a landing/go-around maneuver. The examples demonstrate the general nature of this methodology, which is applicable to hybrid systems (not fully automated) which have operational constraints we can pose in terms of safety. This methodology differs from existing work in hybrid system verification in that we directly account for the user's interactions with the system.

  10. An EMG-based robot control scheme robust to time-varying EMG signal features.

    PubMed

    Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J

    2010-05-01

    Human-robot control interfaces have received increased attention during the past decades. With the introduction of robots in everyday life, especially in providing services to people with special needs (i.e., elderly, people with impairments, or people with disabilities), there is a strong necessity for simple and natural control interfaces. In this paper, electromyographic (EMG) signals from muscles of the human upper limb are used as the control interface between the user and a robot arm. EMG signals are recorded using surface EMG electrodes placed on the user's skin, making the user's upper limb free of bulky interface sensors or machinery usually found in conventional human-controlled systems. The proposed interface allows the user to control in real time an anthropomorphic robot arm in 3-D space, using upper limb motion estimates based only on EMG recordings. Moreover, the proposed interface is robust to EMG changes with respect to time, mainly caused by muscle fatigue or adjustments of contraction level. The efficiency of the method is assessed through real-time experiments, including random arm motions in the 3-D space with variable hand speed profiles.

  11. Speech-recognition interfaces for music information retrieval

    NASA Astrophysics Data System (ADS)

    Goto, Masataka

    2005-09-01

    This paper describes two hands-free music information retrieval (MIR) systems that enable a user to retrieve and play back a musical piece by saying its title or the artist's name. Although various interfaces for MIR have been proposed, speech-recognition interfaces suitable for retrieving musical pieces have not been studied. Our MIR-based jukebox systems employ two different speech-recognition interfaces for MIR, speech completion and speech spotter, which exploit intentionally controlled nonverbal speech information in original ways. The first is a music retrieval system with the speech-completion interface that is suitable for music stores and car-driving situations. When a user only remembers part of the name of a musical piece or an artist and utters only a remembered fragment, the system helps the user recall and enter the name by completing the fragment. The second is a background-music playback system with the speech-spotter interface that can enrich human-human conversation. When a user is talking to another person, the system allows the user to enter voice commands for music playback control by spotting a special voice-command utterance in face-to-face or telephone conversations. Experimental results from use of these systems have demonstrated the effectiveness of the speech-completion and speech-spotter interfaces. (Video clips: http://staff.aist.go.jp/m.goto/MIR/speech-if.html)

  12. Avatars and virtual agents – relationship interfaces for the elderly

    PubMed Central

    2017-01-01

    In the Digital Era, the authors witness a change in the relationship between the patient and the care-giver or Health Maintenance Organization's providing the health services. Another fact is the use of various technologies to increase the effectiveness and quality of health services across all primary and secondary users. These technologies range from telemedicine systems, decision making tools, online and self-services applications and virtual agents; all providing information and assistance. The common thread between all these digital implementations, is they all require human machine interfaces. These interfaces must be interactive, user friendly and inviting, to create user involvement and cooperation incentives. The challenge is to design interfaces which will best fit the target users and enable smooth interaction especially, for the elderly users. Avatars and Virtual Agents are one of the interfaces used for both home care monitoring and companionship. They are also inherently multimodal in nature and allow an intimate relation between the elderly users and the Avatar. This study discusses the need and nature of these relationship models, the challenges of designing for the elderly. The study proposes key features for the design and evaluation in the area of assistive applications using Avatar and Virtual agents for the elderly users. PMID:28706725

  13. Considerations for Developing Interfaces for Collecting Patient-Reported Outcomes That Allow the Inclusion of Individuals With Disabilities

    PubMed Central

    Harniss, Mark; Amtmann, Dagmar; Cook, Debbie; Johnson, Kurt

    2010-01-01

    PROMIS (Patient-Reported Outcome Measurement Information System) is developing a set of tools for collecting patient reported outcomes, including computerized adaptive testing that can be administered using different modes, such as computers or phones. The user interfaces for these tools will be designed using the principles of universal design to ensure that it is accessible to all users, including those with disabilities. We review the rationale for making health assessment instruments accessible to users with disabilities, briefly review the standards and guidelines that exist to support developers in the creation of user interfaces with accessibility in mind, and describe the usability and accessibility testing PROMIS will conduct with content experts and users with and without disabilities. Finally, we discuss threats to validity and reliability presented by universal design principles. We argue that the social and practical benefits of interfaces designed to include a broad range of potential users, including those with disabilities, seem to outweigh the need for standardization. Suggestions for future research are also included. PMID:17443119

  14. A CLIPS-based tool for aircraft pilot-vehicle interface design

    NASA Technical Reports Server (NTRS)

    Fowler, Thomas D.; Rogers, Steven P.

    1991-01-01

    The Pilot-Vehicle Interface of modern aircraft is the cognitive, sensory, and psychomotor link between the pilot, the avionics modules, and all other systems on board the aircraft. To assist pilot-vehicle interface designers, a C Language Integrated Production System (CLIPS) based tool was developed that allows design information to be stored in a table that can be modified by rules representing design knowledge. Developed for the Apple Macintosh, the tool allows users without any CLIPS programming experience to form simple rules using a point and click interface.

  15. Haptic-STM: a human-in-the-loop interface to a scanning tunneling microscope.

    PubMed

    Perdigão, Luís M A; Saywell, Alex

    2011-07-01

    The operation of a haptic device interfaced with a scanning tunneling microscope (STM) is presented here. The user moves the STM tip in three dimensions by means of a stylus attached to the haptic instrument. The tunneling current measured by the STM is converted to a vertical force, applied to the stylus and felt by the user, with the user being incorporated into the feedback loop that controls the tip-surface distance. A haptic-STM interface of this nature allows the user to feel atomic features on the surface and facilitates the tactile manipulation of the adsorbate/substrate system. The operation of this device is demonstrated via the room temperature STM imaging of C(60) molecules adsorbed on an Au(111) surface in ultra-high vacuum.

  16. Transportable Applications Environment (TAE) Plus: A NASA tool used to develop and manage graphical user interfaces

    NASA Technical Reports Server (NTRS)

    Szczur, Martha R.

    1992-01-01

    The Transportable Applications Environment (TAE) Plus was built to support the construction of graphical user interfaces (GUI's) for highly interactive applications, such as real-time processing systems and scientific analysis systems. It is a general purpose portable tool that includes a 'What You See Is What You Get' WorkBench that allows user interface designers to layout and manipulate windows and interaction objects. The WorkBench includes both user entry objects (e.g., radio buttons, menus) and data-driven objects (e.g., dials, gages, stripcharts), which dynamically change based on values of realtime data. Discussed here is what TAE Plus provides, how the implementation has utilized state-of-the-art technologies within graphic workstations, and how it has been used both within and without NASA.

  17. Pinyon, Version 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Logan; Hackenberg, Robert

    2017-02-13

    Pinyon is a tool that stores steps involved in creating a model derived from a collection of data. The main function of Pinyon is to store descriptions of calculations used to analyze or visualize the data in a database, and allow users to view the results of these calculations via a web interface. Additionally, users may also use the web interface to make adjustments to the calculations and rerun the entire collection of analysis steps automatically.

  18. XAL Application Framework and Bricks GUI Builder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelaia II, Tom

    2007-01-01

    The XAL [1] Application Framework is a framework for rapidly developing document based Java applications with a common look and feel along with many built-in user interface behaviors. The Bricks GUI builder consists of a modern application and framework for rapidly building user interfaces in support of true Model-View-Controller (MVC) compliant Java applications. Bricks and the XAL Application Framework allow developers to rapidly create quality applications.

  19. The effects of time delays on a telepathology user interface.

    PubMed Central

    Carr, D.; Hasegawa, H.; Lemmon, D.; Plaisant, C.

    1992-01-01

    Telepathology enables a pathologist to examine physically distant tissue samples by microscope operation over a communication link. Communication links can impose time delays which cause difficulties in controlling the remote device. Such difficulties were found in a microscope teleoperation system. Since the user interface is critical to pathologist's acceptance of telepathology, we redesigned the user interface for this system, built two different versions (a keypad whose movement commands operated by specifying a start command followed by a stop command and a trackball interface whose movement commands were incremental and directly proportional to the rotation of the trackball). We then conducted a pilot study to determine the effect of time delays on the new user interfaces. In our experiment, the keypad was the faster interface when the time delay is short. There was no evidence to favor either the keypad or trackball when the time delay was longer. Inexperienced participants benefitted by allowing them to move long distances over the microscope slide by dragging the field-of-view indicator on the touchscreen control panel. The experiment suggests that changes could be made to the trackball interface which would improve its performance. PMID:1482878

  20. Open Science Grid (OSG) Ticket Synchronization: Keeping Your Home Field Advantage In A Distributed Environment

    NASA Astrophysics Data System (ADS)

    Gross, Kyle; Hayashi, Soichi; Teige, Scott; Quick, Robert

    2012-12-01

    Large distributed computing collaborations, such as the Worldwide LHC Computing Grid (WLCG), face many issues when it comes to providing a working grid environment for their users. One of these is exchanging tickets between various ticketing systems in use by grid collaborations. Ticket systems such as Footprints, RT, Remedy, and ServiceNow all have different schema that must be addressed in order to provide a reliable exchange of information between support entities and users in different grid environments. To combat this problem, OSG Operations has created a ticket synchronization interface called GOC-TX that relies on web services instead of error-prone email parsing methods of the past. Synchronizing tickets between different ticketing systems allows any user or support entity to work on a ticket in their home environment, thus providing a familiar and comfortable place to provide updates without having to learn another ticketing system. The interface is built in a way that it is generic enough that it can be customized for nearly any ticketing system with a web-service interface with only minor changes. This allows us to be flexible and rapidly bring new ticket synchronization online. Synchronization can be triggered by different methods including mail, web services interface, and active messaging. GOC-TX currently interfaces with Global Grid User Support (GGUS) for WLCG, Remedy at Brookhaven National Lab (BNL), and Request Tracker (RT) at the Virtual Data Toolkit (VDT). Work is progressing on the Fermi National Accelerator Laboratory (FNAL) ServiceNow synchronization. This paper will explain the problems faced by OSG and how they led OSG to create and implement this ticket synchronization system along with the technical details that allow synchronization to be preformed at a production level.

  1. PDM and the Internet: A Look at Product Management and Its Internet Opportunities.

    ERIC Educational Resources Information Center

    Mendel, Alan

    1997-01-01

    Discusses the impact of internet technology on product data management (PDM) vendor's and the users' purchasing decisions. Internet users anticipate graphical user interface (GUI) and two-way communication which allow users to enter and modify data as well as access it. Examines PDM and the Internet: price and performance, the World Wide Web,…

  2. Electronic processing and control system with programmable hardware

    NASA Technical Reports Server (NTRS)

    Alkalaj, Leon (Inventor); Fang, Wai-Chi (Inventor); Newell, Michael A. (Inventor)

    1998-01-01

    A computer system with reprogrammable hardware allowing dynamically allocating hardware resources for different functions and adaptability for different processors and different operating platforms. All hardware resources are physically partitioned into system-user hardware and application-user hardware depending on the specific operation requirements. A reprogrammable interface preferably interconnects the system-user hardware and application-user hardware.

  3. Using component technology to facilitate external software reuse in ground-based planning systems

    NASA Technical Reports Server (NTRS)

    Chase, A.

    2003-01-01

    APGEN (Activity Plan GENerator - 314), a multi-mission planning tool, must interface with external software to vest serve its users. AP-GEN's original method for incorporating external software, the User-Defined library mechanism, has been very successful in allowing APGEN users access to external software functionality.

  4. A Graphical User-Interface for Propulsion System Analysis

    NASA Technical Reports Server (NTRS)

    Curlett, Brian P.; Ryall, Kathleen

    1992-01-01

    NASA LeRC uses a series of computer codes to calculate installed propulsion system performance and weight. The need to evaluate more advanced engine concepts with a greater degree of accuracy has resulted in an increase in complexity of this analysis system. Therefore, a graphical user interface was developed to allow the analyst to more quickly and easily apply these codes. The development of this interface and the rationale for the approach taken are described. The interface consists of a method of pictorially representing and editing the propulsion system configuration, forms for entering numerical data, on-line help and documentation, post processing of data, and a menu system to control execution.

  5. A graphical user-interface for propulsion system analysis

    NASA Technical Reports Server (NTRS)

    Curlett, Brian P.; Ryall, Kathleen

    1993-01-01

    NASA LeRC uses a series of computer codes to calculate installed propulsion system performance and weight. The need to evaluate more advanced engine concepts with a greater degree of accuracy has resulted in an increase in complexity of this analysis system. Therefore, a graphical user interface was developed to allow the analyst to more quickly and easily apply these codes. The development of this interface and the rationale for the approach taken are described. The interface consists of a method of pictorially representing and editing the propulsion system configuration, forms for entering numerical data, on-line help and documentation, post processing of data, and a menu system to control execution.

  6. Workshop AccessibleTV "Accessible User Interfaces for Future TV Applications"

    NASA Astrophysics Data System (ADS)

    Hahn, Volker; Hamisu, Pascal; Jung, Christopher; Heinrich, Gregor; Duarte, Carlos; Langdon, Pat

    Approximately half of the elderly people over 55 suffer from some type of typically mild visual, auditory, motor or cognitive impairment. For them interaction, especially with PCs and other complex devices is sometimes challenging, although accessible ICT applications could make much of a difference for their living quality. Basically they have the potential to enable or simplify participation and inclusion in their surrounding private and professional communities. However, the availability of accessible user interfaces being capable to adapt to the specific needs and requirements of users with individual impairments is very limited. Although there are a number of APIs [1, 2, 3, 4] available for various platforms that allow developers to provide accessibility features within their applications, today none of them provides features for the automatic adaptation of multimodal interfaces being capable to automatically fit the individual requirements of users with different kinds of impairments. Moreover, the provision of accessible user interfaces is still expensive and risky for application developers, as they need special experience and effort for user tests. Today many implementations simply neglect the needs of elderly people, thus locking out a large portion of their potential users. The workshop is organized as part of the dissemination activity for the European-funded project GUIDE "Gentle user interfaces for elderly people", which aims to address this situation with a comprehensive approach for the realization of multimodal user interfaces being capable to adapt to the needs of users with different kinds of mild impairments. As application platform, GUIDE will mainly target TVs and Set-Top Boxes, such as the emerging Connected-TV or WebTV platforms, as they have the potential to address the needs of the elderly users with applications such as for home automation, communication or continuing education.

  7. A software architecture for automating operations processes

    NASA Technical Reports Server (NTRS)

    Miller, Kevin J.

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed a software architecture based on an integrated toolkit approach for simplifying and automating mission operations tasks. The toolkit approach is based on building adaptable, reusable graphical tools that are integrated through a combination of libraries, scripts, and system-level user interface shells. The graphical interface shells are designed to integrate and visually guide a user through the complex steps in an operations process. They provide a user with an integrated system-level picture of an overall process, defining the required inputs and possible output through interactive on-screen graphics. The OEL has developed the software for building these process-oriented graphical user interface (GUI) shells. The OEL Shell development system (OEL Shell) is an extension of JPL's Widget Creation Library (WCL). The OEL Shell system can be used to easily build user interfaces for running complex processes, applications with extensive command-line interfaces, and tool-integration tasks. The interface shells display a logical process flow using arrows and box graphics. They also allow a user to select which output products are desired and which input sources are needed, eliminating the need to know which program and its associated command-line parameters must be executed in each case. The shells have also proved valuable for use as operations training tools because of the OEL Shell hypertext help environment. The OEL toolkit approach is guided by several principles, including the use of ASCII text file interfaces with a multimission format, Perl scripts for mission-specific adaptation code, and programs that include a simple command-line interface for batch mode processing. Projects can adapt the interface shells by simple changes to the resources configuration file. This approach has allowed the development of sophisticated, automated software systems that are easy, cheap, and fast to build. This paper will discuss our toolkit approach and the OEL Shell interface builder in the context of a real operations process example. The paper will discuss the design and implementation of a Ulysses toolkit for generating the mission sequence of events. The Sequence of Events Generation (SEG) system provides an adaptable multimission toolkit for producing a time-ordered listing and timeline display of spacecraft commands, state changes, and required ground activities.

  8. SSC Engineering Analysis

    NASA Technical Reports Server (NTRS)

    Ryan, Harry; Junell, Justin; Albasini, Colby; O'Rourke, William; Le, Thang; Strain, Ted; Stiglets, Tim

    2011-01-01

    A package for the automation of the Engineering Analysis (EA) process at the Stennis Space Center has been customized. It provides the ability to assign and track analysis tasks electronically, and electronically route a task for approval. It now provides a mechanism to keep these analyses under configuration management. It also allows the analysis to be stored and linked to the engineering data that is needed to perform the analysis (drawings, etc.). PTC s (Parametric Technology Corp o ration) Windchill product was customized to allow the EA to be created, routed, and maintained under configuration management. Using Infoengine Tasks, JSP (JavaServer Pages), Javascript, a user interface was created within the Windchill product that allows users to create EAs. Not only does this interface allow users to create and track EAs, but it plugs directly into the out-ofthe- box ability to associate these analyses with other relevant engineering data such as drawings. Also, using the Windchill workflow tool, the Design and Data Management System (DDMS) team created an electronic routing process based on the manual/informal approval process. The team also added the ability for users to notify and track notifications to individuals about the EA. Prior to the Engineering Analysis creation, there was no electronic way of creating and tracking these analyses. There was also a feature that was added that would allow users to track/log e-mail notifications of the EA.

  9. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.

    PubMed

    Delorme, Arnaud; Makeig, Scott

    2004-03-15

    We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), independent component analysis (ICA) and time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical methods based on data resampling. EEGLAB functions are organized into three layers. Top-layer functions allow users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middle-layer functions allow users to customize data processing using command history and interactive 'pop' functions. Experienced MATLAB users can use EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. Extensive function help and tutorial information are included. A 'plug-in' facility allows easy incorporation of new EEG modules into the main menu. EEGLAB is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU public license for noncommercial use and open source development, together with sample data, user tutorial and extensive documentation.

  10. Neuroanatomical affiliation visualization-interface system.

    PubMed

    Palombi, Olivier; Shin, Jae-Won; Watson, Charles; Paxinos, George

    2006-01-01

    A number of knowledge management systems have been developed to allow users to have access to large quantity of neuroanatomical data. The advent of three-dimensional (3D) visualization techniques allows users to interact with complex 3D object. In order to better understand the structural and functional organization of the brain, we present Neuroanatomical Affiliations Visualization-Interface System (NAVIS) as the original software to see brain structures and neuroanatomical affiliations in 3D. This version of NAVIS has made use of the fifth edition of "The Rat Brain in Stereotaxic coordinates" (Paxinos and Watson, 2005). The NAVIS development environment was based on the scripting language name Python, using visualization toolkit (VTK) as 3D-library and wxPython for the graphic user interface. The following manuscript is focused on the nucleus of the solitary tract (Sol) and the set of affiliated structures in the brain to illustrate the functionality of NAVIS. The nucleus of the Sol is the primary relay center of visceral and taste information, and consists of 14 distinct subnuclei that differ in cytoarchitecture, chemoarchitecture, connections, and function. In the present study, neuroanatomical projection data of the rat Sol were collected from selected literature in PubMed since 1975. Forty-nine identified projection data of Sol were inserted in NAVIS. The standard XML format used as an input for affiliation data allows NAVIS to update data online and/or allows users to manually change or update affiliation data. NAVIS can be extended to nuclei other than Sol.

  11. Physician acceptance of the IRIS user interface during a clinical trial at the Ottawa Civic Hospital

    NASA Astrophysics Data System (ADS)

    Coristine, Marjorie; Beeton, Carolyn; Tombaugh, Jo W.; Ahuja, J.; Belanger, Garry; Dillon, Richard F.; Currie, Shawn; Hind, E.

    1990-07-01

    During a clinical trial, emergency physicians and radiologists at the Ottawa Civic Hospital used IRIS (Integrated Radiological Information System) to process patients' x-rays, requisitions, and reports, and to have consultations, for 319 active cases. This paper discusses IRIS user interface issues raised during the clinical trial. The IRIS workstation consists of three major system components: 1) an image screen for viewing and enhancing images; 2) a control screen for presenting patient information, selecting images, and executing commands; and 3) a hands-free telephone for reporting activities and consultations. The control screen and hands-free telephone user interface allow physicians to navigate through patient files, select images and access reports, enter new reports, and perform remote consultations. Physicians were observed using the system during the trial and responded to questions about the user interface on an extensive debriefing interview after the trial. Overall, radiologists and emergency physicians were satisfied with IRIS control screen functionality and user interface. In a number of areas radiologists and emergency physicians differed in their user interface needs. Some features were found to be acceptable to one group of physicians but required modification to meet the needs of the other physician group. The data from the interviews, along with the comments from radiologists and emergency physicians provided important information for the revision of some features, and for the evolution of new features.

  12. Improvements to the User Interface for LHCb's Software continuous integration system.

    NASA Astrophysics Data System (ADS)

    Clemencic, M.; Couturier, B.; Kyriazi, S.

    2015-12-01

    The purpose of this paper is to identify a set of steps leading to an improved interface for LHCb's Nightly Builds Dashboard. The goal is to have an efficient application that meets the needs of both the project developers, by providing them with a user friendly interface, as well as those of the computing team supporting the system, by providing them with a dashboard allowing for better monitoring of the build job themselves. In line with what is already used by LHCb, the web interface has been implemented with the Flask Python framework for future maintainability and code clarity. The Database chosen to host the data is the schema-less CouchDB[7], serving the purpose of flexibility in document form changes. To improve the user experience, we use JavaScript libraries such as JQuery[11].

  13. Implementation of Interaction Algorithm to Non-Matching Discrete Interfaces Between Structure and Fluid Mesh

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Po

    1999-01-01

    This paper presents software for solving the non-conforming fluid structure interfaces in aeroelastic simulation. It reviews the algorithm of interpolation and integration, highlights the flexibility and the user-friendly feature that allows the user to select the existing structure and fluid package, like NASTRAN and CLF3D, to perform the simulation. The presented software is validated by computing the High Speed Civil Transport model.

  14. Pulser: user-friendly, graphical user-interface based software for controlling stimuli during data acquisition with Spike2 for Windows.

    PubMed

    Lidierth, Malcolm

    2005-02-15

    This paper describes software that runs in the Spike2 for Windows environment and provides a versatile tool for generating stimuli during data acquisition from the 1401 family of interfaces (CED, UK). A graphical user interface (GUI) is used to provide dynamic control of stimulus timing. Both single stimuli and trains of stimuli can be generated. The pulse generation routines make use of programmable variables within the interface and allow these to be rapidly changed during an experiment. The routines therefore provide the ease-of-use associated with external, stand-alone pulse generators. Complex stimulus protocols can be loaded from an external text file and facilities are included to create these files through the GUI. The software consists of a Spike2 script that runs in the host PC, and accompanying routines written in the 1401 sequencer control code, that run in the 1401 interface. Handshaking between the PC and the interface card are built into the routines and provides for full integration of sampling, analysis and stimulus generation during an experiment. Control of the 1401 digital-to-analogue converters is also provided; this allows control of stimulus amplitude as well as timing and also provides a sample-hold feature that may be used to remove DC offsets and drift from recorded data.

  15. Determinants of user acceptance of a specific social platform for older adults: An empirical examination of user interface characteristics and behavioral intention.

    PubMed

    Tsai, Tsai-Hsuan; Chang, Hsien-Tsung; Chen, Yan-Jiun; Chang, Yung-Sheng

    2017-01-01

    The use of the Internet and social applications has many benefits for the elderly, but numerous investigations have shown that the elderly do not perceive online social networks as a friendly social environment. Therefore, TreeIt, a social application specifically designed for the elderly, was developed for this study. In the TreeIt application, seven mechanisms promoting social interaction were designed to allow older adults to use social networking sites (SNSs) to increase social connection, maintain the intensity of social connections and strengthen social experience. This study's main objective was to investigate how user interface design affects older people's intention and attitude related to using SNSs. Fourteen user interface evaluation heuristics proposed by Zhang et al. were adopted as the criteria to assess user interface usability and further grouped into three categories: system support, user interface design and navigation. The technology acceptance model was adopted to assess older people's intention and attitude related to using SNSs. One hundred and one elderly persons were enrolled in this study as subjects, and the results showed that all of the hypotheses proposed in this study were valid: system support and perceived usefulness had a significant effect on behavioral intention; user interface design and perceived ease of use were positively correlated with perceived usefulness; and navigation exerted an influence on perceived ease of use. The results of this study are valuable for the future development of social applications for the elderly.

  16. Web-based, GPU-accelerated, Monte Carlo simulation and visualization of indirect radiation imaging detector performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Han; Sharma, Diksha; Badano, Aldo, E-mail: aldo.badano@fda.hhs.gov

    2014-12-15

    Purpose: Monte Carlo simulations play a vital role in the understanding of the fundamental limitations, design, and optimization of existing and emerging medical imaging systems. Efforts in this area have resulted in the development of a wide variety of open-source software packages. One such package, hybridMANTIS, uses a novel hybrid concept to model indirect scintillator detectors by balancing the computational load using dual CPU and graphics processing unit (GPU) processors, obtaining computational efficiency with reasonable accuracy. In this work, the authors describe two open-source visualization interfaces, webMANTIS and visualMANTIS to facilitate the setup of computational experiments via hybridMANTIS. Methods: Themore » visualization tools visualMANTIS and webMANTIS enable the user to control simulation properties through a user interface. In the case of webMANTIS, control via a web browser allows access through mobile devices such as smartphones or tablets. webMANTIS acts as a server back-end and communicates with an NVIDIA GPU computing cluster that can support multiuser environments where users can execute different experiments in parallel. Results: The output consists of point response and pulse-height spectrum, and optical transport statistics generated by hybridMANTIS. The users can download the output images and statistics through a zip file for future reference. In addition, webMANTIS provides a visualization window that displays a few selected optical photon path as they get transported through the detector columns and allows the user to trace the history of the optical photons. Conclusions: The visualization tools visualMANTIS and webMANTIS provide features such as on the fly generation of pulse-height spectra and response functions for microcolumnar x-ray imagers while allowing users to save simulation parameters and results from prior experiments. The graphical interfaces simplify the simulation setup and allow the user to go directly from specifying input parameters to receiving visual feedback for the model predictions.« less

  17. Distributed visualization framework architecture

    NASA Astrophysics Data System (ADS)

    Mishchenko, Oleg; Raman, Sundaresan; Crawfis, Roger

    2010-01-01

    An architecture for distributed and collaborative visualization is presented. The design goals of the system are to create a lightweight, easy to use and extensible framework for reasearch in scientific visualization. The system provides both single user and collaborative distributed environment. System architecture employs a client-server model. Visualization projects can be synchronously accessed and modified from different client machines. We present a set of visualization use cases that illustrate the flexibility of our system. The framework provides a rich set of reusable components for creating new applications. These components make heavy use of leading design patterns. All components are based on the functionality of a small set of interfaces. This allows new components to be integrated seamlessly with little to no effort. All user input and higher-level control functionality interface with proxy objects supporting a concrete implementation of these interfaces. These light-weight objects can be easily streamed across the web and even integrated with smart clients running on a user's cell phone. The back-end is supported by concrete implementations wherever needed (for instance for rendering). A middle-tier manages any communication and synchronization with the proxy objects. In addition to the data components, we have developed several first-class GUI components for visualization. These include a layer compositor editor, a programmable shader editor, a material editor and various drawable editors. These GUI components interact strictly with the interfaces. Access to the various entities in the system is provided by an AssetManager. The asset manager keeps track of all of the registered proxies and responds to queries on the overall system. This allows all user components to be populated automatically. Hence if a new component is added that supports the IMaterial interface, any instances of this can be used in the various GUI components that work with this interface. One of the main features is an interactive shader designer. This allows rapid prototyping of new visualization renderings that are shader-based and greatly accelerates the development and debug cycle.

  18. GEECS (Generalized Equipment and Experiment Control System)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GONSALVES, ANTHONY; DESHMUKH, AALHAD

    2017-01-12

    GEECS (Generalized Equipment and Experiment Control System) monitors and controls equipment distributed across a network, performs experiments by scanning input variables, and collects and stores various types of data synchronously from devices. Examples of devices include cameras, motors and pressure gauges. GEEKS is based upon LabView graphical object oriented programming (GOOP), allowing for a modular and scalable framework. Data is published for subscription of an arbitrary number of variables over TCP. A secondary framework allows easy development of graphical user interfaces for a combined control of any available devices on the control system without the need of programming knowledge. Thismore » allows for rapid integration of GEECS into a wide variety of systems. A database interface provides for devise and process configuration while allowing the user to save large quantities of data to local or network drives.« less

  19. Advanced display object selection methods for enhancing user-computer productivity

    NASA Technical Reports Server (NTRS)

    Osga, Glenn A.

    1993-01-01

    The User-Interface Technology Branch at NCCOSC RDT&E Division has been conducting a series of studies to address the suitability of commercial off-the-shelf (COTS) graphic user-interface (GUI) methods for efficiency and performance in critical naval combat systems. This paper presents an advanced selection algorithm and method developed to increase user performance when making selections on tactical displays. The method has also been applied with considerable success to a variety of cursor and pointing tasks. Typical GUI's allow user selection by: (1) moving a cursor with a pointing device such as a mouse, trackball, joystick, touchscreen; and (2) placing the cursor on the object. Examples of GUI objects are the buttons, icons, folders, scroll bars, etc. used in many personal computer and workstation applications. This paper presents an improved method of selection and the theoretical basis for the significant performance gains achieved with various input devices tested. The method is applicable to all GUI styles and display sizes, and is particularly useful for selections on small screens such as notebook computers. Considering the amount of work-hours spent pointing and clicking across all styles of available graphic user-interfaces, the cost/benefit in applying this method to graphic user-interfaces is substantial, with the potential for increasing productivity across thousands of users and applications.

  20. Hiding the system from the user: Moving from complex mental models to elegant metaphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis W. Nielsen; David J. Bruemmer

    2007-08-01

    In previous work, increased complexity of robot behaviors and the accompanying interface design often led to operator confusion and/or a fight for control between the robot and operator. We believe the reason for the conflict was that the design of the interface and interactions presented too much of the underlying robot design model to the operator. Since the design model includes the implementation of sensors, behaviors, and sophisticated algorithms, the result was that the operator’s cognitive efforts were focused on understanding the design of the robot system as opposed to focusing on the task at hand. This paper illustrates howmore » this very problem emerged at the INL and how the implementation of new metaphors for interaction has allowed us to hide the design model from the user and allow the user to focus more on the task at hand. Supporting the user’s focus on the task rather than on the design model allows increased use of the system and significant performance improvement in a search task with novice users.« less

  1. 3DGRAPE/AL User's Manual

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.; Alter, Stephen J.

    1995-01-01

    This document is a users' manual for a new three-dimensional structured multiple-block volume g generator called 3DGRAPE/AL. It is a significantly improved version of the previously-released a widely-distributed programs 3DGRAPE and 3DMAGGS. It generates volume grids by iteratively solving the Poisson Equations in three-dimensions. The right-hand-side terms are designed so that user-specific; grid cell heights and user-specified grid cell skewness near boundary surfaces result automatically, with little user intervention. The code is written in Fortran-77, and can be installed with or without a simple graphical user interface which allows the user to watch as the grid is generated. An introduction describing the improvements over the antecedent 3DGRAPE code is presented first. Then follows a chapter on the basic grid generator program itself, and comments on installing it. The input is then described in detail. After that is a description of the Graphical User Interface. Five example cases are shown next, with plots of the results. Following that is a chapter on two input filters which allow use of input data generated elsewhere. Last is a treatment of the theory embodied in the code.

  2. A database for TMT interface control documents

    NASA Astrophysics Data System (ADS)

    Gillies, Kim; Roberts, Scott; Brighton, Allan; Rogers, John

    2016-08-01

    The TMT Software System consists of software components that interact with one another through a software infrastructure called TMT Common Software (CSW). CSW consists of software services and library code that is used by developers to create the subsystems and components that participate in the software system. CSW also defines the types of components that can be constructed and their roles. The use of common component types and shared middleware services allows standardized software interfaces for the components. A software system called the TMT Interface Database System was constructed to support the documentation of the interfaces for components based on CSW. The programmer describes a subsystem and each of its components using JSON-style text files. A command interface file describes each command a component can receive and any commands a component sends. The event interface files describe status, alarms, and events a component publishes and status and events subscribed to by a component. A web application was created to provide a user interface for the required features. Files are ingested into the software system's database. The user interface allows browsing subsystem interfaces, publishing versions of subsystem interfaces, and constructing and publishing interface control documents that consist of the intersection of two subsystem interfaces. All published subsystem interfaces and interface control documents are versioned for configuration control and follow the standard TMT change control processes. Subsystem interfaces and interface control documents can be visualized in the browser or exported as PDF files.

  3. Sketching Uncertainty into Simulations.

    PubMed

    Ribicic, H; Waser, J; Gurbat, R; Sadransky, B; Groller, M E

    2012-12-01

    In a variety of application areas, the use of simulation steering in decision making is limited at best. Research focusing on this problem suggests that most user interfaces are too complex for the end user. Our goal is to let users create and investigate multiple, alternative scenarios without the need for special simulation expertise. To simplify the specification of parameters, we move from a traditional manipulation of numbers to a sketch-based input approach. Users steer both numeric parameters and parameters with a spatial correspondence by sketching a change onto the rendering. Special visualizations provide immediate visual feedback on how the sketches are transformed into boundary conditions of the simulation models. Since uncertainty with respect to many intertwined parameters plays an important role in planning, we also allow the user to intuitively setup complete value ranges, which are then automatically transformed into ensemble simulations. The interface and the underlying system were developed in collaboration with experts in the field of flood management. The real-world data they have provided has allowed us to construct scenarios used to evaluate the system. These were presented to a variety of flood response personnel, and their feedback is discussed in detail in the paper. The interface was found to be intuitive and relevant, although a certain amount of training might be necessary.

  4. Handling of the demilitarized zone using service providers in SAP

    NASA Astrophysics Data System (ADS)

    Iovan, A.; Robu, R.

    2016-02-01

    External collaboration needs to allow data access from the Internet. In a trusted Internet collaboration scenario where the external user works on the same data like the internal user direct access to the data in the Intranet is required. The paper presents a solution to get access to certain data in the Enterprise Resource Planning system, having the User Interface on a system in the Demilitarized Zone and the database on a system which is located in the trusted area. Using the Service Provider Interface framework, connections between separate systems can be created in different areas of the network. The paper demonstrates how to connect the two systems, one in the Demilitarized Zone and one in the trusted area, using SAP ERP 6.0 with Enhancement Package 7. In order to use the Service Provider Interface SAP Business Suite Foundation component must be installed in both systems. The advantage of using the Service Provider Interface framework is that the external user works on the same data like the internal user (and not on copies). This assures data consistency and less overhead for backup and security systems.

  5. Interface design and human factors considerations for model-based tight glycemic control in critical care.

    PubMed

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. © 2012 Diabetes Technology Society.

  6. Interface Design and Human Factors Considerations for Model-Based Tight Glycemic Control in Critical Care

    PubMed Central

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Introduction Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. Method The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. Results The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. Conclusions The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. PMID:22401330

  7. Hierarchical data security in a Query-By-Example interface for a shared database.

    PubMed

    Taylor, Merwyn

    2002-06-01

    Whenever a shared database resource, containing critical patient data, is created, protecting the contents of the database is a high priority goal. This goal can be achieved by developing a Query-By-Example (QBE) interface, designed to access a shared database, and embedding within the QBE a hierarchical security module that limits access to the data. The security module ensures that researchers working in one clinic do not get access to data from another clinic. The security can be based on a flexible taxonomy structure that allows ordinary users to access data from individual clinics and super users to access data from all clinics. All researchers submit queries through the same interface and the security module processes the taxonomy and user identifiers to limit access. Using this system, two different users with different access rights can submit the same query and get different results thus reducing the need to create different interfaces for different clinics and access rights.

  8. Internet-based interface for STRMDEPL08

    USGS Publications Warehouse

    Reeves, Howard W.; Asher, A. Jeremiah

    2010-01-01

    The core of the computer program STRMDEPL08 that estimates streamflow depletion by a pumping well with one of four analytical solutions was re-written in the Javascript software language and made available through an internet-based interface (web page). In the internet-based interface, the user enters data for one of the four analytical solutions, Glover and Balmer (1954), Hantush (1965), Hunt (1999), and Hunt (2003), and the solution is run for constant pumping for a desired number of simulation days. Results are returned in tabular form to the user. For intermittent pumping, the interface allows the user to request that the header information for an input file for the stand-alone executable STRMDEPL08 be created. The user would add the pumping information to this header information and run the STRMDEPL08 executable that is available for download through the U.S. Geological Survey. Results for the internet-based and stand-alone versions of STRMDEPL08 are shown to match.

  9. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM

    PubMed Central

    Battye, T. Geoff G.; Kontogiannis, Luke; Johnson, Owen; Powell, Harold R.; Leslie, Andrew G. W.

    2011-01-01

    iMOSFLM is a graphical user interface to the diffraction data-integration program MOSFLM. It is designed to simplify data processing by dividing the process into a series of steps, which are normally carried out sequentially. Each step has its own display pane, allowing control over parameters that influence that step and providing graphical feedback to the user. Suitable values for integration parameters are set automatically, but additional menus provide a detailed level of control for experienced users. The image display and the interfaces to the different tasks (indexing, strategy calculation, cell refinement, integration and history) are described. The most important parameters for each step and the best way of assessing success or failure are discussed. PMID:21460445

  10. Intuitive control of mobile robots: an architecture for autonomous adaptive dynamic behaviour integration.

    PubMed

    Melidis, Christos; Iizuka, Hiroyuki; Marocco, Davide

    2018-05-01

    In this paper, we present a novel approach to human-robot control. Taking inspiration from behaviour-based robotics and self-organisation principles, we present an interfacing mechanism, with the ability to adapt both towards the user and the robotic morphology. The aim is for a transparent mechanism connecting user and robot, allowing for a seamless integration of control signals and robot behaviours. Instead of the user adapting to the interface and control paradigm, the proposed architecture allows the user to shape the control motifs in their way of preference, moving away from the case where the user has to read and understand an operation manual, or it has to learn to operate a specific device. Starting from a tabula rasa basis, the architecture is able to identify control patterns (behaviours) for the given robotic morphology and successfully merge them with control signals from the user, regardless of the input device used. The structural components of the interface are presented and assessed both individually and as a whole. Inherent properties of the architecture are presented and explained. At the same time, emergent properties are presented and investigated. As a whole, this paradigm of control is found to highlight the potential for a change in the paradigm of robotic control, and a new level in the taxonomy of human in the loop systems.

  11. Creating Web Area Segments with Google Analytics

    EPA Pesticide Factsheets

    Segments allow you to quickly access data for a predefined set of Sessions or Users, such as government or education users, or sessions in a particular state. You can then apply this segment to any report within the Google Analytics (GA) interface.

  12. Chain of Custody Item Monitor Message Viewer v.1.0 Beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Steven Robert; Fielder, Laura; Hymel, Ross W.

    The CoCIM Message Viewer software allows users to connect to and download messages from a Chain of Custody Item Monitor (CoCIM) connected to a serial port on the user’s computer. The downloaded messages are authenticated and displayed in a Graphical User Interface that allows the user a limited degree of sorting and filtering of the downloaded messages as well as the ability to save downloaded files or to open previously downloaded message history files.

  13. TmoleX--a graphical user interface for TURBOMOLE.

    PubMed

    Steffen, Claudia; Thomas, Klaus; Huniar, Uwe; Hellweg, Arnim; Rubner, Oliver; Schroer, Alexander

    2010-12-01

    We herein present the graphical user interface (GUI) TmoleX for the quantum chemical program package TURBOMOLE. TmoleX allows users to execute the complete workflow of a quantum chemical investigation from the initial building of a structure to the visualization of the results in a user friendly graphical front end. The purpose of TmoleX is to make TURBOMOLE easy to use and to provide a high degree of flexibility. Hence, it should be a valuable tool for most users from beginners to experts. The program is developed in Java and runs on Linux, Windows, and Mac platforms. It can be used to run calculations on local desktops as well as on remote computers. © 2010 Wiley Periodicals, Inc.

  14. Biomedical image analysis and processing in clouds

    NASA Astrophysics Data System (ADS)

    Bednarz, Tomasz; Szul, Piotr; Arzhaeva, Yulia; Wang, Dadong; Burdett, Neil; Khassapov, Alex; Chen, Shiping; Vallotton, Pascal; Lagerstrom, Ryan; Gureyev, Tim; Taylor, John

    2013-10-01

    Cloud-based Image Analysis and Processing Toolbox project runs on the Australian National eResearch Collaboration Tools and Resources (NeCTAR) cloud infrastructure and allows access to biomedical image processing and analysis services to researchers via remotely accessible user interfaces. By providing user-friendly access to cloud computing resources and new workflow-based interfaces, our solution enables researchers to carry out various challenging image analysis and reconstruction tasks. Several case studies will be presented during the conference.

  15. Instrumentino: An Open-Source Software for Scientific Instruments.

    PubMed

    Koenka, Israel Joel; Sáiz, Jorge; Hauser, Peter C

    2015-01-01

    Scientists often need to build dedicated computer-controlled experimental systems. For this purpose, it is becoming common to employ open-source microcontroller platforms, such as the Arduino. These boards and associated integrated software development environments provide affordable yet powerful solutions for the implementation of hardware control of transducers and acquisition of signals from detectors and sensors. It is, however, a challenge to write programs that allow interactive use of such arrangements from a personal computer. This task is particularly complex if some of the included hardware components are connected directly to the computer and not via the microcontroller. A graphical user interface framework, Instrumentino, was therefore developed to allow the creation of control programs for complex systems with minimal programming effort. By writing a single code file, a powerful custom user interface is generated, which enables the automatic running of elaborate operation sequences and observation of acquired experimental data in real time. The framework, which is written in Python, allows extension by users, and is made available as an open source project.

  16. Visual interface for space and terrestrial analysis

    NASA Technical Reports Server (NTRS)

    Dombrowski, Edmund G.; Williams, Jason R.; George, Arthur A.; Heckathorn, Harry M.; Snyder, William A.

    1995-01-01

    The management of large geophysical and celestial data bases is now, more than ever, the most critical path to timely data analysis. With today's large volume data sets from multiple satellite missions, analysts face the task of defining useful data bases from which data and metadata (information about data) can be extracted readily in a meaningful way. Visualization, following an object-oriented design, is a fundamental method of organizing and handling data. Humans, by nature, easily accept pictorial representations of data. Therefore graphically oriented user interfaces are appealing, as long as they remain simple to produce and use. The Visual Interface for Space and Terrestrial Analysis (VISTA) system, currently under development at the Naval Research Laboratory's Backgrounds Data Center (BDC), has been designed with these goals in mind. Its graphical user interface (GUI) allows the user to perform queries, visualization, and analysis of atmospheric and celestial backgrounds data.

  17. Web-scale discovery in an academic health sciences library: development and implementation of the EBSCO Discovery Service.

    PubMed

    Thompson, Jolinda L; Obrig, Kathe S; Abate, Laura E

    2013-01-01

    Funds made available at the close of the 2010-11 fiscal year allowed purchase of the EBSCO Discovery Service (EDS) for a year-long trial. The appeal of this web-scale discovery product that offers a Google-like interface to library resources was counter-balanced by concerns about quality of search results in an academic health science setting and the challenge of configuring an interface that serves the needs of a diverse group of library users. After initial configuration, usability testing with library users revealed the need for further work before general release. Of greatest concern were continuing issues with the relevance of items retrieved, appropriateness of system-supplied facet terms, and user difficulties with navigating the interface. EBSCO has worked with the library to better understand and identify problems and solutions. External roll-out to users occurred in June 2012.

  18. TIGER: A user-friendly interactive grid generation system for complicated turbomachinery and axis-symmetric configurations

    NASA Technical Reports Server (NTRS)

    Shih, Ming H.; Soni, Bharat K.

    1993-01-01

    The issue of time efficiency in grid generation is addressed by developing a user friendly graphical interface for interactive/automatic construction of structured grids around complex turbomachinery/axis-symmetric configurations. The accuracy of geometry modeling and its fidelity is accomplished by adapting the nonuniform rational b-spline (NURBS) representation. A customized interactive grid generation code, TIGER, has been developed to facilitate the grid generation process for complicated internal, external, and internal-external turbomachinery fields simulations. The FORMS Library is utilized to build user-friendly graphical interface. The algorithm allows a user to redistribute grid points interactively on curves/surfaces using NURBS formulation with accurate geometric definition. TIGER's features include multiblock, multiduct/shroud, multiblade row, uneven blade count, and patched/overlapping block interfaces. It has been applied to generate grids for various complicated turbomachinery geometries, as well as rocket and missile configurations.

  19. The use of Graphic User Interface for development of a user-friendly CRS-Stack software

    NASA Astrophysics Data System (ADS)

    Sule, Rachmat; Prayudhatama, Dythia; Perkasa, Muhammad D.; Hendriyana, Andri; Fatkhan; Sardjito; Adriansyah

    2017-04-01

    The development of a user-friendly Common Reflection Surface (CRS) Stack software that has been built by implementing Graphical User Interface (GUI) is described in this paper. The original CRS-Stack software developed by WIT Consortium is compiled in the unix/linux environment, which is not a user-friendly software, so that a user must write the commands and parameters manually in a script file. Due to this limitation, the CRS-Stack become a non popular method, although applying this method is actually a promising way in order to obtain better seismic sections, which have better reflector continuity and S/N ratio. After obtaining successful results that have been tested by using several seismic data belong to oil companies in Indonesia, it comes to an idea to develop a user-friendly software in our own laboratory. Graphical User Interface (GUI) is a type of user interface that allows people to interact with computer programs in a better way. Rather than typing commands and module parameters, GUI allows the users to use computer programs in much simple and easy. Thus, GUI can transform the text-based interface into graphical icons and visual indicators. The use of complicated seismic unix shell script can be avoided. The Java Swing GUI library is used to develop this CRS-Stack GUI. Every shell script that represents each seismic process is invoked from Java environment. Besides developing interactive GUI to perform CRS-Stack processing, this CRS-Stack GUI is design to help geophysicists to manage a project with complex seismic processing procedures. The CRS-Stack GUI software is composed by input directory, operators, and output directory, which are defined as a seismic data processing workflow. The CRS-Stack processing workflow involves four steps; i.e. automatic CMP stack, initial CRS-Stack, optimized CRS-Stack, and CRS-Stack Supergather. Those operations are visualized in an informative flowchart with self explanatory system to guide the user inputting the parameter values for each operation. The knowledge of CRS-Stack processing procedure is still preserved in the software, which is easy and efficient to be learned. The software will still be developed in the future. Any new innovative seismic processing workflow will also be added into this GUI software.

  20. Determinants of user acceptance of a specific social platform for older adults: An empirical examination of user interface characteristics and behavioral intention

    PubMed Central

    Chang, Hsien-Tsung; Chen, Yan-Jiun; Chang, Yung-Sheng

    2017-01-01

    The use of the Internet and social applications has many benefits for the elderly, but numerous investigations have shown that the elderly do not perceive online social networks as a friendly social environment. Therefore, TreeIt, a social application specifically designed for the elderly, was developed for this study. In the TreeIt application, seven mechanisms promoting social interaction were designed to allow older adults to use social networking sites (SNSs) to increase social connection, maintain the intensity of social connections and strengthen social experience. This study’s main objective was to investigate how user interface design affects older people’s intention and attitude related to using SNSs. Fourteen user interface evaluation heuristics proposed by Zhang et al. were adopted as the criteria to assess user interface usability and further grouped into three categories: system support, user interface design and navigation. The technology acceptance model was adopted to assess older people’s intention and attitude related to using SNSs. One hundred and one elderly persons were enrolled in this study as subjects, and the results showed that all of the hypotheses proposed in this study were valid: system support and perceived usefulness had a significant effect on behavioral intention; user interface design and perceived ease of use were positively correlated with perceived usefulness; and navigation exerted an influence on perceived ease of use. The results of this study are valuable for the future development of social applications for the elderly. PMID:28837566

  1. IGGy: An interactive environment for surface grid generation

    NASA Technical Reports Server (NTRS)

    Prewitt, Nathan C.

    1992-01-01

    A graphically interactive derivative of the EAGLE boundary code is presented. This code allows the user to interactively build and execute commands and immediately see the results. Strong ties with a batch oriented script language are maintained. A generalized treatment of grid definition parameters allows a more generic definition of the grid generation process and allows the generation of command scripts which can be applied to topologically similar configurations. The use of the graphical user interface is outlined and example applications are presented.

  2. The South African Astronomical Observatory instrumentation software architecture and the SHOC instruments

    NASA Astrophysics Data System (ADS)

    van Gend, Carel; Lombaard, Briehan; Sickafoose, Amanda; Whittal, Hamish

    2016-07-01

    Until recently, software for instruments on the smaller telescopes at the South African Astronomical Observatory (SAAO) has not been designed for remote accessibility and frequently has not been developed using modern software best-practice. We describe a software architecture we have implemented for use with new and upgraded instruments at the SAAO. The architecture was designed to allow for multiple components and to be fast, reliable, remotely- operable, support different user interfaces, employ as much non-proprietary software as possible, and to take future-proofing into consideration. Individual component drivers exist as standalone processes, communicating over a network. A controller layer coordinates the various components, and allows a variety of user interfaces to be used. The Sutherland High-speed Optical Cameras (SHOC) instruments incorporate an Andor electron-multiplying CCD camera, a GPS unit for accurate timing and a pair of filter wheels. We have applied the new architecture to the SHOC instruments, with the camera driver developed using Andor's software development kit. We have used this to develop an innovative web-based user-interface to the instrument.

  3. Help Is on the WAIS.

    ERIC Educational Resources Information Center

    Lukanuski, Mary

    1992-01-01

    Describes the development of the WAIS (Wide Area Information Servers) protocol, a system that allows users access to personal, corporate, and commercial electronic information from one interface. The availability of WAIS on the Internet and the reactions of users are addressed. Several problems are considered, including funding, hardware…

  4. ANALYTICAL TOOLS INTERFACE FOR LANDSCAPE ASSESSMENTS (ATTILA) USER MANUAL

    EPA Science Inventory

    ATtlLA is an ArcView extension that allows users to easily calculate many common landscape metrics. GIS expertise is not required, but some experience with ArcView is recommended. Four metric groups are currently included in ATtILA: landscape characteristics, riparian characteris...

  5. Automated Tracking of Cell Migration with Rapid Data Analysis.

    PubMed

    DuChez, Brian J

    2017-09-01

    Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  6. A new variable temperature solution-solid interface scanning tunneling microscope.

    PubMed

    Jahanbekam, Abdolreza; Mazur, Ursula; Hipps, K W

    2014-10-01

    We present a new solution-solid (SS) interface scanning tunneling microscope design that enables imaging at high temperatures with low thermal drift and with volatile solvents. In this new design, distinct from the conventional designs, the entire microscope is surrounded in a controlled-temperature and controlled-atmosphere chamber. This allows users to take measurements at high temperatures while minimizing thermal drift. By incorporating an open solution reservoir in the chamber, solvent evaporation from the sample is minimized; allowing users to use volatile solvents for temperature dependent studies at high temperatures. The new design enables the user to image at the SS interface with some volatile solvents for long periods of time (>24 h). An increase in the nonlinearity of the piezoelectric scanner in the lateral direction as a function of temperature is addressed. A temperature dependent study of cobalt(II) octaethylporphyrin (CoOEP) at the toluene/Au(111) interface has been performed with this instrument. It is demonstrated that the lattice parameters remain constant within experimental error from 24 °C to 75 °C. Similar quality images were obtained over the entire temperature range. We report the unit cell of CoOEP at the toluene/Au(111) interface (based on two molecules per unit cell) to be A = (1.36 ± 0.04) nm, B = (2.51 ± 0.04) nm, and α = 97° ± 2°.

  7. Make Movies out of Your Dynamical Simulations with OGRE!

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Douglas, R. W.; Ge, H. W.; Burns, J. A.

    2013-10-01

    We have developed OGRE, the Orbital GRaphics Environment, an open-source project comprising a graphical user interface that allows the user to view the output from several dynamical integrators (e.g., SWIFT) that are commonly used for academic work. One can interactively vary the display speed, rotate the view and zoom the camera. This makes OGRE a great tool for students or the general public to explore accurate orbital histories that may display interesting dynamical features, e.g. the destabilization of Solar System orbits under the Nice model, or interacting pairs of exoplanets. Furthermore, OGRE allows the user to choreograph sequences of transformations as the simulation is played to generate movies for use in public talks or professional presentations. The graphical user interface is coded using Qt to ensure portability across different operating systems. OGRE will run on Linux and Mac OS X. The program is available as a self-contained executable, or as source code that the user can compile. We are continually updating the code, and hope that people who find it useful will contribute to the development of new features.

  8. Make Movies out of Your Dynamical Simulations with OGRE!

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Douglas, R. W.; Ge, H. W.; Burns, J. A.

    2014-01-01

    We have developed OGRE, the Orbital GRaphics Environment, an open-source project comprising a graphical user interface that allows the user to view the output from several dynamical integrators (e.g., SWIFT) that are commonly used for academic work. One can interactively vary the display speed, rotate the view and zoom the camera. This makes OGRE a great tool for students or the general public to explore accurate orbital histories that may display interesting dynamical features, e.g. the destabilization of Solar System orbits under the Nice model, or interacting pairs of exoplanets. Furthermore, OGRE allows the user to choreograph sequences of transformations as the simulation is played to generate movies for use in public talks or professional presentations. The graphical user interface is coded using Qt to ensure portability across different operating systems. OGRE will run on Linux and Mac OS X. The program is available as a self-contained executable, or as source code that the user can compile. We are continually updating the code, and hope that people who find it useful will contribute to the development of new features.

  9. IDEA: Interactive Display for Evolutionary Analyses.

    PubMed

    Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C

    2008-12-08

    The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data.

  10. IDEA: Interactive Display for Evolutionary Analyses

    PubMed Central

    Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C

    2008-01-01

    Background The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. Results We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. Conclusion IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data. PMID:19061522

  11. Mechanical interface having multiple grounded actuators

    DOEpatents

    Martin, Kenneth M.; Levin, Mike D.; Rosenberg, Louis B.

    1998-01-01

    An apparatus and method for interfacing the motion of a user-manipulable object with a computer system includes a user object physically contacted or grasped by a user. A 3-D spatial mechanism is coupled to the user object, such as a stylus or a medical instrument, and provides three degrees of freedom to the user object. Three grounded actuators provide forces in the three degrees of freedom. Two of the degrees of freedom are a planar workspace provided by a closed-loop linkage of members, and the third degree of freedom is rotation of the planar workspace provided by a rotatable carriage. Capstan drive mechanisms transmit forces between actuators and the user object and include drums coupled to the carriage, pulleys coupled to grounded actuators, and flexible cables transmitting force between the pulleys and the drums. The flexibility of the cable allows the drums to rotate with the carriage while the pulleys and actuators remain fixed to ground. The interface also may include a floating gimbal mechanism coupling the linkage to the user object. The floating gimbal mechanism includes rotatably coupled gimbal members that provide three degrees of freedom to the user object and capstan mechanisms coupled between sensors and the gimbal members for providing enhanced sensor resolution.

  12. Perception of synchronization errors in haptic and visual communications

    NASA Astrophysics Data System (ADS)

    Kameyama, Seiji; Ishibashi, Yutaka

    2006-10-01

    This paper deals with a system which conveys the haptic sensation experimented by a user to a remote user. In the system, the user controls a haptic interface device with another remote haptic interface device while watching video. Haptic media and video of a real object which the user is touching are transmitted to another user. By subjective assessment, we investigate the allowable range and imperceptible range of synchronization error between haptic media and video. We employ four real objects and ask each subject whether the synchronization error is perceived or not for each object in the assessment. Assessment results show that we can more easily perceive the synchronization error in the case of haptic media ahead of video than in the case of the haptic media behind the video.

  13. Integration of multi-interface conversion channel using FPGA for modular photonic network

    NASA Astrophysics Data System (ADS)

    Janicki, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.

    2010-09-01

    The article discusses the integration of different types of interfaces with FPGA circuits using a reconfigurable communication platform. The solution has been implemented in practice in a single node of a distributed measurement system. Construction of communication platform has been presented with its selected hardware modules, described in VHDL and implemented in FPGA circuits. The graphical user interface (GUI) has been described that allows a user to control the operation of the system. In the final part of the article selected practical solutions have been introduced. The whole measurement system resides on multi-gigabit optical network. The optical network construction is highly modular, reconfigurable and scalable.

  14. Molray--a web interface between O and the POV-Ray ray tracer.

    PubMed

    Harris, M; Jones, T A

    2001-08-01

    A publicly available web-based interface is presented for producing high-quality ray-traced images and movies from the molecular-modelling program O [Jones et al. (1991), Acta Cryst. A47, 110-119]. The interface allows the user to select O-plot files and set parameters to create standard input files for the popular ray-tracing renderer POV-Ray, which can then produce publication-quality still images or simple movies. To ensure ease of use, we have made this service available to the O user community via the World Wide Web. The public Molray server is available at http://xray.bmc.uu.se/molray.

  15. Accessibility of Mobile Devices for Visually Impaired Users: An Evaluation of the Screen-Reader VoiceOver.

    PubMed

    Smaradottir, Berglind; Håland, Jarle; Martinez, Santiago

    2017-01-01

    A mobile device's touchscreen allows users to use a choreography of hand gestures to interact with the user interface. A screen reader on a mobile device is designed to support the interaction of visually disabled users while using gestures. This paper presents an evaluation of VoiceOver, a screen reader in Apple Inc. products. The evaluation was a part of the research project "Visually impaired users touching the screen - a user evaluation of assistive technology".

  16. Enhancing Navigation Skills through Audio Gaming.

    PubMed

    Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi

    2010-01-01

    We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks.

  17. Enhancing Navigation Skills through Audio Gaming

    PubMed Central

    Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi

    2014-01-01

    We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks. PMID:25505796

  18. SimHap GUI: an intuitive graphical user interface for genetic association analysis.

    PubMed

    Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J

    2008-12-25

    Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis.

  19. The Cortex project A quasi-real-time information system to build control systems for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Barillere, R.; Cabel, H.; Chan, B.; Goulas, I.; Le Goff, J. M.; Vinot, L.; Willmott, C.; Milcent, H.; Huuskonen, P.

    1994-12-01

    The Cortex control information system framework is being developed at CERN. It offers basic functions to allow the sharing of information, control and analysis functions; it presents a uniform human interface for such information and functions; it permits upgrades and additions without code modification and it is sufficiently generic to allow its use by most of the existing or future control systems at CERN. Services will include standard interfaces to user-supplied functions, analysis, archive and event management. Cortex does not attempt to carry out the direct data acquisition or control of the devices; these are activities which are highly specific to the application and are best done by commercial systems or user-written programs. Instead, Cortex integrates these application-specific pieces and supports them by supplying other commonly needed facilities such as collaboration, analysis, diagnosis and user assistance.

  20. Key Decision Record Creation and Approval Module

    NASA Technical Reports Server (NTRS)

    Hebert, Barrt; Messer, Elizabeth A.; Albasini, Colby; Le, Thang; ORourke, William, Sr.; Stiglets, Tim; Strain, Ted

    2012-01-01

    Retaining good key decision records is critical to ensuring the success of a project or operation. Having adequately documented decisions with supporting documents and rationale can greatly reduce the amount of rework or reinvention over a project's, vehicle's, or facility's lifecycle. Stennis Space Center developed and uses a software tool that automates the Key Decision Record (KDR) process for its engineering and test projects. It provides the ability for a user to log key decisions that are made during the course of a project. By customizing Parametric Technology Corporation's (PTC) Windchill product, the team was able to log all information about a decision, and electronically route that information for approval. Customizing the Windchill product allowed the team to directly connect these decisions to the engineering data that it might affect and notify data owners of the decision. The user interface was created in JSP and Javascript, within the OOTB (Out of the Box) Windchill product, allowing users to create KDRs. Not only does this interface allow users to create and track KDRs, but it also plugs directly into the OOTB ability to associate these decision records with other relevant engineering data such as drawings, designs, models, requirements, or specifications

  1. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees.

    PubMed

    He, Zilong; Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Chen, Wei-Hua; Hu, Songnian

    2016-07-08

    Evolview is an online visualization and management tool for customized and annotated phylogenetic trees. It allows users to visualize phylogenetic trees in various formats, customize the trees through built-in functions and user-supplied datasets and export the customization results to publication-ready figures. Its 'dataset system' contains not only the data to be visualized on the tree, but also 'modifiers' that control various aspects of the graphical annotation. Evolview is a single-page application (like Gmail); its carefully designed interface allows users to upload, visualize, manipulate and manage trees and datasets all in a single webpage. Developments since the last public release include a modern dataset editor with keyword highlighting functionality, seven newly added types of annotation datasets, collaboration support that allows users to share their trees and datasets and various improvements of the web interface and performance. In addition, we included eleven new 'Demo' trees to demonstrate the basic functionalities of Evolview, and five new 'Showcase' trees inspired by publications to showcase the power of Evolview in producing publication-ready figures. Evolview is freely available at: http://www.evolgenius.info/evolview/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Addressing hypertext design and conversion issues

    NASA Technical Reports Server (NTRS)

    Glusko, Robert J.

    1990-01-01

    Hypertext is a network of information units connected by relational links. A hypertext system is a configuration of hardware and software that presents a hypertext to users and allows them to manage and access the information that it contains. Hypertext is also a user interface concept that closely supports the ways that people use printed information. Hypertext concepts encourage modularity and the elimination of redundancy in data bases because information can be stored only once but viewed in any appropriate context. Hypertext is such a hot idea because it is an enabling technology in that workstations and personal computers finally provide enough local processing power for hypertext user interfaces.

  3. Design Optimization Toolkit: Users' Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilo Valentin, Miguel Alejandro

    The Design Optimization Toolkit (DOTk) is a stand-alone C++ software package intended to solve complex design optimization problems. DOTk software package provides a range of solution methods that are suited for gradient/nongradient-based optimization, large scale constrained optimization, and topology optimization. DOTk was design to have a flexible user interface to allow easy access to DOTk solution methods from external engineering software packages. This inherent flexibility makes DOTk barely intrusive to other engineering software packages. As part of this inherent flexibility, DOTk software package provides an easy-to-use MATLAB interface that enables users to call DOTk solution methods directly from the MATLABmore » command window.« less

  4. Building a semi-automatic ontology learning and construction system for geosciences

    NASA Astrophysics Data System (ADS)

    Babaie, H. A.; Sunderraman, R.; Zhu, Y.

    2013-12-01

    We are developing an ontology learning and construction framework that allows continuous, semi-automatic knowledge extraction, verification, validation, and maintenance by potentially a very large group of collaborating domain experts in any geosciences field. The system brings geoscientists from the side-lines to the center stage of ontology building, allowing them to collaboratively construct and enrich new ontologies, and merge, align, and integrate existing ontologies and tools. These constantly evolving ontologies can more effectively address community's interests, purposes, tools, and change. The goal is to minimize the cost and time of building ontologies, and maximize the quality, usability, and adoption of ontologies by the community. Our system will be a domain-independent ontology learning framework that applies natural language processing, allowing users to enter their ontology in a semi-structured form, and a combined Semantic Web and Social Web approach that lets direct participation of geoscientists who have no skill in the design and development of their domain ontologies. A controlled natural language (CNL) interface and an integrated authoring and editing tool automatically convert syntactically correct CNL text into formal OWL constructs. The WebProtege-based system will allow a potentially large group of geoscientists, from multiple domains, to crowd source and participate in the structuring of their knowledge model by sharing their knowledge through critiquing, testing, verifying, adopting, and updating of the concept models (ontologies). We will use cloud storage for all data and knowledge base components of the system, such as users, domain ontologies, discussion forums, and semantic wikis that can be accessed and queried by geoscientists in each domain. We will use NoSQL databases such as MongoDB as a service in the cloud environment. MongoDB uses the lightweight JSON format, which makes it convenient and easy to build Web applications using just HTML5 and Javascript, thereby avoiding cumbersome server side coding present in the traditional approaches. The JSON format used in MongoDB is also suitable for storing and querying RDF data. We will store the domain ontologies and associated linked data in JSON/RDF formats. Our Web interface will be built upon the open source and configurable WebProtege ontology editor. We will develop a simplified mobile version of our user interface which will automatically detect the hosting device and adjust the user interface layout to accommodate different screen sizes. We will also use the Semantic Media Wiki that allows the user to store and query the data within the wiki pages. By using HTML 5, JavaScript, and WebGL, we aim to create an interactive, dynamic, and multi-dimensional user interface that presents various geosciences data sets in a natural and intuitive way.

  5. FLASH Interface; a GUI for managing runtime parameters in FLASH simulations

    NASA Astrophysics Data System (ADS)

    Walker, Christopher; Tzeferacos, Petros; Weide, Klaus; Lamb, Donald; Flocke, Norbert; Feister, Scott

    2017-10-01

    We present FLASH Interface, a novel graphical user interface (GUI) for managing runtime parameters in simulations performed with the FLASH code. FLASH Interface supports full text search of available parameters; provides descriptions of each parameter's role and function; allows for the filtering of parameters based on categories; performs input validation; and maintains all comments and non-parameter information already present in existing parameter files. The GUI can be used to edit existing parameter files or generate new ones. FLASH Interface is open source and was implemented with the Electron framework, making it available on Mac OSX, Windows, and Linux operating systems. The new interface lowers the entry barrier for new FLASH users and provides an easy-to-use tool for experienced FLASH simulators. U.S. Department of Energy (DOE), NNSA ASC/Alliances Center for Astrophysical Thermonuclear Flashes, U.S. DOE NNSA ASC through the Argonne Institute for Computing in Science, U.S. National Science Foundation.

  6. High-level user interfaces for transfer function design with semantics.

    PubMed

    Salama, Christof Rezk; Keller, Maik; Kohlmann, Peter

    2006-01-01

    Many sophisticated techniques for the visualization of volumetric data such as medical data have been published. While existing techniques are mature from a technical point of view, managing the complexity of visual parameters is still difficult for non-expert users. To this end, this paper presents new ideas to facilitate the specification of optical properties for direct volume rendering. We introduce an additional level of abstraction for parametric models of transfer functions. The proposed framework allows visualization experts to design high-level transfer function models which can intuitively be used by non-expert users. The results are user interfaces which provide semantic information for specialized visualization problems. The proposed method is based on principal component analysis as well as on concepts borrowed from computer animation.

  7. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database.

    PubMed

    Cotto, Kelsy C; Wagner, Alex H; Feng, Yang-Yang; Kiwala, Susanna; Coffman, Adam C; Spies, Gregory; Wollam, Alex; Spies, Nicholas C; Griffith, Obi L; Griffith, Malachi

    2018-01-04

    The drug-gene interaction database (DGIdb, www.dgidb.org) consolidates, organizes and presents drug-gene interactions and gene druggability information from papers, databases and web resources. DGIdb normalizes content from 30 disparate sources and allows for user-friendly advanced browsing, searching and filtering for ease of access through an intuitive web user interface, application programming interface (API) and public cloud-based server image. DGIdb v3.0 represents a major update of the database. Nine of the previously included 24 sources were updated. Six new resources were added, bringing the total number of sources to 30. These updates and additions of sources have cumulatively resulted in 56 309 interaction claims. This has also substantially expanded the comprehensive catalogue of druggable genes and anti-neoplastic drug-gene interactions included in the DGIdb. Along with these content updates, v3.0 has received a major overhaul of its codebase, including an updated user interface, preset interaction search filters, consolidation of interaction information into interaction groups, greatly improved search response times and upgrading the underlying web application framework. In addition, the expanded API features new endpoints which allow users to extract more detailed information about queried drugs, genes and drug-gene interactions, including listings of PubMed IDs, interaction type and other interaction metadata.

  8. 3D Displays And User Interface Design For A Radiation Therapy Treatment Planning CAD Tool

    NASA Astrophysics Data System (ADS)

    Mosher, Charles E.; Sherouse, George W.; Chaney, Edward L.; Rosenman, Julian G.

    1988-06-01

    The long term goal of the project described in this paper is to improve local tumor control through the use of computer-aided treatment design methods that can result in selection of better treatment plans compared with conventional planning methods. To this end, a CAD tool for the design of radiation treatment beams is described. Crucial to the effectiveness of this tool are high quality 3D display techniques. We have found that 2D and 3D display methods dramatically improve the comprehension of the complex spatial relationships between patient anatomy, radiation beams, and dose distributions. In order to take full advantage of these displays, an intuitive and highly interactive user interface was created. If the system is to be used by physicians unfamiliar with computer systems, it is essential that a user interface is incorporated that allows the user to navigate through each step of the design process in a manner similar to what they are used to. Compared with conventional systems, we believe our display and CAD tools will allow the radiotherapist to achieve more accurate beam targetting leading to a better radiation dose configuration to the tumor volume. This would result in a reduction of the dose to normal tissue.

  9. Caching strategies for improving performance of web-based Geographic applications

    NASA Astrophysics Data System (ADS)

    Liu, M.; Brodzik, M.; Collins, J. A.; Lewis, S.; Oldenburg, J.

    2012-12-01

    The NASA Operation IceBridge mission collects airborne remote sensing measurements to bridge the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat) mission and the upcoming ICESat-2 mission. The IceBridge Data Portal from the National Snow and Ice Data Center provides an intuitive web interface for accessing IceBridge mission observations and measurements. Scientists and users usually do not have knowledge about the individual campaigns but are interested in data collected in a specific place. We have developed a high-performance map interface to allow users to quickly zoom to an area of interest and see any Operation IceBridge overflights. The map interface consists of two layers: the user can pan and zoom on the base map layer; the flight line layer that overlays the base layer provides all the campaign missions that intersect with the current map view. The user can click on the flight campaigns and download the data as needed. The OpenGIS® Web Map Service Interface Standard (WMS) provides a simple HTTP interface for requesting geo-registered map images from one or more distributed geospatial databases. Web Feature Service (WFS) provides an interface allowing requests for geographical features across the web using platform-independent calls. OpenLayers provides vector support (points, polylines and polygons) to build a WMS/WFS client for displaying both layers on the screen. Map Server, an open source development environment for building spatially enabled internet applications, is serving the WMS and WFS spatial data to OpenLayers. Early releases of the portal displayed unacceptably poor load time performance for flight lines and the base map tiles. This issue was caused by long response times from the map server in generating all map tiles and flight line vectors. We resolved the issue by implementing various caching strategies on top of the WMS and WFS services, including the use of Squid (www.squid-cache.org) to cache frequently-used content. Our presentation includes the architectural design of the application, and how we use OpenLayers, WMS and WFS with Squid to build a responsive web application capable of efficiently displaying geospatial data to allow the user to quickly interact with the displayed information. We describe the design, implementation and performance improvement of our caching strategies, and the tools and techniques developed to assist our data caching strategies.

  10. Visual Basic VPython Interface: Charged Particle in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Prayaga, Chandra

    2006-12-01

    A simple Visual Basic (VB) to VPython interface is described and illustrated with the example of a charged particle in a magnetic field. This interface allows data to be passed to Python through a text file read by Python. The first component of the interface is a user-friendly data entry screen designed in VB, in which the user can input values of the charge, mass, initial position and initial velocity of the particle, and the magnetic field. Next, a command button is coded to write these values to a text file. Another command button starts the VPython program, which reads the data from the text file, numerically solves the equation of motion, and provides the 3d graphics animation. Students can use the interface to run the program several times with different data and observe changes in the motion.

  11. A Web 2.0 Interface to Ion Stopping Power and Other Physics Routines for High Energy Density Physics Applications

    NASA Astrophysics Data System (ADS)

    Stoltz, Peter; Veitzer, Seth

    2008-04-01

    We present a new Web 2.0-based interface to physics routines for High Energy Density Physics applications. These routines include models for ion stopping power, sputtering, secondary electron yields and energies, impact ionization cross sections, and atomic radiated power. The Web 2.0 interface allows users to easily explore the results of the models before using the routines within other codes or to analyze experimental results. We discuss how we used various Web 2.0 tools, including the Python 2.5, Django, and the Yahoo User Interface library. Finally, we demonstrate the interface by showing as an example the stopping power algorithms researchers are currently using within the Hydra code to analyze warm, dense matter experiments underway at the Neutralized Drift Compression Experiment facility at Lawrence Berkeley National Laboratory.

  12. AGUIA: autonomous graphical user interface assembly for clinical trials semantic data services.

    PubMed

    Correa, Miria C; Deus, Helena F; Vasconcelos, Ana T; Hayashi, Yuki; Ajani, Jaffer A; Patnana, Srikrishna V; Almeida, Jonas S

    2010-10-26

    AGUIA is a front-end web application originally developed to manage clinical, demographic and biomolecular patient data collected during clinical trials at MD Anderson Cancer Center. The diversity of methods involved in patient screening and sample processing generates a variety of data types that require a resource-oriented architecture to capture the associations between the heterogeneous data elements. AGUIA uses a semantic web formalism, resource description framework (RDF), and a bottom-up design of knowledge bases that employ the S3DB tool as the starting point for the client's interface assembly. The data web service, S3DB, meets the necessary requirements of generating the RDF and of explicitly distinguishing the description of the domain from its instantiation, while allowing for continuous editing of both. Furthermore, it uses an HTTP-REST protocol, has a SPARQL endpoint, and has open source availability in the public domain, which facilitates the development and dissemination of this application. However, S3DB alone does not address the issue of representing content in a form that makes sense for domain experts. We identified an autonomous set of descriptors, the GBox, that provides user and domain specifications for the graphical user interface. This was achieved by identifying a formalism that makes use of an RDF schema to enable the automatic assembly of graphical user interfaces in a meaningful manner while using only resources native to the client web browser (JavaScript interpreter, document object model). We defined a generalized RDF model such that changes in the graphic descriptors are automatically and immediately (locally) reflected into the configuration of the client's interface application. The design patterns identified for the GBox benefit from and reflect the specific requirements of interacting with data generated by clinical trials, and they contain clues for a general purpose solution to the challenge of having interfaces automatically assembled for multiple and volatile views of a domain. By coding AGUIA in JavaScript, for which all browsers include a native interpreter, a solution was found that assembles interfaces that are meaningful to the particular user, and which are also ubiquitous and lightweight, allowing the computational load to be carried by the client's machine.

  13. A coastal information system to propel emerging science and inform environmental management decisions

    EPA Science Inventory

    The Estuary Data Mapper (EDM) is a free, interactive virtual gateway to coastal data aimed to promote research and aid in environmental management. The graphical user interface allows users to custom select and subset data based on their spatial and temporal interests giving them...

  14. FIREMON Database

    Treesearch

    John F. Caratti

    2006-01-01

    The FIREMON database software allows users to enter data, store, analyze, and summarize plot data, photos, and related documents. The FIREMON database software consists of a Java application and a Microsoft® Access database. The Java application provides the user interface with FIREMON data through data entry forms, data summary reports, and other data management tools...

  15. User's manual for the HYPGEN hyperbolic grid generator and the HGUI graphical user interface

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Chiu, Ing-Tsau; Buning, Pieter G.

    1993-01-01

    The HYPGEN program is used to generate a 3-D volume grid over a user-supplied single-block surface grid. This is accomplished by solving the 3-D hyperbolic grid generation equations consisting of two orthogonality relations and one cell volume constraint. In this user manual, the required input files and parameters and output files are described. Guidelines on how to select the input parameters are given. Illustrated examples are provided showing a variety of topologies and geometries that can be treated. HYPGEN can be used in stand-alone mode as a batch program or it can be called from within a graphical user interface HGUI that runs on Silicon Graphics workstations. This user manual provides a description of the menus, buttons, sliders, and typein fields in HGUI for users to enter the parameters needed to run HYPGEN. Instructions are given on how to configure the interface to allow HYPGEN to run either locally or on a faster remote machine through the use of shell scripts on UNIX operating systems. The volume grid generated is copied back to the local machine for visualization using a built-in hook to PLOT3D.

  16. Effectiveness Testing of Embedded User Support for U.S. Army Installation-Level Software

    DTIC Science & Technology

    1991-06-01

    under what conditions Dynamic Help could influence performance and satisfaction. The ACIFS program was modified to provide automatic collection of all...under what conditions Dynamic Help can influence user performance and satisfaction. This chapter reports the design, implementation, and analysis of...ambiguous or is hidden in the body of the message. The ACIFS program has many user interface deficiencies, but it does allow the user to use trial and

  17. Sally Ride EarthKAM - Automated Image Geo-Referencing Using Google Earth Web Plug-In

    NASA Technical Reports Server (NTRS)

    Andres, Paul M.; Lazar, Dennis K.; Thames, Robert Q.

    2013-01-01

    Sally Ride EarthKAM is an educational program funded by NASA that aims to provide the public the ability to picture Earth from the perspective of the International Space Station (ISS). A computer-controlled camera is mounted on the ISS in a nadir-pointing window; however, timing limitations in the system cause inaccurate positional metadata. Manually correcting images within an orbit allows the positional metadata to be improved using mathematical regressions. The manual correction process is time-consuming and thus, unfeasible for a large number of images. The standard Google Earth program allows for the importing of KML (keyhole markup language) files that previously were created. These KML file-based overlays could then be manually manipulated as image overlays, saved, and then uploaded to the project server where they are parsed and the metadata in the database is updated. The new interface eliminates the need to save, download, open, re-save, and upload the KML files. Everything is processed on the Web, and all manipulations go directly into the database. Administrators also have the control to discard any single correction that was made and validate a correction. This program streamlines a process that previously required several critical steps and was probably too complex for the average user to complete successfully. The new process is theoretically simple enough for members of the public to make use of and contribute to the success of the Sally Ride EarthKAM project. Using the Google Earth Web plug-in, EarthKAM images, and associated metadata, this software allows users to interactively manipulate an EarthKAM image overlay, and update and improve the associated metadata. The Web interface uses the Google Earth JavaScript API along with PHP-PostgreSQL to present the user the same interface capabilities without leaving the Web. The simpler graphical user interface will allow the public to participate directly and meaningfully with EarthKAM. The use of similar techniques is being investigated to place ground-based observations in a Google Mars environment, allowing the MSL (Mars Science Laboratory) Science Team a means to visualize the rover and its environment.

  18. A Framework for the Development of Context-Adaptable User Interfaces for Ubiquitous Computing Systems.

    PubMed

    Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose A; Duro, Richard

    2016-07-07

    This paper addresses the problem of developing user interfaces for Ubiquitous Computing (UC) and Ambient Intelligence (AmI) systems. These kind of systems are expected to provide a natural user experience, considering interaction modalities adapted to the user abilities and preferences and using whatever interaction devices are present in the environment. These interaction devices are not necessarily known at design time. The task is quite complicated due to the variety of devices and technologies, and the diversity of scenarios, and it usually burdens the developer with the need to create many different UIs in order to consider the foreseeable user-environment combinations. Here, we propose an UI abstraction framework for UC and AmI systems that effectively improves the portability of those systems between different environments and for different users. It allows developers to design and implement a single UI capable of being deployed with different devices and modalities regardless the physical location.

  19. Design and implementation of the NPOI database and website

    NASA Astrophysics Data System (ADS)

    Newman, K.; Jorgensen, A. M.; Landavazo, M.; Sun, B.; Hutter, D. J.; Armstrong, J. T.; Mozurkewich, David; Elias, N.; van Belle, G. T.; Schmitt, H. R.; Baines, E. K.

    2014-07-01

    The Navy Precision Optical Interferometer (NPOI) has been recording astronomical observations for nearly two decades, at this point with hundreds of thousands of individual observations recorded to date for a total data volume of many terabytes. To make maximum use of the NPOI data it is necessary to organize them in an easily searchable manner and be able to extract essential diagnostic information from the data to allow users to quickly gauge data quality and suitability for a specific science investigation. This sets the motivation for creating a comprehensive database of observation metadata as well as, at least, reduced data products. The NPOI database is implemented in MySQL using standard database tools and interfaces. The use of standard database tools allows us to focus on top-level database and interface implementation and take advantage of standard features such as backup, remote access, mirroring, and complex queries which would otherwise be time-consuming to implement. A website was created in order to give scientists a user friendly interface for searching the database. It allows the user to select various metadata to search for and also allows them to decide how and what results are displayed. This streamlines the searches, making it easier and quicker for scientists to find the information they are looking for. The website has multiple browser and device support. In this paper we present the design of the NPOI database and website, and give examples of its use.

  20. Easing access to R using 'shiny' to create graphical user interfaces: An example for the R package 'Luminescence'

    NASA Astrophysics Data System (ADS)

    Burow, Christoph; Kreutzer, Sebastian; Dietze, Michael; Fuchs, Margret C.; Schmidt, Christoph; Fischer, Manfred; Brückner, Helmut

    2017-04-01

    Since the release of the R package 'Luminescence' (Kreutzer et al., 2012) the functionality of the package has been greatly enhanced by implementing further functions for measurement data processing, statistical analysis and graphical output. Despite its capabilities for complex and non-standard analysis of luminescence data, working with the command-line interface (CLI) of R can be tedious at best and overwhelming at worst, especially for users without experience in programming languages. Even though much work is put into simplifying the usage of the package to continuously lower the entry threshold, at least basic knowledge of R will always be required. Thus, the potential user base of the package cannot be exhausted, at least as long as the CLI is the only means of utilising the 'Luminescence' package. But even experienced users may find it tedious to iteratively run a function until a satisfying results is produced. For example, plotting data is also at least partly subject to personal aesthetic tastes in accordance with the information it is supposed to convey and iterating through all the possible options in the R CLI can be a time-consuming task. An alternative approach to the CLI is the graphical user interface (GUI), which allows direct, interactive manipulation and interaction with the underlying software. For users with little or no experience with command-lines a GUI offers intuitive access that counteracts the perceived steep learning curve of a CLI. Even though R lacks native support for GUI functions, its capabilities of linking it to other programming languages allows to utilise external frameworks to build graphical user interfaces. A recent attempt to provide a GUI toolkit for R was the introduction of the 'shiny' package (Chang et al., 2016), which allows automatic construction of HTML, CSS and JavaScript based user interfaces straight from R. Here, we give (1) a brief introduction to the 'shiny' framework for R, before we (2) present a GUI for the R package 'Luminescence' in the form of interactive web applications. These applications can be accessed online so that a user is not even required to have a local installation of R and which provide access to most of the plotting functions of the R package 'Luminescence'. These functionalities will be demonstrated live during the PICO session. References Chang, W., Cheng, J., Allaire, JJ., Xie, Y., McPherson, J., 2016. shiny: Web Application Framework for R. R package version 0.13.2. https://CRAN.R-project.org/package=shiny Kreutzer, S., Schmidt, C., Fuchs, M.C., Dietze, M., Fischer, M., Fuchs, M., 2012. Introducing an R package for luminescence dating analysis. Ancient TL, 30: 1-8, 2012.

  1. Development of the User Interface for AIR-Spec

    NASA Astrophysics Data System (ADS)

    Cervantes Alcala, E.; Guth, G.; Fedeler, S.; Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.

    2016-12-01

    The airborne infrared spectrometer (AIR-Spec) is an imaging spectrometer that will observe the solar corona during the 2017 total solar eclipse. This eclipse will provide a unique opportunity to observe infrared emission lines in the corona. Five spectral lines are of particular interest because they may eventually be used to measure the coronal magnetic field. To avoid infrared absorption from atmospheric water vapor, AIR-Spec will be placed on an NSF Gulfstream aircraft flying above 14.9 km. AIR-Spec must be capable of taking stable images while the plane moves. The instrument includes an image stabilization system, which uses fiber-optic gyroscopes to determine platform rotation, GPS to calculate the ephemeris of the sun, and a voltage-driven mirror to correct the line of sight. An operator monitors a white light image of the eclipse and manually corrects for residual drift. The image stabilization calculation is performed by a programmable automatic controller (PAC), which interfaces with the gyroscopes and mirror controller. The operator interfaces with a separate computer, which acquires images and computes the solar ephemeris. To ensure image stabilization is successful, a human machine interface (HMI) was developed to allow connection between the client and PAC. In order to make control of the instruments user friendly during the short eclipse observation, a graphical user interface (GUI) was also created. The GUI's functionality includes turning image stabilization on and off, allowing the user to input information about the geometric setup, calculating the solar ephemeris, refining estimates of the initial aircraft attitude, and storing data from the PAC on the operator's computer. It also displays time, location, attitude, ephemeris, gyro rates and mirror angles.

  2. Collaborative SDOCT Segmentation and Analysis Software.

    PubMed

    Yun, Yeyi; Carass, Aaron; Lang, Andrew; Prince, Jerry L; Antony, Bhavna J

    2017-02-01

    Spectral domain optical coherence tomography (SDOCT) is routinely used in the management and diagnosis of a variety of ocular diseases. This imaging modality also finds widespread use in research, where quantitative measurements obtained from the images are used to track disease progression. In recent years, the number of available scanners and imaging protocols grown and there is a distinct absence of a unified tool that is capable of visualizing, segmenting, and analyzing the data. This is especially noteworthy in longitudinal studies, where data from older scanners and/or protocols may need to be analyzed. Here, we present a graphical user interface (GUI) that allows users to visualize and analyze SDOCT images obtained from two commonly used scanners. The retinal surfaces in the scans can be segmented using a previously described method, and the retinal layer thicknesses can be compared to a normative database. If necessary, the segmented surfaces can also be corrected and the changes applied. The interface also allows users to import and export retinal layer thickness data to an SQL database, thereby allowing for the collation of data from a number of collaborating sites.

  3. X-Antenna: A graphical interface for antenna analysis codes

    NASA Technical Reports Server (NTRS)

    Goldstein, B. L.; Newman, E. H.; Shamansky, H. T.

    1995-01-01

    This report serves as the user's manual for the X-Antenna code. X-Antenna is intended to simplify the analysis of antennas by giving the user graphical interfaces in which to enter all relevant antenna and analysis code data. Essentially, X-Antenna creates a Motif interface to the user's antenna analysis codes. A command-file allows new antennas and codes to be added to the application. The menu system and graphical interface screens are created dynamically to conform to the data in the command-file. Antenna data can be saved and retrieved from disk. X-Antenna checks all antenna and code values to ensure they are of the correct type, writes an output file, and runs the appropriate antenna analysis code. Volumetric pattern data may be viewed in 3D space with an external viewer run directly from the application. Currently, X-Antenna includes analysis codes for thin wire antennas (dipoles, loops, and helices), rectangular microstrip antennas, and thin slot antennas.

  4. 78 FR 79434 - Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ...: one that will allow EQR users to file through a web interface on the Commission's Web site, and a... the conference, staff will demonstrate how to make a filing using both the XML and web interface... Calendar of Events on the Commission's Web site, www.ferc.gov . A free webcast of the conference will be...

  5. Job submission and management through web services: the experience with the CREAM service

    NASA Astrophysics Data System (ADS)

    Aiftimiei, C.; Andreetto, P.; Bertocco, S.; Fina, S. D.; Ronco, S. D.; Dorigo, A.; Gianelle, A.; Marzolla, M.; Mazzucato, M.; Sgaravatto, M.; Verlato, M.; Zangrando, L.; Corvo, M.; Miccio, V.; Sciaba, A.; Cesini, D.; Dongiovanni, D.; Grandi, C.

    2008-07-01

    Modern Grid middleware is built around components providing basic functionality, such as data storage, authentication, security, job management, resource monitoring and reservation. In this paper we describe the Computing Resource Execution and Management (CREAM) service. CREAM provides a Web service-based job execution and management capability for Grid systems; in particular, it is being used within the gLite middleware. CREAM exposes a Web service interface allowing conforming clients to submit and manage computational jobs to a Local Resource Management System. We developed a special component, called ICE (Interface to CREAM Environment) to integrate CREAM in gLite. ICE transfers job submissions and cancellations from the Workload Management System, allowing users to manage CREAM jobs from the gLite User Interface. This paper describes some recent studies aimed at assessing the performance and reliability of CREAM and ICE; those tests have been performed as part of the acceptance tests for integration of CREAM and ICE in gLite. We also discuss recent work towards enhancing CREAM with a BES and JSDL compliant interface.

  6. Adaptive Phase Delay Generator

    NASA Technical Reports Server (NTRS)

    Greer, Lawrence

    2013-01-01

    There are several experimental setups involving rotating machinery that require some form of synchronization. The adaptive phase delay generator (APDG) the Bencic-1000 is a flexible instrument that allows the user to generate pulses synchronized to the rising edge of a tachometer signal from any piece of rotating machinery. These synchronized pulses can vary by the delay angle, pulse width, number of pulses per period, number of skipped pulses, and total number of pulses. Due to the design of the pulse generator, any and all of these parameters can be changed independently, yielding an unparalleled level of versatility. There are two user interfaces to the APDG. The first is a LabVIEW program that has the advantage of displaying all of the pulse parameters and input signal data within one neatly organized window on the PC monitor. Furthermore, the LabVIEW interface plots the rpm of the two input signal channels in real time. The second user interface is a handheld portable device that goes anywhere a computer is not accessible. It consists of a liquid-crystal display and keypad, which enable the user to control the unit by scrolling through a host of command menus and parameter listings. The APDG combines all of the desired synchronization control into one unit. The experimenter can adjust the delay, pulse width, pulse count, number of skipped pulses, and produce a specified number of pulses per revolution. Each of these parameters can be changed independently, providing an unparalleled level of versatility when synchronizing hardware to a host of rotating machinery. The APDG allows experimenters to set up quickly and generate a host of synchronizing configurations using a simple user interface, which hopefully leads to faster results.

  7. Retrieving high-resolution images over the Internet from an anatomical image database

    NASA Astrophysics Data System (ADS)

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  8. Translating research into practice through user-centered design: An application for osteoarthritis healthcare planning.

    PubMed

    Carr, Eloise Cj; Babione, Julie N; Marshall, Deborah

    2017-08-01

    To identify the needs and requirements of the end users, to inform the development of a user-interface to translate an existing evidence-based decision support tool into a practical and usable interface for health service planning for osteoarthritis (OA) care. We used a user-centered design (UCD) approach that emphasized the role of the end-users and is well-suited to knowledge translation (KT). The first phase used a needs assessment focus group (n=8) and interviews (n=5) with target users (health care planners) within a provincial health care organization. The second phase used a participatory design approach, with two small group sessions (n=6) to explore workflow, thought processes, and needs of intended users. The needs assessment identified five design recommendations: ensuring the user-interface supports the target user group, allowing for user-directed data explorations, input parameter flexibility, clear presentation, and provision of relevant definitions. The second phase identified workflow insights from a proposed scenario. Graphs, the need for a visual overview of the data, and interactivity were key considerations to aid in meaningful use of the model and knowledge translation. A UCD approach is well suited to identify health care planners' requirements when using a decision support tool to improve health service planning and management of OA. We believe this is one of the first applications to be used in planning for health service delivery. We identified specific design recommendations that will increase user acceptability and uptake of the user-interface and underlying decision support tool in practice. Our approach demonstrated how UCD can be used to enable knowledge translation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. MAGE (M-file/Mif Automatic GEnerator): A graphical interface tool for automatic generation of Object Oriented Micromagnetic Framework configuration files and Matlab scripts for results analysis

    NASA Astrophysics Data System (ADS)

    Chęciński, Jakub; Frankowski, Marek

    2016-10-01

    We present a tool for fully-automated generation of both simulations configuration files (Mif) and Matlab scripts for automated data analysis, dedicated for Object Oriented Micromagnetic Framework (OOMMF). We introduce extended graphical user interface (GUI) that allows for fast, error-proof and easy creation of Mifs, without any programming skills usually required for manual Mif writing necessary. With MAGE we provide OOMMF extensions for complementing it by mangetoresistance and spin-transfer-torque calculations, as well as local magnetization data selection for output. Our software allows for creation of advanced simulations conditions like simultaneous parameters sweeps and synchronic excitation application. Furthermore, since output of such simulation could be long and complicated we provide another GUI allowing for automated creation of Matlab scripts suitable for analysis of such data with Fourier and wavelet transforms as well as user-defined operations.

  10. METAGUI 3: A graphical user interface for choosing the collective variables in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Giorgino, Toni; Laio, Alessandro; Rodriguez, Alex

    2017-08-01

    Molecular dynamics (MD) simulations allow the exploration of the phase space of biopolymers through the integration of equations of motion of their constituent atoms. The analysis of MD trajectories often relies on the choice of collective variables (CVs) along which the dynamics of the system is projected. We developed a graphical user interface (GUI) for facilitating the interactive choice of the appropriate CVs. The GUI allows: defining interactively new CVs; partitioning the configurations into microstates characterized by similar values of the CVs; calculating the free energies of the microstates for both unbiased and biased (metadynamics) simulations; clustering the microstates in kinetic basins; visualizing the free energy landscape as a function of a subset of the CVs used for the analysis. A simple mouse click allows one to quickly inspect structures corresponding to specific points in the landscape.

  11. Modular design, application architecture, and usage of a self-service model for enterprise data delivery: The Duke Enterprise Data Unified Content Explorer (DEDUCE)

    PubMed Central

    Horvath, Monica M.; Rusincovitch, Shelley A.; Brinson, Stephanie; Shang, Howard C.; Evans, Steve; Ferranti, Jeffrey M.

    2015-01-01

    Purpose Data generated in the care of patients are widely used to support clinical research and quality improvement, which has hastened the development of self-service query tools. User interface design for such tools, execution of query activity, and underlying application architecture have not been widely reported, and existing tools reflect a wide heterogeneity of methods and technical frameworks. We describe the design, application architecture, and use of a self-service model for enterprise data delivery within Duke Medicine. Methods Our query platform, the Duke Enterprise Data Unified Content Explorer (DEDUCE), supports enhanced data exploration, cohort identification, and data extraction from our enterprise data warehouse (EDW) using a series of modular environments that interact with a central keystone module, Cohort Manager (CM). A data-driven application architecture is implemented through three components: an application data dictionary, the concept of “smart dimensions”, and dynamically-generated user interfaces. Results DEDUCE CM allows flexible hierarchies of EDW queries within a grid-like workspace. A cohort “join” functionality allows switching between filters based on criteria occurring within or across patient encounters. To date, 674 users have been trained and activated in DEDUCE, and logon activity shows a steady increase, with variability between months. A comparison of filter conditions and export criteria shows that these activities have different patterns of usage across subject areas. Conclusions Organizations with sophisticated EDWs may find that users benefit from development of advanced query functionality, complimentary to the user interfaces and infrastructure used in other well-published models. Driven by its EDW context, the DEDUCE application architecture was also designed to be responsive to source data and to allow modification through alterations in metadata rather than programming, allowing an agile response to source system changes. PMID:25051403

  12. Modular design, application architecture, and usage of a self-service model for enterprise data delivery: the Duke Enterprise Data Unified Content Explorer (DEDUCE).

    PubMed

    Horvath, Monica M; Rusincovitch, Shelley A; Brinson, Stephanie; Shang, Howard C; Evans, Steve; Ferranti, Jeffrey M

    2014-12-01

    Data generated in the care of patients are widely used to support clinical research and quality improvement, which has hastened the development of self-service query tools. User interface design for such tools, execution of query activity, and underlying application architecture have not been widely reported, and existing tools reflect a wide heterogeneity of methods and technical frameworks. We describe the design, application architecture, and use of a self-service model for enterprise data delivery within Duke Medicine. Our query platform, the Duke Enterprise Data Unified Content Explorer (DEDUCE), supports enhanced data exploration, cohort identification, and data extraction from our enterprise data warehouse (EDW) using a series of modular environments that interact with a central keystone module, Cohort Manager (CM). A data-driven application architecture is implemented through three components: an application data dictionary, the concept of "smart dimensions", and dynamically-generated user interfaces. DEDUCE CM allows flexible hierarchies of EDW queries within a grid-like workspace. A cohort "join" functionality allows switching between filters based on criteria occurring within or across patient encounters. To date, 674 users have been trained and activated in DEDUCE, and logon activity shows a steady increase, with variability between months. A comparison of filter conditions and export criteria shows that these activities have different patterns of usage across subject areas. Organizations with sophisticated EDWs may find that users benefit from development of advanced query functionality, complimentary to the user interfaces and infrastructure used in other well-published models. Driven by its EDW context, the DEDUCE application architecture was also designed to be responsive to source data and to allow modification through alterations in metadata rather than programming, allowing an agile response to source system changes. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (HP9000 SERIES 300/400 VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is expected to be available on media suitable for seven different machine platforms: 1) DEC VAX computers running VMS (TK50 cartridge in VAX BACKUP format), 2) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and 7) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2.

  14. TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is expected to be available on media suitable for seven different machine platforms: 1) DEC VAX computers running VMS (TK50 cartridge in VAX BACKUP format), 2) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and 7) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2.

  15. Advanced Query and Data Mining Capabilities for MaROS

    NASA Technical Reports Server (NTRS)

    Wang, Paul; Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Hy, Franklin H.

    2013-01-01

    The Mars Relay Operational Service (MaROS) comprises a number of tools to coordinate, plan, and visualize various aspects of the Mars Relay network. These levels include a Web-based user interface, a back-end "ReSTlet" built in Java, and databases that store the data as it is received from the network. As part of MaROS, the innovators have developed and implemented a feature set that operates on several levels of the software architecture. This new feature is an advanced querying capability through either the Web-based user interface, or through a back-end REST interface to access all of the data gathered from the network. This software is not meant to replace the REST interface, but to augment and expand the range of available data. The current REST interface provides specific data that is used by the MaROS Web application to display and visualize the information; however, the returned information from the REST interface has typically been pre-processed to return only a subset of the entire information within the repository, particularly only the information that is of interest to the GUI (graphical user interface). The new, advanced query and data mining capabilities allow users to retrieve the raw data and/or to perform their own data processing. The query language used to access the repository is a restricted subset of the structured query language (SQL) that can be built safely from the Web user interface, or entered as freeform SQL by a user. The results are returned in a CSV (Comma Separated Values) format for easy exporting to third party tools and applications that can be used for data mining or user-defined visualization and interpretation. This is the first time that a service is capable of providing access to all cross-project relay data from a single Web resource. Because MaROS contains the data for a variety of missions from the Mars network, which span both NASA and ESA, the software also establishes an access control list (ACL) on each data record in the database repository to enforce user access permissions through a multilayered approach.

  16. Flexible Environmental Modeling with Python and Open - GIS

    NASA Astrophysics Data System (ADS)

    Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann

    2015-04-01

    Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We illustrate this approach with several case studies in groundwater hydrology and geochemistry and provide links to several python libraries that facilitate pre- and post-processing operations.

  17. Mining the SDSS SkyServer SQL queries log

    NASA Astrophysics Data System (ADS)

    Hirota, Vitor M.; Santos, Rafael; Raddick, Jordan; Thakar, Ani

    2016-05-01

    SkyServer, the Internet portal for the Sloan Digital Sky Survey (SDSS) astronomic catalog, provides a set of tools that allows data access for astronomers and scientific education. One of SkyServer data access interfaces allows users to enter ad-hoc SQL statements to query the catalog. SkyServer also presents some template queries that can be used as basis for more complex queries. This interface has logged over 330 million queries submitted since 2001. It is expected that analysis of this data can be used to investigate usage patterns, identify potential new classes of queries, find similar queries, etc. and to shed some light on how users interact with the Sloan Digital Sky Survey data and how scientists have adopted the new paradigm of e-Science, which could in turn lead to enhancements on the user interfaces and experience in general. In this paper we review some approaches to SQL query mining, apply the traditional techniques used in the literature and present lessons learned, namely, that the general text mining approach for feature extraction and clustering does not seem to be adequate for this type of data, and, most importantly, we find that this type of analysis can result in very different queries being clustered together.

  18. Docker Container Manager: A Simple Toolkit for Isolated Work with Shared Computational, Storage, and Network Resources

    NASA Astrophysics Data System (ADS)

    Polyakov, S. P.; Kryukov, A. P.; Demichev, A. P.

    2018-01-01

    We present a simple set of command line interface tools called Docker Container Manager (DCM) that allow users to create and manage Docker containers with preconfigured SSH access while keeping the users isolated from each other and restricting their access to the Docker features that could potentially disrupt the work of the server. Users can access DCM server via SSH and are automatically redirected to DCM interface tool. From there, they can create new containers, stop, restart, pause, unpause, and remove containers and view the status of the existing containers. By default, the containers are also accessible via SSH using the same private key(s) but through different server ports. Additional publicly available ports can be mapped to the respective ports of a container, allowing for some network services to be run within it. The containers are started from read-only filesystem images. Some initial images must be provided by the DCM server administrators, and after containers are configured to meet one’s needs, the changes can be saved as new images. Users can see the available images and remove their own images. DCM server administrators are provided with commands to create and delete users. All commands were implemented as Python scripts. The tools allow to deploy and debug medium-sized distributed systems for simulation in different fields on one or several local computers.

  19. QuadBase2: web server for multiplexed guanine quadruplex mining and visualization

    PubMed Central

    Dhapola, Parashar; Chowdhury, Shantanu

    2016-01-01

    DNA guanine quadruplexes or G4s are non-canonical DNA secondary structures which affect genomic processes like replication, transcription and recombination. G4s are computationally identified by specific nucleotide motifs which are also called putative G4 (PG4) motifs. Despite the general relevance of these structures, there is currently no tool available that can allow batch queries and genome-wide analysis of these motifs in a user-friendly interface. QuadBase2 (quadbase.igib.res.in) presents a completely reinvented web server version of previously published QuadBase database. QuadBase2 enables users to mine PG4 motifs in up to 178 eukaryotes through the EuQuad module. This module interfaces with Ensembl Compara database, to allow users mine PG4 motifs in the orthologues of genes of interest across eukaryotes. PG4 motifs can be mined across genes and their promoter sequences in 1719 prokaryotes through ProQuad module. This module includes a feature that allows genome-wide mining of PG4 motifs and their visualization as circular histograms. TetraplexFinder, the module for mining PG4 motifs in user-provided sequences is now capable of handling up to 20 MB of data. QuadBase2 is a comprehensive PG4 motif mining tool that further expands the configurations and algorithms for mining PG4 motifs in a user-friendly way. PMID:27185890

  20. Review of surgical robotics user interface: what is the best way to control robotic surgery?

    PubMed

    Simorov, Anton; Otte, R Stephen; Kopietz, Courtni M; Oleynikov, Dmitry

    2012-08-01

    As surgical robots begin to occupy a larger place in operating rooms around the world, continued innovation is necessary to improve our outcomes. A comprehensive review of current surgical robotic user interfaces was performed to describe the modern surgical platforms, identify the benefits, and address the issues of feedback and limitations of visualization. Most robots currently used in surgery employ a master/slave relationship, with the surgeon seated at a work-console, manipulating the master system and visualizing the operation on a video screen. Although enormous strides have been made to advance current technology to the point of clinical use, limitations still exist. A lack of haptic feedback to the surgeon and the inability of the surgeon to be stationed at the operating table are the most notable examples. The future of robotic surgery sees a marked increase in the visualization technologies used in the operating room, as well as in the robots' abilities to convey haptic feedback to the surgeon. This will allow unparalleled sensation for the surgeon and almost eliminate inadvertent tissue contact and injury. A novel design for a user interface will allow the surgeon to have access to the patient bedside, remaining sterile throughout the procedure, employ a head-mounted three-dimensional visualization system, and allow the most intuitive master manipulation of the slave robot to date.

  1. Intuitive wireless control of a robotic arm for people living with an upper body disability.

    PubMed

    Fall, C L; Turgeon, P; Campeau-Lecours, A; Maheu, V; Boukadoum, M; Roy, S; Massicotte, D; Gosselin, C; Gosselin, B

    2015-08-01

    Assistive Technologies (ATs) also called extrinsic enablers are useful tools for people living with various disabilities. The key points when designing such useful devices not only concern their intended goal, but also the most suitable human-machine interface (HMI) that should be provided to users. This paper describes the design of a highly intuitive wireless controller for people living with upper body disabilities with a residual or complete control of their neck and their shoulders. Tested with JACO, a six-degree-of-freedom (6-DOF) assistive robotic arm with 3 flexible fingers on its end-effector, the system described in this article is made of low-cost commercial off-the-shelf components and allows a full emulation of JACO's standard controller, a 3 axis joystick with 7 user buttons. To do so, three nine-degree-of-freedom (9-DOF) inertial measurement units (IMUs) are connected to a microcontroller and help measuring the user's head and shoulders position, using a complementary filter approach. The results are then transmitted to a base-station via a 2.4-GHz low-power wireless transceiver and interpreted by the control algorithm running on a PC host. A dedicated software interface allows the user to quickly calibrate the controller, and translates the information into suitable commands for JACO. The proposed controller is thoroughly described, from the electronic design to implemented algorithms and user interfaces. Its performance and future improvements are discussed as well.

  2. A haptic interface for virtual simulation of endoscopic surgery.

    PubMed

    Rosenberg, L B; Stredney, D

    1996-01-01

    Virtual reality can be described as a convincingly realistic and naturally interactive simulation in which the user is given a first person illusion of being immersed within a computer generated environment While virtual reality systems offer great potential to reduce the cost and increase the quality of medical training, many technical challenges must be overcome before such simulation platforms offer effective alternatives to more traditional training means. A primary challenge in developing effective virtual reality systems is designing the human interface hardware which allows rich sensory information to be presented to users in natural ways. When simulating a given manual procedure, task specific human interface requirements dictate task specific human interface hardware. The following paper explores the design of human interface hardware that satisfies the task specific requirements of virtual reality simulation of Endoscopic surgical procedures. Design parameters were derived through direct cadaver studies and interviews with surgeons. Final hardware design is presented.

  3. APM_GUI: analyzing particle movement on the cell membrane and determining confinement.

    PubMed

    Menchón, Silvia A; Martín, Mauricio G; Dotti, Carlos G

    2012-02-20

    Single-particle tracking is a powerful tool for tracking individual particles with high precision. It provides useful information that allows the study of diffusion properties as well as the dynamics of movement. Changes in particle movement behavior, such as transitions between Brownian motion and temporary confinement, can reveal interesting biophysical interactions. Although useful applications exist to determine the paths of individual particles, only a few software implementations are available to analyze these data, and these implementations are generally not user-friendly and do not have a graphical interface,. Here, we present APM_GUI (Analyzing Particle Movement), which is a MatLab-implemented application with a Graphical User Interface. This user-friendly application detects confined movement considering non-random confinement when a particle remains in a region longer than a Brownian diffusant would remain. In addition, APM_GUI exports the results, which allows users to analyze this information using software that they are familiar with. APM_GUI provides an open-source tool that quantifies diffusion coefficients and determines whether trajectories have non-random confinements. It also offers a simple and user-friendly tool that can be used by individuals without programming skills.

  4. Estuary Data Mapper: A coastal information system to propel emerging science and inform environmental management decisions

    EPA Science Inventory

    The Estuary Data Mapper (EDM) is a free, interactive virtual gateway to coastal data aimed to promote research and aid in environmental management. The graphical user interface allows users to custom select and subset data based on their spatial and temporal interests giving them...

  5. SimHap GUI: An intuitive graphical user interface for genetic association analysis

    PubMed Central

    Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J

    2008-01-01

    Background Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. Results We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. Conclusion SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis. PMID:19109877

  6. Integration of space weather into space situational awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Geoffrey D

    Rapid assessment of space weather effects on satellites is a critical step in anomaly resolution and satellite threat assessment. That step, however, is often hindered by a number of factors including timely collection and delivery of space weather data and the inherent com plexity of space weather information. As part of a larger, integrated space situational awareness program, Los Alamos National Laboratory has developed prototype operational space weather tools that run in real time and present operators with customized, user-specific information. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the penetrating radiation environment from natural or nuclear-produced radiation belts.more » The penetrating radiation environment is highly dynamic and highly orbit-dependent. Operators often must rely only on line plots of 2 MeV electron flux from the NOAA geosynchronous GOES satellites which is then assumed to be representative of the environment at the satellite of interest. DREAM uses data assimilation to produce a global, real-time, energy dependent specification. User tools are built around a distributed service oriented architecture (SOA) which will allow operators to select any satellite from the space catalog and examine the environment for that specific satellite and time of interest. Depending on the application operators may need to examine instantaneous dose rates and/or dose accumulated over various lengths of time. Further, different energy thresholds can be selected depending on the shielding on the satellite or instrument of interest. In order to rapidly assess the probability that space weather was the cause of anomalous operations, the current conditions can be compared against the historical distribution of radiation levels for that orbit. In the simplest operation a user would select a satellite and time of interest and immediately see if the environmental conditions were typical, elevated, or extreme based on how often those conditions occur in that orbit. This allows users to rapidly rule in or out environmental causes of anomalies. The same user interface can also allow users to drill down for more detailed quantitative information. DREAM can be run either from a distributed web-based user interface or as a stand-alone application for secure operations. In this paper we discuss the underlying structure of the DREAM model and demonstrate the user interface that we have developed . We also present some prototype data products and user interfaces for DREAM and discuss how space environment information can be seamlessly integrated into operational SSA systems.« less

  7. Co-PylotDB - A Python-Based Single-Window User Interface for Transmitting Information to a Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnette, Daniel W.

    2012-01-05

    Co-PylotDB, written completely in Python, provides a user interface (UI) with which to select user and data file(s), directories, and file content, and provide or capture various other information for sending data collected from running any computer program to a pre-formatted database table for persistent storage. The interface allows the user to select input, output, make, source, executable, and qsub files. It also provides fields for specifying the machine name on which the software was run, capturing compile and execution lines, and listing relevant user comments. Data automatically captured by Co-PylotDB and sent to the database are user, current directory,more » local hostname, current date, and time of send. The UI provides fields for logging into a local or remote database server, specifying a database and a table, and sending the information to the selected database table. If a server is not available, the UI provides for saving the command that would have saved the information to a database table for either later submission or for sending via email to a collaborator who has access to the desired database.« less

  8. A distributed, graphical user interface based, computer control system for atomic physics experiments

    NASA Astrophysics Data System (ADS)

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  9. A distributed, graphical user interface based, computer control system for atomic physics experiments.

    PubMed

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  10. Neuroprosthetic Decoder Training as Imitation Learning.

    PubMed

    Merel, Josh; Carlson, David; Paninski, Liam; Cunningham, John P

    2016-05-01

    Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.

  11. Applications of artificial intelligence to space station and automated software techniques: High level robot command language

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1989-01-01

    The objective is to develop a system that will allow a person not necessarily skilled in the art of programming robots to quickly and naturally create the necessary data and commands to enable a robot to perform a desired task. The system will use a menu driven graphical user interface. This interface will allow the user to input data to select objects to be moved. There will be an imbedded expert system to process the knowledge about objects and the robot to determine how they are to be moved. There will be automatic path planning to avoid obstacles in the work space and to create a near optimum path. The system will contain the software to generate the required robot instructions.

  12. MONTE: the next generation of mission design and navigation software

    NASA Astrophysics Data System (ADS)

    Evans, Scott; Taber, William; Drain, Theodore; Smith, Jonathon; Wu, Hsi-Cheng; Guevara, Michelle; Sunseri, Richard; Evans, James

    2018-03-01

    The Mission analysis, Operations and Navigation Toolkit Environment (MONTE) (Sunseri et al. in NASA Tech Briefs 36(9), 2012) is an astrodynamic toolkit produced by the Mission Design and Navigation Software Group at the Jet Propulsion Laboratory. It provides a single integrated environment for all phases of deep space and Earth orbiting missions. Capabilities include: trajectory optimization and analysis, operational orbit determination, flight path control, and 2D/3D visualization. MONTE is presented to the user as an importable Python language module. This allows a simple but powerful user interface via CLUI or script. In addition, the Python interface allows MONTE to be used seamlessly with other canonical scientific programming tools such as SciPy, NumPy, and Matplotlib. MONTE is the prime operational orbit determination software for all JPL navigated missions.

  13. Matlab-Excel Interface for OpenDSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The software allows users of the OpenDSS grid modeling software to access their load flow models using a GUI interface developed in MATLAB. The circuit definitions are entered into a Microsoft Excel spreadsheet which makes circuit creation and editing a much simpler process than the basic text-based editors used in the native OpenDSS interface. Plot tools have been developed which can be accessed through a MATLAB GUI once the desired parameters have been simulated.

  14. Dynamic User Interfaces for Service Oriented Architectures in Healthcare.

    PubMed

    Schweitzer, Marco; Hoerbst, Alexander

    2016-01-01

    Electronic Health Records (EHRs) play a crucial role in healthcare today. Considering a data-centric view, EHRs are very advanced as they provide and share healthcare data in a cross-institutional and patient-centered way adhering to high syntactic and semantic interoperability. However, the EHR functionalities available for the end users are rare and hence often limited to basic document query functions. Future EHR use necessitates the ability to let the users define their needed data according to a certain situation and how this data should be processed. Workflow and semantic modelling approaches as well as Web services provide means to fulfil such a goal. This thesis develops concepts for dynamic interfaces between EHR end users and a service oriented eHealth infrastructure, which allow the users to design their flexible EHR needs, modeled in a dynamic and formal way. These are used to discover, compose and execute the right Semantic Web services.

  15. Interfacing HTCondor-CE with OpenStack

    NASA Astrophysics Data System (ADS)

    Bockelman, B.; Caballero Bejar, J.; Hover, J.

    2017-10-01

    Over the past few years, Grid Computing technologies have reached a high level of maturity. One key aspect of this success has been the development and adoption of newer Compute Elements to interface the external Grid users with local batch systems. These new Compute Elements allow for better handling of jobs requirements and a more precise management of diverse local resources. However, despite this level of maturity, the Grid Computing world is lacking diversity in local execution platforms. As Grid Computing technologies have historically been driven by the needs of the High Energy Physics community, most resource providers run the platform (operating system version and architecture) that best suits the needs of their particular users. In parallel, the development of virtualization and cloud technologies has accelerated recently, making available a variety of solutions, both commercial and academic, proprietary and open source. Virtualization facilitates performing computational tasks on platforms not available at most computing sites. This work attempts to join the technologies, allowing users to interact with computing sites through one of the standard Computing Elements, HTCondor-CE, but running their jobs within VMs on a local cloud platform, OpenStack, when needed. The system will re-route, in a transparent way, end user jobs into dynamically-launched VM worker nodes when they have requirements that cannot be satisfied by the static local batch system nodes. Also, once the automated mechanisms are in place, it becomes straightforward to allow an end user to invoke a custom Virtual Machine at the site. This will allow cloud resources to be used without requiring the user to establish a separate account. Both scenarios are described in this work.

  16. Some effects of stress on users of a voice recognition system: A preliminary inquiry

    NASA Astrophysics Data System (ADS)

    French, B. A.

    1983-03-01

    Recent work with Automatic Speech Recognition has focused on applications and productivity considerations in the man-machine interface. This thesis is an attempt to see if placing users of such equipment under time-induced stress has an effect on their percent correct recognition rates. Subjects were given a message-handling task of fixed length and allowed progressively shorter times to attempt to complete it. Questionnaire responses indicate stress levels increased with decreased time-allowance; recognition rates decreased as time was reduced.

  17. IAC - INTEGRATED ANALYSIS CAPABILITY

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. With the goal of supporting the unique needs of engineering analysis groups concerned with interdisciplinary problems, IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a data base, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automatic data transfer among analysis programs. IAC 2.5, designed to be compatible as far as possible with Level 1.5, contains a major upgrade in executive and database management system capabilities, and includes interfaces to enable thermal, structures, optics, and control interaction dynamics analysis. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation interfaces are supplied for building and viewing models. Advanced graphics capabilities are provided within particular analysis modules such as INCA and NASTRAN. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model Integration via Mesh Interpolation Coefficients), which transforms field values from one model to another; LINK, which simplifies incorporation of user specific modules into IAC modules; and DATAPAC, the National Bureau of Standards statistical analysis package. The IAC database contains structured files which provide a common basis for communication between modules and the executive system, and can contain unstructured files such as NASTRAN checkpoint files, DISCOS plot files, object code, etc. The user can define groups of data and relations between them. A full data manipulation and query system operates with the database. The current interface modules comprise five groups: 1) Structural analysis - IAC contains a NASTRAN interface for standalone analysis or certain structural/control/thermal combinations. IAC provides enhanced structural capabilities for normal modes and static deformation analysis via special DMAP sequences. IAC 2.5 contains several specialized interfaces from NASTRAN in support of multidisciplinary analysis. 2) Thermal analysis - IAC supports finite element and finite difference techniques for steady state or transient analysis. There are interfaces for the NASTRAN thermal analyzer, SINDA/SINFLO, and TRASYS II. FEMNET, which converts finite element structural analysis models to finite difference thermal analysis models, is also interfaced with the IAC database. 3) System dynamics - The DISCOS simulation program which allows for either nonlinear time domain analysis or linear frequency domain analysis, is fully interfaced to the IAC database management capability. 4) Control analysis - Interfaces for the ORACLS, SAMSAN, NBOD2, and INCA programs allow a wide range of control system analyses and synthesis techniques. Level 2.5 includes EIGEN, which provides tools for large order system eigenanalysis, and BOPACE, which allows for geometric capabilities and finite element analysis with nonlinear material. Also included in IAC level 2.5 is SAMSAN 3.1, an engineering analysis program which contains a general purpose library of over 600 subroutines for numerical analysis. 5) Graphics - The graphics package IPLOT is included in IAC. IPLOT generates vector displays of tabular data in the form of curves, charts, correlation tables, etc. Either DI3000 or PLOT-10 graphics software is required for full graphic capability. In addition to these analysis tools, IAC 2.5 contains an IGES interface which allows the user to read arbitrary IGES files into an IAC database and to edit and output new IGES files. IAC is available by license for a period of 10 years to approved U.S. licensees. The licensed program product includes one set of supporting documentation. Additional copies may be purchased separately. IAC is written in FORTRAN 77 and has been implemented on a DEC VAX series computer operating under VMS. IAC can be executed by multiple concurrent users in batch or interactive mode. The program is structured to allow users to easily delete those program capabilities and "how to" examples they do not want in order to reduce the size of the package. The basic central memory requirement for IAC is approximately 750KB. The following programs are also available from COSMIC as separate packages: NASTRAN, SINDA/SINFLO, TRASYS II, DISCOS, ORACLS, SAMSAN, NBOD2, and INCA. The development of level 2.5 of IAC was completed in 1989.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphrey, Walter R.

    CMS is a Windows application for tracking chemical inventories. Partners will use this application to record chemicals that are stored on their site and to perform periodic inventories of those chemicals. The application records information about stored chemicals from user input via the keyboard and barcode readers and stores that information into a single-file database (SQLite). A simple user login mechanism is used to control access to functions in the application. A user interface is provided that allows users to search the database and update data in the database.

  19. AFTER: Batch jobs on the Apollo ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofstadler, P.

    1987-07-01

    This document describes AFTER, a system that allows users of an Apollo ring to submit batch jobs to run without leaving themselves logged in to the ring. Jobs may be submitted to run at a later time or on a different node. Results from the batch job are mailed to the user through some designated mail system. AFTER features an understandable user interface, good on line help, and site customization. This manual serves primarily as a user's guide to AFTER although administration and installation are covered for completeness.

  20. Interacting with a security system: The Argus user interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrin, E.; Davis, G.E.

    1993-12-31

    In the mid-1980s the Lawrence Livermore National Laboratory (LLNL) developed the Argus Security System. Key requirements were to eliminate the telephone as a verification device for opening and closing alarm stations and to allow need-to-know access through local enrollment at alarm stations. Resulting from these requirements was an LLNL-designed user interface called the Remote Access Panel (RAP). The Argus RAP interacts with Argus field processors to allow secure station mode changes and local station enrollment, provides user direction and response, and assists station maintenance personnel. It consists of a tamper-detecting housing containing a badge reader, a keypad with sight screen,more » special-purpose push buttons and a liquid-crystal display. This paper discusses Argus system concepts, RAP design, functional characteristics and its physical configurations. The paper also describes the RAP`s use in access-control booths, it`s integration with biometrics and its operation for multi-person-rule stations and compartmented facilities.« less

  1. A Tool and Application Programming Interface for Browsing Historical Geostationary Satellite Data

    NASA Astrophysics Data System (ADS)

    Chee, T.; Nguyen, L.; Minnis, P.; Spangenberg, D.; Ayers, J.

    2013-12-01

    Providing access to information is a key concern for NASA Langley Research Center. We describe a tool and method that allows end users to easily browse and access information that is otherwise difficult to acquire and manipulate. The tool described has as its core the application-programming interface that is made available to the public. One goal of the tool is to provide a demonstration to end users so that they can use the enhanced imagery as an input into their own work flows. This project builds upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite imagery accessible and easily searchable. As we see the increasing use of virtual supply chains that provide additional value at each link there is value in making satellite imagery available through a simple access method as well as allowing users to browse and view that imagery as they need rather than in a manner most convenient for the data provider.

  2. Portable Handheld Optical Window Inspection Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis; Dokos, Adam; Burns, Bradley

    2010-01-01

    The Portable Handheld Optical Window Inspection Device (PHOWID) is a measurement system for imaging small defects (scratches, pits, micrometeor impacts, and the like) in the field. Designed primarily for window inspection, PHOWID attaches to a smooth surface with suction cups, and raster scans a small area with an optical pen in order to provide a three-dimensional image of the defect. PHOWID consists of a graphical user interface, motor control subsystem, scanning head, and interface electronics, as well as an integrated camera and user display that allows a user to locate minute defects before scanning. Noise levels are on the order of 60 in. (1.5 m). PHOWID allows field measurement of defects that are usually done in the lab. It is small, light, and attaches directly to the test article in any orientation up to vertical. An operator can scan a defect and get useful engineering data in a matter of minutes. There is no need to make a mold impression for later lab analysis.

  3. 78 FR 28669 - Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... ``Options Pricing'' section of its fee schedule effective immediately, in order to (i) increase fees for any...'') thresholds. The Exchange offers a bulk-quoting interface which allows Users \\6\\ of BATS Options to submit and... receipt. The bulk-quoting application for BATS Options is a particularly useful feature for Users that...

  4. Creating Accessible Science Museums with User-Activated Environmental Audio Beacons (Ping!)

    ERIC Educational Resources Information Center

    Landau, Steven; Wiener, William; Naghshineh, Koorosh; Giusti, Ellen

    2005-01-01

    In 2003, Touch Graphics Company carried out research on a new invention that promises to improve accessibility to science museums for visitors who are visually impaired. The system, nicknamed Ping!, allows users to navigate an exhibit area, listen to audio descriptions, and interact with exhibits using a cell phone-based interface. The system…

  5. User's manual for the model interface and plugboard cabinets in the 14- by 22-foot subsonic tunnel

    NASA Technical Reports Server (NTRS)

    Askew, Robert B.; Quinto, P. Frank

    1994-01-01

    The primary method of connection between the wind tunnel model instrumentation and the data acquisition system in the 14- by 22-Foot Subsonic Tunnel is through the Model Interface (MIF) and Plugboard cabinets. The MIF and Plugboard cabinets allow versatility in the connection of the instrumentation to the different data systems in the facility. The User's Manual describes the components inside the MIF cabinet, the input and output of the MIF, and the MIF patchboard, and the Plugboard cabinets. There are examples of standard connections for most of the instrumentation used in the facility.

  6. Discriminating Tissue Stiffness with a Haptic Catheter: Feeling the Inside of the Beating Heart.

    PubMed

    Kesner, Samuel B; Howe, Robert D

    2011-01-01

    Catheter devices allow physicians to access the inside of the human body easily and painlessly through natural orifices and vessels. Although catheters allow for the delivery of fluids and drugs, the deployment of devices, and the acquisition of the measurements, they do not allow clinicians to assess the physical properties of tissue inside the body due to the tissue motion and transmission limitations of the catheter devices, including compliance, friction, and backlash. The goal of this research is to increase the tactile information available to physicians during catheter procedures by providing haptic feedback during palpation procedures. To accomplish this goal, we have developed the first motion compensated actuated catheter system that enables haptic perception of fast moving tissue structures. The actuated catheter is instrumented with a distal tip force sensor and a force feedback interface that allows users to adjust the position of the catheter while experiencing the forces on the catheter tip. The efficacy of this device and interface is evaluated through a psychophyisical study comparing how accurately users can differentiate various materials attached to a cardiac motion simulator using the haptic device and a conventional manual catheter. The results demonstrate that haptics improves a user's ability to differentiate material properties and decreases the total number of errors by 50% over the manual catheter system.

  7. Practical experience with graphical user interfaces and object-oriented design in the clinical laboratory.

    PubMed

    Wells, I G; Cartwright, R Y; Farnan, L P

    1993-12-15

    The computing strategy in our laboratories evolved from research in Artificial Intelligence, and is based on powerful software tools running on high performance desktop computers with a graphical user interface. This allows most tasks to be regarded as design problems rather than implementation projects, and both rapid prototyping and an object-oriented approach to be employed during the in-house development and enhancement of the laboratory information systems. The practical application of this strategy is discussed, with particular reference to the system designer, the laboratory user and the laboratory customer. Routine operation covers five departments, and the systems are stable, flexible and well accepted by the users. Client-server computing, currently undergoing final trials, is seen as the key to further development, and this approach to Pathology computing has considerable potential for the future.

  8. AGUIA: autonomous graphical user interface assembly for clinical trials semantic data services

    PubMed Central

    2010-01-01

    Background AGUIA is a front-end web application originally developed to manage clinical, demographic and biomolecular patient data collected during clinical trials at MD Anderson Cancer Center. The diversity of methods involved in patient screening and sample processing generates a variety of data types that require a resource-oriented architecture to capture the associations between the heterogeneous data elements. AGUIA uses a semantic web formalism, resource description framework (RDF), and a bottom-up design of knowledge bases that employ the S3DB tool as the starting point for the client's interface assembly. Methods The data web service, S3DB, meets the necessary requirements of generating the RDF and of explicitly distinguishing the description of the domain from its instantiation, while allowing for continuous editing of both. Furthermore, it uses an HTTP-REST protocol, has a SPARQL endpoint, and has open source availability in the public domain, which facilitates the development and dissemination of this application. However, S3DB alone does not address the issue of representing content in a form that makes sense for domain experts. Results We identified an autonomous set of descriptors, the GBox, that provides user and domain specifications for the graphical user interface. This was achieved by identifying a formalism that makes use of an RDF schema to enable the automatic assembly of graphical user interfaces in a meaningful manner while using only resources native to the client web browser (JavaScript interpreter, document object model). We defined a generalized RDF model such that changes in the graphic descriptors are automatically and immediately (locally) reflected into the configuration of the client's interface application. Conclusions The design patterns identified for the GBox benefit from and reflect the specific requirements of interacting with data generated by clinical trials, and they contain clues for a general purpose solution to the challenge of having interfaces automatically assembled for multiple and volatile views of a domain. By coding AGUIA in JavaScript, for which all browsers include a native interpreter, a solution was found that assembles interfaces that are meaningful to the particular user, and which are also ubiquitous and lightweight, allowing the computational load to be carried by the client's machine. PMID:20977768

  9. The use of analytical models in human-computer interface design

    NASA Technical Reports Server (NTRS)

    Gugerty, Leo

    1993-01-01

    Recently, a large number of human-computer interface (HCI) researchers have investigated building analytical models of the user, which are often implemented as computer models. These models simulate the cognitive processes and task knowledge of the user in ways that allow a researcher or designer to estimate various aspects of an interface's usability, such as when user errors are likely to occur. This information can lead to design improvements. Analytical models can supplement design guidelines by providing designers rigorous ways of analyzing the information-processing requirements of specific tasks (i.e., task analysis). These models offer the potential of improving early designs and replacing some of the early phases of usability testing, thus reducing the cost of interface design. This paper describes some of the many analytical models that are currently being developed and evaluates the usefulness of analytical models for human-computer interface design. This paper will focus on computational, analytical models, such as the GOMS model, rather than less formal, verbal models, because the more exact predictions and task descriptions of computational models may be useful to designers. The paper also discusses some of the practical requirements for using analytical models in complex design organizations such as NASA.

  10. A Framework for the Development of Context-Adaptable User Interfaces for Ubiquitous Computing Systems

    PubMed Central

    Varela, Gervasio; Paz-Lopez, Alejandro; Becerra, Jose A.; Duro, Richard

    2016-01-01

    This paper addresses the problem of developing user interfaces for Ubiquitous Computing (UC) and Ambient Intelligence (AmI) systems. These kind of systems are expected to provide a natural user experience, considering interaction modalities adapted to the user abilities and preferences and using whatever interaction devices are present in the environment. These interaction devices are not necessarily known at design time. The task is quite complicated due to the variety of devices and technologies, and the diversity of scenarios, and it usually burdens the developer with the need to create many different UIs in order to consider the foreseeable user-environment combinations. Here, we propose an UI abstraction framework for UC and AmI systems that effectively improves the portability of those systems between different environments and for different users. It allows developers to design and implement a single UI capable of being deployed with different devices and modalities regardless the physical location. PMID:27399711

  11. Generating and Visualizing Climate Indices using Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Guentchev, G.; Rood, R. B.

    2017-12-01

    Climate change is expected to have largest impacts on regional and local scales. Relevant and credible climate information is needed to support the planning and adaptation efforts in our communities. The volume of climate projections of temperature and precipitation is steadily increasing, as datasets are being generated on finer spatial and temporal grids with an increasing number of ensembles to characterize uncertainty. Despite advancements in tools for querying and retrieving subsets of these large, multi-dimensional datasets, ease of access remains a barrier for many existing and potential users who want to derive useful information from these data, particularly for those outside of the climate modelling research community. Climate indices, that can be derived from daily temperature and precipitation data, such as annual number of frost days or growing season length, can provide useful information to practitioners and stakeholders. For this work the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset was loaded into Google Earth Engine, a cloud-based geospatial processing platform. Algorithms that use the Earth Engine API to generate several climate indices were written. The indices were chosen from the set developed by the joint CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI). Simple user interfaces were created that allow users to query, produce maps and graphs of the indices, as well as download results for additional analyses. These browser-based interfaces could allow users in low-bandwidth environments to access climate information. This research shows that calculating climate indices from global downscaled climate projection datasets and sharing them widely using cloud computing technologies is feasible. Further development will focus on exposing the climate indices to existing applications via the Earth Engine API, and building custom user interfaces for presenting climate indices to a diverse set of user groups.

  12. First Prototype of a Web Map Interface for ESA's Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Manaud, N.; Gonzalez, J.

    2014-04-01

    We present a first prototype of a Web Map Interface that will serve as a proof of concept and design for ESA's future fully web-based Planetary Science Archive (PSA) User Interface. The PSA is ESA's planetary science archiving authority and central repository for all scientific and engineering data returned by ESA's Solar System missions [1]. All data are compliant with NASA's Planetary Data System (PDS) Standards and are accessible through several interfaces [2]: in addition to serving all public data via FTP and the Planetary Data Access Protocol (PDAP), a Java-based User Interface provides advanced search, preview, download, notification and delivery-basket functionality. It allows the user to query and visualise instrument observations footprints using a map-based interface (currently only available for Mars Express HRSC and OMEGA instruments). During the last decade, the planetary mapping science community has increasingly been adopting Geographic Information System (GIS) tools and standards, originally developed for and used in Earth science. There is an ongoing effort to produce and share cartographic products through Open Geospatial Consortium (OGC) Web Services, or as standalone data sets, so that they can be readily used in existing GIS applications [3,4,5]. Previous studies conducted at ESAC [6,7] have helped identify the needs of Planetary GIS users, and define key areas of improvement for the future Web PSA User Interface. Its web map interface shall will provide access to the full geospatial content of the PSA, including (1) observation geometry footprints of all remote sensing instruments, and (2) all georeferenced cartographic products, such as HRSC map-projected data or OMEGA global maps from Mars Express. It shall aim to provide a rich user experience for search and visualisation of this content using modern and interactive web mapping technology. A comprehensive set of built-in context maps from external sources, such as MOLA topography, TES infrared maps or planetary surface nomenclature, provided in both simple cylindrical and polar stereographic projections, shall enhance this user experience. In addition, users should be able to import and export data in commonly used open- GIS formats. It is also intended to serve all PSA geospatial data through OGC-compliant Web Services so that they can be captured, visualised and analysed directly from GIS software, along with data from other sources. The following figure illustrates how the PSA web map interface and services shall fit in a typical Planetary GIS user working environment.

  13. A Voice-Based E-Examination Framework for Visually Impaired Students in Open and Distance Learning

    ERIC Educational Resources Information Center

    Azeta, Ambrose A.; Inam, Itorobong A.; Daramola, Olawande

    2018-01-01

    Voice-based systems allow users access to information on the internet over a voice interface. Prior studies on Open and Distance Learning (ODL) e-examination systems that make use of voice interface do not sufficiently exhibit intelligent form of assessment, which diminishes the rigor of examination. The objective of this paper is to improve on…

  14. How to Display Hazards and other Scientific Data Using Google Maps

    NASA Astrophysics Data System (ADS)

    Venezky, D. Y.; Fee, J. M.

    2007-12-01

    The U.S. Geological Survey's (USGS) Volcano Hazard Program (VHP) is launching a map-based interface to display hazards information using the Google® Map API (Application Program Interface). Map-based interfaces provide a synoptic view of data, making patterns easier to detect and allowing users to quickly ascertain where hazards are in relation to major population and infrastructure centers. Several map-based interfaces are now simple to run on a web server, providing ideal platforms for sharing information with colleagues, emergency managers, and the public. There are three main steps to making data accessible on a map-based interface; formatting the input data, plotting the data on the map, and customizing the user interface. The presentation, "Creating Geospatial RSS and ATOM feeds for Map-based Interfaces" (Fee and Venezky, this session), reviews key features for map input data. Join us for this presentation on how to plot data in a geographic context and then format the display with images, custom markers, and links to external data. Examples will show how the VHP Volcano Status Map was created and how to plot a field trip with driving directions.

  15. Touchfree medical interfaces.

    PubMed

    Rossol, Nathaniel; Cheng, Irene; Rui Shen; Basu, Anup

    2014-01-01

    Real-time control of visual display systems via mid-air hand gestures offers many advantages over traditional interaction modalities. In medicine, for example, it allows a practitioner to adjust display values, e.g. contrast or zoom, on a medical visualization interface without the need to re-sterilize the interface. However, when users are holding a small tool (such as a pen, surgical needle, or computer stylus) the need to constantly put the tool down in order to make hand gesture interactions is not ideal. This work presents a novel interface that automatically adjusts for gesturing with hands and hand-held tools to precisely control medical displays. The novelty of our interface is that it uses a single set of gestures designed to be equally effective for fingers and hand-held tools without using markers. This type of interface was previously not feasible with low-resolution depth sensors such as Kinect, but is now achieved by using the recently released Leap Motion controller. Our interface is validated through a user study on a group of people given the task of adjusting parameters on a medical image.

  16. MAGMA: analysis of two-channel microarrays made easy.

    PubMed

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.

  17. Where's My Data - WMD

    NASA Technical Reports Server (NTRS)

    Quach, William L.; Sesplaukis, Tadas; Owen-Mankovich, Kyran J.; Nakamura, Lori L.

    2012-01-01

    WMD provides a centralized interface to access data stored in the Mission Data Processing and Control System (MPCS) GDS (Ground Data Systems) databases during MSL (Mars Science Laboratory) Testbeds and ATLO (Assembly, Test, and Launch Operations) test sessions. The MSL project organizes its data based on venue (Testbed, ATLO, Ops), with each venue's data stored on a separate database, making it cumbersome for users to access data across the various venues. WMD allows sessions to be retrieved through a Web-based search using several criteria: host name, session start date, or session ID number. Sessions matching the search criteria will be displayed and users can then select a session to obtain and analyze the associated data. The uniqueness of this software comes from its collection of data retrieval and analysis features provided through a single interface. This allows users to obtain their data and perform the necessary analysis without having to worry about where and how to get the data, which may be stored in various locations. Additionally, this software is a Web application that only requires a standard browser without additional plug-ins, providing a cross-platform, lightweight solution for users to retrieve and analyze their data. This software solves the problem of efficiently and easily finding and retrieving data from thousands of MSL Testbed and ATLO sessions. WMD allows the user to retrieve their session in as little as one mouse click, and then to quickly retrieve additional data associated with the session.

  18. MrGrid: A Portable Grid Based Molecular Replacement Pipeline

    PubMed Central

    Reboul, Cyril F.; Androulakis, Steve G.; Phan, Jennifer M. N.; Whisstock, James C.; Goscinski, Wojtek J.; Abramson, David; Buckle, Ashley M.

    2010-01-01

    Background The crystallographic determination of protein structures can be computationally demanding and for difficult cases can benefit from user-friendly interfaces to high-performance computing resources. Molecular replacement (MR) is a popular protein crystallographic technique that exploits the structural similarity between proteins that share some sequence similarity. But the need to trial permutations of search models, space group symmetries and other parameters makes MR time- and labour-intensive. However, MR calculations are embarrassingly parallel and thus ideally suited to distributed computing. In order to address this problem we have developed MrGrid, web-based software that allows multiple MR calculations to be executed across a grid of networked computers, allowing high-throughput MR. Methodology/Principal Findings MrGrid is a portable web based application written in Java/JSP and Ruby, and taking advantage of Apple Xgrid technology. Designed to interface with a user defined Xgrid resource the package manages the distribution of multiple MR runs to the available nodes on the Xgrid. We evaluated MrGrid using 10 different protein test cases on a network of 13 computers, and achieved an average speed up factor of 5.69. Conclusions MrGrid enables the user to retrieve and manage the results of tens to hundreds of MR calculations quickly and via a single web interface, as well as broadening the range of strategies that can be attempted. This high-throughput approach allows parameter sweeps to be performed in parallel, improving the chances of MR success. PMID:20386612

  19. CEBS: a comprehensive annotated database of toxicological data

    PubMed Central

    Lea, Isabel A.; Gong, Hui; Paleja, Anand; Rashid, Asif; Fostel, Jennifer

    2017-01-01

    The Chemical Effects in Biological Systems database (CEBS) is a comprehensive and unique toxicology resource that compiles individual and summary animal data from the National Toxicology Program (NTP) testing program and other depositors into a single electronic repository. CEBS has undergone significant updates in recent years and currently contains over 11 000 test articles (exposure agents) and over 8000 studies including all available NTP carcinogenicity, short-term toxicity and genetic toxicity studies. Study data provided to CEBS are manually curated, accessioned and subject to quality assurance review prior to release to ensure high quality. The CEBS database has two main components: data collection and data delivery. To accommodate the breadth of data produced by NTP, the CEBS data collection component is an integrated relational design that allows the flexibility to capture any type of electronic data (to date). The data delivery component of the database comprises a series of dedicated user interface tables containing pre-processed data that support each component of the user interface. The user interface has been updated to include a series of nine Guided Search tools that allow access to NTP summary and conclusion data and larger non-NTP datasets. The CEBS database can be accessed online at http://www.niehs.nih.gov/research/resources/databases/cebs/. PMID:27899660

  20. The Simple Concurrent Online Processing System (SCOPS) - An open-source interface for remotely sensed data processing

    NASA Astrophysics Data System (ADS)

    Warren, M. A.; Goult, S.; Clewley, D.

    2018-06-01

    Advances in technology allow remotely sensed data to be acquired with increasingly higher spatial and spectral resolutions. These data may then be used to influence government decision making and solve a number of research and application driven questions. However, such large volumes of data can be difficult to handle on a single personal computer or on older machines with slower components. Often the software required to process data is varied and can be highly technical and too advanced for the novice user to fully understand. This paper describes an open-source tool, the Simple Concurrent Online Processing System (SCOPS), which forms part of an airborne hyperspectral data processing chain that allows users accessing the tool over a web interface to submit jobs and process data remotely. It is demonstrated using Natural Environment Research Council Airborne Research Facility (NERC-ARF) instruments together with other free- and open-source tools to take radiometrically corrected data from sensor geometry into geocorrected form and to generate simple or complex band ratio products. The final processed data products are acquired via an HTTP download. SCOPS can cut data processing times and introduce complex processing software to novice users by distributing jobs across a network using a simple to use web interface.

  1. Introducing ADS Labs

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Henneken, E.; Grant, C. S.; Kurtz, M. J.; Di Milia, G.; Luker, J.; Thompson, D. M.; Bohlen, E.; Murray, S. S.

    2011-05-01

    ADS Labs is a platform that ADS is introducing in order to test and receive feedback from the community on new technologies and prototype services. Currently, ADS Labs features a new interface for abstract searches, faceted filtering of results, visualization of co-authorship networks, article-level recommendations, and a full-text search service. The streamlined abstract search interface provides a simple, one-box search with options for ranking results based on a paper relevancy, freshness, number of citations, and downloads. In addition, it provides advanced rankings based on collaborative filtering techniques. The faceted filtering interface allows users to narrow search results based on a particular property or set of properties ("facets"), allowing users to manage large lists and explore the relationship between them. For any set or sub-set of records, the co-authorship network can be visualized in an interactive way, offering a view of the distribution of contributors and their inter-relationships. This provides an immediate way to detect groups and collaborations involved in a particular research field. For a majority of papers in Astronomy, our new interface will provide a list of related articles of potential interest. The recommendations are based on a number of factors, including text similarity, citations, and co-readership information. The new full-text search interface allows users to find all instances of particular words or phrases in the body of the articles in our full-text archive. This includes all of the scanned literature in ADS as well as a select portion of the current astronomical literature, including ApJ, ApJS, AJ, MNRAS, PASP, A&A, and soon additional content from Springer journals. Fulltext search results include a list of the matching papers as well as a list of "snippets" of text highlighting the context in which the search terms were found. ADS Labs is available at http://adslabs.org

  2. A rapid prototyping/artificial intelligence approach to space station-era information management and access

    NASA Technical Reports Server (NTRS)

    Carnahan, Richard S., Jr.; Corey, Stephen M.; Snow, John B.

    1989-01-01

    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced.

  3. Do users desire symmetrical lumbar supports in task seating?

    PubMed

    Fredericks, Tycho K; Butt, Steven E; Kumar, Anil R; Bellingar, Teresa

    2016-07-01

    This research was designed to objectively investigate the desired low back (lumbar) support in a task chair; specifically by allowing a user to self-select the magnitude and location of support. An experimental chair built specifically for this study allowed the users to remotely adjust 35 diodes to achieve their desired level of support. Pressure mapping was used to measure the interface pressure at the user-seat back interface. It was determined that 73.8% of the 201 participants in this study, self-selected asymmetrical lower back support that was at least 20% greater on one side vs. the other. Additionally, 16.9% of the participants self-selected support on one side which was at least twice that of the other side. Contrary to popular practice, participants were found to prefer asymmetric support in the lower back region. It is anticipated that the culmination of this research will aid chair manufacturers in designing adaptable back rests. Practitioner Summary: Most current lumbar supports are designed to move vertically and to symmetrically increase or decrease in firmness as per a user's adjustment. This investigation highlights that participants tended to select asymmetrical lumbar support, and as such, designers should consider providing lumbar supports that provide the desired support at appropriate locations.

  4. Icon and user interface design for emergency medical information systems: a case study.

    PubMed

    Salman, Y Batu; Cheng, Hong-In; Patterson, Patrick E

    2012-01-01

    A usable medical information system should allow for reliable and accurate interaction between users and the system in emergencies. A participatory design approach was used to develop a medical information system in two Turkish hospitals. The process consisted of task and user analysis, an icon design survey, initial icon design, final icon design and evaluation, and installation of the iconic medical information system with the icons. We observed work sites to note working processes and tasks related to the information system and interviewed medical personnel. Emergency personnel then participated in the design process to develop a usable graphical user interface, by drawing icon sketches for 23 selected tasks. Similar sketches were requested for specific tasks such as family medical history, contact information, translation, addiction, required inspections, requests and applications, and nurse observations. The sketches were analyzed and redesigned into computer icons by professional designers and the research team. A second group of physicians and nurses then tested the understandability of the icons. The user interface layout was examined and evaluated by system users, followed by the system's installation. Medical personnel reported the participatory design process was interesting and believed the resulting designs would be more familiar and friendlier. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. The Planck Legacy Archive

    NASA Astrophysics Data System (ADS)

    Dupac, X.; Arviset, C.; Fernandez Barreiro, M.; Lopez-Caniego, M.; Tauber, J.

    2015-12-01

    The Planck Collaboration has released in 2015 their second major dataset through the Planck Legacy Archive (PLA). It includes cosmological, Extragalactic and Galactic science data in temperature (intensity) and polarization. Full-sky maps are provided with unprecedented angular resolution and sensitivity, together with a large number of ancillary maps, catalogues (generic, SZ clusters and Galactic cold clumps), time-ordered data and other information. The extensive cosmological likelihood package allows cosmologists to fully explore the plausible parameters of the Universe. A new web-based PLA user interface is made public since Dec. 2014, allowing easier and faster access to all Planck data, and replacing the previous Java-based software. Numerous additional improvements to the PLA are also being developed through the so-called PLA Added-Value Interface, making use of an external contract with the Planetek Hellas and Expert Analytics software companies. This will allow users to process time-ordered data into sky maps, separate astrophysical components in existing maps, simulate the microwave and infrared sky through the Planck Sky Model, and use a number of other functionalities.

  6. Design strategies and functionality of the Visual Interface for Virtual Interaction Development (VIVID) tool

    NASA Technical Reports Server (NTRS)

    Nguyen, Lac; Kenney, Patrick J.

    1993-01-01

    Development of interactive virtual environments (VE) has typically consisted of three primary activities: model (object) development, model relationship tree development, and environment behavior definition and coding. The model and relationship tree development activities are accomplished with a variety of well-established graphic library (GL) based programs - most utilizing graphical user interfaces (GUI) with point-and-click interactions. Because of this GUI format, little programming expertise on the part of the developer is necessary to create the 3D graphical models or to establish interrelationships between the models. However, the third VE development activity, environment behavior definition and coding, has generally required the greatest amount of time and programmer expertise. Behaviors, characteristics, and interactions between objects and the user within a VE must be defined via command line C coding prior to rendering the environment scenes. In an effort to simplify this environment behavior definition phase for non-programmers, and to provide easy access to model and tree tools, a graphical interface and development tool has been created. The principal thrust of this research is to effect rapid development and prototyping of virtual environments. This presentation will discuss the 'Visual Interface for Virtual Interaction Development' (VIVID) tool; an X-Windows based system employing drop-down menus for user selection of program access, models, and trees, behavior editing, and code generation. Examples of these selection will be highlighted in this presentation, as will the currently available program interfaces. The functionality of this tool allows non-programming users access to all facets of VE development while providing experienced programmers with a collection of pre-coded behaviors. In conjunction with its existing, interfaces and predefined suite of behaviors, future development plans for VIVID will be described. These include incorporation of dual user virtual environment enhancements, tool expansion, and additional behaviors.

  7. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (HP9000 SERIES 700/800 VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  8. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (IBM RS/6000 VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  9. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SUN4 VERSION WITH MOTIF)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  10. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SILICON GRAPHICS VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  11. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (SUN4 VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  12. TAE+ 5.2 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.2 (DEC RISC ULTRIX VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. User interface interactive objects include data-driven graphical objects such as dials, thermometers, and strip charts as well as menubars, option menus, file selection items, message items, push buttons, and color loggers. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, C++, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides a means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System and the Open Software Foundation's Motif. The HP 9000 Series 700/800 version of TAE 5.2 requires Version 11 Release 5 of the X Window System. All other machine versions of TAE 5.2 require Version 11, Release 4 of the X Window System. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus was developed in 1989 and version 5.2 was released in 1993. TAE Plus 5.2 is available on media suitable for five different machine platforms: (1) IBM RS/6000 series workstations running AIX (.25 inch tape cartridge in UNIX tar format), (2) DEC RISC workstations running ULTRIX (TK50 cartridge in UNIX tar format), (3) HP9000 Series 700/800 computers running HP-UX 9.x and X11/R5 (HP 4mm DDS DAT tape cartridge in UNIX tar format), (4) Sun4 (SPARC) series computers running SunOS (.25 inch tape cartridge in UNIX tar format), and (5) SGI Indigo computers running IRIX (.25 inch IRIS tape cartridge in UNIX tar format). Please contact COSMIC to obtain detailed information about the supported operating system and OSF/Motif releases required for each of these machine versions. An optional Motif Object Code License is available for the Sun4 version of TAE Plus 5.2. Version 5.1 of TAE Plus remains available for DEC VAX computers running VMS, HP9000 Series 300/400 computers running HP-UX, and HP 9000 Series 700/800 computers running HP-UX 8.x and X11/R4. Please contact COSMIC for details on these versions of TAE Plus.

  13. Building "My First NMRviewer": A Project Incorporating Coding and Programming Tasks in the Undergraduate Chemistry Curricula

    ERIC Educational Resources Information Center

    Arrabal-Campos, Francisco M.; Cortés-Villena, Alejandro; Fernández, Ignacio

    2017-01-01

    This paper presents a programming project named NMRviewer that allows students to visualize transformed and processed 1 H NMR data in an accessible, interactive format while allowing instructors to incorporate programming content into the chemistry curricula. Using the MATLAB graphical user interface development environment (GUIDE), students can…

  14. A multilingual audiometer simulator software for training purposes.

    PubMed

    Kompis, Martin; Steffen, Pascal; Caversaccio, Marco; Brugger, Urs; Oesch, Ivo

    2012-04-01

    A set of algorithms, which allows a computer to determine the answers of simulated patients during pure tone and speech audiometry, is presented. Based on these algorithms, a computer program for training in audiometry was written and found to be useful for teaching purposes. To develop a flexible audiometer simulator software as a teaching and training tool for pure tone and speech audiometry, both with and without masking. First a set of algorithms, which allows a computer to determine the answers of a simulated, hearing-impaired patient, was developed. Then, the software was implemented. Extensive use was made of simple, editable text files to define all texts in the user interface and all patient definitions. The software 'audiometer simulator' is available for free download. It can be used to train pure tone audiometry (both with and without masking), speech audiometry, measurement of the uncomfortable level, and simple simulation tests. Due to the use of text files, the user can alter or add patient definitions and all texts and labels shown on the screen. So far, English, French, German, and Portuguese user interfaces are available and the user can choose between German or French speech audiometry.

  15. Novel Web-based Education Platforms for Information Communication utilizing Gamification, Virtual and Immersive Reality

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2015-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.

  16. Design of Soil Salinity Policies with Tinamit, a Flexible and Rapid Tool to Couple Stakeholder-Built System Dynamics Models with Physically-Based Models

    NASA Astrophysics Data System (ADS)

    Malard, J. J.; Baig, A. I.; Hassanzadeh, E.; Adamowski, J. F.; Tuy, H.; Melgar-Quiñonez, H.

    2016-12-01

    Model coupling is a crucial step to constructing many environmental models, as it allows for the integration of independently-built models representing different system sub-components to simulate the entire system. Model coupling has been of particular interest in combining socioeconomic System Dynamics (SD) models, whose visual interface facilitates their direct use by stakeholders, with more complex physically-based models of the environmental system. However, model coupling processes are often cumbersome and inflexible and require extensive programming knowledge, limiting their potential for continued use by stakeholders in policy design and analysis after the end of the project. Here, we present Tinamit, a flexible Python-based model-coupling software tool whose easy-to-use API and graphical user interface make the coupling of stakeholder-built SD models with physically-based models rapid, flexible and simple for users with limited to no coding knowledge. The flexibility of the system allows end users to modify the SD model as well as the linking variables between the two models themselves with no need for recoding. We use Tinamit to couple a stakeholder-built socioeconomic model of soil salinization in Pakistan with the physically-based soil salinity model SAHYSMOD. As climate extremes increase in the region, policies to slow or reverse soil salinity buildup are increasing in urgency and must take both socioeconomic and biophysical spheres into account. We use the Tinamit-coupled model to test the impact of integrated policy options (economic and regulatory incentives to farmers) on soil salinity in the region in the face of future climate change scenarios. Use of the Tinamit model allowed for rapid and flexible coupling of the two models, allowing the end user to continue making model structure and policy changes. In addition, the clear interface (in contrast to most model coupling code) makes the final coupled model easily accessible to stakeholders with limited technical background.

  17. User's Manual for the Object User Interface (OUI): An Environmental Resource Modeling Framework

    USGS Publications Warehouse

    Markstrom, Steven L.; Koczot, Kathryn M.

    2008-01-01

    The Object User Interface is a computer application that provides a framework for coupling environmental-resource models and for managing associated temporal and spatial data. The Object User Interface is designed to be easily extensible to incorporate models and data interfaces defined by the user. Additionally, the Object User Interface is highly configurable through the use of a user-modifiable, text-based control file that is written in the eXtensible Markup Language. The Object User Interface user's manual provides (1) installation instructions, (2) an overview of the graphical user interface, (3) a description of the software tools, (4) a project example, and (5) specifications for user configuration and extension.

  18. Cyrface: An interface from Cytoscape to R that provides a user interface to R packages.

    PubMed

    Gonçalves, Emanuel; Mirlach, Franz; Saez-Rodriguez, Julio

    2013-01-01

    There is an increasing number of software packages to analyse biological experimental data in the R environment. In particular, Bioconductor, a repository of curated R packages, is one of the most comprehensive resources for bioinformatics and biostatistics. The use of these packages is increasing, but it requires a basic understanding of the R language, as well as the syntax of the specific package used. The availability of user graphical interfaces for these packages would decrease the learning curve and broaden their application. Here, we present a Cytoscape app termed Cyrface that allows Cytoscape apps to connect to any function and package developed in R. Cyrface can be used to run R packages from within the Cytoscape environment making use of a graphical user interface. Moreover, it can link R packages with the capabilities of Cytoscape and its apps, in particular network visualization and analysis. Cyrface's utility has been demonstrated for two Bioconductor packages ( CellNOptR and DrugVsDisease), and here we further illustrate its usage by implementing a workflow of data analysis and visualization. Download links, installation instructions and user guides can be accessed from the Cyrface's homepage ( http://www.ebi.ac.uk/saezrodriguez/cyrface/) and from the Cytoscape app store ( http://apps.cytoscape.org/apps/cyrface).

  19. Using Eye Movement to Control a Computer: A Design for a Lightweight Electro-Oculogram Electrode Array and Computer Interface

    PubMed Central

    Iáñez, Eduardo; Azorin, Jose M.; Perez-Vidal, Carlos

    2013-01-01

    This paper describes a human-computer interface based on electro-oculography (EOG) that allows interaction with a computer using eye movement. The EOG registers the movement of the eye by measuring, through electrodes, the difference of potential between the cornea and the retina. A new pair of EOG glasses have been designed to improve the user's comfort and to remove the manual procedure of placing the EOG electrodes around the user's eye. The interface, which includes the EOG electrodes, uses a new processing algorithm that is able to detect the gaze direction and the blink of the eyes from the EOG signals. The system reliably enabled subjects to control the movement of a dot on a video screen. PMID:23843986

  20. SEM (Symmetry Equivalent Molecules): a web-based GUI to generate and visualize the macromolecules

    PubMed Central

    Hussain, A. S. Z.; Kumar, Ch. Kiran; Rajesh, C. K.; Sheik, S. S.; Sekar, K.

    2003-01-01

    SEM, Symmetry Equivalent Molecules, is a web-based graphical user interface to generate and visualize the symmetry equivalent molecules (proteins and nucleic acids). In addition, the program allows the users to save the three-dimensional atomic coordinates of the symmetry equivalent molecules in the local machine. The widely recognized graphics program RasMol has been deployed to visualize the reference (input atomic coordinates) and the symmetry equivalent molecules. This program is written using CGI/Perl scripts and has been interfaced with all the three-dimensional structures (solved using X-ray crystallography) available in the Protein Data Bank. The program, SEM, can be accessed over the World Wide Web interface at http://dicsoft2.physics.iisc.ernet.in/sem/ or http://144.16.71.11/sem/. PMID:12824326

  1. Classifying BCI signals from novice users with extreme learning machine

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bermúdez, Germán; Bueno-Crespo, Andrés; José Martinez-Albaladejo, F.

    2017-07-01

    Brain computer interface (BCI) allows to control external devices only with the electrical activity of the brain. In order to improve the system, several approaches have been proposed. However it is usual to test algorithms with standard BCI signals from experts users or from repositories available on Internet. In this work, extreme learning machine (ELM) has been tested with signals from 5 novel users to compare with standard classification algorithms. Experimental results show that ELM is a suitable method to classify electroencephalogram signals from novice users.

  2. TIGER: A graphically interactive grid system for turbomachinery applications

    NASA Technical Reports Server (NTRS)

    Shih, Ming-Hsin; Soni, Bharat K.

    1992-01-01

    Numerical grid generation algorithm associated with the flow field about turbomachinery geometries is presented. Graphical user interface is developed with FORMS Library to create an interactive, user-friendly working environment. This customized algorithm reduces the man-hours required to generate a grid associated with turbomachinery geometry, as compared to the use of general-purpose grid generation softwares. Bezier curves are utilized both interactively and automatically to accomplish grid line smoothness and orthogonality. Graphical User Interactions are provided in the algorithm, allowing the user to design and manipulate the grid lines with a mouse.

  3. User-level framework for performance monitoring of HPC applications

    NASA Astrophysics Data System (ADS)

    Hristova, R.; Goranov, G.

    2013-10-01

    HP-SEE is an infrastructure that links the existing HPC facilities in South East Europe in a common infrastructure. The analysis of the performance monitoring of the High-Performance Computing (HPC) applications in the infrastructure can be useful for the end user as diagnostic for the overall performance of his applications. The existing monitoring tools for HP-SEE provide to the end user only aggregated information for all applications. Usually, the user does not have permissions to select only the relevant information for him and for his applications. In this article we present a framework for performance monitoring of the HPC applications in the HP-SEE infrastructure. The framework provides standardized performance metrics, which every user can use in order to monitor his applications. Furthermore as a part of the framework a program interface is developed. The interface allows the user to publish metrics data from his application and to read and analyze gathered information. Publishing and reading through the framework is possible only with grid certificate valid for the infrastructure. Therefore the user is authorized to access only the data for his applications.

  4. Is There a Chance for a Standardised User Interface?

    ERIC Educational Resources Information Center

    Fletcher, Liz

    1993-01-01

    Issues concerning the implementation of standard user interfaces for CD-ROMs are discussed, including differing perceptions of the ideal interface, graphical user interfaces, user needs, and the standard protocols. It is suggested users should be able to select from a variety of user interfaces on each CD-ROM. (EA)

  5. User Driven Image Stacking for ODI Data and Beyond via a Highly Customizable Web Interface

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Gopu, A.; Young, M. D.; Kotulla, R.

    2015-09-01

    While some astronomical archives have begun serving standard calibrated data products, the process of producing stacked images remains a challenge left to the end-user. The benefits of astronomical image stacking are well established, and dither patterns are recommended for almost all observing targets. Some archives automatically produce stacks of limited scientific usefulness without any fine-grained user or operator configurability. In this paper, we present PPA Stack, a web based stacking framework within the ODI - Portal, Pipeline, and Archive system. PPA Stack offers a web user interface with built-in heuristics (based on pointing, filter, and other metadata information) to pre-sort images into a set of likely stacks while still allowing the user or operator complete control over the images and parameters for each of the stacks they wish to produce. The user interface, designed using AngularJS, provides multiple views of the input dataset and parameters, all of which are synchronized in real time. A backend consisting of a Python application optimized for ODI data, wrapped around the SWarp software, handles the execution of stacking workflow jobs on Indiana University's Big Red II supercomputer, and the subsequent ingestion of the combined images back into the PPA archive. PPA Stack is designed to enable seamless integration of other stacking applications in the future, so users can select the most appropriate option for their science.

  6. Towards a new modality-independent interface for a robotic wheelchair.

    PubMed

    Bastos-Filho, Teodiano Freire; Cheein, Fernando Auat; Müller, Sandra Mara Torres; Celeste, Wanderley Cardoso; de la Cruz, Celso; Cavalieri, Daniel Cruz; Sarcinelli-Filho, Mário; Amaral, Paulo Faria Santos; Perez, Elisa; Soria, Carlos Miguel; Carelli, Ricardo

    2014-05-01

    This work presents the development of a robotic wheelchair that can be commanded by users in a supervised way or by a fully automatic unsupervised navigation system. It provides flexibility to choose different modalities to command the wheelchair, in addition to be suitable for people with different levels of disabilities. Users can command the wheelchair based on their eye blinks, eye movements, head movements, by sip-and-puff and through brain signals. The wheelchair can also operate like an auto-guided vehicle, following metallic tapes, or in an autonomous way. The system is provided with an easy to use and flexible graphical user interface onboard a personal digital assistant, which is used to allow users to choose commands to be sent to the robotic wheelchair. Several experiments were carried out with people with disabilities, and the results validate the developed system as an assistive tool for people with distinct levels of disability.

  7. Software design for analysis of multichannel intracardial and body surface electrocardiograms.

    PubMed

    Potse, Mark; Linnenbank, André C; Grimbergen, Cornelis A

    2002-11-01

    Analysis of multichannel ECG recordings (body surface maps (BSMs) and intracardial maps) requires special software. We created a software package and a user interface on top of a commercial data analysis package (MATLAB) by a combination of high-level and low-level programming. Our software was created to satisfy the needs of a diverse group of researchers. It can handle a large variety of recording configurations. It allows for interactive usage through a fast and robust user interface, and batch processing for the analysis of large amounts of data. The package is user-extensible, includes routines for both common and experimental data processing tasks, and works on several computer platforms. The source code is made intelligible using software for structured documentation and is available to the users. The package is currently used by more than ten research groups analysing ECG data worldwide.

  8. Interactive multi-objective path planning through a palette-based user interface

    NASA Astrophysics Data System (ADS)

    Shaikh, Meher T.; Goodrich, Michael A.; Yi, Daqing; Hoehne, Joseph

    2016-05-01

    n a problem where a human uses supervisory control to manage robot path-planning, there are times when human does the path planning, and if satisfied commits those paths to be executed by the robot, and the robot executes that plan. In planning a path, the robot often uses an optimization algorithm that maximizes or minimizes an objective. When a human is assigned the task of path planning for robot, the human may care about multiple objectives. This work proposes a graphical user interface (GUI) designed for interactive robot path-planning when an operator may prefer one objective over others or care about how multiple objectives are traded off. The GUI represents multiple objectives using the metaphor of an artist's palette. A distinct color is used to represent each objective, and tradeoffs among objectives are balanced in a manner that an artist mixes colors to get the desired shade of color. Thus, human intent is analogous to the artist's shade of color. We call the GUI an "Adverb Palette" where the word "Adverb" represents a specific type of objective for the path, such as the adverbs "quickly" and "safely" in the commands: "travel the path quickly", "make the journey safely". The novel interactive interface provides the user an opportunity to evaluate various alternatives (that tradeoff between different objectives) by allowing her to visualize the instantaneous outcomes that result from her actions on the interface. In addition to assisting analysis of various solutions given by an optimization algorithm, the palette has additional feature of allowing the user to define and visualize her own paths, by means of waypoints (guiding locations) thereby spanning variety for planning. The goal of the Adverb Palette is thus to provide a way for the user and robot to find an acceptable solution even though they use very different representations of the problem. Subjective evaluations suggest that even non-experts in robotics can carry out the planning tasks with a great deal of flexibility using the adverb palette.

  9. Development of a User Interface for a Regression Analysis Software Tool

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    An easy-to -use user interface was implemented in a highly automated regression analysis tool. The user interface was developed from the start to run on computers that use the Windows, Macintosh, Linux, or UNIX operating system. Many user interface features were specifically designed such that a novice or inexperienced user can apply the regression analysis tool with confidence. Therefore, the user interface s design minimizes interactive input from the user. In addition, reasonable default combinations are assigned to those analysis settings that influence the outcome of the regression analysis. These default combinations will lead to a successful regression analysis result for most experimental data sets. The user interface comes in two versions. The text user interface version is used for the ongoing development of the regression analysis tool. The official release of the regression analysis tool, on the other hand, has a graphical user interface that is more efficient to use. This graphical user interface displays all input file names, output file names, and analysis settings for a specific software application mode on a single screen which makes it easier to generate reliable analysis results and to perform input parameter studies. An object-oriented approach was used for the development of the graphical user interface. This choice keeps future software maintenance costs to a reasonable limit. Examples of both the text user interface and graphical user interface are discussed in order to illustrate the user interface s overall design approach.

  10. InfoTrac TFD: a microcomputer implementation of the Transcription Factor Database TFD with a graphical user interface.

    PubMed

    Hoeck, W G

    1994-06-01

    InfoTrac TFD provides a graphical user interface (GUI) for viewing and manipulating datasets in the Transcription Factor Database, TFD. The interface was developed in Filemaker Pro 2.0 by Claris Corporation, which provides cross platform compatibility between Apple Macintosh computers running System 7.0 and higher and IBM-compatibles running Microsoft Windows 3.0 and higher. TFD ASCII-tables were formatted to fit data into several custom data tables using Add/Strip, a shareware utility and Filemaker Pro's lookup feature. The lookup feature was also put to use to allow TFD data tables to become linked within a flat-file database management system. The 'Navigator', consisting of several pop-up menus listing transcription factor abbreviations, facilitates the search for transcription factor entries. Data are presented onscreen in several layouts, that can be further customized by the user. InfoTrac TFD makes the transcription factor database accessible to a much wider community of scientists by making it available on two popular microcomputer platforms.

  11. CamBAfx: Workflow Design, Implementation and Application for Neuroimaging

    PubMed Central

    Ooi, Cinly; Bullmore, Edward T.; Wink, Alle-Meije; Sendur, Levent; Barnes, Anna; Achard, Sophie; Aspden, John; Abbott, Sanja; Yue, Shigang; Kitzbichler, Manfred; Meunier, David; Maxim, Voichita; Salvador, Raymond; Henty, Julian; Tait, Roger; Subramaniam, Naresh; Suckling, John

    2009-01-01

    CamBAfx is a workflow application designed for both researchers who use workflows to process data (consumers) and those who design them (designers). It provides a front-end (user interface) optimized for data processing designed in a way familiar to consumers. The back-end uses a pipeline model to represent workflows since this is a common and useful metaphor used by designers and is easy to manipulate compared to other representations like programming scripts. As an Eclipse Rich Client Platform application, CamBAfx's pipelines and functions can be bundled with the software or downloaded post-installation. The user interface contains all the workflow facilities expected by consumers. Using the Eclipse Extension Mechanism designers are encouraged to customize CamBAfx for their own pipelines. CamBAfx wraps a workflow facility around neuroinformatics software without modification. CamBAfx's design, licensing and Eclipse Branding Mechanism allow it to be used as the user interface for other software, facilitating exchange of innovative computational tools between originating labs. PMID:19826470

  12. A pen-based system to support pre-operative data collection within an anaesthesia department.

    PubMed Central

    Sanz, M. F.; Gómez, E. J.; Trueba, I.; Cano, P.; Arredondo, M. T.; del Pozo, F.

    1993-01-01

    This paper describes the design and implementation of a pen-based computer system for remote preoperative data collection. The system is envisaged to be used by anaesthesia staff at different hospital scenarios where pre-operative data are generated. Pen-based technology offers important advantages in terms of portability and human-computer interaction, as direct manipulation interfaces by direct pointing, and "notebook user interfaces metaphors". Being the human factors analysis and user interface design a vital stage to achieve the appropriate user acceptability, a methodology that integrates the "usability" evaluation from the earlier development stages was used. Additionally, the selection of a pen-based computer system as a portable device to be used by health care personnel allows to evaluate the appropriateness of this new technology for remote data collection within the hospital environment. The work presented is currently being realised under the Research Project "TANIT: Telematics in Anaesthesia and Intensive Care", within the "A.I.M.--Telematics in Health CARE" European Research Program. PMID:8130488

  13. Comparing Text-based and Graphic User Interfaces for Novice and Expert Users

    PubMed Central

    Chen, Jung-Wei; Zhang, Jiajie

    2007-01-01

    Graphic User Interface (GUI) is commonly considered to be superior to Text-based User Interface (TUI). This study compares GUI and TUI in an electronic dental record system. Several usability analysis techniques compared the relative effectiveness of a GUI and a TUI. Expert users and novice users were evaluated in time required and steps needed to complete the task. A within-subject design was used to evaluate if the experience with either interface will affect task performance. The results show that the GUI interface was not better than the TUI for expert users. GUI interface was better for novice users. For novice users there was a learning transfer effect from TUI to GUI. This means a user interface is user-friendly or not depending on the mapping between the user interface and tasks. GUI by itself may or may not be better than TUI. PMID:18693811

  14. Comparing Text-based and Graphic User Interfaces for novice and expert users.

    PubMed

    Chen, Jung-Wei; Zhang, Jiajie

    2007-10-11

    Graphic User Interface (GUI) is commonly considered to be superior to Text-based User Interface (TUI). This study compares GUI and TUI in an electronic dental record system. Several usability analysis techniques compared the relative effectiveness of a GUI and a TUI. Expert users and novice users were evaluated in time required and steps needed to complete the task. A within-subject design was used to evaluate if the experience with either interface will affect task performance. The results show that the GUI interface was not better than the TUI for expert users. GUI interface was better for novice users. For novice users there was a learning transfer effect from TUI to GUI. This means a user interface is user-friendly or not depending on the mapping between the user interface and tasks. GUI by itself may or may not be better than TUI.

  15. A data and information system for processing, archival, and distribution of data for global change research

    NASA Technical Reports Server (NTRS)

    Graves, Sara J.

    1994-01-01

    Work on this project was focused on information management techniques for Marshall Space Flight Center's EOSDIS Version 0 Distributed Active Archive Center (DAAC). The centerpiece of this effort has been participation in EOSDIS catalog interoperability research, the result of which is a distributed Information Management System (IMS) allowing the user to query the inventories of all the DAAC's from a single user interface. UAH has provided the MSFC DAAC database server for the distributed IMS, and has contributed to definition and development of the browse image display capabilities in the system's user interface. Another important area of research has been in generating value-based metadata through data mining. In addition, information management applications for local inventory and archive management, and for tracking data orders were provided.

  16. LinkWinds: An Approach to Visual Data Analysis

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.

    1992-01-01

    The Linked Windows Interactive Data System (LinkWinds) is a prototype visual data exploration and analysis system resulting from a NASA/JPL program of research into graphical methods for rapidly accessing, displaying and analyzing large multivariate multidisciplinary datasets. It is an integrated multi-application execution environment allowing the dynamic interconnection of multiple windows containing visual displays and/or controls through a data-linking paradigm. This paradigm, which results in a system much like a graphical spreadsheet, is not only a powerful method for organizing large amounts of data for analysis, but provides a highly intuitive, easy to learn user interface on top of the traditional graphical user interface.

  17. Entrez Neuron RDFa: a pragmatic semantic web application for data integration in neuroscience research.

    PubMed

    Samwald, Matthias; Lim, Ernest; Masiar, Peter; Marenco, Luis; Chen, Huajun; Morse, Thomas; Mutalik, Pradeep; Shepherd, Gordon; Miller, Perry; Cheung, Kei-Hoi

    2009-01-01

    The amount of biomedical data available in Semantic Web formats has been rapidly growing in recent years. While these formats are machine-friendly, user-friendly web interfaces allowing easy querying of these data are typically lacking. We present "Entrez Neuron", a pilot neuron-centric interface that allows for keyword-based queries against a coherent repository of OWL ontologies. These ontologies describe neuronal structures, physiology, mathematical models and microscopy images. The returned query results are organized hierarchically according to brain architecture. Where possible, the application makes use of entities from the Open Biomedical Ontologies (OBO) and the 'HCLS knowledgebase' developed by the W3C Interest Group for Health Care and Life Science. It makes use of the emerging RDFa standard to embed ontology fragments and semantic annotations within its HTML-based user interface. The application and underlying ontologies demonstrate how Semantic Web technologies can be used for information integration within a curated information repository and between curated information repositories. It also demonstrates how information integration can be accomplished on the client side, through simple copying and pasting of portions of documents that contain RDFa markup.

  18. Concurrent Image Processing Executive (CIPE)

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Cooper, Gregory T.; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.

    1988-01-01

    The design and implementation of a Concurrent Image Processing Executive (CIPE), which is intended to become the support system software for a prototype high performance science analysis workstation are discussed. The target machine for this software is a JPL/Caltech Mark IIIfp Hypercube hosted by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the design will accommodate other concurrent machines of similar architecture, i.e., local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE system provides both a multimode user interface and an applications programmer interface, and has been designed around four loosely coupled modules; (1) user interface, (2) host-resident executive, (3) hypercube-resident executive, and (4) application functions. The loose coupling between modules allows modification of a particular module without significantly affecting the other modules in the system. In order to enhance hypercube memory utilization and to allow expansion of image processing capabilities, a specialized program management method, incremental loading, was devised. To minimize data transfer between host and hypercube a data management method which distributes, redistributes, and tracks data set information was implemented.

  19. Custom controls

    NASA Astrophysics Data System (ADS)

    Butell, Bart

    1996-02-01

    Microsoft's Visual Basic (VB) and Borland's Delphi provide an extremely robust programming environment for delivering multimedia solutions for interactive kiosks, games and titles. Their object oriented use of standard and custom controls enable a user to build extremely powerful applications. A multipurpose, database enabled programming environment that can provide an event driven interface functions as a multimedia kernel. This kernel can provide a variety of authoring solutions (e.g. a timeline based model similar to Macromedia Director or a node authoring model similar to Icon Author). At the heart of the kernel is a set of low level multimedia components providing object oriented interfaces for graphics, audio, video and imaging. Data preparation tools (e.g., layout, palette and Sprite Editors) could be built to manage the media database. The flexible interface for VB allows the construction of an infinite number of user models. The proliferation of these models within a popular, easy to use environment will allow the vast developer segment of 'producer' types to bring their ideas to the market. This is the key to building exciting, content rich multimedia solutions. Microsoft's VB and Borland's Delphi environments combined with multimedia components enable these possibilities.

  20. Visual communication interface for severe physically disabled patients

    NASA Astrophysics Data System (ADS)

    Savino, M. J.; Fernández, E. A.

    2007-11-01

    During the last years several interfaces have been developed to allow communication to those patients suffering serious physical disabilities. In this work, a computer based communication interface is presented. It was designed to allow communication to those patients that cannot use neither their hands nor their voice but they can do it through their eyes. The system monitors the eyes movements by means of a webcam. Then, by means of an Artificial Neural Network, the system allows the identification of specified position on the screen through the identification of the eyes positions. This way the user can control a virtual keyboard on a screen that allows him to write and browse the system and enables him to send e-mails, SMS, activate video/music programs and control environmental devices. A patient was simulated to evaluate the versatility of the system. Its operation was satisfactory and it allowed the evaluation of the system potential. The development of this system requires low cost elements that are easily found in the market.

  1. Electricity Data Browser

    EIA Publications

    The Electricity Data Browser shows generation, consumption, fossil fuel receipts, stockpiles, retail sales, and electricity prices. The data appear on an interactive web page and are updated each month. The Electricity Data Browser includes all the datasets collected and published in EIA's Electric Power Monthly and allows users to perform dynamic charting of data sets as well as map the data by state. The data browser includes a series of reports that appear in the Electric Power Monthly and allows readers to drill down to plant level statistics, where available. All images and datasets are available for download. Users can also link to the data series in EIA's Application Programming Interface (API). An API makes our data machine-readable and more accessible to users.

  2. The Body-Machine Interface: A new perspective on an old theme

    PubMed Central

    Casadio, Maura; Ranganathan, Rajiv; Mussa-Ivaldi, Ferdinando A.

    2012-01-01

    Body-machine interfaces establish a way to interact with a variety of devices, allowing their users to extend the limits of their performance. Recent advances in this field, ranging from computer-interfaces to bionic limbs, have had important consequences for people with movement disorders. In this article, we provide an overview of the basic concepts underlying the body-machine interface with special emphasis on their use for rehabilitation and for operating assistive devices. We outline the steps involved in building such an interface and we highlight the critical role of body-machine interfaces in addressing theoretical issues in motor control as well as their utility in movement rehabilitation. PMID:23237465

  3. Integration Of Space Weather Into Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Reeves, G.

    2010-09-01

    Rapid assessment of space weather effects on satellites is a critical step in anomaly resolution and satellite threat assessment. That step, however, is often hindered by a number of factors including timely collection and delivery of space weather data and the inherent complexity of space weather information. As part of a larger, integrated space situational awareness program, Los Alamos National Laboratory has developed prototype operational space weather tools that run in real time and present operators with customized, user-specific information. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the penetrating radiation environment from natural or nuclear-produced radiation belts. The penetrating radiation environment is highly dynamic and highly orbitdependent. Operators often must rely only on line plots of 2 MeV electron flux from the NOAA geosynchronous GOES satellites which is then assumed to be representative of the environment at the satellite of interest. DREAM uses data assimilation to produce a global, real-time, energy dependent specification. User tools are built around a distributed service oriented architecture (SOA) which allows operators to select any satellite from the space catalog and examine the environment for that specific satellite and time of interest. Depending on the application operators may need to examine instantaneous dose rates and/or dose accumulated over various lengths of time. Further, different energy thresholds can be selected depending on the shielding on the satellite or instrument of interest. In order to rapidly assess the probability that space weather effects, the current conditions can be compared against the historical distribution of radiation levels for that orbit. In the simplest operation a user would select a satellite and time of interest and immediately see if the environmental conditions were typical, elevated, or extreme based on how often those conditions occur in that orbit. This allows users to rapidly rule in or out environmental causes of anomalies. The same user interface can also allow users to drill down for more detailed quantitative information. DREAM can be run either from a distributed web-based user interface or as a stand-alone application for secure operations. We will discuss the underlying structure of the DREAM model and demonstrate the user interface that we have developed. We will also discuss future development plans for DREAM and how the same paradigm can be applied to integrating other space environment information into operational SSA systems.

  4. DockoMatic 2.0: high throughput inverse virtual screening and homology modeling.

    PubMed

    Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T; McDougal, Owen M; Andersen, Timothy L

    2013-08-26

    DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly graphical user interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to (1) conduct high throughput inverse virtual screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELER programs and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education.

  5. Bayesian Network Webserver: a comprehensive tool for biological network modeling.

    PubMed

    Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan

    2013-11-01

    The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.

  6. A user-friendly mathematical modelling web interface to assist local decision making in the fight against drug-resistant tuberculosis.

    PubMed

    Ragonnet, Romain; Trauer, James M; Denholm, Justin T; Marais, Ben J; McBryde, Emma S

    2017-05-30

    Multidrug-resistant and rifampicin-resistant tuberculosis (MDR/RR-TB) represent an important challenge for global tuberculosis (TB) control. The high rates of MDR/RR-TB observed among re-treatment cases can arise from diverse pathways: de novo amplification during initial treatment, inappropriate treatment of undiagnosed MDR/RR-TB, relapse despite appropriate treatment, or reinfection with MDR/RR-TB. Mathematical modelling allows quantification of the contribution made by these pathways in different settings. This information provides valuable insights for TB policy-makers, allowing better contextualised solutions. However, mathematical modelling outputs need to consider local data and be easily accessible to decision makers in order to improve their usefulness. We present a user-friendly web-based modelling interface, which can be used by people without technical knowledge. Users can input their own parameter values and produce estimates for their specific setting. This innovative tool provides easy access to mathematical modelling outputs that are highly relevant to national TB control programs. In future, the same approach could be applied to a variety of modelling applications, enhancing local decision making.

  7. Acquisition of ICU data: concepts and demands.

    PubMed

    Imhoff, M

    1992-12-01

    As the issue of data overload is a problem in critical care today, it is of utmost importance to improve acquisition, storage, integration, and presentation of medical data, which appears only feasible with the help of bedside computers. The data originates from four major sources: (1) the bedside medical devices, (2) the local area network (LAN) of the ICU, (3) the hospital information system (HIS) and (4) manual input. All sources differ markedly in quality and quantity of data and in the demands of the interfaces between source of data and patient database. The demands for data acquisition from bedside medical devices, ICU-LAN and HIS concentrate on technical problems, such as computational power, storage capacity, real-time processing, interfacing with different devices and networks and the unmistakable assignment of data to the individual patient. The main problem of manual data acquisition is the definition and configuration of the user interface that must allow the inexperienced user to interact with the computer intuitively. Emphasis must be put on the construction of a pleasant, logical and easy-to-handle graphical user interface (GUI). Short response times will require high graphical processing capacity. Moreover, high computational resources are necessary in the future for additional interfacing devices such as speech recognition and 3D-GUI. Therefore, in an ICU environment the demands for computational power are enormous. These problems are complicated by the urgent need for friendly and easy-to-handle user interfaces. Both facts place ICU bedside computing at the vanguard of present and future workstation development leaving no room for solutions based on traditional concepts of personal computers.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Discriminating Tissue Stiffness with a Haptic Catheter: Feeling the Inside of the Beating Heart

    PubMed Central

    Kesner, Samuel B.; Howe, Robert D.

    2011-01-01

    Catheter devices allow physicians to access the inside of the human body easily and painlessly through natural orifices and vessels. Although catheters allow for the delivery of fluids and drugs, the deployment of devices, and the acquisition of the measurements, they do not allow clinicians to assess the physical properties of tissue inside the body due to the tissue motion and transmission limitations of the catheter devices, including compliance, friction, and backlash. The goal of this research is to increase the tactile information available to physicians during catheter procedures by providing haptic feedback during palpation procedures. To accomplish this goal, we have developed the first motion compensated actuated catheter system that enables haptic perception of fast moving tissue structures. The actuated catheter is instrumented with a distal tip force sensor and a force feedback interface that allows users to adjust the position of the catheter while experiencing the forces on the catheter tip. The efficacy of this device and interface is evaluated through a psychophyisical study comparing how accurately users can differentiate various materials attached to a cardiac motion simulator using the haptic device and a conventional manual catheter. The results demonstrate that haptics improves a user's ability to differentiate material properties and decreases the total number of errors by 50% over the manual catheter system. PMID:25285321

  9. Human Systems Integration Design Environment (HSIDE)

    DTIC Science & Technology

    2012-04-09

    quality of the resulting HSI products. 15. SUBJECT TERMS HSI , Manning Estimation and Validation , Risk Assessment, I POE, PLM, BPMN , Workflow...business process model in Business Process Modeling Notation ( BPMN ) or the actual workflow template associated with the specific functional area, again...as filtered by the user settings in the high level interface. Figure 3 shows the initial screen which allows the user to select either the BPMN or

  10. 77 FR 61039 - Self-Regulatory Organizations; NASDAQ OMX PHLX LLC; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... adopt the new QView service. QView is a web-based, front-end application, which provides a subscribing... orders and executions provided in the QView dashboard interface. The dashboard also allows a QView... trading activity.\\5\\ \\4\\ TradeInfo PSX is a web-based tool that, among other things, allows users access...

  11. 77 FR 61041 - Self-Regulatory Organizations; NASDAQ OMX BX, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    .... Purpose The Exchange is proposing to adopt the new QView service. QView is a web-based, front-end... dashboard interface. The dashboard also allows a QView subscriber to track his/her executions and open...-based tool that, among other things, allows users access to all of the BX order and execution...

  12. A process for prototyping onboard payload displays for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1992-01-01

    Significant advances have been made in the area of Human-Computer Interface design. However, there is no well-defined process for going from user interface requirements to user interface design. Developing and designing a clear and consistent user interface for medium to large scale systems is a very challenging and complex task. The task becomes increasingly difficult when there is very little guidance and procedures on how the development process should flow from one stage to the next. Without a specific sequence of development steps each design becomes difficult to repeat, to evaluate, to improve, and to articulate to others. This research contributes a process which identifies the phases of development and products produced as a result of each phase for a rapid prototyping process to be used to develop requirements for the onboard payload displays for Space Station Freedom. The functional components of a dynamic prototyping environment in which this process can be carried out is also discussed. Some of the central questions which are answered here include: How does one go from specifications to an actual prototype? How is a prototype evaluated? How is usability defined and thus measured? How do we use the information from evaluation in redesign of an interface? and Are there techniques which allow for convergence on a design?

  13. Bed occupancy monitoring: data processing and clinician user interface design.

    PubMed

    Pouliot, Melanie; Joshi, Vilas; Goubran, Rafik; Knoefel, Frank

    2012-01-01

    Unobtrusive and continuous monitoring of patients, especially at their place of residence, is becoming a significant part of the healthcare model. A variety of sensors are being used to monitor different patient conditions. Bed occupancy monitoring provides clinicians a quantitative measure of bed entry/exit patterns and may provide information relating to sleep quality. This paper presents a bed occupancy monitoring system using a bed pressure mat sensor. A clinical trial was performed involving 8 patients to collect bed occupancy data. The trial period for each patient ranged from 5-10 weeks. This data was analyzed using a participatory design methodology incorporating clinician feedback to obtain bed occupancy parameters. The parameters extracted include the number of bed exits per night, the bed exit weekly average (including minimum and maximum), the time of day of a particular exit, and the amount of uninterrupted bed occupancy per night. The design of a clinical user interface plays a significant role in the acceptance of such patient monitoring systems by clinicians. The clinician user interface proposed in this paper was designed to be intuitive, easy to navigate and not cause information overload. An iterative design methodology was used for the interface design. The interface design is extendible to incorporate data from multiple sensors. This allows the interface to be part of a comprehensive remote patient monitoring system.

  14. Concurrent Image Processing Executive (CIPE). Volume 1: Design overview

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.

    1990-01-01

    The design and implementation of a Concurrent Image Processing Executive (CIPE), which is intended to become the support system software for a prototype high performance science analysis workstation are described. The target machine for this software is a JPL/Caltech Mark 3fp Hypercube hosted by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the design will accommodate other concurrent machines of similar architecture, i.e., local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE system provides both a multimode user interface and an applications programmer interface, and has been designed around four loosely coupled modules: user interface, host-resident executive, hypercube-resident executive, and application functions. The loose coupling between modules allows modification of a particular module without significantly affecting the other modules in the system. In order to enhance hypercube memory utilization and to allow expansion of image processing capabilities, a specialized program management method, incremental loading, was devised. To minimize data transfer between host and hypercube, a data management method which distributes, redistributes, and tracks data set information was implemented. The data management also allows data sharing among application programs. The CIPE software architecture provides a flexible environment for scientific analysis of complex remote sensing image data, such as planetary data and imaging spectrometry, utilizing state-of-the-art concurrent computation capabilities.

  15. An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology.

    PubMed

    Deodhar, Suruchi; Bisset, Keith R; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V

    2014-07-01

    We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity.

  16. An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology

    PubMed Central

    Deodhar, Suruchi; Bisset, Keith R.; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V.

    2014-01-01

    We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity. PMID:25530914

  17. WADeG Cell Phone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2009-09-01

    The on cell phone software captures the images from the CMOS camera periodically, stores the pictures, and periodically transmits those images over the cellular network to the server. The cell phone software consists of several modules: CamTest.cpp, CamStarter.cpp, StreamIOHandler .cpp, and covertSmartDevice.cpp. The camera application on the SmartPhone is CamStarter, which is "the" user interface for the camera system. The CamStarter user interface allows a user to start/stop the camera application and transfer files to the server. The CamStarter application interfaces to the CamTest application through registry settings. Both the CamStarter and CamTest applications must be separately deployed on themore » smartphone to run the camera system application. When a user selects the Start button in CamStarter, CamTest is created as a process. The smartphone begins taking small pictures (CAPTURE mode), analyzing those pictures for certain conditions, and saving those pictures on the smartphone. This process will terminate when the user selects the Stop button. The camtest code spins off an asynchronous thread, StreamIOHandler, to check for pictures taken by the camera. The received image is then tested by StreamIOHandler to see if it meets certain conditions. If those conditions are met, the CamTest program is notified through the setting of a registry key value and the image is saved in a designated directory in a custom BMP file which includes a header and the image data. When the user selects the Transfer button in the CamStarter user interface, the covertsmartdevice code is created as a process. Covertsmartdevice gets all of the files in a designated directory, opens a socket connection to the server, sends each file, and then terminates.« less

  18. User interface for a tele-operated robotic hand system

    DOEpatents

    Crawford, Anthony L

    2015-03-24

    Disclosed here is a user interface for a robotic hand. The user interface anchors a user's palm in a relatively stationary position and determines various angles of interest necessary for a user's finger to achieve a specific fingertip location. The user interface additionally conducts a calibration procedure to determine the user's applicable physiological dimensions. The user interface uses the applicable physiological dimensions and the specific fingertip location, and treats the user's finger as a two link three degree-of-freedom serial linkage in order to determine the angles of interest. The user interface communicates the angles of interest to a gripping-type end effector which closely mimics the range of motion and proportions of a human hand. The user interface requires minimal contact with the operator and provides distinct advantages in terms of available dexterity, work space flexibility, and adaptability to different users.

  19. Data Access System for Hydrology

    NASA Astrophysics Data System (ADS)

    Whitenack, T.; Zaslavsky, I.; Valentine, D.; Djokic, D.

    2007-12-01

    As part of the CUAHSI HIS (Consortium of Universities for the Advancement of Hydrologic Science, Inc., Hydrologic Information System), the CUAHSI HIS team has developed Data Access System for Hydrology or DASH. DASH is based on commercial off the shelf technology, which has been developed in conjunction with a commercial partner, ESRI. DASH is a web-based user interface, developed in ASP.NET developed using ESRI ArcGIS Server 9.2 that represents a mapping, querying and data retrieval interface over observation and GIS databases, and web services. This is the front end application for the CUAHSI Hydrologic Information System Server. The HIS Server is a software stack that organizes observation databases, geographic data layers, data importing and management tools, and online user interfaces such as the DASH application, into a flexible multi- tier application for serving both national-level and locally-maintained observation data. The user interface of the DASH web application allows online users to query observation networks by location and attributes, selecting stations in a user-specified area where a particular variable was measured during a given time interval. Once one or more stations and variables are selected, the user can retrieve and download the observation data for further off-line analysis. The DASH application is highly configurable. The mapping interface can be configured to display map services from multiple sources in multiple formats, including ArcGIS Server, ArcIMS, and WMS. The observation network data is configured in an XML file where you specify the network's web service location and its corresponding map layer. Upon initial deployment, two national level observation networks (USGS NWIS daily values and USGS NWIS Instantaneous values) are already pre-configured. There is also an optional login page which can be used to restrict access as well as providing a alternative to immediate downloads. For large request, users would be notified via email with a link to their data when it is ready.

  20. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands

    PubMed Central

    Gonzalez-Vargas, Jose; Dosen, Strahinja; Amsuess, Sebastian; Yu, Wenwei; Farina, Dario

    2015-01-01

    Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI) cannot easily accommodate the system’s complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns) and/or the user has a considerable impairment (limited number of available signal sources). In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate), decoding (one signal to recognize), and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair), or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces) in order to improve the usability of existing low-bandwidth HMIs. PMID:26069961

  1. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands.

    PubMed

    Gonzalez-Vargas, Jose; Dosen, Strahinja; Amsuess, Sebastian; Yu, Wenwei; Farina, Dario

    2015-01-01

    Modern assistive devices are very sophisticated systems with multiple degrees of freedom. However, an effective and user-friendly control of these systems is still an open problem since conventional human-machine interfaces (HMI) cannot easily accommodate the system's complexity. In HMIs, the user is responsible for generating unique patterns of command signals directly triggering the device functions. This approach can be difficult to implement when there are many functions (necessitating many command patterns) and/or the user has a considerable impairment (limited number of available signal sources). In this study, we propose a novel concept for a general-purpose HMI where the controller and the user communicate bidirectionally to select the desired function. The system first presents possible choices to the user via electro-tactile stimulation; the user then acknowledges the desired choice by generating a single command signal. Therefore, the proposed approach simplifies the user communication interface (one signal to generate), decoding (one signal to recognize), and allows selecting from a number of options. To demonstrate the new concept the method was used in one particular application, namely, to implement the control of all the relevant functions in a state of the art commercial prosthetic hand without using any myoelectric channels. We performed experiments in healthy subjects and with one amputee to test the feasibility of the novel approach. The results showed that the performance of the novel HMI concept was comparable or, for some outcome measures, better than the classic myoelectric interfaces. The presented approach has a general applicability and the obtained results point out that it could be used to operate various assistive systems (e.g., prosthesis vs. wheelchair), or it could be integrated into other control schemes (e.g., myoelectric control, brain-machine interfaces) in order to improve the usability of existing low-bandwidth HMIs.

  2. AutoMicromanager: A microscopy scripting toolkit for LABVIEW and other programming environments

    NASA Astrophysics Data System (ADS)

    Ashcroft, Brian Alan; Oosterkamp, Tjerk

    2010-11-01

    We present a scripting toolkit for the acquisition and analysis of a wide variety of imaging data by integrating the ease of use of various programming environments such as LABVIEW, IGOR PRO, MATLAB, SCILAB, and others. This toolkit is designed to allow the user to quickly program a variety of standard microscopy components for custom microscopy applications allowing much more flexibility than other packages. Included are both programming tools as well as graphical user interface classes allowing a standard, consistent, and easy to maintain scripting environment. This programming toolkit allows easy access to most commonly used cameras, stages, and shutters through the Micromanager project so the scripter can focus on their custom application instead of boilerplate code generation.

  3. AutoMicromanager: a microscopy scripting toolkit for LABVIEW and other programming environments.

    PubMed

    Ashcroft, Brian Alan; Oosterkamp, Tjerk

    2010-11-01

    We present a scripting toolkit for the acquisition and analysis of a wide variety of imaging data by integrating the ease of use of various programming environments such as LABVIEW, IGOR PRO, MATLAB, SCILAB, and others. This toolkit is designed to allow the user to quickly program a variety of standard microscopy components for custom microscopy applications allowing much more flexibility than other packages. Included are both programming tools as well as graphical user interface classes allowing a standard, consistent, and easy to maintain scripting environment. This programming toolkit allows easy access to most commonly used cameras, stages, and shutters through the Micromanager project so the scripter can focus on their custom application instead of boilerplate code generation.

  4. A Hardware Platform for Tuning of MEMS Devices Using Closed-Loop Frequency Response

    NASA Technical Reports Server (NTRS)

    Ferguson, Michael I.; MacDonald, Eric; Foor, David

    2005-01-01

    We report on the development of a hardware platform for integrated tuning and closed-loop operation of MEMS gyroscopes. The platform was developed and tested for the second generation JPL/Boeing Post-Resonator MEMS gyroscope. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). A software interface allows the user to configure, calibrate, and tune the bias voltages on the micro-gyro. The interface easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.

  5. P43-S Computational Biology Applications Suite for High-Performance Computing (BioHPC.net)

    PubMed Central

    Pillardy, J.

    2007-01-01

    One of the challenges of high-performance computing (HPC) is user accessibility. At the Cornell University Computational Biology Service Unit, which is also a Microsoft HPC institute, we have developed a computational biology application suite that allows researchers from biological laboratories to submit their jobs to the parallel cluster through an easy-to-use Web interface. Through this system, we are providing users with popular bioinformatics tools including BLAST, HMMER, InterproScan, and MrBayes. The system is flexible and can be easily customized to include other software. It is also scalable; the installation on our servers currently processes approximately 8500 job submissions per year, many of them requiring massively parallel computations. It also has a built-in user management system, which can limit software and/or database access to specified users. TAIR, the major database of the plant model organism Arabidopsis, and SGN, the international tomato genome database, are both using our system for storage and data analysis. The system consists of a Web server running the interface (ASP.NET C#), Microsoft SQL server (ADO.NET), compute cluster running Microsoft Windows, ftp server, and file server. Users can interact with their jobs and data via a Web browser, ftp, or e-mail. The interface is accessible at http://cbsuapps.tc.cornell.edu/.

  6. The computer integrated documentation project: A merge of hypermedia and AI techniques

    NASA Technical Reports Server (NTRS)

    Mathe, Nathalie; Boy, Guy

    1993-01-01

    To generate intelligent indexing that allows context-sensitive information retrieval, a system must be able to acquire knowledge directly through interaction with users. In this paper, we present the architecture for CID (Computer Integrated Documentation). CID is a system that enables integration of various technical documents in a hypertext framework and includes an intelligent browsing system that incorporates indexing in context. CID's knowledge-based indexing mechanism allows case based knowledge acquisition by experimentation. It utilizes on-line user information requirements and suggestions either to reinforce current indexing in case of success or to generate new knowledge in case of failure. This allows CID's intelligent interface system to provide helpful responses, based on previous experience (user feedback). We describe CID's current capabilities and provide an overview of our plans for extending the system.

  7. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases.

    PubMed

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo

    2014-04-15

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients' brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies.

  8. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases

    PubMed Central

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo

    2014-01-01

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients’ brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies. PMID:25206907

  9. Graphical user interface for image acquisition and processing

    DOEpatents

    Goldberg, Kenneth A.

    2002-01-01

    An event-driven GUI-based image acquisition interface for the IDL programming environment designed for CCD camera control and image acquisition directly into the IDL environment where image manipulation and data analysis can be performed, and a toolbox of real-time analysis applications. Running the image acquisition hardware directly from IDL removes the necessity of first saving images in one program and then importing the data into IDL for analysis in a second step. Bringing the data directly into IDL creates an opportunity for the implementation of IDL image processing and display functions in real-time. program allows control over the available charge coupled device (CCD) detector parameters, data acquisition, file saving and loading, and image manipulation and processing, all from within IDL. The program is built using IDL's widget libraries to control the on-screen display and user interface.

  10. XOP: a multiplatform graphical user interface for synchrotron radiation spectral and optics calculations

    NASA Astrophysics Data System (ADS)

    Sanchez del Rio, Manuel; Dejus, Roger J.

    1997-11-01

    XOP (X-ray OPtics utilities) is a graphical user interface (GUI) created to execute several computer programs that calculate the basic information needed by a synchrotron beamline scientist (designer or experimentalist). Typical examples of such calculations are: insertion device (undulator or wiggler) spectral and angular distributions, mirror and multilayer reflectivities, and crystal diffraction profiles. All programs are provided to the user under a unified GUI, which greatly simplifies their execution. The XOP optics applications (especially mirror calculations) take their basic input (optical constants, compound and mixture tables) from a flexible file-oriented database, which allows the user to select data from a large number of choices and also to customize their own data sets. XOP includes many mathematical and visualization capabilities. It also permits the combination of reflectivities from several mirrors and filters, and their effect, onto a source spectrum. This feature is very useful when calculating thermal load on a series of optical elements. The XOP interface is written in the IDL (Interactive Data Language). An embedded version of XOP, which freely runs under most Unix platforms (HP, Sun, Dec, Linux, etc) and under Windows95 and NT, is available upon request.

  11. A Grid job monitoring system

    NASA Astrophysics Data System (ADS)

    Dumitrescu, Catalin; Nowack, Andreas; Padhi, Sanjay; Sarkar, Subir

    2010-04-01

    This paper presents a web-based Job Monitoring framework for individual Grid sites that allows users to follow in detail their jobs in quasi-real time. The framework consists of several independent components : (a) a set of sensors that run on the site CE and worker nodes and update a database, (b) a simple yet extensible web services framework and (c) an Ajax powered web interface having a look-and-feel and control similar to a desktop application. The monitoring framework supports LSF, Condor and PBS-like batch systems. This is one of the first monitoring systems where an X.509 authenticated web interface can be seamlessly accessed by both end-users and site administrators. While a site administrator has access to all the possible information, a user can only view the jobs for the Virtual Organizations (VO) he/she is a part of. The monitoring framework design supports several possible deployment scenarios. For a site running a supported batch system, the system may be deployed as a whole, or existing site sensors can be adapted and reused with the web services components. A site may even prefer to build the web server independently and choose to use only the Ajax powered web interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens the scope significantly, allowing it to monitor jobs over multiple sites.

  12. Wearable wireless User Interface Cursor-Controller (UIC-C).

    PubMed

    Marjanovic, Nicholas; Kerr, Kevin; Aranda, Ricardo; Hickey, Richard; Esmailbeigi, Hananeh

    2017-07-01

    Controlling a computer or a smartphone's cursor allows the user to access a world full of information. For millions of people with limited upper extremities motor function, controlling the cursor becomes profoundly difficult. Our team has developed the User Interface Cursor-Controller (UIC-C) to assist the impaired individuals in regaining control over the cursor. The UIC-C is a hands-free device that utilizes the tongue muscle to control the cursor movements. The entire device is housed inside a subject specific retainer. The user maneuvers the cursor by manipulating a joystick imbedded inside the retainer via their tongue. The joystick movement commands are sent to an electronic device via a Bluetooth connection. The device is readily recognizable as a cursor controller by any Bluetooth enabled electronic device. The device testing results have shown that the time it takes the user to control the cursor accurately via the UIC-C is about three times longer than a standard computer mouse controlled via the hand. The device does not require any permanent modifications to the body; therefore, it could be used during the period of acute rehabilitation of the hands. With the development of modern smart homes, and enhancement electronics controlled by the computer, UIC-C could be integrated into a system that enables individuals with permanent impairment, the ability to control the cursor. In conclusion, the UIC-C device is designed with the goal of allowing the user to accurately control a cursor during the periods of either acute or permanent upper extremities impairment.

  13. Weintek interfaces for controlling the position of a robotic arm

    NASA Astrophysics Data System (ADS)

    Barz, C.; Ilia, M.; Ilut, T.; Pop-Vadean, A.; Pop, P. P.; Dragan, F.

    2016-08-01

    The paper presents the use of Weintek panels to control the position of a robotic arm, operated step by step on the three motor axes. PLC control interface is designed with a Weintek touch screen. The HMI Weintek eMT3070a is the user interface in the process command of the PLC. This HMI controls the local PLC, entering the coordinate on the axes X, Y and Z. The subject allows the development in a virtual environment for e-learning and monitoring the robotic arm actions.

  14. Web-Based Interface for Command and Control of Network Sensors

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Doubleday, Joshua R.; Shams, Khawaja S.

    2010-01-01

    This software allows for the visualization and control of a network of sensors through a Web browser interface. It is currently being deployed for a network of sensors monitoring Mt. Saint Helen s volcano; however, this innovation is generic enough that it can be deployed for any type of sensor Web. From this interface, the user is able to fully control and monitor the sensor Web. This includes, but is not limited to, sending "test" commands to individual sensors in the network, monitoring for real-world events, and reacting to those events

  15. A new JAVA interface implementation of THESIAS: testing haplotype effects in association studies.

    PubMed

    Tregouet, D A; Garelle, V

    2007-04-15

    THESIAS (Testing Haplotype EffectS In Association Studies) is a popular software for carrying haplotype association analysis in unrelated individuals. In addition to the command line interface, a graphical JAVA interface is now proposed allowing one to run THESIAS in a user-friendly manner. Besides, new functionalities have been added to THESIAS including the possibility to analyze polychotomous phenotype and X-linked polymorphisms. The software package including documentation and example data files is freely available at http://genecanvas.ecgene.net. The source codes are also available upon request.

  16. Sign language Web pages.

    PubMed

    Fels, Deborah I; Richards, Jan; Hardman, Jim; Lee, Daniel G

    2006-01-01

    The WORLD WIDE WEB has changed the way people interact. It has also become an important equalizer of information access for many social sectors. However, for many people, including some sign language users, Web accessing can be difficult. For some, it not only presents another barrier to overcome but has left them without cultural equality. The present article describes a system that allows sign language-only Web pages to be created and linked through a video-based technique called sign-linking. In two studies, 14 Deaf participants examined two iterations of signlinked Web pages to gauge the usability and learnability of a signing Web page interface. The first study indicated that signing Web pages were usable by sign language users but that some interface features required improvement. The second study showed increased usability for those features; users consequently couldnavigate sign language information with ease and pleasure.

  17. An Open-Source Arduino-based Controller for Mechanical Rain Simulators

    NASA Astrophysics Data System (ADS)

    Cantilina, K. K.

    2017-12-01

    Many commercial rain simulators currently used in hydrology rely on inflexible and outdated controller designs. These analog controllers typically only allow a handful of discrete parameter options, and do not support internal timing functions or continuously-changing parameters. A desire for finer control of rain simulation events necessitated the design and construction of a microcontroller-based controller, using widely available off-the-shelf components. A menu driven interface allows users to fine-tune simulation parameters without the need for training or experience with microcontrollers, and the accessibility of the Arduino IDE allows users with a minimum of programming and hardware experience to modify the controller program to suit the needs of individual experiments.

  18. Tactile feedback to the palm using arbitrarily shaped DEA

    NASA Astrophysics Data System (ADS)

    Mößinger, Holger; Haus, Henry; Kauer, Michaela; Schlaak, Helmut F.

    2014-03-01

    Tactile stimulation enhances user experience and efficiency in human machine interaction by providing information via another sensory channel to the human brain. DEA as tactile interfaces have been in the focus of research in recent years. Examples are (vibro-) tactile keyboards or Braille displays. These applications of DEA focus mainly on interfacing with the user's fingers or fingertips only - demonstrating the high spatial resolution achievable with DEA. Besides providing a high resolution, the flexibility of DEA also allows designing free form surfaces equipped with single actuators or actuator matrices which can be fitted to the surface of the human skin. The actuators can then be used to provide tactile stimuli to different areas of the body, not to the fingertips only. Utilizing and demonstrating this flexibility we designed a free form DEA pad shaped to fit into the inside of the human palm. This pad consists of four single actuators which can provide e.g. directional information such as left, right, up and down. To demonstrate the value of such free form actuators we manufactured a PC-mouse using 3d printing processes. The actuator pad is mounted on the back of the mouse, resting against the palm while operating it. Software on the PC allows control of the vibration patterns displayed by the actuators. This allows helping the user by raising attention to certain directions or by discriminating between different modes like "pick" or "manipulate". Results of first tests of the device show an improved user experience while operating the PC mouse.

  19. Sensor fusion and augmented reality with the SAFIRE system

    NASA Astrophysics Data System (ADS)

    Saponaro, Philip; Treible, Wayne; Phelan, Brian; Sherbondy, Kelly; Kambhamettu, Chandra

    2018-04-01

    The Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) mobile radar system was developed and exercised at an arid U.S. test site. The system can detect hidden target using radar, a global positioning system (GPS), dual stereo color cameras, and dual stereo thermal cameras. An Augmented Reality (AR) software interface allows the user to see a single fused video stream containing the SAR, color, and thermal imagery. The stereo sensors allow the AR system to display both fused 2D imagery and 3D metric reconstructions, where the user can "fly" around the 3D model and switch between the modalities.

  20. 3DUI assisted lower and upper member therapy.

    PubMed

    Uribe-Quevedo, Alvaro; Perez-Gutierrez, Byron

    2012-01-01

    3DUIs are becoming very popular among researchers, developers and users as they allow more immersive and interactive experiences by taking advantage of the human dexterity. The features offered by these interfaces outside the gaming environment, have allowed the development of applications in the medical area by enhancing the user experience and aiding the therapy process in controlled and monitored environments. Using mainstream videogame 3DUIs based on inertial and image sensors available in the market, this work presents the development of a virtual environment and its navigation through lower member captured gestures for assisting motion during therapy.

  1. Design guidelines for the use of audio cues in computer interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumikawa, D.A.; Blattner, M.M.; Joy, K.I.

    1985-07-01

    A logical next step in the evolution of the computer-user interface is the incorporation of sound thereby using our senses of ''hearing'' in our communication with the computer. This allows our visual and auditory capacities to work in unison leading to a more effective and efficient interpretation of information received from the computer than by sight alone. In this paper we examine earcons, which are audio cues, used in the computer-user interface to provide information and feedback to the user about computer entities (these include messages and functions, as well as states and labels). The material in this paper ismore » part of a larger study that recommends guidelines for the design and use of audio cues in the computer-user interface. The complete work examines the disciplines of music, psychology, communication theory, advertising, and psychoacoustics to discover how sound is utilized and analyzed in those areas. The resulting information is organized according to the theory of semiotics, the theory of signs, into the syntax, semantics, and pragmatics of communication by sound. Here we present design guidelines for the syntax of earcons. Earcons are constructed from motives, short sequences of notes with a specific rhythm and pitch, embellished by timbre, dynamics, and register. Compound earcons and family earcons are introduced. These are related motives that serve to identify a family of related cues. Examples of earcons are given.« less

  2. A self-paced motor imagery based brain-computer interface for robotic wheelchair control.

    PubMed

    Tsui, Chun Sing Louis; Gan, John Q; Hu, Huosheng

    2011-10-01

    This paper presents a simple self-paced motor imagery based brain-computer interface (BCI) to control a robotic wheelchair. An innovative control protocol is proposed to enable a 2-class self-paced BCI for wheelchair control, in which the user makes path planning and fully controls the wheelchair except for the automatic obstacle avoidance based on a laser range finder when necessary. In order for the users to train their motor imagery control online safely and easily, simulated robot navigation in a specially designed environment was developed. This allowed the users to practice motor imagery control with the core self-paced BCI system in a simulated scenario before controlling the wheelchair. The self-paced BCI can then be applied to control a real robotic wheelchair using a protocol similar to that controlling the simulated robot. Our emphasis is on allowing more potential users to use the BCI controlled wheelchair with minimal training; a simple 2-class self paced system is adequate with the novel control protocol, resulting in a better transition from offline training to online control. Experimental results have demonstrated the usefulness of the online practice under the simulated scenario, and the effectiveness of the proposed self-paced BCI for robotic wheelchair control.

  3. Kinect-based posture tracking for correcting positions during exercise.

    PubMed

    Guerrero, Cesar; Uribe-Quevedo, Alvaro

    2013-01-01

    The Kinect sensor has opened the path for developing numerous applications in several different areas. Medical and health applications are benefiting from the Kinect as it allows non-invasive body motion capture that can be used in motor rehabilitation and phobia treatment. A major advantage of the Kinect is that allows developing solutions that can be used at home or even the office thus, expanding the user freedom for interacting with complementary solutions to its physical activities without requiring any traveling. This paper present a Kinect-based posture tracking software for assisting the user in successfully match postures required in some exercises for strengthen body muscles. Unlike several video games available, this tool offers a user interface for customizing posture parameters, so it can be enhanced by healthcare professionals or by their guidance through the user.

  4. Use of StreamStats in the Upper French Broad River Basin, North Carolina: A Pilot Water-Resources Web Application

    USGS Publications Warehouse

    Wagner, Chad R.; Tighe, Kirsten C.; Terziotti, Silvia

    2009-01-01

    StreamStats is a Web-based Geographic Information System (GIS) application that was developed by the U.S. Geological Survey (USGS) in cooperation with Environmental Systems Research Institute, Inc. (ESRI) to provide access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection sites and selected ungaged sites. StreamStats also allows users to identify stream reaches upstream and downstream from user-selected sites and obtain information for locations along streams where activities occur that can affect streamflow conditions. This functionality can be accessed through a map-based interface with the user's Web browser or through individual functions requested remotely through other Web applications.

  5. HyFinBall: A Two-Handed, Hybrid 2D/3D Desktop VR Interface for Visualization

    DTIC Science & Technology

    2013-01-01

    user study . This is done in the context of a rich, visual analytics interface containing coordinated views with 2D and 3D visualizations and...the user interface (hardware and software), the design space, as well as preliminary results of a formal user study . This is done in the context of a ... virtual reality , user interface , two-handed interface , hybrid user interface , multi-touch, gesture,

  6. 77 FR 18280 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... adopted QView on December 1, 2011 at no cost to subscribers.\\3\\ QView is a Web-based, front-end... executions provided in the QView dashboard interface. The dashboard also allows a QView subscriber to track...\\ \\5\\ TradeInfo is a web-based tool that, among other things, allows users access to all of the NASDAQ...

  7. The PMDB Protein Model Database

    PubMed Central

    Castrignanò, Tiziana; De Meo, Paolo D'Onorio; Cozzetto, Domenico; Talamo, Ivano Giuseppe; Tramontano, Anna

    2006-01-01

    The Protein Model Database (PMDB) is a public resource aimed at storing manually built 3D models of proteins. The database is designed to provide access to models published in the scientific literature, together with validating experimental data. It is a relational database and it currently contains >74 000 models for ∼240 proteins. The system is accessible at and allows predictors to submit models along with related supporting evidence and users to download them through a simple and intuitive interface. Users can navigate in the database and retrieve models referring to the same target protein or to different regions of the same protein. Each model is assigned a unique identifier that allows interested users to directly access the data. PMID:16381873

  8. Semantic Visualization of Wireless Sensor Networks for Elderly Monitoring

    NASA Astrophysics Data System (ADS)

    Stocklöw, Carsten; Kamieth, Felix

    In the area of Ambient Intelligence, Wireless Sensor Networks are commonly used for user monitoring purposes like health monitoring and user localization. Existing work on visualization of wireless sensor networks focuses mainly on displaying individual nodes and logical, graph-based topologies. This way, the relation to the real-world deployment is lost. This paper presents a novel approach for visualization of wireless sensor networks and interaction with complex services on the nodes. The environment is realized as a 3D model, and multiple nodes, that are worn by a single individual, are grouped together to allow an intuitive interface for end users. We describe application examples and show that our approach allows easier access to network information and functionality by comparing it with existing solutions.

  9. Design of a telescope control system using an ARM microcontroller with embedded RTOS

    NASA Astrophysics Data System (ADS)

    Peñuela Pico, Cristian R.; Atara Montañez, Fabian A.; Cuervo, Juan C.; Gonzalez-Llorente, Jesus

    2014-08-01

    This work presents the design of a wireless control system that allows driving all the necessary instruments to control the orientation of an equatorial mounting telescope through a real time operative system (RTOS) that runs over ARM microcontroller. The control system is commanded through a user-interface which works under Android platform giving the user the option to control the tracking mode, right ascension, and declination. The system was successfully deployed and tested during a one-hour observation of the Moon. The frequency measured by the oscilloscope is 66.67 Hz which equals the sidereal speed. The telescope control systems allows the user to have a better precision when locating a star but also to cover long-duration tracking processes

  10. An augmented reality haptic training simulator for spinal needle procedures.

    PubMed

    Sutherland, Colin; Hashtrudi-Zaad, Keyvan; Sellens, Rick; Abolmaesumi, Purang; Mousavi, Parvin

    2013-11-01

    This paper presents the prototype for an augmented reality haptic simulation system with potential for spinal needle insertion training. The proposed system is composed of a torso mannequin, a MicronTracker2 optical tracking system, a PHANToM haptic device, and a graphical user interface to provide visual feedback. The system allows users to perform simulated needle insertions on a physical mannequin overlaid with an augmented reality cutaway of patient anatomy. A tissue model based on a finite-element model provides force during the insertion. The system allows for training without the need for the presence of a trained clinician or access to live patients or cadavers. A pilot user study demonstrates the potential and functionality of the system.

  11. Scripps Genome ADVISER: Annotation and Distributed Variant Interpretation SERver

    PubMed Central

    Pham, Phillip H.; Shipman, William J.; Erikson, Galina A.; Schork, Nicholas J.; Torkamani, Ali

    2015-01-01

    Interpretation of human genomes is a major challenge. We present the Scripps Genome ADVISER (SG-ADVISER) suite, which aims to fill the gap between data generation and genome interpretation by performing holistic, in-depth, annotations and functional predictions on all variant types and effects. The SG-ADVISER suite includes a de-identification tool, a variant annotation web-server, and a user interface for inheritance and annotation-based filtration. SG-ADVISER allows users with no bioinformatics expertise to manipulate large volumes of variant data with ease – without the need to download large reference databases, install software, or use a command line interface. SG-ADVISER is freely available at genomics.scripps.edu/ADVISER. PMID:25706643

  12. Engineering monitoring expert system's developer

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1991-01-01

    This research project is designed to apply artificial intelligence technology including expert systems, dynamic interface of neural networks, and hypertext to construct an expert system developer. The developer environment is specifically suited to building expert systems which monitor the performance of ground support equipment for propulsion systems and testing facilities. The expert system developer, through the use of a graphics interface and a rule network, will be transparent to the user during rule constructing and data scanning of the knowledge base. The project will result in a software system that allows its user to build specific monitoring type expert systems which monitor various equipments used for propulsion systems or ground testing facilities and accrues system performance information in a dynamic knowledge base.

  13. Intelligent data management

    NASA Technical Reports Server (NTRS)

    Campbell, William J.

    1985-01-01

    Intelligent data management is the concept of interfacing a user to a database management system with a value added service that will allow a full range of data management operations at a high level of abstraction using human written language. The development of such a system will be based on expert systems and related artificial intelligence technologies, and will allow the capturing of procedural and relational knowledge about data management operations and the support of a user with such knowledge in an on-line, interactive manner. Such a system will have the following capabilities: (1) the ability to construct a model of the users view of the database, based on the query syntax; (2) the ability to transform English queries and commands into database instructions and processes; (3) the ability to use heuristic knowledge to rapidly prune the data space in search processes; and (4) the ability to use an on-line explanation system to allow the user to understand what the system is doing and why it is doing it. Additional information is given in outline form.

  14. Hand held data collection and monitoring system for nuclear facilities

    DOEpatents

    Brayton, D.D.; Scharold, P.G.; Thornton, M.W.; Marquez, D.L.

    1999-01-26

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen. 15 figs.

  15. Hand held data collection and monitoring system for nuclear facilities

    DOEpatents

    Brayton, Darryl D.; Scharold, Paul G.; Thornton, Michael W.; Marquez, Diana L.

    1999-01-01

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen.

  16. A Browser-Based Multi-User Working Environment for Physicists

    NASA Astrophysics Data System (ADS)

    Erdmann, M.; Fischer, R.; Glaser, C.; Klingebiel, D.; Komm, M.; Müller, G.; Rieger, M.; Steggemann, J.; Urban, M.; Winchen, T.

    2014-06-01

    Many programs in experimental particle physics do not yet have a graphical interface, or demand strong platform and software requirements. With the most recent development of the VISPA project, we provide graphical interfaces to existing software programs and access to multiple computing clusters through standard web browsers. The scalable clientserver system allows analyses to be performed in sizable teams, and disburdens the individual physicist from installing and maintaining a software environment. The VISPA graphical interfaces are implemented in HTML, JavaScript and extensions to the Python webserver. The webserver uses SSH and RPC to access user data, code and processes on remote sites. As example applications we present graphical interfaces for steering the reconstruction framework OFFLINE of the Pierre-Auger experiment, and the analysis development toolkit PXL. The browser based VISPA system was field-tested in biweekly homework of a third year physics course by more than 100 students. We discuss the system deployment and the evaluation by the students.

  17. Graphical user interface simplifies infusion pump programming and enhances the ability to detect pump-related faults.

    PubMed

    Syroid, Noah; Liu, David; Albert, Robert; Agutter, James; Egan, Talmage D; Pace, Nathan L; Johnson, Ken B; Dowdle, Michael R; Pulsipher, Daniel; Westenskow, Dwayne R

    2012-11-01

    Drug administration errors are frequent and are often associated with the misuse of IV infusion pumps. One source of these errors may be the infusion pump's user interface. We used failure modes-and-effects analyses to identify programming errors and to guide the design of a new syringe pump user interface. We designed the new user interface to clearly show the pump's operating state simultaneously in more than 1 monitoring location. We evaluated anesthesia residents in laboratory and simulated environments on programming accuracy and error detection between the new user interface and the user interface of a commercially available infusion pump. With the new user interface, we observed the number of programming errors reduced by 81%, the number of keystrokes per task reduced from 9.2 ± 5.0 to 7.5 ± 5.5 (mean ± SD), the time required per task reduced from 18.1 ± 14.1 seconds to 10.9 ± 9.5 seconds and significantly less perceived workload. Residents detected 38 of 70 (54%) of the events with the new user interface and 37 of 70 (53%) with the existing user interface, despite no experience with the new user interface and extensive experience with the existing interface. The number of programming errors and workload were reduced partly because it took less time and fewer keystrokes to program the pump when using the new user interface. Despite minimal training, residents quickly identified preexisting infusion pump problems with the new user interface. Intuitive and easy-to-program infusion pump interfaces may reduce drug administration errors and infusion pump-related adverse events.

  18. IAC - INTEGRATED ANALYSIS CAPABILITY

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. With the goal of supporting the unique needs of engineering analysis groups concerned with interdisciplinary problems, IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a data base, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automatic data transfer among analysis programs. IAC 2.5, designed to be compatible as far as possible with Level 1.5, contains a major upgrade in executive and database management system capabilities, and includes interfaces to enable thermal, structures, optics, and control interaction dynamics analysis. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation interfaces are supplied for building and viewing models. Advanced graphics capabilities are provided within particular analysis modules such as INCA and NASTRAN. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model Integration via Mesh Interpolation Coefficients), which transforms field values from one model to another; LINK, which simplifies incorporation of user specific modules into IAC modules; and DATAPAC, the National Bureau of Standards statistical analysis package. The IAC database contains structured files which provide a common basis for communication between modules and the executive system, and can contain unstructured files such as NASTRAN checkpoint files, DISCOS plot files, object code, etc. The user can define groups of data and relations between them. A full data manipulation and query system operates with the database. The current interface modules comprise five groups: 1) Structural analysis - IAC contains a NASTRAN interface for standalone analysis or certain structural/control/thermal combinations. IAC provides enhanced structural capabilities for normal modes and static deformation analysis via special DMAP sequences. IAC 2.5 contains several specialized interfaces from NASTRAN in support of multidisciplinary analysis. 2) Thermal analysis - IAC supports finite element and finite difference techniques for steady state or transient analysis. There are interfaces for the NASTRAN thermal analyzer, SINDA/SINFLO, and TRASYS II. FEMNET, which converts finite element structural analysis models to finite difference thermal analysis models, is also interfaced with the IAC database. 3) System dynamics - The DISCOS simulation program which allows for either nonlinear time domain analysis or linear frequency domain analysis, is fully interfaced to the IAC database management capability. 4) Control analysis - Interfaces for the ORACLS, SAMSAN, NBOD2, and INCA programs allow a wide range of control system analyses and synthesis techniques. Level 2.5 includes EIGEN, which provides tools for large order system eigenanalysis, and BOPACE, which allows for geometric capabilities and finite element analysis with nonlinear material. Also included in IAC level 2.5 is SAMSAN 3.1, an engineering analysis program which contains a general purpose library of over 600 subroutin

  19. User-Appropriate Viewer for High Resolution Interactive Engagement with 3d Digital Cultural Artefacts

    NASA Astrophysics Data System (ADS)

    Gillespie, D.; La Pensée, A.; Cooper, M.

    2013-07-01

    Three dimensional (3D) laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008). The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013) and WebGL (Khronos, 2013), it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games. This paper presents results of research that aims to provide a methodology for museums and cultural institutions for prototyping a 3D viewer within a webpage, thereby not only allowing institutions to promote their collections via the internet but also providing a tool for users to engage in a meaningful way with cultural heritage datasets. The design process encompasses evaluation as the central part of the design methodology; focusing on how slight changes to navigation, object engagement and aesthetic appearance can influence the user's experience. The prototype used in this paper, was created using WebGL with the Three.Js (Three.JS, 2013) library and datasets were loaded as the OpenCTM (Geelnard, 2010) file format. The overall design is centred on creating an easy-tolearn interface allowing non-skilled users to interact with the datasets, and also providing tools allowing skilled users to discover more about the cultural heritage object. User testing was carried out, allowing users to interact with 3D datasets within the interactive viewer. The results are analysed and the insights learned are discussed in relation to an interface designed to interact with 3D content. The results will lead to the design of interfaces for interacting with 3D objects, which allow for both skilled and non skilled users to engage with 3D cultural heritage objects in a meaningful way.

  20. Dairy Analytics and Nutrient Analysis (DANA) Prototype System User Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sam Alessi; Dennis Keiser

    2012-10-01

    This document is a user manual for the Dairy Analytics and Nutrient Analysis (DANA) model. DANA provides an analysis of dairy anaerobic digestion technology and allows users to calculate biogas production, co-product valuation, capital costs, expenses, revenue and financial metrics, for user customizable scenarios, dairy and digester types. The model provides results for three anaerobic digester types; Covered Lagoons, Modified Plug Flow, and Complete Mix, and three main energy production technologies; electricity generation, renewable natural gas generation, and compressed natural gas generation. Additional options include different dairy types, bedding types, backend treatment type as well as numerous production, and economicmore » parameters. DANA’s goal is to extend the National Market Value of Anaerobic Digester Products analysis (informa economics, 2012; Innovation Center, 2011) to include a greater and more flexible set of regional digester scenarios and to provide a modular framework for creation of a tool to support farmer and investor needs. Users can set up scenarios from combinations of existing parameters or add new parameters, run the model and view a variety of reports, charts and tables that are automatically produced and delivered over the web interface. DANA is based in the INL’s analysis architecture entitled Generalized Environment for Modeling Systems (GEMS) , which offers extensive collaboration, analysis, and integration opportunities and greatly speeds the ability construct highly scalable web delivered user-oriented decision tools. DANA’s approach uses server-based data processing and web-based user interfaces, rather a client-based spreadsheet approach. This offers a number of benefits over the client-based approach. Server processing and storage can scale up to handle a very large number of scenarios, so that analysis of county, even field level, across the whole U.S., can be performed. Server based databases allow dairy and digester parameters be held and managed in a single managed data repository, while allows users to customize standard values and perform individual analysis. Server-based calculations can be easily extended, versions and upgrades managed, and any changes are immediately available to all users. This user manual describes how to use and/or modify input database tables, run DANA, view and modify reports.« less

  1. BIRD: A general interface for sparse distributed memory simulators

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1990-01-01

    Kanerva's sparse distributed memory (SDM) has now been implemented for at least six different computers, including SUN3 workstations, the Apple Macintosh, and the Connection Machine. A common interface for input of commands would both aid testing of programs on a broad range of computer architectures and assist users in transferring results from research environments to applications. A common interface also allows secondary programs to generate command sequences for a sparse distributed memory, which may then be executed on the appropriate hardware. The BIRD program is an attempt to create such an interface. Simplifying access to different simulators should assist developers in finding appropriate uses for SDM.

  2. DockoMatic 2.0: High Throughput Inverse Virtual Screening and Homology Modeling

    PubMed Central

    Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T.; McDougal, Owen M.; Andersen, Timothy L.

    2013-01-01

    DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly Graphical User Interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to: (1) conduct high throughput Inverse Virtual Screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying a receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories, and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELLER programs, and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education. PMID:23808933

  3. Onboard System Evaluation of Rotors Vibration, Engines (OBSERVE) monitoring System

    DTIC Science & Technology

    1992-07-01

    consists of a Data Acquisiiton Unit (DAU), Control and Display Unit ( CADU ), Universal Tracking Devices (UTD), Remote Cockpit Display (RCD) and a PC...and Display Unit ( CADU ) - The CADU provides data storage and a graphical user interface neccesary to display both the measured data and diagnostic...information. The CADU has an interface to a Credit Card Memory (CCM) which operates similar to a disk drive, allowing the storage of data and programs. The

  4. An Interface for Specifying Rigid-Body Motions for CFD Applications

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Chan, William; Aftosmis, Michael; Meakin, Robert L.; Kwak, Dochan (Technical Monitor)

    2003-01-01

    An interface for specifying rigid-body motions for CFD applications is presented. This interface provides a means of describing a component hierarchy in a geometric configuration, as well as the motion (prescribed or six-degree-of-freedom) associated with any component. The interface consists of a general set of datatypes, along with rules for their interaction, and is designed to be flexible in order to evolve as future needs dictate. The specification is currently implemented with an XML file format which is portable across platforms and applications. The motion specification is capable of describing general rigid body motions, and eliminates the need to write and compile new code within the application software for each dynamic configuration, allowing client software to automate dynamic simulations. The interface is integrated with a GUI tool which allows rigid body motions to be prescribed and verified interactively, promoting access to non-expert users. Illustrative examples, as well as the raw XML source of the file specifications, are included.

  5. SoftLab: A Soft-Computing Software for Experimental Research with Commercialization Aspects

    NASA Technical Reports Server (NTRS)

    Akbarzadeh-T, M.-R.; Shaikh, T. S.; Ren, J.; Hubbell, Rob; Kumbla, K. K.; Jamshidi, M

    1998-01-01

    SoftLab is a software environment for research and development in intelligent modeling/control using soft-computing paradigms such as fuzzy logic, neural networks, genetic algorithms, and genetic programs. SoftLab addresses the inadequacies of the existing soft-computing software by supporting comprehensive multidisciplinary functionalities from management tools to engineering systems. Furthermore, the built-in features help the user process/analyze information more efficiently by a friendly yet powerful interface, and will allow the user to specify user-specific processing modules, hence adding to the standard configuration of the software environment.

  6. An object-oriented approach to the management of meteorological and hydrological data

    NASA Technical Reports Server (NTRS)

    Graves, S. J.; Williams, S. F.; Criswell, E. A.

    1990-01-01

    An interface to several meteorological and hydrological databases have been developed that enables researchers efficiently to access and interrelate data through a customized menu system. By extending a relational database system with object-oriented concepts, each user or group of users may have different 'views' of the data to allow user access to data in customized ways without altering the organization of the database. An application to COHMEX and WetNet, two earth science projects within NASA Marshall Space Flight Center's Earth Science and Applications Division, are described.

  7. Web-Based Media Contents Editor for UCC Websites

    NASA Astrophysics Data System (ADS)

    Kim, Seoksoo

    The purpose of this research is to "design web-based media contents editor for establishing UCC(User Created Contents)-based websites." The web-based editor features user-oriented interfaces and increased convenience, significantly different from previous off-line editors. It allows users to edit media contents online and can be effectively used for online promotion activities of enterprises and organizations. In addition to development of the editor, the research aims to support the entry of enterprises and public agencies to the online market by combining the technology with various UCC items.

  8. mGrid: A load-balanced distributed computing environment for the remote execution of the user-defined Matlab code

    PubMed Central

    Karpievitch, Yuliya V; Almeida, Jonas S

    2006-01-01

    Background Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. Results mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Conclusion Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet. PMID:16539707

  9. mGrid: a load-balanced distributed computing environment for the remote execution of the user-defined Matlab code.

    PubMed

    Karpievitch, Yuliya V; Almeida, Jonas S

    2006-03-15

    Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet.

  10. Motofit - integrating neutron reflectometry acquisition, reduction and analysis into one, easy to use, package

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew

    2010-11-01

    The efficient use of complex neutron scattering instruments is often hindered by the complex nature of their operating software. This complexity exists at each experimental step: data acquisition, reduction and analysis, with each step being as important as the previous. For example, whilst command line interfaces are powerful at automated acquisition they often reduce accessibility by novice users and sometimes reduce the efficiency for advanced users. One solution to this is the development of a graphical user interface which allows the user to operate the instrument by a simple and intuitive "push button" approach. This approach was taken by the Motofit software package for analysis of multiple contrast reflectometry data. Here we describe the extension of this package to cover the data acquisition and reduction steps for the Platypus time-of-flight neutron reflectometer. Consequently, the complete operation of an instrument is integrated into a single, easy to use, program, leading to efficient instrument usage.

  11. Concentration on performance with P300-based BCI systems: a matter of interface features.

    PubMed

    da Silva-Sauer, Leandro; Valero-Aguayo, Luis; de la Torre-Luque, Alejandro; Ron-Angevin, Ricardo; Varona-Moya, Sergio

    2016-01-01

    People who suffer from severe motor disabilities have difficulties to communicate with others or to interact with their environment using natural, i.e., muscular channels. These limitations can be overcome to some extent by using brain-computer interfaces (BCIs), because such systems allow users to communicate on the basis of their brain activity only. Among the several types of BCIs for spelling purposes, those that rely on the P300 event related potential-P300-based spellers-are chosen preferentially due to their high reliability. However, they demand from the user to sustain his/her attention to the desired character over a relatively long period of time. Therefore, the user's capacity to concentrate can affect his/her performance with a P300-based speller. The aim of this study was to test this hypothesis using three different interfaces: one based on the classic P300 speller paradigm, another also based on that speller but including a word predictor, and a third one that was based on the T9 interface developed for mobile phones. User performance was assessed by measuring the time to complete a spelling task and the accuracy of character selection. The d2 test was applied to assess attention and concentration. Sample (N = 14) was divided into two groups basing on of concentration scores. As a result, performance was better with the predictor-enriched interfaces: less time was needed to solve the task and participants made fewer errors (p < .05). There were also significant effects of concentration (p < .05) on performance with the standard P300 speller. In conclusion, the performance of those users with lower concentration level can be improved by providing BCIs with more interactive interfaces. These findings provide substantial evidence in order to highlight the impact of psychological features on BCI performance and should be taken into account for future assistive technology systems. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Coloc-stats: a unified web interface to perform colocalization analysis of genomic features.

    PubMed

    Simovski, Boris; Kanduri, Chakravarthi; Gundersen, Sveinung; Titov, Dmytro; Domanska, Diana; Bock, Christoph; Bossini-Castillo, Lara; Chikina, Maria; Favorov, Alexander; Layer, Ryan M; Mironov, Andrey A; Quinlan, Aaron R; Sheffield, Nathan C; Trynka, Gosia; Sandve, Geir K

    2018-06-05

    Functional genomics assays produce sets of genomic regions as one of their main outputs. To biologically interpret such region-sets, researchers often use colocalization analysis, where the statistical significance of colocalization (overlap, spatial proximity) between two or more region-sets is tested. Existing colocalization analysis tools vary in the statistical methodology and analysis approaches, thus potentially providing different conclusions for the same research question. As the findings of colocalization analysis are often the basis for follow-up experiments, it is helpful to use several tools in parallel and to compare the results. We developed the Coloc-stats web service to facilitate such analyses. Coloc-stats provides a unified interface to perform colocalization analysis across various analytical methods and method-specific options (e.g. colocalization measures, resolution, null models). Coloc-stats helps the user to find a method that supports their experimental requirements and allows for a straightforward comparison across methods. Coloc-stats is implemented as a web server with a graphical user interface that assists users with configuring their colocalization analyses. Coloc-stats is freely available at https://hyperbrowser.uio.no/coloc-stats/.

  13. Web-Based Computational Chemistry Education with CHARMMing I: Lessons and Tutorial

    PubMed Central

    Miller, Benjamin T.; Singh, Rishi P.; Schalk, Vinushka; Pevzner, Yuri; Sun, Jingjun; Miller, Carrie S.; Boresch, Stefan; Ichiye, Toshiko; Brooks, Bernard R.; Woodcock, H. Lee

    2014-01-01

    This article describes the development, implementation, and use of web-based “lessons” to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e.g., phones and tablets), allowing easy integration of these advanced simulation techniques into coursework. Finally, one of the primary objections to web-based systems like CHARMMing has been that “point and click” simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance. PMID:25057988

  14. Parasitology tutoring system: a hypermedia computer-based application.

    PubMed

    Theodoropoulos, G; Loumos, V

    1994-02-14

    The teaching of parasitology is a basic course in all life sciences curricula, and up to now no computer-assisted tutoring system has been developed for this purpose. By using Knowledge Pro, an object-oriented software development tool, a hypermedia tutoring system for teaching parasitology to college students was developed. Generally, a tutoring system contains a domain expert, a student model, a pedagogical expert and the user interface. In this project, particular emphasis was given to the user interface design and the expert knowledge representation. The system allows access to the educational material through hypermedia and indexing at the pace of the student. The hypermedia access is facilitated through key words defined as hypertext and objects in pictures defined as hyper-areas. The indexing access is based on a list of parameters that refers to various characteristics of the parasites, e.g. taxonomy, host, organ, etc. In addition, this indexing access can be used for testing the student's level of understanding. The advantages of this system are its user-friendliness, graphical interface and ability to incorporate new educational material in the area of parasitology.

  15. User interfaces for computational science: A domain specific language for OOMMF embedded in Python

    NASA Astrophysics Data System (ADS)

    Beg, Marijan; Pepper, Ryan A.; Fangohr, Hans

    2017-05-01

    Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i) the re-compilation of source code, (ii) the use of configuration files, (iii) the graphical user interface, and (iv) embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF). We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.

  16. Autonomous power expert system advanced development

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Walters, Jerry L.

    1991-01-01

    The autonomous power expert (APEX) system is being developed at Lewis Research Center to function as a fault diagnosis advisor for a space power distribution test bed. APEX is a rule-based system capable of detecting faults and isolating the probable causes. APEX also has a justification facility to provide natural language explanations about conclusions reached during fault isolation. To help maintain the health of the power distribution system, additional capabilities were added to APEX. These capabilities allow detection and isolation of incipient faults and enable the expert system to recommend actions/procedure to correct the suspected fault conditions. New capabilities for incipient fault detection consist of storage and analysis of historical data and new user interface displays. After the cause of a fault is determined, appropriate recommended actions are selected by rule-based inferencing which provides corrective/extended test procedures. Color graphics displays and improved mouse-selectable menus were also added to provide a friendlier user interface. A discussion of APEX in general and a more detailed description of the incipient detection, recommended actions, and user interface developments during the last year are presented.

  17. Web-based computational chemistry education with CHARMMing I: Lessons and tutorial.

    PubMed

    Miller, Benjamin T; Singh, Rishi P; Schalk, Vinushka; Pevzner, Yuri; Sun, Jingjun; Miller, Carrie S; Boresch, Stefan; Ichiye, Toshiko; Brooks, Bernard R; Woodcock, H Lee

    2014-07-01

    This article describes the development, implementation, and use of web-based "lessons" to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e.g., phones and tablets), allowing easy integration of these advanced simulation techniques into coursework. Finally, one of the primary objections to web-based systems like CHARMMing has been that "point and click" simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance.

  18. Mobile tele-echography: user interface design.

    PubMed

    Cañero, Cristina; Thomos, Nikolaos; Triantafyllidis, George A; Litos, George C; Strintzis, Michael Gerassimos

    2005-03-01

    Ultrasound imaging allows the evaluation of the degree of emergency of a patient. However, in some instances, a well-trained sonographer is unavailable to perform such echography. To cope with this issue, the Mobile Tele-Echography Using an Ultralight Robot (OTELO) project aims to develop a fully integrated end-to-end mobile tele-echography system using an ultralight remote-controlled robot for population groups that are not served locally by medical experts. This paper focuses on the user interface of the OTELO system, consisting of the following parts: an ultrasound video transmission system providing real-time images of the scanned area, an audio/video conference to communicate with the paramedical assistant and with the patient, and a virtual-reality environment, providing visual and haptic feedback to the expert, while capturing the expert's hand movements. These movements are reproduced by the robot at the patient site while holding the ultrasound probe against the patient skin. In addition, the user interface includes an image processing facility for enhancing the received images and the possibility to include them into a database.

  19. User's Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)

    NASA Technical Reports Server (NTRS)

    Frederick, Dean K.; DeCastro, Jonathan A.; Litt, Jonathan S.

    2007-01-01

    This report is a Users Guide for the NASA-developed Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) software, which is a transient simulation of a large commercial turbofan engine (up to 90,000-lb thrust) with a realistic engine control system. The software supports easy access to health, control, and engine parameters through a graphical user interface (GUI). C-MAPSS provides the user with a graphical turbofan engine simulation environment in which advanced algorithms can be implemented and tested. C-MAPSS can run user-specified transient simulations, and it can generate state-space linear models of the nonlinear engine model at an operating point. The code has a number of GUI screens that allow point-and-click operation, and have editable fields for user-specified input. The software includes an atmospheric model which allows simulation of engine operation at altitudes from sea level to 40,000 ft, Mach numbers from 0 to 0.90, and ambient temperatures from -60 to 103 F. The package also includes a power-management system that allows the engine to be operated over a wide range of thrust levels throughout the full range of flight conditions.

  20. exVis: a visual analysis tool for wind tunnel data

    NASA Astrophysics Data System (ADS)

    Deardorff, D. G.; Keeley, Leslie E.; Uselton, Samuel P.

    1998-05-01

    exVis is a software tool created to support interactive display and analysis of data collected during wind tunnel experiments. It is a result of a continuing project to explore the uses of information technology in improving the effectiveness of aeronautical design professionals. The data analysis goals are accomplished by allowing aerodynamicists to display and query data collected by new data acquisition systems and to create traditional wind tunnel plots from this data by interactively interrogating these images. exVis was built as a collection of distinct modules to allow for rapid prototyping, to foster evolution of capabilities, and to facilitate object reuse within other applications being developed. It was implemented using C++ and Open Inventor, commercially available object-oriented tools. The initial version was composed of three main classes. Two of these modules are autonomous viewer objects intended to display the test images (ImageViewer) and the plots (GraphViewer). The third main class is the Application User Interface (AUI) which manages the passing of data and events between the viewers, as well as providing a user interface to certain features. User feedback was obtained on a regular basis, which allowed for quick revision cycles and appropriately enhanced feature sets. During the development process additional classes were added, including a color map editor and a data set manager. The ImageViewer module was substantially rewritten to add features and to use the data set manager. The use of an object-oriented design was successful in allowing rapid prototyping and easy feature addition.

  1. Entrez Neuron RDFa: a pragmatic Semantic Web application for data integration in neuroscience research

    PubMed Central

    Samwald, Matthias; Lim, Ernest; Masiar, Peter; Marenco, Luis; Chen, Huajun; Morse, Thomas; Mutalik, Pradeep; Shepherd, Gordon; Miller, Perry; Cheung, Kei-Hoi

    2013-01-01

    The amount of biomedical data available in Semantic Web formats has been rapidly growing in recent years. While these formats are machine-friendly, user-friendly web interfaces allowing easy querying of these data are typically lacking. We present “Entrez Neuron”, a pilot neuron-centric interface that allows for keyword-based queries against a coherent repository of OWL ontologies. These ontologies describe neuronal structures, physiology, mathematical models and microscopy images. The returned query results are organized hierarchically according to brain architecture. Where possible, the application makes use of entities from the Open Biomedical Ontologies (OBO) and the ‘HCLS knowledgebase’ developed by the W3C Interest Group for Health Care and Life Science. It makes use of the emerging RDFa standard to embed ontology fragments and semantic annotations within its HTML-based user interface. The application and underlying ontologies demonstrates how Semantic Web technologies can be used for information integration within a curated information repository and between curated information repositories. It also demonstrates how information integration can be accomplished on the client side, through simple copying and pasting of portions of documents that contain RDFa markup. PMID:19745321

  2. Development of a task analysis tool to facilitate user interface design

    NASA Technical Reports Server (NTRS)

    Scholtz, Jean C.

    1992-01-01

    A good user interface is one that facilitates the user in carrying out his task. Such interfaces are difficult and costly to produce. The most important aspect in producing a good interface is the ability to communicate to the software designers what the user's task is. The Task Analysis Tool is a system for cooperative task analysis and specification of the user interface requirements. This tool is intended to serve as a guide to development of initial prototypes for user feedback.

  3. Application driven interface generation for EASIE. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kao, Ya-Chen

    1992-01-01

    The Environment for Application Software Integration and Execution (EASIE) provides a user interface and a set of utility programs which support the rapid integration and execution of analysis programs about a central relational database. EASIE provides users with two basic modes of execution. One of them is a menu-driven execution mode, called Application-Driven Execution (ADE), which provides sufficient guidance to review data, select a menu action item, and execute an application program. The other mode of execution, called Complete Control Execution (CCE), provides an extended executive interface which allows in-depth control of the design process. Currently, the EASIE system is based on alphanumeric techniques only. It is the purpose of this project to extend the flexibility of the EASIE system in the ADE mode by implementing it in a window system. Secondly, a set of utilities will be developed to assist the experienced engineer in the generation of an ADE application.

  4. The 3D widgets for exploratory scientific visualization

    NASA Technical Reports Server (NTRS)

    Herndon, Kenneth P.; Meyer, Tom

    1995-01-01

    Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.

  5. A Python-based interface to examine motions in time series of solar images

    NASA Astrophysics Data System (ADS)

    Campos-Rozo, J. I.; Vargas Domínguez, S.

    2017-10-01

    Python is considered to be a mature programming language, besides of being widely accepted as an engaging option for scientific analysis in multiple areas, as will be presented in this work for the particular case of solar physics research. SunPy is an open-source library based on Python that has been recently developed to furnish software tools to solar data analysis and visualization. In this work we present a graphical user interface (GUI) based on Python and Qt to effectively compute proper motions for the analysis of time series of solar data. This user-friendly computing interface, that is intended to be incorporated to the Sunpy library, uses a local correlation tracking technique and some extra tools that allows the selection of different parameters to calculate, vizualize and analyze vector velocity fields of solar data, i.e. time series of solar filtergrams and magnetograms.

  6. Profex: a graphical user interface for the Rietveld refinement program BGMN.

    PubMed

    Doebelin, Nicola; Kleeberg, Reinhard

    2015-10-01

    Profex is a graphical user interface for the Rietveld refinement program BGMN . Its interface focuses on preserving BGMN 's powerful and flexible scripting features by giving direct access to BGMN input files. Very efficient workflows for single or batch refinements are achieved by managing refinement control files and structure files, by providing dialogues and shortcuts for many operations, by performing operations in the background, and by providing import filters for CIF and XML crystal structure files. Refinement results can be easily exported for further processing. State-of-the-art graphical export of diffraction patterns to pixel and vector graphics formats allows the creation of publication-quality graphs with minimum effort. Profex reads and converts a variety of proprietary raw data formats and is thus largely instrument independent. Profex and BGMN are available under an open-source license for Windows, Linux and OS X operating systems.

  7. Profex: a graphical user interface for the Rietveld refinement program BGMN

    PubMed Central

    Doebelin, Nicola; Kleeberg, Reinhard

    2015-01-01

    Profex is a graphical user interface for the Rietveld refinement program BGMN. Its interface focuses on preserving BGMN’s powerful and flexible scripting features by giving direct access to BGMN input files. Very efficient workflows for single or batch refinements are achieved by managing refinement control files and structure files, by providing dialogues and shortcuts for many operations, by performing operations in the background, and by providing import filters for CIF and XML crystal structure files. Refinement results can be easily exported for further processing. State-of-the-art graphical export of diffraction patterns to pixel and vector graphics formats allows the creation of publication-quality graphs with minimum effort. Profex reads and converts a variety of proprietary raw data formats and is thus largely instrument independent. Profex and BGMN are available under an open-source license for Windows, Linux and OS X operating systems. PMID:26500466

  8. Designing a spoken dialogue interface to an intelligent cognitive assistant for people with dementia.

    PubMed

    Wolters, Maria Klara; Kelly, Fiona; Kilgour, Jonathan

    2016-12-01

    Intelligent cognitive assistants support people who need help performing everyday tasks by detecting when problems occur and providing tailored and context-sensitive assistance. Spoken dialogue interfaces allow users to interact with intelligent cognitive assistants while focusing on the task at hand. In order to establish requirements for voice interfaces to intelligent cognitive assistants, we conducted three focus groups with people with dementia, carers, and older people without a diagnosis of dementia. Analysis of the focus group data showed that voice and interaction style should be chosen based on the preferences of the user, not those of the carer. For people with dementia, the intelligent cognitive assistant should act like a patient, encouraging guide, while for older people without dementia, assistance should be to the point and not patronising. The intelligent cognitive assistant should be able to adapt to cognitive decline. © The Author(s) 2015.

  9. Xi-cam: a versatile interface for data visualization and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandolfi, Ronald J.; Allan, Daniel B.; Arenholz, Elke

    Xi-cam is an extensible platform for data management, analysis and visualization.Xi-camaims to provide a flexible and extensible approach to synchrotron data treatment as a solution to rising demands for high-volume/high-throughput processing pipelines. The core ofXi-camis an extensible plugin-based graphical user interface platform which provides users with an interactive interface to processing algorithms. Plugins are available for SAXS/WAXS/GISAXS/GIWAXS, tomography and NEXAFS data. WithXi-cam's `advanced' mode, data processing steps are designed as a graph-based workflow, which can be executed live, locally or remotely. Remote execution utilizes high-performance computing or de-localized resources, allowing for the effective reduction of high-throughput data.Xi-cam's plugin-based architecture targetsmore » cross-facility and cross-technique collaborative development, in support of multi-modal analysis.Xi-camis open-source and cross-platform, and available for download on GitHub.« less

  10. Xi-cam: a versatile interface for data visualization and analysis

    DOE PAGES

    Pandolfi, Ronald J.; Allan, Daniel B.; Arenholz, Elke; ...

    2018-05-31

    Xi-cam is an extensible platform for data management, analysis and visualization.Xi-camaims to provide a flexible and extensible approach to synchrotron data treatment as a solution to rising demands for high-volume/high-throughput processing pipelines. The core ofXi-camis an extensible plugin-based graphical user interface platform which provides users with an interactive interface to processing algorithms. Plugins are available for SAXS/WAXS/GISAXS/GIWAXS, tomography and NEXAFS data. WithXi-cam's `advanced' mode, data processing steps are designed as a graph-based workflow, which can be executed live, locally or remotely. Remote execution utilizes high-performance computing or de-localized resources, allowing for the effective reduction of high-throughput data.Xi-cam's plugin-based architecture targetsmore » cross-facility and cross-technique collaborative development, in support of multi-modal analysis.Xi-camis open-source and cross-platform, and available for download on GitHub.« less

  11. CodeSlinger: a case study in domain-driven interactive tool design for biomedical coding scheme exploration and use.

    PubMed

    Flowers, Natalie L

    2010-01-01

    CodeSlinger is a desktop application that was developed to aid medical professionals in the intertranslation, exploration, and use of biomedical coding schemes. The application was designed to provide a highly intuitive, easy-to-use interface that simplifies a complex business problem: a set of time-consuming, laborious tasks that were regularly performed by a group of medical professionals involving manually searching coding books, searching the Internet, and checking documentation references. A workplace observation session with a target user revealed the details of the current process and a clear understanding of the business goals of the target user group. These goals drove the design of the application's interface, which centers on searches for medical conditions and displays the codes found in the application's database that represent those conditions. The interface also allows the exploration of complex conceptual relationships across multiple coding schemes.

  12. A MATLAB-based graphical user interface for the identification of muscular activations from surface electromyography signals.

    PubMed

    Mengarelli, Alessandro; Cardarelli, Stefano; Verdini, Federica; Burattini, Laura; Fioretti, Sandro; Di Nardo, Francesco

    2016-08-01

    In this paper a graphical user interface (GUI) built in MATLAB® environment is presented. This interactive tool has been developed for the analysis of superficial electromyography (sEMG) signals and in particular for the assessment of the muscle activation time intervals. After the signal import, the tool performs a first analysis in a totally user independent way, providing a reliable computation of the muscular activation sequences. Furthermore, the user has the opportunity to modify each parameter of the on/off identification algorithm implemented in the presented tool. The presence of an user-friendly GUI allows the immediate evaluation of the effects that the modification of every single parameter has on the activation intervals recognition, through the real-time updating and visualization of the muscular activation/deactivation sequences. The possibility to accept the initial signal analysis or to modify the on/off identification with respect to each considered signal, with a real-time visual feedback, makes this GUI-based tool a valuable instrument in clinical, research applications and also in an educational perspective.

  13. adLIMS: a customized open source software that allows bridging clinical and basic molecular research studies.

    PubMed

    Calabria, Andrea; Spinozzi, Giulio; Benedicenti, Fabrizio; Tenderini, Erika; Montini, Eugenio

    2015-01-01

    Many biological laboratories that deal with genomic samples are facing the problem of sample tracking, both for pure laboratory management and for efficiency. Our laboratory exploits PCR techniques and Next Generation Sequencing (NGS) methods to perform high-throughput integration site monitoring in different clinical trials and scientific projects. Because of the huge amount of samples that we process every year, which result in hundreds of millions of sequencing reads, we need to standardize data management and tracking systems, building up a scalable and flexible structure with web-based interfaces, which are usually called Laboratory Information Management System (LIMS). We started collecting end-users' requirements, composed of desired functionalities of the system and Graphical User Interfaces (GUI), and then we evaluated available tools that could address our requirements, spanning from pure LIMS to Content Management Systems (CMS) up to enterprise information systems. Our analysis identified ADempiere ERP, an open source Enterprise Resource Planning written in Java J2EE, as the best software that also natively implements some highly desirable technological advances, such as the high usability and modularity that grants high use-case flexibility and software scalability for custom solutions. We extended and customized ADempiere ERP to fulfil LIMS requirements and we developed adLIMS. It has been validated by our end-users verifying functionalities and GUIs through test cases for PCRs samples and pre-sequencing data and it is currently in use in our laboratories. adLIMS implements authorization and authentication policies, allowing multiple users management and roles definition that enables specific permissions, operations and data views to each user. For example, adLIMS allows creating sample sheets from stored data using available exporting operations. This simplicity and process standardization may avoid manual errors and information backtracking, features that are not granted using track recording on files or spreadsheets. adLIMS aims to combine sample tracking and data reporting features with higher accessibility and usability of GUIs, thus allowing time to be saved on doing repetitive laboratory tasks, and reducing errors with respect to manual data collection methods. Moreover, adLIMS implements automated data entry, exploiting sample data multiplexing and parallel/transactional processing. adLIMS is natively extensible to cope with laboratory automation through platform-dependent API interfaces, and could be extended to genomic facilities due to the ERP functionalities.

  14. Formal analysis and automatic generation of user interfaces: approach, methodology, and an algorithm.

    PubMed

    Heymann, Michael; Degani, Asaf

    2007-04-01

    We present a formal approach and methodology for the analysis and generation of user interfaces, with special emphasis on human-automation interaction. A conceptual approach for modeling, analyzing, and verifying the information content of user interfaces is discussed. The proposed methodology is based on two criteria: First, the interface must be correct--that is, given the interface indications and all related information (user manuals, training material, etc.), the user must be able to successfully perform the specified tasks. Second, the interface and related information must be succinct--that is, the amount of information (mode indications, mode buttons, parameter settings, etc.) presented to the user must be reduced (abstracted) to the minimum necessary. A step-by-step procedure for generating the information content of the interface that is both correct and succinct is presented and then explained and illustrated via two examples. Every user interface is an abstract description of the underlying system. The correspondence between the abstracted information presented to the user and the underlying behavior of a given machine can be analyzed and addressed formally. The procedure for generating the information content of user interfaces can be automated, and a software tool for its implementation has been developed. Potential application areas include adaptive interface systems and customized/personalized interfaces.

  15. MAPPER: A personal computer map projection tool

    NASA Technical Reports Server (NTRS)

    Bailey, Steven A.

    1993-01-01

    MAPPER is a set of software tools designed to let users create and manipulate map projections on a personal computer (PC). The capability exists to generate five popular map projections. These include azimuthal, cylindrical, mercator, lambert, and sinusoidal projections. Data for projections are contained in five coordinate databases at various resolutions. MAPPER is managed by a system of pull-down windows. This interface allows the user to intuitively create, view and export maps to other platforms.

  16. Interface cloning and sharing: Interaction designs for conserving labor and maintaining state across 24X7 sensor operations teams

    NASA Astrophysics Data System (ADS)

    Ganter, John H.; Reeves, Paul C.

    2017-05-01

    Processing remote sensing data is the epitome of computation, yet real-time collection systems remain human-labor intensive. Operator labor is consumed by both overhead tasks (cost) and value-added production (benefit). In effect, labor is taxed and then lost. When an operator comes on-shift, they typically duplicate setup work that their teammates have already performed many times. "Pass down" of state information can be difficult if security restrictions require total logouts and blank screens - hours or even days of valuable history and context are lost. As work proceeds, duplicative effort is common because it is typically easier for operators to "do it over" rather than share what others have already done. As we begin a major new system version, we are refactoring the user interface to reduce time and motion losses. Working with users, we are developing "click budgets" to streamline interface use. One basic function is shared clipboards to reduce the use of sticky notes and verbal communication of data strings. We illustrate two additional designs to share work: window copying and window sharing. Copying (technically, shallow or deep object cloning) allows any system user to duplicate a window and configuration for themselves or another to use. Sharing allows a window to have multiple users: shareholders with read-write functionality and viewers with read-only. These solutions would allow windows to persist across multiple shifts, with a rotating cast of shareholders and viewers. Windows thus become durable objects of shared effort and persistent state. While these are low-tech functions, the cumulative labor savings in a 24X7 crew position (525,000 minutes/year spread over multiple individuals) would be significant. New design and implementation is never free and these investments typically do not appeal to government acquisition officers with short-term acquisition-cost concerns rather than a long-term O and M (operations and maintenance) perspective. We share some successes in educating some officers, in collaboration with system users, about the human capital involved in operating the systems they are acquiring.

  17. Standards for the user interface - Developing a user consensus. [for Space Station Information System

    NASA Technical Reports Server (NTRS)

    Moe, Karen L.; Perkins, Dorothy C.; Szczur, Martha R.

    1987-01-01

    The user support environment (USE) which is a set of software tools for a flexible standard interactive user interface to the Space Station systems, platforms, and payloads is described in detail. Included in the USE concept are a user interface language, a run time environment and user interface management system, support tools, and standards for human interaction methods. The goals and challenges of the USE are discussed as well as a methodology based on prototype demonstrations for involving users in the process of validating the USE concepts. By prototyping the key concepts and salient features of the proposed user interface standards, the user's ability to respond is greatly enhanced.

  18. Using a Java Web-based Graphical User Interface to access the SOHO Data Arch ive

    NASA Astrophysics Data System (ADS)

    Scholl, I.; Girard, Y.; Bykowski, A.

    This paper presents the architecture of a Java web-based graphical interface dedicated to the access of the SOHO Data archive. This application allows local and remote users to search in the SOHO data catalog and retrieve the SOHO data files from the archive. It has been developed at MEDOC (Multi-Experiment Data and Operations Centre), located at the Institut d'Astrophysique Spatiale (Orsay, France), which is one of the European Archives for the SOHO data. This development is part of a joint effort between ESA, NASA and IAS in order to implement long term archive systems for the SOHO data. The software architecture is built as a client-server application using Java language and SQL above a set of components such as an HTTP server, a JDBC gateway, a RDBMS server, a data server and a Web browser. Since HTML pages and CGI scripts are not powerful enough to allow user interaction during a multi-instrument catalog search, this type of requirement enforces the choice of Java as the main language. We also discuss performance issues, security problems and portability on different Web browsers and operating syste ms.

  19. CONSOLE: A CAD tandem for optimization-based design interacting with user-supplied simulators

    NASA Technical Reports Server (NTRS)

    Fan, Michael K. H.; Wang, Li-Sheng; Koninckx, Jan; Tits, Andre L.

    1989-01-01

    CONSOLE employs a recently developed design methodology (International Journal of Control 43:1693-1721) which provides the designer with a congenial environment to express his problem as a multiple ojective constrained optimization problem and allows him to refine his characterization of optimality when a suboptimal design is approached. To this end, in CONSOLE, the designed formulates the design problem using a high-level language and performs design task and explores tradeoff through a few short and clearly defined commands. The range of problems that can be solved efficiently using a CAD tools depends very much on the ability of this tool to be interfaced with user-supplied simulators. For instance, when designing a control system one makes use of the characteristics of the plant, and therefore, a model of the plant under study has to be made available to the CAD tool. CONSOLE allows for an easy interfacing of almost any simulator the user has available. To date CONSOLE has already been used successfully in many applications, including the design of controllers for a flexible arm and for a robotic manipulator and the solution of a parameter selection problem for a neural network.

  20. Controlling Laboratory Processes From A Personal Computer

    NASA Technical Reports Server (NTRS)

    Will, H.; Mackin, M. A.

    1991-01-01

    Computer program provides natural-language process control from IBM PC or compatible computer. Sets up process-control system that either runs without operator or run by workers who have limited programming skills. Includes three smaller programs. Two of them, written in FORTRAN 77, record data and control research processes. Third program, written in Pascal, generates FORTRAN subroutines used by other two programs to identify user commands with device-driving routines written by user. Also includes set of input data allowing user to define user commands to be executed by computer. Requires personal computer operating under MS-DOS with suitable hardware interfaces to all controlled devices. Also requires FORTRAN 77 compiler and device drivers written by user.

  1. A Neural Network Approach to Intention Modeling for User-Adapted Conversational Agents

    PubMed Central

    Griol, David

    2016-01-01

    Spoken dialogue systems have been proposed to enable a more natural and intuitive interaction with the environment and human-computer interfaces. In this contribution, we present a framework based on neural networks that allows modeling of the user's intention during the dialogue and uses this prediction to dynamically adapt the dialogue model of the system taking into consideration the user's needs and preferences. We have evaluated our proposal to develop a user-adapted spoken dialogue system that facilitates tourist information and services and provide a detailed discussion of the positive influence of our proposal in the success of the interaction, the information and services provided, and the quality perceived by the users. PMID:26819592

  2. BioMart: a data federation framework for large collaborative projects.

    PubMed

    Zhang, Junjun; Haider, Syed; Baran, Joachim; Cros, Anthony; Guberman, Jonathan M; Hsu, Jack; Liang, Yong; Yao, Long; Kasprzyk, Arek

    2011-01-01

    BioMart is a freely available, open source, federated database system that provides a unified access to disparate, geographically distributed data sources. It is designed to be data agnostic and platform independent, such that existing databases can easily be incorporated into the BioMart framework. BioMart allows databases hosted on different servers to be presented seamlessly to users, facilitating collaborative projects between different research groups. BioMart contains several levels of query optimization to efficiently manage large data sets and offers a diverse selection of graphical user interfaces and application programming interfaces to ensure that queries can be performed in whatever manner is most convenient for the user. The software has now been adopted by a large number of different biological databases spanning a wide range of data types and providing a rich source of annotation available to bioinformaticians and biologists alike.

  3. IDEOM: an Excel interface for analysis of LC-MS-based metabolomics data.

    PubMed

    Creek, Darren J; Jankevics, Andris; Burgess, Karl E V; Breitling, Rainer; Barrett, Michael P

    2012-04-01

    The application of emerging metabolomics technologies to the comprehensive investigation of cellular biochemistry has been limited by bottlenecks in data processing, particularly noise filtering and metabolite identification. IDEOM provides a user-friendly data processing application that automates filtering and identification of metabolite peaks, paying particular attention to common sources of noise and false identifications generated by liquid chromatography-mass spectrometry (LC-MS) platforms. Building on advanced processing tools such as mzMatch and XCMS, it allows users to run a comprehensive pipeline for data analysis and visualization from a graphical user interface within Microsoft Excel, a familiar program for most biological scientists. IDEOM is provided free of charge at http://mzmatch.sourceforge.net/ideom.html, as a macro-enabled spreadsheet (.xlsb). Implementation requires Microsoft Excel (2007 or later). R is also required for full functionality. michael.barrett@glasgow.ac.uk Supplementary data are available at Bioinformatics online.

  4. A Cloud-Based Simulation Architecture for Pandemic Influenza Simulation

    PubMed Central

    Eriksson, Henrik; Raciti, Massimiliano; Basile, Maurizio; Cunsolo, Alessandro; Fröberg, Anders; Leifler, Ola; Ekberg, Joakim; Timpka, Toomas

    2011-01-01

    High-fidelity simulations of pandemic outbreaks are resource consuming. Cluster-based solutions have been suggested for executing such complex computations. We present a cloud-based simulation architecture that utilizes computing resources both locally available and dynamically rented online. The approach uses the Condor framework for job distribution and management of the Amazon Elastic Computing Cloud (EC2) as well as local resources. The architecture has a web-based user interface that allows users to monitor and control simulation execution. In a benchmark test, the best cost-adjusted performance was recorded for the EC2 H-CPU Medium instance, while a field trial showed that the job configuration had significant influence on the execution time and that the network capacity of the master node could become a bottleneck. We conclude that it is possible to develop a scalable simulation environment that uses cloud-based solutions, while providing an easy-to-use graphical user interface. PMID:22195089

  5. National Geothermal Data System: Open Access to Geoscience Data, Maps, and Documents

    NASA Astrophysics Data System (ADS)

    Caudill, C. M.; Richard, S. M.; Musil, L.; Sonnenschein, A.; Good, J.

    2014-12-01

    The U.S. National Geothermal Data System (NGDS) provides free open access to millions of geoscience data records, publications, maps, and reports via distributed web services to propel geothermal research, development, and production. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG), and is compliant with international standards and protocols. NGDS currently serves geoscience information from 60+ data providers in all 50 states. Free and open source software is used in this federated system where data owners maintain control of their data. This interactive online system makes geoscience data easily discoverable, accessible, and interoperable at no cost to users. The dynamic project site http://geothermaldata.org serves as the information source and gateway to the system, allowing data and applications discovery and availability of the system's data feed. It also provides access to NGDS specifications and the free and open source code base (on GitHub), a map-centric and library style search interface, other software applications utilizing NGDS services, NGDS tutorials (via YouTube and USGIN site), and user-created tools and scripts. The user-friendly map-centric web-based application has been created to support finding, visualizing, mapping, and acquisition of data based on topic, location, time, provider, or key words. Geographic datasets visualized through the map interface also allow users to inspect the details of individual GIS data points (e.g. wells, geologic units, etc.). In addition, the interface provides the information necessary for users to access the GIS data from third party software applications such as GoogleEarth, UDig, and ArcGIS. A redistributable, free and open source software package called GINstack (USGIN software stack) was also created to give data providers a simple way to release data using interoperable and shareable standards, upload data and documents, and expose those data as a node in the NGDS or any larger data system through a CSW endpoint. The easy-to-use interface is supported by back-end software including Postgres, GeoServer, and custom CKAN extensions among others.

  6. Automatic Figure Ranking and User Interfacing for Intelligent Figure Search

    PubMed Central

    Yu, Hong; Liu, Feifan; Ramesh, Balaji Polepalli

    2010-01-01

    Background Figures are important experimental results that are typically reported in full-text bioscience articles. Bioscience researchers need to access figures to validate research facts and to formulate or to test novel research hypotheses. On the other hand, the sheer volume of bioscience literature has made it difficult to access figures. Therefore, we are developing an intelligent figure search engine (http://figuresearch.askhermes.org). Existing research in figure search treats each figure equally, but we introduce a novel concept of “figure ranking”: figures appearing in a full-text biomedical article can be ranked by their contribution to the knowledge discovery. Methodology/Findings We empirically validated the hypothesis of figure ranking with over 100 bioscience researchers, and then developed unsupervised natural language processing (NLP) approaches to automatically rank figures. Evaluating on a collection of 202 full-text articles in which authors have ranked the figures based on importance, our best system achieved a weighted error rate of 0.2, which is significantly better than several other baseline systems we explored. We further explored a user interfacing application in which we built novel user interfaces (UIs) incorporating figure ranking, allowing bioscience researchers to efficiently access important figures. Our evaluation results show that 92% of the bioscience researchers prefer as the top two choices the user interfaces in which the most important figures are enlarged. With our automatic figure ranking NLP system, bioscience researchers preferred the UIs in which the most important figures were predicted by our NLP system than the UIs in which the most important figures were randomly assigned. In addition, our results show that there was no statistical difference in bioscience researchers' preference in the UIs generated by automatic figure ranking and UIs by human ranking annotation. Conclusion/Significance The evaluation results conclude that automatic figure ranking and user interfacing as we reported in this study can be fully implemented in online publishing. The novel user interface integrated with the automatic figure ranking system provides a more efficient and robust way to access scientific information in the biomedical domain, which will further enhance our existing figure search engine to better facilitate accessing figures of interest for bioscientists. PMID:20949102

  7. Monitoring and Acquisition Real-time System (MARS)

    NASA Technical Reports Server (NTRS)

    Holland, Corbin

    2013-01-01

    MARS is a graphical user interface (GUI) written in MATLAB and Java, allowing the user to configure and control the Scalable Parallel Architecture for Real-Time Acquisition and Analysis (SPARTAA) data acquisition system. SPARTAA not only acquires data, but also allows for complex algorithms to be applied to the acquired data in real time. The MARS client allows the user to set up and configure all settings regarding the data channels attached to the system, as well as have complete control over starting and stopping data acquisition. It provides a unique "Test" programming environment, allowing the user to create tests consisting of a series of alarms, each of which contains any number of data channels. Each alarm is configured with a particular algorithm, determining the type of processing that will be applied on each data channel and tested against a defined threshold. Tests can be uploaded to SPARTAA, thereby teaching it how to process the data. The uniqueness of MARS is in its capability to be adaptable easily to many test configurations. MARS sends and receives protocols via TCP/IP, which allows for quick integration into almost any test environment. The use of MATLAB and Java as the programming languages allows for developers to integrate the software across multiple operating platforms.

  8. A RESTful interface to pseudonymization services in modern web applications.

    PubMed

    Lablans, Martin; Borg, Andreas; Ückert, Frank

    2015-02-07

    Medical research networks rely on record linkage and pseudonymization to determine which records from different sources relate to the same patient. To establish informational separation of powers, the required identifying data are redirected to a trusted third party that has, in turn, no access to medical data. This pseudonymization service receives identifying data, compares them with a list of already reported patient records and replies with a (new or existing) pseudonym. We found existing solutions to be technically outdated, complex to implement or not suitable for internet-based research infrastructures. In this article, we propose a new RESTful pseudonymization interface tailored for use in web applications accessed by modern web browsers. The interface is modelled as a resource-oriented architecture, which is based on the representational state transfer (REST) architectural style. We translated typical use-cases into resources to be manipulated with well-known HTTP verbs. Patients can be re-identified in real-time by authorized users' web browsers using temporary identifiers. We encourage the use of PID strings for pseudonyms and the EpiLink algorithm for record linkage. As a proof of concept, we developed a Java Servlet as reference implementation. The following resources have been identified: Sessions allow data associated with a client to be stored beyond a single request while still maintaining statelessness. Tokens authorize for a specified action and thus allow the delegation of authentication. Patients are identified by one or more pseudonyms and carry identifying fields. Relying on HTTP calls alone, the interface is firewall-friendly. The reference implementation has proven to be production stable. The RESTful pseudonymization interface fits the requirements of web-based scenarios and allows building applications that make pseudonymization transparent to the user using ordinary web technology. The open-source reference implementation implements the web interface as well as a scientifically grounded algorithm to generate non-speaking pseudonyms.

  9. SCAILET - An intelligent assistant for satellite ground terminal operations

    NASA Technical Reports Server (NTRS)

    Shahidi, A. K.; Crapo, J. A.; Schlegelmilch, R. F.; Reinhart, R. C.; Petrik, E. J.; Walters, J. L.; Jones, R. E.

    1992-01-01

    Space communication artificial intelligence for the link evaluation terminal (SCAILET) is an experimenter interface to the link evaluation terminal (LET) developed by NASA through the application of artificial intelligence to an advanced ground terminal. The high-burst-rate (HBR) LET provides the required capabilities for wideband communications experiments with the advanced communications technology satellite (ACTS). The HBR-LET terminal consists of seven major subsystems and is controlled and monitored by a minicomputer through an IEEE-488 or RS-232 interface. Programming scripts configure HBR-LET and allow data acquisition but are difficult to use and therefore the full capabilities of the system are not utilized. An intelligent assistant module was developed as part of the SCAILET module and solves problems encountered during configuration of the HBR-LET system. This assistant is a graphical interface with an expert system running in the background and allows users to configure instrumentation, program sequences and reference documentation. The simplicity of use makes SCAILET a superior interface to the ASCII terminal and continuous monitoring allows nearly flawless configuration and execution of HBR-LET experiments.

  10. JAIL: a structure-based interface library for macromolecules.

    PubMed

    Günther, Stefan; von Eichborn, Joachim; May, Patrick; Preissner, Robert

    2009-01-01

    The increasing number of solved macromolecules provides a solid number of 3D interfaces, if all types of molecular contacts are being considered. JAIL annotates three different kinds of macromolecular interfaces, those between interacting protein domains, interfaces of different protein chains and interfaces between proteins and nucleic acids. This results in a total number of about 184,000 database entries. All the interfaces can easily be identified by a detailed search form or by a hierarchical tree that describes the protein domain architectures classified by the SCOP database. Visual inspection of the interfaces is possible via an interactive protein viewer. Furthermore, large scale analyses are supported by an implemented sequential and by a structural clustering. Similar interfaces as well as non-redundant interfaces can be easily picked out. Additionally, the sequential conservation of binding sites was also included in the database and is retrievable via Jmol. A comprehensive download section allows the composition of representative data sets with user defined parameters. The huge data set in combination with various search options allow a comprehensive view on all interfaces between macromolecules included in the Protein Data Bank (PDB). The download of the data sets supports numerous further investigations in macromolecular recognition. JAIL is publicly available at http://bioinformatics.charite.de/jail.

  11. Mars Data analysis and visualization with Marsoweb

    NASA Astrophysics Data System (ADS)

    Gulick, V. G.; Deardorff, D. G.

    2003-04-01

    Marsoweb is a collaborative web environment that has been developed for the Mars research community to better visualize and analyze Mars orbiter data. Its goal is to enable online data discovery by providing an intuitive, interactive interface to data from the Mars Global Surveyor and other orbiters. Recently Marsoweb has served a prominent role as a resource center for the site selection process for the Mars Explorer Rover 2003 missions. In addition to hosting a repository of landing site memoranda and workshop talks, it includes a Java-based interface to a variety of data maps and images. This interface enables the display and numerical querying of data, and allows data profiles to be rendered from user-drawn cross-sections. High-resolution Mars Orbiter Camera (MOC) images (currently, over 100,000) can be graphically perused; browser-based image processing tools can be used on MOC images of potential landing sites. An automated VRML atlas allows users to construct "flyovers" of their own regions-of-interest in 3D. These capabilities enable Marsoweb to be used for general global data studies, in addition to those specific to landing site selection. As of December 2002, Marsoweb has been viewed by 88,000 distinct users with a total of 3.3 million hits (801,000 page requests in all) from NASA, USGS, academia, and the general public have accessed Marsoweb. The High Resolution Imaging Experiment team for the Mars 2005 Orbiter (HiRISE, PI Alfred McEwen) plans to cast a wide net to collect targeting suggestions. Members of the general public as well as the broad Mars science community will be able to submit suggestions of high resolution imaging targets. The web-based interface for target suggestion input (HiWeb) will be based upon Marsoweb (http://marsoweb.nas.nasa.gov).

  12. Technique and cue selection for graphical presentation of generic hyperdimensional data

    NASA Astrophysics Data System (ADS)

    Howard, Lee M.; Burton, Robert P.

    2013-12-01

    Several presentation techniques have been created for visualization of data with more than three variables. Packages have been written, each of which implements a subset of these techniques. However, these packages generally fail to provide all the features needed by the user during the visualization process. Further, packages generally limit support for presentation techniques to a few techniques. A new package called Petrichor accommodates all necessary and useful features together in one system. Any presentation technique may be added easily through an extensible plugin system. Features are supported by a user interface that allows easy interaction with data. Annotations allow users to mark up visualizations and share information with others. By providing a hyperdimensional graphics package that easily accommodates presentation techniques and includes a complete set of features, including those that are rarely or never supported elsewhere, the user is provided with a tool that facilitates improved interaction with multivariate data to extract and disseminate information.

  13. DEB: A Diagnostic Experience Browser using similarity networks

    NASA Technical Reports Server (NTRS)

    Casadaban, Cyprian E.

    1990-01-01

    Diagnostic Experience Browser (DEB): a fusion of knowledge base and data base that allows users to examine only the data which is most useful to them is described. The system combines a data base of historical cases of diagnostic trouble-shooting experience with similarity networks. A menu-driven natural language interface receives input about the user's current problem. Similarity networks provide the user with references to past cases that are most similar or most related to those they now face. The user can then choose the case that is most pertinent and browse its full textual description which, in turn, may include references to other related cases.

  14. A Scientific Collaboration Tool Built on the Facebook Platform

    PubMed Central

    Bedrick, Steven D.; Sittig, Dean F.

    2008-01-01

    We describe an application (“Medline Publications”) written for the Facebook platform that allows users to maintain and publish a list of their own Medline-indexed publications, as well as easily access their contacts’ lists. The system is semi-automatic in that it interfaces directly with the National Library of Medicine’s PubMed database to find and retrieve citation data. Furthermore, the system has the capability to present the user with sets of other users with similar publication profiles. As of July 2008, Medline Publications has attracted approximately 759 users, 624 of which have listed a total of 5,193 unique publications. PMID:18999247

  15. Neurovascular Network Explorer 1.0: a database of 2-photon single-vessel diameter measurements with MATLAB(®) graphical user interface.

    PubMed

    Sridhar, Vishnu B; Tian, Peifang; Dale, Anders M; Devor, Anna; Saisan, Payam A

    2014-01-01

    We present a database client software-Neurovascular Network Explorer 1.0 (NNE 1.0)-that uses MATLAB(®) based Graphical User Interface (GUI) for interaction with a database of 2-photon single-vessel diameter measurements from our previous publication (Tian et al., 2010). These data are of particular interest for modeling the hemodynamic response. NNE 1.0 is downloaded by the user and then runs either as a MATLAB script or as a standalone program on a Windows platform. The GUI allows browsing the database according to parameters specified by the user, simple manipulation and visualization of the retrieved records (such as averaging and peak-normalization), and export of the results. Further, we provide NNE 1.0 source code. With this source code, the user can database their own experimental results, given the appropriate data structure and naming conventions, and thus share their data in a user-friendly format with other investigators. NNE 1.0 provides an example of seamless and low-cost solution for sharing of experimental data by a regular size neuroscience laboratory and may serve as a general template, facilitating dissemination of biological results and accelerating data-driven modeling approaches.

  16. Pulse sequence programming in a dynamic visual environment: SequenceTree.

    PubMed

    Magland, Jeremy F; Li, Cheng; Langham, Michael C; Wehrli, Felix W

    2016-01-01

    To describe SequenceTree, an open source, integrated software environment for implementing MRI pulse sequences and, ideally, exporting them to actual MRI scanners. The software is a user-friendly alternative to vendor-supplied pulse sequence design and editing tools and is suited for programmers and nonprogrammers alike. The integrated user interface was programmed using the Qt4/C++ toolkit. As parameters and code are modified, the pulse sequence diagram is automatically updated within the user interface. Several aspects of pulse programming are handled automatically, allowing users to focus on higher-level aspects of sequence design. Sequences can be simulated using a built-in Bloch equation solver and then exported for use on a Siemens MRI scanner. Ideally, other types of scanners will be supported in the future. SequenceTree has been used for 8 years in our laboratory and elsewhere and has contributed to more than 50 peer-reviewed publications in areas such as cardiovascular imaging, solid state and nonproton NMR, MR elastography, and high-resolution structural imaging. SequenceTree is an innovative, open source, visual pulse sequence environment for MRI combining simplicity with flexibility and is ideal both for advanced users and users with limited programming experience. © 2015 Wiley Periodicals, Inc.

  17. Clinician accessible tools for GUI computational models of transcranial electrical stimulation: BONSAI and SPHERES.

    PubMed

    Truong, Dennis Q; Hüber, Mathias; Xie, Xihe; Datta, Abhishek; Rahman, Asif; Parra, Lucas C; Dmochowski, Jacek P; Bikson, Marom

    2014-01-01

    Computational models of brain current flow during transcranial electrical stimulation (tES), including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), are increasingly used to understand and optimize clinical trials. We propose that broad dissemination requires a simple graphical user interface (GUI) software that allows users to explore and design montages in real-time, based on their own clinical/experimental experience and objectives. We introduce two complimentary open-source platforms for this purpose: BONSAI and SPHERES. BONSAI is a web (cloud) based application (available at neuralengr.com/bonsai) that can be accessed through any flash-supported browser interface. SPHERES (available at neuralengr.com/spheres) is a stand-alone GUI application that allow consideration of arbitrary montages on a concentric sphere model by leveraging an analytical solution. These open-source tES modeling platforms are designed go be upgraded and enhanced. Trade-offs between open-access approaches that balance ease of access, speed, and flexibility are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    PubMed

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  19. Development and Implementation of Software for Visualizing and Editing Multidimensional Flight Simulation Input Data

    NASA Technical Reports Server (NTRS)

    Whelan, Todd Michael

    1996-01-01

    In a real-time or batch mode simulation that is designed to model aircraft dynamics over a wide range of flight conditions, a table look- up scheme is implemented to determine the forces and moments on the vehicle based upon the values of parameters such as angle of attack, altitude, Mach number, and control surface deflections. Simulation Aerodynamic Variable Interface (SAVI) is a graphical user interface to the flight simulation input data, designed to operate on workstations that support X Windows. The purpose of the application is to provide two and three dimensional visualization of the data, to allow an intuitive sense of the data set. SAVI also allows the user to manipulate the data, either to conduct an interactive study of the influence of changes on the vehicle dynamics, or to make revisions to data set based on new information such as flight test. This paper discusses the reasons for developing the application, provides an overview of its capabilities, and outlines the software architecture and operating environment.

  20. DASS-GUI: a user interface for identification and analysis of significant patterns in non-sequential data.

    PubMed

    Hollunder, Jens; Friedel, Maik; Kuiper, Martin; Wilhelm, Thomas

    2010-04-01

    Many large 'omics' datasets have been published and many more are expected in the near future. New analysis methods are needed for best exploitation. We have developed a graphical user interface (GUI) for easy data analysis. Our discovery of all significant substructures (DASS) approach elucidates the underlying modularity, a typical feature of complex biological data. It is related to biclustering and other data mining approaches. Importantly, DASS-GUI also allows handling of multi-sets and calculation of statistical significances. DASS-GUI contains tools for further analysis of the identified patterns: analysis of the pattern hierarchy, enrichment analysis, module validation, analysis of additional numerical data, easy handling of synonymous names, clustering, filtering and merging. Different export options allow easy usage of additional tools such as Cytoscape. Source code, pre-compiled binaries for different systems, a comprehensive tutorial, case studies and many additional datasets are freely available at http://www.ifr.ac.uk/dass/gui/. DASS-GUI is implemented in Qt.

  1. Southern California Earthquake Center Geologic Vertical Motion Database

    NASA Astrophysics Data System (ADS)

    Niemi, Nathan A.; Oskin, Michael; Rockwell, Thomas K.

    2008-07-01

    The Southern California Earthquake Center Geologic Vertical Motion Database (VMDB) integrates disparate sources of geologic uplift and subsidence data at 104- to 106-year time scales into a single resource for investigations of crustal deformation in southern California. Over 1800 vertical deformation rate data points in southern California and northern Baja California populate the database. Four mature data sets are now represented: marine terraces, incised river terraces, thermochronologic ages, and stratigraphic surfaces. An innovative architecture and interface of the VMDB exposes distinct data sets and reference frames, permitting user exploration of this complex data set and allowing user control over the assumptions applied to convert geologic and geochronologic information into absolute uplift rates. Online exploration and download tools are available through all common web browsers, allowing the distribution of vertical motion results as HTML tables, tab-delimited GIS-compatible text files, or via a map interface through the Google Maps™ web service. The VMDB represents a mature product for research of fault activity and elastic deformation of southern California.

  2. Data Mining as a Service (DMaaS)

    NASA Astrophysics Data System (ADS)

    Tejedor, E.; Piparo, D.; Mascetti, L.; Moscicki, J.; Lamanna, M.; Mato, P.

    2016-10-01

    Data Mining as a Service (DMaaS) is a software and computing infrastructure that allows interactive mining of scientific data in the cloud. It allows users to run advanced data analyses by leveraging the widely adopted Jupyter notebook interface. Furthermore, the system makes it easier to share results and scientific code, access scientific software, produce tutorials and demonstrations as well as preserve the analyses of scientists. This paper describes how a first pilot of the DMaaS service is being deployed at CERN, starting from the notebook interface that has been fully integrated with the ROOT analysis framework, in order to provide all the tools for scientists to run their analyses. Additionally, we characterise the service backend, which combines a set of IT services such as user authentication, virtual computing infrastructure, mass storage, file synchronisation, development portals or batch systems. The added value acquired by the combination of the aforementioned categories of services is discussed, focusing on the opportunities offered by the CERNBox synchronisation service and its massive storage backend, EOS.

  3. Semantic integration of information about orthologs and diseases: the OGO system.

    PubMed

    Miñarro-Gimenez, Jose Antonio; Egaña Aranguren, Mikel; Martínez Béjar, Rodrigo; Fernández-Breis, Jesualdo Tomás; Madrid, Marisa

    2011-12-01

    Semantic Web technologies like RDF and OWL are currently applied in life sciences to improve knowledge management by integrating disparate information. Many of the systems that perform such task, however, only offer a SPARQL query interface, which is difficult to use for life scientists. We present the OGO system, which consists of a knowledge base that integrates information of orthologous sequences and genetic diseases, providing an easy to use ontology-constrain driven query interface. Such interface allows the users to define SPARQL queries through a graphical process, therefore not requiring SPARQL expertise. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Eye gaze tracking for endoscopic camera positioning: an application of a hardware/software interface developed to automate Aesop.

    PubMed

    Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K

    2008-01-01

    A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.

  5. Graphical user interface for yield and dose estimations for cyclotron-produced technetium

    NASA Astrophysics Data System (ADS)

    Hou, X.; Vuckovic, M.; Buckley, K.; Bénard, F.; Schaffer, P.; Ruth, T.; Celler, A.

    2014-07-01

    The cyclotron-based 100Mo(p,2n)99mTc reaction has been proposed as an alternative method for solving the shortage of 99mTc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with 99mTc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced 99mTc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  6. Graphical user interface for yield and dose estimations for cyclotron-produced technetium.

    PubMed

    Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A

    2014-07-07

    The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad Allen

    EDENx is a multivariate data visualization tool that allows interactive user driven analysis of large-scale data sets with high dimensionality. EDENx builds on our earlier system, called EDEN to enable analysis of more dimensions and larger scale data sets. EDENx provides an initial overview of summary statistics for each variable in the data set under investigation. EDENx allows the user to interact with graphical summary plots of the data to investigate subsets and their statistical associations. These plots include histograms, binned scatterplots, binned parallel coordinate plots, timeline plots, and graphical correlation indicators. From the EDENx interface, a user can selectmore » a subsample of interest and launch a more detailed data visualization via the EDEN system. EDENx is best suited for high-level, aggregate analysis tasks while EDEN is more appropriate for detail data investigations.« less

  8. SysSon - A Framework for Systematic Sonification Design

    NASA Astrophysics Data System (ADS)

    Vogt, Katharina; Goudarzi, Visda; Holger Rutz, Hanns

    2015-04-01

    SysSon is a research approach on introducing sonification systematically to a scientific community where it is not yet commonly used - e.g., in climate science. Thereby, both technical and socio-cultural barriers have to be met. The approach was further developed with climate scientists, who participated in contextual inquiries, usability tests and a workshop of collaborative design. Following from these extensive user tests resulted our final software framework. As frontend, a graphical user interface allows climate scientists to parametrize standard sonifications with their own data sets. Additionally, an interactive shell allows to code new sonifications for users competent in sound design. The framework is a standalone desktop application, available as open source (for details see http://sysson.kug.ac.at/) and works with data in NetCDF format.

  9. An advanced web query interface for biological databases

    PubMed Central

    Latendresse, Mario; Karp, Peter D.

    2010-01-01

    Although most web-based biological databases (DBs) offer some type of web-based form to allow users to author DB queries, these query forms are quite restricted in the complexity of DB queries that they can formulate. They can typically query only one DB, and can query only a single type of object at a time (e.g. genes) with no possible interaction between the objects—that is, in SQL parlance, no joins are allowed between DB objects. Writing precise queries against biological DBs is usually left to a programmer skillful enough in complex DB query languages like SQL. We present a web interface for building precise queries for biological DBs that can construct much more precise queries than most web-based query forms, yet that is user friendly enough to be used by biologists. It supports queries containing multiple conditions, and connecting multiple object types without using the join concept, which is unintuitive to biologists. This interactive web interface is called the Structured Advanced Query Page (SAQP). Users interactively build up a wide range of query constructs. Interactive documentation within the SAQP describes the schema of the queried DBs. The SAQP is based on BioVelo, a query language based on list comprehension. The SAQP is part of the Pathway Tools software and is available as part of several bioinformatics web sites powered by Pathway Tools, including the BioCyc.org site that contains more than 500 Pathway/Genome DBs. PMID:20624715

  10. Improved Functionality and Curation Support in the ADS

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Kurtz, Michael J.; Henneken, Edwin A.; Grant, Carolyn S.; Thompson, Donna; Chyla, Roman; Holachek, Alexandra; Sudilovsky, Vladimir; Murray, Stephen S.

    2015-01-01

    In this poster we describe the developments of the new ADS platform over the past year, focusing on the functionality which improves its discovery and curation capabilities.The ADS Application Programming Interface (API) is being updated to support authenticated access to the entire suite of ADS services, in addition to the search functionality itself. This allows programmatic access to resources which are specific to a user or class of users.A new interface, built directly on top of the API, now provides a more intuitive search experience and takes into account the best practices in web usability and responsive design. The interface now incorporates in-line views of graphics from the AAS Astroexplorer and the ADS All-Sky Survey image collections.The ADS Private Libraries, first introduced over 10 years ago, are now being enhanced to allow the bookmarking, tagging and annotation of records of interest. In addition, libraries can be shared with one or more ADS users, providing an easy way to collaborate in the curation of lists of papers. A library can also be explicitly made public and shared at large via the publishing of its URL.In collaboration with the AAS, the ADS plans to support the adoption of ORCID identifiers by implementing a plugin which will simplify the import of papers in ORCID via a query to the ADS API. Deeper integration between the two systems will depend on available resources and feedback from the community.

  11. Supporting the Loewenstein occupational therapy cognitive assessment using distributed user interfaces.

    PubMed

    Tesoriero, Ricardo; Gallud Lazaro, Jose A; Altalhi, Abdulrahman H

    2017-02-01

    Improve the quantity and quality of information obtained from traditional Loewenstein Occupational Therapy Cognitive Assessment Battery systems to monitor the evolution of patients' rehabilitation process as well as to compare different rehabilitation therapies. The system replaces traditional artefacts with virtual versions of them to take advantage of cutting edge interaction technology. The system is defined as a Distributed User Interface (DUI) supported by a display ecosystem, including mobile devices as well as multi-touch surfaces. Due to the heterogeneity of the devices involved in the system, the software technology is based on a client-server architecture using the Web as the software platform. The system provides therapists with information that is not available (or it is very difficult to gather) using traditional technologies (i.e. response time measurements, object tracking, information storage and retrieval facilities, etc.). The use of DUIs allows therapists to gather information that is unavailable using traditional assessment methods as well as adapt the system to patients' profile to increase the range of patients that are able to take this assessment. Implications for Rehabilitation Using a Distributed User Interface environment to carry out LOTCAs improves the quality of the information gathered during the rehabilitation assessment. This system captures physical data regarding patient's interaction during the assessment to improve the rehabilitation process analysis. Allows professionals to adapt the assessment procedure to create different versions according to patients' profile. Improves the availability of patients' profile information to therapists to adapt the assessment procedure.

  12. Wearable computer for mobile augmented-reality-based controlling of an intelligent robot

    NASA Astrophysics Data System (ADS)

    Turunen, Tuukka; Roening, Juha; Ahola, Sami; Pyssysalo, Tino

    2000-10-01

    An intelligent robot can be utilized to perform tasks that are either hazardous or unpleasant for humans. Such tasks include working in disaster areas or conditions that are, for example, too hot. An intelligent robot can work on its own to some extent, but in some cases the aid of humans will be needed. This requires means for controlling the robot from somewhere else, i.e. teleoperation. Mobile augmented reality can be utilized as a user interface to the environment, as it enhances the user's perception of the situation compared to other interfacing methods and allows the user to perform other tasks while controlling the intelligent robot. Augmented reality is a method that combines virtual objects into the user's perception of the real world. As computer technology evolves, it is possible to build very small devices that have sufficient capabilities for augmented reality applications. We have evaluated the existing wearable computers and mobile augmented reality systems to build a prototype of a future mobile terminal- the CyPhone. A wearable computer with sufficient system resources for applications, wireless communication media with sufficient throughput and enough interfaces for peripherals has been built at the University of Oulu. It is self-sustained in energy, with enough operating time for the applications to be useful, and uses accurate positioning systems.

  13. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog)

    PubMed Central

    MacArthur, Jacqueline; Bowler, Emily; Cerezo, Maria; Gil, Laurent; Hall, Peggy; Hastings, Emma; Junkins, Heather; McMahon, Aoife; Milano, Annalisa; Morales, Joannella; Pendlington, Zoe May; Welter, Danielle; Burdett, Tony; Hindorff, Lucia; Flicek, Paul; Cunningham, Fiona; Parkinson, Helen

    2017-01-01

    The NHGRI-EBI GWAS Catalog has provided data from published genome-wide association studies since 2008. In 2015, the database was redesigned and relocated to EMBL-EBI. The new infrastructure includes a new graphical user interface (www.ebi.ac.uk/gwas/), ontology supported search functionality and an improved curation interface. These developments have improved the data release frequency by increasing automation of curation and providing scaling improvements. The range of available Catalog data has also been extended with structured ancestry and recruitment information added for all studies. The infrastructure improvements also support scaling for larger arrays, exome and sequencing studies, allowing the Catalog to adapt to the needs of evolving study design, genotyping technologies and user needs in the future. PMID:27899670

  14. Multi-degree of freedom joystick for virtual reality simulation.

    PubMed

    Head, M J; Nelson, C A; Siu, K C

    2013-11-01

    A modular control interface and simulated virtual reality environment were designed and created in order to determine how the kinematic architecture of a control interface affects minimally invasive surgery training. A user is able to selectively determine the kinematic configuration of an input device (number, type and location of degrees of freedom) for a specific surgical simulation through the use of modular joints and constraint components. Furthermore, passive locking was designed and implemented through the use of inflated latex tubing around rotational joints in order to allow a user to step away from a simulation without unwanted tool motion. It is believed that these features will facilitate improved simulation of a variety of surgical procedures and, thus, improve surgical skills training.

  15. Playing the Metadata Game: Technologies and Strategies Used by Climate Diagnostics Center for Cataloging and Distributing Climate Data.

    NASA Astrophysics Data System (ADS)

    Schweitzer, R. H.

    2001-05-01

    The Climate Diagnostics Center maintains a collection of gridded climate data primarily for use by local researchers. Because this data is available on fast digital storage and because it has been converted to netCDF using a standard metadata convention (called COARDS), we recognize that this data collection is also useful to the community at large. At CDC we try to use technology and metadata standards to reduce our costs associated with making these data available to the public. The World Wide Web has been an excellent technology platform for meeting that goal. Specifically we have developed Web-based user interfaces that allow users to search, plot and download subsets from the data collection. We have also been exploring use of the Pacific Marine Environment Laboratory's Live Access Server (LAS) as an engine for this task. This would result in further savings by allowing us to concentrate on customizing the LAS where needed, rather that developing and maintaining our own system. One such customization currently under development is the use of Java Servlets and JavaServer pages in conjunction with a metadata database to produce a hierarchical user interface to LAS. In addition to these Web-based user interfaces all of our data are available via the Distributed Oceanographic Data System (DODS). This allows other sites using LAS and individuals using DODS-enabled clients to use our data as if it were a local file. All of these technology systems are driven by metadata. When we began to create netCDF files, we collaborated with several other agencies to develop a netCDF convention (COARDS) for metadata. At CDC we have extended that convention to incorporate additional metadata elements to make the netCDF files as self-describing as possible. Part of the local metadata is a set of controlled names for the variable, level in the atmosphere and ocean, statistic and data set for each netCDF file. To allow searching and easy reorganization of these metadata, we loaded the metadata from the netCDF files into a mySQL database. The combination of the mySQL database and the controlled names makes it possible to automate the construction of user interfaces and standard format metadata descriptions, like Federal Geographic Data Committee (FGDC) and Directory Interchange Format (DIF). These standard descriptions also include an association between our controlled names and standard keywords such as those developed by the Global Change Master Directory (GCMD). This talk will give an overview of each of these technology and metadata standards as it applies to work at the Climate Diagnostics Center. The talk will also discuss the pros and cons of each approach and discuss areas for future development.

  16. A user interface framework for the Square Kilometre Array: concepts and responsibilities

    NASA Astrophysics Data System (ADS)

    Marassi, Alessandro; Brajnik, Giorgio; Nicol, Mark; Alberti, Valentina; Le Roux, Gerhard

    2016-07-01

    The Square Kilometre Array (SKA) project is responsible for developing the SKA Observatory, the world's largest radio telescope, with eventually over a square kilometre of collecting area and including a general headquarters as well as two radio telescopes: SKA1-Mid in South Africa and SKA1-Low in Australia. The SKA project consists of a number of subsystems (elements) among which the Telescope Manager (TM) is the one involved in controlling and monitoring the SKA telescopes. The TM element has three primary responsibilities: management of astronomical observations, management of telescope hardware and software subsystems, management of data to support system operations and all stakeholders (operators, maintainers, engineers and science users) in achieving operational, maintenance and engineering goals. Operators, maintainers, engineers and science users will interact with TM via appropriate user interfaces (UI). The TM UI framework envisaged is a complete set of general technical solutions (components, technologies and design information) for implementing a generic computing system (UI platform). Such a system will enable UI components to be instantiated to allow for human interaction via screens, keyboards, mouse and to implement the necessary logic for acquiring or deriving the information needed for interaction. It will provide libraries and specific Application Programming Interfaces (APIs) to implement operator and engineer interactive interfaces. This paper will provide a status update of the TM UI framework, UI platform and UI components design effort, including the technology choices, and discuss key challenges in the TM UI architecture, as well as our approaches to addressing them.

  17. A Upgrade of the Aeroheating Software "MINIVER"

    NASA Technical Reports Server (NTRS)

    Louderback, Pierce

    2013-01-01

    Many software packages assist engineers with performing flight vehicle analysis, but some of these packages have gone many years without updates or significant improvements to their workflows. One such software package, known as MINIVER, is a powerful yet lightweight tool used for aeroheating analyses. However, it is an aging program that has not seen major improvements within the past decade. As part of a collaborative effort with the Florida Institute of Technology, MINIVER has received a major user interface overhaul, a change in program language, and will be continually receiving updates to improve its capabilities. The user interface update includes a migration from a command-line interface to that of a graphical user interface supported in the Windows operating system. The organizational structure of the pre-processor has been transformed to clearly defined categories to provide ease of data entry. Helpful tools have been incorporated, including the ability to copy sections of cases as well as a generalized importer which aids in bulk data entry. A visual trajectory editor has been included, as well as a CAD Editor which allows the user to input simplified geometries in order to generate MINIVER cases in bulk. To demonstrate its continued effectiveness, a case involving the JAXA OREX flight vehicle will be included, providing comparisons to captured flight data as well as other computational solutions. The most recent upgrade effort incorporated the use of the CAD Editor, and current efforts are investigating methods to link MINIVER projects with SINDA/Fluint and Thermal Desktop.

  18. An Upgrade of the Aeroheating Software "MINIVER"

    NASA Technical Reports Server (NTRS)

    Louderback, Pierce M.

    2013-01-01

    Many software packages assist engineers with performing flight vehicle analysis, but some of these packages have gone many years without updates or significant improvements to their workflows. One such software, known as MINIVER, is a powerful yet lightweight tool that is used for aeroheating analyses. However, it is an aging program that has not seen major improvements within the past decade. As part of a collaborative effort with Florida Institute of Technology, MINIVER has received a major user interface overhaul, a change in program language, and will be continually receiving updates to improve its capabilities. The user interface update includes a migration from a command-line interface to that of a graphical user interface supported in the Windows operating system. The organizational structure of the preprocessor has been transformed to clearly defined categories to provide ease of data entry. Helpful tools have been incorporated, including the ability to copy sections of cases as well as a generalized importer which aids in bulk data entry. A visual trajectory editor has been included, as well as a CAD Editor which allows the user to input simplified geometries in order to generate MINIVER cases in bulk. To demonstrate its continued effectiveness, a case involving the JAXA OREX flight vehicle will be included, providing comparisons to captured flight data as well as other computational solutions. The most recent upgrade effort incorporated the use of the CAD Editor, and current efforts are investigating methods to link MINIVER projects with SINDA/Fluint and Thermal Desktop.

  19. Graphical User Interface Programming in Introductory Computer Science.

    ERIC Educational Resources Information Center

    Skolnick, Michael M.; Spooner, David L.

    Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…

  20. Development of RESTful services and map-based user interface tools for access and delivery of data and metadata from the Marine-Geo Digital Library

    NASA Astrophysics Data System (ADS)

    Morton, J. J.; Ferrini, V. L.

    2015-12-01

    The Marine Geoscience Data System (MGDS, www.marine-geo.org) operates an interactive digital data repository and metadata catalog that provides access to a variety of marine geology and geophysical data from throughout the global oceans. Its Marine-Geo Digital Library includes common marine geophysical data types and supporting data and metadata, as well as complementary long-tail data. The Digital Library also includes community data collections and custom data portals for the GeoPRISMS, MARGINS and Ridge2000 programs, for active source reflection data (Academic Seismic Portal), and for marine data acquired by the US Antarctic Program (Antarctic and Southern Ocean Data Portal). Ensuring that these data are discoverable not only through our own interfaces but also through standards-compliant web services is critical for enabling investigators to find data of interest.Over the past two years, MGDS has developed several new RESTful web services that enable programmatic access to metadata and data holdings. These web services are compliant with the EarthCube GeoWS Building Blocks specifications and are currently used to drive our own user interfaces. New web applications have also been deployed to provide a more intuitive user experience for searching, accessing and browsing metadata and data. Our new map-based search interface combines components of the Google Maps API with our web services for dynamic searching and exploration of geospatially constrained data sets. Direct introspection of nearly all data formats for hundreds of thousands of data files curated in the Marine-Geo Digital Library has allowed for precise geographic bounds, which allow geographic searches to an extent not previously possible. All MGDS map interfaces utilize the web services of the Global Multi-Resolution Topography (GMRT) synthesis for displaying global basemap imagery and for dynamically provide depth values at the cursor location.

  1. Python as a federation tool for GENESIS 3.0.

    PubMed

    Cornelis, Hugo; Rodriguez, Armando L; Coop, Allan D; Bower, James M

    2012-01-01

    The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be 'glued' together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience.

  2. Python as a Federation Tool for GENESIS 3.0

    PubMed Central

    Cornelis, Hugo; Rodriguez, Armando L.; Coop, Allan D.; Bower, James M.

    2012-01-01

    The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be ‘glued’ together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience. PMID:22276101

  3. A Python Interface for the Dakota Iterative Systems Analysis Toolkit

    NASA Astrophysics Data System (ADS)

    Piper, M.; Hutton, E.; Syvitski, J. P.

    2016-12-01

    Uncertainty quantification is required to improve the accuracy, reliability, and accountability of Earth science models. Dakota is a software toolkit, developed at Sandia National Laboratories, that provides an interface between models and a library of analysis methods, including support for sensitivity analysis, uncertainty quantification, optimization, and calibration techniques. Dakota is a powerful tool, but its learning curve is steep: the user not only must understand the structure and syntax of the Dakota input file, but also must develop intermediate code, called an analysis driver, that allows Dakota to run a model. The CSDMS Dakota interface (CDI) is a Python package that wraps and extends Dakota's user interface. It simplifies the process of configuring and running a Dakota experiment. A user can program to the CDI, allowing a Dakota experiment to be scripted. The CDI creates Dakota input files and provides a generic analysis driver. Any model written in Python that exposes a Basic Model Interface (BMI), as well as any model componentized in the CSDMS modeling framework, automatically works with the CDI. The CDI has a plugin architecture, so models written in other languages, or those that don't expose a BMI, can be accessed by the CDI by programmatically extending a template; an example is provided in the CDI distribution. Currently, six Dakota analysis methods have been implemented for examples from the much larger Dakota library. To demonstrate the CDI, we performed an uncertainty quantification experiment with the HydroTrend hydrological water balance and transport model. In the experiment, we evaluated the response of long-term suspended sediment load at the river mouth (Qs) to uncertainty in two input parameters, annual mean temperature (T) and precipitation (P), over a series of 100-year runs, using the polynomial chaos method. Through Dakota, we calculated moments, local and global (Sobol') sensitivity indices, and probability density and cumulative distribution functions for the response.

  4. Integrating a local database into the StarView distributed user interface

    NASA Technical Reports Server (NTRS)

    Silberberg, D. P.

    1992-01-01

    A distributed user interface to the Space Telescope Data Archive and Distribution Service (DADS) known as StarView is being developed. The DADS architecture consists of the data archive as well as a relational database catalog describing the archive. StarView is a client/server system in which the user interface is the front-end client to the DADS catalog and archive servers. Users query the DADS catalog from the StarView interface. Query commands are transmitted via a network and evaluated by the database. The results are returned via the network and are displayed on StarView forms. Based on the results, users decide which data sets to retrieve from the DADS archive. Archive requests are packaged by StarView and sent to DADS, which returns the requested data sets to the users. The advantages of distributed client/server user interfaces over traditional one-machine systems are well known. Since users run software on machines separate from the database, the overall client response time is much faster. Also, since the server is free to process only database requests, the database response time is much faster. Disadvantages inherent in this architecture are slow overall database access time due to the network delays, lack of a 'get previous row' command, and that refinements of a previously issued query must be submitted to the database server, even though the domain of values have already been returned by the previous query. This architecture also does not allow users to cross correlate DADS catalog data with other catalogs. Clearly, a distributed user interface would be more powerful if it overcame these disadvantages. A local database is being integrated into StarView to overcome these disadvantages. When a query is made through a StarView form, which is often composed of fields from multiple tables, it is translated to an SQL query and issued to the DADS catalog. At the same time, a local database table is created to contain the resulting rows of the query. The returned rows are displayed on the form as well as inserted into the local database table. Identical results are produced by reissuing the query to either the DADS catalog or to the local table. Relational databases do not provide a 'get previous row' function because of the inherent complexity of retrieving previous rows of multiple-table joins. However, since this function is easily implemented on a single table, StarView uses the local table to retrieve the previous row. Also, StarView issues subsequent query refinements to the local table instead of the DADS catalog, eliminating the network transmission overhead. Finally, other catalogs can be imported into the local database for cross correlation with local tables. Overall, it is believe that this is a more powerful architecture for distributed, database user interfaces.

  5. User needs analysis and usability assessment of DataMed - a biomedical data discovery index.

    PubMed

    Dixit, Ram; Rogith, Deevakar; Narayana, Vidya; Salimi, Mandana; Gururaj, Anupama; Ohno-Machado, Lucila; Xu, Hua; Johnson, Todd R

    2017-11-30

    To present user needs and usability evaluations of DataMed, a Data Discovery Index (DDI) that allows searching for biomedical data from multiple sources. We conducted 2 phases of user studies. Phase 1 was a user needs analysis conducted before the development of DataMed, consisting of interviews with researchers. Phase 2 involved iterative usability evaluations of DataMed prototypes. We analyzed data qualitatively to document researchers' information and user interface needs. Biomedical researchers' information needs in data discovery are complex, multidimensional, and shaped by their context, domain knowledge, and technical experience. User needs analyses validate the need for a DDI, while usability evaluations of DataMed show that even though aggregating metadata into a common search engine and applying traditional information retrieval tools are promising first steps, there remain challenges for DataMed due to incomplete metadata and the complexity of data discovery. Biomedical data poses distinct problems for search when compared to websites or publications. Making data available is not enough to facilitate biomedical data discovery: new retrieval techniques and user interfaces are necessary for dataset exploration. Consistent, complete, and high-quality metadata are vital to enable this process. While available data and researchers' information needs are complex and heterogeneous, a successful DDI must meet those needs and fit into the processes of biomedical researchers. Research directions include formalizing researchers' information needs, standardizing overviews of data to facilitate relevance judgments, implementing user interfaces for concept-based searching, and developing evaluation methods for open-ended discovery systems such as DDIs. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Building intuitive 3D interfaces for virtual reality systems

    NASA Astrophysics Data System (ADS)

    Vaidya, Vivek; Suryanarayanan, Srikanth; Seitel, Mathias; Mullick, Rakesh

    2007-03-01

    An exploration of techniques for developing intuitive, and efficient user interfaces for virtual reality systems. Work seeks to understand which paradigms from the better-understood world of 2D user interfaces remain viable within 3D environments. In order to establish this a new user interface was created that applied various understood principles of interface design. A user study was then performed where it was compared with an earlier interface for a series of medical visualization tasks.

  7. LIQUID: an-open source software for identifying lipids in LC-MS/MS-based lipidomics data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, Jennifer E.; Crowell, Kevin L.; Casey, Cameron P.

    2017-01-31

    We introduce an open-source software, LIQUID, for semi-automated processing and visualization of LC-MS/MS based lipidomics data. LIQUID provides users with the capability to process high throughput data and contains a customizable target library and scoring model per project needs. The graphical user interface provides visualization of multiple lines of spectral evidence for each lipid identification, allowing rapid examination of data for making confident identifications of lipid molecular species.

  8. Taxonomic Workstation System User Guide

    DTIC Science & Technology

    1993-05-01

    of the Methods below: Method 1: - Type SAVELISr ACME.DEPr - From the Main Menu, select DEVOP , then M RBASE S1VIURE, then INDEX LISTS. For Missions...utility allows the user to covert downloaded IWM ASCII files to Micro SAINTr task networks . To use Hooker you nist be fully conzversant in the use and...hookc up fojllw-on tasks/ networks using a graphiic point and shoot interface (Note: All other MicroSAIWI’ variables, sixi as Release Cm-ditions

  9. Penalty-Based Interface Technology for Prediction of Delamination Growth in Laminated Structures

    NASA Technical Reports Server (NTRS)

    Averill, Ronald C.

    2004-01-01

    An effective interface element technology has been developed for connecting and simulating crack growth between independently modeled finite element subdomains (e.g., composite plies). This method has been developed using penalty constraints and allows coupling of finite element models whose nodes do not necessarily coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. The present interface element has been implemented in the commercial finite element code ABAQUS as a User Element Subroutine (UEL), making it easy to test the approach for a wide range of problems. The interface element technology has been formulated to simulate delamination growth in composite laminates. Thanks to its special features, the interface element approach makes it possible to release portions of the interface surface whose length is smaller than that of the finite elements. In addition, the penalty parameter can vary within the interface element, allowing the damage model to be applied to a desired fraction of the interface between the two meshes. Results for double cantilever beam DCB, end-loaded split (ELS) and fixed-ratio mixed mode (FRMM) specimens are presented. These results are compared to measured data to assess the ability of the present damage model to simulate crack growth.

  10. Innovative Technology Transfer Partnerships

    NASA Technical Reports Server (NTRS)

    Kohler, Jeff

    2004-01-01

    The National Aeronautics and Space Administration (NASA) seeks to license its Advanced Tire and Strut Pressure Monitor (TSPM) technology. The TSPM is a handheld system to accurately measure tire and strut pressure and temperature over a wide temperature range (20 to 120 OF), as well as improve personnel safety. Sensor accuracy, electronics design, and a simple user interface allow operators quick, easy access to required measurements. The handheld electronics, powered by 12-VAC or by 9-VDC batteries, provide the user with an easy-to-read visual display of pressure/temperature or the streaming of pressure/temperature data via an RS-232 interface. When connected to a laptop computer, this new measurement system can provide users with automated data recording and trending, eliminating the chance for data hand-recording errors. In addition, calibration software allows for calibration data to be automatically utilized for the generation of new data conversion equations, simplifying the calibration processes that are so critical to reliable measurements. The design places a high-accuracy pressure sensor (also used as a temperature sensor) as close to the tire or strut measurement location as possible, allowing the user to make accurate measurements rapidly, minimizing the amount of high-pressure volumes, and allowing reasonable distance between the tire or strut and the operator. The pressure sensor attaches directly to the pressure supply/relief valve on the tire and/or strut, with necessary electronics contained in the handheld enclosure. A software algorithm ensures high accuracy of the device over the wide temperature range. Using the pressure sensor as a temperature sensor permits measurement of the actual temperature of the pressurized gas. This device can be adapted to create a portable calibration standard that does not require thermal conditioning. This allows accurate pressure measurements without disturbing the gas temperature. In-place calibration can save considerable time and money and is suitable in many process applications throughout industry.

  11. Deep Interactive Learning with Sharkzor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Sharkzor is a web application for machine-learning assisted image sort and summary. Deep learning algorithms are leveraged to infer, augment, and automate the user’s mental model. Initially, images uploaded by the user are spread out on a canvas. The user then interacts with the images to impute their mental model into the applications algorithmic underpinnings. Methods of interaction within Sharkzor’s user interface and user experience support three primary user tasks: triage, organize and automate. The user triages the large pile of overlapping images by moving images of interest into proximity. The user then organizes said images into meaningful groups. Aftermore » interacting with the images and groups, deep learning helps to automate the user’s interactions. The loop of interaction, automation, and response by the user allows the system to quickly make sense of large amounts of data.« less

  12. Methods for Improving the User-Computer Interface. Technical Report.

    ERIC Educational Resources Information Center

    McCann, Patrick H.

    This summary of methods for improving the user-computer interface is based on a review of the pertinent literature. Requirements of the personal computer user are identified and contrasted with computer designer perspectives towards the user. The user's psychological needs are described, so that the design of the user-computer interface may be…

  13. User interface support

    NASA Technical Reports Server (NTRS)

    Lewis, Clayton; Wilde, Nick

    1989-01-01

    Space construction will require heavy investment in the development of a wide variety of user interfaces for the computer-based tools that will be involved at every stage of construction operations. Using today's technology, user interface development is very expensive for two reasons: (1) specialized and scarce programming skills are required to implement the necessary graphical representations and complex control regimes for high-quality interfaces; (2) iteration on prototypes is required to meet user and task requirements, since these are difficult to anticipate with current (and foreseeable) design knowledge. We are attacking this problem by building a user interface development tool based on extensions to the spreadsheet model of computation. The tool provides high-level support for graphical user interfaces and permits dynamic modification of interfaces, without requiring conventional programming concepts and skills.

  14. Interface Metaphors for Interactive Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasper, Robert J.; Blaha, Leslie M.

    To promote more interactive and dynamic machine learn- ing, we revisit the notion of user-interface metaphors. User-interface metaphors provide intuitive constructs for supporting user needs through interface design elements. A user-interface metaphor provides a visual or action pattern that leverages a user’s knowledge of another domain. Metaphors suggest both the visual representations that should be used in a display as well as the interactions that should be afforded to the user. We argue that user-interface metaphors can also offer a method of extracting interaction-based user feedback for use in machine learning. Metaphors offer indirect, context-based information that can be usedmore » in addition to explicit user inputs, such as user-provided labels. Implicit information from user interactions with metaphors can augment explicit user input for active learning paradigms. Or it might be leveraged in systems where explicit user inputs are more challenging to obtain. Each interaction with the metaphor provides an opportunity to gather data and learn. We argue this approach is especially important in streaming applications, where we desire machine learning systems that can adapt to dynamic, changing data.« less

  15. Integrating Actionable User-defined Faceted Rules into the Hybrid Science Data System for Advanced Rapid Imaging & Analysis

    NASA Astrophysics Data System (ADS)

    Manipon, G. J. M.; Hua, H.; Owen, S. E.; Sacco, G. F.; Agram, P. S.; Moore, A. W.; Yun, S. H.; Fielding, E. J.; Lundgren, P.; Rosen, P. A.; Webb, F.; Liu, Z.; Smith, A. T.; Wilson, B. D.; Simons, M.; Poland, M. P.; Cervelli, P. F.

    2014-12-01

    The Hybrid Science Data System (HySDS) scalably powers the ingestion, metadata extraction, cataloging, high-volume data processing, and publication of the geodetic data products for the Advanced Rapid Imaging & Analysis for Monitoring Hazard (ARIA-MH) project at JPL. HySDS uses a heterogeneous set of worker nodes from private & public clouds as well as virtual & bare-metal machines to perform every aspect of the traditional science data system. For our science data users, the forefront of HySDS is the facet search interface, FacetView, which allows them to browse, filter, and access the published products. Users are able to explore the collection of product metadata information and apply multiple filters to constrain the result set down to their particular interests. It allows them to download these faceted products for further analysis and generation of derived products. However, we have also employed a novel approach to faceting where it is also used to apply constraints for custom monitoring of products, system resources, and triggers for automated data processing. The power of the facet search interface is well documented across various domains and its usefulness is rooted in the current state of existence of metadata. However, user needs usually extend beyond what is currently present in the data system. A user interested in synthetic aperture radar (SAR) data over Kilauea will download them from FacetView but would also want email notification of future incoming scenes. The user may even want that data pushed to a remote workstation for automated processing. Better still, these future products could trigger HySDS to run the user's analysis on its array of worker nodes, on behalf of the user, and ingest the resulting derived products. We will present our findings in integrating an ancillary, user-defined, system-driven processing system for HySDS that allows users to define faceted rules based on facet constraints and triggers actions when new SAR data products arrive that match the constraints. We will discuss use cases where users have defined rules for the automated generation of InSAR derived products: interferograms for California and Kilauea, time-series analyses, and damage proxy maps. These findings are relevant for science data system development of the proposed NASA-ISRO SAR mission.

  16. Representing Graphical User Interfaces with Sound: A Review of Approaches

    ERIC Educational Resources Information Center

    Ratanasit, Dan; Moore, Melody M.

    2005-01-01

    The inability of computer users who are visually impaired to access graphical user interfaces (GUIs) has led researchers to propose approaches for adapting GUIs to auditory interfaces, with the goal of providing access for visually impaired people. This article outlines the issues involved in nonvisual access to graphical user interfaces, reviews…

  17. TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (DEC VAX ULTRIX VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. Data-driven graphical objects such as dials, thermometers, and strip charts are also included. TAE Plus updates the strip chart as the data values change. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. The Silicon Graphics version of TAE Plus now has a font caching scheme and a color caching scheme to make color allocation more efficient. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides an extremely powerful means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif Toolkit 1.1 or 1.1.1. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus comes with InterViews and idraw, two software packages developed by Stanford University and integrated in TAE Plus. TAE Plus was developed in 1989 and version 5.1 was released in 1991. TAE Plus is currently available on media suitable for eight different machine platforms: 1) DEC VAX computers running VMS 5.3 or higher (TK50 cartridge in VAX BACKUP format), 2) DEC VAXstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX 8.0 (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX 8.05 (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun3 series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), 7) Sun4 (SPARC) series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), and 8) SGI Indigo computers running IRIX 4.0.1 and IRIX/Motif 1.0.1 (.25 inch IRIS tape cartridge in UNIX tar format). An optional Motif Object Code License is available for either Sun version. TAE is a trademark of the National Aeronautics and Space Administration. X Window System is a trademark of the Massachusetts Institute of Technology. Motif is a trademark of the Open Software Foundation. DEC, VAX, VMS, TK50 and ULTRIX are trademarks of Digital Equipment Corporation. HP9000 and HP-UX are trademarks of Hewlett-Packard Co. Sun3, Sun4, SunOS, and SPARC are trademarks of Sun Microsystems, Inc. SGI and IRIS are registered trademarks of Silicon Graphics, Inc.

  18. TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (SUN3 VERSION)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. Data-driven graphical objects such as dials, thermometers, and strip charts are also included. TAE Plus updates the strip chart as the data values change. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. The Silicon Graphics version of TAE Plus now has a font caching scheme and a color caching scheme to make color allocation more efficient. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides an extremely powerful means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif Toolkit 1.1 or 1.1.1. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus comes with InterViews and idraw, two software packages developed by Stanford University and integrated in TAE Plus. TAE Plus was developed in 1989 and version 5.1 was released in 1991. TAE Plus is currently available on media suitable for eight different machine platforms: 1) DEC VAX computers running VMS 5.3 or higher (TK50 cartridge in VAX BACKUP format), 2) DEC VAXstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX 8.0 (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX 8.05 (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun3 series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), 7) Sun4 (SPARC) series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), and 8) SGI Indigo computers running IRIX 4.0.1 and IRIX/Motif 1.0.1 (.25 inch IRIS tape cartridge in UNIX tar format). An optional Motif Object Code License is available for either Sun version. TAE is a trademark of the National Aeronautics and Space Administration. X Window System is a trademark of the Massachusetts Institute of Technology. Motif is a trademark of the Open Software Foundation. DEC, VAX, VMS, TK50 and ULTRIX are trademarks of Digital Equipment Corporation. HP9000 and HP-UX are trademarks of Hewlett-Packard Co. Sun3, Sun4, SunOS, and SPARC are trademarks of Sun Microsystems, Inc. SGI and IRIS are registered trademarks of Silicon Graphics, Inc.

  19. TAE+ 5.1 - TRANSPORTABLE APPLICATIONS ENVIRONMENT PLUS, VERSION 5.1 (SUN3 VERSION WITH MOTIF)

    NASA Technical Reports Server (NTRS)

    TAE SUPPORT OFFICE

    1994-01-01

    TAE (Transportable Applications Environment) Plus is an integrated, portable environment for developing and running interactive window, text, and graphical object-based application systems. The program allows both programmers and non-programmers to easily construct their own custom application interface and to move that interface and application to different machine environments. TAE Plus makes both the application and the machine environment transparent, with noticeable improvements in the learning curve. The main components of TAE Plus are as follows: (1) the WorkBench, a What You See Is What You Get (WYSIWYG) tool for the design and layout of a user interface; (2) the Window Programming Tools Package (WPT), a set of callable subroutines that control an application's user interface; and (3) TAE Command Language (TCL), an easy-to-learn command language that provides an easy way to develop an executable application prototype with a run-time interpreted language. The WorkBench tool allows the application developer to interactively construct the layout of an application's display screen by manipulating a set of interaction objects including input items such as buttons, icons, and scrolling text lists. Data-driven graphical objects such as dials, thermometers, and strip charts are also included. TAE Plus updates the strip chart as the data values change. The WorkBench user specifies the windows and interaction objects that will make up the user interface, then specifies the sequence of the user interface dialogue. The description of the designed user interface is then saved into resource files. For those who desire to develop the designed user interface into an operational application, the WorkBench tool also generates source code (C, Ada, and TCL) which fully controls the application's user interface through function calls to the WPTs. The WPTs are the runtime services used by application programs to display and control the user interfaces. Since the WPTs access the workbench-generated resource files during each execution, details such as color, font, location, and object type remain independent from the application code, allowing changes to the user interface without recompiling and relinking. The Silicon Graphics version of TAE Plus now has a font caching scheme and a color caching scheme to make color allocation more efficient. In addition to WPTs, TAE Plus can control interaction of objects from the interpreted TAE Command Language. TCL provides an extremely powerful means for the more experienced developer to quickly prototype an application's use of TAE Plus interaction objects and add programming logic without the overhead of compiling or linking. TAE Plus requires MIT's X Window System, Version 11 Release 4, and the Open Software Foundation's Motif Toolkit 1.1 or 1.1.1. The Workbench and WPTs are written in C++ and the remaining code is written in C. TAE Plus is available by license for an unlimited time period. The licensed program product includes the TAE Plus source code and one set of supporting documentation. Additional documentation may be purchased separately at the price indicated below. The amount of disk space required to load the TAE Plus tar format tape is between 35Mb and 67Mb depending on the machine version. The recommended minimum memory is 12Mb. Each TAE Plus platform delivery tape includes pre-built libraries and executable binary code for that particular machine, as well as source code, so users do not have to do an installation. Users wishing to recompile the source will need both a C compiler and either GNU's C++ Version 1.39 or later, or a C++ compiler based on AT&T 2.0 cfront. TAE Plus comes with InterViews and idraw, two software packages developed by Stanford University and integrated in TAE Plus. TAE Plus was developed in 1989 and version 5.1 was released in 1991. TAE Plus is currently available on media suitable for eight different machine platforms: 1) DEC VAX computers running VMS 5.3 or higher (TK50 cartridge in VAX BACKUP format), 2) DEC VAXstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 3) DEC RISC workstations running ULTRIX 4.1 or later (TK50 cartridge in UNIX tar format), 4) HP9000 Series 300/400 computers running HP-UX 8.0 (.25 inch HP-preformatted tape cartridge in UNIX tar format), 5) HP9000 Series 700 computers running HP-UX 8.05 (HP 4mm DDS DAT tape cartridge in UNIX tar format), 6) Sun3 series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), 7) Sun4 (SPARC) series computers running SunOS 4.1.1 (.25 inch tape cartridge in UNIX tar format), and 8) SGI Indigo computers running IRIX 4.0.1 and IRIX/Motif 1.0.1 (.25 inch IRIS tape cartridge in UNIX tar format). An optional Motif Object Code License is available for either Sun version. TAE is a trademark of the National Aeronautics and Space Administration. X Window System is a trademark of the Massachusetts Institute of Technology. Motif is a trademark of the Open Software Foundation. DEC, VAX, VMS, TK50 and ULTRIX are trademarks of Digital Equipment Corporation. HP9000 and HP-UX are trademarks of Hewlett-Packard Co. Sun3, Sun4, SunOS, and SPARC are trademarks of Sun Microsystems, Inc. SGI and IRIS are registered trademarks of Silicon Graphics, Inc.

  20. Storage resource manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perelmutov, T.; Bakken, J.; Petravick, D.

    Storage Resource Managers (SRMs) are middleware components whose function is to provide dynamic space allocation and file management on shared storage components on the Grid[1,2]. SRMs support protocol negotiation and reliable replication mechanism. The SRM standard supports independent SRM implementations, allowing for a uniform access to heterogeneous storage elements. SRMs allow site-specific policies at each location. Resource Reservations made through SRMs have limited lifetimes and allow for automatic collection of unused resources thus preventing clogging of storage systems with ''orphan'' files. At Fermilab, data handling systems use the SRM management interface to the dCache Distributed Disk Cache [5,6] and themore » Enstore Tape Storage System [15] as key components to satisfy current and future user requests [4]. The SAM project offers the SRM interface for its internal caches as well.« less

  1. JOVIAL/Ada Microprocessor Study.

    DTIC Science & Technology

    1982-04-01

    Study Final Technical Report interesting feature of the nodes is that they provide multiple virtual terminals, so it is possible to monitor several...Terminal Interface Tasking Except ion Handling A more elaborate system could allow such features as spooling, background jobs or multiple users. To a large...Another editor feature is the buffer. Buffers may hold small amounts of text or entire text objects. They allow multiple files to be edited simultaneously

  2. A physical control interface with proprioceptive feedback and multiple degrees of freedom

    NASA Technical Reports Server (NTRS)

    Creasey, G. H.; Gow, D.; Sloan, Y.; Meadows, B.

    1991-01-01

    The use of the drug thalidomide by pregnant mothers in Britain resulted in a variety of deformities including the birth of children having no arms. Such children were provided with powered artificial arms with up to five degrees of freedom simultaneously controlled in real time by shoulder movement. The physiological sense of proprioception was extended from the user into the device, reducing the need for visual feedback and conscious control. With the banning of thalidomide, this technique fell into disuse but it is now being re-examined as a control mechanism for other artificial limbs and it may have other medical applications to allow patients to control formerly paralyzed limbs moved by electrical stimulation. It may also have commercial applications in robotic manipulation or physical interaction with virtual environments. To allow it to be investigated further, the original pneumatic control system has recently been converted to an electrical analogue to allow interfacing to electronic and computer-assisted systems. A harness incorporates force-sensitive resistors and linear potentiomenters for sensing position and force at the interface with the skin, and miniature electric motors and lead screws for feeding back to the user the position of the robotic arm and the forces applied to it. In the present system, control is applied to four degrees of freedom using elevation/depression and protraction/reaction of each shoulder so that each collar bone emulates a joystick. However, both electrical and mechanical components have been built in modular form to allow rapid replication and testing of a variety of force and position control strategies.

  3. Seed: a user-friendly tool for exploring and visualizing microbial community data.

    PubMed

    Beck, Daniel; Dennis, Christopher; Foster, James A

    2015-02-15

    In this article we present Simple Exploration of Ecological Data (Seed), a data exploration tool for microbial communities. Seed is written in R using the Shiny library. This provides access to powerful R-based functions and libraries through a simple user interface. Seed allows users to explore ecological datasets using principal coordinate analyses, scatter plots, bar plots, hierarchal clustering and heatmaps. Seed is open source and available at https://github.com/danlbek/Seed. danlbek@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  4. Jupiter Environment Tool

    NASA Technical Reports Server (NTRS)

    Sturm, Erick J.; Monahue, Kenneth M.; Biehl, James P.; Kokorowski, Michael; Ngalande, Cedrick,; Boedeker, Jordan

    2012-01-01

    The Jupiter Environment Tool (JET) is a custom UI plug-in for STK that provides an interface to Jupiter environment models for visualization and analysis. Users can visualize the different magnetic field models of Jupiter through various rendering methods, which are fully integrated within STK s 3D Window. This allows users to take snapshots and make animations of their scenarios with magnetic field visualizations. Analytical data can be accessed in the form of custom vectors. Given these custom vectors, users have access to magnetic field data in custom reports, graphs, access constraints, coverage analysis, and anywhere else vectors are used within STK.

  5. Scientific Visualization of Radio Astronomy Data using Gesture Interaction

    NASA Astrophysics Data System (ADS)

    Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.

    2015-09-01

    MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.

  6. Jules Verne Voyager, Jr: An Interactive Map Tool for Teaching Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Hamburger, M. W.; Meertens, C. M.

    2010-12-01

    We present an interactive, web-based map utility that can make new geological and geophysical results accessible to a large number and variety of users. The tool provides a user-friendly interface that allows users to access a variety of maps, satellite images, and geophysical data at a range of spatial scales. The map tool, dubbed 'Jules Verne Voyager, Jr.', allows users to interactively create maps of a variety of study areas around the world. The utility was developed in collaboration with the UNAVCO Consortium for study of global-scale tectonic processes. Users can choose from a variety of base maps (including "Face of the Earth" and "Earth at Night" satellite imagery mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others), add a number of geographic and geophysical overlays (coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, etc.), and then superimpose both observed and model velocity vectors representing a compilation of 2933 GPS geodetic measurements from around the world. A remarkable characteristic of the geodetic compilation is that users can select from some 21 plates' frames of reference, allowing a visual representation of both 'absolute' plate motion (in a no-net rotation reference frame) and relative motion along all of the world's plate boundaries. The tool allows users to zoom among at least three map scales. The map tool can be viewed at http://jules.unavco.org/VoyagerJr/Earth. A more detailed version of the map utility, developed in conjunction with the EarthScope initiative, focuses on North America geodynamics, and provides more detailed geophysical and geographic information for the United States, Canada, and Mexico. The ‘EarthScope Voyager’ can be accessed at http://jules.unavco.org/VoyagerJr/EarthScope. Because the system uses pre-constructed gif images and overlays, the system can rapidly create and display maps to a large number of users simultaneously and does not require any special software installation on users' systems. In addition, a javascript-based educational interface, dubbed "Exploring our Dynamic Planet", incorporates the map tool, explanatory material, background scientific material, and curricular activities that encourage users to explore Earth processes using the Jules Verne Voyager, Jr. tool. Exploring our Dynamic Planet can be viewed at http://www.dpc.ucar.edu/VoyagerJr/. Because of its flexibility, the map utilities can be used for hands-on exercises exploring plate interaction in a range of academic settings, from high school science classes to entry-level undergraduate to graduate-level tectonics courses.

  7. BioBlend.objects: metacomputing with Galaxy.

    PubMed

    Leo, Simone; Pireddu, Luca; Cuccuru, Gianmauro; Lianas, Luca; Soranzo, Nicola; Afgan, Enis; Zanetti, Gianluigi

    2014-10-01

    BioBlend.objects is a new component of the BioBlend package, adding an object-oriented interface for the Galaxy REST-based application programming interface. It improves support for metacomputing on Galaxy entities by providing higher-level functionality and allowing users to more easily create programs to explore, query and create Galaxy datasets and workflows. BioBlend.objects is available online at https://github.com/afgane/bioblend. The new object-oriented API is implemented by the galaxy/objects subpackage. © The Author 2014. Published by Oxford University Press.

  8. Development and functional demonstration of a wireless intraoral inductive tongue computer interface for severely disabled persons.

    PubMed

    N S Andreasen Struijk, Lotte; Lontis, Eugen R; Gaihede, Michael; Caltenco, Hector A; Lund, Morten Enemark; Schioeler, Henrik; Bentsen, Bo

    2017-08-01

    Individuals with tetraplegia depend on alternative interfaces in order to control computers and other electronic equipment. Current interfaces are often limited in the number of available control commands, and may compromise the social identity of an individual due to their undesirable appearance. The purpose of this study was to implement an alternative computer interface, which was fully embedded into the oral cavity and which provided multiple control commands. The development of a wireless, intraoral, inductive tongue computer was described. The interface encompassed a 10-key keypad area and a mouse pad area. This system was embedded wirelessly into the oral cavity of the user. The functionality of the system was demonstrated in two tetraplegic individuals and two able-bodied individuals Results: The system was invisible during use and allowed the user to type on a computer using either the keypad area or the mouse pad. The maximal typing rate was 1.8 s for repetitively typing a correct character with the keypad area and 1.4 s for repetitively typing a correct character with the mouse pad area. The results suggest that this inductive tongue computer interface provides an esthetically acceptable and functionally efficient environmental control for a severely disabled user. Implications for Rehabilitation New Design, Implementation and detection methods for intra oral assistive devices. Demonstration of wireless, powering and encapsulation techniques suitable for intra oral embedment of assistive devices. Demonstration of the functionality of a rechargeable and fully embedded intra oral tongue controlled computer input device.

  9. Comparing two anesthesia information management system user interfaces: a usability evaluation.

    PubMed

    Wanderer, Jonathan P; Rao, Anoop V; Rothwell, Sarah H; Ehrenfeld, Jesse M

    2012-11-01

    Anesthesia information management systems (AIMS) have been developed by multiple vendors and are deployed in thousands of operating rooms around the world, yet not much is known about measuring and improving AIMS usability. We developed a methodology for evaluating AIMS usability in a low-fidelity simulated clinical environment and used it to compare an existing user interface with a revised version. We hypothesized that the revised user interface would be more useable. In a low-fidelity simulated clinical environment, twenty anesthesia providers documented essential anesthetic information for the start of the case using both an existing and a revised user interface. Participants had not used the revised user interface previously and completed a brief training exercise prior to the study task. All participants completed a workload assessment and a satisfaction survey. All sessions were recorded. Multiple usability metrics were measured. The primary outcome was documentation accuracy. Secondary outcomes were perceived workload, number of documentation steps, number of user interactions, and documentation time. The interfaces were compared and design problems were identified by analyzing recorded sessions and survey results. Use of the revised user interface was shown to improve documentation accuracy from 85.1% to 92.4%, a difference of 7.3% (95% confidence interval [CI] for the difference 1.8 to 12.7). The revised user interface decreased the number of user interactions by 6.5 for intravenous documentation (95% CI 2.9 to 10.1) and by 16.1 for airway documentation (95% CI 11.1 to 21.1). The revised user interface required 3.8 fewer documentation steps (95% CI 2.3 to 5.4). Airway documentation time was reduced by 30.5 seconds with the revised workflow (95% CI 8.5 to 52.4). There were no significant time differences noted in intravenous documentation or in total task time. No difference in perceived workload was found between the user interfaces. Two user interface design problems were identified in the revised user interface. The usability of anesthesia information management systems can be evaluated using a low-fidelity simulated clinical environment. User testing of the revised user interface showed improvement in some usability metrics and highlighted areas for further revision. Vendors of AIMS and those who use them should consider adopting methods to evaluate and improve AIMS usability.

  10. A Simple and Customizable Web Interface to the Virtual Solar Observatory

    NASA Astrophysics Data System (ADS)

    Hughitt, V. Keith; Hourcle, J.; Suarez-Sola, I.; Davey, A.

    2010-05-01

    As the variety and number of solar data sources continue to increase at a rapid rate, the importance of providing methods to search through these sources becomes increasingly important. By taking advantage of the power of modern JavaScript libraries, a new version of the Virtual Solar Observatory's web interface aims to provide a significantly faster and simpler way to explore the multitude of data repositories available. Querying asynchroniously serves not only to eliminates bottlenecks resulting from slow or unresponsive data providers, but also allows for displaying of results as soon as they are returned. Implicit pagination and post-query filtering enables users to work with large result-sets, while a more modular and customizable UI provides a mechanism for customizing both the look-and-feel and behavior of the VSO web interface. Finally, the new web interface features a custom widget system capable of displaying additional tools and information along-side of the standard VSO search form. Interested users can also write their own widgets and submit them for future incorporation into VSO.

  11. Configuring a Graphical User Interface for Managing Local HYSPLIT Model Runs Through AWIPS

    NASA Technical Reports Server (NTRS)

    Wheeler, mark M.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian; VanSpeybroeck, Kurt M.

    2009-01-01

    Responding to incidents involving the release of harmful airborne pollutants is a continual challenge for Weather Forecast Offices in the National Weather Service. When such incidents occur, current protocol recommends forecaster-initiated requests of NOAA's Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model output through the National Centers of Environmental Prediction to obtain critical dispersion guidance. Individual requests are submitted manually through a secured web site, with desired multiple requests submitted in sequence, for the purpose of obtaining useful trajectory and concentration forecasts associated with the significant release of harmful chemical gases, radiation, wildfire smoke, etc., into local the atmosphere. To help manage the local HYSPLIT for both routine and emergency use, a graphical user interface was designed for operational efficiency. The interface allows forecasters to quickly determine the current HYSPLIT configuration for the list of predefined sites (e.g., fixed sites and floating sites), and to make any necessary adjustments to key parameters such as Input Model. Number of Forecast Hours, etc. When using the interface, forecasters will obtain desired output more confidently and without the danger of corrupting essential configuration files.

  12. Development and Integration of an Advanced Stirling Convertor Linear Alternator Model for a Tool Simulating Convertor Performance and Creating Phasor Diagrams

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan F.; Lewandowski, Edward J.

    2013-01-01

    A simple model of the Advanced Stirling Convertors (ASC) linear alternator and an AC bus controller has been developed and combined with a previously developed thermodynamic model of the convertor for a more complete simulation and analysis of the system performance. The model was developed using Sage, a 1-D thermodynamic modeling program that now includes electro-magnetic components. The convertor, consisting of a free-piston Stirling engine combined with a linear alternator, has sufficiently sinusoidal steady-state behavior to allow for phasor analysis of the forces and voltages acting in the system. A MATLAB graphical user interface (GUI) has been developed to interface with the Sage software for simplified use of the ASC model, calculation of forces, and automated creation of phasor diagrams. The GUI allows the user to vary convertor parameters while fixing different input or output parameters and observe the effect on the phasor diagrams or system performance. The new ASC model and GUI help create a better understanding of the relationship between the electrical component voltages and mechanical forces. This allows better insight into the overall convertor dynamics and performance.

  13. Starting Over: Current Issues in Online Catalog User Interface Design.

    ERIC Educational Resources Information Center

    Crawford, Walt

    1992-01-01

    Discussion of online catalogs focuses on issues in interface design. Issues addressed include understanding the user base; common user access (CUA) with personal computers; common command language (CCL); hyperlinks; screen design issues; differences from card catalogs; indexes; graphic user interfaces (GUIs); color; online help; and remote users.…

  14. A SOA broker solution for standard discovery and access services: the GI-cat framework

    NASA Astrophysics Data System (ADS)

    Boldrini, Enrico

    2010-05-01

    GI-cat ideal users are data providers or service providers within the geoscience community. The former have their data already available through an access service (e.g. an OGC Web Service) and would have it published through a standard catalog service, in a seamless way. The latter would develop a catalog broker and let users query and access different geospatial resources through one or more standard interfaces and Application Profiles (AP) (e.g. OGC CSW ISO AP, CSW ebRIM/EO AP, etc.). GI-cat actually implements a broker components (i.e. a middleware service) which carries out distribution and mediation functionalities among "well-adopted" catalog interfaces and data access protocols. GI-cat also publishes different discovery interfaces: the OGC CSW ISO and ebRIM Application Profiles (the latter coming with support for the EO and CIM extension packages) and two different OpenSearch interfaces developed in order to explore Web 2.0 possibilities. An extended interface is also available to exploit all available GI-cat features, such as interruptible incremental queries and queries feedback. Interoperability tests performed in the context of different projects have also pointed out the importance to enforce compatibility with existing and wide-spread tools of the open source community (e.g. GeoNetwork and Deegree catalogs), which was then achieved. Based on a service-oriented framework of modular components, GI-cat can effectively be customized and tailored to support different deployment scenarios. In addition to the distribution functionality an harvesting approach has been lately experimented, allowing the user to switch between a distributed and a local search giving thus more possibilities to support different deployment scenarios. A configurator tool is available in order to enable an effective high level configuration of the broker service. A specific geobrowser was also naturally developed, for demonstrating the advanced GI-cat functionalities. This client, called GI-go, is an example of the possible applications which may be built on top of the GI-cat broker component. GI-go allows discovering and browsing of the available datasets, retrieving and evaluating their description and performing distributed queries according to any combination of the following criteria: geographic area, temporal interval, topic of interest (free-text and/or keyword selection are allowed) and data source (i.e. where, when, what, who). The results set of a query (e.g. datasets metadata) are then displayed in an incremental way leveraging the asynchronous interactions approach implemented by GI-cat. This feature allows the user to access the intermediate query results. Query interruption and feedback features are also provided to the user. Alternatively, user may perform a browsing task by selecting a catalog resource from the current configuration and navigate through its aggregated and/or leaf datasets. In both cases datasets metadata, expressed according to ISO 19139 (and also Dublin Core and ebRIM if available), are displayed for download, along with a resource portrayal and actual data access (when this is meaningful and possible). The GI-cat distributed catalog service has been successfully deployed and experimented in the framework of different projects and initiative, including the SeaDataNet FP6 project, GEOSS IP3 (Interoperability Process Pilot Project), GEOSS AIP-2 (Architectural Implementation Project - Phase 2), FP7 GENESI-DR, CNR GIIDA, FP7 EUROGEOSS and ESA HMA project.

  15. Integrated Model for E-Learning Acceptance

    NASA Astrophysics Data System (ADS)

    Ramadiani; Rodziah, A.; Hasan, S. M.; Rusli, A.; Noraini, C.

    2016-01-01

    E-learning is not going to work if the system is not used in accordance with user needs. User Interface is very important to encourage using the application. Many theories had discuss about user interface usability evaluation and technology acceptance separately, actually why we do not make it correlation between interface usability evaluation and user acceptance to enhance e-learning process. Therefore, the evaluation model for e-learning interface acceptance is considered important to investigate. The aim of this study is to propose the integrated e-learning user interface acceptance evaluation model. This model was combined some theories of e-learning interface measurement such as, user learning style, usability evaluation, and the user benefit. We formulated in constructive questionnaires which were shared at 125 English Language School (ELS) students. This research statistics used Structural Equation Model using LISREL v8.80 and MANOVA analysis.

  16. Real-Time Geospatial Data Viewer (RETIGO)

    EPA Science Inventory

    This is a web-based method that allows the users to upload their air monitoring data and explore the data on graphical interface. The method is optimized for mobile monitoring data sets, showing the data on a map, on a time series, and referenced to a hypothesized line and/or poi...

  17. Flat Panel Displays for Medical Monitoring Systems

    DTIC Science & Technology

    2001-10-25

    filter prevents light from passing (figure 2). FLAT PANEL DISPLAYS FOR MEDICAL MONITORING SYSTEMS A. Cebrián, J. Millet , I. García Department of...The touch screen is placed over the flat panel display as a filter (figure 10) and allows user interfaces based in direct finger touch (figure 11

  18. Multi-Sensor Distributive On-line Processing, Visualization, and Analysis Infrastructure for an Agricultural Information System at the NASA Goddard Earth Sciences DAAC

    NASA Astrophysics Data System (ADS)

    Teng, W.; Berrick, S.; Leptoukh, G.; Liu, Z.; Rui, H.; Pham, L.; Shen, S.; Zhu, T.

    2004-12-01

    The Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Archive Center (DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide precipitation and other satellite data products and services. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as that of the U.N. World Food Program. The ability to use the raw data stored in the GES DAAC archives is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. To gain this understanding is a time-consuming process and not a productive investment of the user's time. This is an especially difficult challenge when users need to deal with multi-sensor data that usually are of different structures and resolutions. The AIS has taken a major step towards meeting this challenge by incorporating an underlying infrastructure, called the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni," that integrates various components to support web interfaces that allow users to perform interactive analysis on-line without downloading any data. Several instances of the Giovanni-based interface have been or are being created to serve users of TRMM precipitation, MODIS aerosol, and SeaWiFS ocean color data, as well as agricultural applications users. Giovanni-based interfaces are simple to use but powerful. The user selects geophysical parameters, area of interest, and time period; and the system generates an output on screen in a matter of seconds. The currently available output options are (1) area plot - averaged or accumulated over any available data period for any rectangular area; (2) time plot - time series averaged over any rectangular area; (3) Hovmoller plots - longitude-time and latitude-time plots; (4) ASCII output - for all plot types; and (5) image animation - for area plot. Planned output options for the near-future include correlation plots and GIS-compatible outputs. The AIS will enable the remote, interoperable access to distributed data, because the current Giovanni implementation incorporates the GrADS-DODS Server (GDS), a stable, secure data server that provides subsetting and analysis services across the Internet, for any GrADS-readable data set. The subsetting capability allows users to retrieve a specified spatial region from a large data set, eliminating the need to first download the entire data set. The analysis capability allows users to retrieve the results of an operation applied to one or more data sets on the server. The Giovanni-GDS technology allows the serving of data, through convenient on-line analysis tools, from any location where GDS and a few GrADS scripts are installed. The GES-DISC implementation of this technology is unique in the way it enables multi-sensor processing and analysis.

  19. User Interface Technology for Formal Specification Development

    NASA Technical Reports Server (NTRS)

    Lowry, Michael; Philpot, Andrew; Pressburger, Thomas; Underwood, Ian; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Formal specification development and modification are an essential component of the knowledge-based software life cycle. User interface technology is needed to empower end-users to create their own formal specifications. This paper describes the advanced user interface for AMPHION1 a knowledge-based software engineering system that targets scientific subroutine libraries. AMPHION is a generic, domain-independent architecture that is specialized to an application domain through a declarative domain theory. Formal specification development and reuse is made accessible to end-users through an intuitive graphical interface that provides semantic guidance in creating diagrams denoting formal specifications in an application domain. The diagrams also serve to document the specifications. Automatic deductive program synthesis ensures that end-user specifications are correctly implemented. The tables that drive AMPHION's user interface are automatically compiled from a domain theory; portions of the interface can be customized by the end-user. The user interface facilitates formal specification development by hiding syntactic details, such as logical notation. It also turns some of the barriers for end-user specification development associated with strongly typed formal languages into active sources of guidance, without restricting advanced users. The interface is especially suited for specification modification. AMPHION has been applied to the domain of solar system kinematics through the development of a declarative domain theory. Testing over six months with planetary scientists indicates that AMPHION's interactive specification acquisition paradigm enables users to develop, modify, and reuse specifications at least an order of magnitude more rapidly than manual program development.

  20. Open access for ALICE analysis based on virtualization technology

    NASA Astrophysics Data System (ADS)

    Buncic, P.; Gheata, M.; Schutz, Y.

    2015-12-01

    Open access is one of the important leverages for long-term data preservation for a HEP experiment. To guarantee the usability of data analysis tools beyond the experiment lifetime it is crucial that third party users from the scientific community have access to the data and associated software. The ALICE Collaboration has developed a layer of lightweight components built on top of virtualization technology to hide the complexity and details of the experiment-specific software. Users can perform basic analysis tasks within CernVM, a lightweight generic virtual machine, paired with an ALICE specific contextualization. Once the virtual machine is launched, a graphical user interface is automatically started without any additional configuration. This interface allows downloading the base ALICE analysis software and running a set of ALICE analysis modules. Currently the available tools include fully documented tutorials for ALICE analysis, such as the measurement of strange particle production or the nuclear modification factor in Pb-Pb collisions. The interface can be easily extended to include an arbitrary number of additional analysis modules. We present the current status of the tools used by ALICE through the CERN open access portal, and the plans for future extensions of this system.

  1. Experiment on a novel user input for computer interface utilizing tongue input for the severely disabled.

    PubMed

    Kencana, Andy Prima; Heng, John

    2008-11-01

    This paper introduces a novel passive tongue control and tracking device. The device is intended to be used by the severely disabled or quadriplegic person. The main focus of this device when compared to the other existing tongue tracking devices is that the sensor employed is passive which means it requires no powered electrical sensor to be inserted into the user's mouth and hence no trailing wires. This haptic interface device employs the use of inductive sensors to track the position of the user's tongue. The device is able perform two main PC functions that of the keyboard and mouse function. The results show that this device allows the severely disabled person to have some control in his environment, such as to turn on and off or control daily electrical devices or appliances; or to be used as a viable PC Human Computer Interface (HCI) by tongue control. The operating principle and set-up of such a novel passive tongue HCI has been established with successful laboratory trials and experiments. Further clinical trials will be required to test out the device on disabled persons before it is ready for future commercial development.

  2. VIEW-Station software and its graphical user interface

    NASA Astrophysics Data System (ADS)

    Kawai, Tomoaki; Okazaki, Hiroshi; Tanaka, Koichiro; Tamura, Hideyuki

    1992-04-01

    VIEW-Station is a workstation-based image processing system which merges the state-of-the- art software environment of Unix with the computing power of a fast image processor. VIEW- Station has a hierarchical software architecture, which facilitates device independence when porting across various hardware configurations, and provides extensibility in the development of application systems. The core image computing language is V-Sugar. V-Sugar provides a set of image-processing datatypes and allows image processing algorithms to be simply expressed, using a functional notation. VIEW-Station provides a hardware independent window system extension called VIEW-Windows. In terms of GUI (Graphical User Interface) VIEW-Station has two notable aspects. One is to provide various types of GUI as visual environments for image processing execution. Three types of interpreters called (mu) V- Sugar, VS-Shell and VPL are provided. Users may choose whichever they prefer based on their experience and tasks. The other notable aspect is to provide facilities to create GUI for new applications on the VIEW-Station system. A set of widgets are available for construction of task-oriented GUI. A GUI builder called VIEW-Kid is developed for WYSIWYG interactive interface design.

  3. A study of usability principles and interface design for mobile e-books.

    PubMed

    Wang, Chao-Ming; Huang, Ching-Hua

    2015-01-01

    This study examined usability principles and interface designs in order to understand the relationship between the intentions of mobile e-book interface designs and users' perceptions. First, this study summarised 4 usability principles and 16 interface attributes, in order to conduct usability testing and questionnaire survey by referring to Nielsen (1993), Norman (2002), and Yeh (2010), who proposed the usability principles. Second, this study used the interviews to explore the perceptions and behaviours of user operations through senior users of multi-touch prototype devices. The results of this study are as follows: (1) users' behaviour of operating an interactive interface is related to user prior experience; (2) users' rating of the visibility principle is related to users' subjective perception but not related to user prior experience; however, users' ratings of the ease, efficiency, and enjoyment principles are related to user prior experience; (3) the interview survey reveals that the key attributes affecting users' behaviour of operating an interface include aesthetics, achievement, and friendliness. This study conducts experiments to explore the effects of users’ prior multi-touch experience on users’ behaviour of operating a mobile e-book interface and users’ rating of usability principles. Both qualitative and quantitative data analyses were performed. By applying protocol analysis, key attributes affecting users’ behaviour of operation were determined.

  4. Multi-Sensor Distributive On-Line Processing, Visualization, and Analysis Infrastructure for an Agricultural Information System at the NASA Goddard Earth Sciences DAAC

    NASA Technical Reports Server (NTRS)

    Teng, William; Berrick, Steve; Leptuokh, Gregory; Liu, Zhong; Rui, Hualan; Pham, Long; Shen, Suhung; Zhu, Tong

    2004-01-01

    The Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Center (DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM On-line Visualization and Analysis System precipitation and other satellite data products and services. AIS outputs will be ,integrated into existing operational decision support system for global crop monitoring, such as that of the U.N. World Food Program. The ability to use the raw data stored in the GES DAAC archives is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. To gain this understanding is a time-consuming process and not a productive investment of the user's time. This is an especially difficult challenge when users need to deal with multi-sensor data that usually are of different structures and resolutions. The AIS has taken a major step towards meeting this challenge by incorporating an underlying infrastructure, called the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni," that integrates various components to support web interfaces that ,allow users to perform interactive analysis on-line without downloading any data. Several instances of the Giovanni-based interface have been or are being created to serve users of TRMM precipitation, MODIS aerosol, and SeaWiFS ocean color data, as well as agricultural applications users. Giovanni-based interfaces are simple to use but powerful. The user selects geophysical ,parameters, area of interest, and time period; and the system generates an output ,on screen in a matter of seconds.

  5. Building a Web-based drug ordering system for hospitals: from requirements engineering to prototyping.

    PubMed

    Hübner, U; Klein, F; Hofstetter, J; Kammeyer, G; Seete, H

    2000-01-01

    Web-based drug ordering allows a growing number of hospitals without pharmacy to communicate seamlessly with their external pharmacy. Business process analysis and object oriented modelling performed together with the users at a pilot hospital resulted in a comprehensive picture of the user and business requirements for electronic drug ordering. The user requirements were further validated with the help of a software prototype. In order to capture the needs of a large number of users CAP10, a new method making use of pre-built models, is proposed. Solutions for coping with the technical requirements (interfacing the business software at the pharmacy) and with the legal requirements (signing the orders) are presented.

  6. How to Develop a User Interface That Your Real Users Will Love

    ERIC Educational Resources Information Center

    Phillips, Donald

    2012-01-01

    A "user interface" is the part of an interactive system that bridges the user and the underlying functionality of the system. But people sometimes forget that the best interfaces will provide a platform to optimize the users' interactions so that they support and extend the users' activities in effective, useful, and usable ways. To look at it…

  7. Make E-Learning Effortless! Impact of a Redesigned User Interface on Usability through the Application of an Affordance Design Approach

    ERIC Educational Resources Information Center

    Park, Hyungjoo; Song, Hae-Deok

    2015-01-01

    Given that a user interface interacts with users, a critical factor to be considered in improving the usability of an e-learning user interface is user-friendliness. Affordances enable users to more easily approach and engage in learning tasks because they strengthen positive, activating emotions. However, most studies on affordances limit…

  8. Method and System for Air Traffic Rerouting for Airspace Constraint Resolution

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz (Inventor); Morando, Alexander R. (Inventor); Sheth, Kapil S. (Inventor); McNally, B. David (Inventor); Clymer, Alexis A. (Inventor); Shih, Fu-tai (Inventor)

    2017-01-01

    A dynamic constraint avoidance route system automatically analyzes routes of aircraft flying, or to be flown, in or near constraint regions and attempts to find more time and fuel efficient reroutes around current and predicted constraints. The dynamic constraint avoidance route system continuously analyzes all flight routes and provides reroute advisories that are dynamically updated in real time. The dynamic constraint avoidance route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.

  9. The ATOMFT integrator - Using Taylor series to solve ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Berryman, Kenneth W.; Stanford, Richard H.; Breckheimer, Peter J.

    1988-01-01

    This paper discusses the application of ATOMFT, an integration package based on Taylor series solution with a sophisticated user interface. ATOMFT has the capabilities to allow the implementation of user defined functions and the solution of stiff and algebraic equations. Detailed examples, including the solutions to several astrodynamics problems, are presented. Comparisons with its predecessor ATOMCC and other modern integrators indicate that ATOMFT is a fast, accurate, and easy method to use to solve many differential equation problems.

  10. Computer-Based Tools for Evaluating Graphical User Interfaces

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1997-01-01

    The user interface is the component of a software system that connects two very complex system: humans and computers. Each of these two systems impose certain requirements on the final product. The user is the judge of the usability and utility of the system; the computer software and hardware are the tools with which the interface is constructed. Mistakes are sometimes made in designing and developing user interfaces because the designers and developers have limited knowledge about human performance (e.g., problem solving, decision making, planning, and reasoning). Even those trained in user interface design make mistakes because they are unable to address all of the known requirements and constraints on design. Evaluation of the user inter-face is therefore a critical phase of the user interface development process. Evaluation should not be considered the final phase of design; but it should be part of an iterative design cycle with the output of evaluation being feed back into design. The goal of this research was to develop a set of computer-based tools for objectively evaluating graphical user interfaces. The research was organized into three phases. The first phase resulted in the development of an embedded evaluation tool which evaluates the usability of a graphical user interface based on a user's performance. An expert system to assist in the design and evaluation of user interfaces based upon rules and guidelines was developed during the second phase. During the final phase of the research an automatic layout tool to be used in the initial design of graphical inter- faces was developed. The research was coordinated with NASA Marshall Space Flight Center's Mission Operations Laboratory's efforts in developing onboard payload display specifications for the Space Station.

  11. US Coast Guard GPS Information Center (GPSIC) and its function within the Civil GPS Service (CGS)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In 1987, the U.S. Department of Defense (DOD) formally requested that the U.S. Department of Transportation (DOT) take responsibility for providing an office that would respond to nonmilitary user needs for GPS information, data, and assistance. DOT accepted this responsibility and in February 1989, named the Coast Guard as their lead agency for the project. Since that time, the U.S. Coast Guard has worked with the U.S. Space Command to develop requirements and implement a plan for providing the requested interface with the civil GPS community. The Civil GPS Service (CGS) consists of four main elements: GPS Information Center (GPSIC) - provides GPS status information to civilian users of the system: Civil GPS Service Interface Committee (CGSIC) - established to identify civil GPS user technical information needs in support of the CGS program; Differential GPS (DGPS) - Coast Guard Research and Development Project; and PPS Program Office (PPSPO) - (Under development) will administer the program allowing qualified civil users to have access to the PPS signal. Details about the services these organizations provide are described.

  12. BioSearch: a semantic search engine for Bio2RDF

    PubMed Central

    Qiu, Honglei; Huang, Jiacheng

    2017-01-01

    Abstract Biomedical data are growing at an incredible pace and require substantial expertise to organize data in a manner that makes them easily findable, accessible, interoperable and reusable. Massive effort has been devoted to using Semantic Web standards and technologies to create a network of Linked Data for the life sciences, among others. However, while these data are accessible through programmatic means, effective user interfaces for non-experts to SPARQL endpoints are few and far between. Contributing to user frustrations is that data are not necessarily described using common vocabularies, thereby making it difficult to aggregate results, especially when distributed across multiple SPARQL endpoints. We propose BioSearch — a semantic search engine that uses ontologies to enhance federated query construction and organize search results. BioSearch also features a simplified query interface that allows users to optionally filter their keywords according to classes, properties and datasets. User evaluation demonstrated that BioSearch is more effective and usable than two state of the art search and browsing solutions. Database URL: http://ws.nju.edu.cn/biosearch/ PMID:29220451

  13. Role-Based And Adaptive User Interface Designs In A Teledermatology Consult System: A Way To Secure And A Way To Enhance

    PubMed Central

    Lin, Yi-Jung; Speedie, Stuart

    2003-01-01

    User interface design is one of the most important parts of developing applications. Nowadays, a quality user interface must not only accommodate interaction between machines and users, but also needs to recognize the differences and provide functionalities for users from role-to-role or even individual-to-individual. With the web-based application of our Teledermatology consult system, the development environment provides us highly useful opportunities to create dynamic user interfaces, which lets us to gain greater access control and has the potential to increase efficiency of the system. We will describe the two models of user interfaces in our system: Role-based and Adaptive. PMID:14728419

  14. DockingApp: a user friendly interface for facilitated docking simulations with AutoDock Vina.

    PubMed

    Di Muzio, Elena; Toti, Daniele; Polticelli, Fabio

    2017-02-01

    Molecular docking is a powerful technique that helps uncover the structural and energetic bases of the interaction between macromolecules and substrates, endogenous and exogenous ligands, and inhibitors. Moreover, this technique plays a pivotal role in accelerating the screening of large libraries of compounds for drug development purposes. The need to promote community-driven drug development efforts, especially as far as neglected diseases are concerned, calls for user-friendly tools to allow non-expert users to exploit the full potential of molecular docking. Along this path, here is described the implementation of DockingApp, a freely available, extremely user-friendly, platform-independent application for performing docking simulations and virtual screening tasks using AutoDock Vina. DockingApp sports an intuitive graphical user interface which greatly facilitates both the input phase and the analysis of the results, which can be visualized in graphical form using the embedded JMol applet. The application comes with the DrugBank set of more than 1400 ready-to-dock, FDA-approved drugs, to facilitate virtual screening and drug repurposing initiatives. Furthermore, other databases of compounds such as ZINC, available also in AutoDock format, can be readily and easily plugged in.

  15. The New Web-Based Hera Data Processing System at the HEASARC

    NASA Technical Reports Server (NTRS)

    Pence, W.

    2011-01-01

    The HEASARC at NASA/GSFC has provide an on-line astronomical data processing system called Hera for several years. Hera provides a complete data processing environment, including installed software packages, local data storage, and the CPU resources needed to process the user's data. The original design of Hera, however, has 2 requirements that has limited it's usefulness for some users, namely, that 1) the user must download and install a small helper program on their own computer before using Hera, and 2) Hera requires that several computer ports/sockets be allowed to communicate through any local firewalls on the users machine. Both of these restrictions can be problematic for some users, therefore we are now migrating Hera into a purely Web based environment which only requires a standard Web browser. The first release of Web Hera is now publicly available at http://heasarc.gsfc.nasa.gov/webheara/. It currently provides a standard graphical interface for running hundreds of different data processing programs that are available in the HEASARC's ftools software package. Over the next year we to add more features to Web Hera, including an interactive command line interface, and more display and line capabilities.

  16. Enabling end-user network monitoring via the multicast consolidated proxy monitor

    NASA Astrophysics Data System (ADS)

    Kanwar, Anshuman; Almeroth, Kevin C.; Bhattacharyya, Supratik; Davy, Matthew

    2001-07-01

    The debugging of problems in IP multicast networks relies heavily on an eclectic set of stand-alone tools. These tools traditionally neither provide a consistent interface nor do they generate readily interpretable results. We propose the ``Multicast Consolidated Proxy Monitor''(MCPM), an integrated system for collecting, analyzing and presenting multicast monitoring results to both the end user and the network operator at the user's Internet Service Provider (ISP). The MCPM accesses network state information not normally visible to end users and acts as a proxy for disseminating this information. Functionally, through this architecture, we aim to a) provide a view of the multicast network at varying levels of granularity, b) provide end users with a limited ability to query the multicast infrastructure in real time, and c) protect the infrastructure from overwhelming amount of monitoring load through load control. Operationally, our scheme allows scaling to the ISPs dimensions, adaptability to new protocols (introduced as multicast evolves), threshold detection for crucial parameters and an access controlled, customizable interface design. Although the multicast scenario is used to illustrate the benefits of consolidated monitoring, the ultimate aim is to scale the scheme to unicast IP networks.

  17. DockingApp: a user friendly interface for facilitated docking simulations with AutoDock Vina

    NASA Astrophysics Data System (ADS)

    Di Muzio, Elena; Toti, Daniele; Polticelli, Fabio

    2017-02-01

    Molecular docking is a powerful technique that helps uncover the structural and energetic bases of the interaction between macromolecules and substrates, endogenous and exogenous ligands, and inhibitors. Moreover, this technique plays a pivotal role in accelerating the screening of large libraries of compounds for drug development purposes. The need to promote community-driven drug development efforts, especially as far as neglected diseases are concerned, calls for user-friendly tools to allow non-expert users to exploit the full potential of molecular docking. Along this path, here is described the implementation of DockingApp, a freely available, extremely user-friendly, platform-independent application for performing docking simulations and virtual screening tasks using AutoDock Vina. DockingApp sports an intuitive graphical user interface which greatly facilitates both the input phase and the analysis of the results, which can be visualized in graphical form using the embedded JMol applet. The application comes with the DrugBank set of more than 1400 ready-to-dock, FDA-approved drugs, to facilitate virtual screening and drug repurposing initiatives. Furthermore, other databases of compounds such as ZINC, available also in AutoDock format, can be readily and easily plugged in.

  18. Towards automation of user interface design

    NASA Technical Reports Server (NTRS)

    Gastner, Rainer; Kraetzschmar, Gerhard K.; Lutz, Ernst

    1992-01-01

    This paper suggests an approach to automatic software design in the domain of graphical user interfaces. There are still some drawbacks in existing user interface management systems (UIMS's) which basically offer only quantitative layout specifications via direct manipulation. Our approach suggests a convenient way to get a default graphical user interface which may be customized and redesigned easily in further prototyping cycles.

  19. Designing the user interface: strategies for effective human-computer interaction

    NASA Astrophysics Data System (ADS)

    Shneiderman, B.

    1998-03-01

    In revising this popular book, Ben Shneiderman again provides a complete, current and authoritative introduction to user-interface design. The user interface is the part of every computer system that determines how people control and operate that system. When the interface is well designed, it is comprehensible, predictable, and controllable; users feel competent, satisfied, and responsible for their actions. Shneiderman discusses the principles and practices needed to design such effective interaction. Based on 20 years experience, Shneiderman offers readers practical techniques and guidelines for interface design. He also takes great care to discuss underlying issues and to support conclusions with empirical results. Interface designers, software engineers, and product managers will all find this book an invaluable resource for creating systems that facilitate rapid learning and performance, yield low error rates, and generate high user satisfaction. Coverage includes the human factors of interactive software (with a new discussion of diverse user communities), tested methods to develop and assess interfaces, interaction styles such as direct manipulation for graphical user interfaces, and design considerations such as effective messages, consistent screen design, and appropriate color.

  20. RadVel: The Radial Velocity Modeling Toolkit

    NASA Astrophysics Data System (ADS)

    Fulton, Benjamin J.; Petigura, Erik A.; Blunt, Sarah; Sinukoff, Evan

    2018-04-01

    RadVel is an open-source Python package for modeling Keplerian orbits in radial velocity (RV) timeseries. RadVel provides a convenient framework to fit RVs using maximum a posteriori optimization and to compute robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel allows users to float or fix parameters, impose priors, and perform Bayesian model comparison. We have implemented real-time MCMC convergence tests to ensure adequate sampling of the posterior. RadVel can output a number of publication-quality plots and tables. Users may interface with RadVel through a convenient command-line interface or directly from Python. The code is object-oriented and thus naturally extensible. We encourage contributions from the community. Documentation is available at http://radvel.readthedocs.io.

Top